
[Team LiB]

• Table of Contents

• Index

• Reviews

• Reader Reviews

• Errata

Practical RDF

By Shelley Powers

Publisher: O'Reilly

Pub Date: July 2003

ISBN: 0-596-00263-7

Pages: 350

The Resource Description Framework (RDF) is a structure for describing and interchanging metadata
on the Web. Practical RDF explains RDF from the ground up, providing real-world examples and
descriptions of how the technology is being used in applications like Mozilla, FOAF, and Chandler, as
well as infrastructure you can use to build your own applications. This book cuts to the heart of the
W3C's often obscure specifications, giving you tools to apply RDF successfully in your own projects.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

• Table of Contents

• Index

• Reviews

• Reader Reviews

• Errata

Practical RDF

By Shelley Powers

Publisher: O'Reilly

Pub Date: July 2003

ISBN: 0-596-00263-7

Pages: 350

 Copyright

 Preface

 Audience

 Structure of This Book

 Conventions Used in This Book

 How to Contact Us

 Acknowledgments

 Chapter 1. RDF: An Introduction

 Section 1.1. The Semantic Web and RDF: A Brief History

 Section 1.2. The Specifications

 Section 1.3. When to Use and Not Use RDF

 Section 1.4. Some Uses of RDF/XML

 Section 1.5. Related Technologies

 Section 1.6. Going Forward

 Chapter 2. RDF: Heart and Soul

 Section 2.1. The Search for Knowledge

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 2.2. The RDF Triple

 Section 2.3. The Basic RDF Data Model and the RDF Graph

 Section 2.4. URIs

 Section 2.5. RDF Serialization: N3 and N-Triples

 Section 2.6. Talking RDF: Lingo and Vocabulary

 Chapter 3. The Basic Elements Within the RDF/XML Syntax

 Section 3.1. Serializing RDF to XML

 Section 3.2. RDF Blank Nodes

 Section 3.3. URI References

 Section 3.4. Representing Structured Data with rdf:value

 Section 3.5. The rdf:type Property

 Section 3.6. RDF/XML Shortcuts

 Section 3.7. More on RDF Data Types

 Section 3.8. RDF/XML: Separate Documents or Embedded Blocks

 Chapter 4. Specialized RDF Relationships: Reification, Containers, and Collections

 Section 4.1. Containers

 Section 4.2. Collections

 Section 4.3. Reification: The RDF Big Ugly

 Chapter 5. Important Concepts from the W3C RDF Vocabulary/Schema

 Section 5.1. RDF Vocabulary: Describing the Data

 Section 5.2. Core RDF Schema Elements

 Section 5.3. Refining RDF Vocabularies with Constraints

 Section 5.4. RDF Schema Alternatives

 Chapter 6. Creating an RDF Vocabulary

 Section 6.1. How RDF Vocabularies Differ from XML Vocabularies

 Section 6.2. Defining the Vocabulary: Business and Scope

 Section 6.3. Defining the Vocabulary: Elements

 Section 6.4. Formalizing the Vocabulary with RDFS

 Section 6.5. Integrating the Dublin Core

 Chapter 7. Editing, Parsing, and Browsing RDF/XML

 Section 7.1. BrownSauce

 Section 7.2. Parsers

 Section 7.3. Editors

 Chapter 8. Jena: RDF in Java

 Section 8.1. Overview of the Classes

 Section 8.2. Creating and Serializing an RDF Model

 Section 8.3. Parsing and Querying an RDF Document

 Section 8.4. In-Memory Versus Persistent Model Storage

 Chapter 9. RDF and Perl, PHP, and Python

 Section 9.1. RDF/XML and Perl

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 9.2. RDF API for PHP

 Section 9.3. RDF and Python: RDFLib

 Chapter 10. Querying RDF: RDF as Data

 Section 10.1. RDF and the Relational Data Model

 Section 10.2. Roots: rdfDB QL

 Section 10.3. Inkling and SquishQL

 Section 10.4. RDQL

 Section 10.5. Sesame

 Chapter 11. A Brief Look at Additional RDF Application Environments

 Section 11.1. RDF and C#

 Section 11.2. Wilbur - RDF API CLOS

 Section 11.3. Overview of Redland-a Multilanguage-Based RDF Framework

 Section 11.4. Redfoot

 Chapter 12. Ontologies: RDF Business Models

 Section 12.1. Why Ontology?

 Section 12.2. Brief History of the Ontology Movement

 Section 12.3. OWL Use Cases and Requirements

 Section 12.4. OWL Specifications

 Section 12.5. Basic Constructs of OWL

 Section 12.6. Bits of Knowledge: More Complex OWL Constructs

 Section 12.7. The Complementary Nature of RDF and OWL

 Section 12.8. Ontology Tools: Editors

 Chapter 13. Subscription and Aggregation with RSS

 Section 13.1. RSS: Quick History

 Section 13.2. RSS 1.0: A Quick Introduction

 Section 13.3. A Detailed Look at the Specification

 Section 13.4. Extending the Specification Through Modules

 Section 13.5. The RSS Modules

 Section 13.6. RSS Aggregators

 Section 13.7. Creating Your Own RSS Content

 Section 13.8. Build Your Own RSS Consumer

 Section 13.9. Merging RDF/RSS Files

 Chapter 14. A World of Uses: Noncommercial Applications Based on RDF

 Section 14.1. Mozilla

 Section 14.2. Creative Commons License

 Section 14.3. MIT's DSpace System Documentation

 Section 14.4. FOAF: Friend-of-a-Friend

 Chapter 15. A World of Uses: Commercial Uses of RDF/XML

 Section 15.1. Chandler: RDF Within an Open Source PIM

 Section 15.2. RDF Gateway, a Commercial RDF Database

 Section 15.3. Siderean Software's Seamark

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 15.4. Plugged In Software's Tucana Knowledge Store

 Section 15.5. RDF and Adobe: XMP

 Section 15.6. What's It All Mean?

 Colophon

 Index

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Copyright © 2003 O'Reilly & Associates, Inc.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safari.oreilly.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly & Associates, Inc. Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Java , all Java-based trademarks and logos, and
JavaScript are trademarks or registered trademarks of Sun Microsystems, Inc., in the United
States and other countries. O'Reilly & Associates, Inc. is independent of Sun Microsystems. Where
those designations appear in this book, and O'Reilly & Associates, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps. The association between the image
of a secretary bird and the topic of RDF is a trademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

[Team LiB]

http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Preface
The Resource Description Framework (RDF) offers developers a powerful toolkit for making
statements and connecting those statements to derive meaning. The World Wide Web Consortium
(W3C) has been developing RDF as a key component of its vision for a Semantic Web, but RDF's
capabilities fit well in many different computing contexts. RDF offers a different, and in some ways
more powerful, framework for data representation than XML or relational databases, while remaining
far more generic than object structures.

RDF's foundations are built on a very simple model, but the basic logic can support large-scale
information management and processing in a variety of different contexts. The assertions in different
RDF files can be combined, providing far more information together than they contain separately.
RDF supports flexible and powerful query structures, and developers have created a wide variety of
tools for working with RDF.

While RDF is commonly described as an arcane tool for working with an enormous volume of complex
information, organized with ontologies and other formal models, it also has tremendous value for
smaller, more informal projects. I learned about RDF, specifically RDF/XML, when I started working
with Mozilla back in the early days of development for this project. At the time, the Mozilla team was
using RDF as a way of defining the XML used to provide the data for dynamic tables of contents
(TOC) in the application framework. This included providing the data for the favorites, the sidebar,
and so on.

I created a tutorial about developing applications using the Mozilla components as part of a
presentation I was giving at an XML-related conference. Unfortunately, every time a new release of
Mozilla was issued, my tutorial would break. The primary reason was the RDF/XML supported by the
application; it kept changing to keep up with the changes currently underway with the RDF
specification itself. At that point I went to the RDF specifications, managed to read my way through
the first specification document (the RDF Model and Syntax Specification), and have been following
along with the changes related to RDF ever since.

One main reason I was so interested in RDF and the associated RDF/XML is that, ever since I started
working with XML in its earliest days, I've longed for a metamodel to define vocabularies in XML that
could then be merged with other vocabularies, all of which can be manipulated by the same APIs
(Application Programming Interfaces) and tools. I found this with RDF and RDF/XML.

Because my introduction to RDF and RDF/XML had such pragmatic beginnings, my interest in the
specification has always focused on how it can be used in business applications today, rather than in
some Semantic Web someday. When I approached O'Reilly & Associates about the possibility of
writing a book on RDF, I suggested a practical introduction to RDF, and the title and focus of the book
was born.

This book attempts to present all the different viewpoints of RDF in such a way that we begin to see a
complete picture of RDF from all of its various components. I say "attempt" because I'm finding that
just when I think I have my arms around all the different aspects of the RDF specification, someone
comes along with a new and interesting twist on a previously familiar concept. However, rather than
weaken RDF's overall utility, these new variations actually demonstrate the richness of the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

specification.

It is only fair to give you a warning ahead of time that I'm a practical person. When faced with a new
technology, rather than ooh and aah and think to myself, "New toy!", my first response tends to be,
"Well, that's great. But, what can I do with it?" I am, by nature, an engineer, and this book reflects
that bias. Much of RDF is associated with some relatively esoteric efforts, including its use within the
implementation of the so-called Semantic Web. However, rather than get heavily into the more
theoretical aspects of RDF, in this book I focus more on the practical aspects of the RDF specification
and the associated technologies.

This isn't to say I won't cover theory-all engineers have to have a good understanding of the
concepts underlying any technology they use. However, the theory is presented as a basis for
understanding, rather than as the primary focus. In other words, the intent of Practical RDF is on
using RDF and the associated RDF/XML in our day-to-day technology efforts in order to meet our
needs as programming, data, and markup technologists, in addition to the needs of the businesses
we support.

This book provides comprehensive coverage of the current RDF specifications, as well as the use of
RDF for Semantic Web activities such as the ontology efforts underway at the W3C. However, the
focus of this book is on the use of RDF to manage data that may, or may not, be formatted in XML to
manage data, often XML data.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Audience

If you want to know how to apply RDF to information processing, this book is for you. Whether your
interests lie in large-scale information aggregation and analysis or in smaller-scale projects like
weblog syndication, this book will provide you with a solid foundation for working with RDF. If you are
looking for a theoretical explanation of intelligent web bots, tutorials on how to create knowledge
systems, or an in-depth look at topic maps and ontologies, you should probably look elsewhere. Also,
a basic understanding of XML and web technologies is helpful for reading this book, so you may want
to start with those first if you don't have any background in them.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Structure of This Book

The first section of this book (Chapter 1 through Chapter 6) focuses on the RDF specifications.
Chapter 1 focuses on introducing RDF, but more than that, it also looks at some of the historical
events leading up to the current RDF effort. In addition, this chapter also looks at issues of when you
would, and would not, use RDF/XML as compared to "standard" XML.

Following the introductory chapter, the rest of the first section covers the RDF specification
documents themselves. This includes coverage of the RDF Semantics and Concepts and Abstract
Model specifications (covered in Chapter 2); the basic XML syntax (covered in Chapter 3); coverage
of some of the more unusual RDF constructs-containers, collections, and reification (covered in
Chapter 4); and the RDF Schema (covered in Chapter 5). As a way of pulling all of the coverage
together, Chapter 6 then uses all we've learned about RDF to that point to create a relatively complex
vocabulary, which is then used for demonstration purposes throughout the rest of the book.

The second section of the book focuses on programming language support, as well as the tools and
utilities that allow a person to review, edit, parse, and generally work with RDF/XML. Chapter 7
focuses on various RDF editors, including those with graphical support for creating RDF models. In
addition, the chapter also covers an RDF/XML browser, as well as a couple of the more popular
RDF/XML parsers.

To be useful, any specification related to data requires tools to work with the data, and RDF is no
exception. Chapter 8 provides an overview and examples of accessing and generating RDF/XML using
Jena, a Java-based RDF API. Chapter 9, which covers APIs that are based in PHP, Perl, and
Python-the three Ps-follows this.

After the programming language grounding, the book refocuses on RDF's data roots with a chapter
that examines some of the RDF query languages used to query RDF model data, in a database or as
persisted to RDF/XML documents. Chapter 10 also has the code for the RDF Query-O-Matic, a utility
that processes RDQL (RDF Query Language) queries.

The last chapter in the second section finishes the review of programming and framework support for
RDF by looking at some other programming language support, as well as some of the frameworks,
such as Redland and Redfoot.

The last section of the book then focuses on the use of RDF and RDF/XML, beginning with an
overview of the W3C's ontology language effort, OWL. If RDF is analogous to the relational data
model, and RDF/XML is analogous to relational database systems, then OWL is equivalent to
applications such as SAP and PeopleSoft, which implement a business domain model on top of the
relational store.

The next chapter focuses on RSS, the implementation of RDF/XML most widely used, which supports
syndication and aggregation of news sources. RSS is used to syndicate news sources as diverse as
salon.com and Wired, as well as online personal journals known as weblogs, a web technology
gaining popularity.

A specification is only as good as the applications that use it, and RDF is used in a surprising number
of sophisticated commercial and noncommercial applications. I say "surprising" primarily because

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RDF is not a well-known specification. However, it is one of the older specifications. RDF's maturity,
combined with the specification's data manipulation and organizational capabilities, makes it easy to
see why the growing interest in RDF is arising.

The RDF Validator-generated graphs have been replaced with illustrations in
order to fit the examples within the constraints imposed by the page width.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Conventions Used in This Book

The following font conventions are used in this book:

Italic is used for:

Pathnames, filenames, and program names

Internet addresses, such as domain names and URLs

New items where they are defined

Constant width is used for:

Command lines and options that should be typed verbatim

Names and keywords in programs, including method names, variable names, and class names

XML element tags

URIs used as identifiers by RDF

Constant-width bold is used for emphasis in program code lines.

Constant-width italic is used for replaceable arguments within program code.

This icon indicates a tip, suggestion, or general note.

This icon indicates a warning or caution.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

How to Contact Us

We have tested and verified the information in this book to the best of our ability, but you may find
that features have changed (or even that we have made a few mistakes!). Please let us know about
any errors you find, as well as your suggestions for future editions, by writing to:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95471
1-800-998-9938 (in the U.S. or Canada)
1-707-829-0515 (international/local)
1-707-829-0104 (fax)

You can also send us messages electronically. To be put on the mailing list or request a catalog, send
email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

We have a web site for the book, where we'll list examples, errata, and any plans for future editions.
You can access this page at:

http://www.oreilly.com/catalog/pracrdf/

For more information abut this book and others, see the O'Reilly web site:

http://www.oreilly.com/

[Team LiB]

http://www.oreilly.com/catalog/pracrdf/
http://www.oreilly.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Acknowledgments

First among the people I want to acknowledge is the RDF Working Group, the folks who have worked
the last two-plus years to get the updated RDF specifications out on the street and into action. The
listing of people is quite extensive, but I want to specifically mention a few who were particularly
helpful to me while I worked on the book: Brian McBride, Pat Hayes, Dave Beckett, and Frank
Manola.

This book would never have hit the streets if it weren't for the patience and good humor of the lead
editor, Simon St.Laurent. During the almost year and a half this book was in development, Simon
never once lost patience, though other editors might have given up on RDF as a topic.

In addition to Simon, I want to extend my appreciation to the technical editors on the book including
Dorothea Salo, Dave Beckett, Uche Ogbuji, and Andy Seaborne. Less formally, I want to also extend
my appreciation to those from the RDF community who were so kind as to review one or more
chapters in the book for completeness and accuracy:

Danny Ayers Kevin Marks

Chris Parnell Aaron Swartz

Chris Dolin David Jacobs

Emmanual Pietriga Bill Simoni

Ken MacLeod Seth Ladd

York Sure Bill Kerney

Ben Hammersley Jens Jacob Andersen

David Allsop Resty Cena

Barry Sheward Tingley Chase

My apologies if I have inadvertently left someone off this list.

Finally, I want to extend my thanks and appreciation to the organizations and people responsible for
the software and technologies covered in this book. These include:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Jena-Hewlett-Packard and Brian McBride, Janet Bruten, Jeremy Carroll, Steve Cayzer, Ian
Dickinson, Chris Dollin, Martin Merry, Dave Reynolds, Andy Seaborne, Paul Shabajee, and
Stuart Williams

Brownsauce-Hewlett-Packard and Damien Steer

IsaViz-Emmanual Pietriga

The RDF Validator-Art Barstow and Emmanual Pietriga

Intellidimension's RDF Gateway and Geoff Chappell

AmphetaDesk and Morbus Iff

Ginger Alliance PerlRDF and Petr Cimprich

RDFLib and Redfoot from Daniel "elkeon" Krech

RDFStore and Alberto Reggiori

SMORE and Aditya Kalyanpur

RDF API for PHP and Chris Bizer

Redland and Dave Beckett

C# Drive and Rahul Singh

Wilbur from Ora Lassila and Nokia

Plugged In Software's Tucana Knowledge Store and David Wood

Sidrean Software's Seamark Server and Bradley Allan

Adobe's XMP

Sesame's Arjohn Kampan

Meerkat-O'Reilly and Rael Dornfest

Ranchero Software's NetNewsWire and Brent Simmons

The Mozilla development team members

Stanford University's Knowledge Modeling Group and Protégé

The Dublin Core effort

FOAF, FOAFbot, and FOAF-O-Matic by Leigh Dobbs, Edd Dumbill, Dan Brickley, Libby Miller,
rdfweb-dev, and friends

The web sites from several weblogging friends including Allan Moult, Chris Kovacs, Jonathon
Delacour, Loren Webster, and Dorothea Salo

Books don't get written in a vacuum and this book is no exception. I'd like to thank some special

http://lib.ommolketab.ir
http://lib.ommolketab.ir

friends for their support and encouragement during the long, long period this book was in
development. This includes my best friend, Robert Porter, as well as AKM and Margaret Adam,
Jonathon Delacour, Simon St.Laurent, Allan Moult, Chris Kovacks, Loren Webster, Jeneane Sessum,
Chris Locke, Dorothea Salo, and others whom I met in the threaded void known as the Internet.
Thanks, friends. It's finally done.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 1. RDF: An Introduction
The Resource Description Framework (RDF) is an extremely flexible technology, capable of
addressing a wide variety of problems. Because of its enormous breadth, people often come to RDF
thinking that it's one thing and find later that it's much more. One of my favorite parables is about
the blind people and the elephant. If you haven't heard it, the story goes that six blind people were
asked to identify what an elephant looked like from touch. One felt the tusk and thought the elephant
was like a spear; another felt the trunk and thought the elephant was like a snake; another felt a leg
and thought the elephant was like a tree; and so on, each basing his definition of an elephant on his
own unique experiences.

RDF is very much like that elephant, and we're very much like the blind people, each grabbing at a
different aspect of the specification, with our own interpretations of what it is and what it's good for.
And we're discovering what the blind people discovered: not all interpretations of RDF are the same.
Therein lies both the challenge of RDF as well as the value.

The main RDF specification web site is at http://www.w3.org/RDF/. You can
access the core working group's efforts at
http://www.w3.org/2001/sw/RDFCore/. In addition, there's an RDF Interest
Group forum that you can monitor or join at http://www.w3.org/RDF/Interest/.

[Team LiB]

http://www.w3.org/RDF/
http://www.w3.org/2001/sw/RDFCore/
http://www.w3.org/RDF/Interest
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.1 The Semantic Web and RDF: A Brief History

RDF is based within the Semantic Web effort. According to the W3C (World Wide Web Consortium)
Semantic Web Activity Statement:

The Resource Description Framework (RDF) is a language designed to support the Semantic
Web, in much the same way that HTML is the language that helped initiate the original Web.
RDF is a framework for supporting resource description, or metadata (data about data), for the
Web. RDF provides common structures that can be used for interoperable XML data exchange.

Though not as well known as other specifications from the W3C, RDF is actually one of the older
specifications, with the first working draft produced in 1997. The earliest editors, Ora Lassila and
Ralph Swick, established the foundation on which RDF rested-a mechanism for working with
metadata that promotes the interchange of data between automated processes. Regardless of the
transformations RDF has undergone and its continuing maturing process, this statement forms its
immutable purpose and focal point.

In 1999, the first recommended RDF specification, the RDF Model and Syntax Specification (usually
abbreviated as RDF M&S), again coauthored by Ora Lassila and Ralph Swick, was released. A
candidate recommendation for the RDF Schema Specification, coedited by Dan Brickley and R.V.
Guha, followed in 2000. In order to open up a previously closed specification process, the W3C also
created the RDF Interest Group, providing a view into the RDF specification process for interested
people who were not a part of the RDF Core Working Group.

As efforts proceeded on the RDF specification, discussions continued about the concepts behind the
Semantic Web. At the time, the main difference between the existing Web and the newer, smarter
Web is that rather than a large amount of disorganized and not easily accessible data, something
such as RDF would allow organization of data into knowledge statements-assertions about resources
accessible on the Web. From a Scientific American article published May 2001, Tim Berners-Lee
wrote:

The Semantic Web will bring structure to the meaningful content of Web pages, creating an
environment where software agents roaming from page to page can readily carry out
sophisticated tasks for users. Such an agent coming to the clinic's Web page will know not just
that the page has keywords such as "treatment, medicine, physical, therapy" (as might be
encoded today) but also that Dr. Hartman works at this clinic on Mondays, Wednesdays and
Fridays and that the script takes a date range in yyyy-mm-dd format and returns appointment
times.

As complex as the Semantic Web sounds, this statement of Berners-Lee provides the key to
understanding the Web of the future. With the Semantic Web, not only can we find data about a
subject, we can also infer additional material not available through straight keyword search. For
instance, RDF gives us the ability to discover that there is an article about the Giant Squid at one of
my web sites, and that the article was written on a certain date by a certain person, that it is
associated with three other articles in a series, and that the general theme associated with the article
is the Giant Squid's earliest roots in mythology. Additional material that can be derived is that the
article is still "relevant" (meaning that the data contained in the article hasn't become dated) and still
active (still accessible from the Web). All of this information is easily produced and consumed through

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the benefits of RDF without having to rely on any extraordinary computational power.

However, for all of its possibilities, it wasn't long after the release of the RDF specifications that
concerns arose about ambiguity with certain constructs within the document. For instance, there was
considerable discussion in the RDF Internet Group about containers-are separate semantic and
syntactic constructs really needed?-as well as other elements within RDF/XML. To meet this growing
number of concerns, an RDF Issue Tracking document was started in 2000 to monitor issues with
RDF. This was followed in 2001 with the creation of a new RDF Core Working Group, chartered to
complete the RDF Schema (RDFS) recommendation as well as address the issues with the first
specifications.

The RDF Core Working Group's scope has grown a bit since its beginnings. According to the Working
Group's charter, they must now:

Update and maintain the RDF Issue Tracking document

Publish a set of machine-processable test cases corresponding to technical issues addressed by
the WG

Update the errata and status pages for the RDF specifications

Update the RDF Model and Syntax Specification (as one, two, or more documents) clarifying the
model and fixing issues with the syntax

Complete work on the RDF Schema 1.0 Specification

Provide an account of the relationship between RDF and the XML family of technologies

Maintain backward compatibility with existing implementations of RDF/XML

The WG was originally scheduled to close down early in 2002, but, as with all larger projects, the
work slid until later in 2002. This book finished just as the WG issued the W3C Last Call drafts for all
six of the RDF specification documents, early in 2003.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.2 The Specifications

As stated earlier, the RDF specification was originally released as one document, the RDF Model and
Syntax, or RDF M&S. However, it soon became apparent that this document was attempting to cover
too much material in one document, and leaving too much confusion and too many questions in its
wake. Thus, a new effort was started to address the issues about the original specification and,
hopefully, eliminate the confusion. This work resulted in an updated specification and the release of
six new documents: RDF Concepts and Abstract Syntax, RDF Semantics, RDF/XML Syntax
Specification (revised), RDF Vocabulary Description Language 1.0: RDF Schema, the RDF Primer, and
the RDF Test Cases.

The RDF Concepts and Abstract Syntax and the RDF Semantics documents provide the fundamental
framework behind RDF: the underlying assumptions and structures that makes RDF unique from
other metadata models (such as the relational data model). These documents provide both validity
and consistency to RDF-a way of verifying that data structured in a certain way will always be
compatible with other data using the same structures. The RDF model exists independently of any
representation of RDF, including RDF/XML.

The RDF/XML syntax, described in the RDF/XML Syntax Specification (revised), is the recommended
serialization technique for RDF. Though several tools and APIs can also work with N-Triples
(described in Chapter 2) or N3 notation (described in Chapter 3), most implementation of and
discussion about RDF, including this book, focus on RDF/XML

The RDF Vocabulary Description Language defines and constrains an RDF/XML vocabulary. It isn't a
replacement for XML Schema or the use of DTDs; rather, it's used to define specific RDF
vocabularies; to specify how the elements of the vocabulary relate to each other. An RDF Schema
isn't required for valid RDF (neither is a W3C XML Schema or an XML 1.0 Document Type
Definition-DTD), but it does help prevent confusion when people want to share a vocabulary.

A good additional resource to learn more about RDF and RDF/XML is the RDF Primer. In addition to
examples and accessible descriptions of the concepts of RDF and RDFS, the primer also, looks at
some uses of RDF. I won't be covering the RDF Primer in this book because its use is somewhat self-
explanatory. However, the primer is an excellent complement to this book, and I recommend that
you spend time with it either while you're reading this book or afterward if you want another
viewpoint on the topics covered.

The final RDF specification document, RDF Test Cases, contains a list of issues arising from the
original RDF specification release, their resolutions, and the test cases devised for use by RDF
implementers to test their implementations against these resolved issues. The primary purpose of the
RDF Test Cases is to provide examples for testing specific RDF issues as the Working Group resolved
them. Unless you're writing an RDF/XML parser or something similar, you probably won't need to
spend much time with that document, and I won't be covering it in the book.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.3 When to Use and Not Use RDF

RDF is a wonderful technology, and I'll be at the front in its parade of fans. However, I don't consider
it a replacement for other technologies, and I don't consider its use appropriate in all circumstances.
Just because data is on the Web, or accessed via the Web, doesn't mean it has to be organized with
RDF. Forcing RDF into uses that don't realize its potential will only result in a general push back
against RDF in its entirety-including push back in uses in which RDF positively shines.

This, then, begs the question: when should we, and when should we not, use RDF? More specifically,
since much of RDF focuses on its serialization to RDF/XML, when should we use RDF/XML and when
should we use non-RDF XML?

As the final edits for this book were in progress, a company called Semaview published a graphic
depicting the differences between XML and RDF/XML (found at
http://www.semaview.com/c/RDFvsXML.html). Among those listed was one about the tree-
structured nature of XML, as compared to RDF's much flatter triple-based pattern. XML is
hierarchical, which means that all related elements must be nested within the elements they're
related to. RDF does not require this nested structure.

To demonstrate this difference, consider a web resource, which has a history of movement on the
Web. Each element in that history has an associated URL, representing the location of the web
resource after the movement has occurred. In addition, there's an associated reason why the
resource was moved, resulting in this particular event. Recording these relationships in non-RDF XML
results in an XML hierarchy four layers deep:

<?xml version="1.0"?>
<resource>
 <uri>http://burningbird.net/articles/monsters3.htm</uri>
 <history>
 <movement>
 <link>http://www.yasd.com/dynaearth/monsters3.htm</link>
 <reason>New Article</reason>
 </movement>
 </history>
</resource>

In RDF/XML, you can associate two separate XML structures with each other through a Uniform
Resource Identifier (URI, discussed in Chapter 2). With the URI, you can link one XML structure to
another without having to embed the second structure directly within the first:

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/"
 xml:base="http://burningbird.net/articles/">

 <pstcn:Resource rdf:about="monsters3.htm">

http://www.semaview.com/c/RDFvsXML.html
http://burningbird.net/articles/monsters3.htm
http://www.yasd.com/dynaearth/monsters3.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!--resource movements-->
 <pstcn:history>
 <rdf:Seq>
 <rdf:_3 rdf:resource="http://www.yasd.com/dynaearth/monsters3.htm" />
 </rdf:Seq>
 </pstcn:history>

 </pstcn:Resource>

 <pstcn:Movement rdf:about="http://www.yasd.com/dynaearth/monsters3.htm">
 <pstcn:movementType>Add</pstcn:movementType>
 <pstcn:reason>New Article</pstcn:reason>
 </pstcn:Movement>

</rdf:RDF>

Ignore for the moment some of the other characteristics of RDF/XML, such as the use of
namespaces, which we'll get into later in the book, and focus instead on the structure. The RDF/XML
is still well-formed XML-a requirement of RDF/XML-but the use of the URI (in this case, the URL
"http://www.yasd.com/dynaearth/monsters3.htm") breaks us out of the forced hierarchy of

standard XML, but still allows us to record the relationship between the resource's history and the
particular movement.

However, this difference in structure can make it more difficult for people to read the RDF/XML
document and actually see the relationships between the data, one of the more common complaints
about RDF/XML. With non-RDF XML, you can, at a glance, see that the history element is directly
related to this specific resource element and so on. In addition, even this small example
demonstrates that RDF adds a layer of complexity on the XML that can be off-putting when working
with it manually. Within an automated process, though, the RDF/XML structure is actually an
advantage.

When processing XML, an element isn't actually complete until you reach its end tag. If an application
is parsing an XML document into elements in memory before transferring them into another persisted
form of data, this means that the elements that contain other elements must be retained in memory
until their internal data members are processed. This can result in some fairly significant strain on
memory use, particularly with larger XML documents.

RDF/XML, on the other hand, would allow you to process the first element quickly because its
"contained" data is actually stored in another element somewhere else in the document. As long as
the relationship between the two elements can be established through the URI, we'll always be able
to reconstruct the original data regardless of how it's been transformed.

Another advantage to the RDF/XML approach is when querying the data. Again, in XML, if you're
looking for a specific piece of data, you basically have to provide the entire structure of all the
elements preceding the piece of data in order to ensure you have the proper value. As you'll see in
RDF/XML, all you have to do is remember the triple nature of the specification, and look for a triple
with a pattern matching a specific resource URI, such as a property URI, and you'll find the specific
value. Returning to the RDF/XML shown earlier, you can find the reason for the specific movement
just by looking for the following pattern:

<http://www.yasd.com/dynaearth/monsters3.htm> pstcn:reason ?

The entire document does not have to be traversed to answer this query, nor do you have to specify

http://www.yasd.com/dynaearth/monsters3.htm
http://www.yasd.com/dynaearth/monsters3.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

the entire element path to find the value.

If you've worked with database systems before, you'll recognize that many of
the differences between RDF/XML and XML are similar to the differences
between relational and hierarchical databases. Hierarchical databases also have
a physical location dependency that requires related data to be bilocated, while
relational databases depend on the use of identifiers to relate data.

Another reason you would use RDF/XML over non-RDF XML is the ability to join data from two
disparate vocabularies easily, without having to negotiate structural differences between the two.
Since the XML from both data sets is based on the same model (RDF) and since both make use of
namespaces (which prevent element name collision-the same element name appearing in both
vocabularies), combining data from both vocabularies can occur immediately, and with no preliminary
work. This is essential for the Semantic Web, the basis for the work on RDF and RDF/XML. However,
this is also essential in any business that may need to combine data from two different companies,
such as a supplier of raw goods and a manufacturer that uses these raw goods. (Read more on this
in the sidebar Data Handshaking Through the Ages).

As excellent as these two reasons (less strain on memory and joining vocabularies) are for utilizing
RDF as a model for data and RDF/XML as a format, for certain instances of data stored on the Web,
RDF is clearly not a replacement. As an example, RDF is not a replacement for XHTML for defining
web pages that are displayed in a browser. RDF is also not a replacement for CSS, which is used to
control how that data is displayed. Both CSS and XHTML are optimized for their particular uses,
organizing and displaying data in a web browser. RDF's purpose differs-it's used to capture specific
statements about a resource, statements that help form a more complete picture of the resource.
RDF isn't concerned about either page organization or display.

Now, there might be pieces of information in the XHTML and the CSS that could be reconstructed into
statements about a resource, but there's nothing in either technology that specifically says "this is a
statement, an assertion if you will, about this resource" in such a way that a machine can easily pick
this information out. That's where RDF enters the picture. It lays all assertions out-bang, bang,
bang-so that even the most amoeba-like RDF parser can find each individual statement without
having to pick around among the presentational and organizational constructs of specifications such
as XHTML and CSS.

Additionally, RDF/XML isn't necessarily well suited as a replacement for other uses of XML, such as
within SOAP or XML-RPC. The main reason is, again, the level of complexity that RDF/XML adds to
the process. A SOAP processor is basically sending a request for a service across the Internet and
then processing the results of that request when it's answered. There's a mechanism that supports
this process, but the basic structure of SOAP is request service, get answer, process answer. In the
case of SOAP, the request and the answer are formatted in XML.

Though a SOAP service call and results are typically formatted in XML, there really isn't the need to
persist these outside of this particular invocation, so there really is little drive to format the XML in
such a way that it can be combined with other vocabularies at a later time, something that RDF/XML
facilitates. Additionally, one hopes that we keep the SOAP request and return as small, lightweight,
and uncomplicated answers as possible, and RDF/XML does add to the overhead of the XML. Though
bandwidth is not the issue it used to be years ago, it is still enough of an issue to not waste it
unnecessarily.

Ultimately, the decision about using RDF/XML in place of XML is based on whether there's a good
reason to do so-a business rather than a technical need to use the model and related XML structure.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If the data isn't processed automatically, if it isn't persisted and combined with data from other
vocabularies, and if you don't need RDF's optimized querying capability, then you should use non-
RDF XML. However, if you do need these things, consider the use of RDF/XML.

Data Handshaking Through the Ages
I started working with data and data interchange at Boeing in the late 1980s. At that time,
there was a data definition effort named Product Data Exchange Specification (PDES)
underway between several manufacturing companies to define one consistent data model
that could be used by all of them. With this model, the companies hoped to establish the
ability to interchange data among themselves without having to renegotiate data
structures every time a new connection was made between the companies, such as adding
a new supplier or customer. (This effort is still underway and you can read more about it
at http://pdesinc.com.)

PDES was just one effort on the part of specific industries to define common business
models that would allow them to interoperate. From Boeing, I went to Sierra Geophysics,
a company in Seattle that created software for the oil industry. Sierra Geophysics and its
parent company, Halliburton, Inc., were hard at work on POSC, an effort similar to PDES
but geared to the oil and gas industries. (You can read more about POSC at
http://posc.org; be sure to check out POSC's use of XML, specifically, at
http://posc.org/ebiz/xmlLive.shtml.)

One would think this wouldn't be that complex, but it is almost virtually impossible to get
two companies to agree on what "data" means. Because of this difficulty, to this day,
there's never been complete agreement as to data interchange formats, though with the
advent of XML, there was hope that this specification would provide a syntax that most of
the companies could agree to use. One reason XML was hailed as a potential savior is that
it represented a neutral element in the discussions-no one could claim either the syntax
or the syntactic rules.

Would something like RDF/XML work for both of these organizations and their efforts? Yes
and no. If the interest in XML is primarily for network protocol uses, I wouldn't necessarily
recommend the use of RDF/XML for the same reasons I wouldn't recommend its use with
SOAP and XML/RPC-RDF/XML adds a layer of complexity and overhead that can be
counterproductive when you're primarily doing nothing more than just sending messages
to and from services. However, RDF/XML would fit the needs of POSC and PDES if the
interest were on merging data between organizations for more effective supply chain
management-in effect, establishing a closer relationship between the supplier of raw
goods on one hand and a manufacturer of finished goods on the other. In particular, with
an established ontology built on RDF/XML (ontologies are discussed in Chapter 12)
defining the business data, it should be a simple matter to add new companies into an
existing supply chain.

When one considers that much of the cost of a manufactured item resides in the
management of the supply chain and within the manufacturing process, not in the raw
material used to manufacture the item, I would expect to see considerable progress from
industry efforts such as POSC and PDES in RDF/XML.

http://pdesinc.com
http://posc.org
http://posc.org/ebiz/xmlLive.shtml
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.4 Some Uses of RDF/XML

The first time I saw RDF/XML was when it was used to define the table of contents (TOC) structures
within Mozilla, when Mozilla was first being implemented. Since then, I've been both surprised and
pleased at how many implementations of RDF and RDF/XML exist.

One of the primary users of RDF/XML is the W3C itself, in its effort to define a Web Ontology
Language based on RDF/XML. Being primarily a data person and not a specialist in markup, I wasn't
familiar with some of the concepts associated with RDF when I first started exploring its use and
meaning. For instance, there were references to ontology again and again, and since my previous
exposure to this word had to do with biology, I was a bit baffled. However, ontology in the sense of
RDF and the Semantic Web is, according to dictionary.com, "An explicit formal specification of how to
represent the objects, concepts and other entities that are assumed to exist in some area of interest
and the relationships that hold among them."

As mentioned previously, RDF provides a structure that allows us to make assertions using XML (and
other serialization techniques). However, there is an interest in taking this further and expanding on
it, by creating just such an ontology based on the RDF model, in the interest of supporting more
advanced agent-based technologies. An early effort toward this is the DARPA Agent Markup Language
program, or DAML. The first implementation of DAML, DAML+OIL, is tightly integrated with RDF.

A new effort at the W3C, the Web Ontology Working Group, is working on creating a Web Ontology
Language (OWL) derived from DAML+OIL and based in RDF/XML. The following quote from the OWL
Use Cases and Requirements document, one of many the Ontology Working Group is creating,
defines the relationship between XML, RDF/XML, and OWL:

The Semantic Web will build on XML's ability to define customized tagging schemes and RDF's
flexible approach to representing data. The next element required for the Semantic Web is a
Web ontology language which can formally describe the semantics of classes and properties
used in web documents. In order for machines to perform useful reasoning tasks on these
documents, the language must go beyond the basic semantics of RDF Schema.

Drawing analogies from other existing data schemes, if RDF and the relational data model were
comparable, then RDF/XML is also comparable to the existing relational databases, and OWL would
be comparable to the business domain applications such as PeopleSoft and SAP. Both PeopleSoft and
SAP make use of existing data storage mechanisms to store the data and the relational data model to
ensure that the data is stored and managed consistently and validly; the products then add an extra
level of business logic based on patterns that occur and reoccur within traditional business processes.
This added business logic could be plugged into a company's existing infrastructure without the
company having to build its own functionality to implement the logic directly.

OWL does something similar except that it builds in the ability to define commonly reoccurring
inferential rules that facilitate how data is queried within an RDF/XML document or store. Based on
this added capability, and returning to the RDF/XML example in the last section, instead of being
limited to queries about a specific movement based on a specific resource, we could query on
movements that occurred because the document was moved to a new domain, rather than because
the document was just moved about within a specific domain. Additional information can then allow
us to determine that the document was moved because it was transferred to a different owner,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

allowing us to infer information about a transaction between two organizations even if this
"transactional" information isn't stored directly within elements.

In other words, the rules help us discover new information that isn't necessarily stored directly within
the RDF/XML.

Chapter 12 covers ontologies, OWL, and its association with RDF/XML. Read
more about the W3C's ontology efforts at
http://www.w3.org/2001/sw/WebOnt/. The Use Cases and Requirements
document can be found at http://www.w3.org/TR/webont-req/.

Another very common use of RDF/XML is in a version of RSS called RSS 1.0 or RDF/RSS. The
meaning of the RSS abbreviation has changed over the years, but the basic premise behind it is to
provide an XML-formatted feed consisting of an abstract of content and a link to a document
containing the full content. When Netscape originally created the first implementation of an RSS
specification, RSS stood for RDF Site Summary, and the plan was to use RDF/XML. When the
company released, instead, a non-RDF XML version of the specification, RSS stood for Rich Site
Summary. Recently, there has been increased activity with RSS, and two paths are emerging: one
considers RSS to stand for Really Simple Syndication, a simple XML solution (promoted as RSS 2.0 by
Dave Winer at Userland), and one returns RSS to its original roots of RDF Site Summary (RSS 1.0 by
the RSS 1.0 Development group).

RSS feeds, as they are called, are small, brief introductions to recently released news articles or
weblog postings (weblogs are frequently updated journals that may include links to other stories,
comments, and so on). These feeds are picked up by aggregators, which format the feeds into
human consumable forms (e.g., as web pages or audio notices). RSS files normally contain only the
most recent feeds, newer items replacing older ones.

Given the transitory nature of RSS feeds as I just described them, it is difficult to justify the use of
RDF for RSS. If RDF's purpose is to record assertions about resources that can be discovered and
possibly merged with other assertions to form a more complete picture of the resource, then that
implies some form of permanence to this data, that the data hangs around long enough to be
discovered. If the data has a life span of only a minute, hour, or day, its use within a larger overall
"semantic web" tends to be dubious, at best.

However, the data contained in the RSS feeds-article title, author, date, subject, excerpt, and so
on-is a very rich source of information about the resource, be it article or weblog posting,
information that isn't easily scraped from the web page or pulled in from the HTML meta tags.

Additionally, though the purpose of the RSS feed is transitory in nature, there's no reason tools can't
access this data and store it in a more permanent form for mergence with other data. For instance,
I've long been amazed that search tools don't use RSS feeds rather than the HTML pages themselves
for discovering information.

Based on these latter views of RSS, there is, indeed, a strong justification for building RSS within an
RDF framework-to enhance the discovery of the assertions contained within the XML. The original
purpose of RSS might be transitory, but there's nothing to stop others from pulling the data into
more permanent storage if they so choose or to use the data for other purposes.

I'll cover the issue of RSS in more detail in Chapter 13, but for now the point to focus on is that when
to use RDF isn't always obvious. The key to knowing when to make extra effort necessary to overlay
an RDF model on the data isn't necessarily based on the original purpose for the data or even the
transitory nature of the data-but on the data itself. If the data is of interest, descriptive, and not

http://www.w3.org/2001/sw/WebOnt/
http://www.w3.org/TR/webont-req/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

easily discovered by any other means, little RDF alarms should be ringing in our minds.

As stated earlier, if RDF isn't a replacement for some technologies, it is an opportunity for new ones.
In particular, Mozilla, my favorite open source browser, uses RDF extensively within its architecture,
for such things as managing table of contents structures. RDF's natural ability to organize XML data
into easily accessible data statements made it a natural choice for the Mozilla architects. Chapter 14
explores how RDF/XML is used within the Mozilla architecture, in addition to its use in other open
source and noncommercial applications such as MIT's DSpace, a tool and technology to track
intellectual property, and FOAF, a toolkit for describing the connections between people.

Chapter 15 follows with a closer look at the commercial use of RDF, taking a look at OSA's Chandler,
Plugged In Software's Tucana Knowledge Store, Siderean Software's Seamark, the Intellidimension
RDF Gateway, and how Adobe is incorporating RDF data into its products.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.5 Related Technologies

Several complementary technologies are associated with RDF. As previously discussed, the most
common technique to serialize RDF data is via RDF/XML, so influences on XML are likewise influences
on RDF. However, other specifications and technologies also impact on, and are impacted by, the
ongoing RDF efforts.

Though not a requirement for RDF/XML, you can use XML Schemas and DTDs to formalize the XML
structure used within a specific instance of RDF/XML. There's also been considerable effort to map
XML Schema data types to RDF, as you'll see in the next several chapters.

One issue that arises again and again with RDF is where to include the XML. For instance, if you
create an RDF document to describe an HTML page resource, should the RDF be in a separate file or
contained within the HTML document? I've seen RDF embedded in HTML and XML using a variety of
tricks, but the consensus seems to be heading toward defining the RDF in a separate file and then
linking it within the HTML or XHTML document. Chapter 3 takes a closer look at issues related to
merging RDF with other formats.

A plethora of tools and utilities work with RDF/XML. Chapter 7 covers some of these. In addition,
several different APIs in a variety of languages, such as Perl, Java, Python, C, C++, and so on, can
parse, query, and generate RDF/XML. The remainder of the second section of the book explores
some of the more stable or representative of these, including a look at Jena, a Java-based API, RAP
(RDF API for PHP), Redland's multilanguage RDF API, Perl and Python APIs and tools, and so on.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.6 Going Forward

The RDF Core Working Group spent considerable time ensuring that the RDF specifications answered
as many questions as possible. There is no such thing as a perfect specification, but the group did its
best under the constraints of maintaining connectivity with its charter and existing uses of RDF/XML.

RDF/XML has been used enough in so many different applications that I consider it to be at a release
level with the publication of the current RDF specification documents. In fact, I think you'll find that
the RDF specification will be quite stable in its current form after the documents are released-it's
important that the RDF specification be stabilized so that we can begin to build on it. Based on this
hoped-for stability, you can use the specification, including the RDF/XML, in your applications and be
comfortable about future compatibility.

We're also seeing more and more interest in and use of RDF and its associated RDF/XML serialization
in the world. I've seen APIs in all major programming languages, including Java, Perl, PHP, Python,
C#, C++, C, and so on. Not only that, but there's a host of fun and useful tools to help you edit,
parse, read, or write your RDF/XML documents. And most of these tools, utilities, APIs, and so on are
free for you to download and incorporate into your current work.

With the release of the RDF specification documents, RDF's time has come, and I'm not just saying
that because I wrote this book. I wrote this book because I believe that RDF is now ready for prime
time.

Now, time to get started.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 2. RDF: Heart and Soul
RDF's purpose is fairly straightforward: it provides a means of recording data in a machine-
understandable format, allowing for more efficient and sophisticated data interchange, searching,
cataloging, navigation, classification, and so on. It forms the cornerstone of the W3C effort to create
the Semantic Web, but its use isn't restricted to this specific effort.

Perhaps because RDF is a description for a data model rather than a description of a specific data
vocabulary, or perhaps because it has a foothold in English, logic, and even in human reasoning, RDF
has a strong esoteric element to it that can be intimidating to a person wanting to know a little more
about it. However, RDF is based on a well-defined set of rules and constraints that governs its
format, validity, and use. Approaching RDF through the specifications is a way of grounding RDF,
putting boundaries around the more theoretical concepts.

The chapter takes a look at two RDF specification documents that exist at opposite ends of the
semantic spectrum: the RDF Concepts and Abstract Model and the RDF Semantics documents. In
these documents we're introduced to the concepts and underlying strategy that form the basis of the
RDF/XML that we'll focus on in the rest of the book. In addition, specifically within the Semantics
document, we'll be exposed to the underlying meaning behind each RDF construct. Though not
critical to most people's use of RDF, especially RDF/XML, the Semantics document ensures that all
RDF consumers work from the same basic understanding; therefore, some time spent on this
document, primarily in overview, is essential.

Both documents can be accessed directly online, so I'm not going to duplicate the information
contained in them in this chapter. Instead, we'll take a look at some of the key elements and unique
concepts associated with RDF.

The RDF Concepts and Abstract Syntax document can be found at
http://www.w3.org/TR/rdf-concepts/. The RDF Semantics document can be
found at http://www.w3.org/TR/rdf-mt/.

[Team LiB]

http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/rdf-mt/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

2.1 The Search for Knowledge

Occasionally, I like to write articles about non-Internet-related topics, such as marine biology or
astronomy. One of my more popular articles is on Architeuthis Dux-the giant squid. The article is
currently located at http://burningbird.net/articles/monsters1.htm.

According to the web profile statistics for this article, it receives a lot of visitors based on searches
performed in Google, a popular search engine. When I go to the Google site, though, to search for
the article based on the term giant squid, I find that I get a surprising number of links back. The
article was listed on page 13 of the search results (with 10 links to a page). First, though, were
several links about a production company, the Jules Verne novel 10,000 Leagues Under the Sea,
something to do with a comic book character called the Giant Squid, as well as various other assorted
and sundry references such as a recipe for cooking giant squid steaks (as an aside, giant squids are
ammonia based and inedible).

For the most part, each link does reference the giant squid as a marine animal; however, the context
doesn't match my current area of interest: finding an article that explores the giant squid's roots in
mythology.

I can refine my search, specifying separate keywords such as giant, squid, and mythology to make
my article appear on page 6 of the list of links-along with links to a Mexican seafood seller offering
giant squid meat slabs and a listing of books that discuss a monster called the Giant Squid that oozes
green slime.

The reason we get so many links back when searching for specific resources is that most search
engines use keyword-based search engine functionality, rather than searching for a resource within
the context of a specific interest. The search engines' data is based on the use of automated agents
or robots and web spiders that traverse the Web via in-page links, pulling keywords from either HTML
meta tags or directly from the page contents themselves.

A better approach for classifying resources such as the giant squid article would be to somehow
attach information about the context of the resource. For instance, the article is part of a series
comparing two legendary creatures: the giant squid and the Loch Ness Monster. It explores what
makes a creature legendary, as well as current and past efforts to find living representatives of either
creature. All of this information forms a description of the resource, a picture that's richer and more
complex than a one-dimensional keyword-based categorization.

What's missing in today's keyword-based classification of web resources is the ability to record
statements about a resource. Statements such as:

The article's title is "Architeuthis Dux."

The article's author is Shelley Powers.

The article is part of a series.

A related article is ...

http://burningbird.net/articles/monsters1.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The article is about the giant squid and its place in the legends.

General keyword scanning doesn't return this type of specific information, at least, not in such a way
that a machine can easily find and process these statements without heroic computations.

RDF provides a mechanism for recording statements about resources so that machines can easily
interpret the statements. Not only that, but RDF is based on a domain-neutral model that allows one
set of statements to be merged with another set of statements, even though the information
contained in each set of statements may differ dramatically.

One application's interest in the resource might focus on finding new articles posted on the Web and
providing an encapsulated view of the articles for news aggregators. Another application's interest
might be on the article's long-term relevancy and the author of the article, while a third application
may focus specifically on the topics covered in the article, and so on. Rather than generating one XML
file in a specific XML vocabulary for all of these different applications' needs, one RDF file can contain
all of this information, and each application can pick and choose what it needs. Better yet, new
applications will find that everything they need is already being provided, as the information we
record about each resource gets richer and more comprehensive.

And the basis of all this richness is a simple little thing called the RDF triple.

I use the word context in this chapter and throughout the book. However, the
folks involved with RDF, including Tim Berners-Lee, director of the W3C, are
hesitant about using the term context in association with RDF. The main reason
is there's a lot of confusion about what context actually means. Does it mean
the world of all possible conditions at any one point? Does it mean a specific
area of interest?

To prevent confusion when I use context in the book, I use the term to refer to
a certain aspect of a subject at a given time. For instance, when I look for
references for a subject, I'm searching for information related to one specific
aspect of the subject-such as the giant squid's relevance to mythology-but
only for that specific instance in time. The next time I search for information
related to the giant squid, I might be searching for information based on a
different aspect of giant squids, such as cooking giant squid steaks.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

2.2 The RDF Triple

Three is a magical number. For instance, three legs are all you need to create a stable stool, and a
transmitter and two receivers are all you need to triangulate a specific transmission point. You can
create a perfect sphere with infinitely small triangles. (Triangles are a very useful geometric shape,
also used to find the heights of mountains and the distances between stars.)

RDF is likewise based on the principle that three is a magic number-in this case, that three pieces of
information are all that's needed in order to fully define a single bit of knowledge. Within the RDF
specification, an RDF triple documents these three pieces of information in a consistent manner that
ideally allows both human and machine consumption of the same data. The RDF triple is what allows
human understanding and meaning to be interpreted consistently and mechanically.

Of the three pieces of information, the first is the subject. A property such as name can belong to a
dog, cat, book, plant, person, car, nation, or insect. To make finite such an infinite universe, you
must set boundaries, and that's what subject does for RDF. The second piece of information is the
property type or just plain property. There are many facts about any individual subject; for instance,
I have a gender, a height, a hair color, an eye color, a college degree, relationships, and so on. To
define which aspect of me we're interested in, we need to specifically focus on one property.

If you look at the intersection of subject and property, you'll find the final bit of information quietly
waiting to be discovered-the value associated with the property. X marks the spot. I (subject) have
a name (property), which is Shelley Powers (property value). I (subject) have a height (property),
which is five feet eleven inches (property value). I (subject) also have a location (property), which is
St. Louis (property value). Each of these assertions adds to a picture that is me; the more
statements defined, the better the picture. Stripping away the linguistic filler, each of these
statements can be written as an RDF triple.

With consideration of the differing linguistics based on different languages, simple facts can almost
always be defined given three specific pieces of information: the subject of the fact, the property of
the subject that is currently being defined, and its associated value. This correlates to what we
understand to be a complete thought, regardless of differing syntaxes based on language.

A basic rule of English grammar is that a complete sentence (or statement) contains both a subject
and a predicate: the subject is the who or what of the sentence and the predicate provides
information about the subject. A sentence about the giant squid article mentioned in the last section
could be:

The title of the article is "Architeuthis Dux."

This is a complete statement about the article. The subject is the article, and the predicate is title,
with a matching value of "Architeuthis Dux." Combined, the three separate pieces of information
triangulate a specific, completely unique piece of knowledge.

In RDF, this English statement translates to an RDF triple. In RDF, the subject is the thing being
described-in RDF terms, a resource identified by a URI (more fully explained in a later section with
the same title)-and the predicate is a property type of the resource, such as an attribute, a
relationship, or a characteristic. In addition to the subject and predicate, the specification also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

introduces a third component, the object. Within RDF, the object is equivalent to the value of the
resource property type for the specific subject.

Working with the example sentence earlier, "The title of the article is Àrchiteuthis Dux,'" the generic
reference to article is replaced by the article's URI, forming a new and more precise sentence:

The title of the article at http://burningbird.net/articles/monsters3.htm is

"Architeuthis Dux."

With this change, there is no confusion about which article titled "Architeuthis Dux" we're
discussing-we're talking about the one with the URI at
http://burningbird.net/articles/monsters3.htm. Providing a URI is equivalent to giving a

person a unique identifier within a personnel system. The individual components of the statement
we're interested in can be further highlighted, with each of the three components specifically broken
out into the following format:

<subject> HAS <predicate> <object>

Don't let the angle brackets fool you within this syntax-this isn't XML; this is a representation of a
statement whereby three components of the statement can be replaced by instances of the
components to generate a specific statement. The example statement is converted to this format as
follows:

http://burningbird.net/articles/monsters3.htm has a title of

"Architeuthis Dux."

In RDF, this new statement, redefined as an RDF triple, can be considered a complete RDF graph
because it consists of a complete fact that can be recorded using RDF methodology, and that can
then be documented using several different techniques. For instance, one shorthand technique is to
use the following to represent a triple:

{subject, predicate, object}

If you're familiar with set theory, you might recognize this shorthand as a 3-tuple representation. The
giant squid example then becomes:

{http://burningbird.net/articles/monsters3.htm, title, " Architeuthis Dux"}

This representation of the RDF triple is just one of many ways of serializing RDF data. The formal way
is the directed graph, discussed in the next section. Popular choices to serialize the data are N-
Triples, a subset of N3 notation (both of which are briefly discussed in this chapter), and RDF/XML,
which forms the basis of the remainder of this book.

Regardless of the manner in which an RDF triple is documented, four facts are immutable about
each:

Each RDF triple is made up of subject, predicate, and object.

Each RDF triple is a complete and unique fact.

An (RDF) triple is a 3-tuple, which is made up of a subject, predicate and object - which are
respectively a uriref or bnode; a uriref; and a uriref, bnode or literal (This is from a comment
made by Pat Hayes in http://lists.w3.org/Archives/Public/w3c-rdfcore-wg/2003Feb/0152.html)

http://burningbird.net/articles/monsters3.htm
http://burningbird.net/articles/monsters3.htm has a title of
http://lists.w3.org/Archives/Public/w3c-rdfcore-wg/2003Feb/0152.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Each RDF triple can be joined with other RDF triples, but it still retains its own unique meaning,
regardless of the complexity of the model in which it is included.

That last item is particularly important to realize about RDF triples-regardless of how complex an
RDF graph, it still consists of only a grouping of unique, simple RDF triples, and each is made up of a
subject, predicate, and object.

N3 notation does have some major fans as an approach to serializing RDF
graphs, including Tim Berners-Lee. However, the W3C has officially sanctioned
RDF/XML as the method to use for serializing RDF. One overwhelming
advantage of RDF/XML is the wide acceptance of and technical support for XML.
Though N3 notation is not covered in detail in this book, you can read a primer
on N3 and RDF at http://www.w3.org/2000/10/swap/Primer.

[Team LiB]

http://www.w3.org/2000/10/swap/Primer
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

2.3 The Basic RDF Data Model and the RDF Graph

The RDF Core Working Group decided on the RDF graph-a directed labeled graph-as the default
method for describing RDF data models for two reasons. First, as you'll see in the examples, the
graphs are extremely easy to read. There is no confusion about what is a subject and what are the
subject's property and this property's value. Additionally, there can be no confusion about the
statements being made, even within a complex RDF data model.

The second reason the Working Group settled on RDF graphs as the default description technique is
that there are RDF data models that can be represented in RDF graphs, but not in RDF/XML.

The addition of rdf:nodeIDs, discussed in Chapter 3, provided some of the

necessary syntactic elements that allow RDF/XML to record all RDF graphs.
However, RDF/XML still can't encode graphs whose properties (predicates)
cannot be recorded as namespace-qualified XML names, or QNames. For more
on QNames, see XML in a Nutshell, Second Edition (O'Reilly).

The RDF directed graph consists of a set of nodes connected by arcs, forming a pattern of node-arc-
node. Additionally, the nodes come in three varieties: uriref, blank nodes, and literals.

A uriref node consists of a Uniform Resource Identifier (URI) reference that provides a specific
identifier unique to the node. There's been discussion that a uriref must point to something that's
accessible on the Web (i.e., provide a location of something that when accessed on the Internet
returns something). However, there is no formal requirement that urirefs have a direct connectivity
with actual web resources. In fact, if RDF is to become a generic means of recording data, it can't
restrict urirefs to being "real" data sources.

Blank nodes are nodes that don't have a URI. When identifying a resource is meaningful, or the
resource is identified within the specific graph, a URI is given for that resource. However, when
identification of the resource doesn't exist within the specific graph at the time the graph was
recorded, or it isn't meaningful, the resource is diagrammed as a blank node.

Within a directed graph, resource nodes identified as urirefs are drawn with an ellipse around them,
and the URI is shown within the circle; blank nodes are shown as an empty circle. Specific
implementations of the graph, such as those generated by the RDF Validator, draw a circle containing
a generated identifier, used to distinguish blank nodes from each other within the single instance of
the graph.

The literals consist of three parts-a character string and an optional language tag and data type.
Literal values represent RDF objects only, never subjects or predicates. RDF literals are drawn with
rectangles around them.

The arcs are directional and labeled with the RDF predicates. They are drawn starting from the
resource and terminating at the object, with arrows documenting the direction from resource to
object (in all instances of RDF graphs I've seen, this is from right to left).

Figure 2-1 shows a directed graph of the example statement discussed in the previous section. In the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

figure, the subject is contained within the oval to the left, the object literal is within the box, and the
predicate is used to label the arrowed line drawn from the subject to the object.

Figure 2-1. RDF directed graph of giant squid article statement

As you can see in the figure, the direction of the arrow is from the subject to the object. In addition,
the predicate is given a uriref equal to the schema for the RDF vocabulary elements and the element
that serves as predicate itself. Every arc, without exception, must be labeled within the graph.

Blank nodes are valid RDF, but most RDF parsers and building tools generate a unique identifier for
each blank node. For example, Figure 2-2 shows an RDF graph generated by the W3C RDF Validator,
complete with generated identifier in place of the blank node, in the format of:

genid(unique identifier)

The identifier shown in the figure is genid:158, the number being the next number available for
labeling a blank node and having no significance by itself. The use of genid isn't required, but the

recommended format for blank node identifiers is some form similar to that used by the validator.

Figure 2-2. Example of autogenerated identifier representing blank node

Blank nodes (sometimes referred to as bnodes or, previously, anonymous nodes) can be problematic
within automated processes because the identifier that's generated for each will change from one
application run to the next. Because of this, you can't depend on the identifier remaining the same.
However, since blank nodes represent placeholder nodes rather than more meaningful nodes, this
shouldn't be a problem. Still, you'll want to be aware of the nonpersistent names given to blank
nodes by RDF parsers.

The figures shown in this chapter were transformed from graphics generated by
the RDF Validator, an online resource operated by the W3C for validation of
RDF syntax (found at http://www.w3.org/RDF/Validator/). This tool will be
used extensively throughout this book, and its use is detailed in Chapter 7.

The components of the RDF graph-the uriref, bnode, literal, and arc-are the only components used
to document a specific instance of an RDF data model. This small number of components isn't

http://www.w3.org/RDF/Validator/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

surprising when you consider that, as demonstrated earlier, an RDF triple is a fact comprised of
subject-predicate-object. Only when we start recording more complicated assertions and start
merging several triples together do the RDF graph and the resulting RDF/XML begin to appear more
complex.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

2.4 URIs

Since an understanding of urirefs is central to working with RDF, we'll take a moment to look at what
makes a valid URI-the identifiers contained within a uriref and used to identify specific predicates.

Resources can be accessed with different protocols and using different syntaxes, such as using
http:// to access a resource as a web page and ftp:// to access another resource using FTP.

However, one thing each approach shares is the need to access a specific object given a unique name
or identifier. URIs provide a common syntax for naming a resource regardless of the protocol used to
access the resource. Best of all, the syntax can be extended to meet new needs and include new
protocols.

URIs are related to URLs (Uniform Resource Locators) in that a URL is a specific instance of a URI
scheme based on a known protocol, commonly the Hypertext Transfer Protocol (HTTP). URIs, and
URLs for that matter, can include either a complete location or path to a resource or a partial or
relative path. The URI can optionally include a fragment identifier, separated from the URI by a
pound sign (#). In the following example, http://burningbird.net/articles/monsters3.htm is
the URI and introduction is the fragment:

http://burningbird.net/articles/monsters3.htm#introduction

A URI is only an identifier. A specific protocol doesn't need to be specified, nor must the object
identified physically exist on the Web-you don't have to specify a resolvable protocol such as
http:// or ftp://, though you can if you like. Instead, you could use something as different as a

UUID (Universally Unique Identifier) referencing a COM or other technology component that exists
locally on the same machine or within a network of machines. In fact, a fundamental difference
between a URL and a URI is that a URL is a location of an object, while a URI can function as a name
or a location. URIs also differ from URNs (Uniform Resource Name) because URIs can refer to a
location as well as a name, while URNs refer to globally unique names.

The RDF specification constrains all urirefs to be absolute or partial URIs. An absolute URI would be
equivalent to the URL:

http://burningbird.net/articles/monsters3.htm

A relative URI is just as it sounds-relative to an absolute path. A relative reference to the Monsters
article could be:

Monsters3.htm

If a reference to the base location of the relative URI is not given, it's assumed to be base to the URI
of the containing document. The use of URIs and the concepts of namespaces and QNames are
discussed in more detail in Chapter 3.

[Team LiB]

http://burningbird.net/articles/monsters3.htm
http://burningbird.net/articles/monsters3.htm#introduction
http://burningbird.net/articles/monsters3.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

2.5 RDF Serialization: N3 and N-Triples

Though RDF/XML is the serialization technique used in the rest of this book, another serialization
technique supported by many RDF applications and tools is N-Triples. This format breaks an RDF graph
into its separate triples, one on each line. Regardless of the shorthand technique used within RDF/XML,
N-Triples generated from the same RDF graph always come out the same, making it an effective way of
validating the processing of an RDF/XML document. For instance, the test cases in the RDF Test Cases
document, part of the RDF specification, are given in both the RDF/XML format and the N-Triples format
to ensure that the RDF/XML (and the underlying RDF concepts) are consistently interpreted.

Though other techniques for serialization exist, as has been previously discussed,
the only serialization technique officially adopted by the RDF specifications is
RDF/XML.

N-Triples itself is based on another notation, called N3.

2.5.1 A Brief Look at N3

RDF/XML is the official serialization technique for RDF data, but another notation is also used frequently,
which is known as N3 or Notation3. It's important you know how to read it; however, since this book is
focusing on RDF/XML, we'll look only briefly at N3 notation.

N3 exists independent of RDF and can extend RDF in such a way as to violate the
semantics of the underlying RDF graph. Some prefer N3 to RDF/XML; I am not
one of them, primarily because I believe RDF/XML is a more comfortable format
for people more used to markup (such as XML or HTML).

The basic structure of an N3 triple is:

subject predicate object .

In this syntax, the subject, predicate, and object are separated by spaces, and the triple is terminated
with a period (.). An actual example of N3 would be:

<http://weblog.burningbird.net/fires/000805.htm>
 <http://purl.org/dc/elements/1.1/creator> Shelley .

In this example, the absolute URIs are surrounded by angle brackets. To simplify this even further,
namespace-qualified XML names (QNames) can be used instead of the full namespace, as long as the
namespaces are declared somewhere within the document. If QNames are used, the angle brackets are
omitted for the predicates:

<bbd:000805.htm> dc:creator Shelley.

To represent multiple triples, with related resources, just list out the triples. Converting the RDF/XML in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 3-9 into N3 we have:

<bbd:monsters1.htm> pstcn:bio <#monster1> .
<#monster1> pstcn.title "Tale of Two Monsters: Legends .
<#monster1> pstcn.description Part 1 of four-part series on cryptozoology, legends,
Nessie the Loch Ness Monster and the giant squid" .
<#monster1> pstcn:creator "Shelley" Powers .
<#monster1> pstcn:created "1999-08-01T00:00:00-06:00" .

To represent bnodes or blank nodes, use whatever designation you would prefer to identify the bnode
identifier. An example from the RDF Primer is:

exstaff:85740 exterms:address _:johnaddress .
_:johnaddress exterms:street "1501 Grant Avenue" .
_:johnaddress exterms:city "Bedford" .
_:johnaddress exterms:state "Massachusetts" .
_:johnaddress exterms:Zip "01730" .

Though brief, these notes should enable you to read N3 notation all through the RDF specification
documents. However, since the focus of this book is RDF/XML, N3 notation won't be used again.

2.5.2 N-Triples

Since N-Triples is a subset of N3, it supports the same format for RDF triples:

subject predicate object .

According to the Extended Backus-Naur Form (EBNF) for N-Triples, a space or a tab separates the three
elements from each other, and a space or a tab can precede the elements. In addition, each triple is
ended with a period (.) followed by a line-feed or carriage-return/line-feed. An N-Triples file can also

contain comments in the following format:

comment

Each line in an N-Triples file consists of either a triple or a comment, but not both.

As for the triple elements themselves, the subject can consist of either a uriref or a blank node identifier
The latter is a value generated for blank nodes within N-Triples syntax, as there can be no blank
subjects within legal N-Triples-formatted output. The blank node identifier format is:

_:name

where name is a string. The predicate is always a uriref, and the object can be a uriref, a blank node, or

a literal.

Given an RDF graph as shown in Figure 2-3 , N-Triples would be returned representing both the title
triple and the author triple. Adding in a comment, the output in Example 2-1 is valid N-Triples output for
the same RDF graph.

Figure 2-3. RDF graph with two RDF triples and one subject

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 2-1. N-Triples output

Chapter 2 Example1
<http://burningbird.net/articles/monsters3.htm> . <http://burningbird.net/postcon/
elements/1.0/author> "Shelley Powers" .
<http://www.burningbird.net/articles/monsters3.htm> <http://burningbird.net/postcon/
elements/1.0/title> "Architeuthis Dux" .

Note that angle brackets are used in N-Triples notation only when the object enclosed is a complete,
absolute URI. QNames are not enclosed in angle brackets.

A slightly more complex example of N-Triples can be seen in Example 2-2 . In this example, four triples
are given for one subject, which in this case happens to be a blank node. Since nodes without labels are
not allowed in N-Triples format, the RDF parser (NTriple, included with the ARP parser discussed in
Chapter 7) generated an identifier to represent the subject in each triple.

Example 2-2. N-Triples output with generated blank node identifier

_:j0 <http://www.w3.org/1999/02/22-rdf-syntax-ns#subject> <http://www.webreference.com/
dhtml/hiermenus> .

_:j0 <http://www.w3.org/1999/02/22-rdf-syntax-ns#predicate> <http://burningbird.net/
schema/Contains> .

_:j0 <http://www.w3.org/1999/02/22-rdf-syntax-ns#object>
"Tutorials and source code about creating hierarchical menus in DHTML" .

_:j0 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement> .

_:j0 <http://burningbird.net/schema/recommendedBy> "Shelley Powers" .

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

2.6 Talking RDF: Lingo and Vocabulary

Right at this moment, you have enough understanding of the RDF graph to progress into the RDF/XML syntax in the next chapter. However,
if you follow any of the conversations related to RDF, some terms and concepts might cause confusion. Before ending this chapter on the
RDF graph, I thought I would spend some time on these potentially confusing concepts.

2.6.1 Graphs and Subgraphs

In any RDF graph, a subgraph of the graph would be a subset of the triples contained in the graph. As I said earlier, each triple is uniquely
its own RDF graph, in its own right, and can actually be modeled within a separate directed graph. In Figure 2-3 , the triple represented by
the following is a subgraph of the entire set of N-Triples representing the entire graph:

<http://burningbird.net/articles/monsters3.htm> <http://burningbird.net/postcon/
elements/1.0/title> "Architeuthis Dux"

Taking this concept further, a union of two or more RDF graphs is a new graph, which the Model document calls a merge of the graphs. For
instance, Figure 2-4 shows one graph containing exactly one RDF triple (one statement).

Figure 2-4. RDF graph with exactly one triple

Adding the following triple results in a new merged graph, as shown previously in Figure 2-3 . Since both triples share the same subject, as
determined by the URI, the mergence of the two attaches the two different triples to the same subject:

<http://burningbird.net/articles/monsters3.htm> <http://burningbird.net/postcon/elements/1.0/author> "Shelley Powers"

Now, if the subjects differed, the merged graph would still be valid-there is no rule or regulation within the RDF graph that insists that all
nodes be somehow connected with one another. All the RDF graph insists on is that the triples are valid and that the RDF used with each is
valid. Figure 2-5 shows an RDF graph of two merged graphs that have disconnected nodes.

Figure 2-5. Merged RDF graph with disconnected nodes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Blank nodes are never merged in a graph because there is no way of determining whether two nodes are the same-one can't assume
similarity because of artificially generated identifiers. The only components that are merged are urirefs and literals (because two literals that
are syntactically the same can be assumed to be the same). In fact, when tools are given two graphs to merge and each graph contains
blank nodes, each blank node is given a unique identifier in order to separate it from the others before the mergence.

2.6.2 Ground and Not Graph

An RDF graph is considered grounded if there are no blank nodes. Figure 2-4 is an example of a grounded RDF graph, while Figure 2-5 is not
because of the blank node (labeled genid:403). Additionally, an instance of an RDF graph is a graph in which each blank node has been
replaced by an identifier, becoming a named node. In Figure 2-5 , a named node replaced the blank node; if I were to run the RDF Validator
against the RDF/XML that generated this example I would get a second instance, and the names used for the blank nodes would differ.
Semantically the two graphs would represent the same RDF graph but are considered separate instances of the graph.

Finally, an RDF vocabulary is the collection of all urirefs from a specific RDF graph. Much discussion is made of the Dublin Core vocabulary or
the RSS vocabulary and so on (discussed more in Chapter 6). However, a true RDF vocabulary can differ from an official implementation of
it by the very fact that the urirefs may differ between the two.

Since this is a bit confusing, for the rest of the book when I refer to an RDF vocabulary, I'm referring to a schema of a particular vocabulary,
rather than any one particular implementation or document derived from it.

2.6.3 Entailment

Within the RDF Semantics document, entailment describes two graphs, which are equal in all aspects. By this I mean that every assertion
made about one RDF graph can be made with equal truth about the other graph. For instance, statements made in one graph are implicitly
made in the other; if you believe the statement in the first, you must, through entailment, believe the same statement in the other.

As examples of entailment, the formal term subgraph lemma states that a graph entails all of its subgraphs, because whatever assertions
can be made about the whole graph can also be made against the subgraphs, aside from differences associated with the subgraphing
process (e.g., the original graph had two statements, while the subgraph had only one). Another lemma, instance lemma , states that all
instances of a graph are entailed by the graph- instance in this case an implementation of a graph in which all blank nodes have been
replaced by a literal or a uriref.

Earlier I talked about merging graphs. The merging lemma states that the merged graph entails all the graphs that form its final
construction. Another lemma, monotonicity lemma , states that if a subgraph of a graph entails another graph, then the original graph also
entails that second graph.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Within web specifications, one hopes not to run into terms such as lemma , which means "subsidiary proposition
assumed to be valid and used to demonstrate a principal proposition," according to the dictionary. However, I
know that the main purpose of the Semantics document within the RDF specification is to provide fairly concrete
interpretations of the RDF graph theory so that implementers of the technology can provide consistent
implementations. For those who primarily use RDF/XML technology rather than create parsers or RDF databases,
an understanding of the pure RDF semantics isn't essential-but it is helpful, which is why I'm covering it, however
lightly.

The interpolation lemma actually goes more into the true nature of entailment than the others, and so I'll cover it in more detail.

The interpolation lemma states:

S entails a graph E if and only if a subgraph of the merge of S is an instance of E.

This lemma basically states that you can tell whether one set of graphs entails another if you take a subgraph of the mergence of the
graphs, replace the named nodes with blank nodes, and, if the result is an instance of the second set of graphs, the first set is said to entail
them. From an editor's draft:

"To tell whether a set of RDF graphs entails another, check that there is some instance of the entailed graph which is a subset of the
merge of the original set of graphs."

Oversimplification aside, what's important to realize about entailment is that it's not the same thing as equality. Equality is basically two
graphs that are identical, even down to the same named nodes. Entailment implies something a little more sophisticated-that the
semantics of an RDF construct as shown in a specific implementation of a graph map to that which is defined within the formal semantics of
the model theoretic viewpoint of the abstract RDF graph. The information in the entailed graph is the same as the information in the other
but may have a different physical representation. It is entailment that allows us to construct a graph using a node-edge-node pattern and
know that this instance of the RDF graph is a valid one, and that whatever semantic constraints exist within the model theoretic viewpoint of
RDF also exist within this real-world instance of RDF. Additionally, entailment allows different manipulations of the data in the graphs, as
long as the original information is preserved.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 3. The Basic Elements Within the
RDF/XML Syntax
The usability of RDF is heavily dependent on the portability of the data defined in the RDF models and
its ability to be interchanged with other data. Unfortunately, recording the RDF data in a graph-the
default RDF documentation format-is not the most efficient means of storing or retrieving this data.
Instead, transporting RDF data, a process known as serialization, usually occurs with RDF/XML.

Originally, the RDF model and the RDF/XML syntax were incorporated into one document, the
Resource Description Framework (RDF) Model and Syntax Specification. However, when the
document was updated, the RDF model was separated from the document detailing the RDF/XML
syntax. Chapter 2 covered the RDF abstract model, graph, and semantics; this chapter provides a
general introduction to the RDF/XML model and syntax (RDF M&S).

The original RDF M&S Specification can be found at
http://www.w3.org/TR/REC-rdf-syntax/. The updated RDF/XML Syntax
Specification (revised) can be found at http://www.w3.org/TR/rdf-syntax-
grammar/.

Some RDF-specific aspects of RDF/XML at first make it seem overly complex when compared to non-
RDF XML. However, keep in mind that RDF/XML is nothing more than well-formed XML, with an
overlay of additional constraints that allow for easier interchange, collection, and mergence of data
from multiple models. In most implementations, RDF/XML is parsable with straight XML technology
and can be manipulated manually if you so choose. It's only when the interchangeability of the data
is important and the data can be represented only by more complex data structures and relationships
that the more formalized elements of RDF become necessary. And in those circumstances, you'll be
glad that you have the extra capability.

All examples listed in the chapter are validated using the W3C's RDF Validator,
located at http://www.w3.org/RDF/Validator/.

[Team LiB]

http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TR/rdf-syntax-
http://www.w3.org/RDF/Validator/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

3.1 Serializing RDF to XML

Serialization converts an object into a persistent form. The RDF/XML syntax provides a means of documenting an RDF model
in a text-based format, literally serializing the model using XML. This means that the content must both meet all requirements
for well-formed XML and the additional constraints of RDF. However, before showing you some of these constraints, let's walk
through an example of using RDF/XML.

RDF doesn't require XML-style validity, just well-formedness. RDF/XML parsers and validators do not
use DTDs or XML Schemas to ensure that the XML used is valid. Norman Walsh wrote a short article
for xml.com on what it means for an XML document to be well formed and/or valid; it explains the
two concepts in more detail. See it at http://www.xml.com/pub/a/98/10/guide3.html .

In Chapter 2 , I discussed an article I wrote on the giant squid. Now, consider attaching context to it. Among the information
that could be exposed about the article is that it explores the idea of the giant squid as a legendary creature from myths and
lore; it discusses the current search efforts for the giant squid; and it provides physical characteristics of the creature. Putting
this information into a paragraph results in the following:

The article on giant squids, titled "Architeuthis Dux," at
http://burningbird.net/articles/monsters3.htm, written by Shelley Powers, explores
the giant's squid's mythological representation as the legendary Kraken as well
as describing current efforts to capture images of a live specimen. In addition,
the article also provides descriptions of a giant squid's physical
characteristics. It is part of a four-part series, described at
http://burningbird.net/articles/monsters.htm and entitled "A Tale of Two
Monsters."

Reinterpreting this information into a set of statements, each with a specific predicate (property or fact) and its associated
value, I come up with the following list:

The article is uniquely identified by its URI, http://burningbird.net/articles/monsters3.htm .

The article was written by Shelley Powers-predicate is written by , value is Shelley Powers .

The article's title is "Architeuthis Dux"-predicate is title , value is Architeuthis Dux .

The article is one of a four-part series-predicate is series member , value is
http://burningbird.net/articles/monsters.htm .

The series is titled "A Tale of Two Monsters"-series predicate is title , value is A Tale of Two Monsters .

The article associates the giant squid with the legendary Kraken-predicate is associates , value is Kraken and giant
squid .

The article provides physical descriptions of the giant squid-predicate is provides , value is physical description of giant
squid .

http://burningbird.net/articles/monsters3.htm, written by Shelley Powers, explores
http://burningbird.net/articles/monsters.htm and entitled "A Tale of Two
http://burningbird.net/articles/monsters3.htm
http://burningbird.net/articles/monsters.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Y ou'll notice in this chapter and elsewhere in the book that I tend to use RDF statement and RDF
triple seemingly interchangeably. However, I primarily use RDF statement when referring to the
particular fact being asserted by an RDF triple and use RDF triple when referring to the actual,
physical instantiation of the statement in RDF triple format.

Starting small, we'll take a look at mapping the article and the author and title, only, into RDF. Example 3-1 shows this RDF
mapping, wrapped completely within an XML document.

Example 3-1. Preliminary RDF of giant squid article

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/">
 <rdf:Description rdf:about="http://burningbird.net/articles/monsters3.htm">
 <pstcn:author>Shelley Powers</pstcn:author>
 <pstcn:title>Architeuthis Dux</pstcn:title>
 </rdf:Description>
</rdf:RDF>

Tracing the XML from the top, the first line is the traditional XML declaration line. Following it is the RDF element, rdf:RDF ,

used to enclose the RDF-based content.

If the fact that the content is RDF can be determined from the context of the XML, the containing RDF
element isn't necessary and can be omitted. In addition, the RDF content can be embedded within
another document, such as an XML or HTML document, as will be discussed later in Section 3.8 .

Contained as attributes within the RDF element is a listing of the namespaces that identify the vocabulary for each RDF
element. The first, with an rdf prefix, is the namespace for the RDF syntax; the second, with a prefix of pstcn , identifies

elements I've created for the example RDF in this book. The namespace references an existing schema definition (see more
on RDF Schemas in Chapter 5), but the schema itself doesn't have to exist on the Web, because it's not used for validation.
However, as you will see in Chapter 5 , there is good reason to physically create the RDF Schema document in the location
given in the namespace URI.

In the example, after the enclosing rdf:RDF element is the RDF Description . An RDF Description begins with the opening RDF
Description tag, rdf:Description , which in this case includes an attribute (rdf:about) used to identify the resource (the

subject). The resource used within the specific element could be an identifier to a resource defined elsewhere in the document
or the URI for the subject itself. In the example, the resource identifier is the URI for the giant squid article page.

The RDF Description wraps one or more resource predicate/object pairs. The predicate objects (the values) can be either
literals or references to another resource. Regardless of object type, each RDF statement is a complete triple consisting of
subject-predicate-object. Figure 3-1 shows the relationship between the RDF syntax and the RDF trio from the example.

Figure 3-1. An example of two RDF statements, each with the same subject (resource), as
well as a mapping between statement elements and values

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As you can see, a complete RDF statement consists of the resource, a predicate, and its value. In addition, as the figure
shows, resources can be described by more than one property (in RDF parlance, the subject can participate in more than one
RDF statement within the document).

Running Example 3-1 through the RDF Validator results in a listing of N-Triples in the form of subject, predicate, and object:

<http://dynamicearth.com/articles/monsters3.htm>
 <http://burningbird.net/postcon/elements/1.0/author> "Shelley Powers" .
<http://dynamicearth.com/articles/monsters3.htm>
 <http://burningbird.net/postcon/elements/1.0/title> "Architeuthis Dux" .

The N-Triples representation of each RDF statement shows the formal identification of each predicate, as it would be identified
within the namespace schema.

The validator also provides a graphic representation of the statement as shown in Figure 3-2 . As you can see, the
representation matches that shown in Figure 3-1 -offering validation that the model syntax used does provide a correct
representation of the statements being modeled.

Figure 3-2. RDF Validator-generated directed graph of Example 3-1

In Example 3-1 , the objects are literal values. However, there is another resource described in the original paragraph in
addition to the article itself: the series the article is a part of, represented with the URI
http://burningbird.net/articles/monsters.htm . The series then becomes a new resource in the model but is still

referenced as a property within the original article description.

To demonstrate this, in Example 3-2 the RDF has been expanded to include the information about the series, as well as to
include the additional article predicate/object pairs. The modifications to the original RDF/XML are boldfaced.

Example 3-2. Expanded version of the giant squid RDF

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/">

<rdf:Description rdf:about="http://burningbird.net/articles/monsters3.htm">
 <pstcn:author>Shelley Powers</pstcn:author>

http://burningbird.net/articles/monsters.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <pstcn:title>Architeuthis Dux</pstcn:title>
 <pstcn:series rdf:resource="http://burningbird.net/articles/monsters.htm" />
 <pstcn:contains>Physical description of giant squids</pstcn:contains>
 <pstcn:alsoContains>Tale of the Legendary Kraken</pstcn:alsoContains>
</rdf:Description>

<rdf:Description rdf:about="http://burningbird.net/articles/monsters.htm">
 <pstcn:seriesTitle>A Tale of Two Monsters</pstcn:seriesTitle>
</rdf:Description>
</rdf:RDF>

The rdf:resource attribute within the pstcn:series predicate references a resource object, in this case one that's defined
later in the document and which has a predicate of its own, pstcn:seriesTitle . Though the statements for the linked

resource are separate from the enclosed statements in the original resource within the RDF/XML, the RDF graph that's
generated in Figure 3-3 shows the linkage between the two.

Figure 3-3. Using rdf:resource to set an object to another resource

The linked resource could be nested directly within the original resource by enclosing it within the original resource's
rdf:Description element, in effect nesting it within the original resource description. Example 3-3 shows the syntax for the

example after this modification has been applied. As you can see with this XML, the second resource being referenced within
the original is more apparent using this approach, though the two result in equivalent RDF models.

Example 3-3. Expanded RDF modified to use nested resources

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/">
 <rdf:Description rdf:about="http://burningbird.net/articles/monsters3.htm">
 <pstcn:author>Shelley Powers</pstcn:author>
 <pstcn:title>Architeuthis Dux</pstcn:title>
 <pstcn:series>
 <rdf:Description rdf:about=
 "http://burningbird.net/articles/monsters.htm">
 <pstcn:SeriesTitle>A Tale of Two Monsters</pstcn:SeriesTitle>
 </rdf:Description>
 </pstcn:series>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <pstcn:contains>Physical description of giant squids</pstcn:contains>
 <pstcn:alsoContains>Tale of the Legendary Kraken</pstcn:alsoContains>
 </rdf:Description>
</rdf:RDF>

Though nesting one resource description in another shows the connection between the two more clearly, I prefer keeping
them apart-it allows for cleaner RDF documents in my opinion. If nesting becomes fairly extreme-a resource is an object of
another resource, which is an object of another resource, and so on-trying to represent all of the resources in a nested
manner soon becomes unreadable (though automated processes have no problems with it).

Example 3-3 demonstrates a fundamental behavior with RDF/XML: subjects and predicates occur in layers, with subjects
separated from other subjects by predicates and predicates separated from other predicates by subjects. Subjects are never
nested directly within subjects, and predicates are never nested directly within predicates. This RDF/XML striping is discussed
next.

3.1.1 Striped Syntax

In a document titled "RDF: Understanding the Striped RDF/XML Syntax" (found at http://www.w3.org/2001/10/stripes/), the
author, Dan Brickley, talks about a specific pattern of node-edge-node that forms a striping pattern within RDF/XML. This
concept has been included in the newer Syntax document as a method of making RDF/XML a little easier to read and
understand.

If you look at Figure 3-3 , you can see this in the thread that extends from the subject
(http://burningbird.net/articles/monsters3.htm) to the predicate (pstcn:series) to the object, which is also a
resource (http://burningbird.net/articles/monsters.htm) to another predicate (pstcn:seriesTitle) to another
object, a literal in this case (A Tale of Two Monsters). In this thread, no two predicates are nested directly within each

other. Additionally, all nodes (subject or object) are separated by an arc-a predicate-providing a node-arc-node-arc-node...
pattern.

Within RDF/XML this becomes particularly apparent when you highlight the predicates and their associated objects within the
XML. Example 3-3 is replicated in Example 3-4 , except this time the predicate/objects are boldfaced to make them stand out.

Example 3-4. Expanded RDF modified to use nested resources, predicates bolded to make
them stand out

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/">

 <rdf:Description rdf:about="http://burningbird.net/articles/monsters3.htm">
 <pstcn:author>Shelley Powers</pstcn:author>
 <pstcn:title>Architeuthis Dux</pstcn:title>
 <pstcn:series>
 <rdf:Description rdf:about=
 "http://dynamicearth.com/articles/monsters.htm">
 <pstcn:seriesTitle>A Tale of Two Monsters</pstcn:seriesTitle>
 </rdf:Description>
 </pstcn:series>
 <pstcn:contains>Physical description of giant squids</pstcn:contains>
 <pstcn:alsoContains>Tale of the Legendary Kraken</pstcn:alsoContains>

http://burningbird.net/articles/monsters3.htm
http://burningbird.net/articles/monsters.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </rdf:Description>

</rdf:RDF>

Viewed in this manner, you can see the striping effect, whereby each predicate is separated by a resource, each resource by a
predicate. This maps to the node-arc-node pattern established in the abstract RDF model based on directed graphs. This
visualization clue can help you read RDF/XML more easily and allow you to differentiate between predicates and resources.

Another convention, though it isn't a requirement within the RDF specifications, is that all predicates
(properties) start with lowercase (such as title , author , and alsoContains), and all classes start

with an uppercase. However, in the examples just shown, other than the classes defined within the
RDF Schema (such as Description), there is no implementation-specific class. Most of the XML

elements present are RDF/XML properties. Later we'll see how to formally specify the PostCon classes
within the RDF/XML.

3.1.2 Predicates

As you've seen in the examples, a predicate value (object) can be either a resource or a literal. If the object is a resource, an
oval is drawn around it; otherwise, a rectangle is drawn. RDF parsers (and the RDF Validator) know which is which by the
context of the object itself. However, there is a way that you can specifically mark the type of property-using the
rdf:parseType attribute.

By default, all literals are plain literals and can be strings, integers, and so on. Their format would be the string value plus an
optional xml:language . However, you can also embed XML within an RDF document by using the rdf:parseType attribute
set to a value of "Literal" . For instance, Example 3-5 shows the RDF/XML from Example 3-4 , but in this case the
pstcn:alsoContains predicate has an XML-formatted value.

Example 3-5. RDF/XML demonstrating use of rdf:parseType

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/">

 <rdf:Description rdf:about="http://burningbird.net/articles/monsters3.htm">
 <pstcn:author>Shelley Powers</pstcn:author>
 <pstcn:title>Architeuthis Dux</pstcn:title>
 <pstcn:series>
 <rdf:Description rdf:about=
 "http://dynamicearth.com/articles/monsters.htm">
 <pstcn:seriesTitle>A Tale of Two Monsters</pstcn:seriesTitle>
 </rdf:Description>
 </pstcn:series>
 <pstcn:contains>Physical description of giant squids</pstcn:contains>
 <pstcn:alsoContains rdf:parseType="Literal">
 <h1>Tale of the Legendary Kraken
 </h1></pstcn:alsoContains>
 </rdf:Description>

</rdf:RDF>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Without the rdf:parseType="Literal" attribute, the RDF/XML wouldn't be valid. Running the text through the RDF Validator

results in the following error:

Error: {E202} Expected whitespace found: 'Tale of the Legendary Kraken'.[Line = 17, Column = 69

Specifically, rdf:parseType="Literal" is a way of embedding XML directly into an RDF/XML document. When used, RDF

processors won't try to parse the element for additional RDF/XML when it sees the XML tags. If you used
rdf:parseType="Literal" with series , itself, the RDF parser would place the literal value of the rdf:Description block

within a rectangle, rather than parse it out. You'd get a model similar to that shown in Figure 3-4

Figure 3-4. Using rdf:parseType of "Literal" for a property surrounding an RDF:Description
block

Another rdf:parseType option, "Resource" , identifies the element as a resource without having to use rdf:about or
rdf:ID. In other words, the surrounding rdf:Description tags would not be necessary:

<rdf:Description rdf:about="http://burningbird.net/articles/monsters3.htm">
 <pstcn:series rdf:parseType="Resource">
 <pstcn:seriesTitle>A Tale of Two Monsters</pstcn:seriesTitle>
 </pstcn:series>
...
</rdf:Description>

The RDF/XML validates, and the RDF Validator creates an oval for the property. However, it would add a generated identifier
in the oval, because the resource is a blank node. There is no place to add a URI for the object in the bubble, because there is
no resource identifier for the series property. You can list the seriesTitle directly within the series property, and the

property would be attached to it in the RDF graph. But there would be no way to attach a URI to the resource-it would
remain as a blank node.

The rdf:parseType property can be used to mark a property as "Resource" , even if there is no property value given yet.
For instance, in Example 3-6 , the property is marked as "Resource" , but no value is given.

Example 3-6. RDF/XML demonstrating use of rdf:parseType

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/">
 <rdf:Description rdf:about="http://burningbird.net/articles/monsters3.htm">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <pstcn:author rdf:parseType="Resource" />
 </rdf:Description>

</rdf:RDF>

This approach can be used to signify that the object value isn't known but is nonetheless a valid property. Within the RDF
directed graph resulting from this RDF/XML, an oval with a generated identifier is drawn to represent the object , as shown in
Figure 3-5 .

Figure 3-5. RDF directed graph of model containing "Resource" object with no value
provided

3.1.3 Namespaces and QNames

An important goal of RDF is to record knowledge in machine-understandable format and then provide mechanisms to facilitate
the combination of the data. By allowing combinations of multiple models, additions can be incorporated without necessarily
impacting an existing RDF Schema. To ensure that RDF/XML data from different documents and different specifications can be
successfully merged, namespace support has been added to the specification to prevent element collision. (Element collision
occurs when an element with the same name is identified in two different schemas used within the same document.)

Read more on XML namespaces in the document "Namespaces in XML" at
http://www.w3.org/TR/1999/REC-xml-names-19990114/ . You may also want to explore the
commentary provided in "XML Namespace Myths Exploded," available at
http://www.xml.com/pub/a/2000/03/08/namespaces/index.html .

To add namespace support to an RDF/XML document, a namespace attribute can be added anywhere in the document; it is
usually added to the RDF tag itself, if one is used. An example of this would be:

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/">

In this XML, two namespaces are declared-the RDF/XML syntax namespace (a requirement) and the namespace for the
PostCon vocabulary. The format of namespace declarations in RDF/XML usually uses the following format:

xmlns:name="URI of schema"

The name doesn't have to be provided if the namespace is assumed to be the default (no prefix is used) within the document:

xmlns="URI of schema"

The namespace declaration for RDF vocabularies usually points to the URI of the RDF Schema document for the vocabulary.
Though there is no formalized checking of this document involved in RDF/XML-it's not a DTD-the document should exist as
documentation for the schema. In particular, as we'll see in later chapters, this schema is accessed directly by tools and
utilities used to explore and view RDF/XML documents.

An element that has been known to generate a great deal of conversation within the RDF/XML and XML community is the
QName -a namespace prefix followed by a colon (:) followed by an XML local name. In the examples shown so far, all

http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.xml.com/pub/a/2000/03/08/namespaces/index.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

element and attribute names have been identified using the QName, a requirement within RDF/XML. An example use of a
QName is:

 <rdf:Description rdf:about="http://burningbird.net/articles/monsters3.htm">
 <pstcn:author rdf:parseType="Literal" />
 </rdf:Description>

In this example, the QName for the RDF Description class and the about and rdf:parseType attributes is rdf , a prefix for
the RDF syntax URI, given earlier. The QName for the author element is pstcn , the PostCon URI prefix.

The actual prefix used, such as rdf and pstcn , can vary between documents, primarily because automated processes

replace the prefix with the full namespace URI when processing the RDF data. However, by convention, the creators of a
vocabulary usually set the particular prefix used, and users of the vocabulary are encouraged to use the same prefix for
consistency. This makes the RDF/XML documents easier for humans to read.

In particular, the prefix for the RDF Syntax Schema is usually given as rdf , the RDF Schema is given as rdfs , and the
Dublin Core schema (described in Chapter 6) is usually abbreviated as dc . And of course, PostCon is given as pstcn .

Earlier I mentioned that the QName is controversial. The reason is twofold:

First, the RDF specification requires that all element and attribute types in RDF/XML must be QNames. Though the reason for
this is straightforward-allowing multiple schemas in the same document-the rule was not established with the very first
releases of RDF/XML, and there is RDF/XML in use today, such as in Mozilla, (described in Chapter 14), in which attributes
such as about are not decorated with the namespace prefix.

In order to ensure that these pre-existing applications don't break, the RDF Working Group has allowed some attributes to be
non-namespace annotated. These attributes are:

ID

bagID (removed from the specification based on last call comments)

about

resource

parseType

type

When encountered, RDF/XML processors are required to expand these attributes by concatenating the RDF namespace to the
attribute. Though these nonannotated attributes are allowed for backward compatibility, the WG (and yours truly) strongly
recommend that you use QNames with your attributes. In fact, RDF/XML parsers may give a warning (but not an error) when
these are used in a document. The only reason I include these nonannotated attributes in the book is so that you'll
understand why these still validate when you come upon them in older uses of RDF/XML.

Another controversy surrounding QNames is their use as attribute values: specifically, using them as values for rdf:about or
rdf:type . Example 3-7 shows an earlier version of the RDF/XML vocabulary used for demonstrations throughout the book

and uses a QName for a attribute value. QName formatting is boldfaced in the example.

Example 3-7. Demonstrations of QName attribute values

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:bbd="http://www.burningbird.net/schema#">
 <rdf:Description rdf:about="http://www.burningbird.net/identifier/tutorials/xul.htm">
 <bbd:bio rdf:resource="bbd:bio"/>
 <bbd:relevancy rdf:resource="bbd:relevancy" />
 </rdf:Description>

 <rdf:Description rdf:about="bbd:bio">
 <bbd:Title>YASD Does Mozilla/Navigator 6.0</bbd:Title>
 <bbd:Description>Demonstrations of using XUL for interface development
 </bbd:Description>
 <bbd:CreationDate>May 2000</bbd:CreationDate>
 <bbd:ContentAuthor>Shelley Powers</bbd:ContentAuthor>
 <bbd:ContentOwner>Shelley Powers</bbd:ContentOwner>
 <bbd:CurrentLocation>N/A</bbd:CurrentLocation>
 </rdf:Description>

 <rdf:Description rdf:about="bbd:relevancy">
 <bbd:CurrentStatus>Inactive</bbd:CurrentStatus>
 <bbd:RelevancyExpiration>N/A</bbd:RelevancyExpiration>
 <bbd:Dependencies>None</bbd:Dependencies>
 </rdf:Description>

</rdf:RDF>

Running this example through the RDF Validator results in a perfectly good RDF graph and no errors or warnings. Many tools
also have no problems with the odd use of QName. Apply this practice in your RDF/XML vocabulary, though, and you'll receive
howls from the RDF community-this is a bad use of QNames, though not necessarily a specifically stated invalid use of them.
The relationship between QNames and URIs is still not completely certain.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

3.2 RDF Blank Nodes

It would be easy to extrapolate a lot of meaning about blank nodes but, bottom line, a blank node
represents a resource that isn't currently identified. As with the infamous null value from the
relational data model, there could be two reasons why the identifying URI is absent: either the value
will never exist (isn't meaningful) or the value could exist but doesn't at the moment (currently
missing).

Most commonly, a blank node-known as a bnode, or occasionally anonymous node-is used when a
resource URI isn't meaningful. An example of this could be a representation of a specific individual
(since most of us don't think of humans with URIs).

In RDF/XML, a blank node is represented by an oval (it is a resource), with either no value in the oval
or a computer-generated identifier. The RDF/XML Validator generates an identifier, which it uses
within the blank node to distinguish it from other blank nodes within the graph. Most tools generate
an identifier for blank nodes to differentiate them.

In Example 3-8, bio attributes are grouped within an enclosing PostCon bio resource. Since the bio

doesn't have its own URI, a blank node represents it within the model.

Example 3-8. Blank node within RDF model

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/"
 xml:base="http://burningbird.net/articles/">

 <rdf:Description rdf:about="monsters1.htm">
 <pstcn:bio>
 <rdf:Description>
 <pstcn:title>Tale of Two Monsters: Legends</pstcn:title>
 <pstcn:description>
 Part 1 of four-part series on cryptozoology, legends,
 Nessie the Loch Ness Monster and the giant squid.
 </pstcn:description>
 <pstcn:created>1999-08-01T00:00:00-06:00</pstcn:created>
 <pstcn:creator>Shelley Powers</pstcn:creator>
 </rdf:Description>
 </pstcn:bio>
 </rdf:Description>
</rdf:RDF>

Running this example through the RDF Validator gives the directed graph shown in Figure 3-6
(modified to fit within the page).

Figure 3-6. Directed graph demonstrating blank node

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As you can see in the graph, the RDF Validator has generated a node identifier for the blank node,
genid:403. This identifier has no meaning other than being a way to differentiate this blank node

from other blank nodes, within the graph and within the generated N-Triples.

Example 3-8 also uses xml:base to establish a base URI for the other URIs in

the document, avoiding a lot of repetition. This technique is described in more
detail in Section 3.3.

Instead of letting the tools provide a blank node identifier, you can provide one yourself. This is
particularly useful if you want to reference a resource that's not nested within the outlying element
but occurs elsewhere in the page as a separate RDF/XML triple. The rdf:nodeID is used to provide a
specific identifier, as demonstrated in Example 3-9, when the embedded bio is pulled out into a
separate triple. The rdf:nodeID attribute is used within the predicate of the original triple, as well as

within the description of the newly created triple, as noted in bold type.

Example 3-9. Using rdf:nodeID to identify a unique blank node

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/"
 xml:base="http://burningbird.net/articles/">

 <rdf:Description rdf:about="monsters1.htm">
 <pstcn:bio rdf:nodeID="monsters1">
 </pstcn:bio>
 </rdf:Description>

 <rdf:Description rdf:nodeID="monsters1">
 <pstcn:title>Tale of Two Monsters: Legends</pstcn:title>
 <pstcn:description>
 Part 1 of four-part series on cryptozoology, legends,
 Nessie the Loch Ness Monster and the giant squid.
 </pstcn:description>
 <pstcn:created>1999-08-01T00:00:00-06:00</pstcn:created>
 <pstcn:creator>Shelley Powers</pstcn:creator>
 </rdf:Description>
</rdf:RDF>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The rdf:nodeID is unique to the document but not necessarily to all RDF/XML documents. When

multiple RDF models are combined, the tools used could redefine the identifier in order to ensure that
it is unique. The rdf:nodeID is not a way to provide a global identifier for a resource in order to

process it mechanically when multiple models are combined. If you need this type of functionality,
you're going to want to give the resource a formal URI, even if it is only a placeholder URI until a
proper one can be defined.

As noted in the RDF Syntax Specification document, nodeID is unique to

RDF/XML only, and does not have any representation within the RDF abstract
model. It's a tool to help people work with RDF/XML; not part of the RDF
model.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

3.3 URI References

All predicates within RDF/XML are given as URIs, and most resources-other than those that are
treated as blank nodes-are also given URIs. A basic grounding of URIs was given in Chapter 2, but
this section takes a look at how URIs are used within the RDF/XML syntax.

3.3.1 Resolving Relative URIs and xml:base

Not all URI references in a document are full URIs. It's not uncommon for relative URI references to
be given, which then need to be resolved to a base URI location. In the previous examples, the full
resource URI is given within the rdf:about attribute. Instead of using the full URI, the example could

be a relative URI reference, which resolves to the base document concatenated with the relative URI
reference. In the following, the relative URI reference "#somevalue.htm":

 <rdf:Description rdf:about="#somevalue">

then becomes http://burningbird.net/articles/somedoc.htm#somevalue if the containing
document is http://burningbird.net/articles/somedoc.htm. To resolve correctly, the relative
URI reference must be given with the format of pound sign (#) followed by the reference
("#somevalue").

Normally, when a full URI is not provided for a specific resource, the owning document's URL is
considered the base document for forming full URIs given relative URI references. So if the document
is http://burningbird.net/somedoc.htm, the URI base is considered to be this document, and

changes of the document name or URL change the URI for the resource.

With xml:base, you can specify a base document that's used to generate full URIs when given

relative URI references, regardless of the URL of the owning document. This means that your URIs
can be consistent regardless of document renaming and movement.

The xml:base attribute is added to the RDF/XML document, usually in the same element tag where
you list your namespaces (though it can be placed anywhere). Redefining Example 3-6 with xml:base

and using a relative URI reference would give you the RDF/XML shown in Example 3-10.

Example 3-10. Using xml:base to define the base document for relative
URI references

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/
 xml:base="http://burningbird.net/articles/">
 <rdf:Description rdf:about="monsters3.htm">
 <pstcn:author rdf:parseType="Literal" />
 </rdf:Description>

http://burningbird.net/articles/somedoc.htm#somevalue
http://burningbird.net/articles/somedoc.htm
http://burningbird.net/somedoc.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

</rdf:RDF>

The URI for the article, given as relative "monsters3.htm", is correctly expanded to the proper full
URI of http://burningbird.net/articles/monsters3.htm.

3.3.2 Resolving References with rdf:ID

In the previous example, the rdf:about attribute was used to provide the URI reference. Other ways
of providing a URI for a resource are to use the rdf:resource, rdf:ID, or rdf:bagID attributes. The
rdf:bagID attribute is discussed in the next chapter, but we'll take a quick look at rdf:ID and
rdf:resource.

Unlike the rdf:about attribute, which refers to an existing resource, rdf:ID generates a URI by
concatenating the URI of the enclosing document (or the one provided by xml:base) to the identifier
given, preceded by the relative URI # symbol. Rewriting Example 3-5 to use rdf:ID for the second

resource results in the RDF/XML shown in Example 3-11.

Example 3-11. Using rdf:ID to provide identifier for resource

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/">

 <rdf:Description rdf:ID="monsters3.htm">
 <pstcn:author>Shelley Powers</pstcn:author>
 <pstcn:title>Architeuthis Dux</pstcn:title>
 <pstcn:series>
 <rdf:Description rdf:ID="monsters.htm">
 <pstcn:seriesTitle>A Tale of Two Monsters
 </pstcn:seriesTitle>
 </rdf:Description>
 </pstcn:series>
 <pstcn:contains>Physical description of giant squids</pstcn:contains>
 <pstcn:alsoContains>Tale of the Legendary Kraken
 </pstcn:alsoContains>
 </rdf:Description>

</rdf:RDF>

The generated RDF graph would show a resource giving the URI of the enclosing document, a pound
sign (#), and the ID. In this case, if the enclosing document was at http://burningbird.net/index.htm,
it would show a URI of http://burningbird.net/index.htm#monsters3.htm. This same effect can
be given with the rdf:about by using a URI of "#monsters".

As you can see, the URI of the resolved relative URI reference doesn't match that given previously:
http://burningbird.net/index.htm#monsters3.htm does not match
http://burningbird.net/articles/monsters3.htm. Based on this, I never use rdf:ID for actual

resources; I tend to use it when I'm defining a resource that usually wouldn't have an actual URI but
would have one primarily to support the required node-arc-node-arc-node nature of RDF/XML.

http://burningbird.net/articles/monsters3.htm
http://burningbird.net/index.htm
http://burningbird.net/index.htm#monsters3.htm
http://burningbird.net/index.htm#monsters3.htm
http://burningbird.net/articles/monsters3.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

For example, the pstcn:series attribute given to the
http://burningbird.net/articles/monsters.htm URI really doesn't exist-it's a way of showing a

relationship between the article and a particular series, which has properties in its own right though it
does not actually exist as a single object. Instead of using the full URI, what I could have done is use
ID, as shown in Example 3-12.

Example 3-12. Using xml:base to identify the base document for all
relative URI references

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/"
 xml:base="http://burningbird.net/articles/">
 <rdf:Description rdf:about="monsters3.htm">
 <pstcn:author>Shelley Powers</pstcn:author>
 <pstcn:title>Architeuthis Dux</pstcn:title>
 <pstcn:series>
 <rdf:Description rdf:ID="monsters">
 <pstcn:seriesTitle>A Tale of Two Monsters
 </pstcn:seriesTitle>
 </rdf:Description>
 </pstcn:series>
 <pstcn:contains>Physical description of giant squids</pstcn:contains>
 <pstcn:alsoContains>Tale of the Legendary Kraken
 </pstcn:alsoContains>
 </rdf:Description>
</rdf:RDF>

The relative URI then resolves to http://burningbird.net/articles/#monsters, forming a

representation of the URI as an identifier rather than an actual URL (a misunderstanding that can
occur with URI references, since not all URIs are URLs). The rdf:ID is considered to have reified the

statement (i.e., formally identified the statement within the model). The discussion about reification
is continued in Chapter 4.

[Team LiB]

http://burningbird.net/articles/monsters.htm
http://burningbird.net/articles/#monsters
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

3.4 Representing Structured Data with rdf:value

Not all data relations in RDF represent straight binary connections between resource and object
value. Some data values, such as measurement, have both a value and additional information that
determines how you treat that value. In the following RDF/XML:

<pstcn:lastEdited>18</pstcn:lastEdited>

the statement is ambiguous because we don't know exactly what 18 means. Is it 18 days? Months?

Hours? Did a person identified by the number 18 edit it?

To represent more structured data, you can include the additional information directly in the value:

<pstcn:lastEdited>18 days</pstcn:lastEdit>

However, this type of intelligent data then requires that systems know enough to split the value from
its qualifier, and this goes beyond what should be required of RDF parsers and processors. Instead,
you could define a second vocabulary element to capture the qualifier, such as:

<pstcn:lastEdited>18</pstcn:lastEdited>
<pstcn:lastEditedUnit>day</pstcn:lastEditedUnit>

This works, but unfortunately, there is a disconnect between the value and the unit because the two
are only indirectly related based on their relationship with the resource. So the syntax is then refined,
which is where rdf:value enters the picture. When dealing with structured data, the rdf:value

predicate includes the actual value of the structure-it provides a signal to the processor that the
data itself is included in this field, and all other members of the structure are qualifiers and additional
information about the structure.

Redefining the data would then result in:

<pstcn:lastEdited rdf:parseType="Resource">
 <rdf:value>18</rdf:value>
 <pstcn:lastEditedUnit>day</pstcn:lastEditedUnit>
</pstcn:lastEdited>

Now, not only do we know that we're dealing with structured data, we know what the actual value,
the kernel of the data so to speak, is by the use of rdf:value. You could use your own predicate, but
rdf:value is global in scope-it crosses all RDF vocabularies-making its use much more attractive if

you're concerned about combining your vocabulary data with other data.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

3.5 The rdf:type Property

One general piece of information that is consistent about an RDF resource-outside of the URI to
uniquely identify it-is the resource or class type. In the examples shown thus far, this value could
implicitly be "Web Resource" to refer to all of the resources, or could be explicitly set to "article"

for articles. All these would be correct, depending on how generically you want to define the resource
and the other properties associated with the resource. To explicitly define the resource type, you
would use the RDF rdf:type property.

Usually the rdf:type property is associated at the same level of granularity as the other properties.

As the resources defined using RDF in this chapter all have properties associated more specifically
with an article than a web resource, the RDF type property would be "article" or something similar.

In the next section, covering RDF containers, we will learn that the resource type for an RDF
container would be the type of container rather than the type of the contained property or resource.
Again, the type is equivalent to the granularity of the resource being described, and with containers,
the resource is a canister (or group) of resources or properties rather than a specific resource or
property.

The value of the RDF rdf:type property is a URI identifying an rdfs:Class-typed resource
(rdfs:Class is described in detail in Chapter 5). To demonstrate how to attach an explicit type to a

resource, Example 3-13 shows the resource defined in the RDF/XML for Example 3-1, but this time
explicitly defining an RDF Schema element for the resource.

Example 3-13. Demonstrating the explicit resource property type

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/">
 <rdf:Description rdf:about="http://burningbird.net/articles/monsters3.htm">
 <pstcn:Author>Shelley Powers</pstcn:Author>
 <pstcn:Title>Architeuthis Dux</pstcn:Title>
 <rdf:type rdf:resource="http://burningbird.net/postcon/elements/1.0/Article" />
 </rdf:Description>
</rdf:RDF>

The type property includes a resource reference for the schema element, in this case for the Article

class.

Rather than formally list out an rdf:Description and then attach the rdf:type predicate to it, you

can cut through all of that using an RDF/XML shortcut. Incorporating the formal syntax of the type
property directly into XML, as before, the type property is treated as an embedded element of the
outer resource.

Within the shortcut, the type property is created directly as the element type rather than as a generic
RDF Description element. This new syntax, demonstrated in Example 3-14, leads to correct

http://lib.ommolketab.ir
http://lib.ommolketab.ir

interpretation of the RDF within an XML parser.

Example 3-14. Abbreviated syntax version of type property

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/">
 <pstcn:Article rdf:about="http://burningbird.net/articles/monsters3.htm">
 <pstcn:Author>Shelley Powers</pstcn:Author>
 <pstcn:Title>Architeuthis Dux</pstcn:Title>
 </pstcn:Article>
</rdf:RDF>

Notice the capitalization of the first letter for Article. This provides a hint that the element is a

resource, rather than a predicate type.

This shortcut approach is particularly effective in ensuring that there is no doubt as to the nature of
the resource being described, especially since formally listing an rdf:type predicate isn't a

requirement of the RDF/XML. As you'll see later, in Chapter 6, the PostCon vocabulary uses this
shortcut technique to identify the major resource as a web document.

Other RDF/XML shortcuts that can help cut through some of the rather stylized RDF/XML formalisms
and make the underlying model a little more opaque are described in the next section.

An RDF resource can have more than one rdf:type associated with it.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

3.6 RDF/XML Shortcuts

An RDF/XML shortcut is just what it sounds like-an abbreviated technique you can use to record one
specific characteristic of an RDF model within RDF/XML. In the last section, we looked at using a
shortcut to embed a resource's type with the resource definition. Other RDF/XML shortcuts you can
use include:

Separate predicates can be enclosed within the same resource block.

Nonrepeating properties can be created as resource attributes.

Empty resource properties do not have to be formally defined with description blocks.

The first shortcut or abbreviated syntax-enclosing all predicates (properties) for the same subject
within that subject block-is so common that it's unlikely you'll find RDF/XML files that repeat the
resource for each property. However, the RDF/XML in Example 3-13 is equivalent to that shown in
Example 3-15.

Example 3-15. Fully separating each RDF statement into separate XML
block

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/">
 <rdf:Description rdf:about="http://dynamicearth.com/articles/monsters3.htm">
 <pstcn:author>Shelley Powers</pstcn:author>
 </rdf:Description>
 <rdf:Description rdf:about="http://burningbird.net/articles/monsters3.htm">
 <pstcn:title>Architeuthis Dux</pstcn:title>
 </rdf:Description>
</rdf:RDF>

If you try this RDF/XML within the RDF Validator, you'll get exactly the same model as you would with
the RDF/XML from Example 3-1.

The RDF/XML from Examples Example 3-1 and Example 3-13 also
demonstrates that you can generate an RDF graph from RDF/XML, but when
you then convert it back into RDF/XML from the graph, you won't always get
the same RDF/XML that you started with. In this example, the graph for both
RDF/XML documents would most likely reconvert back to the document shown
in Example 3-1, rather than the one shown in Example 3-13.

For the second instance of abbreviated syntax, we'll again return to RDF/XML in Example 3-1. Within
this document, each of the resource properties is listed within a separate XML element. However,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

using the second abbreviated syntax-nonrepeating properties can be created as resource
attributes-properties that don't repeat and are literals can be listed directly in the resource element,
rather than listed out as separate formal predicate statements.

Rewriting Example 3-1 as Example 3-16, you'll quickly see the difference with this syntactic shortcut.

Example 3-16. Original RDF/XML document rewritten using an
abbreviated (shortcut) syntax

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/">
 <rdf:Description rdf:about="http://burningbird.net/articles/monsters3.htm"
 pstcn:author="Shelley Powers"
 pstcn:title="Architeuthis Dux" />
</rdf:RDF>

As you can see, this greatly simplifies the RDF/XML. RDF parsers interpret the XML in Examples
Example 3-1 and Example 3-14 as equivalent, as you can see if you run this newer example through
the RDF Validator.

There are actually two different representations of the third abbreviation type, having to do with
formalizing predicate objects that are resources. In the examples, RDF resources have been identified
within the <rdf:Description>...</rdf:Description> tags, using a formal striped XML syntax

format, even if the resource is an object of the statement rather than the subject. However, the
rdf:Description block doesn't have to be provided if the resource objects match one of two

constraints.

The first constraint is that the resource object must have a URI but must not itself have predicates. It
is an empty element. For instance, to record information about documents that are related to the
document being described, you could use a related predicate with an rdf:resource value giving the

document's URI, as shown in Example 3-17.

Example 3-17. Using rdf:resource to identify an empty resource object

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/">
 <rdf:Description rdf:about="http://burningbird.net/articles/monsters3.htm">
 <pstcn:Author>Shelley Powers</pstcn:Author>
 <pstcn:Title>Architeuthis Dux</pstcn:Title>
 <pstcn:related rdf:resource="http://burningbird.net/articles/monsters1.htm" />
 </rdf:Description>
</rdf:RDF>

You can also use the rdf:resource attribute to designate a resource that's described later in the

document. This is an especially useful technique if a resource object is identified early on, but you
didn't know if the object had properties itself. If you discover properties for the object at a later time,
a separate rdf:Description can be defined for the resource object, and the properties added to it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In Example 3-17, the related resource object is shown without properties itself. In Example 3-18,
properties for this resource have been given, in this case a reason that the resource object is related

to the original resource.

Example 3-18. Using rdf:resource to identify a resource that's defined
later in the document

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/">
 <rdf:Description rdf:about="http://burningbird.net/articles/monsters3.htm">
 <pstcn:Author>Shelley Powers</pstcn:Author>
 <pstcn:Title>Architeuthis Dux</pstcn:Title>
 <pstcn:related rdf:resource="http://burningbird.net/articles/monsters1.htm" />
 </rdf:Description>

 <rdf:Description rdf:about="http://burningbird.net/articles/monsters1.htm">
 <pstcn:reason>First in the series</pstcn:reason>
 </rdf:Description>
</rdf:RDF>

Of course, this wouldn't be RDF if there weren't options in how models are serialized with RDF/XML.
Another variation on using rdf:resource for an object resource is to identify the property object as a

resource and then use the shortcut technique shown earlier-adding predicates as attributes directly.
With this, you wouldn't need to define a separate rdf:Description block just to add the related

property's reason. In fact, Example 3-19 shows all of the shortcut techniques combined to simplify
one RDF/XML document.

Example 3-19. RDF/XML document demonstrating all RDF/XML shortcuts

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/">
 <pstcn:Article
 pstcn:author="Shelley Powers"
 pstcn:title="Architeuthis Dux"
 rdf:about="http://dynamicearth.com/articles/monsters3.htm" >
 <pstcn:related rdf:resource="http://burningbird.net/articles/monsters1.htm"
 pstcn:reason="First in the series" />
 </pstcn:Article>

</rdf:RDF>

Again, running this example through the validator results in a graph that's identical to that given if
more formalized RDF/XML were used, as shown in Figure 3-7.

Figure 3-7. RDF directed graph of RDF/XML document created using
shortcut techniques shown in Example 3-19

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Which syntax should you use, formal or shortcut? According to the W3C Syntax Specification
(revised), applications that can generate, query, or consume RDF are expected to support both the
formal syntax and the abbreviated syntax, so you should be able to use both, either separately or
together. The abbreviated syntax is less verbose, and the RDF model documented within the RDF is
more clearly apparent. In fact, according to the specification, a benefit of using the abbreviated
syntax is that the RDF model can be interpreted directly from the XML (with the help of some
carefully designed DTDs).

What do I mean by that last statement? As an example, within the formal syntax, RDF properties are
included as separate tagged elements contained within the outer RDF Description element. Opening
an XML file such as this using an XML parser, such as in a browser, the properties would display as
separate elements-connected to the description, true, but still showing, visibly, as separate
elements.

Using the second form of the abbreviated syntax, the properties are included as attributes within the
description tag and therefore don't show as separate elements. Instead, they show as descriptive
attributes of the element being described, the resource. With rules and constraints enforced through
a DTD, the attributes can be interpreted, directly and appropriately, within an XML document using
an XML parser (not a specialized RDF parser) as a resource with given attributes (properties) - not
an element with embedded, nested elements contained within an outer element.

This same concept of direct interpretation of the RDF model applies to nested resources. Using the
formal syntax, a property that's also a resource is listed within a separate Description element and
associated to the original resource through an identifier. An XML parser would interpret the two
resources as separate elements without any visible association between the two. Using the
abbreviated syntax, the resource property would be nested within the original resource's description;
an XML parser would show that the resource property is a separate element, but associated with the
primary resource by being embedded within the opening and closing tags of this resource.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

3.7 More on RDF Data Types

RDF data types were discussed in Chapter 2, but their impact extends beyond just the RDF abstract
model and concepts. RDF data types have their own XML constructs within the RDF/XML specification.

For instance, you can use the xml:lang attribute to specify a language for each RDF/XML element. In
the examples in this English-language book, the value would be "en", and would be included within

an element as follows:

<pstcn:reason xml:lang="en">First in the series</pstcn:reason>

You can find out more about xml:lang at http://www.w3.org/TR/REC-xml#sec-lang-tag.

You can also specify a general type for a predicate object with rdf:parseType. We've seen
rdf:parseType of "Resource", but you can also use rdf:parseType of "Literal":

<pstcn:reason xml:lang="en" rdf:parseType="Literal"><h1>Reason</h1></pstcn:reason>

By using rdf:parseType="Literal", you are telling the RDF/XML parser to treat the contents of a

predicate as a literal value rather than parse it out for new RDF/XML elements. This allows you to
embed XML into an element that is not parsed.

Some implementations of RDF/XML specifically recommend using
rdf:parseType="Literal" as a way of including unparsed XML within a

document, to bypass having to formalize the XML into an RDF/XML valid
syntax. This attribute was never intended to bypass best practices. If the data
contained in the attribute is recurring, best practice would be to formalize the
XML into RDF/XML and incorporate it into the vocabulary or create a new
vocabulary.

RDF also allows for typed literals, which contain a reference to the data type of the literal compatible
with the XML Schema data types. In the N3 notation, the typed literal would look similar to the
following, as pulled from the RDF Primer:

ex:index.html exterms:creation-date "1999-08-16"^^xsd:date .

The format of the literal string is value (1999-08-16), data type URI (^^ in this example), and XML
Schema data type (xsd:date).

As interesting as this format is, one could see how this approach lacks some popularity, primarily
because of the intelligence built directly into the string, which can be missed depending on the XML
parser that forms the basis of the RDF/XML parser. Luckily, within RDF/XML, the data type is
specified as an attribute of the element, using the rdf:datatype attribute, as demonstrated in

Example 3-20, which is a copy of Example 3-1, but with data typing added.

Example 3-20. Demonstration of typed literal in RDF/XML

http://www.w3.org/TR/REC-xml#sec-lang-tag
http://lib.ommolketab.ir
http://lib.ommolketab.ir

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/">
 <rdf:Description rdf:about="http://burningbird.net/articles/monsters3.htm">
 <pstcn:author rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
 Shelley Powers</pstcn:author>
 <pstcn:title rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
 Architeuthis Dux</pstcn:title>
 </rdf:Description>
</rdf:RDF>

There is no requirement to use data types with literals-it is up to not only the vocabulary designer
but also those who generate instances of the vocabulary to decide if they wish to use typed literals.
No implicit semantics are attached to typed literals, by which I mean toolmakers are not obliged to
double-check the validity of a particular literal against its type. Additionally, there's no requirement
that toolmakers even have to differentiate between the types or ensure that typed literals used in an
instance map to the same typed literals for the RDF Schema of the vocabulary. Typed literals are
more of a way to communicate data types between vocabulary users than between vocabulary-
automated processes.

You can read more about XML Schema built-in data types at
http://www.w3.org/TR/xmlschema-2/. XML.com also has a number of articles
covering XML Schema and data typing in general.

[Team LiB]

http://www.w3.org/TR/xmlschema-2/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

3.8 RDF/XML: Separate Documents or Embedded Blocks

By convention, RDF/XML files are stored as separate documents and given the extension of .rdf (just
rdf for Mac systems). The associated MIME type for an RDF/XML document is: application/rdf+xml .

There's been considerable discussion about embedding RDF within other documents, such as within
non-RDF XML and HTML. I've used RDF embedded within HTML pages, and I know other applications
that have done the same.

The problem with embedding, particularly within HTML documents, is that it's not a simple matter to
separate the RDF/XML from the rest of the content. If the RDF/XML used consists of a resource and
its associated properties listed as attributes of the resource, this isn't a problem. An example of this
would be:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
<rdf:Description
 about="http://burningbird.net/cgi-bin/mt-tb.cgi?tb_id=121"
 dc:title="Good RSS"
 dc:identifier="http://weblog.burningbird.net/archives/000619.php"
 dc:subject="Technology"
 dc:description="Mark Pilgrim and Sam Ruby created an RSS Validator for us to use
to validate our RSS feeds, and Bill Kearney was kind enough to host it. Many
appreciations, folks. I ran the Validator against my RSS feeds (both Userland..."
 dc:creator="shelley"
 dc:date="2002-10-2209:46:26-06:00" />
</rdf:RDF>

This is RDF/XML that's generated by a weblogging tool called Movable Type (found at
http://moveabletype.org). It's used for the tool's trackback feature, which allows webloggers to
notify each other when they reference each other's posts in their own.

All of the data is contained in RDF/XML element attributes. Including all of the properties as attributes
means that there is no visible XML content contained within any element and therefore parsed by the
HTML parser and displayed in the page-all of the data is contained in RDF/XML element attributes.

This is pretty handy, but not all RDF/XML can use the abbreviated syntax that allows us to convert
RDF properties to XML attributes. In those cases, the approach I use to embed RDF within an HTML
document is to include it within script tags, as demonstrated in Example 3-21 .

Example 3-21. Embedding RDF in HTML script elements

<script type="application/rdf+xml">
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:trackback="http://madskills.com/public/xml/rss/module/trackback/"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
<rdf:Description

http://moveabletype.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 rdf:about="http://weblog.burningbird.net/fires/000805.htm"
 trackback:ping="http://burningbird.net/cgi-bin/mt-tb.cgi/304"
 dc:title="Apple's Open Core"
 dc:identifier="http://weblog.burningbird.net/fires/000805.htm"
 dc:subject="technology"
 dc:description="As happened last year with the Macworld conference, you
might as well bag writing about anything else because this week will be
Apple, Apple, Apple. Two big stories - a newer, longer TiBook and Safari,
Apple's entry into the browsing market. I liked some features of the
new TiBook such as the backlit keyboard, which I think is one of the best
ideas I've heard with a laptop; I know I wish I had this with my
TiBook. However, I'm less impressed with the length of the TiBook -
17 inches. My 15 inch works nicely, I drag it about the house and everywhere
I go with no effort. All that extra length with the new TiBook does is make
it too long for most computer carry bags. Heck, it's too long for most
laps. What Apple needs to do is incorporate all the other goodies into its
15 inch model. Including the airport, Bluetooth, the graphics card, and that
nifty backlit feature. That would be a tasty morsel, and I'd be putting
up a PayPal donation button to have you all buy it for me. And the Titanium
PowerBooks are still the sexiest computer on earth. An even bigger..."
 dc:creator="yasd"
 dc:date="2003-01-08T09:34:36-06:00" />
</rdf:RDF>
</script>

The HTML parser ignores the script contents, assuming that the text/rdf content will be processed

by some application geared to this data type. This approach works rather well except for one thing: it
doesn't allow an HTML page to validate as XHTML. And many organizations insist that web pages
validate as XHTML.

To allow the page with the embedded RDF to validate, you can then surround the contents with HTML
comments:

<!-- --
RDF/XML
-- -->

Unfortunately, HTML comments are also XML comments, and any content within them tends to be
ignored by most XML parsers, including RDF/XML parsers.

Until XML can be embedded into an XHTML document in such a way that allows the page to be
validated, the only approach you can take for the RDF data is to include it in an external RDF
document and then link the document into the XHTML page using the link element:

<link rel="meta" type="application/rdf+xml" title="RSS"
href="http://burningbird.net/index.rdf" />

Another approach is to embed the RDF/XML into the XHTML using comments but to pull this data out
and feed it directly to an RDF/XML parser. It's a bit cumbersome, but doable, especially since most
screen-scraping technologies such as Perl's LWP provide for finding specific blocks of data and
grabbing them directly.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 4. Specialized RDF Relationships:
Reification, Containers, and Collections
Reification, collections, and containers deserve separate coverage from the rest of the RDF/XML
syntax, primarily because these constructs have caused the most controversy and confusion. And
most of this has to do with meaning.

It isn't precisely clear what is happening, for instance, when I use reification syntax within an
RDF/XML document. Am I making a statement about a statement? Am I claiming a special truth for
the statement? Or how about the use of a collection or container-is there an interpretation of the
relationship of the items within the groups that extends beyond the fact that the items are grouped?

During the process of revamping the RDF specification, the RDF Working Group at one time actually
pushed for the removal of containers because the semantics associated with them could be easily
emulated using rdf:type. There was also less than general approbation for the concept of reification,

which no one seemed to be quite happy with. However, the group kept containers and reification, as
well as adding in collections, but with a caveat: no additional semantics are attached to these
constructs other than those that carefully delimited within the RDF documentation. Any additional
interpretation would then be between the RDF toolmaker and the people who built the RDF
vocabularies and used the tools. However, even within this, there is common acceptance of additional
semantics, particularly as semantics relate to containers; of that, one can almost be guaranteed.

In this chapter, we'll not only look more closely at the physical aspects of reification, collections, and
containers, we'll also look at what they "mean," intended or otherwise.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.1 Containers

As I was writing this book, the RDF Working Group issued a document titled "Refactoring RDF/XML
Syntax" detailing modifications to the RDF Model and Syntax Specification. One of the major changes
to the specification was a modification related to RDF containers, the subject of this section.
However, since the recommended modifications were fairly extensive, they couldn't be covered within
a note.

I rewrote this section of the book only to have the Working Group somewhat reverse itself as to the
legitimacy of containers-containers would be included in the RDF/XML syntax, but their meaning
would be constrained.

To ensure a proper perspective of containers, the next section contains an overview of containers as
they were modeled in the original specification; a section detailing the changes from the refactoring
follows. Finally, at the end I summarize containers as they are understood in the newest release of
the RDF Syntax Specification.

4.1.1 Containers as Covered Within the Initial Specification Release

Resource properties can occur singly or in groups. To this point, we've looked at recording only
individual properties, but RDF needs to record multiply occurring properties.

The creators of the RDF syntax were aware of this and created the concept of RDF Containers
specifically for handling multiple resources or for handling multiple literals (properties). Each of the
several types of RDF Containers has different behaviors and constraints.

This section covers containers as implemented in the first release of the RDF
Model and Syntax Specification. It's included for historical perspective and as
an aid in understanding previous implementations of containers.

The first container we'll look at is rdf:Bag, containing unordered lists of resources or literals, with

duplicate data allowed. An example of a Bag could be an inventory of photographs, whereby the
sequence that the photos are listed in isn't relevant. Example 4-1 demonstrates an RDF document
using a Bag.

Example 4-1. Group of photo resources contained within an RDF Bag

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/">

<rdf:Description rdf:about="http://burningbird.net/earthstars/contest.htm">
 <pstcn:photos>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <rdf:Bag>
 <rdf:li rdf:resource="http://burningbird.net/earthstars/capo.jpg" />
 <rdf:li rdf:resource="http://burningbird.net/earthstars/baritea.jpg" />
 <rdf:li rdf:resource="http://burningbird.net/earthstars/cfluorite.jpg" />
 <rdf:li rdf:resource="http://burningbird.net/earthstars/ccinnibar.jpg" />
 <rdf:li rdf:resource="http://burningbird.net/earthstars/baryto.jpg" />
 <rdf:li rdf:resource="http://burningbird.net/earthstars/cbarite2a.jpg" />
 </rdf:Bag>
 </pstcn:photos>
</rdf:Description>

</rdf:RDF>

Figure 4-1 shows the RDF graph for this RDF/XML.

Figure 4-1. RDF graph of RDF Bag Container

Within the RDF Validator, the elements of the Bag are also given labels of _1, _2, and so on;

automated processes identify each individual element in the container with an automatically
generated number, preceded by an underscore (_). In addition, the validator also provides a unique

identifier for the resource bubble representing the Bag of the format genid:number, where number is,

again, an automatically generated number representing the resource.

In the example, the listed items within the RDF container are identified with an RDF rdf:li or list
item tag, similar in semantics to the HTML li tag. Each resource is identified with a resource

attribute. If the container contained literals instead of resources as items, then the format used for
each item would be similar to the following:

<rdf:li>Barite Photo</rdf:li>

A second type of container is the sequence, or rdf:Seq. An rdf:Seq groups resources or literals, just
as a Bag does, but unlike with rdf:Bag, the ordering of the contained elements is considered
significant and is indicated by the ordering of the rdf:_n membership properties. As with rdf:Bag,

duplicate resources or literals are allowed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you're grouping web pages within a menu on your main web page, you'll most likely want to group
the pages in RDF in such a way that the order of the grouping is maintained. Using rdf:Seq,

automated procedures can pick up the pages and add them to your menu as new resources are
added. An example of the RDF file to support this is shown in Example 4-2.

Example 4-2. Group of menu resources contained within an RDF
Sequence

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/">
 <rdf:Description rdf:about="http://burningbird.net/earthstars/contest.htm">
 <pstcn:menu>
 <rdf:Seq>
 <rdf:li rdf:resource="http://burningbird.net/articles.htm" />
 <rdf:li rdf:resource="http://burningbird.net/dynatech.htm" />
 <rdf:li rdf:resource="http://burningbird.net/interact.htm" />
 </rdf:Seq>
 </pstcn:menu>
 </rdf:Description>

</rdf:RDF>

The last container type is the Alternative container, rdf:Alt. This container variation provides

alternatives for a specific value. An excellent use for it is a listing of expressions written in different
languages, such as a greeting or label for a user interface item. The application that processes the
RDF would then pick the alternative based on a locale setting for the environment in which the
application is running.

The rdf:Alt syntax does not differ from that of the rdf:Bag and rdf:Seq, except for the element
name. However, there must be at least one item within an rdf:Alt container, to act as the default

value for the resource-the first member listed.

Earlier I mentioned that a resource identifier could be a URI or an identifier to a URI given elsewhere
in the RDF document. The latter is particularly helpful when using RDF Containers, providing a way to
associate information with the group of items. Example 4-3 demonstrates how this would work with
the RDF shown in Example 4-2.

Example 4-3. Grouping an RDF Description and identifier to attach
information to a container

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/">

 <rdf:Description rdf:about="http://burningbird.net/earthstars/contest.htm">
 <pstcn:menu>
 <rdf:Description rdf:about="#menuitems">
 <pstcn:menu>Links to additional resources</pstcn:menu>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </rdf:Description>
 </pstcn:menu>
 </rdf:Description>

 <rdf:Seq rdf:ID="menuitems">
 <rdf:li rdf:resource="http://burningbird.net/articles.htm" />
 <rdf:li rdf:resource="http://burningbird.net/dynatech.htm" />
 <rdf:li rdf:resource="http://burningbird.net/interact.htm" />
 </rdf:Seq>

</rdf:RDF>

In the original container specification, the document refers to the individual container items as
referents. To specifically associate a statement with each referent rather than with the container as a
whole, the rdf:aboutEach attribute was to be used with the RDF Description, rather than
rdf:about:

<rdf:Description aboutEach="#menuitems">

When this type of statement is applied to container elements, they're then referred to as distributive
referents. Though not restricted specifically to the Bag container within the RDF syntax, the
aboutEach attribute is usually associated with the Bag due to the unordered nature of the Bag's

items.

Another RDF attribute for Bag elements is rdf:aboutEachPrefix. This is used to associate

information about each resource within a specific directory or web location. If used with Example 4-3,
it would look like this:

<rdf:Decription aboutEachPrefix="http://burningbird.net">
 <pstcn:phototype>JPEG</pstcn:phototype>
</rdf:Description>

Instead of using an RDF Container for groups of properties, you can repeat the property (the
predicate), modifying the value assigned to the property (the object) with each:

 <rdf:Description rdf:about="http://burningbird.net/articles/monsters3.htm">
 <pstcn:Contains>Physical description of giant squids</pstcn:Contains>
 <pstcn:Contains>Tale of the Legendary Kraken</pstcn:Contains>
 </rdf:Description>

Which you use depends on whether you want to refer to the collection of items as a singular unit or
not. If you do, you would use the Container; otherwise, you would most likely use the repeated
property, as the syntax is simpler.

This section contained a description of containers as implemented in the original RDF Model and
Syntax document. This description changed dramatically during the re-examination of the RDF
specification, as detailed next.

4.1.2 Containers as Typed Nodes

The RDF Working Group states the following:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

On 29th June 2001, the WG decided that containers will match the typed node production in the
grammar (production 6.13) and that the container-specific productions (productions 6.25 to
6.31) and any references to them be removed from the grammar. rdf:li elements will be
translated to rdf:_nnn elements when they are found matching either a propertyElt (production
6.12) or a typedNode (production 6.13).

The RDF Working Group and people implementing RDF solutions had two concerns about containers:
first, that the functionality represented with containers can be expressed with the typed node
production, leading to confusion about which representation should be used to express a specific
statement; second, that RDF applications have to have special knowledge of containers in order to
interpret the rdf:li elements-unlike other RDF elements, rdf:li elements get translated into
numbered elements with the format of _1, _2, and so on.

To deal with both of these issues, the group released a document, "Refactoring RDF/XML Syntax" (at
http://www.w3.org/TR/2001/WD-rdf-syntax-grammar-20010906/) that recommended the removal
of all special container constructs; container-like behavior will be implemented with typed node
productions instead.

At first glance, this looked to be a significant change, and I was concerned about its impact on my
own RDF implementations as well as this book. However, the Working Group assured us that these
changes are to the specification and not necessarily changes to the syntax represented by the
specification.

As contradictory as this first sounds, closer examination of the changes does reflect that, though the
specification is modified, the actual syntax remains the same. This can be proven by taking a closer
look at containers and reinterpreting them as typed nodes: how would something such as the
container RDF in Example 4-1 fit within this newly modified syntax?

In the original specification, rdf:li elements are translated into sequentially numbered elements of
the format rdf:_n- rdf:_1, rdf:_2, and so on. Within the newly modified specification, rdf:li

elements are still translated into numbered elements; however, you can also specify the numbered
elements directly yourself or mix elements, though the results of such mixing may be unexpected.
Example 4-4 shows a modification of the RDF/XML shown in Example 4-2 that fits within the newly
modified specification.

Example 4-4. Container as typed node

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/">
 <rdf:Description rdf:about="http://burningbird.net/earthstars/contest.htm">
 <pstcn:menu>
 <rdf:Seq>
 <rdf:_1 rdf:resource="http://burningbird.net/articles.htm" />
 <rdf:li rdf:resource="http://burningbird.net/dynatech.htm" />
 <rdf:li rdf:resource="http://burningbird.net/interact.htm" />
 </rdf:Seq>
 </pstcn:menu>
 </rdf:Description>

</rdf:RDF>

http://www.w3.org/TR/2001/WD-rdf-syntax-grammar-20010906/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The use of the Seq container type is still allowed; however, rather than representing a specific
container construct, it now represents a typed node. The following would provide the same results:

<pstcn:MyBag>
 <rdf:_1 rdf:resource="http://burningbird.net/articles.htm" />
 <rdf:li rdf:resource="http://burningbird.net/dynatech.htm" />
 <rdf:li rdf:resource="http://burningbird.net/interact.htm" />
</pstcn:MyBag>

Implicit with both the rdf:Seq and the custom element is a type statement associated with the node

automatically when the type attribute isn't provided.

When the RDF Validator parses Example 4-4, you might expect that the numbering of the rdf:li
nodes would begin with rdf_2, following from the value set for the first contained element, rdf:_1.

This isn't the result and won't be the result from the RDF triples associated with the test cases;
numbering begins with rdf:_1 for each grouping and isn't impacted by manual settings of the other

contained and grouped elements.

How does this fit the typed node syntax? Remembering that associated with an element such as
rdf:Seq is a type=URI property assignment, the following steps map the EBNF of the typed node

production directly to the instance diagrammed in Example 4-4:

<rdf:Seq> is derived directly from '<' typeName propAttr* '>'
 where typeName = QName and
 QName = rdf:Seq
 where propAttr is the implicit type=URI for Seq
<rdf:_1> is derived directly from propertyElt
 where propertyElt = '<' propName idRefAttr '/>'
 where propName = QName
 QName = rdf:_1
 where idRefAttr = resourceAttr
 resourceAttr = ' resource="' URI-Reference '"'

And so on for the other properties.

As you can see, the container instance does map directly to the typed node production, and there is
no loss of functionality based on dropping the container-specific syntax. However, just when I was
starting to become comfortable with replacing the Container with a typed node, the Working Group
reversed itself and included support for Containers-with modifications and a whole lot of annotations
about "meaning."

4.1.3 Containers Today

Containers are included within the RDF/XML Syntax Specification, but without some of the supporting
attributes, such as rdf:aboutEach and rdf:aboutEachPrefix, which have been removed from the

syntax. The key to the current status of Containers is this sentence within the specification (as it
existed in its Last Call state):

RDF has a set of container membership properties and corresponding property elements that
are mostly used with instances of the rdf:Seq, rdf:Bag and rdf:Alt classes which may be

written as typed node elements.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Container classes of rdf:Seq, rdf:Bag, and rdf:Alt are still in the documentation, with an

understanding that these may be replaced with typed node productions. And this does impose an
implication constraint on the container classes-as typed node productions, no additional semantics
as to the application of containers can exist outside of what could be implied with typed nodes.

From an application perspective, containers are a grouping of related items, each of which can be
given a unique list property, represented by rdf:li within RDF/XML, or more properly, rdf:_n, with
the value of n representing the ordering within the container (if ordering is implied by the container,
such as rdf:Seq). Example 4-5 is a valid use of containers, in this case an rdf:Seq with its intended

semantic assumptions of ordering of the members of the container.

Example 4-5. "Container" implemented using custom container-like class

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/">
 <rdf:Description rdf:about="http://burningbird.net/earthstars/contest.htm">
 <pstcn:menu>
 <rdf:Seq>
 <rdf:_1 rdf:resource="http://burningbird.net/articles.htm" />
 <rdf:_2 rdf:resource="http://burningbird.net/dynatech.htm" />
 <rdf:_3 rdf:resource="http://burningbird.net/interact.htm" />
 </rdf:Seq>
 </pstcn:menu>
 </rdf:Description>

</rdf:RDF>

The RDF/XML in Example 4-4 could be replaced with the RDF/XML in Example 4-5, and the meaning
associated with the construction would be the same; the resulting RDF graph replaces all rdf:li

items with rdf:_n items based on the position of the item within the container, as shown in Figure 4-
2. The rdf:li property is a construct of the RDF/XML syntax only and not a part of the RDF graph

(or associated RDF data model).

Figure 4-2. Graph of custom typed node production emulating RDF
Container class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Though rdf:li is used and still documented within the RDF specifications, its

use is discouraged within RDF/XML documents.

There are intended but not formally described semantics associated with rdf:Seq - that the
contained items are ordered and that the number of items in rdf:Bag is finite and unordered and
duplicates are allowed. There are also intended but not formally described semantics with rdf:Alt

that each item is an option, with the first item being the default if no other is specified. However,
there is nothing within the RDF specification that formally requires applications heed these intended
semantics, other than general consensus. In fact, the documented semantics surrounding containers
are quite vague, which, in my opinion, makes the use of containers suspect. Because of this, I
recommend caution when using containers.

On Containers and Semantics
The RDF Primer states the following about Containers:

it is important to understand that while these types of containers are described using
pre-defined RDF types and properties, any special meanings associated with these
containers, e.g., that the members of an Alt container are alternative values, are
only intended meanings. These specific container types, and their definitions, are
provided with the aim of establishing a shared convention among those who need to
describe groups of things. All RDF does is provide the types and properties that can
be used to construct the RDF graphs to describe each type of container. RDF has no
more built-in understanding of what a resource of type rdf:Bag is than it has of
what a resource of type ex:Tent...

This concept of promoting intended semantics without formalization-because there is no
formal entailment associated with the semantics of containers-will most likely continue to
generate some confusion in the future about exactly what is meant when one uses a
specific container.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.2 Collections

Unlike a container, a collection is considered to be a finite grouping of items, with a given terminator.
Within RDF/XML, a collection is defined through the use of rdf:parseType="Collection" and

through listing the collected resources within the other collection block.

The use of Collection within RDF/XML is fairly straightforward and uncomplicated. Example 4-6
demonstrates how easy it is to gather together like items into one collection, just through the use of
the Collection rdf:parseType.

Example 4-6. RDF/XML Document containing Collection with three items

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/">
 <rdf:Description rdf:about="http://dynamicearth.com/earthstars/contest.htm">
 <pstcn:menu rdf:parseType="Collection">
 <rdf:Description rdf:about="http://burningbird.net/articles.htm" />
 <rdf:Description rdf:about="http://burningbird.net/dynatech.htm" />
 <rdf:Description rdf:about="http://burningbird.net/interact.htm" />
 </pstcn:menu>
 </rdf:Description>

</rdf:RDF>

The extraordinary thing about Collection is the resulting RDF directed graph. One could be amazed at
how the simple little addition of an rdf:parseType="Collection" could result in the rather complex

model that's generated. Figure 4-3 shows what would result from this type of RDF/XML construct.

Figure 4-3. Generated RDF directed graph of a collection

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As the graph demonstrates, a collection is a list (with rdf:type of rdf:List), and each node on the
list has an associated predicate of type (List) as well as the first value in the list, given by the
predicate rdf:first. Additionally, there is a relationship between the nodes, with an associated
rdf:predicate of rdf:rest. The list is then terminated with a node, whose value is rdf:nil.

Traversing a collection becomes a matter of finding the start and then accessing the rdf:next

predicate for that node and finding the associated resource attached to it, which then points to the
value associated with it, and so on.

As complex as this structure is, though, there are still loopholes in the semantics associated with it.
For instance, one could have multiple instances of rdf:first within a document; however, it would

require a deliberate act to create this condition, which is unlikely to happen. Again, the RDF
specification enforces only some basic understanding about lists, such as (as previously mentioned)
each consists of a finite number of items with a terminator (though the terminator itself could be left
off). Based on this, my recommendation is that you use the RDF collection as sparingly as you would
use the RDF Container-use only when no other construct matches your specific needs, and use it
specifically as the specification intended it to be used. If you're unsure about the intent, then don't
use it.

Now that we've had a chance to look at the various grouping constructs of RDF-and to understand
the associated dangers associated with them-it's time to look at another RDF construct that's
caused even more controversy and confusion: reification.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.3 Reification: The RDF Big Ugly

In our legal system, a statement about a statement is considered hearsay and isn't admissible in a court of
law. Within the Resource Description Framework (RDF), this is also true-the implied statement is
considered hearsay and can't be accepted as an assertion by itself. However, the outer statement is treated
as an assertion.

In a sentence such as "Jonathon says those cherries are sweet," we're really reading two statements. The
first, inner statement is "Those cherries are sweet." Since we haven't tried the cherries directly, we can't
judge for ourselves whether this is true. But we do directly experience the outer statement, "Jonathon
says...," and we can judge this to be an assertion of fact. Graphically, this would look like the picture shown
in Figure 4-4 .

Figure 4-4. An example of a statement about a statement

Now depending on our trust in Jonathon-that he tells the truth, that his interpretation of sweet is the same
as ours-we can infer a trust for the inner statement, "those cherries are sweet," based on our trust of the
outer statement. If I run into Jonathon at a market and he says "Those cherries are sweet," and I trust
Jonathon and his judgment, I might be moved to purchase some of the cherries.

This same process of validating an inner statement based on trust of the outer-validation of
hearsay-formed the basis of much of the earlier communication about the RDF construct called reification .
And it is the implied trust that has created much of the push back against it, when there is no true implied
trust with reification. With reification, a statement is modeled as a resource referenced by another
statement. No more, no less.

Within the RDF semantics, a statement such as the following (from the specification), is easily documented
with the RDF syntax provided in Chapter 3 :

Ora Lassila is the creator of the resource http://www.w3.org/Home/Lassila.

In this statement, the RDF components of subject, predicate, and object are clearly understood: the subject
(resource) is http://www.w3.org/Home/Lassila , predicate is creator, and object is Ora Lassila.

However, attach this statement as a statement being asserted by another person:

Ralph Swick says that Ora Lassila is the creator of the resource
http://www.w3.org/Home/Lassila.

http://www.w3.org/Home/Lassila
http://www.w3.org/Home/Lassila.
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The syntax used in the examples in Chapter 3 doesn't provide a mechanism to capture this type of
assertion-this statement about another statement. However, capturing this type of information is exactly
what's needed when trying to assert that a statement about another statement is the fact being defined.

Statements such as "Ralph Swick says..." or "Jonathon says..." are termed metastatements; reification is a
method of formally modeling a statement in such a way that it can actually be attached as a property to the
new statement.

We'll take a look at how reification is handled currently within the RDF specification. Later in the chapter,
we'll look at some of the discussions about reification, as well as uses of the concept.

A difficulty associated with reification and the current RDF specification documents is
that nowhere in the documents, other than the grammar productions, is the RDF/XML
associated with formal reification demonstrated.

4.3.1 Reified Statements

Occasionally I receive emails asking me to recommend web pages that contain tutorials, technical articles,
and other helpful information. Instead of answering individual emails, my preference is to post a web page
with links to resources that might be of interest to folks. For instance, I'm frequently asked about creating
drop-down menus in Dynamic HTML (DHTML), and I'll recommend the DHTML menu tutorials at
WebReference.com , a very popular web site for the web developer:

http://www.webreference.com/dhtml/hiermenus
is a source containing tutorials and source code about
creating hierarchical menus in DHTML.

Mapping this recommendation into RDF/XML, I would have something similar to the following:

 <rdf:Description rdf:about="http://www.webreference.com/dhtml/hiermenus/">
 <pstcn:Contains>Tutorials and source code about creating hierarchical
 menus in DHTML</pstcn:Contains>
 </rdf:Description>

Now, this description is sufficient if all I want to do is describe the resource (the web page) and the context
(provides tutorials and source code on creating DHTML hierarchical menus). But it's missing one thing: an
assertion about who is making the recommendation (me). Remove this RDF content from my web site, and
you've lost the original context of the recommendation-the person making the recommendation. Within the
RDF lexicon, we're missing the statement about the statement.

To fill this gap, we need to associate the original statement to the new statement-the recommendation of
the resource. To do this, we model the original statement so that it can be referenced as the subject of the
newer statement. This forms the basis of reification in RDF. You can do this in a couple of different
ways-using the long form or the short form of reification.

The long form of reification formally defines types- rdf:subject , rdf:predicate , and rdf:object - a n d
makes use of a fourth, rdf:type , with a predefined value of rdf:Statement . The three new predicates
capture the information about the inner statement, the statement being reified if you will. rdf:type

specifies that the resource is a statement.

http://www.webreference.com/dhtml/hiermenus
http://lib.ommolketab.ir
http://lib.ommolketab.ir

As discussed in Chapter 3 , rdf:type isn't limited to use within reification.

At its simplest, the outer statement is attached as a statement directly to the reified statement. Example 4-
7 contains an example of this type of reification.

Example 4-7. Formal reification of a statement

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/">
 <rdf:Description rdf:about="http://burningbird.net/recommendation.htm">
 <rdf:subject rdf:resource="http://www.webreference.com/dhtml/hiermenus" />
 <rdf:predicate rdf:resource="http://burningbird.net/schema/Contains" />
 <rdf:object>Tutorials and source code about creating hierarchical menus in DHTML</rdf:
object>
 <rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement" />
 <pstcn:recommendedBy>Shelley Powers</pstcn:recommendedBy>
 </rdf:Description>
</rdf:RDF>

In this document, graphically demonstrated in Figure 4-5 , a statement is being made about a resource: the
resource at http://www.webreference.com/dhtml/hiermenus contains tutorials and source code about

creating hierarchical menus in DHTML. Who made the statement is given in the value of the
pstcn:recommendedBy predicate: Shelley Powers . However, what we're saying is that this statement

about the statement, the "Shelley Powers recommends..." itself, is the assertion; we can't determine the
truthfulness of the actual recommendation until we visit the site or we take my statement as truth based on
the trust placed in me.

Figure 4-5. Graph showing simple example of RDF reification

Though this is valid RDF, it isn't my preferred way of demonstrating a clear-cut separation between the
reified statement and the assertion attached to that statement (demonstrating the inner and outer
statements). My preferred approach for reification is to formally define a separate RDF resource for the
outer statement and then attach it to the reified statement. Example 4-8 demonstrates this. The use of
rdf:resource in the outer statement connects the two statements.

http://www.webreference.com/dhtml/hiermenus
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 4-8. Providing a statement about a statement within RDF

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/"
 xml:base="http://burningbird.net/">
 <rdf:Description rdf:about="#s1">
 <rdf:subject rdf:resource="http://www.webreference.com/dhtml/hiermenus" />
 <rdf:predicate rdf:resource="http://burningbird.net/schema/Contains" />
 <rdf:object>Tutorials and source code about creating hierarchical menus
 in DHTML</rdf:object>
 <rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement" />
 </rdf:Description>

 <rdf:Description rdf:about="http://burningbird.net/person/001">
 <pstcn:recommends rdf:resource="#s1" />
 </rdf:Description>
</rdf:RDF>

In the example, the assertion about the reified statement is formally separated out. The RDF Validator-
generated graphic of the RDF is shown in Figure 4-6 .

Figure 4-6. RDF Validator-generated graph of reification example

In my opinion, this RDF results in a clearer and cleaner interpretation of the "statement about a statement."

Some RDF Validators that incorporate RDF Schema validation would likely generate
warnings for the RDF graph in Figure 4-6 .

Having to repeat the subject, predicate, and object statements in every instance of reification is
cumbersome, so there's a short form you can use to achieve exactly the same RDF graph. And if the graphs
agree, the RDF statements are guaranteed to agree.

The subject, predicate, and object of the reified statement are the familiar RDF trio, but the context of their
use differs with reification. With reified statements, the subject, predicate, and object attributes are formal

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RDF elements that, combined, also happen to be a statement. These new components are used to model
the statement.

A more detailed description of these new RDF elements is:

subject

Contains the identifier for the resource referenced within the statement
predicate

Contains the property that forms the original context of the resource (the property)
object

Contains the value of the property that forms the original context of the resource (the value)
type

Contains the type of the resource - in the example, the type of RDF statement

The formal representation of reification is based on N-Triples syntax. The reification from Examples Example
4-1 and Example 4-2 could be represented as:

{[X], type, [RDF:Statement]}
{[X], predicate, [contains]}
{[X], subject, [http://www.webreference.com/dhtml/hiermenus]}
{[X], object, "Tutorial..."}

This representation strips the statement to its essential components sans XML syntax.

It's interesting that within the RDF Syntax Specification, the quad or 4-tuple representing a reified
statement (subject, predicate, object, and type) is really a formalized model of our old friend, the RDF
Description.

Consider for a moment that an RDF Description with at least one property is an RDF statement, containing
subject, object, and predicate. This is represented by:

 <rdf:Description rdf:about="http://www.webreference.com/dhtml/hiermenus/">
 <pstcn:Contains>Tuturials and source code about creating hierarchichal
 menus in DHTML</pstcn:Contains>
 </rdf:Description>

However, let's look at identifying this in "straight" XML as follows, using a custom XML vocabulary called
myrdf :

<myrdf:element>
 <myrdf:subject>http://www.webreference.com/dhtml/hiermenus/"</myrdf:subject>
 <myrdf:predicate>Contains</myrdf:predicate>
 <myrdf:object>Tutorials and source code about
 creating hierarchical menus in DHTML</myrdf:object>
</myrdf:element>

As you can see, this formal modeling of RDF Description is equivalent to the syntax used to model the
reified statement given earlier. Following from this, then, you could say that all asserted statements within
RDF (all statements given within RDF Description elements) are reified statements, and you would be
correct-sort of.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The key to understanding reification within RDF is that a reified statement isn't the statement itself, but the
model of the statement. Reification isn't the process of making a statement about another statement; it's
the process of formally modeling the statement.

From this example, you might be wondering why reification is necessary. After all, for this particular
example, the recommendation could be attached directly as another statement about the web resource.

4.3.2 The Necessity of Reification and Metastatements

Why is reification necessary? One could model the example shown in Example 4-1 in serialized RDF syntax
and not lose the information about who recommends the resource, as shown in Example 4-9 .

Example 4-9. Using RDF/XML to model a recommendation

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/"
 <rdf:Description rdf:about="http://www.webreference.com/dhtml/hiermenus/">
 <pstcn:Contains>Tuturials and source code about creating hierarchichal
 menus in DHTML</pstcn:Contains>
 <pstcn:recommendedBy>Shelley Powers</pstcn:recommendedBy>
 </rdf:Description>
</rdf:RDF>

In this document, information about the person making the recommendation is attached as an additional
statement about the original subject. At first glance, the new version of the RDF syntax used to describe the
recommendation seems acceptable. However, using this interpretation, key information is lost-the
statement about the resource is being treated as the fact, not the recommendation itself. With something
such as the following:

Shelley Powers recommends http://www.webreference.com/dhtml/hiermenus
as a source of tutorials and source code for hierarchical menus created in DHTML.

the fact being described in the RDF document is "Shelley Powers recommends...," not the actual web
resource. The web resource is actually an ancillary component of the recommendation.

By being able to model the statement about the web resource, you can treat it as a property of another
statement, and be able to distinguish without confusion and without ambiguity what "fact" you're describing
in an RDF statement. The importance of the distinction between the thing described (the web site) and the
object making the description (the person making a recommendation of the web site) is both the key and
the confusion of reification.

As handy as reification is, it is a bit wordy. The next section discusses a shorthand technique that can be
used to reify several statements at a time.

4.3.3 A Shorthand Reification Syntax

Specifying the full predicate, subject, object, and type for each reified statement isn't difficult, but it does
get cumbersome after a while. Fortunately, there is a shorthand technique that you can use in place of the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

more formal syntax.

In Example 4-10 , rather than specifying each subject, predicate, object, and type, the reified statement is
identified through the rdf:ID property, and the RDF parser automatically annotates the subject, predicate,

object, and type.

Example 4-10. Shorthand technique for RDF reification

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/">

 <!--The statement-->
 <rdf:Description rdf:about="http://www.webreference.com/dhtml/hiermenus">
 <pstcn:Contains rdf:ID='s1'>
 Tutorials and source code about creating hierarchical menus in DHTML</pstcn:Contains>
 </rdf:Description>

 <!--The statement about the statement-->
 <rdf:Description rdf:about="http://burningbird.net/person/001">
 <pstcn:recommendedBy rdf:resource="#s1" />
 </rdf:Description>

</rdf:RDF>

This approach is cleaner to read and follow manually, and the graph is the
same-almost. From an entailment point of view, though, these are the same, even
though the model differs. Still, be forewarned on the use of this shortcut.

This shorthand technique is particularly helpful in circumstances other than just wanting a cleaner syntax.
When you describe something, you usually don't make just one statement about the thing you're
describing. For instance, if you're recommending an article, you'll usually give a description of the article,
the name of the article, how to find a copy of the article, and so on.

In the recommendation example earlier, this original statement could be extended to provide the author of
the web resource as well as the content:

Shelley Powers recommends http://www.webreference.com/dhtml/hiermenus,
written by Peter Belesis, as a source of tutorials and source code
for hierarchical menus created in DHTML.

In this sentence, I'm recommending a web site that contains defined material and is authored by a specific
individual.

The formal syntactic method of modeling this statement using the 4-tuple reification syntax doesn't fit this
particular data instance very well, because there's confusion about exactly what I'm recommending-the
web site or the author? There is no clean way to add in the additional statements.

To demonstrate my point, I modified the RDF/XML from Example 4-7 to add the additional statement
related to the author. In this example, shown in Example 4-11 , I interpreted the statement to break down

http://lib.ommolketab.ir
http://lib.ommolketab.ir

into a couple of different assertions:

Shelley Powers recommends http://www.webreference.com/dhtml/hiermenus as a source of tutorials
and source code for hierarchical menus created in DHTML.

Shelley Powers recommends http://www.webreference.com/dhtml/hiermenus , which is written by
Peter Belesis.

I then modified the RDF/XML to reify both statements from the same subject.

Example 4-11. An attempt at diagramming a statement about multiple
statements with the same subject

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/">
 <rdf:Description>
 <rdf:subject rdf:resource="http://www.webreference.com/dhtml/hiermenus" />

 <rdf:predicate rdf:resource="http://burningbird.net/schema/Contains" />
 <rdf:object>Tutorials and source code about creating hierarchical menus
 in DHTML</rdf:object>

 <rdf:predicate rdf:resource="http://burningbird.net/schema/WrittenBy" />
 <rdf:object>Peter Belesis</rdf:object>
 <rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement" />

 <pstcn:recommendedBy>Shelley Powers</pstcn:recommendedBy>
 </rdf:Description>
</rdf:RDF>

This RDF/XML in this document validates with the RDF Validator (at least, when this book was written), and
the resultant graph shown in Figure 4-7 does represent what we want to say, in a way. However, our
reaction to both the RDF/XML and the graph is "ugh." I was surprised this would validate because there is
an assumption, though not specifically mentioned in the RDF Syntax Specification, that a predicate, object,
and type for a reified statement are attached to one subject, and one subject has only one predicate and
object.

Figure 4-7. Graph of two reified statements sharing one subject-ugh

http://www.webreference.com/dhtml/hiermenus
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Happily, there's a better approach to modeling this type of statement.

In RDF, statements about a specific subject can be included within the same description through the use of
multiple predicates and objects associated with the subject. With the web resource example, the site
contents and author are both facts about the resource and can be modeled as:

 <rdf:Description rdf:about="http://www.webreference.com/dhtml/hiermenus/">
 <pstn:Contains>Tuturials and source code about creating hierarchichal
 menus in DHTML</pstn:Contains>
 <pstcn:writtenBy>Peter Belesis</pstcn:writtenBy>
 </rdf:Description>

Several statements can be included within one RDF Description because there's an implicit grouping
associated with this element, an rdf:Bag that acts as a container for all statements about a specific

resource. The concept of an implicit description container also works with reified statements through the
introduction of a new RDF attribute, rdf:bagID . The rdf:bagID attribute is used to identify the implicit

Bag defined with the RDF Description element that groups multiple statements about a specific subject.

During Last Call, the RDF Working Group decided that bagID was leading to confusion

in tool makers about the type of triples to generate. Since it's use has been limited,
the WG removed rdf:bagID from the current RDF specification. It's inclusion in this

book is for historical perspective.

With the example about the web content, the rdf:bagId is used to wrap both statements about the web

site being recommended:

<rdf:Description rdf:about="http://www.webreference.com/dhtml/hiermenus"
 rdf:bagID="R01">
 <pstcn:Contains> Tutorials and source code about creating hierarchical menus
 in DHTML</pstcn:Contains>
 <pstcn:Author>Peter Belesis</pstcn:Author>
</rdf:Description>

In this XML example, both statements being made-what the content of the resource is and who authored
it-are contained within an RDF Description identified by the given rdf:bagID . With this approach, there is

no confusion that we have two statements being made about one resource and that the higher-order

http://lib.ommolketab.ir
http://lib.ommolketab.ir

recommendation is being made against the resource, rather than any one individual statement about the
resource.

To complete the RDF document, all that's left is to attach the higher-order statement. A complete XML
document containing the new RDF is shown in Example 4-12 .

Example 4-12. Syntactic shorthand demonstrating higher-order and reified
RDF statements

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/">
 <rdf:Description rdf:about="http://www.webreference.com/dhtml/hiermenus"
 rdf:bagID="R01">
 <pstcn:contains> Tutorials and source code about creating hierarchical menus
 in DHTML</pstcn:contains>
 <pstcn:author>Peter Belesis</pstcn:author>
 </rdf:Description>

 <rdf:Description rdf:about="http://burningbird.net/person/001">
 <pstcn:recommendeds rdf:resource="#R01" />
 </rdf:Description>
</rdf:RDF>

The complete example, converted to a directed graph, is shown in Figure 4-8 .

Figure 4-8. Reification when more than one inner statement is being made

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.3.4 What Reification Solves

As we've seen in the examples earlier in the chapter, RDF reification is the only technique within RDF to
model statements so that they can be grouped or attached as properties to another statement. In the
examples, reified statements were used to capture information about a statement (a recommendation)
made about another statement (a web resource).

In real-world situations, how would reification be used? What would it solve? Well, the key component of
reification is the ability to make a statement and have the statement be treated as fact, without any
implication that the contents of the statement are themselves facts. This has particular interest when it
comes to trust.

4.3.4.1 Implying trust

In the earlier examples, we looked at modeling a recommendation for a web site using RDF and reification.
The recommendation didn't specifically address any level of trust-just the nature of the contents of the site
and who wrote it. However, reification can be used to establish a level of trust.

As an example, 10 years ago if someone asked where you shopped for books, you might recommend a local
neighborhood bookstore and say something along the lines of "they have a good selection," or "Joe will let
you browse all day without hassling you," or even "the store cat's a real sweetie." You would then follow this
person's recommendation based on your own belief in that person's judgment and honesty.

(During direct verification of the facts represented in the recommendation, if your hand gets shredded by
the "sweet cat" when you try to pet it, you might modify your level of trust in the person's judgment when
it comes to animals.)

Nowadays when the "neighborhood" is several million kilometers of wire, providing recommendations to
your neighbors is a bit more complicated. You can create web pages with reviews and attach links to stores,
but this won't provide useful information to automated agents that are out to do more than randomly collect
links to stores. No, instead of just specifying a link to a store, you want to attach your views, your opinions,
to the store.

Let's say you shop at a bookstore called Some Bookstore. You like and trust this store so you provide a link
to it at your web site. In addition, you also provide an RDF Description of the store, given in Example 4-13 ,
for any RDF consumable agents that are looking for stores that can be trusted.

Example 4-13. RDF Description of a bookstore

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/">
 <rdf:Description rdf:about="http://www.somebookstore.com/">
 <pstcn:webPurpose>online store</pstcn:webPurpose>
 <pstcn:name>Some Bookstore</pstcn:name>
 <pstcn:storeType>bookstore</pstcn:storeType>
 <pstcn:trustLevel>High</pstcn:trustLevel>
 </rdf:Description>
</rdf:RDF>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

An agent would be able to not only collect the link for the store, it would also collect information about the
store (the link belongs to an online bookstore that can be trusted-i.e., the trust level is high).

The agent would store the information about the link in its online storage, which is then used by a person
searching for an online bookstore that can be trusted. The results of the search would display the following:

Some Bookstore, found at http://www.somebookstore.com/, is an online bookstore.
Trust in this store is high.

This is great, just what the person wanted-or is it?

Some of the information collected by the agent and supplied in the Example 4-8 RDF/XML can be easily
verified just by going out to the store web site. However, the issue of trust implied in the search results
can't be verified because the context of that trust-the originator of the statement about trust-is gone.

The RDF supplied in Example 4-13 is modified to use a higher-order statement supplying information about
the originator of the trust specification. The modified RDF is shown in Example 4-14 .

Example 4-14. Using reification to attach the originator of trust

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/">
 <rdf:Description rdf:about="http://www.somebookstore.com" rdf:bagID="s1">
 <pstcn:name>Some Bookstore</pstcn:name>
 <pstcn:storeType>bookstore</pstcn:storeType>
 <pstcn:trustLevel>High</pstcn:trustLevel>
 </rdf:Description>

<!--The statement about the statement-->
 <rdf:Description rdf:about="http://burningbird.net/schema/ShelleyPowers">
 <pstcn:recommendedBy rdf:resource="#s1" />
 </rdf:Description>

</rdf:RDF>

With this modification, the search engine results would be:

Some Bookstore, found at http://www.somebookstore.com/, is an online bookstore.
Trust in this store is high. The assertion about the type of store and the trust
in the store is provided by Shelley Powers.

Now the person shopping for an online bookstore has the information necessary to verify the source of the
level of trust. Of course, the person would then have to determine if the source of the information is
someone who can also be trusted. (Trust me. I can be trusted.)

4.3.4.2 Metadata about statements

Another use of reification is to record metadata information about a specific statement. For instance, if the
statement about the resource (not the resource itself) is valid only after a specific date or only within a
specific area or use, this type of information can be recorded using reification. Reification should be used

http://lib.ommolketab.ir
http://lib.ommolketab.ir

because statement properties would associate the information directly to the resource, rather than to the
statement.

One of the problems with the web today is that so many links to sites are obsolete, primarily because the
original resource has been removed or moved to a new location. Web pages can have an expiration date
attached to them, but that's not going to help when adding a link to the web resource among your own
pages. It's the link or reference that needs to age gracefully, not the original resource.

To solve this, valid date information can be attached to the reference to the web resource, rather than being
attached directly to the resource itself.

In Example 4-15 , very simple RDF is used to describe a resource, an article, containing vacation and travel
spot information. Attached to this recommendation is a constraint that the reference to this article is valid
only for the year 2002.

Example 4-15. Providing a valid date for an article

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/">
 <rdf:Description>
 <rdf:subject rdf:resource="http://burningbird.net/somearticle.htm" />
 <rdf:predicate rdf:resource=
 "http://burningbird.net/schema/Recommendations" />
 <rdf:object>Vacation and Travel Spots</rdf:object>
 <rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement" />
 <pstcn:validFor>2002</pstcn:validFor>
 </rdf:Description>
</rdf:RDF>

By using reification, we've attached a valid date range to the reference to the article rather than directly to
the article. We're saying that this reference (link) is valid only in the year 2002, rather than implying that
the article the link is referencing is valid only in the year 2002.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 5. Important Concepts from the
W3C RDF Vocabulary/Schema
When discussing the Resource Description Framework (RDF) specification, we're really talking about
two different specifications-a Syntax Specification and a Schema Specification. As described in
Chapter 3 and Chapter 4, the Syntax Specification shows how RDF constructs relate to each other
and how they can be diagrammed in XML. For instance, elements such as rdf:type and pstcn:bio

are used to describe a specific resource, providing information such as the resource's type and the
author of the resource. The different namespace prefixes associated with each element (such as rdf:
and pstcn:) represent the schema that particular element is defined within.

In the context of RDF/XML, a vocabulary or schema is a rules-based dictionary that defines the
elements of importance to a domain and then describes how these elements relate to one another. It
provides a type system that can then be used by domain owners to create RDF/XML vocabularies for
their particular domains. For example, the pstcn:bio element is from a custom vocabulary created
for use with this book while the rdf:type element is from the RDF vocabulary. These are different

vocabularies and have different vocabulary owners, but both follow rules defined within the RDF
Vocabulary Description Language 1.0: RDF Schema.

However, before getting into the details of the RDF Schema, consider the following: if RDF is a way of
describing data, then the RDF Schema can be considered a domain-neutral way of describing the
metadata that can then be used to describe the data for a domain-specific vocabulary.

If all this seems convoluted, then you'll appreciate reading more about the concept of metadata, its
importance to existing applications, and how RDF fits into the concept, all discussed in the next
section.

The material in this chapter references the RDF Vocabulary Description
Language 1.0: RDF Schema. The most recent version of the document can be
found at http://www.w3.org/TR/rdf-schema/.

[Team LiB]

http://www.w3.org/TR/rdf-schema/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.1 RDF Vocabulary: Describing the Data

The last few chapters have emphasized that the RDF specification is about metadata-data about
data. This is a key RDF concept; by creating a domain-neutral specification to describe resources, the
same specification can then be used with many different domains but still be processed by the same
RDF agents or parsed by the same RDF parsers.

Because of the importance of understanding metadata's role within RDF, we'll start by taking a closer
look at the concept of metadata, particularly as it's used in applications today.

5.1.1 Metadata's Role in Existing Applications

If you've worked with any kind of relational database such as Oracle, Sybase, MySQL, or Microsoft's
SQL Server, you've used metadata. The way that these database management systems can be used
for many different applications, and to store many different types of data, is by using metadata
structures.

For instance, an application database might have three database tables such as CUSTOMER, ORDER,
and CUSTOMER_ORDER, with both the CUSTOMER and ORDER tables related to the third
CUSTOMER_ORDER table through primary/foreign key relationships, as diagrammed in Figure 5-1.

Figure 5-1. Three related database tables

The ORDER table could have other fields associated with it such as ORDER_DATE and TOTAL_COST,
each containing values describing the order date and cost, respectively. Additional information could
be stored about the fields, such as the ORDER_DATE is a timestamp and a required value, while the
total cost field is a currency value that can be null.

To create storage specifically designed to store CUSTOMER, ORDER, and CUSTOMER_ORDER might
be effective for one application but won't be useful for another application that needs to store
information about objects such as STUDENT and CLASS (for an academic setting). In other words,
change the domain and the domain-specific storage constructs become pretty useless.

To facilitate multiple uses of the same storage mechanism for different domains, the relational
database schema defines elements such as database tables, primary and foreign keys, and columns

http://lib.ommolketab.ir
http://lib.ommolketab.ir

that provide a domain-neutral description of the information about the different aspects of the
CUSTOMER, ORDER, and CUSTOMER_ORDER objects. In SQL Server, the information would be
stored in constructs such as TABLES, COLUMNS, and KEY_COLUMN_USAGE. COLUMNS contain a row
for each element within the domain being described. Therefore, TABLES would contain one row for
each of the application data objects CUSTOMER, CUSTOMER_ORDER, and ORDER; the COLUMNS
table would contain one row for each table column; and so on. More complex information such as
column constraints and foreign key relationships are also stored, individually, as rows within some
metadata table.

Within any tablelike structure, you can think of metadata as column headers
converted to rows. The describer then becomes the described.

At runtime, the database management system hides the higher-level nature of the data storage by
allowing applications to access objects such as CUSTOMER, CUSTOMER_ORDER, and ORDER, directly,
as if they were actual objects rather than mappings between domain elements and a generic
relational database schema. This process works so well that there are few companies in the world
that don't have at least one relational database, and many have several.

The concept of runtime metadata can be extended to applications other than just relational
databases. Large multiuse applications such as PeopleSoft, SAP, and Oracle Financials also make use
of the concept of real-time metadata. Even without viewing each of these application's actual data
stores, one can assume that the applications allow extensions to their systems by the expedient of
recording metadata as records rather than as columns within a table. With this, the applications can
create a generic application that follows a well-defined business model-such as a Customer Resource
Management (CRM) system-that can then be extended and used within many different types of
businesses.

RDF acts in a manner similar to a relational database system or these large, multiple-purpose
application frameworks. Within RDF, instead of creating a custom XML vocabulary to describe
resources, you use a predefined syntax and schema that allow you to store information about the
resource domain, but in such a way that automated RDF processes can access and process the data
regardless of the domain.

Based on this domain-neutral approach, you don't store information about a web resource in a
domain-specific XML element called WEB_PAGE; instead, you store it in an rdf:Description

element and use RDF to define the properties for this new resource. This same syntax can then be
used to describe online books, photos, or even an article on giant squids (as demonstrated in Chapter
2). Most importantly, the same automated processes can manipulate the information regardless of
either the resource or the domain.

Within relational database systems, the metadata process works because the schema used to capture
the business information follows specific rules and makes use of a common set of system objects,
such as tables and columns. The same applies to RDF: for all this to work, the RDF Schema also has
to be described, and that's where the concept of metadata about metadata enters the picture. It is at
this point that the RDF Schema enters the RDF specification universe.

5.1.2 RDF Schema: Metadata Repository

In the last section, you had a chance to see that relational databases can provide storage for a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

multitude of domains through the use of a set of objects that store information about every aspect of
the domain, but in a neutral manner. These objects form what is known as the database system's
system objects or metadata schema objects.

Within SQL Server, the objects can be queried through a custom view called the
INFORMATION_SCHEMA, which contains references to elements such as the aforementioned TABLES
and COLUMNS, though the actual internal tables are hidden to allow the SQL Server architects to
make changes if necessary without impacting the exposed view.

The basic elements underlying the INFORMATION_SCHEMA view, such as TABLES and COLUMNS,
aren't specific to any one relational database vendor; they're based on the relational database
schema, defined within an industry standard. All of these elements are then governed by well-
understood (and mathematically proven) rules and procedures. Because of this, you can use different
relational database systems and be assured that for certain basic objects and functionality, the
exposed behavior is the same regardless of the type of system. Within an Oracle database, you can
have at most one primary key for a table; this same rule applies to a table within Microsoft's SQL
Server and a table within Sybase.

In other words, the relational database schema, its objects, rules, and regulations are the metadata
used to define and describe the metadata (TABLES, COLUMNS) that are then used to describe and
manage domain-specific data (CUSTOMER, ORDER, CUSTOMER_ORDER).

A key characteristic of the relational data model is that data is viewed logically
rather than physically. Data is viewed within the context of its use rather than
its physical storage method. For more on the relational model, see the classic
article on the subject, "A Relational Model of Data for Large Shared Data
Banks" from E. F. Codd, found at http://www.acm.org/classics/nov95/toc.html.
Read more about the association between relational data and RDF in Chapter
10.

The RDF Schema provides the same functionality as the relational database schema. It provides the
resources necessary to describe the objects and properties of a domain-specific schema-a
vocabulary used to describe objects and their attributes and relationships within a specific area of
interest.

The best way to fully understand how the RDF Schema works is by looking at the elements that make
up the schema.

[Team LiB]

http://www.acm.org/classics/nov95/toc.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.2 Core RDF Schema Elements

The RDF Schema elements are marked by a specific namespace, identified within a document with the
following namespace declaration:

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

Within the Schema Specification, there is a core group of classes and properties used to describe domain-
specific RDF elements. These, combined with a specific set of constraints (described later in Section 5.3),
form the foundation of the schema.

RDF Schema elements are defined in the RDFMS as well as within the RDF Schema.
RDFMS elements are identified with the rdf namespace:

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

5.2.1 Overview of the RDF Classes

There are surprisingly few RDF Schema classes:

rdfs:Resource

All resources within RDF are implicitly members of this class.
rdfs:Class

Type or category of resource.
rdfs:Literal

Literals within RDF documents, such as text strings.
rdfs:XMLLiteral

Literals with RDF documents that use XML syntax.
rdfs:Container

Superclass of all container classes.
rdfs:ContainerMembershipProperty

Members of containers.
rdfs:Datatype

Data typing information.

Taking a closer look at each of these classes, the rdfs:Resource element is used to describe a basic

resource within the RDF. It is the set of these elements that literally forms both the reason and focus of the
entire RDF specification.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 5-1 demonstrates a very simple RDF/XML document that contains a description of an article,
including the article's title and author.

Example 5-1. Demonstrating the explicit resource property type

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/">
 <rdf:Description rdf:about="http://burningbird.net/articles/monsters3.htm">
 <pstcn:author>Shelley Powers</pstcn:author>
 <pstcn:title>Architeuthis Dux</pstcn:title>
 </rdf:Description>
</rdf:RDF>

Every resource within an RDF document, such as the article shown in Example 5-1 , has a common ancestor
class: rdfs:Resource . Because of this commonality, you generally won't see an explicit use of
rdfs:Resource within an RDF vocabulary document. However, if you did, you would see it used in a

manner similar to the following schema representation of the article resource from Example 5-1 :

<rdfs:Class rdf:ID="Article">
<rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource" />
</rdfs:Class>

The RDF fragment also uses rdfs:Class . All new resource types are identified by an rdfs:Class
statement, including the rdfs:Resource element itself. The Class element is very similar to its same-name

counterpart in object-oriented development-a unique object that can be described and can have associated
behaviors.

In the RDF Schema Specification, the rdf:Description element is also used to

identify a particular class.

Within the RDF Schema, RDF properties (discussed in the next section) have a given range of allowable
values, such as rdfs:Class , rdfs:Property , or rdfs:Literal . The last is used to describe what the

Schema Specification terms self-denoting nodes , which are nodes that can contain literals such as strings.
An example of one such property is rdfs:Comment , used as follows:

<rdfs:Comment>This is a comment within the RDF Schema</rdfs:Comment>

The comment's value is a text string, a literal, parsed out in its entirety without additional processing.

rdfs:Container is the superclass of all RDF container elements: rdf:Bag , rdf:Seq , and rdf:Alt . The
rdfs:ContainerMembershipProperty class consists of the Container elements themselves (usually denoted
by _1 , _2 , _3 , and so on). It also contains rdfs:member .

The rdfs:Datatype class is the class of all data types and is, itself, a subclass of rdfs:Literal . The data

type values follow the constraints defined for RDF data types, covered in Chapter 2 and Chapter 3 , which
means that there is a mapping of both the value as well as the data type.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Actual instances of data types are recorded using rdf:datatype within each

instance, basically associating each field with a specific data type. However, you can
specify a data type within the schema, also, but there's nothing associated with RDF
Schemas that would enforce data types between the schema and each instance. This
disconnect can potentially lead to some problems, as detailed in Chapter 6 .

rdfs:XMLLiteral is a subclass of rdfs:Literal and an instance of rdfs:Datatype , and is the class of all

XML literals. This is somewhat equivalent to CDATA within XML and HTML, and allows one to embed XML
into the RDF/XML document that is not processed as RDF/XML. Associated with the XML is an arbitrary but
fixed pattern:

"<rdf-wrapper xml:lang='"

lang

"'>"

str

"</rdf-wrapper>"

According to the document, rdf-wrapper is arbitrary but fixed. This means that the format remains the

same, but the actual element names can differ. This makes sense-whatever is contained within the field
designated as XMLLiteral would, we assume, follow standard XML formatting.

In addition to the RDF Schema classes, a few RDF classes cross the boundary between the metalanguage
and instances of the same. These are:

rdf:Statement

Class of all RDF statements
rdf:Bag , rdf:Seq , and rdf:Alt

Container classes
rdf:List

Class of all RDF lists
rdf:Property

Resources that are RDF properties

The rdf:Statement class includes as members all reified RDF statements within a vocabulary (all resources
that have an rdf:type of rdf:Statement).

The container classes - rdf:Bag , rdf:Seq , and rdf:Alt - are used to group members, positioning

within the grouping dependent on the type of container class (Chapter 4 goes into detail on the container
classes).

The rdf:List class has as members all RDF lists within a vocabulary, as rdfs:Container is a superclass of

all RDF container elements.

The rdf:Property class is used to define the attributes that, in turn, describe the resource. In Example 5-1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

, the attributes for Article are author and title . The minimum RDF Schema definition that could

describe the RDF/XML used in this example resource are shown in Example 5-2 .

Example 5-2. RDF Schema for Article

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/">

<rdfs:Class rdf:about="http://burningbird.net/postcon/elements/1.0/Article">
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/>
</rdfs:Class>

<rdf:Property rdf:about="http://burningbird.net/postcon/elements/1.0/title">
 <rdfs:domain rdf:resource="http://burningbird.net/postcon/elements/1.0/Article" />
</rdf:Property>

<rdf:Property rdf:about="http://burningbird.net/postcon/elements/1.0/author">
 <rdfs:domain rdf:resource="http://burningbird.net/postcon/elements/1.0/Article" />
</rdf:Property>
</rdf:RDF>

In this document, Article is defined as an rdf:Resource (subclass of the Resource class), and each
property of Article (title and author) is related to it through the use of the RDF Schema domain

constraint (discussed in Section 5.3).

The Article class and its associated properties are associated with the Resource and Property classes,
respectively, through the subClassOf property. This and other core RDF properties are discussed next.

5.2.2 Demonstrations of the RDF Schema Properties

The RDF specification's purpose is purely to define resources and associated facts, and then provide a way
to allow these resource/fact mappings to interact. This is accomplished through capturing statements about
the resource, with each statement consisting of a specific property such as title and author for the
Article resource. The RDF Schema is no exception-statements about each resource are captured as

individual properties. The only difference between the two is that one is an instance of business data (such
as Article), and the other is metadata (related to the RDF model).

Following are the core properties (from both the RDF and RDFS namespaces) that are essential to the RDF
Schema:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

rdfs:subClassOf rdfs:subPropertyOf

rdfs:seeAlso rdfs:isDefinedBy

rdfs:member rdfs:comment

rdfs:label rdf:type

rdf:subject rdf:predicate

rdf:object rdf:first

rdf:rest rdfs:domain

rdfs:range rdf:value

The rdf:value property was described in Chapter 3 . The rdf:subClassOf property identifies a class that

is a subclass of another. For instance, in Example 5-2 , Article is a subclass of the more generic Resource
class, which all resources belong to. Article could also be a subclass of another class such as WebPage,
which is, in turn, a subclass of Resource, as demonstrated in the following RDF/XML snippet:

<rdfs:Class rdf:ID="WebPage">
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/>
</rdfs:Class>

<rdfs:Class rdf:ID="Article">
 <rdfs:subClassOf rdf:resource="http://burningbird.net/schema#WebPage"/>
</rdfs:Class>

The use of inheritance within the RDF Schema classes allows us to define super-classes such as WebPage.
New subclasses of WebPage then not only inherit the properties and constraints of the superclass Resource,
they also inherit the additional properties and constraints from WebPage.

The rdfs:subPropertyOf property is used when one property is a refinement of another property. For
instance, in the Article schema, one of the properties is author . This property could be further refined to
specify whether an author is a primary or secondary author, via the primaryAuthor and secondaryAuthor

subproperties, respectively. Example 5-3 shows the use of this property refinement through the
rdfs:subPropertyOf property.

Example 5-3. RDF Schema example of property refinement

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<rdfs:Class rdf:about="http://burningbird.net/postcon/elements/1.0/Article">
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/>
</rdfs:Class>

<rdf:Property rdf:about="http://burningbird.net/postcon/elements/1.0/title">
 <rdfs:domain rdf:resource="http://burningbird.net/postcon/elements/1.0/Article" />
</rdf:Property>

<rdf:Property rdf:about="http://burningbird.net/postcon/elements/1.0/author">
 <rdfs:domain rdf:resource="http://burningbird.net/postcon/elements/1.0/Article" />
</rdf:Property>

<rdf:Property rdf:about="http://burningbird.net/postcon/elements/1.0/primaryAuthor">
 <rdfs:domain rdf:resource="http://burningbird.net/postcon/elements/1.0/Article" />
 <rdfs:subPropertyOf rdf:resource="http://burningbird.net/postcon/elements/1.0/author" />
</rdf:Property>

<rdf:Property rdf:about="http://burningbird.net/postcon/elements/1.0/secondaryAuthor">
 <rdfs:domain rdf:resource="http://burningbird.net/postcon/elements/1.0/Article" />
 <rdfs:subPropertyOf rdf:resource="http://burningbird.net/postcon/elements/1.0/author" />
</rdf:Property>
</rdf:RDF>

The rdfs:seeAlso property is used to identify another resource that contains additional information about

the resource being described. An example of using this property could be the following RDF fragment,
showing the relationship between an article and a document maintaining the history of the article, identified
as a class called ArticleHistory:

<rdfs:Class rdf:about=" http://burningbird.net/postcon/elements/1.0/ArticleHistory">
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/>
</rdfs:Class>

<rdfs:Class rdf:about=" http://burningbird.net/postcon/elements/1.0/Article">
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/>
 <rdfs:seeAlso rdf:resource="http://burningbird.net/postcon/elements/1.0/
ArticleHistory" />
</rdfs:Class>

Within the RDFS vocabulary, rdfs:seeAlso is also used to link the vocabulary document with a second

document:

<rdf:Description rdf:about="http://www.w3.org/2000/01/rdf-schema#">

 <rdfs:seeAlso rdf:resource="http://www.w3.org/2000/01/rdf-schema-more"/>
</rdf:Description>

With this, additional schema elements can be added to the vocabulary without having to edit or modify the
original schema.

According to the RDF Schema Specification, rdfs:seeAlso can be refined through the rdfs:subPropertyOf

property to provide additional information about the manner in which the one resource provides additional
information about the second resource:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<rdf:Property rdf:about=" http://burningbird.net/postcon/elements/1.0/
historyProvidedBy">
 <rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-schema#Property"/>
 <rdfs:subPropertyOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#seeAlso" />
</rdf:Property>

<rdfs:Class rdf:about=" http://burningbird.net/postcon/elements/1.0/ArticleHistory">
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/>
</rdfs:Class>

<rdfs:Class rdf:about=" http://burningbird.net/postcon/elements/1.0/Article">
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/>
 <bbd:historyProvidedBy rdf:resource=" http://burningbird.net/postcon/elements/1.0/
ArticleHistory" />
</rdfs:Class>

The rdfs:isDefinedBy property identifies the namespace for the resource, preventing any ambiguity or

confusion about namespace ownership. For example, if a resource is identified by a GUID (Globally Unique
Identifier), the rdfs:isDefinedBy property could be attached to the Resource class, to provide the URI for

the schema.

Within the RDFS Schema vocabulary, the rdf:Statement class is defined to be a part of the RDF syntax

namespace:

<rdfs:Class rdf:about="http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement">
 <rdfs:isDefinedBy rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#"/>
 <rdfs:label xml:lang="en">Statement</rdfs:label>
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/>
 <rdfs:comment>The class of RDF statements.</rdfs:comment>
</rdfs:Class>

However, the rdfs:Literal class is defined to be a part of the RDF Schema namespace:

<rdfs:Class rdf:about="http://www.w3.org/2000/01/rdf-schema#Literal">
 <rdfs:isDefinedBy rdf:resource="http://www.w3.org/2000/01/rdf-schema#"/>
 <rdfs:label xml:lang="en">Literal</rdfs:label>
 <rdfs:comment>This represents the set of atomic values, eg. textual strings.</rdfs:
comment>
</rdfs:Class>

The rdfs:member property is a superproperty for each numbered container element (such as _1 , _2 , and

so on).

At the time of this writing, the RDF Working Group is working to resolve whether
rdfs:member should be a member of rdfs:ContainerMembershipProperty . Check

the RDF Schema specification for final resolution of this issue.

Two properties provide human readability to an RDF model. The rdfs:comment property is used to provide
documentation of resources, and rdfs:label provides a readable version of the resource's name. In

http://lib.ommolketab.ir
http://lib.ommolketab.ir

addition, you can attach the XML attribute xml:lang to the rdfs:label element and provide different labels

for different languages.

You can add comments to an RDF/XML document using XML comments such as the following:

<!--Class defining Web articles-->
<rdfs:Class rdf:about="http://burningbird.net/postcon/elements/1.0/Article">
 <rdfs:subClassOf rdf:Resource="http://www.w3.org/2000/01/rdf-schema#Resource"/>
</rdfs:Class>

However, to formally attach documentation to an element in such a way that the documentation itself can
be easily accessible through RDF parsers or other automated processes, then you need to have RDF
Schema elements that can be used specifically for schema documentation. These elements are
rdfs:comment and rdfs:label . The rdfs:comment provides a description of the resource, while the
rdfs:label provides a human-readable version of the name.

Adding documentation to Example 5-3 results in the RDF/XML shown in Example 5-4 . As you can see, just
a few extra lines can provide considerable information.

Example 5-4. Using RDF Schema documentation elements

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/">

<rdfs:Class rdf:about="http://burningbird.net/postcon/elements/1.0/Article">
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/>
 <rdfs:comment>Unique Online article</rdfs:comment>
 <rdfs:label
xml:lang="en">Article</rdfs:label>
</rdfs:Class>

<rdf:Property rdf:about="http://burningbird.net/postcon/elements/1.0/title">
 <rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-schema#Property"/>
 <rdfs:domain rdf:resource="http://burningbird.net/postcon/elements/1.0/Article" />
 <rdfs:comment>Online Article Title</rdfs:comment>
 <rdfs:label xml:lang="en">Title</rdfs:label>
</rdf:Property>

<rdf:Property rdf:about="http://burningbird.net/postcon/elements/1.0/author">
 <rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-schema#Property"/>
 <rdfs:domain rdf:resource="http://burningbird.net/postcon/elements/1.0/Article" />
 <rdfs:comment>Primary author of article</rdfs:comment>
 <rdfs:label xml:lang="en">Author</rdfs:label>
</rdf:Property>

</rdf:RDF>

When viewing the schema in Example 5-3 , you can understand what's being described because you have
this chapter to provide information. However, in real life, a vocabulary and schema may not have associated

http://lib.ommolketab.ir
http://lib.ommolketab.ir

documentation, or the link between the documentation and the vocabulary may not be maintained. By
providing both comments and a readable label, you're providing information to the users about exactly
what's being defined. This is no different than providing inline documentation and using good naming
practices within code among application developers.

The rdf:type property defines the type of resource. As mentioned earlier, all resources are of type
Resource , as well as being a more granular type, such as Article . The type property designates that the

resource being referenced is an instance of this class.

Within an RDF/XML document, the rdf:type is usually assumed and isn't explicitly given. However, you can
explicitly use the rdf:type property to remove any possibility of confusion between the RDF/XML document

and N-Triples or an RDF graph generated from the document. This holds true for RDF Schema vocabulary
documents. For instance, you can attach an rdf:type property to the author property to refine the

definition, though its use in a schema is usually redundant.

<rdf:Property rdf:about="http://burningbird.net/postcon/elements/1.0/author">
 <rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-schema#Property"/>
 <rdfs:domain rdf:resource="http://burningbird.net/postcon/elements/1.0/Article" />
 <rdfs:comment>Primary author of article</rdfs:comment>
 <rdfs:label xml:lang="en">Author</rdfs:label>
 <rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property" />

</rdf:Property>

The rdf:subject , rdf:predicate , and rdf:object properties are used with reification to explicitly define
an RDF statement. In addition, the rdf:first and rdf:next properties are used to explicitly define the

relationships within a collection. Since both reification and collections are covered in depth in Chapter 4 , I
won't repeat the details here.

The remaining two properties, rdfs:domain and rdfs:range , are described in the next section.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.3 Refining RDF Vocabularies with Constraints

Within RDF Schema, constraints define class associations for properties. In addition, there are
subclasses of both Property and Resource that are specific to constraints.

In Example 5-4 , the rdfs:domain property was used to associate a property with the resource it
modified. It was used with both the author and title properties to associate them with the Article

resource. The RDF Schema property is further constrained to be used only with properties by specifying
an rdfs:domain of Property for the rdfs:domain itself.

An RDF property can be used for more than one resource type. Something such as title can then be
used for Article but can also be used for Person (a person's work title), as well as something such as
Painting (title of a painting). The only limitation is the domain scope. The rdfs:range property is used

to specify the classes the property can reference as values. Unlike the domain element, only one RDF
range constraint can be attached to any property-equivalent to the restriction in most programming
languages that a variable can be of only one data type, constraining the allowable values that the
variable can contain.

To specify more than one class as range constraint for a property (more than one data type if you will),
you can use a master class for all classes that will be designated by a specific range and then use
inheritance to extend the class with sub-classes.

In Example 5-5 , a new class is added to the example schema called Directory. This class has one
property, contains , which is used to identify web resources the directory contains. A new contains
property is created and tied back to the class through the rdfs:domain property.

The web resources can be articles or examples; to allow both in the new contains range, a master class,
WebPage , is created; it is then refined through the use of rdfs:subClassOf to create Article and
Example classes. The master class is used as the value for the rdfs:range property of the contains

class.

Example 5-5. Using RDF Schema constraints to refine an RDF schema

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/">

<rdfs:Class rdf:about="http://burningbird.net/postcon/elements/1.0/WebPage">
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/>
</rdfs:Class>

<rdfs:Class rdf:about="http://burningbird.net/postcon/elements/1.0/Article">
 <rdfs:subClassOf rdf:resource="http://burningbird.net/postcon/elements/1.0/WebPage"/>
</rdfs:Class>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<rdfs:Class rdf:about="http://burningbird.net/postcon/elements/1.0/Example">
 <rdfs:subClassOf rdf:resource="http://burningbird.net/postcon/elements/1.0/WebPage"/>
</rdfs:Class>

<rdfs:Class rdf:about="http://burningbird.net/postcon/elements/1.0/Directory">
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/>
</rdfs:Class>

<rdf:Property rdf:about="http://burningbird.net/postcon/elements/1.0/contains">
 <rdfs:domain rdf:resource="http://burningbird.net/postcon/elements/1.0/Directory" />
 <rdfs:range rdf:resource="http://burningbird.net/postcon/elements/1.0/WebPage" />
</rdf:Property>

</rdf:RDF>

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.4 RDF Schema Alternatives

RDF isn't the only specification related to describing schemas. XML documents (and their SGML
predecessors) have long been validated through the use of Document Type Declarations (DTDs),
described in the first release of the XML specification and still in heavy use. DTDs generally define
how elements relate to one another within a schema; for example, they allow applications to check
whether a specific element is required or one or more elements can be contained within another.

While useful for validating how elements within a schema relate to one another, DTDs have long had
their critics. First of all, DTDs are based on a syntax totally unrelated to XML. This forces a person to
become familiar with not one but two syntaxes in order to create a valid as well as well-formed XML
document. The following DTD fragment defines an Items element, its child item, and the contents of
item:

<!ELEMENT Items (item*)>
<!ELEMENT item (productName, quantity, USPrice, comment?, shipDate?)>
<!ATTLIST item
 partNum CDATA #REQUIRED>
<!ELEMENT productName (#PCDATA)>
<!ELEMENT quantity (#PCDATA)>
<!ELEMENT USPrice (#PCDATA)>
<!ELEMENT comment (#PCDATA)>
<!ELEMENT shipDate (#PCDATA)>

As you can see, the DTD syntax is fairly intuitive; however, syntactic elegance or not, DTDs do not
provide the same type of functionality as the RDF specification. XML DTDs define how elements within
a vocabulary relate to one another, not how they relate to the world at large, and the description of
their contents is pretty vague. #PCDATA and its attribute cousin, CDATA, just mean "text." RDF

provides a means of recording data within a global context, not just how elements in one specific
vocabulary relate to one another.

Another mechanism to record schemas is defined by the W3C XML Schema 1.0 Specification. This
specification is more closely related to the functionality used to define a relational table or to describe
an object in object-oriented development. Schemas are used to define elements in relation to one
another, as with the DTD syntax; it goes beyond DTDs, though, by providing a means of recording
data types about the elements and attributes-a functionality long needed with XML vocabularies, as
shown in the following fragment based on the specification:

<xsd:element name="Items">
 <xsd:complexType name="Items">
 <xsd:sequence>
 <xsd:element name="item" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="productName" type="xsd:string"/>
 <xsd:element name="quantity">
 <xsd:simpleType>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <xsd:restriction base="xsd:positiveInteger">
 <xsd:maxExclusive value="100"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="USPrice" type="xsd:decimal"/>
 <xsd:element ref="comment" minOccurs="0"/>
 <xsd:element name="shipDate" type="xsd:date" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="partNum" type="SKU" use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

As you can see, W3C XML Schema is an effective specification for defining XML elements, their
relationships, and much more information about associated data types than DTDs provide.

A third approach, RELAX NG Compact Syntax, offers a combination of DTD readability and W3C XML
Schema data typing, though it also has a mathematical foundation that in some ways has more in
common with RDF than with DTDs or W3C XML Schema. The same example in RELAX NG Compact
Syntax looks like:

Items = element Items { item* }
item =
 element item {
 att.partNum, productName, quantity, USPrice, comment?, shipDate?
 }
att.partNum = attribute partNum { text }
productName = element productName { text }
quantity = element quantity { xsd:positiveInteger {maxExclusive="100"}}
USPrice = element USPrice { xsd:decimal }
comment = element comment { text }
shipDate = element shipDate { xsd:date }

start = Items

All of these schema approaches facilitate automated processing of XML. Still, the various XML Schema
tools can't replace the functionality provided by the RDF specification. To overgeneralize, XML tools
are concerned with describing markup representations and their contents, while RDF tools are
concerned with describing models. You can get a model from a representation or vice versa, but the
two approaches focus on different things.

The RDF specification defines information about data within a particular context. It provides a means
of recording information at a metadata level that can be used regardless of the domain. RDF's
relationship with XML is that XML is used to serialize an RDF model; RDF is totally unconcerned
whether XML is valid (that is, conforming to a DTD, RELAX NG description, or W3C XML Schema) as
long as the XML used to serialize an RDF model is well formed. In addition, concepts such as data
types and complex and simple element structures-focal points within the W3C XML Schema-again
focus on XML as used to define data, primarily for data interchange; they have nothing to do with
recording data about data in order to facilitate intelligent web functionality.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 6. Creating an RDF Vocabulary
Unlike other W3C specifications, such as HTML, you're not going to see RDF documents consisting
solely of the elements that have been described in Chapter 3 through Chapter 5. Yes, there is a
defined syntax for RDF, as reviewed in Chapter 3 and Chapter 4, and there is an RDF Schema,
explored in Chapter 5. However, RDF isn't used to model business-specific resources directly because
there are no domain-specific elements within the specification. Instead, RDF creates domain-specific
vocabularies that are then used to model the resources, with an added advantage of having access to
RDF-specific parsers and automated processes.

What kinds of vocabularies can be created? A better question is: what kinds of business resources
can be described using a syntax/schema such as RDF? And the answer is: any business resource. The
number of possible vocabularies is limitless, constrained only by each industry's need for
interoperable vocabularies.

In this chapter you'll have a chance to see how a vocabulary is created and validated against the RDF
syntax and schema. Once the elements for the vocabulary are defined, they'll then be compared
against an existing web resource domain vocabulary, the Dublin Core, to look for matches.

First, though, let's take a closer look at what I mean when I say "RDF Vocabulary."

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

6.1 How RDF Vocabularies Differ from XML Vocabularies

RDF is a way of recording information about resources; RDF, as serialized using XML, is a way of
recording information about a specific business domain using a set of elements defined within the
rules of the RDF data model/graph and the constraints of the RDF syntax, vocabulary, and semantics.

RDF recorded in XML is a very powerful tool-it's been used to document events within a
heterogeneous application environment, to describe publications, to record an environmental
thesaurus, and so on. By using XML, you have access to a great number of existing XML applications
such as parsers and APIs, even relational and Lightweight Directory Access Protocol (LDAP) data
sources that are XML-capable. However, what do you get when you use RDF? Why not use XML
directly?

As mentioned in previous chapters, RDF provides the same level of functionality to XML as the
relational data model adds to commercial database systems. RDF provides a predefined grammar
that can be used to consistently record business domain information in such a way that any business
domain can have a vocabulary in RDF that can be processed with a host of RDF-based tools and
frameworks.

Consider the environmental thesaurus I just mentioned. This is a joint effort between the California
Environmental Resource Evaluation System (CERES) and the National Biological Information
Infrastructure (NBII). This partnership was formed to create a common environmental vocabulary
and the tools necessary to work with this vocabulary. One of the efforts of this project is to document
this vocabulary using RDF.

Within the RDF vocabulary, the project has defined a class called Term that has several properties,
such as Source, Category, and Status, attached to it. Instead of using RDF, the project could have
recorded this information directly within XML; however, if they did this, they then would have to
define the concept of "class" and "property" in order to record relationships such as "Source is a
property of Term." In addition, the project would also have to create code to process the XML in such
a way that the Source element is processed as a property of Term rather than an arbitrary related
element that happens to be nested within the Term element. Lastly, the group would need to create
a schema to support these new objects so that the XML document matches the constraints
documented in this schema.

For the latter requirement, a Document Type Definition (DTD) file won't work, as DTDs primarily
control nesting and frequency of occurrence of elements; XML Schema won't work, as it is concerned
more with data types and other constraints rather than the metalanguage nature of "class" and
"property." RELAX NG is more easily processed than either of those, but again it is solving different
problems.

As you can use XML to serialize the contents of a relational database, you can use XML to serialize
the contents of an RDF-based model-but XML isn't a replacement because XML is nothing more than
a syntax. You need a metalanguage vocabulary to be able to use XML to record business domain
information in such a way that any business can be documented, and RDF provides this capability.

However, don't take my word for it; try it yourself in the next several sections when you have a
chance to see how a vocabulary is created.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

6.2 Defining the Vocabulary: Business and Scope

As the Web has matured, more and more of the posted content is aging beyond usefulness. In many
cases, this aged content is just deleted from a web site, resulting in "404 Page not found" errors
when you click through to the content from some search engine or via a link from another web page.
Hitting a missing page is particularly frustrating if you've come to the page because of a description
associated with it that exactly fits your current interest, and you don't even know why the page was
deleted or if the resource might exist somewhere else.

A further problem with maturing web sites is that site structure doesn't remain constant-due to the
use of new technologies or new directions in content management, resources may be moved around
at the site or even moved to new domains. When you access the content, the less-than-helpful sites
return with something along the lines of:

404 Not Found
We're sorry, the file that you requested does not exist or has moved.

Well, which is it? Is the page missing, or was the request invalid because the content's moved? If you
get this message as a result of clicking on a link from another site, is it because the content's really
been deleted or moved, or because the linking site made a mistake with the link? Is the site that
owns the content using a new system of cataloging its resources, breaking existing links?

Other sites provide a page with a forwarding message and a link to redirect you to the new content.
As important as these redirections are, though, the reasons behind the move may be additional
information that can be useful in determining whether the resource is worth pursuing through what
could end up being a chain of redirections, with each link in the chain reflecting a different move.

Unfortunately, the reasons for the move aren't maintained with the redirection in most cases.

Another problem is aging content that isn't deleted. With this type of page, you could be halfway
through reading it only to realize that it talks about a product or technology that's been obsolete for
years. There's nothing to indicate the relevance of the page, and external factors associated with the
page, such as the page title or label, may not provide enough context to determine whether the
resource is useful for your purposes or not.

Netscape's support of Dynamic HTML (DHTML) for the company's browser is a
classic case of content being under one label-DHTML-with two drastically
different implementations based on browser version. DHTML for Version 4.x of
Netscape won't work with the current Netscape 6.x products and vice versa.
The only way to determine whether a page titled "Working with DHTML in
Netscape" is useful for your purposes is to read it and hope you know enough
about the subject to know whether you're wasting your time.

Content management systems such as FrontPage, Vignette, and others help with creating, posting,
and managing the original content, but do not help provide information about the context of the
resource. meta tags can be attached to each HTML resource providing copyright information,

keywords, or authorship, but nothing regarding the expected life expectancy of the resource or its

http://lib.ommolketab.ir
http://lib.ommolketab.ir

move history, including reasons for the move, unless you put this information into the description -
an approach that isn't standardized and therefore not useful.

These systems are as helpless as web browsers at determining whether a 404 error occurred because
of a typo, a relocation, or a resource no longer being maintained at the site.

What's needed is a content system that takes over after the content management systems have
finished their task of posting the content: a postcontent information system that can be accessed by
a runtime application and provide information about the resource to the resource consumers. Such a
system must provide information that is useful for humans and is also usable by automated
processes.

We'll use this type of system to demonstrate how to create an RDF vocabulary and, eventually, how
to use the vocabulary just created. For simplicity in this chapter (and later in the book), I'll refer to
this system as PostCon.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

6.3 Defining the Vocabulary: Elements

How to start defining the vocabulary for this type of system? Compatible with most application efforts,
the first step to creating the vocabulary is to define the business domain elements and their properties
of interest within the given business scope.

6.3.1 The PostCon Domain Elements

Defining the business elements for a new system is the same process whether the domain is being
defined for use within a more traditional relational database or within a system with data defined and
managed through RDF-capable processes. Following from existing data modeling techniques, you first
describe the major entities and their properties, then describe how these entities are related to one
another.

PostCon has one major or root element, the web site resource; the system is interested in this
resource from six different perspectives:

What is the content's bio-who wrote it, who owns it, when was it created, and what are its
subject and topic?

What is the content's relevancy-has it been updated for new circumstances and does it have a
date beyond which it is no longer pertinent?

What is the content's history of movement-has it been deleted? If so, why? Has it moved? If so,
why, and where is it now?

What are the content's related resources-has it been replaced? Are other resources related to it?
Are other resources dependent on it, or is it dependent on other resources?

If the resource no longer exists, are there replacements? Why are they replacements?

What are the presentation characteristics of the content? Its type? Does it conform to any
standard? Does it require specialized user agents? Are there any dependencies?

The set of PostCon objects consists of a web resource, its bio, a movement associated with the
resource, presentation and type information, and other related resources. Each object is then described
by a set of properties. Many of these are compatible with HTML meta tag elements such as Title and

Content and should be synchronized with the values included within the HTML; others are unique to the
system.

The main system elements are then described by a set of properties, as defined in Table 6-1 .

Table 6-1. PostCon system domain elements and their properties

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Element Property Description

Content Unique Content ID To identify content

 Biography Content biographical information

 Relevancy Relevancy of content

 History History of content movement

 Related Related content

 Presentation Content type and presentation

Content bio Title Resource's title

 Resource Abstract Excerpt from resource if applicable

Resource
Description

Description of Resource

 Creation Date Date resource was first created

 Content Author Person or organization responsible for creating content

 Content Owner Person or organization who owns copyright on content

Relevancy Content Status Current status of content

 Subject Subject/topic of resource (may duplicate)

Relevancy
Expiration

Date when content is aged beyond usefulness

 References External resources referenced in content

 Referenced by External resources that reference content

History Movement Location at end of movement

 Reason Reason for movement

 Date Date of movement

 Type Type of movement

Related Related Resource Resource URI

 Reason Reason for relationship

Recommendation
Recommended
Resource

URI of recommended replacement

 Title Title of replacement

 Reason Reason for recommendation

Presentation Format Format of resource

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Element Property Description

 Conformity Standards/specifications resource conforms to (may repeat)

 Requires
Resource dependencies (may repeat)-may have associated
type of requirement as well as required resource (may repeat)

The Unique Resource ID (URI) is defined once for the content and follows it regardless of the content's
current location. The Resource Title property is equivalent to the HTML Title element, and the Resource
Description is equivalent to the Description meta tag, which contains a short abstract of the resource's

contents:

<meta name="description" content="Dynamic Earth site focuses on
science and the world and universe around us. You can never know too much">

The material within the content attribute is used for the Resource Description content. The Content
Author is equivalent to the Author meta tag, and the Content Owner is equivalent to the Copyright meta

tag:

<meta name="author" content="Shelley Powers">
<meta name="copyright" content="© 1997-2003 Burningbird">

The Content Status for the web resource contains information about the current status of the
document, such as whether it has been deleted or is still active. The Relevancy Expiration is a date
when the content author expects the resource contents to become dated and no longer viable. The
Requires property also provides information about the viability of the content, such as being dependent
on Version 1.0 of a specific product release.

The History of the resource tracks its movement throughout the network, as well as the date and
reason for the move. This is particularly useful when providing information about deleted content. The
Related material provides information about replacement URLs for content that is no longer viable, and
the Recommendation material covers additional recommended material complementary to the
material, while the Presentation reflects information necessary to "consume" the resource, as it were.

For a specific web resource, there is one Resource bio, Relevancy, History, and Presentation sections,
but many related items. Additionally, within the History section there can be many movements. This
and the domain information are then used to prototype the RDF vocabulary, as described next.

6.3.2 Prototyping the Vocabulary

Before creating a formal RDFS document for the new vocabulary, you should prototype the model with
several different instances of it, to ensure that the results corroborate the expected outcome. During
this process, check the validity of your data with the RDF Validator, which validates the result against
the standard and also provides an edged graph and N-Triples breakdown of the RDF.

You can access the RDF Validator at http://www.w3.org/RDF/Validator/ .

As a test case for the PostCon vocabulary, information about the giant squid articles introduced in
Chapter 2 through Chapter 4 is recorded using the domain elements from the last section. The articles

 Conformity Standards/specifications resource conforms to (may repeat)

 Requires
Resource dependencies (may repeat)-may have associated
type of requirement as well as required resource (may repeat)

The Unique Resource ID (URI) is defined once for the content and follows it regardless of the content's
current location. The Resource Title property is equivalent to the HTML Title element, and the Resource
Description is equivalent to the Description meta tag, which contains a short abstract of the resource's

contents:

<meta name="description" content="Dynamic Earth site focuses on
science and the world and universe around us. You can never know too much">

The material within the content attribute is used for the Resource Description content. The Content
Author is equivalent to the Author meta tag, and the Content Owner is equivalent to the Copyright meta

tag:

<meta name="author" content="Shelley Powers">
<meta name="copyright" content="© 1997-2003 Burningbird">

The Content Status for the web resource contains information about the current status of the
document, such as whether it has been deleted or is still active. The Relevancy Expiration is a date
when the content author expects the resource contents to become dated and no longer viable. The
Requires property also provides information about the viability of the content, such as being dependent
on Version 1.0 of a specific product release.

The History of the resource tracks its movement throughout the network, as well as the date and
reason for the move. This is particularly useful when providing information about deleted content. The
Related material provides information about replacement URLs for content that is no longer viable, and
the Recommendation material covers additional recommended material complementary to the
material, while the Presentation reflects information necessary to "consume" the resource, as it were.

For a specific web resource, there is one Resource bio, Relevancy, History, and Presentation sections,
but many related items. Additionally, within the History section there can be many movements. This
and the domain information are then used to prototype the RDF vocabulary, as described next.

6.3.2 Prototyping the Vocabulary

Before creating a formal RDFS document for the new vocabulary, you should prototype the model with
several different instances of it, to ensure that the results corroborate the expected outcome. During
this process, check the validity of your data with the RDF Validator, which validates the result against
the standard and also provides an edged graph and N-Triples breakdown of the RDF.

You can access the RDF Validator at http://www.w3.org/RDF/Validator/ .

As a test case for the PostCon vocabulary, information about the giant squid articles introduced in
Chapter 2 through Chapter 4 is recorded using the domain elements from the last section. The articles

http://lib.ommolketab.ir
http://lib.ommolketab.ir

are particularly useful as test cases because they have been moved about, are related to each other,
reference, and are referenced by external resources. About the only thing that the articles don't
demonstrate is when a web resource has been deleted, and we'll test this out with another document
later.

When creating a new vocabulary, the first thing to do is define the URI for the vocabulary namespace.
By convention, this should be the URL of the RDFS document when it is eventually made. In the case of
PostCon, I used the following URL for the namespace:

http://burningbird.net/postcon/elements/1.0/

This is actually fairly descriptive-this is the location of the set of PostCon Version 1.0 vocabulary
elements. When the RDFS document for the vocabulary is finished, it will be dropped into this location
primarily for use by utilities that make use of it for RDF/XML exploration (covered in Chapter 7).

There is no requirement as to the structure of the URI for a namespace, nor does
the RDFS document have to exist-but it is good practice to use a consistent
namespace and to create the document and place it in the URL of the
namespace.

Next up is determining what the URI of the web resource is. We could actually create an identifier for
our resources, but my preference for the PostCon system is just to use it as the identifier the URL of
the resource when it was first defined within the PostCon RDF/XML vocabulary. What's important is
that it be consistent and unique-any other requirements are purely system dependent, not RDF/XML
dependent.

I used the first document in the article series as the test case, and since it was located within the
domain burningbird.net and within the articles subdirectory, its URI became:

http://burningbird.net/articles/monsters1.htm

However, to simplify the model, xml:base (explained in Chapter 3) is used and set to a value of
http://burningbird.net/articles , and the resource URI is set to monsters1.htm .

The other top-level predicates are added sans their predicates to give a relatively flat model at this
point. Example 6-1 shows the RDF/XML at this stage.

Example 6-1. First cut of PostCon vocabulary, with scalar values

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/"
 xml:base="http://burningbird.net/articles/">

 <rdf:Description rdf:about="monsters1.htm">
 <pstcn:bio />
 <pstcn:relevancy />
 <pstcn:presentation />
 <pstcn:history />
 <pstcn:related />
 </rdf:Description>

http://burningbird.net/postcon/elements/1.0/
http://burningbird.net/articles/monsters1.htm
http://burningbird.net/articles
http://lib.ommolketab.ir
http://lib.ommolketab.ir

</rdf:RDF>

Next, we'll start adding the other predicates to the model, but first, there's one change we want to
make to the model. As it is currently defined, we have the resource, but we don't necessarily know
what it is. It is a web resource, but by the model's definition it could be any other resource that can be
defined by an arbitrary URI, including a person, a place, or a thing. To refine the model, then, we'll add
an rdf:type predicate to it, with a value of
http://burningbird.net/postcon/elements/1.0/Resource . However, to make the model as

simple as possible, we'll use an RDF/XML shortcut (detailed in Section 3.5) and replace the
rdf:Description block with a reference to this new class:

<pstcn:Resource>
 <pstcn:bio />
 <pstcn:relevancy />
 <pstcn:presentation />
 <pstcn:history />
 <pstcn:related />
</pstcn:Resource>

The directed graph that results from this change, as shown in Figure 6-1 , is no different than if we had
used the more formal rdf:Description block with the associated rdf:type predicate.

Figure 6-1. The graph of our PostCon example

Next we'll start adding the predicates, beginning with pstcn:bio . Since RDF/XML requires a striped
syntax of node-arc-node-arc, and rdf:bio is acting as an arc, rdf:bio 's contents must be redefined
as a blank node-a resource without a URI. Adding an rdf:Description block to rdf:bio and then
adding its predicates as shown in Example 6-2 accomplishes redefining rdf:bio as a blank node. The

predicates are named the same as the attributes defined in Table 6-1 , but converted to QNames per
the RDF/XML requirement. Changes to the RDF/XML are boldfaced.

Example 6-2. Adding in the pstcn:bio predicates

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/"

http://burningbird.net/postcon/elements/1.0/Resource
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 xml:base="http://burningbird.net/articles/">

 <pstcn:Resource rdf:about="monsters1.htm">
 <pstcn:bio>
 <rdf:Description>
 <pstcn:title>Tale of Two Monsters: Legends</pstcn:title>
 <pstcn:abstract>
 When I think of "monsters" I think of the creatures of
 legends and tales, from the books and movies, and
 I think of the creatures that have entertained me for years.
 </pstcn:abstract>
 <pstcn:description>
 Part 1 of four-part series on cryptozoology, legends,
 Nessie the Loch Ness Monster and the giant squid.
 </pstcn:description>
 <pstcn:dateCreated>1999-08-01T00:00:00-06:00</pstcn:dateCreated>
 <pstcn:author>Shelley Powers</pstcn:author>
 <pstcn:owner>Burningbird Network</pstcn:owner>
 </rdf:Description>
 </pstcn:bio>
 <pstcn:relevancy />
 <pstcn:presentation />
 <pstcn:history />
 <pstcn:related />
 </pstcn:Resource>

</rdf:RDF>

The rdf:bio resource isn't given a URI because one doesn't exist for it. The resulting graph shows a

computer-generated blank node identifier assigned to the resource.

Again, in the interests of simplifying the model as much as possible, another RDF/XML shortcut is
applied to the model. In this case, the attribute rdf:parseType is added to the pstcn:bio element,
and its value is set to "Resource" . Doing this, we can eliminate the rdf:Description block:

<pstcn:bio rdf:parseType="Resource">
 <pstcn:title>Tale of Two Monsters: Legends</pstcn:title>
 <pstcn:abstract>
 When I think of "monsters" I think of the creatures of
 legends and tales, from the books and movies, and
 I think of the creatures that have entertained me for years.
 </pstcn:abstract>
 <pstcn:description>
 Part 1 of four-part series on cryptozoology, legends,
 Nessie the Loch Ness Monster and the giant squid.
 </pstcn:description>
 <pstcn:dateCreated>1999-08-01T00:00:00-06:00</pstcn:dateCreated>
 <pstcn:author>Shelley Powers</pstcn:author>
 <pstcn:owner>Burningbird Network</pstcn:owner>
</pstcn:bio>

Though simplified with this syntactic change, the resulting directed graph of the model at this point, as

http://lib.ommolketab.ir
http://lib.ommolketab.ir

shown in Figure 6-2 , is equivalent to the longer, more formal syntax.

Figure 6-2. RDF directed graph of model defined in Example 6-2

Though the resulting XML is simpler when using one of the established shortcuts,
it doesn't necessarily reflect either the N-Triples or the directed graph of the
model. This could be confusing for people new to RDF/XML. When documenting
your model, you'll most likely want to start with the more formal RDF/XML
syntax and then demonstrate the vocabulary with instances that use the
shortcuts.

In Figure 6-2 , I show the bio properties grouped via a blank node. Coming from a relational database
background, my first inclination is to group related properties into a resource and link this back to the
primary resource, rather than "flatten" the model and include each property as a direct attribute of the
original resource. I follow this approach with RDF, primarily because, in my opinion, it leads to cleaner
RDF processing-whether that processing occurs manually or through automation.

If I had listed each of the "grouped" properties directly with the resource, there's no breakdown for
relevancy or for the resource's bio . If a specific process was interested only in the biographical
elements, each bio-related attribute would then have to be defined as biographically related to
highlight it from the other properties. Now, if the bio-related properties were defined within one specific
RDF "entity" (resource), it's a simple matter to process only bio properties just by processing all
elements within the designated bio resource. Whether you're generating RDF through an API,
consuming it with an RDF parser, or visually looking at an RDF document, grouping the properties
through derived resources makes sense.

The other groupings of attributes, such as relevancy and presentation, are completed in the same
manner as bio and I won't cover all that here. However, the Related predicate is handled differently

and is therefore covered in the next section.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The PostCon vocabulary is used as a test case in all the examples for the rest of
the book.

6.3.3 Adding Repeating Values

Not all recorded values occur as single properties within the PostCon vocabulary-a web resource can
move many times, and there can be more than one recommended resource to replace an outdated
item. The vocabulary must be able to handle repeating properties. Within the RDF specification, you
can use the same predicate in multiple statements, such as the following:

<pstcn:related rdf:resource="monsters2.htm" />
<pstcn:related rdf:resource="monsters3.htm" />
<pstcn:related rdf:resource="monsters4.htm" />

The distinguishing aspect of these statements then becomes the object, the predicate value. Attached
to the primary resource, this syntax states that there are three related resources for the entity being
defined. It also states that there's no order to the resources, and the only point of connectivity
between the resources is that they're related, in some way, to the original entity. There is neither an
implicit nor an explicit grouping between the items.

At this point, the RDF/XML just shows the three related resources, and the resulting directed graph
would show these items with ovals drawn around the objects as well as the resource. However, if I
wanted to include additional information about the relationship between the related resources and the
resource being defined in the document, I could do so in a couple of ways.

First, I can define the related resource using the rdf:parseType="Resource" setting as I did with
pstcn:bio . The problem with this is that each of the related resources actually does have a URI, and
using rdf:parseType , I'd lose this information. Instead, what I'll use is the rdf:resource attribute.

This allows me to specify the URI for the resource.

Since these resources are related but separate from the main resource, I tend to want my model to
reflect this, so I'll define the related resources as separate resources, related only through the URI.
Example 6-3 shows the RDF/XML for the PostCon instance with the three related resources, each of
them defined using the pstcn:Resource class, and each including the related resource attributes of
title and reason .

Example 6-3. Adding in related PostCon resources

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/"
 xml:base="http://burningbird.net/articles/">

 <pstcn:Resource rdf:about="monsters1.htm">

 <pstcn:bio rdf:parseType="Resource">
 <pstcn:title>Tale of Two Monsters: Legends</pstcn:title>
 <pstcn:abstract>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 When I think of "monsters" I think of the creatures of
 legends and tales, from the books and movies, and
 I think of the creatures that have entertained me for years.
 </pstcn:abstract>
 <pstcn:description>
 Part 1 of four-part series on cryptozoology, legends,
 Nessie the Loch Ness Monster and the giant squid.
 </pstcn:description>
 <pstcn:dateCreated>1999-08-01T00:00:00-06:00</pstcn:dateCreated>
 <pstcn:author>Shelley Powers</pstcn:author>
 <pstcn:owner>Burningbird Network</pstcn:owner>
 </pstcn:bio>

 <pstcn:related rdf:resource="monsters2.htm" />
 <pstcn:related rdf:resource="monsters3.htm" />
 <pstcn:related rdf:resource="monsters4.htm" />

 </pstcn:Resource>

 <pstcn:Resource rdf:about="monsters2.htm">
 <pstcn:title>Cryptozooloy</pstcn:title>
 <pstcn:reason>First in the Tale of Two Monsters series.</pstcn:reason>
 </pstcn:Resource>
 <pstcn:Resource rdf:about="monsters3.htm">
 <pstcn:title>A Tale of Two Monsters: Architeuthis Dux </pstcn:title>
 <pstcn:reason>Second in the Tale of Two Monsters series.</pstcn:reason>
 </pstcn:Resource>
 <pstcn:Resource rdf:about="monsters4.htm">
 <pstcn:title>Nessie, the Loch Ness Monster </pstcn:title>
 <pstcn:reason>Fourth in the Tale of Two Monsters series.</pstcn:reason>
 </pstcn:Resource>

</rdf:RDF>

Since the predicates associated with each related resource are simple and nonrepeating, I'm going to
apply another shortcut to simplify the model-simple nonrepeating predicates can be listed as
attributes on the resource:

 <pstcn:Resource rdf:about="monsters2.htm"
 pstcn:title="Cryptozooloy"
 pstcn:reason="First in the Tale of Two Monsters series." />
 <pstcn:Resource rdf:about="monsters3.htm"
 pstcn:title="A Tale of Two Monsters: Architeuthis Dux"
 pstcn:reason="Second in the Tale of Two Monsters series." />
 <pstcn:Resource rdf:about="monsters4.htm"
 pstcn:title="Nessie, the Loch Ness Monster"
 pstcn:reason="Fourth in the Tale of Two Monsters series." />

The resulting RDF/XML and directed graph are the same. The only difference this change makes is to
make the XML simpler and a little easier to read. It's also more comfortable for people familiar with
XML, though, as stated earlier, it does tend to obscure the RDF constructs.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Another reason to use this shortcut is that, if I preferred not to list the resources separately, I could list
them as is with the predicates redefined as attributes, directly back into main resource. You couldn't do
this using the rdf:resource attribute because you couldn't add formalized predicates to the block

without generating errors. You would have to use the more formal node-arc-node by defining the
predicate (pstcn:related), which would contain the rdf:Description block, which would then

contain the related predicates:

<pstcn:related>
 <rdf:Description rdf:about="monsters3.htm"
 pstcn:title="A Tale of Two Monsters: Architeuthis Dux"
 pstcn:reason="Second in the Tale of Two Monsters series." />
</pstcn:related>

However, you can add predicates to the related resources that have been defined through the use of
pstcn:Resource , by using the predicates as attributes shortcut, as demonstrated in Example 6-4 .

Example 6-4. Embedding related resources directly in main resource

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/"
 xml:base="http://burningbird.net/articles/">

 <pstcn:Resource rdf:about="monsters1.htm">

 <pstcn:bio rdf:parseType="Resource">
 <pstcn:title>Tale of Two Monsters: Legends</pstcn:title>
 <pstcn:abstract>
 When I think of "monsters" I think of the creatures of
 legends and tales, from the books and movies, and
 I think of the creatures that have entertained me for years.
 </pstcn:abstract>
 <pstcn:description>
 Part 1 of four-part series on cryptozoology, legends,
 Nessie the Loch Ness Monster and the giant squid.
 </pstcn:description>
 <pstcn:dateCreated>1999-08-01T00:00:00-06:00</pstcn:dateCreated>
 <pstcn:author>Shelley Powers</pstcn:author>
 <pstcn:owner>Burningbird Network</pstcn:owner>
 </pstcn:bio>

 <pstcn:Resource rdf:resource="monsters2.htm"
 pstcn:title="Cryptozooloy"
 pstcn:reason="First in the Tale of Two Monsters series." />
 <pstcn:Resource rdf:resource="monsters3.htm"
 pstcn:title="A Tale of Two Monsters: Architeuthis Dux"
 pstcn:reason="Second in the Tale of Two Monsters series." />
 <pstcn:Resource rdf:resource="monsters4.htm"
 pstcn:title="Nessie, the Loch Ness Monster"
 pstcn:reason="Fourth in the Tale of Two Monsters series." />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </pstcn:Resource>
</rdf:RDF>

In some ways, this demonstrates that you either commit to using formal syntax all the way, or you
commit to using abbreviated (shortcut) syntax all the way-at least for one complete RDF construct,
such as the related items. Since my reasons for wanting to list the related resources separately
remain, even though the RDF/XML and resulting directed graph are identical, I'll continue to use the
approach demonstrated in Example 6-3 .

If I want to show that predicates are related to one another in some way beyond just being related to
the defined entity, I'll use a container to group the items and then attach that container to the entity.
The next section describes how.

6.3.4 Adding a Container

The PostCon vocabulary considers movements of the web resource related to one another. The first
movement occurs when the resource is added to the web site; the second and each additional
movement are related to one another by the date and time of the movement. Infinite numbers of
movements are possible.

To group like items that are related to one another as well as to the main resource, I could use either
an RDF Container or a Collection. Both provide the grouping-of-related-items semantics that I need,
but the relationship and number of items within the grouping differ based on which construct I use.
And that's how I'll determine which to use.

As described in Chapter 4 , a Container is a group of related items that has no nth point-in other
words, it could possibly contain an infinite number of items. A Collection, on the other hand, always has
an endpoint, the implicit rdf:nil . Use of Collection creates the assumption that the grouping is of a

finite number of objects.

Additional tool-based semantics are associated with containers and collections-such as sequence with
rdf:Seq and so on-but these aren't enforced within the RDF data model/graph, so I won't depend on

them to make my decision about what to use. Instead, I'll rely on the one factor that is semantically
defined in the RDF graph: whether the number of items in the group is infinite. Since I determined that
a web resource can have infinite movements, I will choose an RDF Container.

I now face additional choices, such as which container type to use. There is no enforcement of the
Container differences within RDF, but there is a general assumption about behavior attached to each,
so I'll want to pick the RDF Container type (Seq , Bag , or Alt) that fits my vocabulary model.

Since each movement is unique, the Bag type isn't a good fit because an implicit assumption
associated with it is that items can be duplicated. Nor is the Alt type a good fit, because it implicitly
represents items that are alternatives to each other. The best fit is Seq , which has implicit associated
semantics of related items in a sequence, from first to last. This fits history particularly well.

Each movement has its own URI representing the movement itself, so each one can be identified
distinctly. Because of this, my preference is, again, to list these out separately, related to the main
resource through the container. Example 6-5 shows the PostCon vocabulary after adding in the Seq
container. Note that I created a new class for the movement, pstcn:Movement . I couldn't use
pstcn:Resource , because the movements really aren't resources. I could have also left the resources
defined in generic rdf:Description blocks, but I prefer to embed as much information into the model

as possible, and defining the new class-Movement-provides a type to go with each movement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

definition, independent of the relationship defined by history earlier in the main resource.

Example 6-5. PostCon vocabulary instance showing Movement and related
resources

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/"
 xml:base="http://burningbird.net/articles/">

 <pstcn:Resource rdf:about="monsters1.htm">

<!--biography of resource-->
 <pstcn:bio rdf:parseType="Resource">
 <pstcn:title>Tale of Two Monsters: Legends</pstcn:title>
 <pstcn:abstract>
 When I think of "monsters" I think of the creatures of
 legends and tales, from the books and movies, and
 I think of the creatures that have entertained me for years.
 </pstcn:abstract>
 <pstcn:description>
 Part 1 of four-part series on cryptozoology, legends,
 Nessie the Loch Ness Monster and the giant squid.
 </pstcn:description>
 <pstcn:dateCreated>1999-08-01T00:00:00-06:00</pstcn:dateCreated>
 <pstcn:author>Shelley Powers</pstcn:author>
 <pstcn:owner>Burningbird Network</pstcn:owner>
 </pstcn:bio>

<!--related resources-->
 <pstcn:related rdf:resource="monsters2.htm" />
 <pstcn:related rdf:resource="monsters3.htm" />
 <pstcn:related rdf:resource="monsters4.htm" />

<!--resource movements-->
 <pstcn:history>
 <rdf:Seq>
 <rdf:_1 rdf:resource="http://www.yasd.com/dynaearth/monsters1.htm" />
 <rdf:_2 rdf:resource="http://www.dynamicearth.com/articles/monsters1.htm" />
 <rdf:_3 rdf:resource="http://burningbird.net/articles/monsters1.htm" />
 </rdf:Seq>
 </pstcn:history>

 </pstcn:Resource>

<!--related resource defintions-->
 <pstcn:Resource rdf:about="monsters2.htm">
 <pstcn:title>Cryptozooloy</pstcn:title>
 <pstcn:reason>First in the Tale of Two Monsters series.</pstcn:reason>
 </pstcn:Resource>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <pstcn:Resource rdf:about="monsters3.htm">
 <pstcn:title>A Tale of Two Monsters: Architeuthis Dux (Giant Squid)</pstcn:title>
 <pstcn:reason>Second in the Tale of Two Monsters series.</pstcn:reason>
 </pstcn:Resource>
 <pstcn:Resource rdf:about="monsters4.htm">
 <pstcn:title>Nessie, the Loch Ness Monster </pstcn:title>
 <pstcn:reason>Fourth in the Tale of Two Monsters series.</pstcn:reason>
 </pstcn:Resource>

<!--resource movement definitions-->
 <pstcn:Movement rdf:about="http://www.yasd.com/dynaearth/monsters1.htm">
 <pstcn:movementType>Add</pstcn:movementType>
 <pstcn:reason>New Article</pstcn:reason>
 <pstcn:date>1998-01-01T00:00:00-05:00</pstcn:date>
 </pstcn:Movement>
 <pstcn:Movement rdf:about="http://www.dynamicearth.com/articles/monsters1.htm">
 <pstcn:movementType>Move</pstcn:movementType>
 <pstcn:reason>moved to dynamicearth.com domain</pstcn:reason>
 <pstcn:date>1999-10-31:T00:00:00-05:00</pstcn:date>
 </pstcn:Movement>
 <pstcn:Movement rdf:about="http://burningbird.net/articles/monsters1.htm">
 <pstcn:movementType>Move</pstcn:movementType>
 <pstcn:reason>Moved to burningbird.net</pstcn:reason>
 <pstcn:date>2002-11-01:T00:00:00-05:00</pstcn:date>
 </pstcn:Movement>

</rdf:RDF>

There is also something intriguing in this RDF/XML example-the actual resource is defined both as the
document Resource and as a Movement (in fact, the last movement for the history since the resource
was defined in the PostCon system before any additional movements were made). This is perfectly
legitimate and results in an interesting directed graph of a resource that has an arc pointing back to
itself, as demonstrated in Figure 6-3 .

Figure 6-3. A resource containing a predicate whose value is the same URI
as the original resource

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Also notice in the figure that the original resource now has two type properties associated with it: one
for Resource and one for Movement. Again, this is perfectly legitimate RDF. In fact, the more
knowledge we can put into the model, and the simpler the syntax, the better.

6.3.5 Adding in a Value

The example RDF/XML demonstrated to this point has focused on bio, history, and related resources.
The other PostCon classes-Relevancy and Presentation-are treated the same as bio, except for one
new construct: the Presentation's Required property. Unlike other properties defined in the document
up to this point, Requires is neither a straight resource property nor is it a literal-it's a value that has
an associated type that determines how the value is treated. The ideal RDF/XML construct to use to
represent this is rdf:value .

Without replicating all of the Relevancy properties, the following RDF/XML demonstrates how
rdf:value would work for pstcn:requires . The pstcn:requires property is defined with an
rdf:parseType of "Resource" , and has two attributes: pstcn:type , which specifies the type of
required resource, and rdf:value , which signals the actual value. Two resources are required:

<pstcn:presentation rdf:parseType="Resource">
 <pstcn:requires rdf:parseType="Resource">
 <pstcn:type>stylesheet</pstcn:type>
 <rdf:value>http://burningbird.net/de.css</rdf:value>
 </pstcn:requires>
 <pstcn:requires rdf:parseType="Resource">
 <pstcn:type>logo</pstcn:type>
 <rdf:value>http://burningbird.net/mm/dynamicearth.jpg</rdf:value>
 </pstcn:requires>
</pstcn:presentation>

The intended semantics for rdf:value are that it always references the actual value of the

predicate-anything else is just definitive information about how that predicate is treated.

The rest of the vocabulary uses the same constructs as have been used to this point and is omitted for
brevity. A complete example of the vocabulary is given later, after a few modifications are made to
merge the vocabulary with the Dublin Core. In the meantime, though, testing the vocabulary
demonstrated to this point with other web site test cases shows that it tests out with all the business
domain data. At this point, we can be comfortable that the vocabulary matches the system needs. The
next step is to formalize the vocabulary schema using RDF Schema.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

6.4 Formalizing the Vocabulary with RDFS

Formally defined RDFS schemas aren't required for all RDF documents, but the schema approach
guarantees that a particular RDF document is semantically and syntactically consistent across
implementations.

RDFS defines which vocabulary elements are classes and which are properties. In addition, RDFS also
matches a property with a specific element, as well as defining the range for each property. This is
particularly helpful when defining properties that contain a range of elements, such as the
pstcn:movementType property in the last section. RDFS also documents the type of literal that each

property can reference-whether the property value is a string or a number, such as an integer.

6.4.1 What Is a Class and What Is a Property?

Determining what is a class and what is a property within the vocabulary is an interesting RDF
Schema challenge. Your first reaction might be that an RDFS Class is equivalent to a relational data
model Entity, but that doesn't hold.

In actuality, an RDFS Class is any item that can be used in place of an rdf:Description block, with
an associated rdf:type, such as Movement or Resource. An RDFS Class is not a resource property,

like bio, Presentation, or Relevancy.

A quick test to double-check your use of RDFS Class versus RDFS Property for
an item is to use ICS-FORTH's Validating RDF Parser (VRP), asking for a graph
output on the test RDF/XML document. This tool actually identifies which
elements it views as classes and which as properties. This tool is covered in
Chapter 7.

6.4.2 Defining the Vocabulary Classes

To start, define the PostCon vocabulary classes. Table 6-1 shows that the classes mark the main
objects defined within the table, as you would expect. Using RDFS, then, the main object of the
vocabulary, Resource, is defined with the following RDF/XML syntax:

<rdfs:Class rdf:about="http://burningbird.net/postcon/elements/1.0/Resource">
 <rdfs:isDefinedBy rdf:resource="http://burningbird.net/postcon/elements/1.0/"/>
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/>
 <rdfs:label xml:lang="en"> Web Resource</rdfs:label>
 <rdfs:comment xml:lang="en">
 Web resource managed with PostCon System
 </rdfs:comment>
</rdfs:Class>

This RDF/XML defines Resource to be an RDF Class, defined within the schema

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://burningbird.net/postcon/elements/1.0/, which is a subclass of the RDF Resource type.
Its human-readable label is Web Resource, and the comments provide a brief description of the item.
Both label and comments have an xml:lang attribute defining the language. If you're providing
multilingual support for your elements, repeat the label and comments but change the xml:lang

attribute value.

Though things such as label and comments aren't necessary for the schema,
you should always include these. BrownSauce, a Java-based RDF browser
(described in Chapter 7), provides this information to people browsing RDF/XML
documents.

This class by itself demonstrates the need for namespaces within RDF/XML; the RDF vocabulary also
has a Resource class. The same type of RDFS/XML is also applied to bio, Movement, Relevancy, and
Presentation, all of which are defined as classes. All other elements are defined as properties.

6.4.3 Defining the Properties

Each property within the vocabulary is defined, including providing data type information, human-
readable comments and labels, and a definition of the relationship between properties and classes.
The latter is particularly important because it provides usage guidelines as well as understanding of
the schema.

An example of a property definition for PostCon is the following, for type:

<rdf:Property rdf:about="http://burningbird.net/postcon/elements/1.0/type">
 <rdfs:isDefinedBy rdf:resource="http://burningbird.net/postcon/elements/1.0/"/>
 <rdfs:label xml:lang="en">Resource Type</rdfs:label>
 <rdfs:comment>Type of Required Resource</rdfs:comment>
 <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>
</rdf:Property>

The type element has a range that determines the type of values associated with it. In this case, the
range is literal, meaning the element will contain literal values. In addition, there are two domains
associated with the title that show the classes the property is associated with: bio and Movement.

The other properties are defined using almost the same schema, changing the label, comments, and
domain as appropriate; the two properties history and related are different from the other

properties, though, because they don't describe a literal. For instance, here is the definition for the
related property:

<rdf:Property rdf:about="http://burningbird.net/postcon/elements/1.0/related">
 <rdfs:isDefinedBy rdf:resource="http://burningbird.net/postcon/elements/1.0/"/>
 <rdfs:label xml:lang="en"> Related Resource</rdfs:label>
 <rdfs:comment xml:lang="en">
 Resources within PostCon system related to current resource
 </rdfs:comment>
 <rdfs:range rdf:resource="http://burningbird.net/postcon/elements/1.0/Resource"/>
 <rdfs:domain rdf:resource="http://burningbird.net/postcon/elements/1.0/Resource"/>
</rdf:Property>

http://burningbird.net/postcon/elements/1.0/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The predicate object associated with related is a resource of class Movement. Other than that,

though, the definition is fairly close to how all the properties are defined.

The complete schema is shown in the next section. Note that testing the schema within the RDF
Validator does prove that the RDF Schema is valid RDF/XML. The resultant RDF graph is a bit hard to
read, though-all those references to the same RDFS classes.

Certain of the properties in the schema have an "allowable values are..." within them. There is
currently no way to constrain allowable literals within the RDF Schema. However, since the schema is
used more for human rather than machine interpretation, including this information within the
comment is useful.

A vocabulary schema defines vocabulary elements and their relationship with one another and with
the RDF and RDFS elements. For instance, since the PostCon schema document is a resource, using
the PostCon vocabulary elements within the document to detail its creation is perfectly acceptable.

This approach is used within another widely used vocabulary, the Dublin Core (DC), which we will
look at next and compare to the PostCon vocabulary. We'll also find that we can modify PostCon to
make use of DC elements, simplifying it.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

6.5 Integrating the Dublin Core

According to the mission statement, located at http://www.dublincore.org/ :

The Dublin Core Metadata Initiative is an open forum engaged in the development of interoperable
online metadata standards that support a broad range of purposes and business models. DCMI's
activities include consensus-driven working groups, global workshops, conferences, standards liaison,
and educational efforts to promote widespread acceptance of metadata standards and practices.

The Dublin Core's primary purpose is to discover a metadata model that can be used to describe resources
intelligently so that this information can be used in more efficient and intelligent resource searches,
knowledge systems, and so on.

At first, this description of Dublin Core may position it as a competitive specification to RDF, but in reality,
they're highly compatible. Dublin Core is an effort to define the business data of the Web, so to speak. RDF,
on the other hand, is a way of recording this metadata so that it can be merged with other metadata
defined for other businesses, not just the business of the Web. In other words, RDF is the methodology, and
Dublin Core is one business employing the RDF methodology.

Since Dublin Core is an effort to define business data, serializing that data need not be done with RDF. The
Dublin Core project provides an RDF/XML version of the data that it has defined, true. But it also provides
one in simple, basic XML and one in HTML. However, it is the RDF/XML version we're interested in and will
focus on at this time.

6.5.1 An Overview of the Dublic Core MetaData Element Set

The Dublin Core MetaData Element set (Version 1.1, found at
http://www.dublincore.org/documents/1999/07/02/dces/ . consists of a core set of elements that comprise
what is known as simple Dublin Core. These elements are:

title

A name given to the resource
creator

An entity responsible for making the content of the resource
subject

The topic of the content of the resource
description

An account of the content of the resource
public

An entity responsible for making the content available
contributor

http://www.dublincore.org/
http://www.dublincore.org/documents/1999/07/02/dces/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

An entity responsible for making contributions to the content of the resource
date

A date associated with an event in the life cycle of the resource
type

The nature or genre of the content of the resource
format

The physical or digital manifestation of the resource
identifier

An unambiguous reference to the resource within a given context
source

A reference to the resource from which the present resource is derived
language

A language of the intellectual content of the resource
relation

A reference to a related resource
coverage

The extent or scope of the content of the resource
rights

Information about rights held in and over the resource

Associated with the different entities is additional information, such as Language being derived from the
two-character language code derived from the ISO 639 document (such as "EN" for English) and a date
format for date (YYYY-MM-DD).

As you can see immediately, several DC elements could be used in place of PostCon elements. First, though,
let's take a look at Dublin Core implemented as RDF/XML.

6.5.2 Dublin Core in RDF/XML

The Dublin Core vocabulary is one of the simplest, which is probably one reason it's so heavily used. The
namespace for the elements is at:

http://purl.org/dc/elements/1.1/

If you go to this URL with your browser, you'll see an actual document, with a schema description for each
element. The prefix usually given for the Dublin Core namespace within an RDF document is dc , which we'll

use in this chapter.

I won't include the document here, nor will I discuss each element. However, some elements are of
particular interest because they seem to map to a PostCon element. And if there's a way of reducing
PostCon, we'll want to pursue it.

For instance, one element from PostCon that definitely looks to be in DC is title . The Dublin Core title is
defined to be "a name given to the resource." Since our definition of title in PostCon is "resource's title,"

http://purl.org/dc/elements/1.1/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

we have a match. Looking at the schema definition for the property we find:

<rdf:Property rdf:about="http://purl.org/dc/elements/1.1/title">
 <rdfs:labelxml:lang="en-US">Title</rdfs:label>
 <rdfs:commentxml:lang="en-US">A name given to the resource.</rdfs:comment>
 <dc:descriptionxml:lang="en-US">Typically, a Title will be a name by which the
resource is formally known.</dc:description>
 <rdfs:isDefinedByrdf:resource="http://purl.org/dc/elements/1.1/" />
 <dcterms:issued>1999-07-02</dcterms:issued>
 </rdf:Property>

There are some differences between this and the original PostCon title schema definition. For instance,
the schema for the PostCon title listed the property's domains (that is, acceptable contexts for the
property) to be the pstcn:Resource class (and indirectly to Movement, which is a subclass of
pstcn:Resource). The DC doesn't list domains because it doesn't seek to limit what classes it can be used

for, opening the door for us to use the property in PostCon.

Another difference is that DC is used directly to describe the property. Again, this won't adversely impact
the use of title in PostCon. In fact, the additional information is helpful. Finally, there is another property
assigned to a different namespace: dcterms:issued . Before we can determine whether this property will
limit our use of title in PostCon, we'll have to take a closer look at this new schema.

For more on Dublin Core in RDF/XML, see the pending recommendation "Expressing
Simple Dublin Core in RDF/XML," authored by Dave Beckett, Eric Miller, and Dan
Brickley, and found at http://www.dublincore.org/documents/2001/11/28/dcmes-
xml/ .

6.5.3 Qualified Dublin Core

All of the Dublin Core metadata elements are properties within the context of RDF. Within an RDF graph,
that means that all of them radiate out from a single resource. Again, this makes the vocabulary attractive
to use because it is so simple and uncomplicated. However, there are basic limitations to how broadly one
can stretch any one element to meet a specific use. And by stretching meanings at all, we lose some
refinement.

Sure, we can group all dates together, but do we want to?

So, the Dublin Core Working Group set out to define a set of qualifiers that limit or modify the meaning of
the DC elements. Additionally, the group determined that the qualifiers belonged in one of two different
categories: qualifiers for element refinement and qualifiers for encoding schema.

Element refinement qualifiers restrict the scope of the element. For instance, there is the general concept of
date and then there is creation date (from PostCon), modified date, and so on. Those vocabularies that
want such refinements can use things such as modified date and creation date. However, vocabularies (or
applications) that don't care about the refinement can ignore it and just treat the qualified elements as date

.

Element refinement qualifiers are based on the business of the schema rather than its implementation.
Encoding schema qualifiers, though, exist purely to help with parsing and interpretation of the data. Again,
date can have many interpretations as to what type of date is being recorded. By using encoding schema

qualifiers, there's no confusion about what to expect for data within a specific date field.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When looking at Dublin Core, we can see uses for several of the elements, but when we look at the qualified
Dublin Core implemented in RDF/XML, we find a strong match for several PostCon classes and properties.

First, the namespace for the qualified Dublin Core Schema is at http://purl.org/dc/terms/ . The namespace
prefix for the qualified Dublin Core is usually dcterms .

The first property that attracts attention is created, a qualifier on the date property. The created definition

is:

<rdf:Property rdf:about="http://purl.org/dc/terms/created">
 <rdfs:label>Created</rdfs:label>
 <rdfs:comment>Date of creation of the resource.</rdfs:comment>
 <rdfs:subPropertyOf rdf:resource = "http://purl.org/dc/elements/1.1/date" />
 <rdfs:isDefinedBy rdf:resource="http://purl.org/dc/terms/" />
</rdf:Property>

The thing to focus on is the comment Date of creation of the resource . This exactly matches the
description for the pstcn:creationDate property in PostCon. In the last section, we weren't sure how to
handle the dcterms:issued , but now we know it's nothing more than an issued date, a further qualification
of the specification for the title property.

Another set of properties that seemed similar to PostCon elements is the DC Relation property and the
qualified replacers: dcterms:isReplacedBy , dcterms:seeAlso , dcterms:references , and so on.
They're not used to replace PostCon's related property (and associated Resource class) though because

the DC properties have built-in semantics that don't encompass all of PostCon's related property semantics.
However, PostCon's pstcn:dependencies and DC's qualifier dcterms:requires seem to be a good match.

After the first glance, both the original Dublin Core elements and the qualified element set seem to have
good replacements, or additions, to the PostCon vocabulary. And since both are defined within RDF, it will
be simple to use them together in RDF/XML documents.

6.5.4 Mixing Vocabularies

After the first glance at the Dublin Core simple elements, I decided to replace the PostCon attributes
demonstrated in this chapter with matching DC elements. These include the following replacements:

pstcn:title

dc:title
pstcn:author

dc:creator
pstcn:owner

dc:publisher
pstcn:abstract

dcterms:abstract
pstcn:description

dc:description
pstcn:creationDate

http://lib.ommolketab.ir
http://lib.ommolketab.ir

dc:created
pstcn:date

dc:date

I also decided to add the format property, to provide the resource file type. Small changes, but they do

reduce the size of the PostCon vocabulary, as well as allowing easier data sharing on these items.

To see how these two vocabularies work together, the RDF/XML for the sample monsters1.htm resource is

provided in Example 6-6 . The Dublin Core Schema namespaces are added to the top-level RDF element,
and the dc and dcterms properties are used in place of the now-removed PostCon properties. In addition,

both Relevancy and the Presentation resources have been added to complete the document.

Example 6-6. Mixing PostCon and DC vocabulary elements

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pstcn="http://burningbird.net/postcon/elements/1.0/"
 xmlns:dcterms="http://purl.org/dc/terms/"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xml:base="http://burningbird.net/articles/">

 <pstcn:Resource rdf:about="monsters1.htm">

<!--Resource biographical information-->
 <pstcn:bio rdf:parseType="Resource">
 <dc:title>Tale of Two Monsters: Legends</dc:title>
 <dcterms:abstract>
 When I think of "monsters" I think of the creatures of
 legends and tales, from the books and movies, and
 I think of the creatures that have entertained me for years.
 </dcterms:abstract>
 <dc:description>
 Part 1 of four-part series on cryptozoology, legends,
 Nessie the Loch Ness Monster and the giant squid.
 </dc:description>
 <dc:created>1999-08-01T00:00:00-06:00</dc:created>
 <dc:creator>Shelley Powers</dc:creator>
 <dc:publisher>Burningbird Network</dc:publisher>
 </pstcn:bio>

<!--Resource's relevancy at time RDF/XML document was built-->
 <pstcn:relevancy rdf:parseType="Resource">
 <pstcn:currentStatus>Active</pstcn:currentStatus>
 <dcterms:valid>2003-12-01T00:00:00-06:00</dcterms:valid>
 <dc:subject>legends</dc:subject>
 <dc:subject>giant squid</dc:subject>
 <dc:subject>Loch Ness Monster</dc:subject>
 <dc:subject>Architeuthis Dux</dc:subject>
 <dc:subject>Nessie</dc:subject>
 <dcterms:isReferencedBy rdf:resource="http://www.pibburns.com/cryptozo.htm" />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <dcterms:references rdf:resource="http://www.nrcc.utmb.edu/" />
 </pstcn:relevancy>

<!--Presentation/consumption information about resource-->
 <pstcn:presentation rdf:parseType="Resource">
 <dc:format>text/html</dc:format>
 <dcterms:conformsTo>XHTML 1.0 Strict</dcterms:conformsTo>
 <dcterms:conformsTo>CSS Validation</dcterms:conformsTo>
 <dcterms:requires>HTML User agent</dcterms:requires>
 <pstcn:requires rdf:parseType="Resource">
 <pstcn:type>stylesheet</pstcn:type>
 <rdf:value>http://burningbird.net/de.css</rdf:value>
 </pstcn:requires>
 <pstcn:requires rdf:parseType="Resource">
 <pstcn:type>logo</pstcn:type>
 <rdf:value>http://burningbird.net/mm/dynamicearth.jpg</rdf:value>
 </pstcn:requires>
 </pstcn:presentation>

<!--History of events of resource-->
 <pstcn:history>
 <rdf:Seq>
 <rdf:_1 rdf:resource="http://www.yasd.com/dynaearth/monsters1.htm" />
 <rdf:_2 rdf:resource="http://www.dynamicearth.com/articles/monsters1.htm" />
 <rdf:_3 rdf:resource="http://burningbird.net/articles/monsters1.htm" />
 </rdf:Seq>
 </pstcn:history>

<!--Resources internal to PostCon that are related to resource-->
 <pstcn:related rdf:resource="monsters2.htm" />
 <pstcn:related rdf:resource="monsters3.htm" />
 <pstcn:related rdf:resource="monsters4.htm" />
 </pstcn:Resource>

<!--Related resources-->
 <pstcn:Resource rdf:about="monsters2.htm">
 <dc:title>Cryptozooloy</dc:title>
 <pstcn:reason>First in the Tale of Two Monsters series.</pstcn:reason>
 </pstcn:Resource>
 <pstcn:Resource rdf:about="monsters3.htm">
 <dc:title>A Tale of Two Monsterss: Architeuthis Dux (Giant Squid)</dc:title>
 <pstcn:reason>Second in the Tale of Two Monsters series.</pstcn:reason>
 </pstcn:Resource>
 <pstcn:Resource rdf:about="monsters4.htm">
 <dc:title>Nessie, the Loch Ness Monster </dc:title>
 <pstcn:reason>Fourth in the Tale of Two Monsters series.</pstcn:reason>
 </pstcn:Resource>

<!--Resource events-->
 <pstcn:Movement rdf:about="http://www.yasd.com/dynaearth/monsters1.htm">
 <pstcn:movementType>Add</pstcn:movementType>
 <pstcn:reason>New Article</pstcn:reason>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <dc:date>1998-01-01T00:00:00-05:00</dc:date>
 </pstcn:Movement>
 <pstcn:Movement rdf:about="http://www.dynamicearth.com/articles/monsters1.htm">
 <pstcn:movementType>Move</pstcn:movementType>
 <pstcn:reason>Moved to separate dynamicearth.com domain</pstcn:reason>
 <dc:date>1999-10-31:T00:00:00-05:00</dc:date>
 </pstcn:Movement>
 <pstcn:Movement rdf:about="http://www.burningbird.net/articles/monsters1.htm">
 <pstcn:movementType>Move</pstcn:movementType>
 <pstcn:reason>Collapsed into Burningbird</pstcn:reason>
 <dc:date>2002-11-01</dc:date>
 </pstcn:Movement>

</rdf:RDF>

Running this document through the RDF Validator generates the expected RDF graph and no error.

One thing that this exercise demonstrates is the need to keep a vocabulary small and then add to it. As you
saw with Dublin Core, the group started with a small set of important elements and then extended this with
a new set of qualifier elements. This is a good approach for you to follow with your vocabularies and is the
approach that other groups such as the RSS Working Group (discussed in Chapter 13) used. Doing so,
others are more likely to make use of your vocabulary, and it also decreases the chances for modification in
the future. The complete RDF Schema for PostCon, after the Dublin Core elements have been identified, is
actually quite small. It's shown in its entirety in Example 6-7 .

Example 6-7. PostCon RDF Schema

<?xml version="1.0"?>
<rdf:RDF xml:lang="en"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<rdfs:Class rdf:about="http://burningbird.net/postcon/elements/1.0/Resource">
 <rdfs:isDefinedBy rdf:resource="http://burningbird.net/postcon/elements/1.0/"/>
<rdfs:label xml:lang="en"> Web Resource</rdfs:label>
 <rdfs:comment xml:lang="en">
 Web resource managed with PostCon system
 </rdfs:comment>
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource" />
</rdfs:Class>

<rdfs:Class rdf:about="http://burningbird.net/postcon/elements/1.0/Movement">
 <rdfs:isDefinedBy rdf:resource="http://burningbird.net/postcon/elements/1.0/"/>
<rdfs:label xml:lang="en"> Web Resource Movement</rdfs:label>
 <rdfs:comment xml:lang="en">
 An event for the resource within the PostCon system
 </rdfs:comment>
</rdfs:Class>

<rdf:Property rdf:about="http://burningbird.net/postcon/elements/1.0/bio">
 <rdfs:isDefinedBy rdf:resource="http://burningbird.net/postcon/elements/1.0/"/>
 <rdfs:label xml:lang="en">Resource biography</rdfs:label>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <rdfs:comment xml:lang="en">
 Biographical information for resource
 </rdfs:comment>
 <rdfs:range rdf:resource="http://burningbird.net/postcon/elements/1.0/Resource"/>
 <rdfs:domain rdf:resource="http://burningbird.net/postcon/elements/1.0/Resource"/>
</rdf:Property>

<rdf:Property rdf:about="http://burningbird.net/postcon/elements/1.0/relevancy">
 <rdfs:isDefinedBy rdf:resource="http://burningbird.net/postcon/elements/1.0/"/>
 <rdfs:label xml:lang="en">Resource Relevancy</rdfs:label>
 <rdfs:comment xml:lang="en">
 Biographical information for resource
 </rdfs:comment>
 <rdfs:range rdf:resource="http://burningbird.net/postcon/elements/1.0/Resource"/>
 <rdfs:domain rdf:resource="http://burningbird.net/postcon/elements/1.0/Resource"/>
</rdf:Property>

<rdf:Property rdf:about="http://burningbird.net/postcon/elements/1.0/presentation">
 <rdfs:isDefinedBy rdf:resource="http://burningbird.net/postcon/elements/1.0/"/>
 <rdfs:label xml:lang="en">Resource Presentation</rdfs:label>
 <rdfs:comment xml:lang="en">
 Information related to relevancy of resource
 </rdfs:comment>
 <rdfs:range rdf:resource="http://burningbird.net/postcon/elements/1.0/Resource"/>
 <rdfs:domain rdf:resource="http://burningbird.net/postcon/elements/1.0/Resource"/>
</rdf:Property>

<rdf:Property rdf:about="http://burningbird.net/postcon/elements/1.0/history">
 <rdfs:isDefinedBy rdf:resource="http://burningbird.net/postcon/elements/1.0/"/>
 <rdfs:label xml:lang="en"> Web Content History</rdfs:label>
 <rdfs:comment xml:lang="en">
 History of movement of content within system
 </rdfs:comment>
 <rdfs:range rdf:resource="http://burningbird.net/postcon/elements/1.0/Resource"/>
 <rdfs:domain rdf:resource="http://burningbird.net/postcon/elements/1.0/Resource"/>
</rdf:Property>

<rdf:Property rdf:about="http://burningbird.net/postcon/elements/1.0/currentStatus">
 <rdfs:isDefinedBy rdf:resource="http://burningbird.net/postcon/elements/1.0/"/>
 <rdfs:label xml:lang="en">Current Status</rdfs:label>
 <rdfs:comment>Current status of document (allowable values of Active and Inactive)</rdfs:
comment>
 <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>
 <rdfs:domain rdf:resource="http://postcon/elements/1.0/Relevancy"/>
</rdf:Property>

<rdf:Property rdf:about="http://burningbird.net/postcon/elements/1.0/reason">
 <rdfs:isDefinedBy rdf:resource="http://burningbird.net/postcon/elements/1.0/"/>
 <rdfs:label xml:lang="en">Reason</rdfs:label>
 <rdfs:comment>Reason</rdfs:comment>
 <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>
 <rdfs:domain rdf:resource="http://postcon/elements/1.0/Resource"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</rdf:Property>

<rdf:Property rdf:about="http://burningbird.net/postcon/elements/1.0/movementType">
 <rdfs:isDefinedBy rdf:resource="http://burningbird.net/postcon/elements/1.0/"/>
 <rdfs:label xml:lang="en">Movement Type</rdfs:label>
 <rdfs:comment>Type of Movement (allowable values of Move, Add, Remove)</rdfs:comment>
 <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>
 <rdfs:domain rdf:resource="http://postcon/elements/1.0/Movement"/>
</rdf:Property>

<rdf:Property rdf:about="http://burningbird.net/postcon/elements/1.0/related">
 <rdfs:isDefinedBy rdf:resource="http://burningbird.net/postcon/elements/1.0/"/>
 <rdfs:label xml:lang="en"> Related Resource</rdfs:label>
 <rdfs:comment xml:lang="en">
 Resources within PostCon system related to current resource
 </rdfs:comment>
 <rdfs:range rdf:resource="http://burningbird.net/postcon/elements/1.0/Resource"/>
</rdf:Property>

<rdf:Property rdf:about="http://burningbird.net/postcon/elements/1.0/requires">
 <rdfs:isDefinedBy rdf:resource="http://burningbird.net/postcon/elements/1.0/"/>
 <rdfs:label xml:lang="en">Resource Requirement</rdfs:label>
 <rdfs:comment xml:lang="en">
 External resource required by current resource
 </rdfs:comment>
 <rdfs:range rdf:resource="http://burningbird.net/postcon/elements/1.0/Resource"/>
</rdf:Property>

<rdf:Property rdf:about="http://burningbird.net/postcon/elements/1.0/type">
 <rdfs:isDefinedBy rdf:resource="http://burningbird.net/postcon/elements/1.0/"/>
 <rdfs:label xml:lang="en">Resource Type</rdfs:label>
 <rdfs:comment>Type of Required Resource</rdfs:comment>
 <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>
</rdf:Property>

</rdf:RDF>

The schema is in RDF/XML and can be validated. Once validated, it can be embedded within an outer HTML
or XHTML document in the location of the schema URI or left as a pure RDF/XML document in same
location. The main reason for doing this (it's not required) is to give people the opportunity to review the
schema to better understand the vocabulary. In addition, another reason to do this is that some tools, such
as BrownSauce (which we'll look at in detail in Chapter 7), use the schema to provide better information
about the RDF graph.

6.5.5 Using DC-dot to Generate DC RDF

Much about a document can be deleted directly from the document itself. The format, location, subject,
author, and copyright from HTML meta tags and so on can all be derived from scraping the HTML for a

particular web resource.

Based on this, an organization going by the abbreviation UKOLN, at the University of Bath in the UK,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

created the DC-dot generator. This online application will scrape a web resource, pull whatever information
it can from it, and then return the result formatted in multiple ways, including RDF, XHTML meta tags, and

straight XML.

Access DC-dot at http://www.ukoln.ac.uk/metadata/dcdot/ .

I decided to try this with the sample "Tale of Two Monsters" article. In the first page of the application, I
entered the URL for the document, and checked both boxes to have the tool attempt to determine publisher
and return RDF. The page returned has a first guess at the RDF/XML and provides a form that you can then
use to modify the DC elements generated. Figure 6-4 displays the form you can use to modify the results.

Figure 6-4. DC-dot format to modify results

With some modifications, the DC RDF/XML document generated is shown in Example 6-8 .

Example 6-8. DC-dot-generated RDF/XML

<?xml version="1.0"?>
<!DOCTYPE rdf:RDF SYSTEM "http://purl.org/dc/schemas/dcmes-xml-20000714.dtd">

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <rdf:Description about="http://burningbird.net/articles/monsters3.htm">
 <dc:title>
 Tale of Two Monsters: Architeuthis Dux

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </dc:title>
 <dc:creator>
 Shelley Powers
 </dc:creator>
 <dc:subject>
 Internet; Web; Computers; Software; Technology;
 Meteorology; Geology; Oceanography; Astronomy; Math;
 Science; Physics; P2P
 </dc:subject>
 <dc:description>
 The Giant Squid and its relationship to mythology.
 </dc:description>
 <dc:publisher>
 Burningbird
 </dc:publisher>
 <dc:date>
 2002-01-20
 </dc:date>
 <dc:type>
 Text
 </dc:type>
 <dc:format>
 text/html
 </dc:format>
 <dc:format>
 8287 bytes
 </dc:format>
 </rdf:Description>
</rdf:RDF>

The generated RDF/XML validates with the RDF Validator, except for one element, boldfaced in the example
code-the generator uses an unqualified about attribute, which, though allowed for existing vocabularies, is

discouraged with new vocabularies and RDF/XML instances. However, this is a quick change to make.

Now that you've had a chance to try out RDF/XML, it's time to try out a few of the many, many tools and
utilities and APIs that have been created specifically for processing RDF/XML.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 7. Editing, Parsing, and Browsing
RDF/XML
Up to this point the only "moving parts" associated with RDF/XML have been those associated with
the RDF Validator. Chances are good that this will always be your most important tool when working
with RDF/XML. However, the RDF Validator isn't the only helpful tool, utility, or application for
reading, validating, or writing serialized RDF. Several editors, parsers, browsers, and converters are
available; we'll look at some of them in this chapter.

Though much of the technology associated with RDF and RDF/XML is geared toward developers,
using many of the RDF/XML utilities requires little or no development experience. You may have to
have to have certain software installed, but for the most part, it is either easy to install or is installed
on your system.

All the applications and utilities in this chapter are a great way of getting familiar with RDF/XML
whether you're a markup person, a developer, or just an interested bystander, because all the
applications focus on either reading or creating RDF/XML-not on the development necessary to get
to that point.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.1 BrownSauce

After you've worked with RDF/XML for a while, you can read the formatted data and the structures
quite easily. However, many people prefer to use a visual tool of some form for this purpose. There
are graphical tools and editors, which I'll discuss later, but for now I want to demonstrate
BrownSauce, a specialized RDF/XML browser.

One of the most useful tools I used while writing this book was BrownSauce, a Java-based RDF/XML
browser created by Damian Steer. It's web based but can run locally on your desktop even if you
don't have a web server installed; the only requirement is a Java Runtime Environment (JRE).
BrownSauce parses RDF/XML documents and transforms them into a very readable format. One of its
better features is its addition of hypertext links from the properties and classes in the RDF/XML
document to the actual vocabulary schema definition in a separate page.

BrownSauce is open source and based on Jena (which is covered in the next
chapter). However, you don't have to be Java literate to use BrownSauce. You
do need support for the Java Runtime, such as 1.4 (find this at
http://javasoft.com), but once that's installed, BrownSauce provides all the
other Java classes you'll need. Download BrownSauce at
http://brownsauce.sourceforge.net/. The version I used in the book is 0.1.2,
running on Windows 2000 and Linux.

Once you've downloaded and installed BrownSauce, following the installation instructions, start the
Java-based server that allows you to access the application by double-clicking on run.bat if you're
running a Windows system or by running run.sh in a shell if you're a Unix or Mac OS X user.
BrownSauce starts in port 8080 by default so you'll access the browser (typically) using:

http://localhost:8080/brownsauce/brownsauce.html

When the main BrownSauce page opens, you're shown two rows of form fields. The first row contains
fields for entering a source and a resource URI. The first two fields enable browsing for a specific RDF
resource within a given RDF/XML document. This tends to be what I use. For instance, to look at the
example RDF/XML document used in the previous chapters, I'll enter the following values:

Source: http://burningbird.net/articles/monsters1.rdf
Resource: http://burningbird.net/articles/monsters1.htm

The page that opens, shown in Figure 7-1, displays all the predicates for the resource and their
associated values.

Figure 7-1. BrownSauce opening page for monsters1.rdf RDF/XML
document

http://javasoft.com
http://brownsauce.sourceforge.net/
http://localhost:8080/brownsauce/brownsauce.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

As you can see from the figure, the display is quite easy to read, making effective use of whitespace.
All non-hypertext-linked values are literals from the model-those items that would be drawn with a
rectangular box within an RDF directed graph. What's interesting is that BrownSauce looked for a
subproperty of rdfs:label - in this case the dc:title attribute from the main resource - and

actually used different CSS styling in the page to make it stand out. (Yet another reason to make use
of existing vocabularies such as Dublin Core as much as possible: many tools will already be aware of
them and able to treat them specially.)

In addition, BrownSauce also made other subtle modifications to the values it found to make the
content more readable. As an illustration, the pstcn:currentStatus predicate was displayed as
Current Status in the document. The label was, again, pulled from the rdfs:label property within

the PostCon schema-another reason to make sure your RDF Schema document is up-to-date and
accessible.

BrownSauce also resolves some of the more complex RDF/XML constructs. For instance, the rdf:Seq

that lists the history of a specific resource defined in the document is shown only by the predicate
name, with hypertext link items to each event's resource for additional information. In addition, the
use of rdf:value, which is a structured resource, is resolved to the type information (pstcn:type)

and an object reference to the actual value itself.

All of the predicates are hypertext linked. If you click on one of them, information from the schema
for the item is displayed. Clicking on Current Status opens a new page with schema information for
the status element, as shown in Figure 7-2.

Figure 7-2. Schema definition for PostCon currentStatus property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

BrownSauce loads all the schemas from all the vocabularies, so no matter what predicate you click,
you should find the schema definition if one has been provided. And if rdfs:comment and rdfs:label

predicates are used, these will be shown also. (Yet another reason to make sure you use RDFS
predicates rather than Dublin Core to describe schema elements, as some vocabularies have done.)

You can modify BrownSauce's appearance by modifying the accompanying bs.css file. Schemas are
cached, which makes reading additional documents using the same schemas quicker.

BrownSauce doesn't provide parsed access to data, nor does it allow you to edit it. What it does do is
provide a human-readable format for examining RDF/XML documents. In particular, if you're defining
domain data using RDF/XML, BrownSauce allows the domain experts who may not be RDF literate a
chance to look at the data without having to be comfortable with either XML or RDF/XML. No matter
how comfortable you are with RDF/XML, BrownSauce is a great tool to test your documents, your
vocabulary, and the vocabulary's associated schema.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.2 Parsers

RDF/XML parsers are usually included as part of a broader API. For instance, Jena has a parser, as do other
APIs in other languages. Parsers aren't typically accessed directly, however, because you generally want to
do something else with all that data after parsing it into an application-specific stream of data.

However, accessing parsers directly can be handy for a couple of reasons. The primary reason is to validate
an RDF/XML document-a compliant RDF/XML parser should return meaningful error messages and warnings
when it encounters erroneous or suspicious RDF/XML. Another reason to run a parser directly is to create
another serialization of the RDF/XML, but in a different format, such as a set of N-Triples. When I'm creating
a new RDF application, I run my example RDF/XML documents through an N-Triples parser to get the N-
Triples; I then use these to help with my coding of the application.

I parse RDF/XML into triples because most RDF APIs provide methods for working with
triples, not the higher-level construct view. As an example, instead of creating an RDF
container directly, you'll usually have to create all the triples that represent the
statements underlying the container. This is demonstrated more clearly in the next
several chapters.

In this section, we'll take a quick look at some parsers, beginning with ARP, the parser that forms the core of
the well-used RDF Validator.

7.2.1 ARP2

ARP stands for Another RDF/XML Parser. ARP2 is the second generation of this parser, which has been
modified to work with the newest RDF specifications. ARP is part of the Jena Toolkit, discussed in Chapter 8 ,
but is also a separate installation in its own right. You can download and install ARP without having to
download and install Jena. However, you have to have Java installed, at least JRE 1.4 or above.

ARP is installed with Jena, or you can access it directly at
http://www.hpl.hp.com/semweb/arp.htm . If you do download and install ARP as a
separate processor, intending it to coexist with a separate installation of Jena, make
sure that you don't have the separate ARP in your classpath, or you could have
problems working with Jena.

Normally ARP is used within another application, but there is one class that you can access at the command
line as a method of testing the viability of your RDF/XML document-the NTriple class. Once ARP2 is installed,
you can run NTriple from the command line thus:

java com.hp.hpl.jena.rdf.arp.NTriple http://burningbird.net/articles/monsters1.rdf

NTriple produces either a listing of N-Triples from the RDF/XML, or produces errors if there's something
wrong with the syntax. A partial sampling of the command-line output from the parser of the file shown in
the command line is given in Example 7-1 .

http://www.hpl.hp.com/semweb/arp.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 7-1. Sample output from triples generated by ARP

http://burningbird.net/articles/monsters1.htm> <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> <http://burningbird.net/postcon/elements/1.0/Resource> .
_:jARP1 <http://purl.org/dc/elements/1.1/title> "Tale of Two Monsters: Legends" .
_:jARP1 <http://purl.org/dc/terms/abstract> "\n When I think of \"monsters\" I
think of the creatures of \n legends and tales, from the books and movies, and
\n I think of the creatures that have entertained me for years.\n \t " .
_:jARP1 <http://purl.org/dc/elements/1.1/description> "\n Part 1 of four-part
series on cryptozoology, legends, \n Nessie the Loch Ness Monster and the giant
squid.\n " .
_:jARP1 <http://purl.org/dc/elements/1.1/created> "1999-08-01T00:00:00-06:00" .
_:jARP1 <http://purl.org/dc/elements/1.1/creator> "Shelley Powers" .
_:jARP1 <http://purl.org/dc/elements/1.1/publisher> "Burningbird Network" .
<http://burningbird.net/articles/monsters1.htm> <http://burningbird.net/postcon/elements/
1.0/Bio> _:jARP1 .
_:jARP2 <http://burningbird.net/postcon/elements/1.0/currentStatus> "Active" .
_:jARP2 <http://purl.org/dc/terms/valid> "2003-12-01T00:00:00-06:00" .
_:jARP2 <http://purl.org/dc/elements/1.1/subject> "legends" .
_:jARP2 <http://purl.org/dc/elements/1.1/subject> "giant squid" .
_:jARP2 <http://purl.org/dc/elements/1.1/subject> "Loch Ness Monster" .
_:jARP2 <http://purl.org/dc/elements/1.1/subject> "Architeuthis Dux" .
_:jARP2 <http://purl.org/dc/elements/1.1/subject> "Nessie" .
_:jARP2 <http://purl.org/dc/terms/isReferencedBy> "http://www.pibburns.com/cryptozo.htm" .
_:jARP2 <http://purl.org/dc/terms/references> "http://www.nrcc.utmb.edu/" .
<http://burningbird.net/articles/monsters1.htm> <http://burningbird.net/postcon/elements/
1.0/Relevancy> _:jARP2 .

Notice that the parser returns annotated text, showing line returns and maintaining the integrity of the text
as it found it in the document.

The output from ARP demonstrates one of the dangers of manually creating
RDF/XML-preservation of special characters and whitespace. It's pretty common to
break lines or line characters up when you type something manually, but such
whitespace will be retained unnecessarily when the RDF/XML is read in by a parser
such as ARP. If you create RDF/XML manually, drop whitespace unless it's an integral
part of the text.

The NTriple command format is:

java <class-path> com.hp.hpl.jena.arp.NTriple ([-[xstfu]][-b xmlBase -[eiw]
NNN[,NNN...]] [file] [url])...

Note, though, that with the release of ARP2 that I downloaded (which was alpha), I had to change the
classpath to com.hp.hpl.jena.rdf.arp.NTriple . NTriple can work with files on a filesystem or accessed through
a URL. The other options for NTriple are given in Table 7-1 .

Table 7-1. NTriple options

http://burningbird.net/articles/monsters1.htm> <http://www.w3.org/1999/02/22-rdf-syntax-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Option Description

-b URI or -b URL Set XML base to URI or absolute URL.

-r Document is completely RDF/XML (not embedded) and may not have rdf:RDF tags.

-t No triples, errors only.

-x Lax mode, suppress warnings.

-s Strict mode, transform most warnings to errors.

-u Allow unqualified attributes.

-f All errors are final and processing stops when it reaches first.

-n Show line numbers for triples.

E NNN[,NNN] Treat specified warnings as errors.

-I NNN[,NNN] Ignore numbered error/warning conditions.

In particular, if you're working with the new RDF/XML specification constructs, such as rdf:nodeID or
rdf:datatype , you may want to test it with ARP, suppressing triples. Example 7-2 shows an RDF/XML
document that's actually generated by Jena. It features the newer rdf:nodeID attribute, which breaks down
on older parsers. However, I modified the file to change one of the legitimate uses of rdf:resource to
rdf:about (in bold).

Example 7-2. RDF/XML document with one error

<rdf:RDF
 xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'
 xmlns:NS0='http://burningbird.net/postcon/elements/1.0/'
 xmlns:dc='http://purl.org/dc/elements/1.0/'
 >
 <rdf:Description rdf:nodeID='A0'>
 <dc:creator>Shelley Powers</dc:creator>
 <dc:publisher>Burningbird</dc:publisher>
 <dc:title xml:lang='en'>Tale of Two Monsters: Legends</dc:title>
 </rdf:Description>
 <rdf:Description rdf:about='http://burningbird.net/articles/monsters1.htm'>
 <NS0:related rdf:about='http://burningbird.net/articles/monsters2.htm'/>
 <NS0:related rdf:resource='http://burningbird.net/articles/monsters3.htm'/>
 <NS0:Bio rdf:nodeID='A0'/>
 </rdf:Description>
</rdf:RDF>

Running the NTriple application with the -t option returns the following error from this file:

C:\>java com.hp.hpl.jena.rdf.arp.NTriple -t c:\writing\rdfbook\java\pracRDFThird
.rdf

Error: file:/c:/writing/rdfbook/java/pracRDFThird.rdf[12:77]: {E201} Syntax error
when processing attribute rdf:about.
Cannot have attribute rdf:about in this context.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As you can see, ARP2 not only finds the error, it also gives you the location of the error and the reason the
error occurs.

ARP2 works from the command line only, but if you're more interested in a parser with a GUI frontend, you
might want to try out ICS-FORTH's Validating RDF Parser.

7.2.2 ICS-FORTH Validating RDF Parser

The ICS-FORTH Validating RDF Parser (VRP), like ARP, is part of a suite of tools but can also be downloaded
separately. In addition, again like ARP, the only requirement to run the tool is a Java Runtime Environment
installed, JRE 1.4 or up.

You can download ICS-FORTH's Validating RDF Parser from the following location :
http://athena.ics.forth.gr:9090/RDF/ . You can also get access to it as part of the
RDFSuite.

VRP is a set of Java classes that you can use within your own Java classes. However, the parser also comes
with a Swing-based GUI frontend that you can use directly without having to touch any code. To access the
GUI for the parser, once you've downloaded and unzipped the file containing the source, you're ready to
start using it. Start up the parser by typing the following line:

java -classpath <path to VRP directory>/classes GUI.VRPGUI

The page that opens has two text input fields, one for an input file and one for recording the results. Below
these are a set of checkboxes that switch on specific tests, such as ones for checking the syntax, checking
for class hierarchy loops, and so on. Figure 7-3 shows the tool after I validated the test document (at
http://burningbird.net/articles/monsters1.rdf), asking for validation only and having the tool test the syntax
and class and property hierarchy loops. VRP can also open an HTML or XHTML document with RDF/XML
embedded in it (as described in Chapter 3).

Figure 7-3. ICS-FORTH'sValidating RDF Parser (VRP) standalone application

http://athena.ics.forth.gr:9090/RDF/
http://burningbird.net/articles/monsters1.rdf
http://lib.ommolketab.ir
http://lib.ommolketab.ir

As you can see from the image, VRP has several input and output options. For instance, I can run the test
again, this time checking the Triples, Statements, and Graph options for output. The tool first asks me for
permission to overwrite the output file and then runs the tests, printing output to the Results window in the
application as well as to the file. The Graph option provides a text description of what would be the RDF
directed graph rather than a true graphical representation. A sampling from this file, the classes as defined in
the RDFS graph output, are shown in Example 7-3 . Note that the information associated with each schema
class, such as the isDefinedBy , comment , and label information, isn't showing in the graph, though we

know it to be present in the schema.

Example 7-3. VRP graph results describing document's classes

The classes of the Model:
http://burningbird.net/postcon/elements/1.0/#Movement
 subClassOf: []
 comment: []
 label: []
 seeAlso: []
 isDefinedBy: []
 value: []
 type: []
http://www.w3.org/1999/02/22-rdf-syntax-ns#Seq
 subClassOf: []
 comment: []
 label: []
 seeAlso: []
 isDefinedBy: []
 value: []
 type: []
http://burningbird.net/postcon/elements/1.0/#Resource
 subClassOf: []
 comment: []
 label: []

http://burningbird.net/postcon/elements/1.0/#Movement
http://www.w3.org/1999/02/22-rdf-syntax-ns#Seq
http://burningbird.net/postcon/elements/1.0/#Resource
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 seeAlso: []
 isDefinedBy: []
 value: []
 type: []

The version of the tool I used expands the absolute URIs for the classes and properties by converting them
to URI fragments, such as #Resource and #Movement , before concatenating them to the URI. The base URI

is specified with a trailing slash, just as occurs with the Dublin Core schema. The relative URIs should not
have been "corrected" to URI fragments before resolution into absolute URIs. Because of this correction, the
schema elements could not resolve correctly (as they did within BrownSauce).

VRP generates Unix-style line-feeds. If you're using the product in Windows, make
sure you view the result using a test reader that compensates for this. For example,
use Wordpad not Notepad.

This could be why the tool didn't pick up the schema information for the items, or why it may not open
related schema documents. Hard to say. One thing the tool does do is correctly resolve the RDF classes in
the document, as compared to the RDF properties. This can be very helpful when you're creating an RDF
Schema for a vocabulary and do not recall which elements are classes and which are properties.

The checks you can perform on a specific document are:

Syntax check

Checks whether the RDF/XML of the document conforms to the updated RDF/XML specification.
Semantic check: class hierarchy loop

Checks for loops in subclass hierarchy (parent class identifying itself as child of child class and so on).
Semantic check: property hierarchy loop

Same as previous but for properties.
Semantic check: domain/range of subproperties

A property's domain and range are a sum of its subproperties' domains and ranges.
Semantic check: resources of properties

Source/target property values should be instances of domain/range of property.
Semantic check: types of resources

Assigned RDF or XML type.
Extend model: external namespace

Connects to external namespaces to merge in their triples.
Extend model: type inference

Infer type of resource.
Extend model: domain/range inference

Infer domain/range from superproperty.

The semantic check for types of resources failed with all models I tested this against, including Dublin Core,
RSS, and FOAF (Friend of a Friend) RDF/XML documents. This check is looking for a specific type information
for each resource, something not available in most models. However, the example PostCon vocabulary file

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(at http://burningbird.net/articles/monsters1.rdf) did pass all other tests. When I selected the option to
include external namespace triples, the model again failed, but the results as a graph were quite interesting.

The results include information from the schema for PostCon, such as the following for the
pstcn:movementType property:

http://burningbird.net/postcon/elements/1.0/movementType
 range: [http://www.w3.org/2000/01/rdf-schema#Literal]
 domain: [http://postcon/elements/1.0/Movement]
 subPropertyOf: []
 links:
 comment: [Type of Movement (allowable values of Move, Add, Remove)]
 label: [Movement Type]
 seeAlso: []
 isDefinedBy: [http://burningbird.net/postcon/elements/1.0/]
 value: []
 type: [http://www.w3.org/1999/02/22-rdf-syntax-ns#Property]

Notice the links property and that it has no value. However, later in the document, you'll see the graph for
pstcn:movementType :

http://burningbird.net/postcon/elements/1.0/#movementType
 range: []
 domain: []
 subPropertyOf: []
 links: (http://www.yasd.com/dynaearth/monsters1.htm, Add) (http://www.
dynamicearth.com/articles/monsters1.htm, Move) (http:/burningbird.net/articles/
monsters1.htm, Move)
 comment: []
 label: []
 seeAlso: []
 isDefinedBy: []
 value: []
 type: []

Again, the automatic use of fragment identifiers breaks the information up; however, combine both blocks
and you have a relatively good idea of all the dimensions of the PostCon property pstcn:movementType .

In addition to Graph, other VRP outputs are:

Debug

Shows tokens generated by Lexar, the lexicon analyzer
Verbose

Details actions VRP takes
Triples

Model triples
Statements

Model statements
Statistic options

http://burningbird.net/postcon/elements/1.0/movementType
http://burningbird.net/postcon/elements/1.0/#movementType
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Provides other information such as number of resources, statements, and time taken for some of the
processes

I would definitely consider running VRP against an in-progress vocabulary while you're designing your
schema and then try it with External Namespaces as a test with some of your models as a check on the
schema.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.3 Editors

As I stated earlier, after some time you can become comfortable enough with RDF/XML to read and
write the documents manually. But why bother? If you need to manually write an RDF/XML
document, you're better off doing so with a specialized RDF editor.

7.3.1 IsaViz

One of the more popular editors is IsaViz, a visual RDF/XML editing tool written in Java. In fact, like
so many other RDF/XML tools, it makes use of many of the Jena classes, making Jena the most
commonly used API of all (which is why it has its own chapter).

You can access documentation and software for IsaViz at
http://www.w3.org/2001/11/IsaViz/. By the time this book hits the streets, the
version of IsaViz will be compliant with the released RDF specifications as
described earlier in the book.

Once you've downloaded and installed IsaViz, you can run it using run.sh on Unix or OS X or run.bat
on Windows. Several windows open, each containing a portion of the GUI for the application. Since
IsaViz is such a graphical tool, much of this section is going to be pretty pictures, demonstrating
different aspects of the tool.

IsaViz opens as a new project; you can either manually start creating a new RDF model or import
one in either N-Triples format or from RDF/XML. We'll start with importing the test RDF/XML
document into the editor, just to see how it works. You can import an existing document by selecting
File, and then Import, and then selecting whether to Merge the model into the existing project or
Replace it. Since the existing project doesn't have any model elements, I picked Replace and then
provided the URL for the RDF/XML document.

In a surprisingly short amount of time, IsaViz loaded the model and displayed an RDF graph of it in
the graph frame, as shown in Figure 7-4.

Figure 7-4. Importing monsters1.rdf RDF/XML document into IsaViz
project

http://www.w3.org/2001/11/IsaViz/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The full view of the model is a bit hard to read, but if you right-click on portions of the model in the
Graph frame, the focus changes and the view zooms in so that you can look at the details. Left-
clicking on any of the items in the model displays attribute information about the item in the
Attributes frame. The complete listing of properties is shown at the bottom, in the Definitions frame.
Project and model management is managed in the last frame, the Editor.

Clicking on the model, zooming in to the top resource, and left-clicking displays attribute information,
as shown in Figure 7-5.

Figure 7-5. Attributes for resource

Clicking the Delete button removes the resource from the model, and clicking Show Properties opens
another window with a listing of all resource properties, as shown in Figure 7-6. In the picture, the
only properties that show are those that belong to the immediate resource.

Figure 7-6. Properties for resource

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The bottom frame window of IsaViz contains three tabbed windows, one showing the namespaces in
the model, one showing the property types, and one showing the properties for the selected
resource. You don't have to click on the resource within the graph to select it-you can also use the
Edit menu in the IsaViz Editor window and search for a specific resource or object value.

You can zoom in on the model, by clicking the Shift key and then right-clicking in the model and
dragging to the top to zoom in and to the bottom to zoom out. Holding the Shift key and clicking on a
specific item also recenters the window on that item. To move around the model, right-click
anywhere on it and drag to the top, bottom, right, or left to move in that direction.

If you want to select a portion of the graph, click the Select icon in the IsaViz Editor window and then
click on whatever you want to select. If you want to select a resource and all of its predicates, hold
the Shift down as you select the item. The selected items are highlighted in a bold outline, as shown
in Figure 7-7.

Figure 7-7. Selected path within the RDF directed graph

In addition to examining the model, you can also edit or add to it. As stated earlier, delete an item by
selecting it and then clicking Delete from the Attributes view. You can add a new resource, property,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

or literal by clicking on the appropriate item in the IsaViz Editor window, shown in Figure 7-8, and
then clicking on the model. A definition window opens, and you can add the URI or value or predicate
URI for the item.

Figure 7-8. IsaViz Editor window with Resource selected

To add a predicate between the subject oval and the object, select the arrow icon, click first on the
resource and then on the object-the arc between the nodes is drawn.

Once you're all finished with the project, you can save for further edits, or you can export multiple
views of it. IsaViz allows you to export an RDF/XML file, an N-Triples file, a PNG graphic, or an SVG
graphic. Figure 7-9 shows the directed graph for the article RDF/XML after all but one predicate has
been deleted from the top-level resource, exported as a PNG file.

Figure 7-9. Exported PNG file of directed graph after modifications

IsaViz is an absolutely essential tool to have if you're working with RDF.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.3.2 RDF Editor in Java

As with many other applications and utilities, the RDF Editor in Java (referred to as REJ from this
point) derives much of its RDF processing power from Jena. On top of Jena's functionality is a simple,
easy-to-use text-based RDF editing tool that's compatible with X11 and Windows.

You can download the RDF Editor in Java from SourceForge at
http://sourceforge.net/projects/rdfeditor/.

REJ has a simple interface, which makes it fairly simple to learn how to use. It opens with the
RDF/XML-specific tags and namespace already inserted into a blank document. You can continue to
add to the model in the page, or you can open an existing model.

Just to see how the tool works, I opened the test RDF/XML document. To the right of the document
window is a little ruler. If you move the glider, the element selected changes, as shown in Figure 7-
10.

Figure 7-10. Selecting specific component in RDF/XML document

You can also move the selection by clicking the plus (+) button to move up, and the minus (-) button
to move the selection down. The element's position relative to the rest of the page is shown in the
window below the ruler.

Once an element is selected, you can delete it and replace the element. For instance, in Figure 7-10,
clicking the Remove button removes the text. Clicking on the Text radio button to the left of the
control bar at the bottom sets the page up for accepting a literal. Once the value is entered in the

http://sourceforge.net/projects/rdfeditor/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

field next to the Text radio button, I click the button next to it, which is now labeled PCDATA, and the
text is inserted into the document at that point.

You can also add new elements, attributes, namespaces-all using the control bar at the bottom,
which changes to fit whatever option you're in, as shown in Figure 7-11. Once you've added the new
element, you can then add literals, other elements, and attributes to it.

Figure 7-11. Adding a new element to the model

Once you're finished with the model, you can save the RDF/XML document to a new or existing file.
You can also generate an N-Triples report from the model by selecting Tools and then selecting the
N-Triples Report. The results are printed out in the bottom window and can also be saved.

Not a lot of bells and whistles, but REJ is a good choice if you're already comfortable with RDF/XML .

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 8. Jena: RDF in Java
Hewlett-Packard's Semantic Web team has been quietly working on Jena-a full-featured Java API for
RDF-about as long as work has been progressing on RDF itself. In fact, the cochair of the RDF
Working Group is Brian McBride, one of the creators of Jena.

Jena is an open source API and toolkit, accessible at Source Forge
(http://sourceforge.net/projects/jena) or at http://www.hpl.hp.com/semweb/jena.htm. In addition,
there's a Jena developers' discussion forum at http://groups.yahoo.com/group/jena-dev/.

[Team LiB]

http://sourceforge.net/projects/jena
http://www.hpl.hp.com/semweb/jena.htm
http://groups.yahoo.com/group/jena-dev/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

8.1 Overview of the Classes

Included with the Jena toolkit are the dependencies and installation instructions, which I won't repeat
here. I have worked with Jena on Linux (Red Hat), FreeBSD, and Windows; the examples included
with Jena and the examples in this chapter work equally well in all environments. The only
requirement is that you use JRE 1.2 or above.

A description of the many Java classes included with Jena is included with the installation (as
Javadocs). I won't cover all of them here, only those most critical to understanding the underlying
architecture in Jena.

I used Jena 1.6.1 in this chapter, but by the time this book is out, Jena 2.0
should be available. The Jena developers are refactoring many of the classes,
changing class structure as well as making modifications to the API itself. These
changes will break these examples, unfortunately. However, the concepts
behind the examples should stay the same, and the book support site will have
updated example source.

8.1.1 The Underlying Parser

Included within the Jena toolset is an RDF parser, ARP (an acronym for Another RDF Parser),
accessible as a standalone product. You had a chance to look at and work with ARP in Chapter 7, so I
won't go into additional detail here, since it works in the background with no further intervention
necessary on our part. Our work begins once the RDF data is loaded into a model.

Though not covered in this book, Jena also includes an N3 (Notation3) parser.

8.1.2 The Model

Jena's API architecture focuses on the RDF model, the set of statements that comprises an RDF
document, graph, or instantiation of a vocabulary. A basic RDF/XML document is created by
instantiating one of the model classes and adding at least one statement (triple) to it. To view the
RDF/XML, read it into a model and then access the individual elements, either through the API or
through the query engine.

The ModelMem class creates an RDF model in memory. It extends ModelCom-the class incorporating
common model methods used by all models-and implements the key interface, Model. In addition,
the DAML class, DAMLModelImpl, subclasses ModelMem.

The ModelRDB class is an implementation of the model used to manipulate RDF stored within a
relational database such as MySQL or Oracle. Unlike the memory model, ModelRDB persists the RDF
data for later access, and the basic functionality between it and ModelMem is opening and maintaining

http://lib.ommolketab.ir
http://lib.ommolketab.ir

a connection to a relational database in addition to managing the data. An interesting additional
aspect of this implementation, as we'll see later in Section 8.4, is that you can also specify how the
RDF model is stored within a relational database-as a flat table of statements, as a hash, or through
stored procedures.

Once data is stored in a model, the next step is querying it.

One major change with Jena 2.0 is the addition of the ModelFactory to create

new instances of models.

8.1.3 The Query

You can access data in a stored RDF model directly using specific API function calls, or via RDQL-an
RDF query language. As will be demonstrated in Chapter 10, querying data using an SQL-like syntax
is a very effective way of pulling data from an RDF model, whether that model is stored in memory or
in a relational database.

Jena's RDQL is implemented as an object called Query. Once instantiated, it can then be passed to a
query engine (QueryEngine) and the results stored in a query result (QueryResult and various
implementations: QueryResultsFormatter, QueryResultsMem, and QueryResultsStream). To

access specific returned values, program variables are bound to the result sets using the
ResultBinding class.

Once data is retrieved from the RDF/XML, you can iterate through it using any number of iterators.
Once you query data using the Query object, or if you access all RDF/XML elements of a specific
class, you can assign the results to an iterator object and iterate through the set, displaying the
results or looking for a specific value. Each of several different iterator classes within Jena is focused
on specific RDF/XML classes, such as NodeIterator for general RDF nodes (literal or resource
values), ResIterator, and StmtIterator.

8.1.4 DAML+OIL

Starting with later versions of Jena, support for DAML+OIL was added to the tool suite. DAML+OIL is
a language for describing ontologies, a way of describing constraints and refinements for a given
vocabulary that are beyond the sophistication of RDFS. Much of the effort on behalf of the Semantic
Web is based on the Web Ontology Language at the W3C, which owes much of its effort to
DAML+OIL. The principle DAML+OIL class within Jena, outside of the DAMLModel, is the
DAMLOntology class. I won't be covering the DAML+OIL classes in this chapter, but the creators of

Jena provide a tutorial that demonstrates them and is included in the documents you get when you
download Jena.

Ontologies, DAML+OIL, and the W3C ontology language effort, OWL, are
described in Chapter 12.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

8.2 Creating and Serializing an RDF Model

Automating the process of creating an RDF/XML document is actually a fairly simple process, but you
have to understand first how your RDF triples relate to one another. One approach to using Jena to
generate RDF/XML for a particular vocabulary is to create a prototype document of the vocabulary and
run it/them through the RDF Validator. Once the RDF/XML validates, parse it into N-Triples, and use
these to build an application that can generate instances of a model of a given vocabulary, each using
different data.

For the purposes of this chapter, I'm using Example 6-6 from Chapter 6 for a demonstration. This
particular document, duplicated in this chapter's source, records the history and status of an article from
one of my web sites. It makes a good example because it demonstrates the relationships that can appear
within the PostCon vocabulary, and therefore makes a fine prototype for building an application that will
build new versions of PostCon RDF/XML documents.

The examples in this chapter are, for the most part, working with the in-memory
model from Jena. This model doesn't require the reader to have Berkeley DB,
MySQL, or any other database installed.

8.2.1 Very Quick Simple Look

At its simplest, you can create an RDF model, create a single resource, add a couple of properties and
then serialize it, all with just a few lines of code. So to get started, we'll do just that.

In Example 8-1 , a new model is created, with the resource and one predicate repeated with two different
objects. To create this model, an in-memory memory model is instantiated first, then an instance of an
RDF resource using the Jena Resource class. Two instances of Property are created and attached to the
module using addProperty , forming two complete RDF statements. The first parameter in the
addProperty method is the Property instance, the second the actual property value. Once the model is
built, it's printed out to standard output using the Jena PrintWriter class. For now, the values used

within the model are all hardcoded into the application.

Example 8-1. Creating an RDF model with two statements, serialized to
RDF/XML

import com.hp.hpl.mesa.rdf.jena.mem.ModelMem;
import com.hp.hpl.mesa.rdf.jena.model.*;
import com.hp.hpl.mesa.rdf.jena.common.PropertyImpl;
import java.io.FileOutputStream;
import java.io.PrintWriter;

public class pracRdfFirst extends Object {

 public static void main (String args[]) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 String sURI = "http://burningbird.net/articles/monsters1.htm";
 String sPostcon = "http://www.burningbird.net/postcon/elements/1.0/";
 String sRelated = "related";
 try {
 // Create an empty graph
 Model model = new ModelMem();

 // Create the resource
 Resource postcon = model.createResource(sURI);

 // Create the predicate (property)
 Property related = model.createProperty(sPostcon, sRelated);

 // Add the properties with associated values (objects)
 postcon.addProperty(related,
 "http://burningbird.net/articles/monsters3.htm");
 postcon.addProperty(related,
 "http://burningbird.net/articles/monsters2.htm");

 // Print RDF/XML of model to system output
 model.write(new PrintWriter(System.out));

 } catch (Exception e) {
 System.out.println("Failed: " + e);
 }
 }
}

Once compiled, running the application results in the following output:

<rdf:RDF
 xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'
 xmlns:NS0='http://www.burningbird.net/postcon/elements/1.0/'
 >
 <rdf:Description rdf:about='http://burningbird.net/articles/monsters1.htm'>
 <NS0:related>http://burningbird.net/articles/monsters3.htm</NS0:related>
 <NS0:related>http://burningbird.net/articles/monsters2.htm</NS0:related>
 </rdf:Description>
</rdf:RDF>

The generated RDF validates within the RDF Validator, producing the graph shown in Figure 8-1 .

Figure 8-1. RDF model with one resource and two statements

At this point, we can continue creating and adding properties to the model directly in the application.
However, the problem with creating the Property and Resource objects directly in the application that

http://lib.ommolketab.ir
http://lib.ommolketab.ir

builds the models is that you have to duplicate this functionality across all applications that want to use
the vocabulary. Not only is this inefficient, it adds to the overall size and complexity of an application. A
better approach would be one the Jena developers demonstrated when they built their vocabulary
objects: using a Java wrapper class.

Though omitted in Example 8-1 and other examples, you should close the memory
model and free the resources using the model.close() method.

8.2.2 Encapsulating the Vocabulary in a Java Wrapper Class

If you look at your Jena installation, in the directory source code directory under the following path, you'll
find several Java classes in the vocabulary directory, /com/hp/hpl/mesa/rdf/jena/vocabulary .

The classes included wrap Dublin Core (DC) RDF, VCARD RDF, and so on. By using a wrapper class for
the properties and resources of your RDF vocabulary, you have a way of defining all aspects of the RDF
vocabulary in one spot, an approach that simplifies both implementation and maintenance.

The location of the vocabulary classes will change in Version 2.0.

In this section, we'll create a vocabulary class for PostCon, using the existing Jena vocabulary wrapper
classes as a template, The PostCon wrapper class consists of a set of static strings holding property or
resource labels and a set of associated RDF properties, as shown in Example 8-2 . As complex as the
example RDF file is, you may be surprised by how few entries there are in this class; PostCon makes
extensive use of other RDF vocabularies for much of its data collection, including Dublin Core, which has a
predefined vocabulary wrapper class included with Jena (DC.java).

Example 8-2. POSTCON vocabulary wrapper class

package com.burningbird.postcon.vocabulary;

import com.hp.hpl.mesa.rdf.jena.common.ErrorHelper;
import com.hp.hpl.mesa.rdf.jena.common.PropertyImpl;
import com.hp.hpl.mesa.rdf.jena.common.ResourceImpl;
import com.hp.hpl.mesa.rdf.jena.model.Model;
import com.hp.hpl.mesa.rdf.jena.model.Property;
import com.hp.hpl.mesa.rdf.jena.model.Resource;
import com.hp.hpl.mesa.rdf.jena.model.RDFException;

public class POSTCON extends Object {

 // URI for vocabulary elements
 protected static final String uri = "http://burningbird.net/postcon/elements/1.0/";

 // Return URI for vocabulary elements
 public static String getURI()
 {
 return uri;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 // Define the property labels and objects
 static final String nbio = "bio";
 public static Property bio = null;
 static final String nrelevancy = "relevancy";
 public static Property relevancy = null;
 static final String npresentation = "presentation";
 public static Resource presentation = null;
 static final String nhistory = "history";
 public static Property history = null;
 static final String nmovementtype = "movementType";
 public static Property movementtype = null;
 static final String nreason = "reason";
 public static Property reason = null;
 static final String nstatus = "currentStatus";
 public static Property status = null;
 static final String nrelated = "related";
 public static Property related = null;
 static final String ntype = "type";
 public static Property type = null;
 static final String nrequires = "requires";
 public static Property requires = null;

 // Instantiate the properties and the resource
 static {
 try {

 // Instantiate the properties
 bio = new PropertyImpl(uri, nbio);
 relevancy = new PropertyImpl(uri, nrelevancy);
 presentation = new PropertyImpl(uri, npresentation);
 history = new PropertyImpl(uri, nhistory);
 related = new PropertyImpl(uri, nrelated);
 type = new PropertyImpl(uri, ntype);
 requires = new PropertyImpl(uri, nrequires);
 movementtype = new PropertyImpl(uri, nmovementtype);
 reason = new PropertyImpl(uri, nreason);
 status = new PropertyImpl(uri, nstatus);

 } catch (RDFException e) {
 ErrorHelper.logInternalError("POSTCON", 1, e);
 }
 }

}

At the top of the example code, after the declarations, is a static string holding the URI of the PostCon
element vocabulary and a method to return it. Following these is a list of declarations for each property,
including a Property element and the associated label for each.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note that the two PostCon RDF classes Resource and Movement are not included.
The reason is that I'm using the Jena Resource class to define them and then
adding rdf:type to define the type of the resource. The resulting RDF graph is the

same-only the syntax is different.

Once the properties are defined in the code, they are instantiated, and the file is saved and compiled. To
import this class, use the following in your Java applications:

import com.burningbird.postcon.vocabulary.POSTCON;

At this point, the PostCon vocabulary wrapper class is ready for use. We rewrite the application in
Example 8-1 , except this time we'll use the POSTCON wrapper class, as shown in Example 8-3 . In
addition, we'll cascade the addProperty calls directly in the function call to create the resource
(createResource), to keep the code compact, as well as to show a more direct connection between the

two.

Example 8-3. Using wrapper class to add properties to resource

import com.hp.hpl.mesa.rdf.jena.mem.ModelMem;
import com.hp.hpl.mesa.rdf.jena.model.*;
import com.hp.hpl.mesa.rdf.jena.vocabulary.*;
import com.burningbird.postcon.vocabulary.POSTCON;
import java.io.FileOutputStream;
import java.io.PrintWriter;

public class pracRDFSecond extends Object {

 public static void main (String args[]) {

 // Resource names
 String sResource = "http://burningbird.net/articles/monsters1.htm";
 String sRelResource1 = "http://burningbird.net/articles/monsters2.htm";
 String sRelResource2 = "http://burningbird.net/articles/monsters3.htm";

 try {
 // Create an empty graph
 Model model = new ModelMem();

 // Create the resource
 // and add the properties cascading style
 Resource article
 = model.createResource(sResource)
 .addProperty(POSTCON.related, model.createResource(sRelResource1))
 .addProperty(POSTCON.related, model.createResource(sRelResource2));

 // Print RDF/XML of model to system output
 model.write(new PrintWriter(System.out));

 } catch (Exception e) {
 System.out.println("Failed: " + e);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 }
}

As you can see, using the wrapper class simplified the code considerably. The new application is saved,
compiled, and run. The output from this application is shown in Example 8-4 . Again, running it through
the RDF Validator confirms that the serialized RDF/XML represents the model correctly and validly.

Example 8-4. Generated RDF/XML from serialized PostCon submodel

<rdf:RDF
 xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'
 xmlns:NS0='http://burningbird.net/postcon/elements/1.0/'
 >
 <rdf:Description rdf:about='http://burningbird.net/articles/monsters1.htm'>
 <NS0:related rdf:resource='http://burningbird.net/articles/monsters2.htm'/>
 <NS0:related rdf:resource='http://burningbird.net/articles/monsters3.htm'/>
 </rdf:Description>
</rdf:RDF>

You've probably noted by now that Jena generates namespace prefixes for the vocabulary elements. As
you'll see later, you can change the prefix used for namespaces. However, the specific prefix used is
unimportant, except perhaps for readability across models when the same vocabulary is used in multiple
places, such as the Dublin Core vocabulary.

8.2.3 Adding More Complex Structures

As has been demonstrated, adding literal or simple resource properties for a specific RDF resource in a
model is quite uncomplicated with Jena. However, many RDF models make use of more complex
structures, including nesting resources following the RDF node-edge-node pattern. In this section, we'll
demonstrate how Jena can just as easily handle more complex RDF model structures and their associated
RDF/XML.

Much of the code shown in this chapter came about through development of the
PostCon application (RDF Web Content Information System), discussed throughout
the book. You can download the source for the Java-based implementation of
PostCon at SourceForge (http://rdfcontent.sourceforge.net/).

The pstcn:bio property is, itself, a resource that does not have a specific URI-a blank node, or bnode .
Though not a literal, it's still added as a property using addProperty .

In Example 8-5 , a new resource representing the article is created and the two related resource
properties are added. In addition, a new resource is created for bio, and several properties are added to
it; these properties are defined within the DC vocabulary, and I used the DC wrapper class to create
them. Once the resource is implemented, I attach it to a higher-level resource using addProperty .

Example 8-5. Adding a blank node to a model

import com.hp.hpl.mesa.rdf.jena.mem.ModelMem;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import com.hp.hpl.mesa.rdf.jena.model.*;
import com.hp.hpl.mesa.rdf.jena.vocabulary.*;
import com.burningbird.postcon.vocabulary.POSTCON;
import java.io.FileOutputStream;
import java.io.PrintWriter;

public class pracRDFThird extends Object {

 public static void main (String args[]) {

// Resource names
String sResource = "http://burningbird.net/articles/monsters1.htm";
String sRelResource1 = "http://burningbird.net/articles/monsters2.htm";
String sRelResource2 = "http://burningbird.net/articles/monsters3.htm";
String sType = "http://burningbird.net/postcon/elements/1.0/Resource";

try {
 // Create an empty graph
 Model model = new ModelMem();

 // Create the resource
 // and add the properties cascading style
 Resource article
 = model.createResource(sResource)
 .addProperty(POSTCON.related, model.createResource(sRelResource1))
 .addProperty(POSTCON.related, model.createResource(sRelResource2));

 // Create the bio bnode resource
 // and add properties
 Resource bio
 = model.createResource()
 .addProperty(DC.creator, "Shelley Powers")
 .addProperty(DC.publisher, "Burningbird")
 .addProperty(DC.title, model.createLiteral("Tale of Two Monsters: Legends", "en"));

 // Attach to main resource
 article.addProperty(POSTCON.bio, bio);

 // Print RDF/XML of model to system output
 model.write(new PrintWriter(System.out));

 } catch (Exception e) {
 System.out.println("Failed: " + e);
 }
 }
}
String sResource = "http://burningbird.net/articles/monsters1.htm";
String sRelResource1 = "http://burningbird.net/articles/monsters2.htm";

I could have used the cascade approach to add the bio directly to the document resource as it was being
created. However, creating bio separately and then adding it to the top-level resource is, in my opinion,
easier to read, and the resulting RDF model and serialized RDF/XML is identical. The results of the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

application are shown in Example 8-6 . As you can see, Jena uses rdf:nodeID and separates out the

resource, rather than nesting it. This is nothing more than convenience and syntactic sugar-the resulting
RDF graph is still equivalent in meaning.

Example 8-6. Generated RDF/XML demonstrating more complex structures

<rdf:RDF
 xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'
 xmlns:NS0='http://burningbird.net/postcon/elements/1.0/'
 xmlns:dc='http://purl.org/dc/elements/1.0/'
 >
 <rdf:Description rdf:nodeID='A0'>
 <dc:creator>Shelley Powers</dc:creator>
 <dc:publisher>Burningbird</dc:publisher>
 <dc:title xml:lang='en'>Tale of Two Monsters: Legends</dc:title>
 </rdf:Description>
 <rdf:Description rdf:about='http://burningbird.net/articles/monsters1.htm'>
 <NS0:related rdf:resource='http://burningbird.net/articles/monsters2.htm'/>
 <NS0:related rdf:resource='http://burningbird.net/articles/monsters3.htm'/>
 <NS0:bio rdf:nodeID='A0'/>
 </rdf:Description>
</rdf:RDF>

The example demonstrates how to implement the striped XML quality of RDF, which has a node-edge-
node-edge pattern of nesting. Another RDF pattern that PostCon supports is a container holding the
resource's history, which is implemented in Section 8.2.5 .

8.2.4 Creating a Typed Node

The RDF model created to this point shows the top-level resource as a basic rdf:Description node, with

a given URI. However, in the actual RDF/XML, the top-level node is what is known as a typed node, which
means it is defined with a specific rdf:type property.

Implementing a typed node in Jena is actually quite simple, by the numbers.

First, the POSTCON wrapper class needs to be modified to add the new resource implementation. To
support this, two new Jena classes are imported into the POSTCON Java code:

import com.hp.hpl.mesa.rdf.jena.common.ResourceImpl;
import com.hp.hpl.mesa.rdf.jena.model.Resource;

Next, the document resource definition is added:

// add the one resource
 static final String nresource = "resource";
public static Resource resource = null;

Finally, the resource is instantiated:

resource = new ResourceImpl(uri+nresource);

Once the wrapper class is modified, the typed node information is implemented within the Jena code, as

http://lib.ommolketab.ir
http://lib.ommolketab.ir

shown in Example 8-7 .

Example 8-7. Adding an rdf:type for the top-level document resource

import com.hp.hpl.mesa.rdf.jena.mem.ModelMem;
import com.hp.hpl.mesa.rdf.jena.model.*;
import com.hp.hpl.mesa.rdf.jena.vocabulary.*;
import com.burningbird.postcon.vocabulary.POSTCON;
import java.io.FileOutputStream;
import java.io.PrintWriter;

public class chap1005 extends Object {

 public static void main (String args[]) {

 // Resource names
 String sResource = "http://burningbird.net/articles/monsters1.htm";

 try {
 // Create an empty graph
 Model model = new ModelMem();

 // Create the resource
 // and add the properties cascading style
 Resource article
 = model.createResource(sResource)
 .addProperty(RDF.type, POSTCON.resource);

 // Print RDF/XML of model to system output
 model.write(new PrintWriter(System.out));

 } catch (Exception e) {
 System.out.println("Failed: " + e);
 }
 }
}

The resulting RDF/XML:

<rdf:RDF
 xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'
 >
 <rdf:Description rdf:about='http://burningbird.net/articles/monsters1.htm'>
 <rdf:type rdf:resource='http://burningbird.net/postcon/elements/1.0/Resource'/>
 </rdf:Description>
</rdf:RDF>

is equivalent to the same RDF/XML used in the sample document:

<pstcn:Resource rdf:about="monsters1.htm">
...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</pstcn:Resource>

Both result in the exact same RDF model, shown in Figure 8-2 .

Figure 8-2. RDF model of typed (document) node

8.2.5 Creating a Container

As discussed earlier in the book, an RDF container is a grouping of related items. There are no formalized
semantics for a container other than this, though tools and applications may add additional semantics
based on type of container: Alt , Seq , or Bag .

The PostCon vocabulary uses an rdf:Seq container to group the resource history, with the application-

specific implication that if tools support this concept, the contained items are sequenced in order, from
top to bottom, within the container:

<pstcn:history>
 <rdf:Seq>
 <rdf:_1 rdf:resource="http://www.yasd.com/dynaearth/monsters1.htm" />
 <rdf:_2 rdf:resource="http://www.dynamicearth.com/articles/monsters1.htm" />
 <rdf:_3 rdf:resource="http://burningbird.net/articles/monsters1.htm" />
 </rdf:Seq>
</pstcn:history>

For tools that don't support my additional container semantics, the items can be sequenced by whatever
properties are associated with each contained resource-the date, URI, movement type, or even random
sequencing:

 <rdf:Description rdf:about="http://www.yasd.com/dynaearth/monsters1.htm">
 <pstcn:movementType>Add</pstcn:movementType>
 <pstcn:reason>New Article</pstcn:reason>
 <dc:date>1998-01-01T00:00:00-05:00</dc:date>
 </rdf:Description>

RDF containers are just a variation of typed node and can be implemented directly just by using the same
code shown to this point. After all, a container is nothing more than a blank node with a given rdf:type
(such as http://www.w3.org/1999/02/22-rdf-syntax-ns#Seq) acting as the subject for several

statements, all with the same predicate and all pointing to objects that are resources. You could emulate
containers directly given previous code. However, it's a lot simpler just to use the APIs.

In Example 8-8 , an RDF container, an rdf:Seq , is created and three resources are added to it. Each of
the resources has properties of its own, including pstcn:movementType , reason (both of which are from
POSTCON), and date (from DC). Once completed, the rdf:Seq is then added to the document resource.

Example 8-8. Adding the history container to the model

import com.hp.hpl.mesa.rdf.jena.mem.ModelMem;

http://www.w3.org/1999/02/22-rdf-syntax-ns#Seq
http://lib.ommolketab.ir
http://lib.ommolketab.ir

import com.hp.hpl.mesa.rdf.jena.model.*;
import com.hp.hpl.mesa.rdf.jena.vocabulary.*;
import com.burningbird.postcon.vocabulary.POSTCON;
import java.io.FileOutputStream;
import java.io.PrintWriter;

public class pracRDFFifth extends Object {

 public static void main (String args[]) {

 // Resource names
 String sResource = "http://burningbird.net/articles/monsters1.htm";
 String sHistory1 = "http://www.yasd.com/dynaearth/monsters1.htm";
 String sHistory2 = "http://www.dynamicearth.com/articles/monsters1.htm";
 String sHistory3 = "http://www.burningbird.net/articles/monsters1.htm";

 try {
 // Create an empty graph
 Model model = new ModelMem();

 // Create Seq
 Seq hist = model.createSeq()
 .add (1, model.createResource(sHistory1)
 .addProperty(POSTCON.movementtype, model.createLiteral("Add"))
 .addProperty(POSTCON.reason, model.createLiteral("New Article"))
 .addProperty(DC.date, model.createLiteral("1998-01-01T00:00:00-05:00")))
 .add (2, model.createResource(sHistory2)
 .addProperty(POSTCON.movementtype, model.createLiteral("Move"))
 .addProperty(POSTCON.reason, model.createLiteral("Moved to separate
 dynamicearth.com domain"))
 .addProperty(DC.date, model.createLiteral("1999-10-31:T00:00:00-05:00")))
 .add (3, model.createResource(sHistory3)
 .addProperty(POSTCON.movementtype, model.createLiteral("Move"))
 .addProperty(POSTCON.reason, model.createLiteral("Collapsed
 into Burningbird"))
 .addProperty(DC.date, model.createLiteral("2002-11-01:T00:00:00-5:00")));

 // Create the resource
 // and add the properties cascading style
 Resource article
 = model.createResource(sResource)
 .addProperty(POSTCON.history, hist);

 // Print RDF/XML of model to system output
 RDFWriter writer = model.getWriter();
 writer.setNsPrefix("pstcn", "http://burningbird.net/postcon/elements/1.0/");
 writer.write(model, new PrintWriter(System.out),
 "http://burningbird.net/articles");

 } catch (Exception e) {
 System.out.println("Failed: " + e);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 }
}

Another new item added with this code is the RDFWriter.setNsPrefix method, which defines the prefix
so that it shows as pstcn rather than the default of NSO . This isn't necessarily important-whatever

abbreviation used is resolved to the namespace within the model-but it does make the models easier to
read if you use the same QName all the time.

As described in Chapter 4 , a container is a grouping of like items, and there are no additional formal
semantics attached to the concept of container. Now, the fact that I used rdf:Seq could imply that the

items within the container should be processed in order, from first to last. However, this is up to the
implementation to determine exactly how an rdf:Seq container is processed outside of the formal

semantics within the RDF specifications.

What's interesting is that, within Jena, a container is treated exactly as the typed node that I described
earlier-which means that the generated RDF/XML, as shown in Example 8-9 , shows the rdf:Seq as its

typed node equivalent, rather than in the container-like syntax shown in the example source.

Example 8-9. Generated RDF/XML showing container defined as typed node

<rdf:RDF
 xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'
 xmlns:pstcn='http://burningbird.net/postcon/elements/1.0/'
 xmlns:dc='http://purl.org/dc/elements/1.0/'
 >
 <rdf:Description rdf:about='http://burningbird.net/articles/monsters1.htm'>
 <pstcn:history rdf:nodeID='A0'/>
 </rdf:Description>
 <rdf:Description rdf:about='http://www.dynamicearth.com/articles/monsters1.htm'>
 <pstcn:movementType>Move</pstcn:movementType>
 <pstcn:reason>Moved to separate dynamicearth.com domain</pstcn:reason>
 <dc:date>1999-10-31:T00:00:00-05:00</dc:date>
 </rdf:Description>
 <rdf:Description rdf:about='http://www.burningbird.net/articles/monsters1.htm'>
 <pstcn:movementType>Move</pstcn:movementType>
 <pstcn:reason>Collapsed into Burningbird</pstcn:reason>
 <dc:date>2002-11-01:T00:00:00-5:00</dc:date>
 </rdf:Description>
 <rdf:Description rdf:nodeID='A0'>
 <rdf:type rdf:resource='http://www.w3.org/1999/02/22-rdf-syntax-ns#Seq'/>
 <rdf:_1 rdf:resource='http://www.yasd.com/dynaearth/monsters1.htm'/>
 <rdf:_2 rdf:resource='http://www.dynamicearth.com/articles/monsters1.htm'/>
 <rdf:_3 rdf:resource='http://www.burningbird.net/articles/monsters1.htm'/>
 </rdf:Description>
 <rdf:Description rdf:about='http://www.yasd.com/dynaearth/monsters1.htm'>
 <pstcn:movementType>Add</pstcn:movementType>
 <pstcn:reason>New Article</pstcn:reason>
 <dc:date>1998-01-01T00:00:00-05:00</dc:date>
 </rdf:Description>
</rdf:RDF>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

I prefer the Jena implementation of the container because it implies nothing about container-like behavior
that doesn't exist within the RDF specifications. The generated RDF/XML provides a clearer picture of a
set of like resources, grouped for some reason, and then added as a property to another resource. No
more, no less.

Now that we've had a chance to build RDF models and view the serialized RDF/XML from them, we'll take
a look at parsing and accessing data in existing RDF/XML documents.

One type of RDF statement I haven't demonstrated is a reified statement, primarily
because I don't use reified statements within my applications. However, if you need
reification for your own effort, you can find a couple of example Java applications
that build reified statements within the Jena Toolkit.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

8.3 Parsing and Querying an RDF Document

Once an RDF/XML document is created, it serves no useful purpose unless the data in the document
can be parsed and queried. In many ways, the advantage to something like RDF/XML is that the data
is structured in specific ways, making it easier to access different data with the same code.

This section will take a look at opening an existing RDF/XML document, both within the filesystem
and through the Internet, and accessing the data contained within the documents.

8.3.1 Just Doing a Basic Dump

When accessing the data within an RDF/XML document, you'll want to access the data in two different
ways-accessing specific pieces of data or accessing all of it for alternative presentation. For instance,
most of the tools discussed in Chapter 14 and Chapter 15 are interested in all the data within an
RDF/XML document, data that is then transformed in one way or another.

One of the most common ways of "dumping" the data within an RDF/XML document (outputting all
the data in a new format) is to print it out in N-Triples format. This was demonstrated with the parser
attached with the Jena Toolkit, ARP. However, another way of looking at the data is to dump out a
listing of objects of one type or another.

In Example 8-10, the PostCon RDF file for the demonstration article is accessed and opened into a
memory model using the read method; this method takes the URL of the file as its parameter. Once
the model is loaded, the listObjects method is called on the model object and assigned to a
nodeIterator. This object is just one of the many different iterators that Jena provides:
nodeIterator, stmtIterator, ResIterator, and so on. Each of these is specialized to provide
access to specific Jena object types. In the example, once the nodeIterator is populated, it's

traversed, and all of the RDF objects-the property "values"-are printed out using the simple
toString base method.

Example 8-10. Basic dump of objects, printing out object values

import com.hp.hpl.mesa.rdf.jena.mem.ModelMem;
import com.hp.hpl.mesa.rdf.jena.model.*;

public class pracRDFSixth extends Object {

public static void main (String args[]) {

String sUri = args[0];

try {

 // Create memory model, read in RDF/XML document
 ModelMem model = new ModelMem();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 model.read(sUri);

 // Print out objects in model using toString
 NodeIterator iter = model.listObjects();
 while (iter.hasNext()) {
 System.out.println(" " + iter.next().toString());
 }

 } catch (Exception e) {
 System.out.println("Failed: " + e);
 }
 }
}

The application is run against the monsters1.rdf example file:

java pracRDFSixth http://burningbird.net/articles/monsters1.rdf

This is probably one of the simplest Jena applications you can write and test to make sure that a
model is loaded correctly. Instead of objects, you could also dump out the subjects (ResIterator
and listSubjects) or even the entire statement (StmtIterator and listStatements). The
functionality is relatively the same, except for the iterator and the fetch method called.

8.3.2 Accessing Specific Values

Instead of listing all statements or all objects, you can fine-tune the code to list only subjects,
statements, or objects matching specific properties, using the property implementations created
within the wrapper classes, such as POSTCON.

To access all objects that have the PostCon related property, the POSTCON wrapper class is added to
the import section:

import com.burningbird.postcon.vocabulary.POSTCON;

Next, the listObjectsOfProperty method is used instead of listObjects:

NodeIterator iter = model.listObjectsOfProperty(POSTCON.related);

That's it to access all objects given a specific property. As you can see, the wrapper class is handy for
more than just creating a model.

To access all the statements for a given resource, first access the resource from the model and then
list all the properties associated with that resource. In Example 8-11, all of the statements are
accessed for the top-level resource contained within the document. Traversing the list of statements,
the subject is accessed and printed out (both namespace and local name), followed by the predicate
(again, namespace and local name), and finally the object.

Example 8-11. Printing out each statement triple for a given RDF/XML
document

import com.hp.hpl.mesa.rdf.jena.mem.ModelMem;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import com.hp.hpl.mesa.rdf.jena.model.*;
import com.burningbird.postcon.vocabulary.POSTCON;

public class pracRDFSeventh extends Object {

public static void main (String args[]) {

String sUri = args[0];
String sResource = args[1];

try {

 // Create memory model, read in RDF/XML document
 ModelMem model = new ModelMem();
 model.read(sUri);

 // Find resource
 Resource res = model.getResource(sResource);

 // Find properties
 StmtIterator iter = res.listProperties();

 // Print out triple - subject | property | object
 while (iter.hasNext()) {
 // Next statement in queue
 Statement stmt = iter.next();

 // Get subject, print
 Resource res2 = stmt.getSubject();
 System.out.print(res2.getNameSpace() + res2.getLocalName());

 // Get predicate, print
 Property prop = stmt.getPredicate();
 System.out.print(" " + prop.getNameSpace() + prop.getLocalName());

 // Get object, print
 RDFNode node = stmt.getObject();
 System.out.println(" " + node.toString() + "\n");
 }

 } catch (Exception e) {
 System.out.println("Failed: " + e);
 }
 }
}

Running this application outputs the triple for each statement for the document, including application-
generated object values for blank nodes:

http://burningbird.net/articles/monsters1.htm
http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://burningbird.net/postcon/
elements/1.0/Resource

http://burningbird.net/articles/monsters1.htm
http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://burningbird.net/postcon/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://burningbird.net/articles/monsters1.htm
http://burningbird.net/postcon/elements/1.0/bio
anon:a9ae05:f2ecfdc9db:-7fff

http://burningbird.net/articles/monsters1.htm http://burningbird.net/postcon/
elements/1.0/relevancy
anon:a9ae05:f2ecfdc9db:-7ff7

http://burningbird.net/articles/monsters1.htm http://burningbird.net/postcon/
elements/1.0/presentation
anon:a9ae05:f2ecfdc9db:-7fec

http://burningbird.net/articles/monsters1.htm
http://burningbird.net/postcon/elements/1.0/history
anon:a9ae05:f2ecfdc9db:-7fde

http://burningbird.net/articles/monsters1.htm
http://burningbird.net/postcon/elements/1.0/related
http://burningbird.net/articles/monsters2.htm

http://burningbird.net/articles/monsters1.htm
http://burningbird.net/postcon/elements/1.0/related
http://burningbird.net/articles/monsters3.htm

http://burningbird.net/articles/monsters1.htm
http://burningbird.net/postcon/elements/1.0/related
http://burningbird.net/articles/monsters4.htm

Note in the code that the variation of getObject used is the one returning an RDFNode object. The

reason is that other variations work only if the object is a literal and throw exceptions if a nonliteral is
found. Since some of the objects in this document are resources, the RDFNode method works best.

As can be seen from the examples, querying the data in an RDF/XML document doesn't have to be
difficult-you just have to remember the triple nature of the statements in RDF/XML.

One of the most powerful aspects of Jena is the ability to use a query
language-RDQL-to query an RDF model to data that matches given patterns.
This is explored in Chapter 10.

[Team LiB]

http://burningbird.net/articles/monsters1.htm
http://burningbird.net/postcon/elements/1.0/bio
http://burningbird.net/articles/monsters1.htm http://burningbird.net/postcon/
http://burningbird.net/articles/monsters1.htm http://burningbird.net/postcon/
http://burningbird.net/articles/monsters1.htm
http://burningbird.net/postcon/elements/1.0/history
http://burningbird.net/articles/monsters1.htm
http://burningbird.net/postcon/elements/1.0/related
http://burningbird.net/articles/monsters2.htm
http://burningbird.net/articles/monsters1.htm
http://burningbird.net/postcon/elements/1.0/related
http://burningbird.net/articles/monsters3.htm
http://burningbird.net/articles/monsters1.htm
http://burningbird.net/postcon/elements/1.0/related
http://burningbird.net/articles/monsters4.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

8.4 In-Memory Versus Persistent Model Storage

All the examples to this point have used the memory model, but Jena also provides the capability to
persist data to relational database storage. The databases supported are MySQL, PostgreSQL,
Interbase, and Oracle. Within each database system, Jena also supports differing storage layouts:

Generic

All statements are stored in a single table, and resources and literals are indexed using integer
identifiers generated by the database.

GenericProc

Similar to generic, but data access is through stored procedures.
MMGeneric

Similar to generic but can store multiple models.
Hash

Similar to generic but uses MD5 hashes to generate the identifiers.
MMHash

Similar to hash but can store multiple models.

The first step of storing a model in a database is to create the structure to store the data. The tables
must be created in an already existing database, which has been formatted and had tables added. This
code needs to be run once. After the database structure is created, it can then be opened directly in
another application or used within the same application.

In Example 8-12 , I'm storing two models in the database using a different name for each. In addition,
I'm also creating the JDBC connection directly rather than having DBConnection create it for me. The
model used is based on a MySQL database, using the MMGeneric layout. I'm not using the slightly
more efficient hash method (MMHash), primarily because the generic layout is the better one to take if

you're thinking of accessing the data directly through JDBC rather than through Jena.

At the time of this writing, using DBConnection to make the JDBC connection is

failing in the second application to access the same database. Creating an
instance of the JDBC connection and passing it in as a parameter to
DBConnection averts this failure.

Once the database is formatted, two RDF/XML documents are opened and stored in two separate
models within the database.

Example 8-12. Persisting two RDF/XML models to a MySQL database

import com.hp.hpl.mesa.rdf.jena.model.*;
import com.hp.hpl.mesa.rdf.jena.rdb.ModelRDB;
import com.hp.hpl.mesa.rdf.jena.rdb.DBConnection;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.sql.*;

public class pracRDFEighth extends Object {

public static void main (String args[]) {

// Pass two RDF documents, connection string,
String sUri = args[0];
String sUri2 = args[1];
String sConn = args[2];
String sUser = args[3];
String sPass = args[4];

try {
 // Load driver class
 Class.forName("com.mysql.jdbc.Driver").newInstance();

 // Establish connection - replace with your own conn info
 Connection con = DriverManager.getConnection(sConn, "user", "pass");
 DBConnection dbcon = new DBConnection(con);

 // Format database
 ModelRDB.create(dbcon, "MMGeneric", "Mysql");

 // Create and read first model
 ModelRDB model1 = ModelRDB.createModel(dbcon, "one");
 model1.read(sUri);

 // Create and read second model
 ModelRDB model2 = ModelRDB.createModel(dbcon, "two");
 model2.read(sUri2);

 } catch (Exception e) {
 System.out.println("Failed: " + e);
 }
 }
}

The application expects the following command line:

java pracRDFEighth firstrdffile secondrdffile connect_string username password

You'll need to adjust the database connection string, username, and password to fit your environment.
In the example, instead of reading the two models into separate databases, I could also have read
them into the same database.

Once the model data is persisted, any number of applications can then access it. In Example 8-13 , I'm
accessing both models, dumping all of the objects in the first and writing out triples from the second.

Example 8-13. Accessing RDF models stored in MySQL database

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import com.hp.hpl.mesa.rdf.jena.model.*;
import com.hp.hpl.mesa.rdf.jena.rdb.ModelRDB;
import com.hp.hpl.mesa.rdf.jena.rdb.DBConnection;
import java.sql.*;

public class pracRDFNinth extends Object {

public static void main (String args[]) {

String sConn = args[0];
String sUser = args[1];
String sPass = args[2];

try {
 // load driver class
 Class.forName("com.mysql.jdbc.Driver").newInstance();

 // Establish connection - replace with your own conn info
 Connection con = DriverManager.getConnection(sConn, sUser, sPass);
 DBConnection dbcon = new DBConnection(con);

 // Open two existing models
 ModelRDB model1 = ModelRDB.open(dbcon, "one");
 ModelRDB model2 = ModelRDB.open(dbcon, "two");

 // Print out objects in first model using toString
 NodeIterator iter = model1.listObjects();
 while (iter.hasNext()) {
 System.out.println(" " + iter.next().toString());
 }

 // Print out triples in second model - find resource
 Resource res = model2.getResource("http://burningbird.net/articles/monsters1.htm");

 // Find properties
 StmtIterator sIter = res.listProperties();

 // Print out triple - subject | property | object
 while (sIter.hasNext()) {
 // Next statement in queue
 com.hp.hpl.mesa.rdf.jena.model.Statement stmt = sIter.next();

 // Get subject, print
 Resource res2 = stmt.getSubject();
 System.out.print(res2.getNameSpace() + res2.getLocalName());

 // Get predicate, print
 Property prop = stmt.getPredicate();
 System.out.print(" " + prop.getNameSpace() + prop.getLocalName());

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Get object, print
 RDFNode node = stmt.getObject();
 System.out.println(" " + node.toString() + "\n");
 }

 } catch (Exception e) {
 System.out.println("Failed: " + e);
 }
 }
}

Jena uses a highly normalized data model for the RDF statements. In addition to accessing the data
through the Jena API, you can also access it directly using whatever database connectivity you prefer.
However, I recommend that you access the data for read-only purposes and leave updates to the Jena
API.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 9. RDF and Perl, PHP, and Python
There is commonality among many of the APIs that manipulate RDF/XML, regardless of the
programming language in which the API is implemented. Usually a new model is created, some form
of storage mechanism is assigned to it, and statements are added to it by first creating the resource,
predicate, and object associated with the statement, and then creating the statement itself. This
similarity of procedure is one of the advantages to the metadata structure of RDF-a fundamental
data structure transcends implementation. This basic data structure was apparent in the last chapter,
which manipulated RDF using Java. This same data structure and similarity of actions are also
apparent in this chapter, which looks at working with RDF/XML using what I call the three Ps of
programming.

If you've worked on web development, particularly within a Unix environment, chances are you've
used at least one of the three Ps: Perl, PHP, or Python. Perl has become ubiquitous across most Unix
environments (which now include Mac OS X); with the help of ActiveState, Perl is also fairly common
in Windows. PHP is now beginning to rival ASP as the web scripting language of choice, especially
since PHP is designed to work with Apache, the most widely used web server in the world. Python is
much newer, but is increasing in popularity at a rapid pace due to the extremely loyal following it has
attracted.

Considering the popularity of these three languages, it's not a surprise that each boasts more than
one language-based RDF/XML API or other technology. It would be difficult to find and cover every
Perl-, PHP-, and Python-based RDF/XML API. Instead, in this chapter, I focus on the APIs that have
had recent updates and/or are most widely used. This includes the APIs I've used in my own
projects, noted in the discussions.

The online book support site lists download locations for the most recent PHP,
Perl, and Python RDF/XML tools, utilities, and APIs. For more on Perl, see the
Perl resource site at http://perl.com. The main Python site is http://python.org,
and PHP's main site is http://php.net.

[Team LiB]

http://perl.com
http://python.org
http://php.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.1 RDF/XML and Perl

There would seem to be a natural fit between Perl, a language known for its parsing and pattern-matching capability, and RDF. When I went
searching for Perl APIs, I was surprised to find that several I discovered had not been updated for months (sometimes years) or were seriously
incomplete. However, I was able to find a couple of Perl APIs that are active, are being supported, and provide much of the functionality
necessary for working with the RDF data model through RDF/XML.

The W3C had a Perl library that included an RDF Parser, perllib , found at http://www.w3.org/1999/02/26-modules/ .
However, there hasn't been a solid release of the Perl modules associated with it in quite some time, and the only
activity that's occurred in relation to it is buried in the CVS files for the API. Because there hasn't been a release of the
API in some time, I decided not to include it in this chapter.

9.1.1 Ginger Alliance PerlRDF

I found the Ginger Alliance Perl APIs by searching for RDF within CPAN, the repository of Perl on the Internet (accessible at http://perl.com). The
organization provides Perl modules that can parse, store, and query Notation3 (RDF::Notation3) as well as RDF/XML (RDF::Core), but we'll

cover only the RDF/XML module in this book.

Updates to PerlRDF
Be aware that at the time of this writing, PerlRDF has not been updated to reflect all of the new constructs released with the
newest RDF Working Group documents. However, I was assured by the author that PerlRDF is still being fully supported, and the
group had every intention of ensuring it meets the new RDF specifications as soon as they release. The version used in this
chapter was released in October 2002.

You can download the Ginger Alliance Perl modules from CPAN or access them directly at the organization's web site (at
http://www.gingerall.cz/charlie/ga/xml/p_rdf.xml) . The examples in this chapter were created with RDF::Core 2.0, and

installation instructions are contained within the source files. Both APIs work with Perl 5 and should be platform independent. The
source is licensed under Mozilla Public License 1.1 and the GNU General Public License.

The RDF::Core modules for RDF/XML allow you to parse and store an existing RDF/XML document, add to it, and query it using function calls, as

well as serialize a new or modified model. You can store the module in memory, within a PostgreSQL database or in Berkeley DB.

9.1.2 Model Persistence and Basic Querying

RDF models can be built within the code or parsed in from an external file. First, though, you have to create a storage mechanism to store the
data. PerlRDF gives you a choice of storing a model in memory or in a Berkeley DB or PostgreSQL database. The RDF::Core::Storage object

manages the memory access, and it has three different implementations for the three different storage mechanisms.

RDF::Core::Storage::Memory manages in-memory storage. This object won't persist after the Perl application terminates or goes out of scope,
and the only unique method is new , which takes no parameters:

http://www.gingerall.cz/charlie/ga/xml/p_rdf.xml)
http://lib.ommolketab.ir
http://lib.ommolketab.ir

require RDF::Core::Storage::Memory;
my $storage = new RDF::Core::Storage::Memory;

The RDF::Core Berkeley DB object, RDF::Core::Storage::DB_File , utilizes the existing Berkeley Database DB_File Perl module for much of
its functionality. DB_File uses the tie function to bind the DB object functions to the database file on disk, hiding much of the detail of database
management. Unlike the memory method, the DB_File object's new method takes several parameters:

Name

The name used as the first part of the name for several files, to support the structures necessary to store the RDF model.
Flags, Mode

Equivalent to the flags and mode used with the Berkeley DB dbopen method. Examples of flags are O_RDONLY , O_RDRW , and O_CREAT . By
default, O_RDONLY and O_RDRW are used. The default mode is 0666.

MemLimit

Controls the number of statements returned within an enumerator (to be discussed) if nonzero.
Sync

Number of wire transfer processes to complete before synchronizing memory data with storage or zero to not force synchronization.

In the following code, a storage object is instantiated, set to the current directory with the name of rdfdata , and given a MemLimit set to 500

statements; all other values are set to default:

require RDF::Core::Storage::DB_File;
my $storage = new RDF::Core::Storage::DB_File(Name =>'./rdfdata',
 MemLimit => 5000,
);

The last storage mechanism supported in RDF::Core , RDF::Core::Storage::PostGres uses the PostgreSQL data store to persist the RDF
model. Its new method takes the following options:

ConnecStr

PostgreSQL connection string
DBUser, DBPassword

Database user and password
Model

Distinguish between models (can store than one model in PostgreSQL database)

After a storage object is instantiated, the methods to manipulate its data are the same regardless of the underlying physical storage mechanism.

9.1.3 Building an RDF Model

A basic procedure is used with PerlRDF to create a new RDF model. First, create the storage mechanism; next, create the model and each of the
components of an RDF statement, assigning them to a new statement. Finally, add the statement to the model. That's all you need to add a new
triple to an RDF model. The power of this Perl module is in its simplicity of use.

To demonstrate this, Example 9-1 shows a simple application that creates a new model using a Berkeley database, adds a couple of statements
for the same resource, and then serializes the model to RDF/XML. The first statement adds an rdf:type of PostCon Resource to the main

resource; the second adds a movement type predicate. Note that predicate objects are created directly from the subject object, though the two

http://lib.ommolketab.ir
http://lib.ommolketab.ir

aren't associated within the model until they're added to the model. Also note that literals are specific instances of Perl objects, in this case
RDF::Core::Literal .

Example 9-1. Creating simple RDF graph with two statements

use strict;

require RDF::Core::Storage::Memory;
require RDF::Core::Model;
require RDF::Core::Statement;
require RDF::Core::Model::Serializer;
require RDF::Core::Literal;

create storage object
my $storage = new RDF::Core::Storage::Memory;
my $model = new RDF::Core::Model (Storage => $storage);

my $subject =
 new RDF::Core::Resource('http://burningbird.net/articles/monsters1.rdf');
my $predicate =
 $subject->new('http://www.w3.org/1999/02/22-rdf-syntax-ns#type');
my $object =
 new RDF::Core::Resource('http://burningbird.net/postcon/elements/1.0/Resource');
my $statement = new RDF::Core::Statement($subject, $predicate, $object);
$model->addStmt($statement);

$model->addStmt(new RDF::Core::Statement($subject,
 $subject->new('http://burningbird.net/postcon/elements/1.0/movementType'),
 new RDF::Core::Literal('Move')));

my $xml = '';
 my $serializer = new RDF::Core::Model::Serializer(Model=>$model,
 Output=>\$xml
);
 $serializer->serialize;
 print "$xml\n";

Running this application results in the following RDF/XML:

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:a="http://burningbird.net/postcon/elements/1.0/"
>
<rdf:Description about="http://burningbird.net/articles/monsters1.rdf">
<rdf:type rdf:resource="http://burningbird.net/postcon/elements/1.0/Resource"/>
<a:movementType>Move</a:movementType>
</rdf:Description>
</rdf:RDF>

PerlRDF hasn't been updated to reflect the W3C's recommendation to qualify all attributes; in this case about should become rdf:about .

However, this isn't an error, and the most that happens when testing this in the RDF Validator is that you'll get a warning:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Warning: {W101} Unqualified use of rdf:about has been deprecated.[Line = 5, Column = 72]

It was a simple matter to fix this directly, within the Serializer.pm . In both instances of an "about" element being
printed out (contained within quotes, use your text editor's search function to find these), replace "about" with
"rdf:about" . The rest of the examples in this chapter reflect this change.

Additional statements can be built and added on using the same approach. If the statement can be modeled as a particular N-Triple, it can be
added as a statement to the model using RDF::Core , including blank nodes.

In Example 9-2 , the code will add the N-Triples statements equivalent to the newer RDF construct, rdf:value. From monsters1.rdf , this looks

like the following using the more formalized syntax:

<pstcn:presentation rdf:parseType="Resource">
 <pstcn:requires rdf:parseType="Resource">
 <pstcn:type>stylesheet</pstcn:type>
 <rdf:value>http://burningbird.net/de.css</rdf:value>
 </pstcn:requires>
</pstcn:presentation>

Technically, no specific method is included in RDF::Core for creating the formalized rdf:value syntax, but one's not needed as long as you can
add statements for each N-Triple that results when the syntax is broken down into triples. In the case of rdf:value , the N-Triples for the
rdf:value construct associated with the stylesheet in monsters1.rdf are (from the RDF Validator):

_:jARP24590 <http://burningbird.net/postcon/elements/1.0/type> "stylesheet" .
_:jARP24590 <http://www.w3.org/1999/02/22-rdf-syntax-ns#value>
"http://burningbird.net/de.css" .
_:jARP24589 <http://burningbird.net/postcon/elements/1.0/requires> _:jARP24590 .
<http://burningbird.net/articles/monsters1.htm> <http://burningbird.net/postcon/elements/1.0/presentation> _:jARP24589 .

Breaking this down into actions, first a blank node must be created and added as a statement with the resource monsters1.htm and a given
predicate of http://burningbird.net/postcon/elements/1.0/presentation . This blank node is then used as the resource for the next

statement that's added, which adds another blank node, this one with the predicate of
http://burningbird.net/postcon/elements/1.0/requires . In this example, the RDF::Core object NodeFactory creates the blank nodes for

both.

Next, the second blank node that was created is used to add the next statement, with a predicate of http://www.w3.org/1999/02/22-rdf-
syntax-ns#value and value of http://burningbird.net/de.css . The last statement has a predicate of
http://burningbird.net/postcon/elements/1.0/type and a value of stylesheet . Since blank nodes created by NodeFactory are
RDF::Core::Resource objects, they can also create predicates for each of the statements.

Example 9-2. Adding rdf:value as N-Triples to the model

use strict;

require RDF::Core::Storage::Memory;
require RDF::Core::Model;
require RDF::Core::Statement;
require RDF::Core::Model::Serializer;
require RDF::Core::Literal;
require RDF::Core::NodeFactory;

http://burningbird.net/postcon/elements/1.0/presentation
http://burningbird.net/postcon/elements/1.0/requires
http://www.w3.org/1999/02/22-rdf-
http://burningbird.net/de.css
http://burningbird.net/postcon/elements/1.0/type
http://lib.ommolketab.ir
http://lib.ommolketab.ir

create storage object
my $storage = new RDF::Core::Storage::Memory;
my $model = new RDF::Core::Model (Storage => $storage);

new subject and new resource factory
my $subject =
 new RDF::Core::Resource('http://burningbird.net/articles/monsters1.rdf');
my $factory =
 new RDF::Core::NodeFactory(BaseURI=>'http://burningbird.net/articles/');

create bnode for presentation
my $bPresentation = $factory->newResource;

create bnode for requires
my $bRequires = $factory->newResource;

add presentation
my $predicate =
 $subject->new('http://burningbird.net/postcon/elements/1.0/presentation');
my $statement =
 new RDF::Core::Statement($subject, $predicate, $bPresentation);
$model->addStmt($statement);

add requires
$model->addStmt(new RDF::Core::Statement($bPresentation,
 $bPresentation->new('http://burningbird.net/postcon/elements/1.0/requires'),
 $bRequires));

add rdf:value
$model->addStmt(new RDF::Core::Statement($bRequires,
 $bRequires->new('http://www.w3.org/1999/02/22-rdf-syntax-ns#value'),
 new RDF::Core::Literal('http://burningbird.net/de.css')));

add value type
$model->addStmt(new RDF::Core::Statement($bRequires,
 $bRequires->new('http://burningbird.net/postcon/elements/1.0/type'),
 new RDF::Core::Literal('stylesheet')));

my $xml = '';
my $serializer = new RDF::Core::Model::Serializer(Model=>$model,
 Output=>\$xml
);
$serializer->serialize;
print "$xml\n";

Running the application results in the following RDF/XML output:

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:a="http://burningbird.net/postcon/elements/1.0/"
>
<rdf:Description rdf:about="http://burningbird.net/articles/monsters1.htm">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<a:presentation>
<rdf:Description>
<a:requires>
<rdf:Description>
<rdf:value>http://burningbird.net/de.css</rdf:value>
<a:type>stylesheet</a:type>
</rdf:Description>
</a:requires>
</rdf:Description>
</a:presentation>
</rdf:Description>
</rdf:RDF>

Plugging this into the RDF Validator and asking for N-Triples output returns the following N-Triples:

_:jARP24933 <http://www.w3.org/1999/02/22-rdf-syntax-ns#value>
"http://burningbird.net/de.css" .
_:jARP24933 <http://burningbird.net/postcon/elements/1.0/type> "stylesheet" .
_:jARP24932 <http://burningbird.net/postcon/elements/1.0/requires> _:jARP24933 .
<http://burningbird.net/articles/monsters1.htm> <http://burningbird.net/postcon/elements/1.0/presentation> _:jARP24932 .

This maps back to the original N-Triples that we used to build the statements in the first place. As the generated N-Triples demonstrate, the
subgraph of the monsters1.rdf directed graph that's specific to the use of rdf:value is identical to using the more formalized syntax for this

construct. Regardless of the complexity of the model, the same procedure can be used to add all statements.

In addition to building a model from scratch, you can also read RDF models in from external resources such as an RDF/XML document,
demonstrated in the next section.

9.1.4 Parsing RDF/XML Documents

Using RDF::Core to parse and query an RDF file is much simpler than creating an RDF model within code, something true of all APIs and parsers

used in this book.

Whether you build the RDF model directly in the code or read it in, you still have to create a storage object and attach it to a model before you
can start adding statements. However, when you read in a model from an external source, you can use the RDF::Core::Model::Parser object

to read in the RDF/XML directly and generate the appropriate statements.

One major different between reading RDF statements in from an RDF/XML file and reading a file in using a parser is
that the API may not support all the current constructs within the RDF/XML document, especially if you're using some
of the more specialized XML shortcuts. As you read in the data, you may run into problems. If this happens, then you'll
want to modify the RDF/XML, transforming the shortcut to the more formalized syntax to reflect the N-Triples that the
parser can process.

To demonstrate how simple it is to read in an RDF/XML document, the code in Example 9-3 reads in the monsters1.rdf file, storing it in a
Berkeley DB datastore . The application then calls getStmts on the model, returning an RDF::Core::Enumerator object, which is used to print

out the N-Triples defined within the document.

Example 9-3. Parsing in RDF/XML document and then printing out N-Triples from model

use strict;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

require RDF::Core::Model;
require RDF::Core::Model::Parser;
require RDF::Core::Enumerator;
require RDF::Core::Statement;
require RDF::Core::Storage::DB_File;

create storage
my $storage = new RDF::Core::Storage::DB_File(Name =>'./rdfdata',
 MemLimit => 5000,
);

create model and map to storage
my $model = new RDF::Core::Model (Storage => $storage);

define parser options and parse external RDF/XML document
my %options = (Model => $model,
 Source => "/home/shelleyp/www/articles/monsters1.rdf",
 SourceType => 'file',
 BaseURI => "http://burningbird.net/",
 InlineURI => "http://burningbird.net/"
);
my $parser = new RDF::Core::Model::Parser(%options);
$parser->parse;

enumerate through statements, printing out labels
my $enumerator = $model->getStmts;
my $statement = $enumerator->getFirst;
while (defined $statement) {
 print $statement->getLabel."\n";
 $statement = $enumerator->getNext
}

close enumerator
$enumerator->close;

The Berkeley DB file prefix is rdfdata , and several files will be generated with this prefix. The options for the parser include the file location for

the RDF/XML document, the fact that it's being read in as a file and not a URL, and a base and an inline URI. The base URI is used to resolve
relative URIs, while the inline URI is for blank node resources. RDF::Core generates a blank node identifier consisting of this inline URI and a

separate number for each blank node within the document.

When the application is run, the N-Triples are printed out to system output, which can then be piped to a file to persist the output. A sampling of
these N-Triples representing the subgraph we've been using for the example, the rdf:value syntax, is:

<http://burningbird.net/articles/monsters1.htm> <http://burningbird.net/postcon/
elements/1.0/presentation> <http://burningbird.net/3> .
<http://burningbird.net/3> <http://burningbird.net/postcon/elements/1.0/requires>
<http://burningbird.net/4> .
<http://burningbird.net/4> <http://burningbird.net/postcon/elements/1.0/type>
"stylesheet".
<http://burningbird.net/4> <http://www.w3.org/1999/02/22-rdf-syntax-ns#value> "http:/
/burningbird.net/de.css" .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Though the blank node identifiers are different from those generated by the RDF Validator, the statements are equivalent.

Now that the RDF/XML document has been read in, we can access it within the database to perform more selective queries.

9.1.5 Querying RDF with RDF::Core

In the last section, the code read the RDF/XML into a persistent Berkeley Database. Instead of going back against the document, we'll use the
database for queries in the next examples.

You might want to see how many statements have a given predicate. To count statements matching a specific value in any one of the triple
components, use countStmts , passing in appropriate search parameters for subject, predicate, and object. The number of statements found

matching the given values is returned. Passing an undefined parameter signals that any value found for the specific items is a match. In Example
9-4 , we're interested in only the statements that use the predicate http://burningbird.net/postcon/elements/1.0/reason . The code loads
the database and accesses the countStmts directly on the RDF::Core::Storage object (the Model object has a countStmts function, too).

Example 9-4. Count of statements matching a specific predicate

use strict;

require RDF::Core::Storage::DB_File;
require RDF::Core::Resource;

load model from storage
my $storage = new RDF::Core::Storage::DB_File(Name =>'./rdfdata',
 MemLimit => 500);

objects must be defined
my $subject;
my $object;

initiate predicate
my $predicate =
 new RDF::Core::Resource('http://burningbird.net/postcon/elements/1.0/reason');

get count of statements for predicate and print
my $val = $storage->countStmts($subject, $predicate, $object);
print $val . "\n";

When run, the application returns a value of 6, matching the number of statements that have the given predicate. If you're interested only in
statements with a given predicate and subject, you could define the subject object in addition to the predicate:

my $subject = new RDF::Core::Resource("http://burningbird.net/articles/monsters4.htm");

The value then returned is 1, for one record found matching that combination of subject and predicate.

You'll also need to add in the RDF::Core::Literal class if you want to match on the subject in this example.

If you're interested in finding data to go with the count of statements, you can modify the code to use the method getStmts instead, returning

http://burningbird.net/postcon/elements/1.0/reason
http://lib.ommolketab.ir
http://lib.ommolketab.ir

an enumerator, which you can then traverse to get the data you're interested in.

The RDF::Core classes also support a more sophisticated querying capability similar to RDQL (discussed in detail in the next chapter). As with
RDQL, the query language supported with RDF::Core supports select, from, and where keywords for the results, source, and search parameters.
Three objects process RDQL queries in RDF::Core :

RDF::Core::Functions

A mapping between a row of data and a function handler
RDF::Core::Evaluator

An evaluator object passed to the query to be used to evaluate the specific query
RDF::Core::Query

A query object

The RDF::Core::Functions class contains a package of functions used to drill down to specific schema elements within the query set. It's

instantiated first, taking optional instances of the model being queried, an instance of the RDF Schema model, and a factory object.

The RDF::Core::Evaluator class is what evaluates a specific query, passed in as a string, formed from RDQL. When it's instantiated, it can take

an instance of the model being queried, the instance of the Functions class, as well as the factory class and a hash containing namespaces and
their associated prefixes, or it can default for a default namespace. The last option is a reference to a function defined in the code to be called for
each row returned in the query set. If this isn't provided, then the result is returned as an array of rows.

The RDF::Core::Query class pulls the other objects and the query string together, returning an array of rows (statements) matching the query
or passing the row to a function defined within the function object to process each row. The documentation included with RDF::Core::Query
provides a description of the query language supported with RDF::Core including examples.

Another excellent Perl-based RDF API is RDFStore, written by Alberto Reggiori. This API is based on the Stanford Java
API created by Sergey Melnik. Access it at http://rdfstore.sourceforge.net/ .

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.2 RDF API for PHP

Few languages have achieved faster acceptance than PHP. ISPs now install support for PHP when
they install Apache, so most people have access to this server-side tag-based scripting language. And
where there's scripting, there's support for RDF. PHP boasts two RDF APIs: the RDF API for PHP and
the RDF-specific classes within the PHP XML classes. The latter is covered in the next chapter; this
chapter focuses on the RDF API for PHP, which I'll refer to as RAP for brevity.

The RDF API for PHP (RAP) home page is at http://www.wiwiss.fu-
berlin.de/suhl/bizer/rdfapi/. The SourceForge project for the API is at
http://sourceforge.net/projects/rdfapi-php/.

9.2.1 Basic Building Blocks

The RAP classes are split into three main packages: model, syntax, and util. The model package

includes all the classes to create or read specific elements of an RDF model, including reading or
creating complete statements from a model or their individual components. These classes are:

BlankNode

Used to create a blank node, to get the bnode identifier, or check equality between two bnodes
Literal

Support for model literals
Model

Contains methods to build or read a specific RDF model
Node

An abstract RDF node
Resource

Support for model resources
Statement

Creating or manipulating a complete RDF triple

RAP doesn't, at this time, support persistence to a database such as MySQL or Berkeley DB, but you
can serialize the data through RdfSerializer, which is one of the two syntax classes. To read a
serialized model, you would then use the other syntax class, RdfParser.

The util class Object is another abstract class with some general methods overloaded in classes
built on it, so it's of no interest for our purposes. However, the RDFUtil class provides some handy
methods, including the method writeHTMLTable to output an RDF/XML document in nice tabular

form.

http://www.wiwiss.fu-
http://sourceforge.net/projects/rdfapi-php/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.2.2 Building an RDF Model

Creating a new RDF model and adding statements to it using RAP is extremely easy. Start by creating
a new RDF graph (data model) and then just add statements to it, creating new resources or literals
as you go. The best way to see how to create a new graph is to look at a complete example of
creating a model and then outputting the results to a page.

In the first example of this API, the path from the top-level resource all the way through the first
movement is created as a subgraph of the larger monsters1.rdf model. Since movements in this
model are coordinated through an RDF container, rdf:Seq, information related to the container must

also be added to ensure that the generated RDF/XML maps correctly to the original RDF/XML of the
full model. The N-Triples for just this path, as generated by the RDF Validator, are:

<http://burningbird.net/articles/monsters1.htm>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://burningbird.net/postcon/
elements/1.0/Document> .
<http://burningbird.net/articles/monsters1.htm> <http://burningbird.net/postcon/
elements/1.0/history> _:jARP31427 .
_:jARP31427 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#Seq> .
_:jARP31427 <http://www.w3.org/1999/02/22-rdf-syntax-ns#_1> <http://www.yasd.com/
dynaearth/monsters1.htm> .
<http://www.yasd.com/dynaearth/monsters1.htm> <http://burningbird.net/postcon/
elements/1.0/movementType> "Add" .

In the script, the first two lines map the RDF API directories and should reflect your own installation.
This test script was built on a Linux box, which the path to the API reflects. Following the global
directory definitions, a new model, as well as the top-level resource (since this will be used more than
once in the page), is created. Added to the new model is a new statement consisting of the top-level
resource as the subject, a new resource created for the predicate, and the object. In this case, the
top-level resource is defined as a PostCon Document class.

Following the initial statement, a blank node is created to represent the rdf:Seq object using the
label history, and a type resource identifying it as rdf:Seq is added to the model. The first of the

movements is added using the container element URI and giving as object the URI of the movement
object. In the last statement, the movementType property is added for this resource, as shown in
Example 9-5. To observe the resulting model, it's serialized using the RDFUtil::writeHTML class, to

generate a table of statements. And then the model is serialized to RDF/XML, using the
RDFSerializer class.

Example 9-5. Creating an RDF model using RDF API for PHP and
serializing it to the page

<?php
define("RDFAPI_INCLUDE_DIR", "./../api/");
include(RDFAPI_INCLUDE_DIR . "RDFAPI.php");

// New Model, set base URI
$model = new Model();
$model->setBaseURI("http://burningbird.net/articles/");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// first statement
$mainsource = new Resource("monsters1.htm");
$model->add(new Statement($mainsource, $RDF_type,
 new
Resource("http://burningbird.net/postcon/elements/1.0/Document")));

$history = new BlankNode("history");
$model->add(new Statement($mainsource,
 new
Resource("http://burningbird.net/postcon/elements/1.0/history"),
 $history));

// Define RDF Bag
$model->add(new Statement($history, $RDF_type, $RDF_Seq));

$movement = new Resource("http://www.yasd.com/dynaearth/monsters1.htm");
$model->add(new Statement($history,
 new Resource(RDF_NAMESPACE_URI . "_1"),
 $movement));

$model->add(new Statement($movement,
 new
Resource("http://burningbird.net/postcon/elements/1.0/movementType"),
 new Literal("Add", "en")));

// Output as table
RDFUtil::writeHTMLTable($model);

file://Serialize and output model
$ser = new RDFSerializer();
$ser->addNamespacePrefix("pstcn",
"http://burningbird.net/postcon/elements/1.0/");
$rdf =& $ser->serialize($model);
echo "<p><textarea cols='110' rows='20'>" . $rdf . "</textarea>";

file://Save the model to a file
$ser->saveAs($model,"rdf_output.rdf");

?>

When this script is included within HTML and accessed via the Web, the result looks similar to Figure
9-1.

Figure 9-1. Page resulting from running PHP script in Example 9-5

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you want to persist the serialized result of the model, use PHP's own file I/O functions to save the
generated RDF/XML to a file. Note that the figure shows bnodes as URI, which isn't proper format.
However, this is an internally generated value that has no impact on the validity of the RDF/XML.

Example 9-6 contains the script to open this serialized RDF/XML and iterate through it (this script was
provided by the RAP creator, Chris Bizer).

Example 9-6. Iterating through the serialized RDF/XML created in
Example 9-5

<?php

// Include RDF API
define("RDFAPI_INCLUDE_DIR", "./../api/");
include(RDFAPI_INCLUDE_DIR . "RDFAPI.php");

// Create new Parser
$parser = new RdfParser();

// Parse document
$model =& $parser->generateModel("rdf_output.rdf");

// Get StatementIterator
$it = $model->getStatementIterator();

// Traverse model and output statements
while ($it->hasNext()) {
 $statement = $it->next();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 echo "Statement number: " . $it->getCurrentPosition() . "
";
 echo "Subject: " . $statement->getLabelSubject() . "
";
 echo "Predicate: " . $statement->getLabelPredicate() . "
";
 echo "Object: " . $statement->getLabelObject() . "<P>";
}

?>

You can add or subtract statements on a given model, check to see if the model contains a specific
statement, and even find the intersection or combination of multiple models, using the Model class.
However, one of the most frequent activities you'll likely do is query the model.

Querying a Model
The Model class in RAP has a couple of different methods you can use to find information.
For instance, the findVocabulary method returns all triples from a given vocabulary, as

identified by a namespace. This is rather handy if your document combines elements from
many different namespaces.

Two other methods allow for more fine-grained queries: find and findRegex.

The find method takes three parameters: subject, predicate, and object. Passing in null

for a specific parameter matches any value for that component in the triple. The
findRegex method uses a Perl-style regular expression to check for a match in any of the

components. Both methods return a new Model, which you can print out using the
RDFUtil method writeHTMLTable. However, if you want to print the data out using your

own approach or want to print out only specific components in the resulting triple, you'll
have to do a little more work, and will use private methods and members of the RAP class.
This makes me hesitant to use RAP for querying.

What I've done is mix PHP classes when working with RDF. I use RAP to create RDF
models, and I then use the PHP XML classes, described in the next chapter, to persist the
RDF/XML to a database and to use RDQL queries to query that database.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.3 RDF and Python: RDFLib

It would be difficult not to see the natural fit between Python and RDF. Of course, Python
programmers would say the same happens with all uses of Python, but when you see how quick and
simple it is to build an RDF/XML model from scratch using the Python RDF library, RDFLib, you might
think about switching regardless of what language you normally use.

RDFLib was created by Daniel Krech. Download the most recent release of
RDFLib at http://rdflib.net . I used RDFLib 1.2.3 on Windows 2000 when writing
this section. RDFLib requires Python 2.2.1 or later. Additional software is
required if you want to use the rdflib.Z informationStore, providing support for
contexts in addition to persistent triples.

RDFLib is actually a part of a larger application framework, Redfoot, discussed in Chapter 12 .
However, RDFLib is a separate, fully RDF functional API. If there's any additional need with the API,
it's documentation, which is quite scarce for the product. However, the libraries are so intuitive, one
could almost say that the documentation isn't needed.

All the unique components of an RDF model have been defined as Python objects in RDFLib:

RDFLib.URIRef

A resource with a URI
RDFLib.BNode

A resource without a URI
RDFLib.Literal

A literal
RDFLib.Namespace

Manage a namespace
TripleStore

In-memory triple store

In addition, RDFLib.constants contains definitions for the RDF properties such as type and value.

Example 9-7 implements a subgraph of the test RDF/XML document (monsters1.rdf) defined in the
following snippet of XML:

<pstcn:Resource rdf:about="monsters1.htm">
 <pstcn:presentation rdf:parseType="Resource">
 <pstcn:requires rdf:parseType="Resource">
 <pstcn:type>stylesheet</pstcn:type>
 <rdf:value>http://burningbird.net/de.css</rdf:value>
 </pstcn:requires>

http://rdflib.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </pstcn:presentation>
</pstcn:Resource>

To begin, a Namespace object is created for the PostCon namespace, in addition to a TripleStore
used for the model in progress. Following this, the top-level resource is created using URIRef , which
is then added as a triple with the RDF type and the PostCon Document type. After that, it's just a
matter of creating the appropriate type of object and adding more triples. Note that Namespace

manages the namespace annotations for all of the objects requiring one, such as all of the predicates.
At the end, the triples are printed out to standard output, and the model is serialized to RDF/XML.

Example 9-7. Building a graph using RDFLib

from rdflib.URIRef import URIRef
from rdflib.Literal import Literal
from rdflib.BNode import BNode
from rdflib.Namespace import Namespace
from rdflib.constants import TYPE, VALUE

Import RDFLib's default TripleStore implementation
from rdflib.TripleStore import TripleStore

Create a namespace object
POSTCON = Namespace("http://burningbird.net/postcon/elements/1.0/")

store = TripleStore()

store.prefix_mapping("pstcn", "http://http://burningbird.net/postcon/elements/1.0/")

Create top-level resource
monsters = URIRef(POSTCON["monsters1.htm"])

Add type statement
store.add((monsters, TYPE, POSTCON["Document"]))

Create bnode and add as statement
presentation = BNode();
store.add((monsters, POSTCON["presentation"],presentation))

Create second bnode, add
requires = BNode();
store.add((presentation, POSTCON["requires"], requires))

add two end nodes
type = Literal("stylesheet")
store.add((requires, POSTCON["type"],type))

value = Literal("http://burningbird.net/de.css")
store.add((requires, VALUE, value))

Iterate over triples in store and print them out
for s, p, o in store:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 print s, p, o

Serialize the store as RDF/XML to the file subgraph.rdf
store.save("subgraph.rdf")

Just this small sample demonstrates how simple RDFLib is to use. The generated RDF/XML looks
similar to the following, indentation and all, which is a nice little feature of the library.

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:n4="http://burningbird.net/postcon/elements/1.0/"
 xmlns:pstcn="http://http://burningbird.net/postcon/elements/1.0/"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
>
 <n4:Document rdf:about="http://burningbird.net/postcon/elements/1.0/monsters1.htm">
 <n4:presentation>
 <rdf:Description>
 <n4:requires>
 <rdf:Description>
 <n4:type>stylesheet</n4:type>
 <rdf:value>http://burningbird.net/de.css</rdf:value>
 </rdf:Description>
 </n4:requires>
 </rdf:Description>
 </n4:presentation>
 </n4:Document>
</rdf:RDF>

Testing this in the RDF Validator results in a directed graph equivalent to the subgraph found in the
larger model, and equivalent to the graph generated earlier in the chapter with the Perl modules.

You can also load an existing RDF/XML document into a TripleStore and then run queries against

the triples. Example 9-8 contains a small Python application that loads monsters1.rdf into a
TripleStore and then looks for all subjects of class Movement. These are passed into an inner loop

and used to look up the movement type for each Movement.

Example 9-8. Finding all movements and movement types in RDF/XML
document

from rdflib.Namespace import Namespace
from rdflib.constants import TYPE

Import RDFLib's default TripleStore implementation
from rdflib.TripleStore import TripleStore

Create a namespace object
POSTCON = Namespace("http://burningbird.net/postcon/elements/1.0/")
DC = Namespace("http://purl.org/dc/elements/1.1/")

store = TripleStore()
store.load("http://burningbird.net/articles/monsters1.rdf");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For each pstcn:Movement print out movementType
for movement in store.subjects(TYPE, POSTCON["Movement"]):
 for movementType in store.objects(movement, POSTCON["movementType"]):
 print "Moved To: %s Reason: %s" % (movement, movementType)

This application prints out the movement resource objects as well as the movement types:

Moved To: http://burningbird.net/burningbird.net/articles/monsters1.htm Reason:
Move
Moved To: http://www.yasd.com/dynaearth/monsters1.htm Reason: Add
Moved To: http://www.dynamicearth.com/articles/monsters1.htm Reason: Move

The TripleStore document triple_store.html in the RDFLib documentation describes the
TripleStore.triples method and the variations on it that you can use for queries. The method

used differs but the basic functionality remains the same as that just demonstrated.

Another open source and Python-based RDF API is 4RDF and its Versa query
language, a product of Fourthought. 4RDF is part of 4Suite, a set of tools for
working with XML, XSLT, and RDF. More information is available at
http://fourthought.com .

[Team LiB]

http://fourthought.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 10. Querying RDF: RDF as Data
RDF as a model for metadata and RDF/XML as a way of serializing the model are interesting, but the
power of the specifications lies in our ability to access the data easily, using techniques we're familiar
with from other data models, such as the relational data model discussed in Chapter 6.

It is only natural that techniques used for one data model should be adapted for use with another; so
the method for accessing the relational data model, Structured Query Language (SQL), is used in a
similar manner with RDF/XML through language techniques such as SquishQL, RDQL, RQL, and
others.

Many of the query languages and schemas mentioned in this chapter are also
covered in an online document at http://www.w3.org/2001/11/13-RDF-Query-
Rules. In addition, if your interest is more inclined to RDF as data (or to the
more logical side of RDF), check out the www-rdf-rules discussion list at
http://lists.w3.org/Archives/Public/www-rdf-rules/.

[Team LiB]

http://www.w3.org/2001/11/13-RDF-Query-
http://lists.w3.org/Archives/Public/www-rdf-rules/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.1 RDF and the Relational Data Model

RDF and the relational data model are both metadata models, so it's natural to want to see how the
one can work with the other. Stanford took a look at different designs of tables for storing RDF data
in an online paper located at http://www-db.stanford.edu/~melnik/rdf/db.html. With some
differences based on data types and the ability to store multiple models, most of the schemas
demonstrated were basically the same-store the model as triples, with or without support for
additional information such as namespace or model identifier.

An up dated document comparing RDBMS and Semantic Web data is located at
http://www.w3.org/2001/sw/Europe/reports/scalable_rdbms_mapping_report/.

If you look at implementations that store RDF within relational databases, these simple overlay
schemas are used, for the most part, by all of them. For instance, Jena gives you a couple of
different options in database storage; the first is whether multiple models are supported, and the
second is whether a hash is used to generate the identifiers for the resources. However, the basic
structure of the database is the same-a table for storing statements, with secondary tables storing
literals (which could get quite large), resources, and namespaces.

Siderean Software's Seamark server (covered in Chapter 15) also uses a basic layout for storing its
data, with separate tables for resource and literal and another table pulling together the triples (in
addition to specific information about accessing the model). However, other applications, such as
Plugged In Software's Tucana Knowledge Store, use a data storage schema that is built from the
ground up based on RDF, and make no use of relational data stores at all.

Anoth er online white paper that discusses the relational data model and RDF
directly is "Relational Databases and the Semantic Web" at
http://www.w3.org/DesignIssues/RDB-RDF.html.

[Team LiB]

http://www-db.stanford.edu/~melnik/rdf/db.html
http://www.w3.org/2001/sw/Europe/reports/scalable_rdbms_mapping_report/
http://www.w3.org/DesignIssues/RDB-RDF.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.2 Roots: rdfDB QL

One of the earliest persistent data stores for RDF was R.V. Guha's rdfDB, a database built from the
ground up to store RDF data. This database, written in C and primarily tested within a Linux
environment, uses a specialized language derived from SQL, a language he called "...a high level
SQLish query language," to manipulate and query RDF data within the database.

You can download a copy of rdfDB at http://guha.com/rdfdb/. Note that there
has been little activity with this database in the last few years; I'm including
coverage of it here primarily for historical perspective.

In Guha's language, you can create a database, insert or delete rows from it, and query it. A row in
his language would be an RDF triple, in the format of arc-source-target, somewhat different from N-
Triples and other languages that portray an RDF triple as source-arc-target. However, the principles
are the same.

For instance, to insert a row, use the following syntax (taken from Guha's sample session online):

insert into test1 (type DanB Person), (name DanB 'Dan Brickley') </>

If the result is successful, the database returns 0; otherwise, a negative value representing the type
of error that occurred with the statement is returned.

The data is queried by forming a select statement that provides a variable or variables for resulting
data, a from clause giving the database name, and a where clause made up of triples in the format of
arc-source-target, with placeholders in the position of unknown values. Again from the sample he
provides at his web site:

select ?x from test1 where (worksFor ?x W3C) (name ?x ?y) </>

The results are returned on separate lines, variables mapped to values:

?x = DanC ?y = 'Dan Connolly'
?x = DanB ?y = 'Dan Brickley'

Though Guha's rdfDB was the precursor to much of the effort in querying RDF, he hasn't worked on
the database recently. However, others took up the effort he pioneered and have since worked to
enhance and improve on it. Among these is the Inkling database and SquishQL, an open source effort
that included contributions from Leigh Dobbs, Libby Miller, and Dan Brickley.

[Team LiB]

http://guha.com/rdfdb/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.3 Inkling and SquishQL

Unlike rdfDB, written in C in a Linux environment, the Inkling database was written in Java, originally
on Linux and Solaris and most recently hosted and tested on Mac OS X, using several Java JDBC
classes. Though I've tried it only on the Mac OS X environment myself, it should work in other
environments that have Java installed. An additional requirement for Inkling is an installation of
PostgreSQL, as it uses this database for persistent storage (unlike rdfDB, which manages its own
storage).

You can view documentation and test the Inkling database online at
http://swordfish.rdfweb.org/rdfquery/ . You can also download source code for
Inkling at this site. Note that Inkling uses PostgreSQL for its persistent data
store. If you don't want to install Inkling to your own system, you can also use
the online test application, running it against your own persisted RDF/XML
documents available on the Web.

Once you've downloaded the Inkling installation file, you'll first need to make sure that you have a
database called test created, and that you've run the SQL commands contained in the
inklingsqlschema.psql file. You'll also need to set JAVA_HOME . In the Mac OS X environment,
JAVA_HOME is set to /Library/Java/Home if you're using the Java installations that are designed
specifically for Mac OS X.

The data structure loaded into the PostgreSQL database is relatively simple-one table containing
pointers (hashed values) to the actual values in a second table. A flag specifies if the value is a
resource or an actual object. If I have anything to disagree with about this design, it's the
combination of resources and objects in one table. Resource URIs are typically Unicode character
strings most likely not more than a few hundred characters or so in length. Objects (literals), though,
can be large. My test file used in many of the other examples in this book
(http://burningbird.net/articles/monsters1.rdf) has objects that can be several thousand characters
in length. Normally, a better design would have been to separate out the known resources into a
separate table or even two tables-one for predicates, one for subjects. However, that's a personal
preference.

You can access several demonstration applications installed with Inkling or the online application. You
can also use a set of Java classes that support the application directly. Of particular interest in these
is a JDBC driver created specifically for Inkling-formatted data, allowing you to query data using a
SquishQL-formatted query whether the data is in PostgreSQL database. However, we're more
interested at this point in the queries, which we'll focus on in the rest of this section.

The example file used throughout this chapter is from Example 6-6 -
monsters1.rdf .

The SquishQL supported in Inkling has strong ties to SQL. A simple query is similar to the following:

SELECT ?subject

http://swordfish.rdfweb.org/rdfquery/
http://burningbird.net/articles/monsters1.rdf
http://lib.ommolketab.ir
http://lib.ommolketab.ir

FROM http://burningbird.net/articles/monsters1.rdf
WHERE (dc::subject ?x ?subject)
USING dc FOR http://purl.org/dc/elements/1.1/

In this query, triples form a where clause, leading with the predicate, followed by subject and then by
object. If the query uses a variable as placeholder, all values in that field are returned. For this
example, all dc:subject predicates are returned regardless of specific subject or object value.

The query is being made against a file rather than the default database (and can be accessed
remotely via a URL), which is noted in the FROM clause. The SELECT clause lists the value or values
returned, and the USING clause gives a mapping between the predicate URI and the abbreviation for

the URI. It's important to note that the using clause isn't a namespace prefix, but a way of providing
abbreviations for longer URIs. This could mean a specific namespace but isn't limited only to
namespaces formally identified within the RDF/XML document.

The variables begin with a question mark and consist of characters, with no spaces. Figure 10-1
shows both this query and the output format as given in the Inkling online query application.

Figure 10-1. Preparing to run a query against the test RDF document

After submitting the form, a second page opens up displaying the results:

The subject is Loch Ness Monster
The subject is giant squid
The subject is legends
The subject is Architeuthis Dux
The subject is Nessie

You can also make more complex queries. For instance, to find all uses of pstcn:reason associated

with movements, rather than with related resources, you can join query triples to return specific
predicates for given resources that are themselves identified by other predicates; in this case, a
predicate of rdf:type of http://burningbird.net/postcon/elements/1.0/Movement , as shown in

Example 10-1 .

Example 10-1. Finding all reasons for movements within test RDF/XML
document

http://burningbird.net/postcon/elements/1.0/Movement
http://lib.ommolketab.ir
http://lib.ommolketab.ir

SELECT ?resource ?value
FROM http://burningbird.net/articles/monsters1.rdf
WHERE (rdf::type ?resource "http://burningbird.net/postcon/elements/1.0/Movement")
 (pstcn::reason ?resource ?value)
USING pstcn FOR http://burningbird.net/postcon/elements/1.0/
 rdf FOR http://www.w3.org/1999/02/22-rdf-syntax-ns#

In this example, the first triple looks for all resources with a given rdf:type of
http://burningbird.net/postcon/elements/1.0/Movement . These are then passed into the

second triple in the subject field, fine-tuning the reasons returned to those associated with movement
resources. In the example, predicates from two namespaces are used, as shown in the using clause.
In addition, two values are returned in the select clause and printed out:

The reason for the movement to http://www.dynamicearth.com/articles/monsters1.htm is
Moved to separate dynamicearth.com domain
The reason for the movement to http:/burningbird.net/articles/monsters1.htm is
Collapsed into Burningbird
The reason for the movement to http://www.yasd.com/dynaearth/monsters1.htm is New
Article

This combining of triple patterns is known as following one specific path within an RDF model, of
node-arc-node-arc-node and so on. You can add additional triple patterns to travel further down the
path until you reach the data you're after, no matter how deeply nested within the model. The key is
to use a variable assigned data in one triple pattern-such as a subject or object value-as one of the
constraints in the next triple pattern and so on.

In addition to filtering based on triple pattern matching, you can also use more traditional query
constraints such as the less-than (<) and greater-than (>) operators and equality (= and ~). All of
the comparison operators work with integers except for the string equality operator (~).

In Example 10-2 , the string equality operator is used to return a resource from a movement on a
specific date.

Example 10-2. Find movement resource where movement occurred on a
specific date

SELECT ?resource
FROM http://burningbird.net/articles/monsters1.rdf
WHERE (rdf::type ?resource "http://burningbird.net/postcon/elements/1.0/Movement")
 (dc::date ?resource ?date)
AND ?date ~ "1999-10-31:T00:00:00-05:00"
USING pstcn FOR http://burningbird.net/postcon/elements/1.0/
 rdf FOR http://www.w3.org/1999/02/22-rdf-syntax-ns#
 dc FOR http://purl.org/dc/elements/1.1/

The example just shown is a variation of about the most complex query you'll see with RDF,
regardless of specific query language. Variations of the queries just add additional constraints,
namespaces, sources (such as multiple documents), and so on. But the basic structure given in the
following remains the same:

SELECT variables
FROM source

http://burningbird.net/postcon/elements/1.0/Movement
http://lib.ommolketab.ir
http://lib.ommolketab.ir

WHERE (triple clause)
USING namespace mapping

The type of query language demonstrated, beginning with rdfDB and continuing with SquishQL, is the
one that's formed the basis of one of the more popular RDF/XML query languages, RDQL,
demonstrated in the next section.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.4 RDQL

The RDQL language is based on the earlier work of Guha's RDFDB QL and SquishQL, with some relatively
minor differences. Its popularity is ensured because of its use within Jena, probably the most widely used
RDF API.

RDQL supports the different clauses of select, from, where, and using (with some exceptions) as SquishQL.
Additionally, RDQL can change based on the implementation and whether you're using a Java API such as
Jena, a PHP class such as the PHP XML classes, or a Perl module such as RDFStore. However, though the
syntax varies within the clauses, the concepts remain the same.

Variables are in the format of a question mark, followed by other characters, just as in SquishQL:

?<identifier>

However, one difference between SquishQL and RDQL occurs in the select clause, which requires commas
rather than spaces to separate all variables.

The from, or source, clause, can be omitted with RDQL depending on the implementation. For instance, in
Jena, the source of the RDF/XML can be specified and loaded separately through a separate class method or
can be given directly in the query. However, in the PHP RDF/XML classes, the from clause must be provided
within the query. The same applies to RDFStore, which also requires that the URL be surrounded by angle
brackets.

The where clause (or triple pattern clause) differs in that the pattern follows the more traditional subject-
predicate-object ordering, and URIs are differentiated from literals by being surrounded by angle brackets.
However, the way that triple patterns are combined to form more complex queries is the same in RDQL and
SquishQL.

RDQL has greater sophistication in incorporating comparison semantics with the triple pattern within the
constrain clause. The use of AND is the same, but other operators - such as the OR operator (|||), bitwise
operators (& and |), and negation (!) - are supported.

Within Jena, there is no using clause because the namespaces for the resources are included with the
resource rather than being listed as a separate namespace. However, the PHP XML classes support using,
as does RDFStore.

10.4.1 Jena's RDQL and the Query-O-Matic

In addition to the rich set of Java classes that allow access to individual triples as well as the ability to build
complex RDF/XML documents (as described in Chapter 8) Jena also provides specialized classes for use
with RDQL:

Query

The Query class manages the actual query, enabling the building of a query through an API or passed
as a string.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

QueryExecution

Query engine interface.
QueryEngine

The actual execution of the query (the intelligence behind the query process).
QueryResults

The iterator that manages the results.
ResultBinding

Mapping from variables to values.

In addition to these standard classes, newer implementations of Jena also support some newer classes,
such as a QueryEngineSesame class, which works against the Sesame RDF repository (discussed at the end

of the chapter).

The use of the classes is very straightforward. Use Query to build or parse the query, which is then passed
to QueryEngine for processing. The results are returned to the QueryExecution class, which provides
methods to access the results, which are assigned to QueryResults . To access individual items in the
results, the data is bound to program variables using ResultsBinding .

To demonstrate how Jena works with RDQL, I created a dynamic query application, which I call the Query-
O-Matic, building it in Java as a Tomcat JSP application.

10.4.1.1 The Query-O-Matic

The Query-O-Matic is a two-page application, with the first HTML page containing a form and the second
JSP page processing the form contents. It's built using Jena 1.6, and managed with Tomcat. The source
code is included as part of the example code for the book.

The Query-O-Matic does require that you have knowledge of Tomcat and JSP-based
applications. If you don't, you can still work with the code, but you'll need to provide
a different interface for it. You can get more details about Jena's RDQL support in the
RDQL tutorial at http://www.hpl.hp.com/semweb/doc/tutorial/RDQL/index.html .

To create the application, the Jena .jar files must be copied to the common library or to the application-
specific WEB-INF lib directory. I copied them to the common library location because I use Jena for several
applications.

The first page is nothing special, an HTML form with three fields:

The first field is a text input field to hold the URL of the RDF/XML document.

The second field is a textarea to hold the actual query.

The third field is another text input file to hold the variable that's printed out.

Figure 10-2 shows the page containing the form, as well as links to sample RDF/XML documents.

Figure 10-2. Form to capture RDQL parameters

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In the JSP page, the form values are pulled from the HTTP request. The URL is used to load the document;
once it is loaded, the query is run against the document using the Jena QueryEngine class. To iterate
through the results, another class, QueryResults , is created, and each record returned from the query is

then bound to a specific object, in order to access a specific value. The result value that's passed from the
form is polled from the object and the value is printed out, as shown in Example 10-3 . Once all values are
processed, the result set is closed.

Example 10-3. Java/JSP code to dynamically process RDQL query using Jena

<html>
<%@ page import="com.hp.hpl.mesa.rdf.jena.mem.*,
 java.io.File,
 java.util.*,
 com.hp.hpl.mesa.rdf.jena.model.*,
 com.hp.hpl.mesa.rdf.jena.common.*,
 com.hp.hpl.jena.util.*,
 com.hp.hpl.jena.rdf.query.*,
 com.hp.hpl.jena.rdf.query.parser.*" %>

<body>

<%
 ModelMem model;

 try {
 model = new ModelMem();
 String sUri = request.getParameter("uri");
 String sQuery = request.getParameter("query");
 String sResult = request.getParameter("result");

 model.read(sUri);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // query string
 Query query = new Query(sQuery);

 query.setSource(model);

 QueryExecution qe = new QueryEngine(query) ;
 QueryResults results = qe.exec();
 out.print("<h1>test</h1>");

 for (Iterator iter2 = results ; iter2.hasNext() ;) {
 ResultBinding env = (ResultBinding)iter2.next() ;
 Object obj = env.get(sResult);
 out.print(obj.toString());
 out.print("
");
 }

 // close results
 results.close() ;
 }
 catch (Exception e) {
 out.print(e.toString());
 }

%>

</body>
</html>

Once the two pages and supporting Jena .jar files are installed into Tomcat, we're ready to try out some
RDQL in the Query-O-Matic.

10.4.1.2 Trying out the Query-O-Matic

The simplest test of the Query-O-Matic is to run an RDQL variation of the first query made with
Inkling/SquishQL, which is to find all the dc:subject predicates in the RDF/XML document and print out the

associated object values. The contents of the form are given in Example 10-4 .

Example 10-4. RDQL query to find dc:subject in RDF/XML document

uri: http://burningbird.net/articles/monsters1.rdf
query: SELECT ?subject
 WHERE (?x, <dc:subject>, ?subject)
 USING dc FOR <http://purl.org/dc/elements/1.1/>
result: subject

Comparing this with the SquishQL example shows that both are basically the same with minor syntactic
differences. When the form is submitted and the query processed, the results returned are exactly the
same, too.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Another slightly more complicated query is shown in Example 10-5 , which demonstrates traversing two
arcs in order to find a specific value.

Example 10-5. More complex query traversing two arcs

SELECT ?value
WHERE (?resource, <rdf:type>, <pstcn:Movement>),
(?resource, <pstcn:reason>, ?value)
USING pstcn FOR<http://burningbird.net/postcon/elements/1.0/>,
 rdf FOR <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

Notice that object values that are resources are treated the same as the subject and predicate values, with
angle brackets around the URI (or the QName). The only type of value that doesn't have angle brackets is
literals.

A slightly more complicated query more fully demonstrates the filtering capability of the triple pattern. To
better understand how this query works, take a look at the N-Triples of the statements of the subgraph
from the monsters1.rdf example:

<http://burningbird.net/articles/monsters1.htm> <http://www.w3.org/1999/02/22-rdf-
syntax-ns#type> <http://burningbird.net/postcon/elements/1.0/Resource> .
<http://burningbird.net/articles/monsters1.htm> <http://burningbird.net/postcon/
elements/1.0/presentation> _:jARP10030 .
_:jARP10030 <http://burningbird.net/postcon/elements/1.0/requires> _:jARP10032 .
_:jARP10032 <http://burningbird.net/postcon/elements/1.0/type> "logo" .
_:jARP10032 <http://www.w3.org/1999/02/22-rdf-syntax-ns#value> "http://burningbird.
net/mm/dynamicearth.jpg" .
_:jARP10030 <http://burningbird.net/postcon/elements/1.0/requires> _:jARP10031 .
_:jARP10031 <http://burningbird.net/postcon/elements/1.0/type> "stylesheet" .
_:jARP10031 <http://www.w3.org/1999/02/22-rdf-syntax-ns#value> "http://burningbird.
net/de.css" .

These are the statements we'll be querying with the code shown in Example 10-6 . Within the query, the
pstcn:presentation arc is followed from the main resource (monsters1.htm) to get the object/resource
for it (a blank node). Then, the pstcn:requires predicate arc is followed to get the two required
presentation bnodes. However, we're interested only in the one whose pstcn:type is "stylesheet" . Once

we have that, then we'll access the value of the stylesheet. The path I just highlighted in the text is also
highlighted in the example.

Example 10-6. Using triple pattern as a filter

SELECT ?value
WHERE (?x, <pstcn:presentation>, ?resource),
(?resource, <pstcn:requires>, ?resource2),
(?resource2, <pstcn:type>, "stylesheet"),
(?resource2, <rdf:value>, ?value)
USING pstcn FOR <http://burningbird.net/postcon/elements/1.0/>,
 rdf FOR <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

The result from running this query is:

http://burningbird.net/de.css

http://burningbird.net/de.css
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Exactly what we wanted to get.

I used a triple pattern to find the specific required presentation resource, rather than a conditional filter,
because I wasn't going to be querying among the end values-I'm actually modifying the query within the
path to the end statement. If I wanted to find specific values using a conditional filter, I would list triple
patterns up until I returned all of the statements of interest and then use the filter on these statements to
find specific values.

A demonstration of this is shown in Example 10-7 , where a date is returned for a movement with
movement type of "Add" . Notice that equality is denoted by the eq operator rather than using
nonalphabetic characters such as == , common in several programming languages.

Example 10-7. Returning date for movement of type "Add"

SELECT ?date
WHERE
(?resource, <rdf:type>, <pstcn:Movement>),
(?resource, <pstcn:movementType>, ?value),
(?resource, <dc:date>, ?date)
AND (?value eq "Add")
USING pstcn FOR <http://burningbird.net/postcon/elements/1.0/>,
 rdf FOR <http://www.w3.org/1999/02/22-rdf-syntax-ns#>,
 dc for <http://purl.org/dc/elements/1.1/>

Regardless of the complexity of the query, the Query-O-Matic should be able to process the results. Best of
all, you can then take the query and add it to your own code and know that it's been pretested.

However, if you're not a big fan of Java, then you may be interested in the PHP version of Query-O-Matic,
Query-O-Matic Lite.

10.4.2 PHP Query-O-Matic Lite

If you've worked with PHP and with XML, then you're familiar with the PHP XML classes. These classes
provide functionality to process virtually all popular uses of XML, including RDF/XML. The two packages of
interest in this chapter are RDQL and RDQL_DB.

The PHP XML cla ss main web page is at http://phpxmlclasses.sourceforge.net/ . This
section assumes you are familiar with working with PHP.

As you can imagine from the package names, RDQL provides RDQL query capability within the PHP
environment, and RDQL_DB provides persistent support for it. They're both so complete that the PHP
version of Query-O-Matic (Lite) took less than 10 lines of code, hence the Lite designation. But before we
look at that, let's take a close look at the classes themselves.

There are four classes within the RDQL package, but the one of interest to us is RDQL_query_document .
This class has one method, rdql_query_url , which takes as a string a contained query string and returns

an array of associative arrays with the results of the query. The RDQL_DB package provides two classes of
particular importance to this chapter: RDQL_db, which controls all database actions, and RDQL_query_db ,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

which acts the same as RDQL_query_document , taking a string and returning the results of a query as an

array of results. RDQL_DB makes use of RDQL for query parsing and other shared functionality.

To use RDQL_DB, you'll need to preload the database structure required by the package. This is found in a
file called rdql_db.sql in the installation. At this time, only MySQL is supported, and the file is loaded at the
command line:

mysql databasename < rdql_db.sql

You must, of course, have the ability to modify the database in order to create tables
in it. Follow the MySQL documentation if you have problems loading the RDQL tables.

The RDQL table structure is quite simple. Two tables are created: rdf_data contains columns for each
member of an RDF triple as well as information about each, and rdf_documents keeps track of the different

RDF/XML documents that are loaded into the database. Unlike the PHP classes discussed in Chapter 9 , the
PHP RDQL and RDQL_DB packages provide functionality to parse, load, and persist existing RDF/XML
documents and to use RDQL to query them, but neither provides functionality to modify or create an
RDF/XML document.

At the time of this writing, the PHP XML classes had not been updated to include the new RDF/XML
constructs. Because of this, the example RDF/XML document used for most of the book, monsters1.rdf ,
can't be parsed cleanly. Instead, another RDF/XML document was used. This document is reproduced in
Example 10-8 so that you can follow the demonstration more easily.

Example 10-8. Resume RDF/XML document

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:bbd="http://burningbird.net/resume/elements/1.0/"
 xml:base="http://burningbird.net/shelley_powers/resume/" >

 <rdf:Description rdf:about="http://burningbird.net/shelley_powers/">
 <bbd:bio rdf:resource="bio"/>
 <bbd:job rdf:resource="job" />
 <bbd:education rdf:resource="education" />
 <bbd:experience rdf:resource="experience" />
 <bbd:skills rdf:resource="skills" />
 <bbd:references rdf:resource="references" />

 </rdf:Description>

 <rdf:Description rdf:about="bio">

 <bbd:firstname>Shelley</bbd:firstname>
 <bbd:lastname>Powers</bbd:lastname>
 <bbd:city>St. Louis</bbd:city>
 <bbd:state>Missouri</bbd:state>
 <bbd:country>US</bbd:country>
 <bbd:homephone> - </bbd:homephone>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <bbd:mobile> - </bbd:mobile>
 <bbd:workphone> - </bbd:workphone>
 <bbd:email>shelleyp@burningbird.net</bbd:email>
 </rdf:Description>

 <rdf:Description rdf:about="job">
 <bbd:position>Software Engineer</bbd:position>
 <bbd:position>Technical Architect</bbd:position>
 <bbd:experience>16+ years</bbd:experience>
 <bbd:permorcontract>Contract</bbd:permorcontract>
 <bbd:start>2002-09-29</bbd:start>
 <bbd:relocate>No</bbd:relocate>
 <bbd:travel>yes</bbd:travel>
 <bbd:location>St. Louis, Missouri</bbd:location>
 <bbd:status>full</bbd:status>
 <bbd:rateusdollars>100</bbd:rateusdollars>
 <bbd:unit>hour</bbd:unit>
 <bbd:worklocation>both</bbd:worklocation>
 <bbd:idealjob>I'm primarily interested in contract positions with a
 fairly aggressive schedule; I like to be in an energetic
 environment. My preferred work is technology architecture,
 but I'm also a hands-on senior software developer.
 </bbd:idealjob>

 </rdf:Description>

 <rdf:Description rdf:about="education">
 <rdf:_1>
 <rdf:Description rdf:about="degree1">
 <bbd:degree>AA</bbd:degree>
 <bbd:discipline>Liberal Arts</bbd:discipline>
 <bbd:date>1981-06-01</bbd:date>
 <bbd:gpa>3.98</bbd:gpa>
 <bbd:honors>High Honors</bbd:honors>
 <bbd:college>Yakima Valley Community College</bbd:college>
 <bbd:location>Yakima, Washington</bbd:location>
 </rdf:Description>
 </rdf:_1>
 <rdf:_2>
 <rdf:Description rdf:about="degree2">
 <bbd:degree>BA</bbd:degree>
 <bbd:discipline>Psychology</bbd:discipline>
 <bbd:date>1986-06-01</bbd:date>
 <bbd:gpa>3.65</bbd:gpa>
 <bbd:honors>Magna cum laude</bbd:honors>
 <bbd:honors>Dean's Scholar</bbd:honors>
 <bbd:college>Central Washington University</bbd:college>
 <bbd:location>Ellensburg, Washington</bbd:location>
 </rdf:Description>
 </rdf:_2>
 <rdf:_3>
 <rdf:Description rdf:about="degree3">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <bbd:degree>BS</bbd:degree>
 <bbd:discipline>Computer Science</bbd:discipline>
 <bbd:date>1987-06-01</bbd:date>
 <bbd:gpa>3.65</bbd:gpa>
 <bbd:college>Central Washington University</bbd:college>
 <bbd:location>Ellensburg, Washington</bbd:location>
 </rdf:Description>
 </rdf:_3>
 </rdf:Description>

 <rdf:Description rdf:about="experience">
 <rdf:_1>
 <rdf:Description rdf:about="job1">
 <bbd:company>Boeing</bbd:company>
 <bbd:title>Data Architect</bbd:title>
 <bbd:title>Information Repository Modeler</bbd:title>
 <bbd:title>Software Engineer</bbd:title>
 <bbd:title>Database Architect</bbd:title>
 <bbd:start>1987</bbd:start>
 <bbd:end>1992</bbd:end>
 <bbd:description>
At Boeing I worked as a developer for the Peace Shield Project (FORTRAN/Ingres on VAX/
VMS). Peace Shield is Saudi Arabia's air defense system. At the end of the project, I
moved into a position of Oracle DBA and provided support for various organizations. I
worked with Oracle versions 5.0 and 6.0, and with SQL Forms, Pro*C, and OCI. I was also
interim information modeler for Boeing Commercial's Repository, providing data modeling
and design for this effort.
From the data group, I moved into my last position at Boeing, which was for the Acoustical
and Linguistics group, developing applications for Windows using Microsoft C, C++, the
Windows SDK, and using Smalltalk as a prototype tool. The object-based applications we
created utilized new speech technology as a solution to business needs including a speech
driven robotic work order system.
 </bbd:description>
 </rdf:Description>
 </rdf:_1>
 </rdf:Description>

 <rdf:Description rdf:about="skills">
 <rdf:_1>
 <rdf:Description rdf:about="java">
 <bbd:level>Expert</bbd:level>
 <bbd:years>6</bbd:years>
 <bbd:lastused>now</bbd:lastused>
 </rdf:Description>
 </rdf:_1>
 <rdf:_2>
 <rdf:Description rdf:about="C++">
 <bbd:level>Expert</bbd:level>
 <bbd:years>8</bbd:years>
 <bbd:lastused>2 years ago</bbd:lastused>
 </rdf:Description>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </rdf:_2>
 </rdf:Description>

</rdf:RDF>

The PHP XML classes may have been updated to reflect the most recent RDF
specifications by the time this book is published.

To demonstrate both the persistence capability and the query functionality of the PHP XML classes, Example
10-9 shows a complete PHP page that opens a connection to the database, loads in a document, queries the
data, and then removes the document from persistent storage.

Example 10-9. Application to read in resume RDF/XML document and run
query against it

<?
mysql_connect("localhost","username","password");
mysql_select_db("databasename");
?>
<html>
<head>
 <title>RDQL PHP Example</title>
</head>
<body>
<?php
include_once("C:\class_rdql_db\class_rdql_db.php");

read in, store document
$rdqldb = new RDQL_db();
$rdqldb->set_warning_mode(true);
$rdqldb->store_rdf_document("http://weblog.burningbird.net/resume.rdf","resume");
build and execute query
$query='SELECT ?b
FROM <resume>
WHERE (?a, <bbd:title>, ?b)
USING bbd for <http://www.burningbird.net/resume_schema#>';

#parse and print results
$rows = RDQL_query_db::rdql_query_db($query);
if (!empty($rows)) {
 foreach($rows as $row) {
 foreach($row as $key=>$val) {
 print("$val<p>");
 }
 }
}
else {
 print("No data found");
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

data dump and delete document from db
$data = $rdqldb->get_rdf_document("resume");
print("<h3>General dump of the data</h3>");
print($data);

$rdqldb->remove_rdf_document("resume");
?>
</div>
</body>
</html>

This example is running in a Windows environment, and the path to the PHP class is set accordingly. The
method get_rdf_document returns the RDF/XML of the document contained within the database. To print

out the elements as well as the data, modify the string before printing:

$data=str_replace("<","<",$data);
$data=str_replace(">",">",$data);
print ($data);

As the example demonstrates, parsing and querying an RDF/XML document with the PHP XML classes is
quite simple, one of the advantages of a consistent metadata storage and query language.

The code for Query-O-Matic Lite is even simpler. The first page with the HTML form has just one field,
querystr , a textarea input field. When the form is submitted, the second page accesses this string, strips

out any slashes, and then passes the string directly to the PHP class to process the query, as is shown in
Example 10-10 . In this example, the RDQL class is used and the document is opened directly via URL,
rather than being persisted to a database first. In addition, unlike Query-O-Matic, Lite allows multiple
variables in the select clause-each is printed out with spaces in between, and each row is printed on a
separate line.

Example 10-10. Code for PHP RDF/XML Query-O-Matic Lite

<html>
<head>
 <title>RDFQL Query-O-Matic Light</title>
</head>
<body>
<?php

include_once("class_rdql.php");
$querystr=stripslashes($_GET['querystr']);
$rows = RDQL_query_document::rdql_query_url($querystr);
if (empty($rows)) die("No data found for your query");

foreach($rows as $row) {
 foreach($row as $key=>$val) {
 print("$val ");
 }
 print ("

");
 }
?>
</body>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</html>

Even accounting for the HTML in the example, Query-O-Matic Lite is one of the smallest PHP applications
I've created. However, as long as the underlying RDF/XML parser (class_rdf_parser) can parse the

RDF/XML, you can run queries against the data.

Figure 10-3 shows the first page of Query-O-Matic Lite, with an RDQL query typed into the query input text
box.

Figure 10-3. Entering an RDQL query into the Query-O-Matic

The query, shown in Example 10-11 , accesses all degrees and disciplines within the document and prints
them out.

Example 10-11. RDQL query accessing disciplines and degrees from resume
RDF/XML document

SELECT ?degree, ?discipline
FROM <http://weblog.burningbird.net/resume.rdf>
WHERE (?a, <bbd:discipline>, ?discipline),
 (?a, <bbd:degree>, ?degree)
USING bbd for <http://burningbird.net/resume/elements/1.0/>

The results of running this query are:

AA Liberal Arts
BA Psychology
BS Computer Science

The PHP XML classes also support conditional and Boolean operators for filtering data once a subset has
been found with the triple patterns. It's just that the set of operators differs from those for Jena, as there
has been no standardization of RDQL across implementations...yet. In addition, you can list more than one
document in the from/source clause, and the data from both is then available for the query.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

I loaded several RDF/RSS files (for more on RSS, see Chapter 13) from my web sites and then created a
query that searched for all entries after a certain time (the start of 2003) and printed out the
date/timestamp, title, and link to the article. Example 10-12 contains the RDQL for this query.

Example 10-12. Complex RDQL query

SELECT ?date, ?title, ?link
FROM <http://weblog.burningbird.net/index.rdf>
 <http://articles.burningbird.net/index.rdf>
 <http://rdf.burningbird.net/index.rdf>
WHERE (?a, <rdf:type>, <rss:item>),
 (?a, <rss:title>, ?title),
 (?a, <rss:link>, ?link),
 (?a, <dc:date>, ?date)
AND ?date > '2002-12-31'
USING rss for <http://purl.org/rss/1.0/>,
 dc for <http://purl.org/dc/elements/1.1/>

The data from all RDF/XML files was joined, the query made and filtered, and the resulting output met my
expectations. Not only that, but the process was quite quick, as well as incredibly easy-a very effective
demonstration of the power of RDF, RDF/XML, and RDQL.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.5 Sesame

Sesame is, to quote the web site where it's supported, "...an Open Source RDF Schema-Based
Repository and Querying Facility." It's a Java JSP/Servlet application that I downloaded and installed
on my Windows box, running it with a standalone Tomcat server (Version 4.1.18).

The Sesame web site, including source for the product and documentation, is at
http://sesame.aidministrator.nl/.

Once I worked through an installation problem having to do with an extraneous angle bracket in the
web.xml file definition for an Oracle database installation (something the creators of Sesame have
said will be fixed), getting the application to run was a piece of cake-just start Tomcat.

I installed Sesame with support for MySQL. Once I started it (see instructions), the first thing I did
was load in the monsters1.rdf test document, accessed through the URL online. The document loaded
fairly quickly, though the tool didn't provide feedback that it was finished loading.

After loading, I explored the database entries by accessing the Explore menu option (at the top of the
page) and then specifying http://burningbird.net/articles/monsters1.htm as the URI to start the
exploration with (the top-level resource for the test document). The page that opened is shown in
Figure 10-4. Quite a nice layout, with each predicate/object defined as a hypertext link that takes you
to more information about the object. Like BrownSauce, covered in Chapter 7, Sesame provides a
nice RDF/XML browser.

Figure 10-4. RDF/XML test document, explored in Sesame

http://sesame.aidministrator.nl/
http://burningbird.net/articles/monsters1.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Two other options at the top of the Sesame page allow you to query the data using RDQL (the same
RDQL explored in this chapter) or using Sesame's RQL (RDF Query Language). I accessed the RDQL
page first and tried the RDQL query defined earlier in Example 10-7:

SELECT ?date
WHERE
(?resource, <rdf:type>, <pstcn:Movement>),
(?resource, <pstcn:movementType>, ?value),
(?resource, <dc:date>, ?date)
AND (?value eq "Add")
USING pstcn FOR <http://burningbird.net/postcon/elements/1.0/>,
 rdf FOR <http://www.w3.org/1999/02/22-rdf-syntax-ns#>,
 dc for <http://purl.org/dc/elements/1.1/>

Note that this query is looking for a date (dc:date) for the resource movement where the movement
was equivalent to the resource being added ("Add"). Figure 10-5 shows the result of running this

query, which was evaluated in an amazingly short amount of time-seemingly instantaneous.

Figure 10-5. Running RDQL query and viewing the result

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RQL is similar in concept to RDQL, though not surprisingly it has a different syntax, as well as
different features and functionality. For instance, using the online repository querying capability, you
can easily find all RDF classes within the repository just by typing Class as the query (by itself with

no other characters). For the test document, the result is:

http://www.w3.org/1999/02/22-rdf-syntax-ns#Property
http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/2000/01/rdf-schema#Literal
http://www.w3.org/2000/01/rdf-schema#Class
http://burningbird.net/postcon/elements/1.0/Resource
http://www.w3.org/1999/02/22-rdf-syntax-ns#Seq
http://burningbird.net/postcon/elements/1.0/Movement

The PostCon classes of Movement and Resource are found, as are the RDF class Seq and the RDFS
classes of Property, Resource, Literal, and Class. A variation of this query is Property, to get a

listing of all properties in the repository.

To get more selective in your information querying, to find the source and target for a specific
property, you would provide the full URI of the property. For instance, to find the source and target
for the predicate movementType, I typed in the following:

http://burningbird.net/postcon/elements/1.0/movementType

This returned the following:

http://www.yasd.com/dynaearth/monsters1.htm "Add"
http://www.dynamicearth.com/articles/monsters1.htm "Move"
http:/burningbird.net/articles/monsters1.htm "Move"

As with RDQL, you can build complex queries using joins and conditional operations. It's here that
there's a great deal of similarity between RDQL and RQL. In the following, the source and target for
the movementType property is queried using a more formalized SQL-like query like RDQL uses:

http://www.w3.org/1999/02/22-rdf-syntax-ns#Property
http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/2000/01/rdf-schema#Literal
http://www.w3.org/2000/01/rdf-schema#Class
http://burningbird.net/postcon/elements/1.0/Resource
http://www.w3.org/1999/02/22-rdf-syntax-ns#Seq
http://burningbird.net/postcon/elements/1.0/Movement
http://burningbird.net/postcon/elements/1.0/movementType
http://www.yasd.com/dynaearth/monsters1.htm "Add"
http://www.dynamicearth.com/articles/monsters1.htm "Move"
http://lib.ommolketab.ir
http://lib.ommolketab.ir

select X, Y
from {X} http://burningbird.net/postcon/elements/1.0/movementType {Y}

Conditional operators are provided in a where clause following the select from clause, as the
following demonstrates finding a specific source whose movementType is equal to "Add":

select X
from {X} http://burningbird.net/postcon/elements/1.0/movementType {Y}
where Y = "Add"

To join queries, use a period between the query results. In the following RQL query, all objects that
have a property of http://burningbird.net/postcon/elements/1.0/related are queried and

then joined with another query that finds the titles of the related resources:

select *
from http://burningbird.net/postcon/elements/1.0/related {X}. http://purl.org/dc/
elements/1.1/title {Y}

The result from this query is:

http://burningbird.net/articles/monsters2.htm "Cryptozooloy"
http://burningbird.net/articles/monsters3.htm "A Tale of Two Monsters: Architeuthis
Dux (Giant Squid)"
http://burningbird.net/articles/monsters4.htm "Nessie, the Loch Ness Monster "

You can see a great deal of similarity between the two query languages, and I like both equally well,
though I'll admit to a slight preference for the simplicity of RQL.

Of course, being able to query a repository via a predefined interface isn't going to help you build an
application. Sesame comes with a Java API for both server and client functions, including being able
to run RDQL and RQL queries against the repository. I won't cover either in this chapter, as both are
quite nicely documented at the Sesame web site, and documentation is included with the downloaded
property.

One additional feature of Sesame is the repositories support for different protocols for querying the
data, using SOAP and the Java RMI in addition to invoking services using HTTP. Again, these are very
well documented, including examples, at the Sesame site and in the downloaded product. In addition,
as was mentioned earlier in the chapter, you can also use the Sesame repository as the persistent
datastore with the Jena Java API.

[Team LiB]

http://burningbird.net/postcon/elements/1.0/related
http://burningbird.net/articles/monsters2.htm "Cryptozooloy"
http://burningbird.net/articles/monsters3.htm "A Tale of Two Monsters: Architeuthis
http://burningbird.net/articles/monsters4.htm "Nessie, the Loch Ness Monster "
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 11. A Brief Look at Additional RDF
Application Environments
The previous chapters have provided a reasonably detailed look at several APIs created in some of
the more popular programming languages today: Java, PHP, Python, and Perl. However, as popular
as these languages are, they're not the only ones implementing APIs for processing RDF/XML. There
are APIs created in LISP and C, Ruby, Tcl, even .NET-enabled APIs written in C#.

Additionally, some APIs are released as part of a larger framework-APIs connected with a repository
or other higher-level functionality. Technically, these frameworks do provide language-based APIs.
However, their size and complexity tend to make them a bit much for those looking only for a set of
objects to create and/or read an RDF/XML document.

In this chapter, we'll take a look-briefly, because we want to get into some uses of RDF-at some of
the odd-language APIs as well as the more complex frameworks. To start, we'll look at APIs written
in that new kid on the block: C#.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

11.1 RDF and C#

When Microsoft went to its new .NET architecture, one of the products released with the architecture was
the Common Language Runtime (CLR), a programming language platform capable of supporting different
programming languages. The first language released was C#, a hybrid between C++ and Java.

If you're running Linux, you don't need .NET to compile C# code; you can also
compile the code using the C# compiler provided with Mono, an open source CLR
alternative. Download Mono at Ximian's Mono site, http://www.go-mono.com/ .

When I was looking around for application environments that support RDF/XML, I checked for a C# or .NET-
based environment, not really expecting to find anything. However, I found more than one product,
including an easy-to-install, lightweight C# parser named Drive.

Drive can be downloaded at http://www.daml.ri.cmu.edu/drive/news.html .
According to a news release at the site, the API has been updated to the newest RDF
specification.

Drive is a relatively uncomplicated API, providing three major classes:

Softagents.Drive.RDFEdge

Represents an edge (arc) within an RDF graph. Variables include m_Sourcenode and m_Destnode ,

representing the source and destination node of the arc, respectively.
Softagents.Drive.RDFGraph

Stores and manages the entire graph.
Softagents.Drive.RDFNode

Represents a node within an RDF graph. Variables include m_Edges , with all arcs associated with the
node. Methods include getEdges , getIncomingEdges , getOutgoingEdges , and so on.

To work with a graph, first create an instance of RDFGraph , reading in an RDF/XML document. Once it is

read in, you can then query information from the graph, such as accessing a node with a URI and then
querying for the edges related to that node.

Example 11-1 shows a small application that pulls the URL for a RDF/XML document from the command line
and then loads this document in a newly created RDFGraph object. Next, the RDFGraph method getNode is
called, passing in the URI for the resource and getting back an RDFNode object instantiated to that object.
The getEdge s method is called on the node returning an ArrayList of RDFEdge objects. The URI and local

name properties for each of the edges are accessed and then printed out to the console. Finally, at the end,
another RDFGraph method, PrintNTriples , is called to print out all of the N-Triples from the model.

Example 11-1. Printing out the edges for a given node using Drive C# parser

http://lib.ommolketab.ir
http://lib.ommolketab.ir

/***
 * PracticalRDF
 **/
using System;
using Softagents.Drive;
using System.Collections;

namespace PracticalRDF
{
 /// PracticalRDF
 ///
 public class PracticalRDF
 {
 [STAThread]
 static void Main(string[] args)
 {
 string[] arrNodes;

 // check argument count
 if(args.Length <1)
 {
 Console.WriteLine("Usage:Practical <inputfile.rdf>");
 return;
 }

 //read in RDF/XML document
 RDFGraph rg = new RDFGraph();
 rg.BuildRDFGraph(args[0]);

 // find specific node
 RDFNode rNode = rg.GetNode("http://burningbird.net/articles/monsters1.htm");
 System.Collections.ArrayList arrEdges = rNode.GetEdges();

 // access edges and print
 foreach (RDFEdge rEdge in arrEdges) {
 Console.WriteLine(rEdge.m_lpszNameSpace + rEdge.m_lpszEdgeLocalName);
 }

 // dump all N-Triples
 Console.WriteLine("\nN Triples\n");
 rg.PrintNTriples();

 }
 }
}

After compilation, the application is executed, passing in the name of the RDF/XML document:

PracticalRDF http://burningbird.net/articles/monsters1.rdf

The parser does return warnings about a possible redefinition of a node ID for each of the major resources,
but this doesn't impact on the process:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Warning: Possible redefinition of Node ID=http://burningbird.net/articles/monsters1.
htm! Ignoring.
Warning: Possible redefinition of Node ID=http://burningbird.net/articles/monsters2.
htm! Ignoring.
Warning: Possible redefinition of Node ID=http://burningbird.net/articles/monsters3.
htm! Ignoring.
Warning: Possible redefinition of Node ID=http://burningbird.net/articles/monsters4.
htm! Ignoring.
Warning: Possible redefinition of Node ID=http://www.yasd.com/dynaearth/monsters1.
htm! Ignoring.
Warning: Possible redefinition of Node ID=http://www.dynamicearth.com/articles/
monsters1.htm! Ignoring.

All of the predicates directly attached to the top-level node within the document are found and returned:

http://burningbird.net/postcon/elements/1.0/relevancy
http://burningbird.net/postcon/elements/1.0/history
http://burningbird.net/postcon/elements/1.0/bio
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://burningbird.net/postcon/elements/1.0/related
http://burningbird.net/postcon/elements/1.0/related
http://burningbird.net/postcon/elements/1.0/related
http://burningbird.net/postcon/elements/1.0/presentation

Drive cannot handle query-like processing of the data, using an RDQL language. However, there are
methods for adding edges to a node and nodes to a graph if you're interested in building an RDF graph from
scratch or modifying an existing one.

[Team LiB]

http://burningbird.net/postcon/elements/1.0/relevancy
http://burningbird.net/postcon/elements/1.0/history
http://burningbird.net/postcon/elements/1.0/bio
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://burningbird.net/postcon/elements/1.0/related
http://burningbird.net/postcon/elements/1.0/related
http://burningbird.net/postcon/elements/1.0/related
http://burningbird.net/postcon/elements/1.0/presentation
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

11.2 Wilbur - RDF API CLOS

It's been many years since I used LISP, but I wasn't surprised to find at least one RDF
implementation based on it: Wilbur, written none by none other than the legendary Ora Lassila,
coeditor of the original RDF Model & Syntax Specification and the person whose name appears in
many RDF/XML tutorials.

Wilbur is Nokia's RDF Toolkit for CLOS. Documentation and source can be
downloaded from the SourceForge location at http://wilbur-
rdf.sourceforge.net/docs/.

Wilbur has parsers capable of working with RDF, DAML (an ontology language discussed in more
detail in Chapter 12), and straight XML, with the addition of an RDF API, in addition to an HTTP client
and frame system built on RDF and DAML+OIL.

The APIs supported by Wilbur are documented online, but there are no examples or screenshots.
There may be examples and additional documentation within Wilbur; however, since I didn't have
support for CLOS, I couldn't try out the applications or the development tool. However, I wanted to
include a reference to it for the sake of comprehensive coverage of language support for RDF.

[Team LiB]

http://wilbur-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

11.3 Overview of Redland-a Multilanguage-Based RDF
Framework

Though the majority of RDF/XML APIs are based on Perl, Python, Java, and PHP, several are in other language-
based APIs, including ones in C# and CLOS, as discussed in the last section. For instance, if you're interested in
working with Tcl, XOTcl - based on MIT's OTcl - has RDF/XML-processing capability (http://media.wu-wien.ac.at/
). Additionally, Dan Brickley has created an experimental RDF system written in Ruby called RubyRDF (at
http://www.w3.org/2001/12/rubyrdf/intro.html). And if you're interested in a system that supports Tcl as well as
Ruby, and Perl, and Python, and Java, and so on, then you'll want to check out Redland.

One of the older applications supporting RDF and RDF/XML, and one consistently updated to match effort in the RDF
specification is Redland-a multilanguage API and data management toolkit. Unlike most of the other APIs discussed
in this book, Redland has a core of functionality exposed through the programming language C, functionality that is
then wrapped in several other programming languages including Python, Perl, PHP, Java, Ruby, and Tcl. This API
capability is then mapped to a scalable architecture supporting data persistence and query.

Because of its use of C, Redland is port and platform dependent; it has been successfully tested in the Linux, BSD,
and Mac OS X environments. At the time of this writing, Version 0.9.12 of Redland was released and installed cleanly
on my Mac OS X. When writing this section, I tested the C objects, as well as the Python and Perl APIs, the most
stable language wrappers in Redland.

The main Redland web site is at http://www.redland.opensource.ac.uk/ . The RDF/XML
parser used by Redland, Raptor, can be downloaded and used separately from the
framework. Redland is licensed under LGPL and MPL licenses.

11.3.1 Working with the Online Tools

To quickly jump into Redland and its capabilities, there are online demonstrations of several aspects of the
framework and its component tools. One online tool is an RSS Validator, which validates any RSS 1.0 (RDF/RSS)
file. RSS is described in detail in Chapter 13 , but for now, I'll use the validator to validate an RDF/XML file built from
several other combined RSS files. Figure 11-1 shows the results of running the RSS Validator against the file.

Figure 11-1. Output of Redland RSS Validator

http://www.w3.org/2001/12/rubyrdf/intro.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Another validator is an N-Triples Validator, which makes a nice change from RDF/XML validators. There's also a
parser test page, as well as an online database that you can actually manipulate as you test Redland's capabilities
with a persistent store. I created a new database called shelley and loaded in my test RDF/XML file, monsters1.rdf .
I could then query the data using Redland's query triple or by printing out the data and clicking on any one of the
triples to access it. The latter is particularly useful because the query that would return the statement is generated
and printed out, giving you a model to use for future queries.

As an example of a triple query in Redland, the following returns all statements that match on the PostCon reason

predicate:

?--[http://burningbird.net/postcon/elements/1.0/reason]-->?

The format for the triple pattern is:

[subject]--[predicate]-->[object]

for resource objects and the following for strings:

[subject]--[predicate]-->"object"

Use the question mark to denote that the application is supposed to match on any data within that triple
component.

11.3.2 Working with the Redland Framework

The Redland site contains documentation for the core C API, as well as the primary wrappers: Perl, Python, and
Java. The API Reference covers the C API, and each wrapper has a separate page with information specific to that
wrapper language. For instance, if you access the Perl page, you'll find a table of application objects; next to each
object is a link to the documentation page for the core Redland function (written in C), such as librdf_node , and

next to that is a link to the associated language class.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Clicking on the C version of the object opens a page with a listing of all the functions that class supports. Clicking on
any of those opens a page that describes how the function works and the parameters it accepts. Clicking on the
language wrapper object provides a page of documentation about the object, formatted in a manner similar to other
documentation for that language. For instance, Figure 11-2 shows the documentation page for the Perl Statement
object, including the traditional Synopsis.

Figure 11-2. Documentation for the Perl Redland object, Statement

However, the Python documentation was a real eye-opener, following a traditional Python documentation approach
(pydoc) as shown in Figure 11-3 .

Figure 11-3. Documentation for the Python Redland object, Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Normally I wouldn't spend space in a book showing documentation, but I was intrigued by Redland's use of
language-specific documentation style to document different wrappers. In addition to the style, though, the
documentation demonstrates how the object is used in an application, which is critical for learning how to use the
API correctly.

Redland has persistent database support through the Berkeley DB, if you have access to it, or you can use the
memory model. You specify which storage mechanism to use when you create the storage for the RDF model you're
working with. In addition, you can also specify what parser you want to use, choosing from several, including
Raptor, the parser that comes with Redland, which you can use independent of Redland. Other parsers you can use
are SiRPAC, Repat, RDFStore, and so on.

To use Redland, program your application using the native API or whichever of the wrappers you're comfortable in,
compile it, and run it, in a manner similar to those shown in Chapter 10 . The main difference is that the language
wrappers are wrappers-behind the scenes, they invoke the functionality through the native API classes. Table 11-1
shows the main Redland classes, focusing on two languages I'm most comfortable with, Perl and Python, in addition
to the native API.

Table 11-1. Mapping between Perl, Python, and C classes in Redland

Native C API class Perl class Python class Description

librdf_model RDF::Redland::Model RDF.Model
Set of statements (triples) comprising a
unique model

librdf_storage RDF::Redland::Storage RDF.Storage
Storage for the model (persistent or
memory)

librdf_statement RDF::Redland::Statement RDF.Statement One complete triple

librdf_node RDF::Redland::Node RDF.Node RDFnode (resource or literal)

librdf_parser RDF::Redland::Parser RDF.Parser
Parses serialized RDF/XML into either a
stream or a model

librdf_stream RDF::Redland::Stream RDF.Stream Contains stream of RDF statements

librdf_serializer RDF::Redland::Serializer RDF.Serializer
Serializes the model using a specific mime
type such as "ntriples" or "rdfxml"

librdf_iterator RDF::Redland::Iterator RDF.Iterator Supports iteration of nodes from a query

librdf_uri RDF::Redland::URI RDF.Uri Generates URIs

 RDF::Redland::World RDF.World
Wrapper class to start and stop Redland
environment

There are other classes in each wrapper, but the ones shown in Table 11-1 are the ones of primary interest.

11.3.3 A Quick Demo

I created two small applications, one in Perl, one in Python, to demonstrate the interchangeability of languages
within the Redland framework.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Perl application, shown in Example 11-2 , creates a new Berkeley DB datastore and attaches it to a model. The
application then adds a statement, opens the example RDF/XML document located on the filesystem, and parses it
into the model using the Redland parser method parse_as_stream . Once loaded, it serializes the model to disk as a

test and then flushes the storage to disk.

Example 11-2. Perl example loading data into storage

!/usr/bin/perl
#
use RDF::Redland;

create storage and model
my $storage=new RDF::Redland::Storage("hashes", "practrdf",
 "new='yes',hash-type='bdb',dir='/Users/shelleyp'");
die "Failed to create RDF::Redland::Storage\n" unless $storage;
my $model=new RDF::Redland::Model($storage, "");
die "Failed to create RDF::Redland::Model for storage\n" unless $model;

add new statement to model
my $statement=RDF::Redland::Statement->new_from_nodes(RDF::Redland::Node->new_from_uri_
string("http://burningbird.net/articles/monsters1.htm"),
 RDF::Redland::Node->new_from_uri_
string("http://burningbird.net/postcon/elements/1.0/relatedTo"),
 RDF::Redland::Node->new_from_uri_
string("http://burningbird.net/articles/monsters5.htm"));
die "Failed to create RDF::Redland::Statement\n" unless $statement;
$model->add_statement($statement);
$statement=undef;

open file for parsing
RDF/XML parser using Raptor
my $uri=new RDF::Redland::URI("file:monsters1.rdf");
my $base=new RDF::Redland::URI("http://burningbird.net/articles/");

my $parser=new RDF::Redland::Parser("raptor", "application/rdf+xml");
die "Failed to find parser\n" if !$parser;

parse file
$stream=$parser->parse_as_stream($uri,$base);
my $count=0;
while(!$stream->end) {
 $model->add_statement($stream->current);
 $count++;
 $stream->next;
}
$stream=undef;

serialize as rdf/xml
my $serializer=new RDF::Redland::Serializer("rdfxml");
die "Failed to find serializer\n" if !$serializer;
$serializer->serialize_model_to_file("prac-out.rdf", $base, $model);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

$serializer=undef;

warn "\nDone\n";

force flush of storage to disk
$storage=undef;
$model=undef;

Once the data is stored in the database from the first application, the second application opens this store and looks
for all statements with dc:subject as predicate. Once they are found, the application prints these statements out.

When finished, it serializes the entire model to a stream, and then prints out each statement in the stream, as
shown in Example 11-3 .

Example 11-3. Python application that accesses stored RDF/XML and prints out
statements

import RDF

storage=RDF.Storage(storage_name="hashes",
 name="practrdf",
 options_string="hash-type='bdb',dir='/Users/shelleyp'")
if not storage:
 raise "new RDF.Storage failed"

model=RDF.Model(storage)
if not model:
 raise "new RDF.model failed"

find statement
print "Printing all matching statements"
statement=RDF.Statement(subject=None,
 predicate=RDF.Node(uri_string="http://purl.org/dc/elements/1.1/subject"),
 object=None)
stream=model.find_statements(statement);

print results
while not stream.end():
 print "found statement:",stream.current()
 stream.next();

print out all statements
print "Printing all statements"
stream=model.serialise()
while not stream.end():
 print "Statement:",stream.current()
 stream.next()

When the first application is run, the new database is created. However, the second application just opens the
persisted datastore created by the first Perl application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 11-3 reads the RDF/XML document in from the local filesystem rather than
remotely via the URL. In the OS 10.2.4 environment, the examples were tested in; trying to
read a file remotely did result in a Bus error.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

11.4 Redfoot

Redfoot is another multicomponent application. If you reviewed Section 9.3, you saw one of the
components - an RDF parser and API written in Python called RDFLib - in use. In addition to
RDFLib, Redfoot also provides a lightweight HTTP server in addition to a scriptlike language the
creator of Redfoot calls Hypercode.

Information and the source code for Redfoot can be found at http://redfoot.net.
Download RDFLib separately at http://rdflib.net. Check the documentation to
review the requirements for Redfoot, first, before installing

Redfoot has an HTTP listener that by default listens in on port 80, so if you have another web server
running, you may want to shut it off, first. When running locally, access the RDFLib page through
http://localhost.

After Redfoot is running, you can administer Redfoot by setting the document root, managing
contexts, or editing a weblog (Redfoot also provides a basic weblogging tool). Document root controls
where all persisting information is stored. The framework supports multiple RDF/XML models - the
contexts of the tools. Redfoot has several included with the default installation. You can also add
additional ones, as I did with the example file at http://burningbird.net/articles/monsters1.rdf. I
added the file by specifying its URL within the Add Contexts admin page. From this same admin page,
you can also add weblog entries into a weblog; however, the weblog editing features of Redfoot are
fairly basic compared to other specialized weblogging tools.

From the main admin page you can access several examples, including an RDF Navigator that seems
to allow you to build an RDF model, search on it, and so on. It's difficult to tell exactly how to use the
application, though, because there's no documentation for it. The Recipes and the FOAF application,
though, are intuitively easy to use. Figure 11-4 shows a page from the Recipes application.

Figure 11-4. Example page from Recipes application

http://redfoot.net
http://rdflib.net
http://localhost
http://burningbird.net/articles/monsters1.rdf
http://lib.ommolketab.ir
http://lib.ommolketab.ir

As stated earlier, Redfoot uses its own scripting language it calls Hypercode. Hypercode is Python
that's embedded within a CDATA block in an RDF/XML document that contains information about how
to initialize the data. For instance, Example 11-4, from the application's Hello World example, reports
back "Hello World" to the browser.

Example 11-4. Snippet from Hello World Redfoot application

<rdf:Description rdf:about="http://localhost:8080/">
 <rdfs:label>Hello World</rdfs:label>
 <red:facet>
 <red:Facet>
 <rdfs:label>Hello World Facet</rdfs:label>
 <red:outer rdf:resource="http://redfoot.net/2002/11/09/redsite#outer"/>
 <red:code>
 <red:Python>
 <rdfs:label>Redsite Outer page</rdfs:label>
 <red:codestr>
<![CDATA[

response.write("""

<p>Hello World!</p>

""")

]]>
 </red:codestr>
 </red:Python>
 </red:code>
 </red:Facet>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </red:facet>
 </rdf:Description>

</rdf:RDF>

In this example, information about the code is defined using RDF/XML and then implemented within
the Python block. Interesting, but again the documentation is quite sparse. Redfoot is an application
you'll want to check out only if you like to explore, feel comfortable with minimum documentation,
and have a great fondness for Python.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 12. Ontologies: RDF Business
Models
Since the focus of this book is more on the practical usage of RDF than the more theoretical Semantic
Web, I wasn't sure about covering ontologies. After all, in a white paper at Stanford University, Tom
Gruber described ontology thus:

An ontology is a specification of a conceptualization.

It's a bit difficult to determine how to incorporate a discussion of a concept based on such an elusive
definition into a book that begins with Practical. However, looking at examples of ontologies, in
particular OIL, DAML+OIL, and the W3C's current OWL (Web Ontology Language) effort, it seemed to
me that ontologies do fit into a book with Practical in the title, because an ontology is really the
definition of the business rules associated with a vocabulary. In other words: ontologies are business
models. According to the Web Ontology Language (OWL) Use Cases and Requirements document:

An ontology formally defines a common set of terms that are used to describe and represent a
domain. Ontologies can be used by automated tools to power advanced services such as more
accurate Web search, intelligent software agents and knowledge management

Following on the relational model analogy discussed in earlier chapters, if RDF is analogous to the
relational data model and SQL is analogous to RDF/XML, then ontologies built on RDF/XML are
equivalent to large architected business applications such as SAP, PeopleSoft, and Oracle's Financial
and Warehouse applications. This equation definitely opened a home for ontologies in this book, and
this chapter is it.

Tom Gruber's paper at Stanford is at http://www-ksl.stanford.edu/kst/what-is-
an-ontology.html. The OWL Use Cases and Requirements document is at
http://www.w3.org/TR/webont-req/. The W3C's OWL effort is accessible at the
W3C Web Ontology site at http://www.w3.org/2001/sw/WebOnt/.

[Team LiB]

http://www-ksl.stanford.edu/kst/what-is-
http://www.w3.org/TR/webont-req/
http://www.w3.org/2001/sw/WebOnt/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.1 Why Ontology?

Since we spent two chapters discussing how to create RDF vocabularies using a combination of RDF
and RDFS elements (Chapter 5 and Chapter 6), you may be wondering why we would need an
ontology on top of this. What can ontology provide that the RDF Schema doesn't?

RDFS imposes fairly loose constraints on vocabularies. For instance, there's nothing in the schema
that restricts the cardinality of a specific property or that provides information that two properties are
disjoint (i.e., can't use one when using the other). An ontology language such as OWL adds additional
constraints that increase the accuracy of implementations of a given vocabulary. More than that,
though, they allow additional information to be inferred about the data, though it may not be
specifically recorded.

RDFS provides properties, such as subClassOf, that define relationships between two classes-one is

a subclass of, or inherits from, a second class. This also applies to an ontology language, but it can
add additional class characteristics, such as its uniqueness, that aren't defined within RDFS.

We can develop a vocabulary, an ontology if you will, using just RDFS, but it won't be as precise or as
comprehensive as one that also incorporates ontological elements from DAML+OIL/OWL; the more
precise you are with data specification, the better off you'll be.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.2 Brief History of the Ontology Movement

The current ontology effort at the W3C is OWL, which was rooted in the DAML (DARPA Agent Markup
Language) project - specifically the ontology language originating from this project: DAML+OIL.

Though you'll see DAML+OIL, OIL (Ontology Inference Layer) originated separately in Europe starting
in 1997. It was preceded by SHOE (Simple HTML Ontology Extensions) in 1995. OIL is particularly
relevant in a book on RDF because it was the first ontology based on RDF as well as the XML Schema.

The first release of DARPA's DAML was in 2000, following early standardization work on the part of
the W3C. One year after DAML was released, a joint ontology language, DAML+OIL, was released. An
early press release on DAML+OIL appearing in the Cover Pages (at
http://xml.coverpages.org/ni2001-03-28-a.html), said the following:

The reference description document characterizes DAML+OIL as "a semantic markup language
for Web resources." It builds on earlier W3C standards such as RDF and RDF Schema, and
extends these languages with richer modeling primitives.

The first version of DAML+OIL was released in December of 2000, and the current version was
released in March 2001. At the time, one of the primitives that DAML+OIL provided was data typing,
which the first RDF specification didn't provide.

What's interesting with DAML+OIL is that the classes and properties and their relation to each other
as defined in the document are extremely similar to those shown in RDFS (as described in Chapter
5). For instance, a daml:Class element categorizes elements that are classes. There is also the
concept of property, defined through daml:ObjectProperty, but there is a conceptual difference

between class and property in DAML+OIL and class and property in RDFS. However, exactly what
this conceptual difference is has been the focus of considerable debate within the Semantic Web
community.

In the www-rdf-logic mailing list, a thread started once about the difference between rdfs:Class
and daml:Class (at http://lists.w3.org/Archives/Public/www-rdf-logic/2002Mar/0017.html). Exactly
when does one use rdfs:Class and when does one use daml:Class?

General consensus tends to support the view that RDFS describes metadata, including DAML+OIL
itself. However, one should use DAML+OIL elements to define actual instances of data, such as
elements as they are defined in my PostCon vocabulary. This does make sense and supports the view
that I have of DAML+OIL as compared to RDFS: that DAML+OIL is a way of describing a generalized
business model, such as those defined in PeopleSoft and SAP, while RDFS is the metalanguage that
defines DAML+OIL, equivalent to the relational data model used to define the databases that support
PeopleSoft and SAP.

Unfortunately, this view hasn't received complete concurrence from all parties, and there is
considerable bleed-through of the use of one schema over the other or, said another way, lack of
clarity between the layers of the architecture, using the parlance of the community that works closely
with ontologies and RDF.

The W3C entered the picture more fully when it formed the Semantic Web Activity Group in February

http://xml.coverpages.org/ni2001-03-28-a.html
http://lists.w3.org/Archives/Public/www-rdf-logic/2002Mar/0017.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

2001 and followed up with the creation of the Ontology Working Group. An announcement in August
2001 revealed the intent of incorporating the work of the DAML and OIL groups into the W3C
Semantic Web activities (from http://lists.w3.org/Archives/Public/www-rdf-
logic/2001Aug/0014.html):

The current international collaboration between DAML and OIL groups on a Web ontology layer
is expected to become a part of this W3C Activity.

Though not necessarily a part of the effort, DAML+OIL provided the foundation for the W3C ontology
effort. The Web Ontology (WebOnt) Working Group was formally launched in November 2001, and
work began on defining the language necessary for an ontology layer-OWL, the Web Ontology
Language.

This chapter primarily focuses on OWL, but you can review the earlier
DAML+OIL specifications at http://www.w3.org/TR/daml+oil-reference. In
particular, a sample ontology at http://www.w3.org/TR/daml+oil-
walkthru/daml+oil-ex.daml provides a good snapshot of the state of DAML+OIL
at the time the work on OWL began. Lastly, the DAML Ontology Library has a
listing of ontologies defined using DAML+OIL, at
http://www.daml.org/ontologies/. A DAML+OIL-to-OWL converter is at
http://www.mindswap.org/2002/owl.html.

[Team LiB]

http://lists.w3.org/Archives/Public/www-rdf-
http://www.w3.org/TR/daml+oil-reference
http://www.w3.org/TR/daml+oil-
http://www.daml.org/ontologies/
http://www.mindswap.org/2002/owl.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.3 OWL Use Cases and Requirements

As with most W3C efforts, you can track the progress of work within any one activity by the state and
version of the documents released. The first document released by the WebOnt group on OWL listed
a set of requirements for an ontology language, followed by documents for test cases, abstract
syntax and semantics, and, finally, a language reference and user guide.

The roots for OWL exist in the OWL Use Cases and Requirements document, released in July 2002
and recently updated. According to this document, we've been working with ontologies all along by
using vocabularies such as ones I've used in the book like Dublin Core and PostCon. These are
ontologies because they define the data for a specific knowledge domain, which is what the Use Case
and Requirements document defines as ontology.

Specifically, ontology encompasses four concepts:

Classes

Relationships between classes

Properties of classes

Constraints on relationships between the classes and properties of the classes

When you consider that these concepts can be used, equally, with RDF and RDFS, you can see why
there is some confusion about where RDFS ends and OWL begins. The Use Cases document, while
demonstrative of applications facilitated by the use of an ontology, didn't exactly help with clarifying
when to use OWL and when to use RDFS, other than suggesting use of RDFS for defining OWL and
then using OWL for everything else.

One interesting example of an OWL use case is the ontology web portal,
OntoWeb, at http://ontoweb.aifb.uni-karlsruhe.de/.

In addition to use cases, design goals given in the document were:

Ontologies must be sharable, so that more than one business within a particular business
domain could use the same ontology defined for that domain.

Evolving ontologies should be given version numbers and the schema defining the ontology
given a separate URI for each new version (such as PostCon with its
http://burningbird.net/postcon/elements/1.0/version). Ontologies would then be related
through the use of rdfs:subClassOf.

Ontologies must be interoperable.

http://ontoweb.aifb.uni-karlsruhe.de/
http://burningbird.net/postcon/elements/1.0/version
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Inconsistencies in ontologies must be detected automatically to prevent them from occurring.

Ontologies must balance expressivity and scalability.

Ontologies must be consistent with other standards.

Internationalization must be supported.

None of the use cases or design goals is overwhelmingly complex, except possibly testing for
inconsistencies. The next document in the series released by the working group then contained test
cases to see if the OWL met the various design goals.

The most recent version of the Use Cases and Requirements document can be
found at http://www.w3.org/TR/webont-req/.

[Team LiB]

http://www.w3.org/TR/webont-req/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.4 OWL Specifications

OWL has no shortage of associated documents:

Requirements for a Web Ontology Language

Web Ontology Language (OWL) Guide Version 1.0

OWL Web Ontology Language 1.0 Reference

Web Ontology Language (OWL) Abstract Syntax and Semantics

Web Ontology Language (OWL) Test Cases

Feature Synopsis for OWL Lite and OWL

We just looked at the Requirements document. The other documents somewhat mirror their
counterparts over at the RDF Working Group, with the OWL Guide being comparable to the RDF
Primer, the OWL Reference to the Syntax document, and the OWL Abstract Syntax and Semantics
document to a combination of the RDF Concepts and Semantics documents. The test cases for both
are similar; though the OWL feature synopsis doesn't necessarily map to an existing RDF document,
it seems similar to a reference card for OWL.

After reviewing the use cases and requirements governing the design of OWL, the next document to
review to better understand OWL would be the guide. Just as does its counterpart in RDF, the RDF
Primer, the guide provides a general overview of OWL and the associated effort.

12.4.1 OWL Guide 1.0

A further clarification of ontology is provided in the OWL Guide, when it describes how an ontology
differs from an XML Schema. According to the guide:

An ontology differs from an XML schema in that it is a knowledge representation, not a message
format.

This is an important point. XML Schemas and message-based uses of XML focus on specific pieces of
data and specific uses of data, such as sending a message and processing its results. Nothing within
basic XML or within the XML Schema allows one to derive information outside of the context of the
specific use. For instance, the tool I used to maintain a weblog might support SOAP requirements
that allow me to publish a new posting, but nothing associated with the SOAP request allows me, or
anyone, to learn more about that specific posting, or even the weblog, other than what's included
within the transaction. OWL differs from XML Schema (as well as SOAP and many of the other uses of
XML) in that it allows you to record data about an object outside of any specific transaction
associated with that data. It allows you to record knowledge. OWL (and by its association, RDF)
focuses on data rather than process.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The guide provides an overview of three different types of OWL:

OWL Lite

Supports simple classifications, allowing only cardinalities (member count) of 0 or 1 and only
minimal constraints. An example would be a taxonomy.

OWL DL

Supports more complex ontologies, but with some guarantees, such as processing finishing in
finite time, restricting elements to be one type, and so on. According to the guide, it's called
DL, meaning "description logics."

OWL Full

Full support for maximum freedom of RDF, with no computational guarantees and the
possibility of indefinite processing time.

These specific designations have more to do with what certain tools can and will support, which of
course influences the design and implementation of a specific ontology. Looking at PostCon's RDFS
definition, PostCon could be ported to an ontology, with any restrictions and constraints added to it
fitting comfortably within those allowed by OWL DL.

The rest of the guide then covers the basic components of OWL. Later, as we review each of these,
I'll demonstrate the concepts by porting PostCon over to OWL, to supplement the example of the
Wine ontology used within the OWL document.

At this point, you may want to take a look at a tutorial on OWL, "Ontology
Development 101: A Guide to Creating Your First Ontology," found at
http://www.ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-
mcguinness-abstract.html.

12.4.2 OWL Reference 1.0

The OWL Reference document provides the formal specification of the language. It is equivalent to
the XML specification for RDF/XML covered in Chapter 3 and Chapter 4. However, unlike the RDF
document, the OWL documents are a work in progress and far from complete.

The section of most interest in the reference is the one covering the language structure. Unlike RDF,
the OWL vocabulary is quite large. Like RDF, though, it makes use of elements from RDFS (and from
RDF).

The Reference document can be found at http://www.w3.org/TR/owl-ref/. The
prefix for the OWL namespace used in the OWL documents is owl, a convention

I'll follow in this chapter. OWL is based on RDF and RDFS, which means it must
first and foremost validate as proper RDF/XML.

The Reference document breaks the structure of OWL down into separate components, most of which
are already familiar to you from previous chapters, such as the concepts of classes, properties, and
enumerations (collections). Section 12.5 provides an overview of these items. However, OWL also
has several concepts unique to it, such as the Boolean combination of class expressions and property
restrictions, which add the additional layer of reasoning you would expect for a language defining a
business domain. These warrant a closer examination, which occurs in Section 12.6.

http://www.ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-
http://www.w3.org/TR/owl-ref/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

You'll sometimes find reference to owl:Thing in the document, but it doesn't show in any formal

definition of elements, though it is listed as a term. This element represents the class of all classes
and is an artifact of the DAML+OIL effort from which OWL is derived.

12.4.3 OWL Abstract Syntax and Semantics

The Abstract Syntax and Semantics document provides a breakdown of the model theoretical axioms
and rules guiding the implementation and interpretation of OWL. It provides a semantic definition of
what is a "fact" within OWL, as well as a high-level overview of how OWL differs from DAML+OIL and
how OWL Lite differs from the full-featured OWL.

The WebOnt is considering making a minor modification to the name of this
document, changing it to Semantics and Abstract Syntax.

A major difference between OWL and OWL Lite is the inclusion of what the document calls OWL
descriptions. The formal definition of a description is:

< description> ::= <classID>
 | <restriction>
 | unionOf({<description>})
 | intersectionOf({<description>})
 | complementOf(<description>)
 | oneOf({<individualID>})

Primarily, an OWL description is one of a class identifier, a property restriction, or a complex class
association. These descriptions enhance the reasoning inherent within OWL ontology-reasoning that
goes beyond that allowed in RDFS.

Regarding the separation of OWL and OWL Lite in this chapter, for the most part Section 12.5 applies
to both OWL and OWL Lite, though the data typing discussed in the section is beyond OWL Lite.
Additionally, the property restrictions covered in "Bits of Knowledge: More Complex OWL Constructs"
apply to both. However, the discussion about complex classes in this section applies purely to the
fully featured OWL, as these make up most of the options from the OWL description just provided.

Another section in the Abstract document, "RDFS-Compatible Model-Theoretic Semantics," provides a
semantic description of the relationship between OWL and RDFS. Though much of the section is given
over to theorems and proofs, the first part provides a basic overview describing the compatibility
between the two. In particular, it describes the differences between OWL Full and OWL DL.

This chapter focuses on OWL Lite and OWL Full. You'll want to check out the
Abstract document for more information on OWL DL. The latest document can
be found at http://www.w3.org/TR/owl-semantics/.

12.4.4 Feature Synopsis for OWL Lite and OWL

The Feature Synopsis document provides a summary of features for OWL and OWL Lite. It makes a

http://www.w3.org/TR/owl-semantics/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

good "in a nutshell" review of the material and is definitely worth a read as you learn more about
OWL.

Access the recent version of the Synopsis document at
http://www.w3.org/TR/owl-features/..

[Team LiB]

http://www.w3.org/TR/owl-features/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.5 Basic Constructs of OWL

In this section, we'll look at the basic elements of OWL, those that exist regardless of the ontology
being defined. If you're familiar with RDFS (as covered in Chapter 5), most of these should be
familiar to you. Specifically, in this section we'll cover the following OWL elements:

owl:Class owl:Datatype

owl:DatatypeProperty rdfs:domain

owl:imports owl:ObjectProperty

owl:Ontology rdf:Property

rdfs:range rdfs:subClassOf

rdfs:subPropertyOf owl:versionInfo

RDF Schema and OWL are compatible, which is why you'll see RDFS elements within the OWL
element set. However, the direction of this compatibility is one way - only from RDF and RDF to
OWL; you won't see OWL elements within the RDF Schema.

You start an OWL ontology with the header, covered next.

12.5.1 OWL Header

The first component is the outer OWL block, delimited by owl:Ontology, containing version
information (through owl:versionInfo) and an imports section (through owl:imports). The imports
section includes an rdf:resource attribute that points to a separate RDF resource providing

definitions used with the ontology. This could include the complete schema for the ontology.

Redefining PostCon as an OWL ontology rather than a vocabulary defined directly in RDFS, the OWL
header would be similar to the following:

<rdf:RDF
 xmlns:pstcn="http://burningbird.net/postcon"
 xmlns:owl ="http://www.w3.org/2002/07/owl#"
 xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:xsd ="http://www.w3.org/2000/10/XMLSchema#">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<owl:Ontology rdf:about="http://burningbird.net/postcon">
 <owl:comment>PostContent Management</owl:comment>
 <owl:versionInfo>
 $Id: ch12.xml,v 1.5 2003/07/17 20:16:25 chodacki Exp $
 </owl:versionInfo>
 <dc:creator>Shelley Powers</dc:creator>
 <dc:title>PostCon</dc:title>
</owl:Ontology>
</rdf:RDF>

The namespaces are familiar as is the use of the outer rdf:RDF opening and closing tags. However,

note that I used a different namespace for PostCon. I'm not defining a schema for the existing RDF
vocabulary-I'm creating a new ontology, from the ground up, using RDF/XML and based on the
business domain behind the vocabulary.

New material introduced in the header is the outer Ontology block to contain the ontological
definitions and the version information elements, as well as the ontology comments. This section
could also have included an import statement, to import another ontology, but none is defined for
PostCon at this moment. Importing differs from inclusion of a namespace by incorporating that
ontology's assertions into the ontology currently being defined, therefore making them part of the
knowledge base on which the new ontology is being built.

The version information shown is one difference between RDF and OWL-OWL assumes that different
versions of the ontology will be developed, therefore it's imperative to maintain this type of
information with the document for each version.

Dublin Core elements are included in the header to provide title, creator, and other information, since
this ontology is a published resource, and DC was designed to document metadata about published
resources. It's not required-really, little of this material is required-but any extra information helps.

Between the OWL header and the final RDF closing tag is the definition of the classes and properties
of the ontology itself.

12.5.2 OWL Classes and Individuals

Not unlike RDFS, OWL classes define entities via properties. The classes defined for the PostCon
ontology should therefore be similar to those defined with RDFS in Chapter 6. What might be more
apparent with OWL is the hierarchical nature of the classes.

In PostCon, there is a Resource, which is basically anything being tracked with the PostCon system.
During the tracking process, the Resource moves from location to location, each of which is tracked
as a movement. It still has all the characteristics of being a Resource; the movement doesn't change
this. However, there are new characteristics associated with the item. The ResourceMovement, then,
becomes a subclass of Resource. In addition, there are other resources that are related in some way
to the Resource. RelatedResource is also defined as a subclass of Resource:

<owl:Class rdf:ID="Resource" />
<owl:Class rdf:ID="RelatedResource">
 <owl:subClassOf rdf:resource="#Resource" />
</owl:Class>
<owl:Class rdf:ID="ResourceMovement">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <owl:subClassOf rdf:resource="#Resource" />
</owl:Class>

There are other possible classes within PostCon - for instance, different types of resources, such as
photos, text documents, music, and video-each of which has different properties unique to the type
of the object.

However, within the PostCon system, much of the uniqueness of each individual object can be
described using the same properties. For instance, a requirement for viewing a video file is a browser
plug-in that enables this, a requirement for a music file is the same, and so on. Each type of object
has a requirement, and one property can capture this requirement for all the types. In this case,
rather than each object type being a separate class, they're all instances of the same class. In
ontological terms, each of these types of resource is an individual member of the class, rather than a
subclass of it.

12.5.3 OWL Simple Properties and Complex Data Types

An OWL property is really not that much different from a property defined in RDFS. They share the
same use of rdfs:domain and rdfs:range, but in addition, constraints that aren't defined in RDFS

can be applied to OWL properties.

In PostCon, one property of a resource movement is its movement type information. The definition
for it in OWL is very similar to what we would find in the RDF Schema:

<owl:ObjectProperty rdf:ID="movementType">
 <rdfs:domain rdf:resource="#ResourceMovement">
 <rdfs:range rdf:resource="" />
</owl:ObjectProperty>

The property movementType has a domain of ResourceMovement, which means that any resource
with this property is a ResourceMovement. If a property inherits all the characteristics of another, it's
a subproperty of the original, noted in OWL with the subPropertyOf property.

However, where RDFS and OWL differ, quite dramatically, is in data typing. Both specifications use
XML Schema data types; both allow the use of data type within the schema definition (within the
class definition for OWL, RDFS for RDF); and both allow annotation of instances with data type
(individual for OWL, in actual properties in RDF). The two differ in that RDF limits data types to those
types that can be referenced by URI, such as the predefined schema instances (in
http://www.w3.org/TR/xmlschema-2/). OWL extends the concept of data type to include creating
classes of data types that are then used to constrain the range of properties.

To demonstrate, consider the movementType property just defined using ObjectProperty. The
domain is ResourceMovement, and we could say it has a range of rdf:Property, which would be
correct; however, it would also be too diffuse, because movementType has one other constraint
attached to it: there are only three allowable values, "Add", "Drop", and "Move". Within RDFS there
is nothing to automatically constrain the data used with movementType other than to use xsd:string
to state it's a string and rdf:Property to state it's a property.

In OWL, though, we can do much more. Borrowing from the design of the data types for the example
Wine ontology in the OWL Guide, I created a custom XML Schema data type definition file as follows:

http://www.w3.org/TR/xmlschema-2/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://burningbird.net/postcon/postcon-pstcn.xsd">

<xsd:simpleType name="movementTypes">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Add"/>
 <xsd:enumeration value="Drop"/>
 <xsd:enumeration value="Move"/>
 </xsd:restriction>
</xsd:simpleType>
 </xsd:schema>

This new simple type has a base restriction of string, but it also lists an enumeration of allowable
values-"Add", "Drop", and "Move". To tie this into my ontology, I would then create a data typing

class to represent this movement type:

<owl:Class rdf:ID="MovementType" />

I can then tie the data type restrictions to the MovementType class, using DataTypeProperty:

<owl:DataTypeProperty rdf:ID="movementTypeValue">
 <rdfs:domain rdf:resource="#MovementType" />
 <rdfs:range rdf:resource="pstcn:movementType"/>
</owl:DataTypeProperty>

Finally, I can complete the property definition for movementType, by adding an rdf:range that uses

the new data type class:

<owl:ObjectProperty rdf:ID="movementType">
 <rdfs:domain rdf:resource="#ResourceMovement" />
 <rdf:range rdf:resource="#MovementType" />
</owl:ObjectProperty>

This seems a bit complex, but one restriction on allowable values for rdf:range is that they must be
class values, such as rdf:Property. Using this approach, the RDF Schema requirements are met,

but the greater needs of the ontology-being allowed to specify an enumeration of allowed items-are
also met.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.6 Bits of Knowledge: More Complex OWL Constructs

The example in the last section that allowed us to define a more complex data type for a specific
property begins to demonstrate the divergence between RDFS and OWL-this ability to attach more
nuances of meaning to the data being modeled, beyond nuances defined in RDF. Rightfully so-the
relational data model provides the structure necessary to build generic data types that can manage
all data; complex business models such as SAP and PeopleSoft use the relational model as a base for
more complex models representing more specific business models. The two layers of relational data
are complementary rather than competitive, just as the two layers of RDF/RDFS and OWL are
complimentary rather than competitive.

The OWL elements we'll cover in this section are:

owl:allValuesFrom owl:cardinality

owl:complementOf owl:differentFrom

owl:disjointWith owl:FunctionalProperty

owl:hasValue owl:intersectionOf

owl:InverseFunctionalProperty owl:inverseOf

owl:maxCardinality owl:minCardinality

owl:ObjectRestriction owl:oneOf

owl:onProperty owl:Restriction

owl:someValuesFrom owl:SymmetricProperty

owl:TransitiveProperty owl:unionOf

The element names themselves indicate their functional value within OWL.

12.6.1 Increasing the Power of the Property

A property in RDF provides information about the entity it's describing, but the information tends to
be somewhat linear. There are two types of information properties in an RDF record: an actual

http://lib.ommolketab.ir
http://lib.ommolketab.ir

instance of data, such as a string containing a name or another resource, continuing the node-arc-
node-arc-node path within the model.

In ontologies, properties can be much more active in their description of the knowledge described in
the ontology with the aid of some enhancements built directly into the ontology language. OWL
categorizes these property enhancements into characteristics and restrictions.

12.6.1.1 Property characteristics

Property characteristics increase our ability to record our understanding about the data we're
describing in such a way that automated tools can infer much more of the reasoning we used when
we pulled all this data together. In any model, there's a reason why we included this property or that
entity, and not all of these reasons can be determined with the constructs supported in RDF or even
with other data models such as the relational or object-oriented models.

To demonstrate the property characteristics, some new assumptions and additions to the existing
PostCon ontology are made. In the current understanding of PostCon, a resource within the system
would also exist as one resource on the server. However, there's nothing in the system that enforces
this-a single web resource doesn't have to exist in one physical entity. For instance, an "article" such
as the one used throughout the book, "Tale of Two Monsters: Legends" could be separated across
many pages, but still be treated as a single entity within the system. To capture this information, a
new property, partOf, can be defined and used as follows within the PostCon ontology:

<Resource rdf:ID="Section1">
 <partOf rdf:resource="#monsters1" />
</Resource>
<Resource rdf:ID="monsters1">
</Resource>

With the new property, sections of an article can be split into further sections and so on, with each
child section attached to the parent section through partOf.

This is an effective way to manage larger resources, but one thing lost with this structure is the fact
that all of the sections ultimately roll up into one document, with each child section rolling up into the
parent section, which may then roll up into another section and so on. However, OWL property
characteristics provide a way to capture this type of information.

One property characteristic is the TransitiveProperty. The logic associated with this property is:

P(x,y) and P(y,z) implies P(x,z)

Using TransitiveProperty in PostCon would result in something similar to the following:

<owl:ObjectProperty rdf:ID="partOf">
 <rdf:type rdf:resource="owl:TransitiveProperty" />
 <rdfs:domain rdf:resource="&owl;Thing" />
 <rdfs:range rdf:resource="#Resource" />
</owl:ObjectProperty>

<Resource rdf:ID="sectionHeader1a">
 <partOf rdf:resource="sectionHeader1" />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</Resource>

<Region rdf:ID="sectionHeader1">
 <partOf rdf:resource="#monsters1" />
</Region>

The TransitiveProperty characteristic is attached to the property partOf. This property is used to
attach the "sectionHeader1a" section to the parent section, "sectionHeader1". When the parent
section is then attached to the main article, "monsters1", by the use of TransitiveProperty, the
"sectionHeader1a" is also defined to be "part of" the top-level document. No special processing or

understanding of the domain would be necessary to intuit this information because it's provided with
the characteristic.

A second property characteristic is the SymmetricProperty. The logic for it is:

P(x,y) iff P(y,x)

With the new PostCon property, sections can be marked as peers to each other through the use of
SymmetricProperty applied to a new predicate, sectionPeer:

<owl:ObjectProperty rdf:ID="sectionPeer">
 <rdf:type rdf:resource="&owl;SymmetricProperty" />
 <rdfs:domain rdf:resource="#Resource" />
 <rdfs:range rdf:resource="#Resource" />
</owl:ObjectProperty>

<Resource rdf:ID="sectionHeader1a">
 <partOf rdf:resource="#sectionHeader1" />
 <sectionPeer rdf:resource="#sectionHeader1b" />
</Resource>

<Resource rdf:ID="sectionHeader1b">
 <partOf rdf:resource="#sectionHeader1" />
 <sectionPeer rdf:resource="#sectionHeader1a" />
</Resource>

A third property characteristic is FunctionalProperty, with the logic:

P(x,y) and P(x,z) implies y = z

Earlier in the section on data types, we created a custom data type, MovementType, to specify that

allowable values be within a given set. The data type was attached to a specific property,
movementType, which then became functional (noted by FunctionalProperty) in that all movement

types can be assigned only one value, and the value must be from the allowable types:

<owl:Class rdf:ID="MovementType" />

<owl:ObjectProperty rdf:ID="movementType">
 <rdf:type rdf:resource="&owl;FunctionalProperty" />
 <rdfs:domain rdf:resource="#ResourceMovement" />
 <rdf:range rdf:resource="#MovementType" />
</owl:ObjectProperty>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The inverseOf characteristic is pretty straightforward: a new property can be defined as the inverse

of an existing property. The logic for it is:

P1(x,y) iff P2(y,x)

If partOf shows a child section's relationship to a parent section, then the property hasChild would

define a parent section's relationship to one of its children:

<owl:ObjectProperty rdf:ID="hasChild">
 <owl:inverseOf rdf:resource="#partOf" />
</owl:ObjectProperty>

Finally, the last property characteristic is InverseFunctionalProperty, which combines the logic of
both the inverse and the FunctionalProperty:

P(y,x) and P(z,x) implies y = z

We can consider partOf as functional (as defined by FunctionalProperty), because a section is part
of another section, and that other section only (a functional constraint). And if partOf is functional,
then the inverse functional equivalent of partOf would be the hasChild property:

<owl:ObjectProperty rdf:ID="partOf">
 <rdf:type rdf:resource="&owl;FunctionalProperty" />
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="childOf">
 <rdf:type rdf:resource="&owl;InverseFunctionalProperty" />
 <owl:inverseOf rdf:resource="#partOf" />
</owl:ObjectProperty>

Properties can be further refined through restrictions, discussed next.

12.6.1.2 Property restrictions

If property characteristics enhance reasoning by extending the meaning behind element relationships
with each other, than property restrictions fine-tune the reasoning by restricting properties within
specific contexts.

Returning to PostCon, the Resource class has two subclasses, ResourceMovement and
RelatedResource:

<owl:Class rdf:ID="Resource" />
<owl:Class rdf:ID="RelatedResource">
 <owl:subClassOf rdf:resource="#Resource" />
</owl:Class>
<owl:Class rdf:ID="ResourceMovement">
 <owl:subClassOf rdf:resource="#Resource" />
</owl:Class>

In the RDF Schema for PostCon, both of these classes would have "reason" as a predicate,
explaining the association between the classes. In addition, ResourceMovement also has
movementType.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Instead of having two different properties, we could have just the one - reason - and then attach a
property restriction - allValuesFrom - to it, restricting values for this property to MovementType

values only. The use of this restriction is demonstrated in the following code:

<owl:Class rdf:ID="ResourceMovement">
 <owl:subClassOf rdf:resource="#Resource" />
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#reason" />
 <owl:allValuesFrom rdf:resource="#MovementType" />
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

Restrictions differ from characteristics in that restrictions apply to a sub-set of the data, rather than
globally to all data. In this use of allValuesFrom, the restriction applies to the reason property only
when it's used within the ResourceMovement class, not when its used in the RelatedResource class.

A less restricted version of allValuesFrom is someValuesFrom, used to specify that at least one of
the properties restricted, in this case reason, must point to a specific MovementType.

Another restriction is cardinality. Cardinality indicates the exact number of individual instances of a
property allowed within a class - not the maximum or minimum number, but the exact number that
must exist.

Returning to PostCon, each individual ResourceMovement can have one and only one movementType

property. This restriction would be modeled in OWL with the following:

<owl:Class rdf:ID="ResourceMovement">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#movementType"/>
 <owl:cardinality>1</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

According to the OWL Guide, OWL Lite can specify values of only 0 or 1 for the cardinality restriction.
However, for OWL Full, in addition to the use of the cardinality restriction, owl:maxCardinality can
be used to set an upper cardinality, while owl:minCardinality can be used to set the lower. Setting

both defines a range.

The last property restriction is hasValue, used with a class to differentiate those with properties from
a specific range. Again returning to ResourceMovement, the use of hasValue could be used to
differentiate ResourceMovement from RelatedResource, by adding the restriction that
ResourceMovement classes have a movementType pointing to the MovementType class:

<owl:Class rdf:ID="ResourceMovement">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#movementType"/>
 <owl:hasValue rdf:resource="#MovementType" />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

The more uses of property characteristics and restrictions placed on objects in the ontology, the
better able tools are to make strong inferences about the true meaning of the data being defined.

12.6.2 Complex Classes

More complex class relationships exist than just the simple hierarchy defined through the use of
subClassOf. These relationships are managed through a set of properties that controls how one class

relates to another. These class expressions, as OWL defines them, are based on typical set
operations used elsewhere, such as in logic or math. All classes constructed using set operations,
such as intersectionOf, are closed, explicitly stating the parameters of class membership for a

specific class.

12.6.2.1 Intersection

An intersection of a class and one or more properties is created using the intersectionOf property.
All members of a class defined with intersectionOf are explicitly defined by the intersection of the

class membership and the property or properties specified.

One change that could be made to PostCon is to differentiate between types of resources, based on
the assumption that different types of resources have different information associated with them. If
we do classify resources in this manner, then we'll also want to explicitly state without equivocation
which class each resource would belong in. In the following OWL definition, the new resource class,
XMLResource, is restricted to members that belong to the Resource class and also belong to all things

that are based on XML:

<owl:Class rdf:ID="XMLResource">
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Resource" />
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasFormat" />
 <owl:hasValue rdf:resource="#XML" />
 </owl:Restriction>
 </owl:intersectionOf>
</owl:Class>

The XMLResource class consists of a class defining a set of properties, all of which can be used to

describe something formatted as XML. The intersection would then be "Resource" and "things
formatted as XML." The Collection parseType is a required attribute in the class definition because

the class is being constructed to define a collection of like material.

Rather than base the intersection on a specific property, you can also just specify an intersection of
classes. In the following, a new class, RSSXMLResource, is defined as the intersection between
XMLResource and another new complex class, RSSResource:

<owl:Class rdf:ID="RSSXMLResource">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#XMLResource" />
 <owl:Class rdf:about="#RSSResource" />
 </owl:intersectionOf>
</owl:Class>

Members of RSSXMLResource would be resources formatted as XML but based on some RSS

vocabulary; RSS documents that are not XML formatted wouldn't be included, and neither would XML
documents that aren't based on RSS. RSS 1.0 (RDF/RSS) would be a member of this class.

12.6.2.2 Union

The unionOf construct creates a class whose members combine the properties of both classes being
joined. A demonstration of this is the following, which defines a new class, called WebpageResource.
This combines the properties of XMLResource and a new class, HTMLResource:

<owl:Class rdf:ID="WebpageResource">
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#XMLResource" />
 <owl:Class rdf:about="#HTMLResouce" />
 </owl:unionOf>
</owl:Class>

XML, XHTML, and HTML pages would all be members of this class.

As the guide notes, defining a class to be a subclass of two classes results in an
intersection of the two classes. With XMLResource and HTMLResource, this

would be an empty class because HTML, by its nature, is not an XML document.

12.6.2.3 Complement

A class that consists of all members of a specific domain that do not belong to a specific class can be
created using the complementOf construct. Continuing our classification of PostCon resources, all web

resources that aren't HTML, XML, or XHTML can be lumped into one class membership using a class
definition like the following:

<owl:Class rdf:ID="WebResource" />
 <owl:Class rdf:ID="NotWebPage">
 <owl:complementOf rdf:resource="#WebpageResource" />
 </owl:Class>

According to the OWL documentation, complementOf is usually used with other set operations. With

PostCon, this increasingly complex construct could be used to define a class that contains all
members of resources that are not XML-formatted RSS with the following definition:

<owl:Class rdf:ID="NotRSSXMLResource">
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Resource"/>
 <owl:Class>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <owl:complementOf>
 <owl:Class rdf:ID="RSSXMLResource">
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#XMLResource" />
 <owl:Class rdf:about="#RSSResource" />
 </owl:intersectionOf>
 </owl:Class>
 </owl:complementOf>
 </owl:Class>
 </owl:intersectionOf>
</owl:Class>

If a circle were drawn around XML-formatted RSS files, everything outside of this circle that is a
Resource would belong to NotRSSXMLResource.

12.6.2.4 Enumeration

An enumeration is a class with a predetermined, closed set of members. Applied to web resources,
this could be an enumeration of graphics types supported at a particular web site, as shown in the
following, using the OWL enumeration operator, oneOf:

<owl:Class rdf:ID="GraphicResource">
 <rdfs:subClassOf rdf:resource="#Resource"/>
 <owl:oneOf rdf:parseType="Collection">
 <owl:Thing rdf:about="#JPEG"/>
 <owl:Thing rdf:about="#PNG"/>
 <owl:Thing rdf:about="#GIF"/>
 </owl:oneOf>
</owl:Class>

The list could, of course, be extended to include other graphics types. A member of an enumerated
class belongs to one, and only one, of the collection members.

12.6.2.5 Disjoint

Finally, the last complex class construction is the disjoint construct, which lists all of the classes that
a particular class is guaranteed not to be a member of. As an example, the following defines a new
class, TextFile, guaranteed not to be a member of the GraphicResource and VideoResource

classes:

<owl:Class rdf:ID="TextFile">
 <rdfs:subClassOf rdf:resource="#Resource"/>
 <owl:disjointWith rdf:resource="#GraphicResource"/>
 <owl:disjointWith rdf:resource="#VideoResource"/>
</owl:Class>

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.7 The Complementary Nature of RDF and OWL

Previous sections barely skimmed the richness of OWL, though they have shown that regardless of
the complexity of the constructs, they remain valid RDF/XML. In fact, if you open up the Wine
ontology that the OWL group uses for its examples, located at http://www.w3.org/TR/owl-
guide/wine.owl, you'll find that it validates. You'll want to turn on the graph option first, and you
should be prepared to wait because wine.owl is quite large.

So, when should you use just RDF Schema and when should you use OWL?

If you're defining a fairly simple vocabulary primarily for your own use (and I use RDF/XML for a
dozen different little applications at my site), and if you're concerned primarily with the striped nature
of RDF/XML, you'll most likely want to just define your vocabulary in RDF and RDFS.

However, if you're documenting a model of a specific domain and you hope to encourage others to
use it and, best of all, be able to use the data to make sophisticated queries, you're going to want to
use OWL to take advantage of its many inferential enhancements.

Before we leave this chapter, we'll take a quick glance at a couple of editors specialized for
ontologies. Take what you've learned in this chapter out for a spin.

[Team LiB]

http://www.w3.org/TR/owl-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.8 Ontology Tools: Editors

Ontology editors can also be RDFS editors, but they usually have extended services and features to
meet the increased demand in sophistication of the ontology. In this section, we'll look at two such
editors: SMORE and Protégé.

12.8.1 SMORE-Semantic Markup, Ontology, and RDF Editor

Much of the effort on behalf of both RDF and OWL is predicated on the Semantic Web, so the lack of
tools that connect traditional web creation tools such as a WYSIWYG editor for HTML with support for
newer technologies, such as an ontology editor, is rather surprising. However, SMORE - the
Semantic Markup, Ontology, and RDF Editor - is an application that incorporates four separate
applications into one to provide just such support. SMORE, another application written in Java, is one
of the interesting products to come out of the Semantic Web Research Group, along with several
converters, RDF scrapers, and other useful tools and utilities.

The Semantic Web Research Group's web site is at http://www.mindswap.org/.
You can download SMORE from
http://www.mindswap.org/~aditkal/editor.shtml. The tool is freely available.

SMORE opens with an interface consisting of four separate windows within one frame. Each window
contains a separate application: a web browser in one, a web ontology browser in another, a
WYSIWYG HTML editor in a third, and a semantic data representation in the fourth. Figure 12-1
shows the tool just after it opens.

Figure 12-1. SMORE when it's first opened

http://www.mindswap.org/
http://www.mindswap.org/~aditkal/editor.shtml
http://lib.ommolketab.ir
http://lib.ommolketab.ir

All four applications are integrated with one another. When examining the ontological class in the
ontology browser, clicking on the source opens the RDF/XML for the class in the web browser; right-
clicking on a term in the WYSIWYG HTML editor adds the term to the semantic data representation
under development, and so on.

Opening an HTML document in the editor caused the application to fail,
throwing several Java exceptions. This should be fixed when this book hits the
streets.

Documentation on using the tool can be found in Help.

12.8.2 Protégé

Protégé is a Java-based ontology editor that provides the mechanisms to create ontologies and then
allows you to save them as plain text, into JDBC-accessible datastores, and as RDF/XML. Installation
consists of downloading the tool and then clicking the installer that the Java applet in the installation
page recommends for your system.

The Protégé home page is at http://protege.stanford.edu, and the download
page is at http://protege.stanford.edu/download/prerelease/index.html. The
system has installers for, and been tested with, Windows, Mac OS X, AIX,
Solaris, Linux, HP-UX, and generic Unix and other Java supportive platforms. I
tested Version 1.8 for this chapter, within my Windows 2000 box. The extensive
documentation can be viewed online at http://protege.stanford.edu/useit.html.

Figure 12-2 shows the editor when it's first opened up, with the existing demonstration project,

http://protege.stanford.edu
http://protege.stanford.edu/download/prerelease/index.html
http://protege.stanford.edu/useit.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Newspaper, loaded.

Figure 12-2. Screenshot of Protégé after it opens

The tabbed interface allows you to define new classes and subclasses in the first page, in addition to
adding properties (which the tool, in line with much of the ontology effort, calls slots). If a class has a
key figure next to it, such as Person in Figure 12-2, clicking on the key displays or hides the class
subclasses. Define a new class by clicking the high-level THING and then clicking the C toolbar item in
the left toolbar, just over the Classes.

The next tab shows the slots (properties) defined in the ontology, as shown in Figure 12-3.

Figure 12-3. The Slots tab on the editor

For each property, you can specify a name, provide documentation, restrict the range of classes,
specify its cardinality, and create an inverse slot (equivalent to the inverseOf property characteristic

described before).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The next tab provides a form designer window that allows you to define a form used to record
individual ontology members (instances). Clicking on a class in the left window opens the default (or
saved customized) form in the right. At that point, you can do things such as move the form fields
around, resize them, and so on.

The last tab is where the forms customized in the previous tab are displayed, allowing you to record
instance data for the ontology. In addition, data that's already been recorded displays when the form
is opened, as shown in Figure 12-4, including a mapping between a higher-level class instance and
repeating properties. Note in the form that data entry doesn't have to be limited to plain text fields.

Figure 12-4. Tab to enter instance data

Finally, the last tab is used to enter queries about the data stored within the project. As with other
query systems against RDF data described in earlier chapters, the queries are built as
triples-subject, object, and predicate. Several can be combined, and a query can even be used as
the object in a triple, as shown in Figure 12-5.

Figure 12-5. Queries tab with query made of three triples, one of which
has a query as object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Again, the project can be saved at any time and can also be exported as the previously mentioned
RDF/XML, JDBC, or text. In addition, the tool can also generate HTML of the contents, with all the
proper hypertext links between classes, subclasses, slots, and so on maintained. Additionally, there's
a metrics function available from the Project menu that provides instance information.

This is one fun tool.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 13. Subscription and Aggregation
with RSS
If vocabularies such as the Dublin Core can be considered children of RDF, then RSS is the
specification's rebellious teenager. RSS, or RDF Site Summary (and sometimes Rich Site Summary or
Really Simple Syndication) is primarily used for syndication and aggregation. O'Reilly's news service,
Meerkat, with its continuously updating news headlines, uses RSS for its data feeds.

RSS is also the most prevalent implementation of RDF in the world at this time, primarily through its
use in weblogging and with popular online media outfits such as BBC News, Salon, Wired, and others.
(If you're not familiar with weblogging, weblogs are online journals that are usually updated daily,
with most recent entries showing at the top of the page in a reverse chronological order. Weblogging,
or blogging as it's frequently termed, has increased in popularity in the last few years, and estimates
now put the number of weblogs at more than 500,000 in the world.)

In order to keep up with your favorite news sources or weblogs, you can visit each one in turn, or
you can subscribe to the site's syndication feed. This feed contains the most recent weblog entries,
their titles, the URL for each entry, and a brief description of the article or posting, all documented in
RSS.

This chapter takes a detailed look at the RSS specification and its history as well as example RSS
feeds. In addition, the chapter will also take a look at popular aggregators-tools that process
RSS-as well as examples of how to process the content.

Access the RSS 1.0 specification at http://purl.org/rss/1.0/. The RSS Working
Group's group discussion can be found at http://groups.yahoo.com/group/rss-
dev/.

[Team LiB]

http://purl.org/rss/1.0/
http://groups.yahoo.com/group/rss-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.1 RSS: Quick History

Both a varied history and some controversy surround RSS. Rather than spend time on this in the
book, I'll point you to a Yahoo group's RSS Development Group message that details much of it (at
http://groups.yahoo.com/group/rss-dev/message/1136). The concept of a providing data in a
defined format in order to support news feeds and data channels didn't originate with RSS. For
instance, the use of RSS-in any format-was predated by Microsoft's CDF, which I used at one time
to provide data channels of my web sites.

RSS originally stood for RDF Site Summary and was a vocabulary of RDF/XML developed at Netscape
several years ago for the company's implementation of channels. The use of RDF in RSS, as well as in
earliest implementations of Mozilla, was due to R.V. Guha, an original RDF pioneer. When Netscape's
attention was diverted to other matters - or should we say when AOL decided the support for RSS
wasn't an effective profit center - RSS was left orphaned. This actually had a physical impact,
because one result of this abandonment was Netscape pulling the DTD for RSS 0.9/0.91 that people
used to use to validate their RSS XML.

Other people and companies took up the interest in the specification, including Userland's Dave
Winer, a principal contributor to the earliest RSS specification. It was Winer's and Userland's use of
RSS that sparked a growth of RSS, first within Userland, then eventually outside of the company.

These versions of RSS did not depend on RDF, but instead were based on an RSS-specific XML
vocabulary. The specification released in December 2000, RSS 1.0, is based on RDF. One reason for
switching back to an RDF base was to inherit the rich extensibility built into RDF, including the use of
namespaces to handle element collision. The RSS Group saw in namespaces the answer to the
problem of how to extend RSS without having to continually release new versions of the specification.
Another reason is that the information included in RSS feeds-such as article title, author, excerpt
and so on-is a rich source of information. By implementing RSS within an RDF framework, there's
hope that the information can be merged with other RDF vocabularies and uses.

Today, RSS 1.0 is solidly RDF based. However, non-RDF RSS documents are currently in use
throughout the Internet, primarily based on Userland's current RSS specification. The most recent
such non-RDF specification was RSS 2.0, released late in 2002.

For a more detailed and comprehensive look at RSS and its history as well as
non-RDF implementations, please see the O'Reilly book Content Syndication
with XML and RSS, by Ben Hammersley. Ben covers both branches of RSS, the
RDF and the non-RDF versions.

[Team LiB]

http://groups.yahoo.com/group/rss-dev/message/1136
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.2 RSS 1.0: A Quick Introduction

RSS 1.0 is an RDF vocabulary and as such must follow the rules and specifications associated with RDF.
However, the developers of RSS 1.0 wanted to constrain the specification's XML syntax in order to
simplify the development of tools and technologies to generate and consume RSS. Based on this, RSS
always validates as proper RDF, but a non-RSS RDF model won't necessarily validate as proper RSS.
Validation is constrained from RSS to RDF, but not the reverse.

Example 13-1 shows a portion of the RSS for my own weblog (generated by the weblogging tool
Movable Type, found at http://www.movabletype.org).

Example 13-1. RSS 1.0 generated by Movable Type

<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.
org/dc/elements/1.1/" xmlns="http://purl.org/rss/1.0/">

<channel rdf:about="http://weblog.burningbird.net/">
<title>Burningbird</title>
<link>http://weblog.burningbird.net/</link>
<description></description>

<items>
<rdf:Seq>
<rdf:li rdf:resource="http://weblog.burningbird.net/archives/000472.php" />
<rdf:li rdf:resource="http://weblog.burningbird.net/archives/000471.php" />
</rdf:Seq>
</items>

</channel>

<item rdf:about="http://weblog.burningbird.net/archives/000472.php">
<title>Serendipity, all over again</title>
<description>When I wrote the previous posting, "How Green is my
Valley", I referenced both my old hometown, Kettle Falls,
Washington, and a posting by Loren, otherwise known as In a Dark Time.
At the time that I read Loren's weblog,...
</description>
<link>http://weblog.burningbird.net/archives/000472.php</link>
<dc:subject>Virtual Neighborhood</dc:subject>
<dc:creator>shelley</dc:creator>
<dc:date>2002-08-23T15:07:57-06:00</dc:date>
</item>

<item rdf:about="http://weblog.burningbird.net/archives/000471.php">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<title>How Green is my Valley</title>
<description>The housing complex that I live in is quite large, with small
buildings consisting of a combination of townhomes and flats. One of the nicest
aspects of the place is all the trees and plants and green areas,
including our...
</description>
<link>http://weblog.burningbird.net/archives/000471.php</link>
<dc:subject>Mother Nature</dc:subject>
<dc:creator>shelley</dc:creator>
<dc:date>2002-08-23T12:49:24-06:00</dc:date>
</item>

</rdf:RDF>

In the example, two weblog entries are described. The required RDF enclosing tag is included, and each
RSS item is defined first as an RDF container element, and later given a title and description, as well as
entry author, subject (category), and date. The content is valid RDF, as you'll find if you run it through
the RDF Validator (described in Chapter 3).

However, if you're used to working with RDF, you may notice that the primary element of interest in the
document isn't defined using the RDF Description tag, as was demonstrated in many of the examples in
previous chapters. Instead, a typed node of channel is used. The RSS Working Group used this

approach to simplify processing of the RSS. By using a typed node, standard XML processing can pull
information from this RSS file without having to be aware of any more complex RDF mechanisms.
Additionally, the use of the typed node also ensures backward compatibility with RSS 0.9 (though not
with RSS 0.91 and the other Userland RSS releases).

This RSS feed also makes use of one core RSS module, the specialized Dublin Core module, discussed
later in the chapter.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.3 A Detailed Look at the Specification

RSS is first and foremost valid RDF, requiring the enclosing RDF element. Other RSS-specific elements that
are required are channel , title , link , and one or more item elements. The remaining RSS elements

are optional.

The RSS RDFS can be found at http://web.resource.org/rss/1.0/schema.rdf/ .
Examining this, you'll see that many of the RSS properties discussed in this section
are actually subproperties of related DC properties, such as TITLE , URL ,
DESCRIPTION , and so on.

Certain allowable features of RDF are restricted within RSS, primarily to simplify the tool builder's task. For
instance, at the time of this writing, repeating properties (or subelements as they are termed in the RSS
spec), which are allowed in RDF, are restricted in RSS. This restriction means that you couldn't list multiple
subelements of the higher-level item element, such as multiple DC subject entries (which would be a

naturally occurring repetitive element). However, the RSS Working Group is working toward removing this
restriction or at least having each RSS module writer explicitly specify where repeating properties are
allowed.

Another RSS-specific restriction is that each higher-level element must have an rdf:about attribute (as
shown in Example 13-1 for the item and channel elements), and the URI contained in this attribute must
follow URL naming conventions (i.e., be an http , ftp , mailto , etc. type of URI). Remaining restrictions

are based on the RSS elements, as discussed in the next several sections.

13.3.1 channel

The channel element surrounds the data being described in the document. It's equivalent to an RDF typed
node and features starting and ending tags. The only required attribute is rdf:about , containing the URL

of the resource being described:

<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://
purl.org/dc/elements/1.1/" xmlns:sy="http://purl.o
rg/rss/1.0/modules/syndication/" xmlns="http://purl.org/rss/1.0/">

<channel rdf:about="http://weblog.burningbird.net/">
...
</channel>
...
</rdf:RDF>

You could extend the channel element with new attributes, and the element should still validate as both

RDF and RSS. However, a better approach would be to check whether one of the RSS modules has the
data elements you need to describe your data and to use that module instead. If not, you may want to
consider submitting your own recommended modules (as described later in Section 13.4).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.3.2 title, link, and description

The title , link , and description elements are all required subelements of channel . The RSS
specification has a recommended length for each: 40 characters or fewer for title , and 500 characters
or fewer for link and description .

<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://
purl.org/dc/elements/1.1/" xmlns:sy="http://purl.o
rg/rss/1.0/modules/syndication/" xmlns="http://purl.org/rss/1.0/">

<channel rdf:about="http://weblog.burningbird.net/">
<title>Burningbird</title>
<link>http://weblog.burningbird.net/</link>
<description></description>
...
</channel>
...
</rdf:RDF>

The elements are required, but they may contain no data, as the description element in this example

demonstrates.

All three elements are PCDATA, which means the character data is parsed for things such as named
entities (i.e., < for < and so on), but the data cannot contain child elements. This also means you

cannot use markup in these elements. When a suggestion was made about including XHTML or some other
form of XML within the title element, the RSS Working Group strongly recommended against this

technique.

The link element doesn't necessarily repeat the URI of the item being described. Instead, it contains the

URL of the HTML that contains the rendering of the item begin described (whether this is the channel, the
image, or a specific item). For the vast majority of uses of RSS, the link duplicates the URL given as a URI
in the rdf:about attribute. However, this can sometimes differ. For instance, a URI for a site might be:

http://somesite.com

but the link to the actual material might be:

http://www.somesite.com/index.html

The site may choose to use a different URI to represent the site contents, reflecting the independence of
the URI from the actual URL. Why? Could be because the site wants to change the channel site at some
point, perhaps linking it to:

http://channel.somesite.com/index.php

but the site URI remains the same, and therefore consistent.

title , link , and description are required subelements of item , textinput , and image , in addition
to being subelements of channel .

http://somesite.com
http://www.somesite.com/index.html
http://channel.somesite.com/index.php
http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.3.3 items

The items element contains an rdf:Seq container, which contains a reference to each item described in

the RSS document:

<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://
purl.org/dc/elements/1.1/" xmlns:sy="http://purl.o
rg/rss/1.0/modules/syndication/" xmlns="http://purl.org/rss/1.0/">

<channel rdf:about="http://weblog.burningbird.net/">
<title>Burningbird</title>
<link>http://weblog.burningbird.net/</link>
<description></description>

<items>
<rdf:Seq>
<rdf:li rdf:resource="http://weblog.burningbird.net/archives/000472.php" />
<rdf:li rdf:resource="http://weblog.burningbird.net/archives/000471.php" />
</rdf:Seq>
</items>

</channel>
...
</rdf:RDF>

The rdf:Seq container is used for items to maintain the order of how the items are processed. News

aggregators usually display news in reverse chronological order-latest news displayed at the top of the
list-and the sequence helps maintain this order.

The RSS specification requires that there be at least one item listed in the items container. Though there

is no upper limit specified for RSS 1.0, it's a good idea to restrict the number to 15 or fewer, to ensure
backward compatibility with RSS .9x.

During recent discussions about the possibility of simplifying RSS 1.0, one specific area was targeted:
items . Why? Most RSS generation tools and aggregators have problems with the RDF container. It wasn't
so much that the concept of container was difficult, as it was having to list the items out first within items
and then process the items again as individual item elements. However, without repeating properties,

there was no way of managing multiply repeating elements except to use the container.

Several suggestions have been made to simplify the syntax, including to support repeating properties and
to eliminate the use of rdf:Seq . Example 13-2 shows a different RSS 1.0 document; this one utilizes

repeating properties and eliminates the use of the container, demonstrating how this could change the
appearance of RSS 1.0 files.

Example 13-2. Simplified RDF/RSS syntax

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.
org/dc/elements/1.1/" xmlns="http://purl.org/
rss/1.0/">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<channel rdf:about="http://weblog.burningbird.net/">
<title>Burningbird</title>
<link>http://weblog.burningbird.net/</link>
<description></description>

<hasitem>
<item rdf:about="http://weblog.burningbird.net/archives/000514.php">
<link>http://weblog.burningbird.net/archives/000514.php</link>
<title>Myths About RDF/RSS</title>
<description>Lots of discussion about the direction that RSS is going to take,
which I think is good. However, the first thing that happens any time a
conversation about RSS occurs is people start questioning the use of RDF within the...</
description>
<dc:subject>Technology</dc:subject>
<dc:creator>shelley</dc:creator>
<dc:date>2002-09-06T00:53:16-06:00</dc:date>
</item>
</hasitem>
<hasitem>
<item rdf:about="http;//weblog.burningbird.net/archives/000515.php">
<link>http://weblog.burningbird.net/archives/000515.php</link>
<title>ThreadNeedle Status</title>
<description>I provided a status on ThreadNeedle at the QuickTopic discussion
group. I wish I had toys for you to play with, but no such luck. To those who
were counting on this technology...</description>
<dc:subject>Technology</dc:subject>
<dc:creator>shelley</dc:creator>
<dc:date>2002-09-06T00:19:28-06:00</dc:date>
</item>
</hasitem>
</channel>

</rdf:RDF>

I also created a small PHP program to process the simplified RDF/RSS, shown in Example 13-3 . The
interesting thing about the code is that it also worked with Userland RSS as well as the original RSS 1.0,
the point being that aggregators aren't the tools that have problems with RDF containers-it's the
generation end where things get complicated.

Example 13-3. PHP program to process RSS 1.0, RSS 0.9x, and simplified RSS
1.0 content

<?php

$insideitem = false;
$tag = "";
$title = "";
$author = "";
$link = "";
$description = "";

http://lib.ommolketab.ir
http://lib.ommolketab.ir

function startElement($parser, $name, $attrs) {
 global $insideitem, $tag, $title, $author, $link, $description;
 if ($insideitem) {
 $tag = $name;
 } elseif ($name == "ITEM") {
 $insideitem = true;
 }
}

function endElement($parser, $name) {
 global $insideitem, $tag, $title, $author, $link, $description;
 if ($name == "ITEM") {
 printf("<p class='%s'>", trim($read));
 printf("%s
",
 trim($read),trim($link),htmlspecialchars(trim($title)));
 printf("
by %s", htmlspecialchars(trim($author)));
 printf("
Description: %s", htmlspecialchars(trim($description)));
 printf("</p>");
 $title = "";
 $author = "";
 $link = "";
 $description = "";
 $insideitem = false;
 }
}

function characterData($parser, $data) {
 global $insideitem, $tag, $title, $link, $author, $description;
 if ($insideitem) {
 switch ($tag) {
 case "TITLE":
 $title .= $data;
 break;
 case "DC:CREATOR":
 $author .= $data;
 break;
 case "LINK":
 $link .= $data;
 break;
 case "DESCRIPTION":
 $description .= $data;
 break;
 }
 }
}

$xml_parser = xml_parser_create();
xml_set_element_handler($xml_parser, "startElement", "endElement");
xml_set_character_data_handler($xml_parser, "characterData");
$fp = fopen("http://weblog.burningbird.net/index.rdf","r")
 or die("Error reading RSS data.");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

while ($data = fread($fp, 4096))
 xml_parse($xml_parser, $data, feof($fp))
 or die(sprintf("XML error: %s at line %d",
 xml_error_string(xml_get_error_code($xml_parser)),
 xml_get_current_line_number($xml_parser)));
fclose($fp);
xml_parser_free($xml_parser);

?>

At this time, debate on simplification of RSS 1.0 is currently underway within the Working Group.

13.3.4 image

If there is an image associated with the HTML rendering of the item described in the channel, its URL and
associated information are described in the image element with the required subelements: title , url ,
and link :

<image rdf:about="http://weblog.burningbird.net/mm/birdflame.gif">
 <title>Burningbird</title>
 <link>http://weblog.burningbird.net</link>
 <url>http://weblog.burningbird.net/mm/birdflame.gif</url>
 </image>

With this RSS, the item described has a URI of http://weblog.burningbird.net/mm/birdflame.gif , a
URL that's the same as the URI, a title of Burningbird (consider it to be equivalent to the ALT tag of an

HTML IMG tag), and the URI of the page where the image is displayed.

13.3.5 textinput

The textinput element describes an XHTML textinput form element somehow associated with the RSS,

such as a form submitting a subscription to an RSS feed. Though maintained for backward compatibility
with RSS 0.9, the RSS Working Group is recommending that this element be deprecated for RSS 1.0-a
wise decision in my opinion.

The textinput element doesn't provide useful information about the item being described, and its

meaning is overloaded, as is mentioned in the RSS specification. For instance, is the element used to
describe a form element to subscribe to a feed? Or is it being used for search? In addition, form elements
for processing RSS data are inappropriate embedded within the data itself. This is equivalent to embedding
an application form within the data the form accesses in an Oracle database.

However, if you do see the textinput element used, it requires title , description , link , and name
subelements. The name subelement is unique to textinput and contains the XHTML form element's name.

13.3.6 item

RSS provides a method for describing groups of related items; each item within the specification is
documented with the item tag. This tag is the key element, the heart and soul if you will, of RSS.

The required subelements for item are title , description , and link . Additional elements can be

http://weblog.burningbird.net/mm/birdflame.gif
http://lib.ommolketab.ir
http://lib.ommolketab.ir

added using RSS modules, but these three subelements must be present for the RSS to validate as RSS:

<item rdf:about="http://weblog.burningbird.net/archives/000472.php">
<title>Serendipity, all over again</title>
<description>When I wrote the previous posting, "How Green is my
Valley", I referenced both my old hometown, Kettle Falls,
Washington, and a posting by Loren, otherwise known as In a Dark Time.
At the time that I read Loren's weblog,...
</description>
<link>http://weblog.burningbird.net/archives/000472.php</link>
<dc:subject>Virtual Neighborhood</dc:subject>
<dc:creator>shelley</dc:creator>
<dc:date>2002-08-23T15:07:57-06:00</dc:date>
</item>

As you can see, there really aren't that many core elements within the RSS specification, as the Working
Group decided to keep the specification simple and allow additions through the use of modules, discussed
next.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.4 Extending the Specification Through Modules

When writing a specification, or a standard, the authors can take one of two approaches: they can try
to capture the entire world encompassed by the specification, a process that can take years, or they
can create a specification that has a minimal set of elements and provide a mechanism to allow for
extensions. The RSS Working Group opted for the latter option-start small, and provide a carefully
defined extension mechanism. For RSS, the extension mechanism is the module.

RSS modules are sets of elements that are delimited from other modules through use of XML
namespaces. Different modules can have the same element, and both can be used in RSS without
fear of collision as long as each module has its own namespace. The following is the namespace
declaration for the Syndication module:

xmlns:sy="http://purl.org/rss/1.0/modules/syndication/"

The use of namespaces in RSS is no different than the use of namespaces in more general RDF. The
primary difference between the two is that new namespaces are generally used to define relatively
complete RDF vocabularies.

According to the RSS 1.0 modules guide (found at http://groups.yahoo.com/group/rss-
dev/files/Modules/modules.html), module designers should narrow the focus of their module to a
specific need. The premise behind this is that many small modules are more manageable and more
targeted than a few big, all-encompassing modules. The guidelines also recommend following a
simple (flat) model for new modules over a rich (nested, complex) module whenever possible, so that
modules are more easily mixed and managed together.

One final rule for module developers is a fairly significant one that has to do with the rdf:parseType
attribute; if this attribute is set to a value of "Literal", then it can contain any type of XML including

non-RDF-compliant XML. The reason for this "loophole" in the RSS specification is to allow modules to
be added without strict compliance to the rules governing the use of RDF.

An example of the use of rdf:parseType within RSS is the following, pulled from the modules

guideline document:

<dc:creator rdf:parseType="Literal">
 <name>
 <firstname>John</firstname>
 <middle_initial>Q.</middle_initial>
 <lastname>Public</lastname>
 </name>
</dc:creator>

In this example, the data contained within the dc:creator element is treated as a literal and the

RSS/RDF parsers will return all of the data as one large string.

http://groups.yahoo.com/group/rss-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The use of parseType="Literal" cuts off the XML contained within the

element from full integration into the RDF, because individual elements
contained in the data aren't discretely accessible. In my opinion, this shortcut
defeats the purpose of having a metalanguage.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.5 The RSS Modules

RSS consists of three basic or core modules as well as the module extension mechanism just described. For the most part, the three core modules will fit most data needs. However,
specialized business data and/or processing may require new elements.

13.5.1 Core: Syndication, Content, and Dublin Core

The Syndication module provides information, such as the update frequency of the data, for tool builders. Rather than an RSS aggregator having to test a data source at set time
periods, it can access the Syndication data and update only when the data is scheduled to change.

Table 13-1 contains the Syndication elements. The namespace for Syndication is xmlns:sy="http://purl.org/rss/1.0/modules/syndication/" . The elements are subelements
of the channel element, which means they apply to the data in the RSS document as a whole, rather than individual items.

Table 13-1. Syndication elements

Element Purpose Data

updatePeriod Frequency of update of data Hourly | daily | weekly | monthly | yearly

updateFrequency Frequency of updates within time period Integer

updateBase Based date combined with period and frequency to determine updates PCDATA

Example 13-4 shows a simplified RDF/RSS file demonstrating the use of the Syndication elements. This file is actually generated from a merge of several RDF/RSS files using an
application built in Perl that I'll demonstrate later in the chapter. I've simplified the file to show only one item to restrict the size of the example. The Syndication elements are bolded.

Example 13-4. RSS demonstrating use of Syndication Elements

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns="http://purl.org/rss/1.0/"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:taxo="http://purl.org/rss/1.0/modules/taxonomy/"
 xmlns:syn="http://purl.org/rss/1.0/modules/syndication/"
>

<channel rdf:about="http://burningbird.net">
 <title>Burningbird Network</title>
 <link>http://burningbird.net</link>
 <description>Burningbird: Burning online since 1995</description>
 <dc:language>en-us</dc:language>
 <dc:rights>Copyright 1995-2003, Shelley Powers, Burningbird</dc:rights>
 <dc:publisher>shelleyp@burningbird.net</dc:publisher>
 <dc:creator>shelleyp@burningbird.net</dc:creator>
 <dc:subject>writing,technology,art,photography,science,environment,politics</dc:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

subject>
 <syn:updatePeriod>hourly</syn:updatePeriod>
 <syn:updateFrequency>1</syn:updateFrequency>
 <syn:updateBase>1901-01-01T00:00+00:00</syn:updateBase>
 <items>
 <rdf:Seq>
 <rdf:li rdf:resource="http://rdf.burningbird.net/archives/000853.htm" />
 </rdf:Seq>
 </items>
 <image rdf:resource="http://burningbird.net/mm/birdflame.gif" />
</channel>
<image rdf:about="http://burningbird.net/mm/birdflame.gif">
 <title>Burningbird</title>
 <url>http://burningbird.net/mm/birdflame.gif</url>
 <link>http://burningbird.net/</link>
 <dc:creator>Shelley Powers</dc:creator>
</image>
<item rdf:about="http://rdf.burningbird.net/archives/000853.htm">
 <title>Corrected chapters 6 and 9 uploaded</title>
 <link>http://rdf.burningbird.net/archives/000853.htm</link>
 <description>I found some small errors in the schema from chapters 6 and 9 and have
uploaded corrected chapters for both.
 </description>
 <dc:creator>yasd</dc:creator>
 <dc:date>2003-01-25T10:22:02-06:00</dc:date>
</item>
</rdf:RDF>

The Content module provides information about the format of the data contained in the RSS document. This includes space for comments about the data. The namespace declaration
is xmlns:content="http://purl.org/rss/1.0/modules/content" .

Table 13-2 lists the Content elements. Note that at the time of this writing, the content:encoded element hadn't yet been approved by the RSS Working Group.

Table 13-2. Content module elements

Element Purpose Data

items Container for item Subelement of RSS item or channel

item Provides a description of containing element PCDATA

format Format of item Empty element with rdf:resource pointing to URI of format

rdf:value Used if URI is not provided with content:item CDATA

encoding Encoding of item Optional empty element with rdf:resource pointing to URI of encoding format

The content:encoded element is used to wrap the individual RSS feed item as CDATA-encoded values. Rather than provide excerpts, content:encoded tends to have the entire

article or item, rather than just one excerpt. Of course, one of the problems with something such as this is republication rights-if the complete article is provided in the RSS feed,
can it be republished in an aggregation that is publicly accessible?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The issue of republication and rights is covered when we look at Creative Commons licensing and its use of RDF/XML in Chapter 14 .

The Dublin Core RSS module is an RSS-standardized version of the Dublin Core RDF (discussed in Chapter 6). The RSS namespace for this module is
xmlns:dc="http://purl.org/dc/elements/1.1/" . Though made available as part of the RSS specification, the elements as described in Chapter 6 are no different here, so I won't

repeat the list. An example of their use with RSS can be seen in the RSS associated with my weblog feed:

<item rdf:about="http://weblog.burningbird.net/archives/000479.php">
<title>Today is for Working</title>
<description>
The best part of getting up early is watching the sun rise.
Today is for working, it is. Today is for nose down and
finishing tasks and making milestones. I've marked out in my mind tasks
to accomplish with each...
</description>
<link>http://weblog.burningbird.net/archives/000479.php</link>
<dc:subject>Life in General</dc:subject>
<dc:creator>shelley</dc:creator>
<dc:date>2002-08-26T05:13:03-06:00</dc:date>
</item>

The Dublin Core elements are also used in my Favorite Books application, described in Section 13.8 .

Currently the Dublin Core elements usually contain CDATA values (i.e., string literals), but the data type definition for the elements is all PCDATA. The Working Group is looking at the
possibility of merging the use of Dublin Core RSS elements with that of the Taxonomy module (discussed in the next section).

The Dublin Core elements are fully defined in the document, "Dublin Core Element Set, Version 1.1" located at
http://dublincore.org/documents/1999/07/02/dces/ .

13.5.2 Extended Modules

Several extended RSS modules describe information that ranges from discussion threads to companies to email and taxonomies. At the time of this writing, the only modules that
have been accepted as standard are those just described: the core modules Syndication, Content, and Dublin Core.

Approved and pending modules can be found at http://web.resource.org/rss/1.0/modules/ and as part of the dmoz Open Directory project,
http://dmoz.org/Reference/Libraries/Library_and_Information_Science/Technical_Services/Cataloguing/Metadata/RDF/Applications/RSS/Specifications/RSS1.0_Modules/ .

I won't list each individual module as none been accepted fully into the RSS 1.0 specification, and the list is changeable. However, before proceeding to look at the tools that work
with RSS 1.0, I want to digress for a moment and talk about the concepts behind extended modules.

The idea of using modules to extend the RSS 1.0 specification, without having to modify or edit the specification directly, is a good one; new modules, such as one for slashdot.com -
related data (mod_slash), mod_dcterms for Qualified Dublin Core metadata, and linking (mod_link) are based on this. By using namespaces to differentiate between the modules,

one can easily add a new module without impacting on the others. However, this very simplicity is a danger in and of itself.

The whole purpose behind namespace support for RDF was to allow the combination of multiple RDF vocabularies without collision between vocabulary elements. The assumption

http://dublincore.org/documents/1999/07/02/dces/
http://dmoz.org/Reference/Libraries/Library_and_Information_Science/Technical_Services/Cataloguing/Metadata/RDF/Applications/RSS/Specifications/RSS1.0_Modules/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

behind this was that each vocabulary was both comprehensive and complete in its description of the business data the vocabulary defines.

However, there is a subtle difference between this original purpose for namespaces in RDF (and in XML) and their use in RSS 1.0. Rather than namespaces being seen as a way of
combining rich and complete vocabularies, they're seen as a way of adding new data easily and quickly-and that's not always a good thing.

A case in point: during the discussions related to RDF/RSS (RSS 1.0) and non-RDF RSS (Userland RSS or RSS 2.0), one issue that came up was how to redirect RSS aggregators to
new locations for feeds when the feeds were moved. Suggestions were made to use mod_dcterms for this purpose, but this wasn't necessarily compatible with the non-RDF RSS.

Another suggestion was to create a module that contained one element for RDF RSS and one element for non-RDF RSS. This was a clear violation of both the concepts and the
philosophy for namespaces within RDF (or within the larger world of XML).

The idea wasn't followed through on but does demonstrate the danger behind viewing modules as workarounds rather than complete and independent RDF vocabularies that can
exist outside of the RSS 1.0 specification.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.6 RSS Aggregators

Newspapers, magazines, and other traditional forms of publication are increasingly putting their data
online. Add to this the steadily growing number of weblogs, and you have an enormous pool of
information sources to draw on.

To help in this process, many of these publications publish RSS files providing headlines, entry links,
and brief descriptions of newly published writing. News aggregators gather this data from numerous
sources, presenting it to you in one page for quick perusal. If you see a story of interest, you can
then click on the provided link to get to the publication.

This section takes a look at three popular aggregators: one Mac-only aggregator (NetNewsWire), one
cross-platform desktop-based reader (AmphetaDesk), one web based (Meerkat), and one Mac-only
aggregator (NetNewsWire). First, though, a brief discussion about RSS autodiscovery is in order.

At its simplest, you can view RSS files in a web browser, formatting the data
with an associated stylesheet, though you won't have the aggregation
capability with this approach.

13.6.1 RSS Autodiscovery

How do you discover an RSS file, RDF based or otherwise? A person could embed a graphic or a link
to the file in every page that has an associated RSS file, but this forces the person to add the button
manually and the subscriber to go to the linked page and then add it as an RSS feed. A better
approach is to use RSS autodiscovery.

RSS autodiscovery is enabled by adding a link element in your primary web page that provides the

link to your syndication RSS. The HTML format is as follows:

<link rel="alternate" type="application/rss+xml" title="RSS" href="url/to/rss/file">

In my weblog, the autodiscovery is set to the following, using the XHTML version of link- t h e

preferred approach:

<link rel="alternate" type="application/rss+xml" title="RSS" href="http://weblog.
burningbird.net/index.rdf" />

With autodiscovery, your readers can just provide the web page URL to the aggregator that supports
autodiscovery, and the tool uses this to find the RSS file on its own. Note that the format of the link
must be consistent-the only thing that should change is the URL to the RSS file. Also note that this
link should go in your document's HEAD section.

13.6.2 AmphetaDesk

http://lib.ommolketab.ir
http://lib.ommolketab.ir

AmphetaDesk is a news aggregator that resides on your (Linux, Windows, or Mac OS) computer, and
that touches RSS files at set frequencies looking for updates. Its creator is Kevin Hemenway, who
goes by the pseudonym of Morbus Iff.

AmphetaDesk is open source and freely available, supported only by donations
(download and read more about the application at
http://www.disobey.com/amphetadesk/ and the open source project at
http://sourceforge.net/projects/amphetadesk/).

In addition to creating software such as AmphetaDesk, Kevin is also a prolific
author of both books and articles, primarily for O'Reilly. Kevin's main web site is
at disobey.com.

AmphetaDesk is one of the simplest-to-use aggregators, but that's not its only appeal. AmphetaDesk
is also customizable, from changing channels to changing the appearance to changing the code itself
(AmphetaDesk is written in Perl).

13.6.2.1 Using AmphetaDesk

Once installed, running the application for the first time opens a web browser with a page containing
preset aggregated news items. You can continue using the settings as is or you can customize the
data. For instance, if you have several weblogs you're interested in keeping abreast of, you can add
each of them as channels; the tool will track changes for you.

I customized AmphetaDesk by removing all of the preselected channels, and then added my own
favorites. From the browser page I clicked the link labeled My Channels and then checked all of the
boxes next to the items listed, as shown in Figure 13-1.

Figure 13-1. Customizing AmphetaDesk by removing existing channels

http://www.disobey.com/amphetadesk/
http://sourceforge.net/projects/amphetadesk/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The channels are RSS files. To add new channels, you can specify the URL of the feed in the text box
as shown in Figure 13-1, clicking the button labeled Add This Channel, or you can use RSS
autodiscovery by providing the URL of the web page that contains the autodiscovery link.
Additionally, you can use the built-in Add a Channels page that contains 9000+ prediscovered
channels.

AmphetaDesk, like many other aggregators, supports adding a variation of a Subscribe link to your
links toolbar on your browser, by dragging a link from a web page to the bar. I did this with my
Mozilla browser. Now when I visit a page I'm interested in subscribing to, I just click the Subscribe
link on the toolbar and the RSS feed for the site is added as a channel to my customized
AmphetaDesk.

I visited several of my favorite news sources and weblogs and added each of them as an RSS
channel. Next, I went to the application settings (accessible through the My Settings link) and further
customized the tool by changing the time to check for updates to one hour (60 minutes). The
application checks the RSS sources every 60 minutes and posts new entries to the Channels page.

13.6.2.2 More advanced customization

If you like to play around with your software, you can further customize AmphetaDesk in several
different ways. For instance, you can add a new "skin" to the application, which means controlling the
look of the application by adjusting the templates the tool uses. However, use caution and always
back up the files as you experiment. The documentation for customizing the application skin is
included with the product.

If you're a developer, you can further customize the application, either working within the Source
Forge project or creating your own customized version of AmphetaDesk. However, be forewarned
that if you change the code base for your own installation, you'll need to merge the changed code in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

with new releases of AmphetaDesk. Find out more about AmphetaDesk code customization at
http://www.decafbad.com/twiki/bin/view/Main/AmphetaOutlines and
http://www.cantoni.org/software/AmphetaDesk.html

A particularly interesting aspect to AmphetaDesk is that you can modify the
source code for the application and run it locally, without having Perl installed.

13.6.3 Meerkat

Meerkat is an online news aggregation support that can be customized, though customization is
limited to querying from existing news sources. It's accessible online and requires no installation on
your machine-only a browser.

Access the main site at http://oreillynet.com/meerkat/. Meerkat was written by
Rael Dornfest, from O'Reilly.

After accessing the Meerkat site, the first page that opens is the application page. It has a form at
the top that allows you to pick predefined filters, labeled Profiles/Mobs. Selecting one of the
predefined filters limits the news headlines to just those that are related to the filter. In Figure 13-2,
the filter picked was labeled Apache, and the news headlines were related to Apache-related items.

Figure 13-2. Meerkat news filtered on Apache-related items

http://www.decafbad.com/twiki/bin/view/Main/AmphetaOutlines
http://www.cantoni.org/software/AmphetaDesk.html
http://oreillynet.com/meerkat/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can also filter the results based on categories and channels or search for specific terms.
Additionally, you can modify how many entries show by selecting a time frame. Clicking on the
Refresh button updates the display after you've changed your selections.

I've been a Meerkat subscriber for more than a year, yet I hadn't accessed the site directly in
months, not until I started working on this chapter. This seemingly contradictory statement can be
explained by discussing the real power behind Meerkat-the ability to incorporate the Meerkat
services into your own applications, web pages, or desktop.

Meerkat has exposed APIs, based on different technologies, to access the news feed (more on this at
http://www.oreillynet.com/pub/a/rss/2000/05/09/meerkat_api.html). These flavors, as the different
open APIs are called with Meerkat, allow you to incorporate the Meerkat into your like-flavored
application.

For instance, I incorporate a JavaScript-based Meerkat feed into one of my web sites, using the
following code:

<div style="font-size: 8pt; font-family: Times New Roman">
<script language="JavaScript"
src="http://meerkat.oreillynet.com/?p=1&_fl=js&_de=0">
</div>

This code describes a JavaScript-flavored news feed, with full descriptions turned off (to save space),
using a profile of 1, which is all news stories. I could have further modified the feed by using other

parameters. For instance, the following parameters impact which stories show:

s

Specify search, using plus sign (+) to delimit keywords
sw

To specify what is searched, such as title, description, and so on
c

To display a specific channel
t

To set time period of displayed items
p

To specify a particular profile
m

To specify a particular mob
i

To specify a particular story

In addition, the following parameters influence the display:

_fl

Flavor
_de

http://www.oreillynet.com/pub/a/rss/2000/05/09/meerkat_api.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Whether descriptions are shown
_ca

Whether category is shown
_ch

Which channel the story came from
_da

Story date
_dc

The Dublin Core metadata associated with the stories

So, I can change my current setting to the following:

<div style="font-size: 8pt; font-family: Times New Roman">
<script language="JavaScript"
src="http://meerkat.oreillynet.com/?p=1&_fl=js&_de=1&t=1DAY">
</div>

Notice that the parameters are separated by the ampersand.

The setting just shown instructs Meerkat to give me the stories from profile 1, one day's worth,
JavaScript formatted, and with full descriptions. All other parameters are set to their default settings.
The result of this JavaScript embedded into a web page is shown in Figure 13-3.

Figure 13-3. Meerkat display using JavaScript to access feed

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can see how uncomplicated the Meerkat feed is to access. Best of all, the feed uses CSS, so you
can modify the display of the feed by incorporating CSS settings for predefined Meerkat values.

The Meerkat API has been ported for use with many languages and technologies including a raw RSS
feed, XML, PHP, Sherlock plug-in, N3, HTML, and others. In addition, you can access Meerkat services
using XML-RPC.

13.6.4 NetNewsWire and NetNewsWire Lite

An RSS aggregator, plus more, that is gaining considerable popularity with Mac OS X users is
Ranchero Software's NetNewsWire and its lighter version, NetNewsWire Lite. I use it myself on my
PowerBook and am very impressed with its ease of use. And as with so many other aggregation
tools, you can do more than just read RSS feeds with the tool-with the commercial version still in
beta when I wrote this book, you can edit weblog postings with the tool and use it to post them to
your weblog.

You can download NetNewsWire from http://ranchero.com/netnewswire/. The
RSS aggregator-only version is NetNewsWire Lite; the commercial version
NetNewsWire is the one with the extra features such as weblog posting. I used
the NetNewsWire beta 1.01b for this chapter.

When you first install and open NetNewsWire, it comes with only a few sites already subscribed.
However, it's an easy matter to subscribe to new feeds, particularly if the web page that provides the
feed supports autodiscovery.

Figure 13-4 shows NetNewsWire Pro with some of my favorite weblogs, including my own,
subscribed.

Figure 13-4. NetNewsWire Pro with a few subscribed RSS feeds

You can use the tool to jump to unread items, or you can click on any of the subscriptions to display
the current RSS contents. Clicking on any of these opens the excerpt associated with the item. To
add new items, just click the Subscribe button and fill in the URL of the RSS file or the X(HTML) page

http://ranchero.com/netnewswire/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

that has the RSS autodiscovery entry. That's it. The tool will fill in the necessary information from the
file, including the title associated with the RSS feed.

If you double-click on any one of the items, the actual page opens in your default browser, which you
can set via your System Preferences.

You can also open the actual RSS XML of the feed in TextEdit as shown in Figure 13-5. This is a
handy way of getting a little more familiar with RDF/RSS-by using the tool to take a look at
RDF/RSS files out on the Web.

Figure 13-5. Examining a feed in TextEdit

Other functionality NetNewsWire Pro supports includes the ability to create weblog postings, check
their spelling, and then post directly from the tool.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.7 Creating Your Own RSS Content

RSS allows you to aggregate like items, though you don't have to restrict this to web pages and news
sources and things like that. For instance, one effective use of RSS would be to keep lists of
multimedia recommendations such as books, music, and movies.

I use RSS to maintain a list of book recommendations from friends. For the most part, the RSS
elements and the DC module define most of the data I want to capture, including the dc:creator,
dc:subject, and the standard RSS channel, items, and item. However, within the core RSS 1.0

specification, a few useful fields are missing. Among these are elements to record who made the
recommendation, the URL of her web site, whether the book has been read (or the movie has been
viewed), and an URL of the review if any. Since the business I'm interested in documenting-book
recommendations-isn't fully covered or predefined in any existing RDF vocabulary or within any
existing RSS 1.0 module I could find, I created one of my own, with the following namespace:

xmlns:recs="http://burningbird.net/recommendations/elements/1.0/"

I then defined the following elements in the namespace:

recby

Name of person who made the recommendation (optional), PCDATA
status

Status of recommendation (required; 1=consumed, 0=unconsumed)
reclink

URL of web site of recommendation or recommender (optional)
review

URL of review (optional)

I asked around with some of my friends and ended up with a selection of book recommendations,
which I then recorded in my newly extended RSS. Example 13-5 shows an abbreviated book
recommendations list.

Example 13-5. Book recommendation RSS

<?xml version="1.0"?>

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:sy="http://purl.org/rss/1.0/modules/syndication/"
xmlns:recs="http://burningbird.net/recommendations/elements/1.0/"
xmlns="http://purl.org/rss/1.0/">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<channel rdf:about="http://weblog.burningbird.net/books.rdf">
<title>Burningbird BookList</title>
<link>http://weblog.burningbird.net/books.rdf</link>
<description>
Burningbird's To Be Read Booklist and Recommendations
</description>

<items>
<rdf:Seq>
<rdf:li rdf:resource="http://isbn.nu/0395489016" />
<rdf:li rdf:resource="http://isbn.nu/0446391301" />
<rdf:li rdf:resource="http://isbn.nu/0679454519" />
<rdf:li rdf:resource="http://isbn.nu/0743418174" />
<rdf:li rdf:resource="http://isbn.nu/0553211161" />
</rdf:Seq>
</items>

</channel>

<item rdf:about="http://isbn.nu/0446391301">
<title>Geek Love</title>
<description></description>
<dc:creator>Katherine Dunn</dc:creator>
<dc:subject>Fiction</dc:subject>
<dc:subject>Drama</dc:subject>
<dc:identifier>0446391301</dc:identifier>
<link>http://isbn.nu/0446391301/price/1</link>
<recs:recby>Denise Howell</recs:recby>
<recs:status>0</recs:status>
<recs:reclink>http://bgbg.blogspot.com/</recs:reclink>
</item>

<item rdf:about="http://isbn.nu/0743418174">
<title>Good in Bed</title>
<description></description>
<dc:creator>Jennifer Weiner</dc:creator>
<dc:subject>Fiction</dc:subject>
<link>http://isbn.nu/0743418174/price/1</link>
<recs:recby>Leesa</recs:recby>
<recs:read>unread</recs:read>
<recs:reclink>http://leesa.devfarm.com/</recs:reclink>
</item>

<item rdf:about="http://isbn.nu/0553211161">
<title>Leaves of Grass</title>
<description></description>
<dc:creator>Walt Whitman</dc:creator>
<dc:subject>Poetry</dc:subject>
<link>http://isbn.nu/0553211161/price/1</link>
<recs:recby>bumr</recs:recby>
<recs:read>unread</recs:read>
<recs:reclink>http://bumr.net/</recs:reclink>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</item>

<item rdf:about="http://isbn.nu/0679742115/">
<title>Vox</title>
<description></description>
<dc:creator>Nicholson Baker</dc:creator>
<dc:subject>Fiction</dc:subject>
<link>http://isbn.nu/0679742115/</link>
<recs:recby>Karl aka Paradox1x</recs:recby>
<recs:reclink>http://www.paradox1x.org/html/books.shtml
 </recs:reclink>
<recs:read>unread</recs:read>
</item>

<item rdf:about="http://isbn.nu/0395489016">
<title>Let Us Now Praise Famous Men</title>
<description></description>
<dc:creator>James Agee, Walker Evans</dc:creator>
<dc:subject>Nonfiction</dc:subject>
<link>http://isbn.nu/0395489016</link>
<recs:recby>Jonathon Delacour</recs:recby>
<recs:reclink>http://weblog.delacour.net</recs:reclink>
<recs:status>1</recs:status>
<recs:review>http://weblog.burningbird.net/archives/000442.php
 </recs:review>
</item>

</rdf:RDF>

Though there is no description for each of the book items, the description elements are still listed

because this element is mandatory. Of course, the next step to take would be to formalize the
Recommendations module through the RSS Working Group, but for now, we'll accept it the way it is.
In the next section, we'll look at a couple of different applications to process this data.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.8 Build Your Own RSS Consumer

You don't have to use a prebuilt RSS aggregation tool or RSS consumer. Because of the restrictions
and constraints placed on RSS, it's relatively simple to build your own application that processes RSS
and displays the results. You can use technology that is designed for XML or RDF (demonstrated
throughout the book), or you can use technology specifically designed for RSS.

To demonstrate, I created an application to process the book recommendation RSS feed shown in
Example 13-5. It uses an RSS API written in Java to process the RSS (any RSS) from a JSP page.

I'm rather partial to J2EE applications and have a Tomcat installation at my web site. My first
inclination when creating a new dynamic web application is to see if there is a Java API I can use
within JSP pages. In the next example, an RSS specialized API is used-a brand new API called the
Informa RSS Library, available at Source Forge (http://sourceforge.net/projects/informa/.. This API
provides Java classes that allow you to access specific pieces of RSS data, rather than having to write
the XML parsing aspect of the code.

I downloaded the Java .jar files containing the code and added then to the JAVA_APP/WEB-INF/lib
subdirectory associated with the location of the JSP pages. I then restarted Tomcat in order to pick
up the new libraries.

The Informa RSS Java libraries are added into the JSP page with an imports statement, as shown in
Example 13-6.

Example 13-6. JSP imports section

<%@ page import="java.net.URL,
 java.io.File,
 java.util.*,
 de.nava.informa.core.ChannelIF,
 de.nava.informa.core.ChannelParserIF,
 de.nava.informa.core.ItemIF,
 de.nava.informa.impl.basic.ChannelBuilder,
 de.nava.informa.parsers.RSS_1_0_Parser" %>

Next, within the HTML body of the JSP page, the RSS file is opened and the contents processed and
printed out to the page, as shown in Example 13-7.

Example 13-7. Using RSS Java API to process RSS file

<%
 // get RSS file URL
 String sRDFUri = request.getParameter("uri");
 String sTitle = null;

 URL u = null;

http://sourceforge.net/projects/informa/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ChannelParserIF parser = null;
 ChannelIF channel = null;
 Collection cItems = null;
 Iterator iItems = null;
 String sError;

 try {
 u = new URL(sRDFUri);

 // create RSS 1.0 parser
 parser = new RSS_1_0_Parser(
 new ChannelBuilder());

 // get channel
 channel = parser.parse(u);
 sTitle = channel.getTitle();

 // print title as header
 out.println("<h1>" + sTitle + "</h1>");
 cItems = channel.getItems();

 // get items collection
 iItems = cItems.iterator();

 // iterate through collection and print out RSS elements`
 while (iItems.hasNext()) {
 ItemIF item = (ItemIF)iItems.next();
 out.print("<a href='");
 out.print(item.getLink());
 out.print("'>");
 out.print(item.getTitle());
 out.println("");
 out.println("
");

 }
}
catch (Exception e) {
 sError = e.getMessage();
 out.println(sError);
 }
%>

In the example, an RSS 1.0 parser is created to parse the RSS into memory. Once in memory the
channel element is accessed and the title is pulled from the element and printed out. Next, the Java
collection containing the RSS file's items is accessed and each item element is processed, pulling the

data out for printing. The book recommendation item title and link are accessed and a list of
hypertext-linked titles is printed out on the page, as shown in Figure 13-6.

Figure 13-6. JSP- and Java-generated book list from RSS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A disadvantage to using a specialized RSS API is that different RDF vocabularies can't be used with
the API-it's focused purely on RSS elements. However, an advantage to the RSS API is that any RSS
file can be processed using the same JSP page.

Since the RSS file URL is passed to the JSP page from an HTML form element, instead of passing in
the book recommendation RSS, I passed in my weblog's RSS 1.0 file. Figure 13-7 shows the page
that results from reading in this file (with no change to the code).

Figure 13-7. List of weblog entries pulled from weblog's RSS file

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Because RSS 1.0 is first and foremost RDF, you can also use any of the technologies and languages
in the rest of the book to parse, or generate, the RSS demonstrated in this chapter, which is
ultimately why RDF is such a handy thing for a software developer such as myself.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.9 Merging RDF/RSS Files

In addition to reading RSS, you can also create applications that write it or that both read and write
RDF/RSS. I use an application that does just this with my own Burningbird web sites.

I have several different types of sites at burningbird.net , each with its own RSS/RDF file. People
could subscribe to each individual file, but I wanted to give my readers an option to subscribe to one
main RDF/RSS file that contains the 10 most recent entries across the entire Burningbird network. To
do this, I created an application in Perl that reads in the individual RSS files and merges all the items
into one array. I then sorted the array in descending order by date, and "skimmed" the 10 most
recent entries. Next, I used the data making up these entries to create a brand new RDF/RSS file,
hosted at the main http://burningbird.net/index.rdf RSS file location.

Because I don't always have access to the most recent version of Python or access to a Tomcat
server, I couldn't use either my Java- or my Python-based solution at my main web site. Instead, I
wrote an application in Perl, making use of a very handy RSS Perl module, XML::RSS , originally

developed by Jonathan Eisenzopf and now maintained at Source Forge.

You can access the source and documentation for using XML::RSS at
http://perl-rss.sourceforge.net/ .

The XML::RSS Perl module provides an object that can read in an RSS file in either RDF/RSS format
or the non-RDF format. The data is then accessible via associative arrays (or dictionaries for
Pythonistas), using the RSS predicates as key to find each value. For instance, after reading in an
RDF/RSS file, you can access the dc:date field for an individual item using code similar to the

following:

 $dt = $item->{'dc'}->{'date'};

All items are accessible as an associative array with the key items , and each individual item is
accessible from it with item . Elements associated with a particular namespace, such as dc , form yet

another associative array attached to each item.

The application starts by opening a file that contains the list of all of my index.rdf files and reading the
filenames (each on a separate line) into an array:

my $rdffile = "/home/shelleyp/www/work/cronapp/indexfiles.txt";
open(DAT, $rdffile) || die("could not open");
my @files=<DAT>;
close(DAT);

The application cycles through all the files in the array, creating an instance of XML::RSS to process
the data in each. Each individual item within the file is loaded into an associative array, using the
item's timestamp as key:

foreach my $file (@files) {

http://perl-rss.sourceforge.net/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 my $rss = new XML::RSS;

 $rss->parsefile($file);

 foreach my $item(@{$rss->{'items'}}) {
 my $dt = $item->{'dc'}->{'date'};
 $arry{$dt} = $item;
 }
}

A new RDF/RSS object is created and the header information is provided:

my $rss = new XML::RSS (version => '1.0');

 $rss->channel(
 title => "Burningbird Network",
 link => "http://burningbird.net",
 description => "Burningbird: Burning online since 1995",
 dc => {
 subject => "writing,technology,art,photography,science,environment,politics",
 creator => 'shelleyp@burningbird.net',
 publisher => 'shelleyp@burningbird.net',
 rights => 'Copyright 1995-2003, Shelley Powers, Burningbird',
 language => 'en-us',
 },
 syn => {
 updatePeriod => "hourly",
 updateFrequency => "1",
 updateBase => "1901-01-01T00:00+00:00",
 },
);

 $rss->image(
 title => "Burningbird",
 url => "http://burningbird.net/mm/birdflame.gif",
 link => "http://burningbird.net/",
 dc => {
 creator => "Shelley Powers",
 },
);

Once the items are loaded, they're sorted in descending order, and a scalar array of the timestamp
keys is accessed in order to loop through only the top 10 (most recent) items. As each item is
accessed, it's used to build a new item within the new RDF/RSS object. When the processing is
finished, the generated RDF/RSS object is serialized to a file. Example 13-8 shows the code for the
complete application.

Example 13-8. Perl application that merges the entries from several
different RDF/RSS files, creating a new RDF/RSS file from results

#!/usr/bin/perl -w

http://lib.ommolketab.ir
http://lib.ommolketab.ir

##
merge RDF/RSS files
Author: Shelley Powers
##

use lib '.';
use strict;
use XML::RSS;
use HTML::Entities;

read in list of RDF/RSS files
my $rdffile = "/home/shelleyp/www/work/cronapp/indexfiles.txt";
open(DAT, $rdffile) || die("could not open");
my @files=<DAT>;
close(DAT);

how many items to include
my $total = 10;

array for all RSS items
my %arry;

read in each RDF/RSS file, load into array
foreach my $file (@files) {
 my $rss = new XML::RSS;

 $rss->parsefile($file);

 foreach my $item(@{$rss->{'items'}}) {
 my $dt = $item->{'dc'}->{'date'};
 $arry{$dt} = $item;
 }
}

sort descending order by timestamp
my @keys = reverse(sort(keys %arry));

create new RDF/RSS file
create header
my $rss = new XML::RSS (version => '1.0');
$rss->channel(
 title => "Burningbird Network",
 link => "http://burningbird.net",
 description => "Burningbird: Burning online since 1995",
 dc => {
 subject => "writing,technology,art,photography,science,environment,politics",
 creator => 'shelleyp@burningbird.net',
 publisher => 'shelleyp@burningbird.net',
 rights => 'Copyright 1995-2003, Shelley Powers, Burningbird',
 language => 'en-us',
 },
 syn => {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 updatePeriod => "hourly",
 updateFrequency => "1",
 updateBase => "1901-01-01T00:00+00:00",
 },
);

 $rss->image(
 title => "Burningbird",
 url => "http://burningbird.net/mm/birdflame.gif",
 link => "http://burningbird.net/",
 dc => {
 creator => "Shelley Powers",
 },
);

add items
my $i = 0;

while ($i < $total) {
 my $key = $keys[$i];

 # build new RSS item
 $rss->add_item(
 title => encode_entities($arry{$key}->{'title'}),
 description => encode_entities($arry{$key}->{'description'}),
 link => $arry{$key}->{'link'},
 dc => {
 subject => $arry{$key}->{'dc'}->{'subject'},
 creator => $arry{$key}->{'dc'}->{'creator'},
 date => $arry{$key}->{'dc'}->{'date'},
 },
);
 $i++;
}
$rss->save('/home/shelleyp/www/index.rdf');

The application is then run as a scheduled hourly task, which is more than frequent enough.

As you can see, when you use a specialized API, regardless of the language, your task is greatly
simplified. Trying to code this all by hand using regular expressions or even an XML processor would
take at least twice as much code, and three times the work. You get a lot of return for a little
investment in using a specialized XML vocabulary organized with the RDF metamodel.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 14. A World of Uses:
Noncommercial Applications Based on
RDF
My first introduction to RDF didn't come about because I developed a sudden and overwhelming
interest in the Semantic Web. My interest had more prosaic beginnings than that-through exposure
to RDF/XML in Mozilla, an open source browser/application framework.

Then and now, RDF/XML formed the format for the table of contents (TOC)-based structures that
formed favorites lists, the sidebar, and pretty much anything expressible in a table of contents
infrastructure. One of the frustrating things about the effort, though, is that it seemed that the
RDF/XML used by Mozilla kept changing. And it also seemed that I couldn't get the knack of using it
correctly. So, I decided the only thing to do was access the RDF specifications directly and learn
about RDF and RDF/XML from the source. The rest, as they say, is history, culminating in my writing
this book.

One mark of a mature specification is its use within commercial products, and we'll look at
commercial applications of RDF and RDF/XML in the next chapter. However, these commercial
products are based, in principle and in spirit, on earlier open source and noncommercial applications
built by a specification's earliest adopters. Without these uses of RDF, the path wouldn't be laid for
the business use of RDF.

This chapter takes a look at some of what I classify as noncommercial uses of RDF and RDF/XML,
open source or not. The applications included are just a sampling of those available and include
applications that haven't been covered elsewhere in the book. The best place to start is Mozilla.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

14.1 Mozilla

Mozilla started out as a redesign of Netscape's browser but ended up being more than anyone
expected. It became an effort to develop a component-based architecture and framework for a
development environment, on which Mozilla, the browser, was then implemented. Because of this
underlying framework, other applications could use bits and pieces of Mozilla, or the underlying
technology, for their own efforts.

Right from the start, Mozilla incorporated the use of RDF/XML to manage all TOC- and other tree-
structured data, such as the favorites list, sidebar, and so on. As stated earlier, it was through
Mozilla's work with RDF/XML that I was originally introduced to the specification-an introduction that
colors my view of RDF as more of a "practical" specification then one necessary for Semantic Web
efforts.

You can download the most recent release of Mozilla at http://mozilla.org.
Developer documentation is located at http://mozilla.org/catalog/, and a
development forum and repository is at http://www.mozdev.org/.

Mozilla contains many components, but the one we'll focus on because of its association with
RDF/XML is XUL (eXtensible User interface Language)-the component that controls the user
interface, including all windowing and window components.

14.1.1 XUL Briefly

Rather than hardcode a user interface for each of the visual components of Mozilla, the Mozilla
Working Group decided to use XML to define user interface components and then provide behind-the-
scenes functionality to make these components active. By using this approach, rather than having to
use some form of code to change or create a new application interface, you'd just create a new XML
file, hooking in the appropriate functionality as needed.

For instance, the XML to create a window with two buttons would be as follows:

<?xml version="1.0"?>
<?xml-stylesheet href="chrome://global/skin/" type="text/css"?>
<window id="example-window" title="Example 2.2.1"
 xmlns:html="http://www.w3.org/1999/xhtml"
 xmlns="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul">
<button label="Practical"/>
<button label="RDF"/>
</window>

Opening the window in Mozilla, or some other browser that supports XUL, would show a window
similar to that in Figure 14-1. Of course, clicking on any of the buttons doesn't do anything at this
point; you'll need to use a little scripting to add functionality.

http://mozilla.org
http://mozilla.org/catalog/
http://www.mozdev.org/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 14-1. Window application with two functionality buttons created
using XUL

Clicking on a button or a list item or opening or closing windows all trigger events that you can trap
and use to perform some action, such as the following, added to a button to call a JavaScript function
that's defined in an external file:

<button label="Open New Window" oncommand="openBrowser();" />

The script is then included in the XUL document with the script tag:

<script src="open.js" />

Mozilla has ways of connecting to the core functionality of the underlying engine through XPConnect,
in addition to XBL (Extensible Binding Language), which offers a way of binding behaviors to an XUL
widget. However, both of these are considerably beyond the scope of this book. What is within scope
is RDF/XML's place in the Mozilla effort, through its use with templates, discussed next.

The coverage of XUL and templates in this section is by necessity very light.
Developing applications using the Mozilla components could fill an entire book.
In fact, it has; see O'Reilly's Creating Applications with Mozilla.

14.1.2 XUL Templates

When building a new application interface, for the most part you'll add static components-adding the
XML for one button, one browser window, one menu or toolbar, etc. However, you may also want to
display a list or treeview based on larger amounts of data likely to change over time. In this case,

you'll want to use an XUL template in your XML and then connect the template with an external
RDF/XML datafile. Using this approach, the data in the RDF/XML file can change without your having
to alter the XML for the user interface directly.

At its simplest, a template is nothing more than a set of rules that maps XUL components to
RDF/XML elements, repeating the XUL components for each RDF/XML element found that matches
the specific rule. Templates can be used with most XUL widgets, including listboxes and buttons, but
one of the more common uses is binding RDF/XML data into a treeview.

A treeview control is actually a container for several other XUL widgets, each of which controls a
different part of the treeview. The structure of the widgets is:

tree

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Outer treeview container
treecols

Container for treecol widgets
treecol

A column within the treeview
treechildren

Container for the data rows
treeitem

Controls the top row within the treeview and also the behavior of each other row within the
treeview

treerow

One individual row in the treeview
treecell

One individual cell (cross-section between a unique column and a unique row)

Before showing you the XML for treeview as well as the RDF/XML data source, Figure 14-2 shows an
XUL application in development that's using a treeview to manage data in the left-most box in the

page. This particular view is two columns, with a category in the left column, and a title in the right.
Clicking on any category opens up the display and shows all the titles underneath. One of the rows
can be selected and the column widths altered by moving the sizing bar between the columns.

Figure 14-2. XUL application under development that contains a treeview
widget populated by an external RDF/XML file, through a template

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The first part of the XUL created is the tree definition. Among the attributes you can define is one
called datasources, and it's to this attribute that you assign an RDF/XML document:

<tree flex="1" width="200" height="200"
 datasources="postings.rdf" ref="urn:weblog:data">

In addition to the datasources attribute, there's also a ref attribute that points to the start of data
access within the document. This is matched to an rdf:about value, which you'll see later when we

get to the datafile.

The next XML added to the document defines the columns and provides a titlebar for each:

<treecols>
 <treecol id="category" label="Category" primary="true" flex="1"/>
 <treecol id="title" label="Title" flex="2"/>
</treecols>

Following the columns, the template element and the rule element are added, because at this point,
all of the treeview structure is connected to the data in some way. This simple case needs only one

rule because there is no processing splitting the data across different columns or some other
specialized processing.

Following the template and rule is the treeitem element, containing an attribute, uri, which tells the

processor to repeat this element for every resource within the file:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<treeitem uri="rdf:*">

The "resource" referenced is the resource identified with a URI. It is defined using a standard
rdf:Description element within the RDF/XML.

Finally, the rest of the treeview elements are added; for every left-side treecell, the data defined
as category is displayed. For every right treecell, the data defined as title is displayed, as shown

next.

<treerow>
 <treecell label="rdf:http://weblog.burningbird.net/postings#category"/>
 <treecell label="rdf:http://weblog.burningbird.net/postings#title"/>
</treerow>

Since the application isn't using any advanced template processing, the entire treeview isn't very
large (see Example 14-1, which contains a complete XUL application containing the treeview just

described).

Example 14-1. XUL application containing treeview with data controlled
through a template

<?xml version="1.0"?>
<?xml-stylesheet href="chrome://global/skin" type="text/css"?>

<window xmlns:html="http://www.w3.org/1999/xhtml"
 xmlns="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul"
 align="vertical">

<tree flex="1" width="500"
 datasources="postings.rdf" ref="urn:weblog:data">

 <treecols>
 <treecol id="category" label="Category" primary="true" flex="1"/>
 <treecol id="title" label="Title" flex="2"/>
 </treecols>

 <template>
 <rule>
 <treechildren>
 <treeitem uri="rdf:*">
 <treerow>
 <treecell label="rdf:http://weblog.burningbird.net/postings#category"/>
 <treecell label="rdf:http://weblog.burningbird.net/postings#title"/>
 </treerow>
 </treeitem>
 </treechildren>
 </rule>

 </template>
</tree>
</window>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you were to open this page in a browser that supports XUL, such as Mozilla, you'd see only an
empty treeview control because you also need the RDF/XML document, postings.rdf.

The RDF/XML used for XUL templates isn't anything odd or unusual, and no special namespaces are
needed other than those you create for your own data. The structure of the data is to some extent
determined by the outcome of the display, but the RDF/XML is, itself, nothing more than valid
RDF/XML (with a caveat, as you'll see later).

For this use, the categories and their associated titles become list items within a container, a Seq to

be exact. Each category is given a different container, and each title a different list item. This
provides the structure of the TOC. To add the data, each resource is defined in a separate block, with
properties matching the cell values contained within the resource. Though it's a bit large for the book,
the entire RDF/XML document for the example is duplicated in Example 14-2 as it's important to see
the mapping between the RDF/XML document, the template, and the treeview.

Example 14-2. RDF/XML document used to provide data in template

<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:bbd="http://weblog.burningbird.net/postings#">

 <rdf:Description rdf:about="urn:weblog:photos">
 <bbd:category>Photography</bbd:category>
 </rdf:Description>

 <rdf:Description rdf:about="urn:weblog:photos:bwstudy">
 <bbd:category>Black and White</bbd:category>
 <bbd:title>Study</bbd:title>
 </rdf:Description>

 <rdf:Description rdf:about="urn:weblog:photos:sanfran" >
 <bbd:category>San Francisco</bbd:category>
 <bbd:title>City</bbd:title>
 </rdf:Description>

 <rdf:Description rdf:about="urn:weblog:photos:tower">
 <bbd:category>Tower Grove</bbd:category>
 <bbd:title>Babble Meadow</bbd:title>
 </rdf:Description>

 <rdf:Description rdf:about="urn:weblog:politics">
 <bbd:category>Politics</bbd:category>
 </rdf:Description>

 <rdf:Description rdf:about="urn:weblog:politics:international">
 <bbd:category>International</bbd:category>
 <bbd:title>War in Iraq</bbd:title>
 </rdf:Description>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <rdf:Description rdf:about="urn:weblog:politics:national">
 <bbd:category>National</bbd:category>
 <bbd:title>Health Care</bbd:title>
 </rdf:Description>

 <rdf:Description rdf:about="urn:weblog:writing">
 <bbd:category>Writing</bbd:category>
 </rdf:Description>

 <rdf:Description rdf:about="urn:weblog:writing:rdfbook">
 <bbd:category>Practical rdf</bbd:category>
 <bbd:title>First draft posted</bbd:title>
 </rdf:Description>

 <rdf:Description rdf:about="urn:weblog:writing:poetry">
 <bbd:category>Poetry</bbd:category>
 <bbd:title>e.e. Cummings</bbd:title>
 </rdf:Description>

 <rdf:Description rdf:about="urn:weblog:writing:review">
 <bbd:category>Book Review</bbd:category>
 <bbd:title>Burning the Days</bbd:title>
 </rdf:Description>

 <rdf:Description rdf:about="urn:weblog:writing:ebook">
 <bbd:category>eBooks</bbd:category>
 <bbd:title>Safari Online Tech Library</bbd:title>
 </rdf:Description>

 <rdf:Description rdf:about="urn:weblog:writing:online">
 <bbd:category>Online Books</bbd:category>
 <bbd:title>Paths and other Threads</bbd:title>
 </rdf:Description>

 <rdf:Description rdf:about="urn:weblog:writing:journal">
 <bbd:category>Journals</bbd:category>
 </rdf:Description>

 <rdf:Description rdf:about="urn:weblog:writing:journal:weblog">
 <bbd:category>Weblog Journals</bbd:category>
 <bbd:title>Keeping an Online Travel Journal</bbd:title>
 </rdf:Description>
 <rdf:Description rdf:about="urn:weblog:writing:journal:paper">
 <bbd:category>Paper Journals</bbd:category>
 <bbd:title>The Advantages of a Paper Journal</bbd:title>
 </rdf:Description>

 <rdf:Description rdf:about="urn:weblog:connecting">
 <bbd:category>Connecting</bbd:category>
 </rdf:Description>

 <rdf:Description rdf:about="urn:weblog:connecting:relationships">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <bbd:category>Relationships</bbd:category>
 <bbd:title>Looking for Romance</bbd:title>
 </rdf:Description>

 <rdf:Description rdf:about="urn:weblog:connecting:conferences">
 <bbd:category>Conferences</bbd:category>
 <bbd:title>Open Source Convention</bbd:title>
 </rdf:Description>

 <rdf:Seq rdf:about="urn:weblog:data">
 <rdf:li>
 <rdf:Seq rdf:about="urn:weblog:photos">
 <rdf:li rdf:resource="urn:weblog:photos:bwstudy"/>
 <rdf:li rdf:resource="urn:weblog:photos:sanfran"/>
 <rdf:li rdf:resource="urn:weblog:photos:tower"/>
 </rdf:Seq>
 </rdf:li>
 <rdf:li>
 <rdf:Seq rdf:about="urn:weblog:politics">
 <rdf:li rdf:resource="urn:weblog:politics:international"/>
 <rdf:li rdf:resource="urn:weblog:politics:national"/>
 </rdf:Seq>
 </rdf:li>
 <rdf:li>
 <rdf:Seq rdf:about="urn:weblog:writing">
 <rdf:li rdf:resource="urn:weblog:writing:rdfbook"/>
 <rdf:li rdf:resource="urn:weblog:writing:poetry"/>
 <rdf:li rdf:resource="urn:weblog:writing:review"/>
 <rdf:li rdf:resource="urn:weblog:writing:ebook"/>
 <rdf:li rdf:resource="urn:weblog:writing:online"/>
 <rdf:li>
 <rdf:Seq rdf:about="urn:weblog:writing:journal">
 <rdf:li rdf:resource="urn:weblog:writing:journal:weblog"/>
 <rdf:li rdf:resource="urn:weblog:writing:journal:paper"/>
 </rdf:Seq>
 </rdf:li>
 </rdf:Seq>
 </rdf:li>
 <rdf:li>
 <rdf:Seq rdf:about="urn:weblog:connecting">
 <rdf:li rdf:resource="urn:weblog:connecting:relationships"/>
 <rdf:li rdf:resource="urn:weblog:connecting:conferences"/>
 </rdf:Seq>
 </rdf:li>
 </rdf:Seq>

</rdf:RDF>

Note that the top-level rdf:Seq is given a URI of urn:weblog:data, matching the starting position

given in the template. Each major category is given its own sequence and its own resource. Each title
item is listed as an rdf:li and defined as a separate resource with both category and title.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When the data is processed, the rule attached in the template basically states that all category values
are placed in the left column, and all titles in the right. Since the major categories don't have titles,
the treecells for these values are blank. However, clicking on the drop-down indicator next to the

categories displays both the minor category (subcategory) and titles for each row.

Earlier I mentioned there was a caveat about the validity of the RDF/XML used in the example. The
RDF/XML document shown in Example 14-2 validates with the RDF Validator, but not all RDF/XML
documents used in providing data for templates in Mozilla do. For instance, I separated out each
rdf:Seq element, something that's not necessary with XUL but is necessary to maintain the RDF/XML

striping (arc-node-arc-node). In addition, many of the XUL RDF/XML documents also don't qualify the
about or resource attributes, which is discouraged in the RDF specifications. This doesn't generate

an error, but does generate warnings. However, when you create your own RDF/XML documents, you
can use the qualified versions without impacting on the XUL processing.

The Mozilla group wasn't the only organization to use RDF/XML to facilitate
building a user interface. The Haystack project at MIT,
http://haystack.lcs.mit.edu/, uses RDF as the primary data modeling
framework.

[Team LiB]

http://haystack.lcs.mit.edu/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

14.2 Creative Commons License

The Creative Commons (CC) is an organization formed in 2002 to facilitate the movement of artists'
work to the public domain. One of the outputs from the organization is the Creative Commons
licenses: licenses that can be attached to a work of art such as a writing, a graphic, or a song, that
provides information about how that material can be used and reused by others.

The Creative Commons web site is at http://creativecommons.org.

The CC licenses don't replace copyright and fair use laws; they primarily signal an artist's interest in
licensing certain aspects of his copyright to the public, such as the right to copy a work, to derive new
works from an original creation, and so on. The license is associated with the art in whatever manner
is most expeditious, but if the art is digitized on the Web, the license is usually included with the art
as RDF/XML.

The RDF/XML for use can be generated at the CC web site when you pick what particular license you
want to apply. For instance, the following RDF/XML is generated when you pick a license that requires
attribution and doesn't allow derivative works and/or commercial use:

<rdf:RDF xmlns="http://web.resource.org/cc/"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<Work rdf:about="">
<license rdf:resource="http://creativecommons.org/licenses/by-nd-nc/1.0" />
</Work>

<License rdf:about="http://creativecommons.org/licenses/by-nd-nc/1.0">
 <requires rdf:resource="http://web.resource.org/cc/Attribution" />
 <permits rdf:resource="http://web.resource.org/cc/Reproduction" />
 <permits rdf:resource="http://web.resource.org/cc/Distribution" />
 <prohibits rdf:resource="http://web.resource.org/cc/CommercialUse" />
 <requires rdf:resource="http://web.resource.org/cc/Notice" />
</License>

</rdf:RDF>

Normally this RDF/XML is included as part of a larger HTML block, and the RDF is enclosed in HTML
comments to allow the page to validate as XHTML. Unfortunately, since HTML comments are also
XML comments, this precludes accessing the RDF/XML directly from the page for most parsers, which
will ignore the data much as the HTML browsers do.

The CC RDF Schema makes use of several Dublin Core elements, such as dc:title,
dc:description, dc:subject and so on. You can see the model breakdown at

http://creativecommons.org/learn/technology/metadata/implement#learn and the schema itself at

http://creativecommons.org
http://creativecommons.org/learn/technology/metadata/implement#learn
http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://creativecommons.org/learn/technology/metadata/schema.rdf. The schema includes definitions
for the CC elements, though it uses the dc:description and dc:title elements for this rather than
the RDFS equivalents of rdfs:comment and rdfs:label. The namespace for the Creative Commons
schema is http://web.resource.org/cc/, and the prefix usually used is cc.

Though CC makes use of Dublin Core elements, the data contained within these elements does differ
from other popular uses of Dublin Core. A case in point is dc:creator. For the most part,
dc:creator usually contains a string literal representing the name of the person who created the

work. However, the CC folks, following from an earlier overly involved discussion in the RDF Interest
Group surrounding the concept that "strings don't create anything," provided a bit more detail - in
this case, that a dc:creator is an "agent," with a dc:title equivalent to the agent's name. In the
following RDF/XML, the dc:creator field is boldfaced to demonstrate the structure of the data used

by CC:

<rdf:RDF xmlns="http://web.resource.org/cc/"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<Work rdf:about="http://rdf.burningbird.net">
 <dc:title>Practical RDF</dc:title>
 <dc:date>2003-2-1</dc:date>
 <dc:description>Sample CC license for book</dc:description>
 <dc:creator><Agent>
 <dc:title>Shelley Powers</dc:title>
 </Agent></dc:creator>
 <dc:rights><Agent>
 <dc:title>O'Reilly</dc:title>
 </Agent></dc:rights>
 <dc:type rdf:resource="http://purl.org/dc/dcmitype/Text" />
<license rdf:resource="http://creativecommons.org/licenses/by-nd-nc/1.0" />
</Work>

<License rdf:about="http://creativecommons.org/licenses/by-nd-nc/1.0">
 <requires rdf:resource="http://web.resource.org/cc/Attribution" />
 <permits rdf:resource="http://web.resource.org/cc/Reproduction" />
 <permits rdf:resource="http://web.resource.org/cc/Distribution" />
 <prohibits rdf:resource="http://web.resource.org/cc/CommercialUse" />
 <requires rdf:resource="http://web.resource.org/cc/Notice" />
</License>

</rdf:RDF>

The data type for dc:creator is PCDATA, which means that the CC innovation wouldn't validate

using the DC DTD. However, there's no requirement that RDF/XML validate, only that it be well
formed. Still, if you're processing this field for a string representing a name, and you get this
structure instead, you're going to have some interesting processing challenges. All of this
demonstrates that, though RDF helps in the process of defining a metamodel for data, it doesn't
necessarily close all the doors leading to confusion.

[Team LiB]

http://creativecommons.org/learn/technology/metadata/schema.rdf
http://web.resource.org/cc/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

14.3 MIT's DSpace System Documentation

DSpace is a repository and multitier application being developed by MIT and HP Labs to track the
intellectual output at MIT. It's based in Java and implemented as a J2EE application residing on Unix
and using PostgreSQL as a database. The application has been carefully documented, including
detailed installation instructions, as well as excellent overall architecture and usage documentation.

DSpace is a Source Forge project, with a home page at
http://www.dspace.org/. Download the source at
http://sourceforge.net/projects/dspace/ or at the HP Labs download page (at
http://www.hpl.hp.com/research/downloads/). View systems documentation at
http://dspace.org/technology/system-docs/index.html. DSpace is open source,
available under a BSD license.

DSpace works by allowing to the establishment of major organization divisions, which the project
calls communities. Within the communities, intellectual output is further categorized into collections.
Each unique output item gets a Dublin Core record attached to it and is then combined with any
external material such as images into a bundle. This bundle is then formatted as a bitstream, and the
format for the bitstream is attached to it. With this infrastructure in place, each output is a complete
package including the metadata information associated with it, through the addition of the Dublin
Core record.

DSpace users can submit a document or other material for inclusion with the system, and its
inclusion can be reviewed and accepted or rejected. If accepted, the material can be uploaded;
information about the material is then available for search and browsing. In addition, when the
material is loaded, it's assigned a handle based on the CNRI Handle System for direct access to the
material.

More information on CNRI can be found at http://www.handle.net/.

The type of material that can be accommodated within DSpace includes documents in all forms,
books, multimedia, computer applications, data sets, and so on. In addition to getting access to the
material through search, browsing, or directly through the handle, users can also subscribe to a
specific collection within a DSpace community and be notified by email when a new item has been
added.

[Team LiB]

http://www.dspace.org/
http://sourceforge.net/projects/dspace/
http://www.hpl.hp.com/research/downloads/
http://dspace.org/technology/system-docs/index.html
http://www.handle.net/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

14.4 FOAF: Friend-of-a-Friend

For use of RDF to become widespread, its growth must occur in two directions: through use in
sophisticated commercial applications such as those detailed in the next chapter, and through small,
friendly, easy-to-use, and open source applications such as FOAF - Friend-of-a-Friend.

You can find out more about FOAF at the its main web site at
http://rdfweb.org/foaf/. In addition, an FOAF Wiki is at
http://rdfweb.org/rweb/wiki/wiki.pl?FoafVocab. The RDF Schema for FOAF is at
http://xmlns.com/foaf/0.1/. A mailing list for interested persons can be found
at http://rdfweb.org/pipermail/rdfweb-dev/.

FOAF is a way of providing affiliation and other social information about yourself; it's also a way of
describing a network of friends and others we know for one reason or another, in such a way that
automated processes such as web bots can find this information and incorporate it with other FOAF
files. The data is combined in a social network literally based on one predicate: knows.

Consider the scenario: I know Dorothea and she knows Mark and he knows Ben and Ben knows Sam
and Sam knows... and so on. If the old adage about there being only six degrees of separation
between any two people in the world is true, it should take only six levels of knows to connect

Dorothea to Mark to Ben and so on. Then, once the network is established, it's very easy to verify
who a person knows and in what context, and you have what could become a web of knowledge, if
not exactly a web of trust.

The FOAF namespace is http://xmlns.com/foaf/0.1/, and the classes are Organization,
Project, Person, and Document. There is no special meaning attached to each of these classes,

they're meant to be taken at face value. In other words, a document is a document, not a special
type of document. Though the other classes are available, most FOAF files are based on Person, and

that's what's most used.

There are several FOAF properties, many of which are rarely used, a few of which are even a joke
(dnaChecksum comes instantly to mind). However, almost every FOAF files uses the following

properties:

mbox

An Internet email address in a valid URI format
surname

Person's surname
nick

Person's nickname
firstname

First name of person
givenname

http://rdfweb.org/foaf/
http://rdfweb.org/rweb/wiki/wiki.pl?FoafVocab
http://xmlns.com/foaf/0.1/
http://rdfweb.org/pipermail/rdfweb-dev/
http://xmlns.com/foaf/0.1/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Given name of person
homepage

Person's home page URL
projectHomepage

URL of a project home page
title

Person's title or honorific
phone

Person's phone
publications

Link to person's publications
knows

A person the person knows

There are other properties, but if you examine several FOAF files for people you'll find that the ones
just listed are the most commonly used. In fact, the best way to understand how to create an FOAF
file for yourself is to look at the FOAF files for people you know. Another way is to create the
beginnings of a FOAF file using the FOAF-A-Matic.

14.4.1 The FOAF-A-Matic

I derived the name for my Query-O-Matic tools described in Chapter 10 in some part from the FOAF-
A-Matic name. However, unlike my tools, which query existing RDF/XML, the FOAF-A-Matic is used to
generate the RDF/XML for a specific FOAF file.

Access the original FOAF-A-Matic at http://www.ldodds.com/foaf/foaf-a-
matic.html. Work is underway for a new version of the FOAF-A-Matic at the
following web site: http://www.ldodds.com/wordtin/Wiki.jsp?
page=FOAFaMaticMark2.

The FOAF-A-Matic is a web form with several fields used to record information such as name, home
page, email, workplace information, and so on. In addition, the form also allows you to specify people
that you know, including their name and a page to see more about them. In the example, I added
two people: Simon St.Laurent, the editor of this book, and Dorothea Salo, one of the tech editors.
When the fields are filled in, clicking the FOAF Me! button generates the RDF/XML, as shown in
Example 14-3. You can then copy this, save it to a file, and modify the values-changing or adding
new properties and more friends, whatever.

Example 14-3. FOAF RDF/XML file generated by FOAF-A-Matic

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:foaf="http://xmlns.com/foaf/0.1/">

http://www.ldodds.com/foaf/foaf-a-
http://www.ldodds.com/wordtin/Wiki.jsp?
http://lib.ommolketab.ir
http://lib.ommolketab.ir

<foaf:Person>
<foaf:name>Shelley Powers</foaf:name>
<foaf:title>Ms</foaf:title>
<foaf:firstName>Shelley</foaf:firstName>
<foaf:surname>Powers</foaf:surname>
<foaf:nick>Burningbird</foaf:nick>
<foaf:mbox_sha1sum>cd2b130288f7c417b7321fb51d240d570c520720</foaf:mbox_sha1sum>
<foaf:homepage rdf:resource="http://weblog.burningbird.net"/>
<foaf:workplaceHomepage rdf:resource="http://burningbird.net"/>
<foaf:workInfoHomepage rdf:resource="http://burningbird.net/about.htm"/>
<foaf:schoolHomepage rdf:resource="http://www.cwu.edu/"/>
<foaf:knows>
 <foaf:Person>
 <foaf:name>Simon St.Laurent</foaf:name>
 <foaf:mbox_sha1sum>65d7213063e1836b1581de81793bfcb9ad596974</foaf:mbox_sha1sum>
 <rdfs:seeAlso rdf:resource="http://www.simonstl.com/"/>
 </foaf:Person>
</foaf:knows>
<foaf:knows>
 <foaf:Person>
 <foaf:name>Dorothea Salo</foaf:name>
 <foaf:mbox_sha1sum>69d0c538f12014872164be6a3c16930f577388a8</foaf:mbox_sha1sum>
 <rdfs:seeAlso rdf:resource="http://www.yarinareth.net/caveatlector/"/>
 </foaf:Person></foaf:knows>
</foaf:Person>
</rdf:RDF>

Notice in the example that the property mbox_shalsum is used instead of mbox. That's because one of

the options used to generate the file was the ability to encode the email address so that it can't easily
be scraped on the Web by email spambots-annoying little critters.

Notice also in the example that rdfs:seeAlso is used to map to a person's URL of interest. FOAF is

first and foremost RDF/XML, which means the data it describes can be combined with other related,
valid RDF/XML.

Once the FOAF file is to your liking, you can link to it from your home page using the link tag, as so:

<link rel="meta" type="application/rdf+xml" href="my-foaf-file.xrdf" />

This enables FOAF autodiscovery, or automatic discovery of your FOAF file by web bots and other
friendly critters. Speaking of friendly critters, what else can you do with your FOAF file?

14.4.2 FOAF Technologies

Any technology that can work with RDF/XML can work with FOAF data. You can query FOAF files to
find out who knows whom, to build a page containing links to your friends' pages, and so on.
However, in addition to using traditional RDF/XML technologies with the FOAF data, there are also
some FOAF-specialized technologies.

Edd Dumbill, the editor of XML.com, created what is known as the FOAFBot. This automated process

http://lib.ommolketab.ir
http://lib.ommolketab.ir

sits quietly in the background monitoring an IRC (Internet Relay Chat) channel until such time as a
member of the channel poses a question to it. For instance, at the FOAFBot web site a recorded
question and answer exchange between an IRC member and the FOAFBot is:

<edd> foafbot, edd's name
<foafbot> edd's name is 'Edd Dumbill', according to Dan Brickley,
 Anon35, Niel Bornstein, Jo Walsh, Dave Beckett, Edd Dumbill,
 Matt Biddulph, Paul Ford

FOAFBot has access to a knowledge base consisting of data that's been gleaned from FOAF files on
the Internet. You can read more about FOAFBot and download the Python source code at
http://usefulinc.com/foaf/foafbot. (Note the source code is built on Dave Beckett's Redland
framework, described in Chapter 11.)

In the FOAFBot page that opens, there's also a link to an article about how to digitally sign your FOAF
file.

Another use of FOAF data is the codepiction project, which uses the foaf:depiction property to

search for images in which two or more people are depicted together in the same photo. You can
read more about the codepiction project at http://rdfweb.org/2002/01/photo/index.html and see a
working prototype at http://swordfish.rdfweb.org/discovery/2001/08/codepict/.

Finally, there's been effort to extend the concept of FOAF to a corporate environment, including
defining a new vocabulary more in line with corporate connectivity than personal connectivity. You
can check out the work on this project, called FOAFCorp, at http://rdfweb.org/foaf/corp/intro.html.

[Team LiB]

http://usefulinc.com/foaf/foafbot
http://rdfweb.org/2002/01/photo/index.html
http://swordfish.rdfweb.org/discovery/2001/08/codepict/
http://rdfweb.org/foaf/corp/intro.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 15. A World of Uses: Commercial
Uses of RDF/XML
While so much of RDF's early focus has been on the Semantic Web, it's important to note that there
are companies that are utilizing RDF and focusing their products on immediate real-world uses. The
mark of a technology entering maturity is not the number of technologies it's implemented in, but the
number of viable applications that use it. It wasn't until XML started getting wider use within the
business community that it become less of a technology for the lab and more of a technology for the
office. This same principle holds true for RDF.

Just as happened with XML, and even HTML, it isn't until people see a technology being used for
"practical" applications that business starts to become more comfortable in its use. Without business
acceptance, developers are hesitant to work with a technology that may not have a payback in terms
of job potential. Without mainstream developers supporting the use of, and finding uses for,
RDF/XML, its acceptance is going to be limited. Luckily, though, I found several commercial uses of
RDF and RDF/XML, in applications ranging from intelligence-community use to more efficient site
navigation to alternative database structures and personal information management.

This chapter takes a look at some of the planned and existing commercial applications I found. This
includes a personal information manager currently in design (OSAF's Chandler), an Application Server
(Intellidimension's RDF Gateway), and Adobe's use of RDF/XML in existing products. In addition, we'll
also look at Siderean Software's Seamark server for site navigation, and Plugged In Software's
Tucana Knowledge Store for sophisticated searches.

The chapter is by no means an exhaustive summary of the existing potential and commercial uses of
RDF; it is, I hope, a comprehensive view of the different uses of RDF within the business community.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

15.1 Chandler: RDF Within an Open Source PIM

Chandler is a product resulting from an unusual project, managed through the Open Source
Applications Foundation (OSAF), founded by Mitch Kapor. If that name doesn't ring any bells, Mitch
founded Lotus Development Corporation and created Lotus 1-2-3.

As of this writing, Chandler is in the design stage, a process that's quite open.
For more information, access the OSAF main web page at
http://osafoundation.org. A Wiki has been set up to handle external
contributions to the design at
http://wiki.osafoundation.org/bin/view/Main/WikiHome.

Chandler is a personal information management (PIM) application, being designed in the open, based
on open source technologies and specifications including RDF and RDF/XML.

OSA incorporates RDF into its architecture in two places. The first is an import/export mechanism
allowing import and export of data from Chandler into RDF/XML. The hope is that this functionality
allows Chandler to incorporate data from other sources more easily; data sources such as FOAF,
described in Chapter 14, would be a natural candidate for information in a PIM.

In addition, according to the technology overview of the product, Chandler's own data model will
support RDF Schema semantics, which means that the data conforms to all of the semantics defined
by the RDF specification, including the very basic concept of triple. According to the Chandler
Architecture document, OSAF decided on RDF:

...because of its ability to describe data in a very flexible format and exchange semantic
information between applications in a standard format without loss. Because RDF is a World
Wide Web Consortium standard, we hope to gain benefit from the existing tools, validators and
applications that have been developed or will be developed.

The group is also focusing on a Python object-based data store based on ZODB, the Zope database
(at http://www.zope.org/Products/StandaloneZODB). Rather than the more traditional approach of
storing RDF in the form of triples, the Chandler development team is pursuing a possible mapping
between RDF and the object classes supported in ZODB. There originally was an interest in a
mapping between Zope and RDF (at http://www.zope.org/Resources/Mozilla/Projects/RDFSupport/),
but there hasn't been any activity on this for several months. Whether Chandler will rekindle activity
in a mapping between Zope, ZODB, and RDF should become more apparent as progress on Chandler
continues.

At this time, Chandler is in the planning/design/early implementation stages. To follow the progress
of this product, you can subscribe to or view the archives of the OSA mailing lists at
http://osafoundation.org/mailing_lists.htm, in addition to accessing the main web site and the Wiki.

[Team LiB]

http://osafoundation.org
http://wiki.osafoundation.org/bin/view/Main/WikiHome
http://www.zope.org/Products/StandaloneZODB
http://www.zope.org/Resources/Mozilla/Projects/RDFSupport/
http://osafoundation.org/mailing_lists.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

15.2 RDF Gateway, a Commercial RDF Database

RDF Gateway is a database and integrated web server, utilizing RDF, and built from the ground up rather
than on top of either an existing web server (such as Apache) or database (such as SQL Server or
MySQL). At this time, it works only within the Windows environment, specifically Windows NT 4.0, 2000,
or XP. The installation is extremely easy; I was able to download, install, and run the application in less
than five minutes.

Download an evaluation version of RDF Gateway at
http://www.intellidimension.com . This chapter was written with the beta version of
the product, but Version 1.0 released as this went into production.

RDF Gateway is an application server providing web page template support similar to ASP or JSP. This
includes data storage, support for a scriptlike data query language, and web services. Aside from the use
of RDF, all aspects of the tool are proprietary, though many are based on current open source efforts,
including the RDF parser associated with Redland (discussed in Chapter 11).

Once installed, an RDF Gateway icon is added to the system tray. Right-clicking on this opens a menu
that can be used to start or stop the server or to open a properties window with information about the
Gateway, such as port, database location, and so on. The properties page is informational only-unless
there's a problem with the server, these settings shouldn't need to be changed.

The Gateway can be managed through an online interface, where you can do things such as add or
remove users from access to the repository, as shown in Figure 15-1 .

Figure 15-1. Adding a new user for RDF Gateway

http://www.intellidimension.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can also view the data tables used for the RDF Gateway repository or add COM objects, web
services, packages, and so on. These externally created extensions to the Gateway can then be accessed
through the scripting language supported by the product: RDFQL, an ECMAScript-based scripting
language. RDFQL is used within RDF Server Pages (RSP) similarly to how Java is used in JSP and VBScript
in ASP. As do these embedded scripting page approaches, RDFQL supports several built-in and global
objects to facilitate application development. Among the objects supported with the released version of
RDF Gateway are:

DataSource

Provides access to RDF statements stored in an external file or within the database
Request

Contains HTTP request information, including environment variables
Response

To return response
Security

Access to RDF Gateway security features
Server

Access to server features
Session

Created for every session and used primarily for setting session variables
RDFNode

To access a specific piece of information from an RDF data source
Package

Access to an RDF Gateway package

There are other objects such as strings, enumerators, and so on, but this listing gives you an idea of the
built-in capability associated with RDFQL. Example 15-1 is a simple RSP that does nothing more than
read an external RDF/XML page into a DataSource object and then use that object's formatting capability

to print the RDF/XML out to the page.

Example 15-1. Reading in and writing out remote RDF/XML document

<%
// Create an in-memory data source
// connect to remote RDF/XML document using the Inet data service
var monsters = new DataSource("inet?url=http://burningbird.net/articles/monsters1.
rdf&parsetype=rdf");

//set the content type
Response.ContentType = "text/xml";

//use the Format command on the datasource to generate an rdf+xml representation of the
//contents of the datasource
Response.Write(monsters.Format('application/rdf+xml'));

http://lib.ommolketab.ir
http://lib.ommolketab.ir

%>

As you can see from the example, scripting blocks are separated from the rest of the page with angle
bracket/percent sign enclosures.

RDF Gateway can be extended through the use of COM/COM+ objects, as well as through Gateway
packages, which are distinct applications or libraries of functions, which can be used in any of the
Gateway-managed pages. In addition, the underlying data repository for RDF Gateway can be accessed
directly through JDBC from within Java applications and through ADO if you're programming Windows-
based applications. RDFCLI, a Win32 library, also provides the fastest and most direct access to the RDF
Gateway services.

At first glance RDF Gateway appears similar to IIS/COM+ and other application/web servers of similar
make, until you take a closer glance at the data queries. This is where the product's RDF roots shine
through.

I pulled an example of how data manipulation can work with RDF Gateway from the help files included
with the application. Example 15-2 shows how to create and insert RDF statements into an in-memory
data source and then how to print select predicate values out.

Example 15-2. Creating and then querying RDF data within memory
datastore

foaf = new DataSource();

INSERT
 {[http://www.w3.org/1999/02/22-rdf-syntax-ns#type]
 [mailto:drepchick@intellidimension.com]
 [http://xmlns.com/foaf/0.1/Person]}

 {[http://xmlns.com/foaf/0.1/firstName]
 [mailto:drepchick@intellidimension.com]
 "Derrish"}

 {[http://xmlns.com/foaf/0.1/knows]
 [mailto:drepchick@intellidimension.com]
 [mailto:gchappell@intellidimension.com]}

 {[http://www.w3.org/1999/02/22-rdf-syntax-ns#type]
 [mailto:gchappell@intellidimension.com]
 [http://xmlns.com/foaf/0.1/Person]}

 {[http://xmlns.com/foaf/0.1/firstName]
 [mailto:gchappell@intellidimension.com]
 "Geoff"}

 {[http://xmlns.com/foaf/0.1/knows]
 [mailto:gchappell@intellidimension.com]
 [mailto:drepchick@intellidimension.com]}

 INTO #foaf;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

var ary = foaf.getObjects();

for (var i = 0; i < ary.length; i++)
{
 dumpPerson(ary[i]);
}

function dumpPerson(node)
{
 var s = node["http://xmlns.com/foaf/0.1/firstName"];

 var ary = node["http://xmlns.com/foaf/0.1/knows"];

 if (ary != null)
 {
 s += " -> ";

 for (var i = 0; i < ary.length; i++)
 {
 if (i > 0)
 s += ", ";

 s += ary[i]["http://xmlns.com/foaf/0.1/firstName"];
 }
 }

 Response.write(s);
}

After exposure to RDQL in Chapter 10 , the insert statements based on an RDF triple in the first part of
the code should be relatively familiar. Once the data's added to the store, the second part of the code
example accesses the firstName property for both the FOAF resource, as well as all the resources that
map to the knows predicate, resulting in an output of:

Derrish -> Geoff
Geoff -> Derrish

RDF Gateway also provides the ability to query against multiple datastores, merging the results as
appropriate. For instance, you can access data from three different data sources with a query such as the
following:

select ?p ?s ?o using #ds1, #ds2, #ds3 where {?p ?s ?o};

RDF Gateway also includes strong inferential support through two types of rules: statement and function.
These allow incorporation of process logic within the semantics of the more traditional query. Again, using
examples from the help file for the Gateway product, a statement rule would be like the following:

INFER {[acme:size] ?product_id "big"} FROM
{[itd:size] ?product_id "large"} OR {[itd:size] ?product_id "x-large"};

That's a lot of strange syntax, but what this statement is really saying is that there is a rule,
{[acme:size] ?product_id "big"} , that is true if the body, {[itd:size] ?product_id "large"} OR
{[itd:size] ?product_id "x-large"} , evaluates to true, and which can then be used within an RDFQL

http://lib.ommolketab.ir
http://lib.ommolketab.ir

query as follows:

SELECT ?acme_size FROM inventory WHERE {[acme:size] ?product_id ?acme_size};

The use of an inferential rule allows you to map one type of schema on to another and to then use these
within the queries.

How rules work becomes even more apparent when one looks at a function rule, such as the following:

INFER GetLeadTime(?product_id, ?lead_time) FROM
 {[itd:assembly_time] ?product_id ?assembly_time} AND
 SWITCH
 (
 case {[itd:component] ?product_id ?component_id}:
 GetLeadTime(?component_id, ?lead_time_comp)
 AND ?lead_time = ADD(?lead_time_comp,
?assembly_time)
 default:
 ?lead_time = ?assembly_time
)

Using this function rule within a query, such as the following, returns the lead time for large products.
However, within the rule itself, the actual lead time is accumulated from summing all lead times for the
individual components that make up the part:

SELECT ?lead_time USING inventory WHERE
 {[itd:size] ?product_id "large"} AND GetLeadTime(?product_id, ?lead_time);

Learning to work with the inferential engine of RDF Gateway isn't trivial, but the potential of
encapsulating complex logic into a form that can be used and reused within queries has considerable
appeal. To enable this encapsulation, RDF Gateway provides support for a rulebase , a set of RDFQL rules
that can be included within a query. Redefining the function statement into a rulebase would be as
follows:

rulebase app_rules
{
 // ITD size to Acme size mapping rule
 INFER {[acme:size] ?product_id "big"} FROM
 {[itd:size] ?product_id 'large'} OR {[itd:size] ?product_id "x-large"};

 // Lead time function rule

 INFER GetLeadTime(?product_id, ?lead_time) FROM
 {[itd:assembly_time] ?product_id ?assembly_time} AND
 SWITCH
 {
 case {[itd:component] ?product_id ?component_id}:
 getLeadTime(?component_id, ?lead_time) AND ?lead_time = ADD(?lead_time,
?assembly_time)
 default:
 ?lead_time = ?assembly_time
 };
};

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The rulebase would then be used in a query in the following manner:

SELECT ?product_id USING inventory RULEBASE NONE WHERE {[itd:size] ?product_id "big"};

It is this inferential engine support, in addition to the RDF/XML base, that makes RDF Gateway unique
among application servers.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

15.3 Siderean Software's Seamark

Siderean Software's Seamark is a sophisticated application providing resources for intelligent site
querying and navigation. The company makes use of a faceted metadata search and classification
scheme for describing page characteristics. It is intended for larger, commercial applications and web
sites, providing the infrastructure necessary for this type of search capability.

Siderean Software's web site is at http://siderean.com. I was given access to a
beta version of the software for the Windows environment at the time of this
writing.

By faceted metadata, Siderean is talking about defined properties or characteristics of objects.
Seamark allows searching on variations of this type of data. Once the Seamark repository is installed,
it's quite simple to load data into it from external RDF/XML files. The data in these files is then
combined with existing data in the Seamark database. There is no specialized Seamark RDF Schema,
which means the RDF/XML can be from any vocabulary.

Aside from the repository, Seamark's second main component is what Siderean calls search models.
Once these models are defined, they can then be incorporated into the navigation and search
functionality of the applications based on Seamark. The query language used to define the search
models is based on XRBR, XML Retrieval by Reformulation format, a query language proprietary to
Siderean. Once a search is defined, Seamark can generate a customizable ASP or a JSP page that
incorporates the search and to which you can add custom code as needed. Additionally, you can
access the Seamark services through the Seamark API, a SOAP-based protocol.

The user interface for Seamark is quite simple, consisting of a main model/RDF document page, with
peripheral pages to manage the application data. Once the application is installed, the first steps to
take after starting the application are to create a model and then load one or more RDF/XML
documents. Figure 15-2 shows the page form used to identify an internal RDF/XML document. Among
the parameters specified is whether to load the document on a timed schedule, or manually, in
addition to the URL of the file and the base URL used within the document. The page also provides
space for an XSL stylesheet to transform non-RDF XML to RDF/XML.

Figure 15-2. Adding a URL for an external RDF/XML data source

http://siderean.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Once the external feed is defined, the data can then be loaded manually or allowed to load according
to the schedule you defined.

After data is loaded into the Seamark repository, you can then create the search queries to access it.
In the query page, Seamark lists out the RDFS classes within the document; you can pick among
these and have the tool create the query for you or manually create the query.

For instance, the example RDF/XML used throughout the book,
http://burningbird.net/articles/monsters1.rdf, has three separate classes:

pstcn:Resource

Main object and any related resources
pstcn:Movement

Resource movements
rdf:Seq

The RDF sequence used to coordinate resource history

For my first query, I selected the Resource object, and had Seamark generate the query, as shown in
Figure 15-3.

Figure 15-3. An automatically generated query in Seamark.

http://burningbird.net/articles/monsters1.rdf
http://lib.ommolketab.ir
http://lib.ommolketab.ir

As you can see from the figure, XRBR isn't a trivial query language, though a little practice helps you
work through the verbosity of the query. Once the initial XRBR is generated, you can customize the
query, save it, execute it, or generate ASP or JSP to manage the query-or any combination of these
options. Executing the query returns XRBR-formatted data, consisting of data and characteristics, or
facets for all the Resource classes in the document. At this point, you can again customize the query
or generate an ASP or JSP page.

When you add new RDF/XML documents to the repository, this new data is incorporated into the
system, and running the query again queries the new data as well as the old. Figure 15-4 shows the
page for the model with two loaded RDF/XML documents and one query defined.

Figure 15-4. PostCon Seamark model with two data sources and one
query

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Seamark comes with a default application called bookdemo that can be used as a prototype as well
as a training tool. In addition, the application is easily installed and configured and comes with
considerable documentation, most in PDF format. What I was most impressed with, though, was how
quickly and easily it integrated my RDF/XML data from the PostCon application into a sophisticated
query engine with little or no effort. Few things prove the usefulness of a well-defined metadata
structure faster than commercial viability.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

15.4 Plugged In Software's Tucana Knowledge Store

Plugged In Software's Tucana Knowledge Store (TKS) enables storage and retrieval of data that's
designed to efficiently scale to larger datastores. The scalability is assured because distributed data
sources are an inherent part of the architecture, as is shown in the diagram in Figure 15-5 .

You can download an evaluation copy of Tucana Knowledge Store at
http://www.pisoftware.com/index.html . In addition, if you intend to use the
application for academic purposes, you can download and use an academic copy
of the application for free.

Figure 15-5. Demonstration of TKS distributed nature

In situations with large amounts of potentially complex data, this distributed data repository may be
the only effective approach to finding specific types of data. TKS has found a home in the defense
industry because of the nature of its architecture and is being used within the intelligence as well as
defense communities.

TKS pairs the large-scale data storage and querying with a surprisingly simple interface. For instance,
the query language support (iTQL) functionality can be accessed at the command line by typing in the
following command:

java -jar itql-1.0.jar

This command opens an iTQL shell session. Once in, just type in the commands necessary. I found
TKS to be as intuitively easy to use as it was to install. I followed the tutorial included with TKS,
except using my example RDF/XML document, http://burningbird.net/articles/monsters1.rdf , as the
data source. First, I created a model within TKS to hold the data:

iTQL> create <rmi://localhost/server1#postcon>;
Successfully created model rmi://localhost/server1#postcon

Next, I loaded the data from the external document:

iTQL> load <http://burningbird.net/articles/monsters1.rdf> into <rmi://localhost/

http://www.pisoftware.com/index.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

server1#postcon>;
Successfully loaded 58 statements from http://burningbird.net/articles/monsters1.rdf
into rmi://localhost/server1#postcon

After the data was loaded, I queried the two "columns" in the data-the predicate and the object-for
the main resource, http://burningbird.net/articles/monsters1.htm :

iTQL> select $obj $pred from <rmi://localhost/server1#postcon> where <pstcn:release>
$pred $obj;
0 columns: (0 rows)
iTQL> select $obj $pred from <rmi://localhost/server1#postcon> where <http://
burningbird.net/articles/monsters1.htm> $pred $obj;
2 columns: obj pred (8 rows)
 obj=http://burningbird.net/articles/monsters2.htm pred=http://burn
ingbird.net/postcon/elements/1.0/related
 obj=http://burningbird.net/articles/monsters3.htm pred=http://burn
ingbird.net/postcon/elements/1.0/related
 obj=http://burningbird.net/articles/monsters4.htm pred=http://burn
ingbird.net/postcon/elements/1.0/related
 obj=http://burningbird.net/postcon/elements/1.0/Resource pred=htt
p://www.w3.org/1999/02/22-rdf-syntax-ns#type
 obj=rmi://flame/server1#node123 pred=http://burningbird.net/postcon/elem
ents/1.0/bio
 obj=rmi://flame/server1#node134 pred=http://burningbird.net/postcon/elem
ents/1.0/relevancy
 obj=rmi://flame/server1#node147 pred=http://burningbird.net/postcon/elem
ents/1.0/presentation
 obj=rmi://flame/server1#node164 pred=http://burningbird.net/postcon/elem
ents/1.0/history

The blank nodes are identified with TKS's own method of generating bnode identifiers, in this case a
concatenation of a local server name and a specific node identifier. As you can see from this example,
the TKS query language iTQL is very similar to what we've seen with RDQL and other RDF/XML-based
query languages.

In addition to the command-line shell, there's also a web-based version that might be easier to use,
especially when you're new. However, the basic functionality is the same.

The power of TKS is accessing the services that the TKS server provides from within your own
applications. For this, TKS comes with custom JSP tags for interoperating with the TKS server. In
addition, you can access the services through COM objects, within a Windows environment, through
SOAP, through a specialized JavaBean, and through two drivers: a JDBC driver and a native TKS
driver. This makes the query capability of TKS available in all popular development environments, as
shown in Figure 15-6 .

Figure 15-6. Client/Server architecture supported by TKS

http://burningbird.net/articles/monsters1.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Bottom line: the power of TKS is just that-power. By combining a simple and intuitive interface with
an architecture that's built from the ground up for large-scale data queries, the application is meant
to get you up and running, quickly.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

15.5 RDF and Adobe: XMP

Rather than integrate RDF into the architecture of a tool from the ground up, as occurred with the
previous applications discussed in this chapter, other companies are incorporating RDF and RDF/XML
into their existing applications. Adobe, a major player in the publications and graphics business, is
one such company. Its RDF/XML strategy is known as XMP-eXtensible Metadata Platform. According
to the Adobe XMP web site, other major players have agreed to support the XMP framework,
including companies such as Microsoft.

XMP focuses on providing a metadata label that can be embedded directly into applications, files, and
databases, including binary data, using what Adobe calls XMP packets-XML fragments that can be
embedded regardless of recipient format. Regardless of where the material is moved or located, the
data contained in the embedded material moves with it and can be accessed by external tools using
the XMP Toolkit. Adobe has added support for XMP to Photoshop 7.0, Acrobat 5.0, FrameMaker 7.0,
GoLive 6.0, InCopy 2.0, InDesign 2.0, Illustrator 10, and LiveMotion 2.0.

The information included within the embedded labels can be from any schema as long as it's recorded
in valid RDF/XML. The XMP source code is freely available for download, use, and modification under
an open source license.

Read more about Adobe XMP at http://www.adobe.com/products/xmp/.
Download the SDK at
http://partners.adobe.com/asn/developer/xmp/main.html.

Unlike so much of the RDF/XML technology, which emphasizes Java or Python, the XMP Toolkit
provides only support for C++. Specifically, the toolkit works with Microsoft's Visual C++ in Windows
(or compatible compiler) and Metrowerks CodeWarrior C++ for the Mac.

Within the SDK is a subdirectory of C++ code that allows a person to read and write XMP metadata.
Included in the SDK is a good set of documentation that provides samples and instructions on
embedding XMP metadata into TIFF, HTML, JPEG, PNG, PDF, SVG/XML, Illustrator (.ai), Photoshop
(.psd), and Postscript and EPS formats.

The SDK is a bit out of date in regard to recent activities with RDF and
RDF/XML. For instance, when discussing embedded RDF/XML into HTML
documents, it references a W3C note that was favorable to the idea of
embedding of RDF/XML into HTML. However, as you read in Chapter 3, recent
decisions discourage the embedding of metadata into (X)HTML documents,
though it isn't expressly forbidden.

The SDK contains some documentation, but be forewarned, it assumes significant experience with
the different data types, as well as experience working with C++. The document of most interest is
the Metadata Framework PDF file, specifically the section discussing how XMP works with RDF, as well
as the section on extending XMP with external RDF/XML Schemas. This involves nothing more than
defining data in valid RDF and using a namespace for data not from the core schemas used by XMP.
The section titled "XMP Schemas" lists all elements of XMP's built-in schemas.

http://www.adobe.com/products/xmp/
http://partners.adobe.com/asn/developer/xmp/main.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The SDK also includes C++ and the necessary support files for the Metadata Library, as well as some
other utilities and samples. I dusted off my rarely used Visual C++ 6.0 to access the project for the
Metadata Toolkit, Windows, and was able to build the library without any problems just by accessing
the project file, XAPToolkit.dsw. The other C++ applications also compiled cleanly as long as I
remembered to add the paths for the included header files and libraries.

One of the samples included with the SDK was XAPDumper, an application that scans for embedded
RDF/XML within an application or file and then prints it out. I compiled it and ran it against the
SDKOverview.pdf document. An excerpt of the embedded data found in this file is:

<rdf:Description rdf:about=''
 xmlns:pdf='http://ns.adobe.com/pdf/1.3/'>
 <pdf:Producer>Acrobat Distiller 5.0.5 for Macintosh</pdf:Producer>
 <!--pdf:CreationDate is aliased-->
 <!--pdf:ModDate is aliased-->
 <!--pdf:Creator is aliased-->
 <!--pdf:Author is aliased-->
 <!--pdf:Title is aliased-->
</rdf:Description>

Embedding RDF/XML isn't much different than attaching a bar code to physical objects. Both RDF and
bar codes uniquely identify important information about the object in case it becomes separated from
an initial package. In addition, within a publications environment, if all of the files are marked with
this RDF/XML-embedded information, automated processes could access this information and use it
to determine how to connect the different files together, such as embedding a JPEG file into an HTML
page and so on.

I can see the advantage of embedded RDF/XML for any source that's loaded to the Web. Eventually,
web bots could access and use this information to provide more intelligent information about the
resources that they touch. Instead of a few keywords and a title as well as document type, these
bots could provide an entire history of a document or picture, as well as every particular about it.

Other applications can also build in support for working with XMP. For instance, RDF Gateway,
mentioned earlier, has the capability of reading in Adobe XMP. An example of how this application
would access data from an Adobe PDF would be:

var monsters = new
DataSource("inet?url=http://burningbird.net/articles/monsters3.pdf&parse
type=xmp");

An important consideration with these embedded techniques is that there is no adverse impact on the
file, nothing that impacts on the visibility of a JPEG or a PNG graphic or prevents an HTML file from
loading into a browser. In fact, if you've read any PDF files from Adobe and other sites that use the
newer Adobe products, you've probably been working with XMP documents containing embedded
RDF/XML and didn't even know it.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

15.6 What's It All Mean?

In my opinion, Adobe's use of RDF/XML demonstrates how RDF/XML will be integrated in other
applications and uses in the future-quietly, behind the scenes. Unlike XML with its public exposure,
huge fanfare, and claims of human and machine compatibility and interoperability, RDF was never
meant to be anything more than a behind-the-scenes metadata model and an associated serialization
format. RDF records statements so that they can be discovered mechanically - nothing more,
nothing less. However, this simple act creates a great many uses of RDF/XML because of the careful
analysis and precision that went into building the specification upon which RDF resides and which
RDF/XML transcribes.

RDF assures us that any data stored in RDF/XML format in one application can be incorporated with
data stored in RDF/XML format in another application, and moving the data from one to the other
occurs without loss of information or integrity. While sharing and transmitting, merging and
coalescing the data, we can attach meaning to objects stored on the Web - meaning that can be
accessed and understood by applications and automated agents and APIs such as those covered in
this book.

As the use of RDF grows, the dissemination of RDF/XML data on the Web increases and the
processing of this data is incorporated into existing applications, the days when I'll search for
information about the giant squid and receive information on how to cook giant squid steaks will fade
into the past. I will be able to input parameters specific to my search about the giant squid into the
computer and have it return exactly what I'm looking for, because the computer and I will have
learned to understand each other.

This belief in the future of RDF and RDF/XML was somewhat borne out when I did a final search for
information on the giant squid and its relation to the legends and to that other legendary creature,
Nessie the Loch Ness Monster, as I was finishing this book. When I input the terms giant squid
legends Nessie in Google, terms from my subject lists associated with the article that's been used for
most of the examples in this book, the PostCon RDF/XML file for my giant squid article was the first
item Google returned.

It's a start.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animal on the cover of Practical RDF is a secretary bird. It is a bird of prey and is related to the
hawk. It is so named because the crest of feathers located at the back of its head are thought to
resemble quill pens, which were carried by male secretaries in the 19th century. It stands between 3
and 4 feet tall, and has mostly gray feathers, except for its wing tips and legs, which are black, and
its face, which has orange and yellow markings.

Although it can fly quite well, the secretary bird tends to spend most of its time on the ground. It
lives off a diet of snakes, insects, and any small animal that might be easily swallowed. The bird
usually kills its prey by beating it with its feet, using its long wings to protect itself from
counterattacks. These birds tend to choose one mate for life, and also remain loyal to their nest site.
Instead of leaving, they add to the nest each year; nests can grow up to eight feet long. The
secretary bird lays two to three eggs at a time, of which the incubation is about 45 days. The baby
birds leave home at around eight weeks.

Mary Brady was the production editor and proofreader for Practical RDF. Norma Emory was the
copyeditor . Claire Cloutier and Sarah Sherman provided quality control. Jamie Peppard, Derek Di
Matteo, and Judy Hoer provided production support. Angela Howard wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie Freedman. The
cover image is a 19th-century engraving from the Dover Pictorial Archive. Emma Colby produced the
cover layout with QuarkXPress 4.1 using Adobe's ITC Garamond font. David Futato designed the
interior layout. This book was converted by Andrew Savikas with a format conversion tool created by
Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies. The text
font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's
TheSans Mono Condensed. The illustrations that appear in the book were produced by Robert
Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and
warning icons were drawn by Christopher Bing. This colophon was written by Mary Brady.

The online edition of this book was created by the Safari production group (John Chodacki, Becki
Maisch, and Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written and
maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

(pound sign), indicating relative URI

.rdf filename extension

3-tuple representation of RDF triples

4RDF, Python-based RDF API

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

A Relational Model of Data for Large Shared Data Banks

absolute URI

addProperty method, Jena

Adobe XMP [See XMP]

aggregators, RSS 2nd 3rd

Alt (alternative) container 2nd 3rd 4th

AmphetaDesk aggregator

anonymous nodes [See blank nodes]

Apache, PHP support with

APIs [See also frameworks; software]

 Drive, for C#

 Informa RSS Library, for Java

 Jena, for Java [See Jena]

 PerlRDF [See PerlRDF]

 RDF API for PHP

 RDFLib, for Python

 RDFStore, for Perl

 Wilbur, for LISP

applications based on RDF [See also software]

 Chandler

 Creative Commons Licenses

 FOAF (Friend-of-a-Friend)

 MIT DSpace

 Mozilla 2nd

 RDF Gateway 2nd

 Seamark 2nd

 TKS (Tucana Knowledge Store) 2nd

 XMP (eXtensible Metadata Platform)

arcs, in RDF graph

ARP2 (Another RDF/XML Parser, second generation) 2nd [See also Jena]

autodiscovery

 of FOAF file

 of RSS file

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Bag container 2nd 3rd 4th

base document, resolving relative URIs with

Beckett, Dave (Expressing Simple Dublin Core in RDF/XML)

Berkeley Database

 persisting RDF data to, with PerlRDF

 Redland using

Berners-Lee, Tim

 describing uses of Semantic Web

 views on the term context

blank nodes 2nd

 identifiers generated for

 merging

 none, indicating grounded graph

BlankNode class, RDF API for PHP

bnodes [See blank nodes]

books [See also specifications and documents]

 about Mozilla

 about RSS

Boswell, David (Creating Applications with Mozilla)

Brickley, Dan

 creator of RubyRDF

 editor, RDF Schema specification

 Expressing Simple Dublin Core in RDF/XML

 RDF: Understanding the Striped RDF/XML Syntax

BrownSauce, RDF/XML browser

browser (BrownSauce)

business model [See ontology]

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

C#, API for [See Drive]

C, API for [See Redland]

CC licenses [See Creative Commons Licenses]

Chandler

channel element, RSS

circles, in RDF graph

classes

 Drive

 Jena 2nd

 OWL

 PHP XML

 RDF API for PHP

 RDF Schema 2nd

 Redland

CLOS, API for [See Wilbur]

CNRI Handle System

Codd, E. F. (A Relational Model of Data for Large Shared Data Banks)

codepiction project, FOAF used by

collections

 compared to containers

 history of

Collins, Pete (Creating Applications with Mozilla)

complement classes, OWL

constraints, RDF Schema

containers

 Alt (alternative) 2nd 3rd

 alternative to

 Bag 2nd 3rd

 compared to collections

 creating with Jena

 current specifications for

 distributive referents of

 history of

 initial specifications for

 PostCon example using

 referents (items) of

 semantics of

 Seq (sequence) 2nd 3rd 4th

 typed node specification revisions for

Content module, RSS

Content Syndication with XML and RSS

context

 meaning of, within RDF

 searching Internet based on

core modules, RSS

Creating Applications with Mozilla

Creative Commons Licenses

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CSS, RDF compared to

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

DAML (DARPA Agent Markup Language) 2nd

DAML+OIL

 compared to OWL

 compared to RDFS

 converting to OWL

 history of

 Jena support for

 specifications for

daml:Class element, compared to rdfs:Class

DAMLModelImpl class, Jena

DARPA Agent Markup Language [See DAML]

data handshaking

data types

 built-in, XML Schema

 of literal nodes

 of literal predicates

database [See relational database]

DataSource object, RDF Gateway

DB_File object, PerlRDF

DC [See Dublin Core Metadata Initiative]

DC-dot generator

description element, RSS

directed graph [See RDF graph]

disjoint classes, OWL

distributive referents

Document Type Definition [See DTD]

documents [See specifications and documents]

Domfest, Rael (creator of Meerkat)

Drive

DSpace [See MIT DSpace]

DTD (Document Type Definition)

 compared to RDF vocabulary

 using with RDF/XML

Dublin Core Element Set, Version 1.1

Dublin Core Metadata Initiative

 compared to RDF

 Creative Commons Licenses using

 DC-dot generator for

 Element set for 2nd

 elements, mixing with RDF vocabulary

 Jena classes for

 MIT DSpace using

 qualifiers for

 RDF/XML implementation of

 RSS module for

Dublin Core module, RSS

Dumbill, Edd (creator of FOAFBot)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

editors

 IsaViz

 Protégé

 RDF Editor in Java

 SMORE

Eisenzopf, Jonathan (creator of XML::RSS)

embedded RDF

encoding element, RSS Content module

entailment

enumeration classes, OWL

Expressing Simple Dublin Core in RDF/XML

extended modules, RSS

eXtensible Metadata Platform [See XMP]

eXtensible User interface Language [See XUL]

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

faceted metadata, Seamark

Feature Synopsis for OWL

find method, RDF API for PHP

findRegex method, RDF API for PHP

findVocabulary method, RDF API for PHP

FOAF (Friend-of-a-Friend)

FOAF-A-Matic

FOAFBot

FOAFCorp project

format element, RSS Content module

4RDF, Python-based RDF API

Fourthought 4RDF

frameworks [See also APIs]

 Redfoot

 Redland

Friend-of-a-Friend [See FOAF]

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

get_rdf_document method, PHP XML

Ginger Alliance PerlRDF [See PerlRDF]

Globally Unique Identifier [See GUID]

graph, directed [See RDF graph]

graphics, output by IsaViz

grounded RDF graph

Gruber, Tom (paper about ontologies)

Guha, R. V.

 creator of rdfDB

 editor of RDF Schema specification

GUID (Globally Unique Identifier)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Hammersley, Ben (Content Syndication with XML and RSS)

handshaking [See data handshaking]

Haystack project

hearsay, reification compared to

Hemenway, Kevin (creator of AmphetaDesk)

HTML

 embedding RDF in

 generating RDF/XML from [See DC-dot generator]

Hypercode scripting language, Redfoot

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

ICS-FORTH Validating RDF Parser [See VRP]

Iff, Morbus [See Hemenway, Kevin]

image element, RSS

Informa RSS Library

Inkling database

instance lemma

instance of RDF graph

Internet, searching

interpolation lemma

intersection of classes, OWL

IsaViz, RDF/XML editor

item element, RSS

item element, RSS Content module

items element, RSS

items element, RSS Content module

iTQL query language, TKS

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Java

 APIs for [See Jena Redland]

 browser based on [See BrownSauce, RDF/XML browser]

 databases based on [See Inkling database]

 editors based on [See IsaViz RDF Editor in Java]

 ontology editors based on [See Protégé ontology editor SMORE]

 parser based on [See VRP]

JDBC connection, using with Jena

Jena [See also ARP2]2nd

 ARP included with

 classes 2nd

 classes of, used by IsaViz

 containers, creating

 DBConnection problem with

 encapsulating vocabulary in wrapper class

 modeling RDF and creating RDF/XML

 nested resources

 outputting data in alternate formats

 persisting data to relational database

 querying with API

 querying with RDQL

 RDQL support

 striped syntax

 system requirements for

 typed nodes

 version used in this book

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Kapor, Mitch (founder of OSAF)

King, Brian (Creating Applications with Mozilla)

Krech, Daniel (creator of RDFLib)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

language for RDF/XML

Lassila, Ora

 co-editor of RDF M&S specification

 editor of RDF specification

link element, RSS

LISP, API for [See Wilbur]

listObjects method, Jena

listObjectsOfProperty method, Jena

listStatements method, Jena

listSubjects method, Jena

Literal class, RDF API for PHP

literals 2nd

 listing in resource element

 multiple [See containers]

 nodes

 PerlRDF module for

 RDF API for PHP class

 RDF Schema classes for 2nd

 RDFLib object for

 typed 2nd

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

McBride, Brian (creator of Jena)

media companies, RSS used by

Meerkat aggregator

Melnik, Sergey (creator of Stanford Java API)

merging lemma

merging RDF graphs

metadata 2nd [See also Dublin Core Metadata Initiative; XMP]

 faceted, in Seamark

 RDF purpose for

 RDF Schema and

 reification used for

Miller, Eric (Expressing Simple Dublin Core in RDF/XML)

MIME type, for RDF/XML document

MIT DSpace

Model class, Jena

Model class, RDF API for PHP

ModelCom class, Jena

ModelFactory class, Jena

ModelMem class, Jena

ModelRDB class, Jena

modules, RSS

Mono C# compiler

monotonicity lemma

Movable Type weblogging tool

Mozilla 2nd

Murphy, Eric (Creating Applications with Mozilla)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

N-Triples 2nd

 adding to data model, with PerlRDF

 generating with ARP2 parser

 generating with IsaViz

 generating with parser

 generating with RDF Editor in Java

 generating with RDF Validator

N-Triples Validator, Redland

N3 notation

namespaces

 in RSS 2nd

 prefixes for (QNames)

Namespaces in XML

NetNewsWire aggregator

NetNewsWire Lite aggregator

Node class, RDF API for PHP

node-edge-node-edge pattern [See striped syntax for RDF/XML]

NodeIterator class, Jena 2nd

nodes in RDF graph

Notation3 [See N3 notation]

NTriple command, ARP2

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

object

 in RDF Schema

 reification and

 resource object 2nd

 structured data as value of

Object class, RDF API for PHP

Oeschger, Ian (Creating Applications with Mozilla)

OIL (Ontology Inference Layer)

ontology 2nd [See also DAML+OIL; OWL]3rd 4th

 editors for

 history of

 necessity of

 web sites about

Ontology Development 101

Ontology Inference Layer [See OIL]

ontology web portal [See OntoWeb]

Ontology Working Group

OntoWeb (ontology web portal)

Open Source Applications Foundation [See OSAF]

OSAF (Open Source Applications Foundation)

ovals, in RDF graph 2nd

OWL

 classes 2nd

 compared to DAML+OIL

 compared to RDFS

 compared to XML Schema

 complex classes

 converting from DAML+OIL

 data typing

 elements of

 header

 history of

 properties 2nd

 relationship to RDF/XML

 relationship to RDFS

 specifications for

 tutorial for

 types of

 web sites about

OWL (Web Ontology Language)

OWL Abstract Syntax and Semantics

OWL Description

OWL DL (description logics) 2nd

OWL full 2nd 3rd

OWL Guide Version 1.0

OWL Lite 2nd

OWL Reference Version 1.0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

OWL Semantics and Abstract Syntax [See OWL Abstract Syntax and Semantics]

OWL Use Cases and Requirements

owl:allValuesFrom element

owl:cardinality element

owl:Class element

owl:complementOf element

owl:DataTypeProperty element

owl:disjointWith element

owl:FunctionalProperty element

owl:hasValue element

owl:imports element

owl:intersectionOf element

owl:InverseFunctionalProperty element

owl:inverseOF element

owl:maxCardinality element

owl:minCardinality element

owl:ObjectProperty element

owl:oneOf element

owl:onProperty element

owl:Ontology element

owl:Restriction element

owl:someValuesFrom element

owl:SymmetricProperty element

owl:TransitiveProperty element

owl:unionOf element

owl:versionInfo element

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Package object, RDF Gateway

parsers

 ARP2

 PerlRDF as

 uses of

 VRP

partial URI

PDES (Product Data Exchange Specification)

PeopleSoft, OWL compared to

Perl

 RDFStore API for

 Redland classes for

 W3C Perl library

 web site for

 XML::RSS module for

PerlRDF

 building RDF model

 in-memory data storage

 parsing RDF/XML documents

 persistence to relational database

 querying RDF data

 rdf:about element, replacing

 updates to

 web site for

persistence to relational database

 Jena used for

 PerlRDF used for

 PostGreSQL used for 2nd

 rdfDB used for

 RDQL in PHP used for

 RDQL_DB in PHP used for

 Redland used for

PHP

 RDF API for

 web site for 2nd

 XML classes for RDF

Plugged In Software, Tucana Knowledge Store [See TKS]

PNG graphics file, output by IsaViz

POSC

PostCon example

 containers in

 defining business and scope for

 defining business domain elements

 Dublin Core elements used in

 Dublin Core qualifiers used in

 Dublin Core title element in

 Java-based implementation of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 prototyping vocabulary for

 repeating predicates in

PostGreSQL database 2nd

pound sign (#), indicating relative URI

predicates 2nd

 formatting convention for

 multiple, enclosing in one resource block

 multiple, listing as resource attributes

 reification and

 repeating

PrintWriter class, Jena

Product Data Exchange Specification [See PDES]

properties

 OWL

 RDF triple

 RDFS 2nd 3rd

Property class, Jena

property value, RDF triple

Protégé ontology editor

protocol, specifying in URI

Python

 RDFLib

 Redfoot Hypercode using

 Redland classes for

 web site for

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

QNames

Query class, Jena 2nd

query languages [See also querying]

 iTQL, used by TKS

 rdfDB QL

 RDQL and RDQL_DB, for PHP

 RDQL, for Jena 2nd

 Sesame

 SquishQL

 Versa

 web site about

 XRBR, used by Seamark

Query object, Jena

Query-O-Matic application example

Query-O-Matic lite application example

QueryEngine class, Jena 2nd 3rd

QueryEngineSesame class, Jena

QueryExecution class, Jena 2nd

querying 2nd [See also query languages]

 with Jena API

 with Jena RDQL

 with PerlRDF

 with RDF API for PHP

 with RDF Gateway

QueryResults class, Jena 2nd 3rd 4th

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

RDF (Resource Description Framework) 2nd [See also RDF/XML]3rd

 applications based on

 Chandler

 Creative Commons Licenses

 FOAF (Friend-of-a-Friend)

 MIT DSpace

 Mozilla 2nd

 RDF Gateway 2nd

 Seamark 2nd

 TKS (Tucana Knowledge Store) 2nd

 XMP (eXtensible Metadata Platform)

 collections [See collections]

 compared to Dublin Core

 containers [See containers]

 current status of

 future of

 history of

 location of XML in

 merging with RSS files

 reasons not to use

 reasons to use

 reification [See reification]

 relational data model and

 restrictions to, for RSS

 schema for [See RDFS]

 serialization techniques for [See serialization techniques]

 specifications for [See specifications and documents]

 uses of

 web sites for

RDF API for PHP (RAP)

RDF Concepts and Abstract Syntax specification 2nd

RDF Core Working Group 2nd

RDF data model 2nd

RDF Description [See rdf:Description element]

RDF Editor in Java

RDF element [See rdf:RDF element]

RDF Gateway 2nd

RDF graph

 entailment and

 grounded

 instance of

 merging

 subgraphs of

 vocabulary from

RDF Interest Group 2nd

RDF Issue Tracking document

RDF M&S (Model and Syntax) Specification 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 changes to

 history of

 web site for

RDF Navigator, Redfoot

RDF Primer

RDF Schema [See RDFS]

RDF Schema specification

RDF Semantics specification 2nd

RDF Site Summary [See RSS]

RDF statement

RDF Test Cases specification

RDF triple 2nd

 serializing [See serialization techniques]

RDF Validator

 Bag container element labels by

 blank nodes and

 list node numbering by

 N-Triples generated by

 RDF graph generated by

 RDF Schema, testing with

 web site for 2nd 3rd

RDF vocabulary 2nd 3rd [See also RDFS]

 browser for [See BrownSauce, RDF/XML browser]

 containers in

 defining business domain elements for

 encapsulating in Jena

 example of [See PostCon example]

 formalizing with RDFS

 mixing with DC elements

 namespace URI for

 prototyping

 repeating predicates in

RDF Vocabulary Description Language 1.0: RDF Schema

RDF Vocabulary Description Language specification

RDF/RSS [See RSS]

RDF/XML [See also RDF]

 APIs for [See APIs]

 browser for [See BrownSauce, RDF/XML browser]

 compared to XML 2nd

 Dublin Core implementation as

 editors for [See IsaViz RDF Editor in Java]

 embedding in non-RDF documents

 filename extension for

 future of

 generating from DC-dot generator

 joining data with disparate vocabularies

 MIME type for

 parsers for [See ARP2 PerlRDF VRP]

 processing of

 querying [See query languages querying]

 RDF backward compatibility with

 reasons to use

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 relationship to OWL

 representing RDF data models as

 storing as separate documents

 syntax

 blank nodes

 data types

 interpreting directly from XML

 language, specifying

 namespaces

 QNames

 serialization

 striped syntax

 URI references [See URI]

 well-formed requirement for 2nd

 syntax shortcuts 2nd

 API support for

 multiple predicates in one resource block

 nested resources 2nd

 non-repeating predicates as resource attributes 2nd 3rd

 rdf:type replacing description block 2nd

 when to use 2nd

RDF/XML Syntax Specification 2nd

RDF: Understanding the Striped RDF/XML Syntax

RDF::Core modules, PerlRDF

 building RDF model

 parsing RDF/XML documents

 persistence to relational database

 querying RDF data

rdf:_n element 2nd 3rd

rdf:about property 2nd [See also URI]3rd

rdf:aboutEach property 2nd

rdf:aboutEachPrefix property 2nd

rdf:Alt element [See Alt container]

rdf:Bag element [See Bag container]

rdf:bagID property [See also URI]2nd

rdf:datatype property 2nd

rdf:Description element

 compared to reification statement

 used in RDF Schema

rdf:first property

rdf:ID property 2nd [See also URI]3rd

rdf:li element 2nd 3rd

rdf:List element 2nd

rdf:nodeID property

rdf:object property 2nd 3rd

rdf:parseType property

 Collection setting

 Literal setting 2nd

 Resource setting 2nd

 using with RSS

rdf:predicate property 2nd 3rd

rdf:Property element 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

rdf:RDF element

rdf:resource property 2nd [See also URI]3rd 4th 5th

rdf:rest property

rdf:Seq element [See Seq container]

rdf:Statement element 2nd

rdf:subClassOf property

rdf:subject property 2nd 3rd

rdf:type property 2nd 3rd 4th

 replacing description block 2nd

 using with Jena

rdf:value property 2nd 3rd

 BrownSauce using

 RSS Content module

rdfDB

rdfDB QL

RDFEdge class, Drive

RDFGraph class, Drive

RDFLib

RDFLib.Bnode object, RDFLib

RDFLib.Literal object, RDFLib

RDFLib.Namespace object, RDFLib

RDFLib.URIRef object, RDFLib

RDFNode class, Drive

RDFNode object, RDF Gateway

RdfParser class, RDF API for PHP

RDFS (RDF Schema) 2nd 3rd [See also RDF vocabulary]

 alternatives to

 browser for [See BrownSauce, RDF/XML browser]

 checking with VRP

 classes 2nd 3rd

 compared to DAML+OIL

 compared to OWL

 compared to relational database schema

 constraints

 declaration for

 formalizing vocabulary with

 properties 2nd

 relationship to OWL

 for RSS

 specification for

rdfs:Class element 2nd 3rd

rdfs:comment property 2nd 3rd 4th

rdfs:Container element 2nd

rdfs:ContainerMembershipProperty element

rdfs:Datatype element 2nd

rdfs:domain property 2nd 3rd

rdfs:isDefinedBy property 2nd

rdfs:label property 2nd 3rd

rdfs:Literal element

rdfs:member property 2nd

rdfs:range property 2nd 3rd

rdfs:Resource element 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

rdfs:seeAlso property 2nd

rdfs:subClassOf property 2nd 3rd

rdfs:subPropertyOf property 2nd

rdfs:XMLLiteral element 2nd

RdfSerializer class, RDF API for PHP

RDFStore, Perl-based RDF API

RDFUtil class, RDF API for PHP

RDQL (RDF query language)

 Jena support for 2nd

 PHP XML classes support for

 web site about

RDQL package, PHP XML

RDQL_db class, PHP XML

RDQL_DB package, PHP XML

RDQL_query_db class, PHP XML

RDQL_query_document class, PHP XML

rdql_query_url method, PHP XML

Really Simple Syndication [See RSS]

rectangles, in RDF graph 2nd

Redfoot, RDF/XML application

Redland

Refactoring RDF/XML Syntax

Refactoring RDF/XML Syntax document

referents

Reggiori, Alberto (creator of RDFStore)

reification

 history of

 as metadata about statements

 necessity of

 syntax for 2nd

 trust established by

 uses of

relational data model

 RDF compared to 2nd

 RDF compared to, paper discussing

 storing RDF data using

relational database [See also entries at specific databases]

 in RDF Gateway

 metadata used in

 persisting to [See persistence to relational database]

 querying [See query languages querying]

 RDF data stored in, with Jena

 schema for 2nd

 Semantic Web and, web site about 2nd

Relational Databases and the Semantic Web

relative URI, resolving

RELAX NG 2nd

Request object, RDF Gateway

ResIterator class, Jena 2nd

resource 2nd [See also URI]

 block, multiple predicates in

 in RDF/XML [See rdf:resource property]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 in RDFS [See rdfs:Resource element]

 nested 2nd

 type of [See rdf:type property]

Resource class

 Jena

 RDF API for PHP

Resource Description Framework. [See RDF]

resource object

Response object, RDF Gateway

ResultBinding class, Jena

Rich Site Summary [See RSS]

RSS (RDF Site Summary) 2nd

 aggregators 2nd 3rd

 API for

 applications of

 autodiscovery for

 book about

 channel element

 core modules

 creating content for

 description element

 extended modules

 extending

 feeds

 history of

 image element

 item element

 items element

 link element

 merging with RDF files

 modules

 not based on RDF

 RDFS for

 specification for

 textinput element

 title element

 web site for

RSS 1.0 Modules guide

RSS 1.0 specification

RSS 2.0 specification

RSS Validator, Redland

Ruby, APIs for [See Redland RubyRDF]

RubyRDF

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

SAP, OWL compared to

schemas [See DTD RDFS RELAX NG XML Schema]

Seamark 2nd

search models, Seamark

searching the Internet 2nd

Security object, RDF Gateway

Semantic Markup, Ontology, and RDF Editor [See SMORE]

Semantic Web

 compared to existing web

 history of RDF and

 RDBMS and 2nd

Semantic Web Activity Group

Semantic Web Research Group 2nd [See also SMORE]

Semaview

Seq (sequence) container 2nd 3rd 4th

 BrownSauce using

 creating with Jena

 in PostCon example

 RDF Schema using

 RSS items element using

serialization techniques 2nd [See also RDF graph]3rd

 N-Triples 2nd

 N3 notation 2nd

 RDF/XML 2nd 3rd

Server object, RDF Gateway

Sesame

Session object, RDF Gateway

SHOE (Simple HTML Ontology Extensions)

Siderean Software, Seamark [See Seamark]

Simple HTML Ontology Extensions [See SHOE]

SMORE (Semantic Markup, Ontology, and RDF Editor)

SOAP, RDF/XML compared to

Softagents.Drive.RDFEdge class, Drive

Softagents.Drive.RDFGraph class, Drive

Softagents.Drive.RDFNode class, Drive

software [See also applications based on RDF; query languages]

 APIs

 Drive, for C#

 Informa RSS Library, for Java

 Jena, for Java [See Jena]

 PerlRDF [See PerlRDF]

 RDF API for PHP

 RDFLib, for Python

 RDFStore, for PerI

 Wilbur, for LISP

 browser (BrownSauce)

 Dublin Core RDF generator (DC-dot)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 editors

 IsaViz

 RDF Editor in Java

 frameworks

 Redfoot

 Redland

 ontology editors

 Protégé

 SMORE

 parsers

 ARP2

 PerlRDF as

 VRP

 RSS aggregators

 AmphetaDesk

 Meerkat aggregator

 NetNewsWire and NetNewsWire Lite aggregators

Source Forge

 Informa RSS Library

 Jena software [See Jena]

specifications and documents

 A Relational Model of Data for Large Shared Data Banks

 Expressing Simple Dublin Core in RDF/XML

 Feature Synopsis for OWL

 list of RDF specifications

 Namespaces in XML

 Ontology Development 101

 OWL Abstract Syntax and Semantics

 OWL Guide Version 1.0

 OWL Reference 1.0

 OWL Use Cases and Requirements

 PDES (Product Data Exchange Specification)

 RDF Concepts and Abstract Syntax specification

 RDF Issue Tracking document

 RDF M&S (Model and Syntax) Specification

 RDF Primer

 RDF Schema

 RDF Semantics specification

 RDF Test Cases specification

 RDF Vocabulary Description Language 1.0: RDF Schema

 RDF Vocabulary Description Language specification

 RDF/XML Syntax Specification

 RDF: Understanding the Striped RDF/XML Syntax

 Refactoring RDF/XML Syntax

 Relational Databases and the Semantic Web

 RSS 1.0 specification

 RSS 2.0 specification

 web site for

 well-formed versus valid XML

 XML Schema 1.0 specification

SquishQL

Stanford Java API

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Stanford University

 paper about ontologies

 paper about storing RDF data

Statement class, RDF API for PHP

Steer, Damian (creator of BrownSauce)

StmtIterator class, Jena 2nd

striped syntax for RDF/XML

 implementing with Jena

structured data, representing

subgraph lemma

subgraphs of RDF graph

subject

 in RDF triple

 in reification

SVG graphics file, output by IsaViz

Swick, Ralph (editor of RDF specification)

Syndication module, RSS

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Tcl, APIs for [See Redland XOTcl RDF/XML API]

textinput element, RSS

3-tuple representation of RDF triples

title element, RSS

TKS (Tucana Knowledge Store) 2nd

treeview control, XUL

triple [See RDF triple]

TripleStore object, RDFLib

Tucana Knowledge Store [See TKS]

typed nodes [See also rdf:type property]

 containers as

 in RSS 2nd

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

union of classes, OWL

updateBase element, RSS Syndication module

updateFrequency element, RSS Syndication module

updatePeriod element, RSS Syndication module

URI (Uniform Resource Identifier)

 absolute or partial

 relative, resolving

 RSS requirements for 2nd

 for vocabulary namespace

uriref nodes

URL (Uniform Resource Locator)

URN (Uniform Resource Name)

Userland, role in growth of RSS

UUID (Universally Unique Identifier)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

valid XML

Validating RDF Parser [See VRP]

value

 of RDF triple [See property value, RDF triple]

 of specific type [See rdf:value property]

Versa query language

vocabulary [See RDF vocabulary]

VRP (Validating RDF Parser) 2nd

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

W3C (World Wide Web Consortium)

 Ontology Working Group

 Perl library

 RDF Core Working Group 2nd

 RDF Interest Group 2nd

 Semantic Web Activity Group

 Web Ontology (WebOnt) Working Group 2nd

 web sites for 2nd

Walsh, Norman (article on well-formed versus valid XML)

Web Ontology (WebOnt) Working Group 2nd

Web Ontology Language [See OWL]

web server

 Apache, PHP support with

 in RDF Gateway

web sites

 Adobe XMP

 AmphetaDesk 2nd

 ARP2

 BrownSauce

 Chandler

 CNRI

 Co-Depiction project

 CPAN, Perl repository

 Creative Commons

 DAML+OIL press release

 DAML+OIL to OWL converter

 DC-dot generator

 Dublin Core Element Set, Version 1.1

 Dublin Core Metadata Element set

 Dublin Core Metadata Initiative

 FOAF (Friend-of-a-Friend)

 FOAF-A-Matic

 FOAFBot

 FOAFCorp project

 Fourthought

 Haystack project

 Informa RSS Library

 Inkling database

 IsaViz, RDF/XML editor

 Java Runtime Environment

 Jena

 Meerkat aggregator

 MIT DSpace

 Mono C# compiler

 Moveable Type weblogging tool

 Mozilla

 OntoWeb (ontology web portal)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 OWL

 PDES

 Perl

 Perl library by W3C

 PerlRDF

 PHP

 PHP XML classes

 POSC

 PostCon, Java-based implementation of

 Protégé ontology editor

 Python

 Python RDFLib

 query languages

 RDBMS and Semantic Web

 RDF

 RDF API for PHP

 RDF Editor in Java

 RDF Gateway

 RDF Interest Group forum

 RDF Validator 2nd 3rd

 rdfDB

 RDFLib

 RDQL tutorial

 Redfoot

 Redland

 Refactoring RDF/XML Syntax document

 RSS 1.0 Modules guide

 RSS Development, Yahoo group for

 RSS extended modules

 RSS RDFS

 RubyRDF

 Semantic Web Research Group

 Semaview

 Sesame

 Siderean Software

 SourceForge project for RDF API for PHP

 specifications and documents

 A Relational Model of Data for Large Shared Data Banks

 DAML+OIL specifications

 Expressing Simple Dublin Core in RDF/XML

 Feature Synopsis for OWL

 Namespaces in XML

 ontologies, paper about

 Ontology Development 101

 OWL Abstract Syntax and Semantics

 OWL Reference Version 1.0

 OWL Use Cases and Requirements 2nd

 RDBMS and Semantic Web comparison

 RDF Concepts and Abstract Syntax specification

 RDF M&S Specification

 RDF Semantics specification

 RDF Vocabulary Description Language 1.0: RDF Schema

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 RDF/XML Syntax Specification

 RDF: Understanding the Striped RDF/XML Syntax

 Relational Databases and the Semantic Web

 RSS 1.0 specification

 well-formed versus valid XML

 TKS (Tucana Knowledge Store)

 VRP (Validating RDF Parser)

 XML and RDF/XML comparison

 XML Schema built-in data types

 XML::RSS

 xml:lang property

 XOTcl

 ZODB (Zope database)

weblogging

 Movable Type tool for

 RSS used by

WebOnt Working Group [See Web Ontology Working Group]

well-formed XML

WG [See RDF Core Working Group]

Wilbur

Winer, Dave

 promoter of RSS 2.0

 role in growth of RSS

Working Group [See RDF Core Working Group]

World Wide Web

 compared to Semantic Web

 searching the Internet

World Wide Web Consortium [See W3C]

wrapper class, Jena

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

XHTML, RDF compared to

Ximian Mono C# compiler

XML [See also DTD]

 compared to RDF/XML 2nd

 embedding RDF in

 location of, in RDF

 PHP classes for

 processing of

 querying with

 RSS-specific

 well-formed versus valid

XML Retrieval by Reformulation [See XRBR]

XML Schema 2nd

 built-in data types

 compared to OWL

 compared to RDF vocabulary

XML Schema 1.0 specification

XML-RPC, RDF/XML compared to

XML::RSS, Perl module

xml:base property

xml:lang property

XMP (eXtensible Metadata Platform)

XOTcl RDF/XML API

XRBR (XML Retrieval by Reformulation) query language, Seamark

XUL (eXtensible User interface Language)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

ZODB (Zope database)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	Main Page
	Table of content
	Copyright
	Preface
	Audience
	Structure of This Book
	Conventions Used in This Book
	How to Contact Us
	Acknowledgments

	Chapter 1. RDF: An Introduction
	1.1 The Semantic Web and RDF: A Brief History
	1.2 The Specifications
	1.3 When to Use and Not Use RDF
	1.4 Some Uses of RDF/XML
	1.5 Related Technologies
	1.6 Going Forward

	Chapter 2. RDF: Heart and Soul
	2.1 The Search for Knowledge
	2.2 The RDF Triple
	2.3 The Basic RDF Data Model and the RDF Graph
	2.4 URIs
	2.5 RDF Serialization: N3 and N-Triples
	2.6 Talking RDF: Lingo and Vocabulary

	Chapter 3. The Basic Elements Within the RDF/XML Syntax
	3.1 Serializing RDF to XML
	3.2 RDF Blank Nodes
	3.3 URI References
	3.4 Representing Structured Data with rdf:value
	3.5 The rdf:type Property
	3.6 RDF/XML Shortcuts
	3.7 More on RDF Data Types
	3.8 RDF/XML: Separate Documents or Embedded Blocks

	Chapter 4. Specialized RDF Relationships: Reification, Containers, and Collections
	4.1 Containers
	4.2 Collections
	4.3 Reification: The RDF Big Ugly

	Chapter 5. Important Concepts from the W3C RDF Vocabulary/Schema
	5.1 RDF Vocabulary: Describing the Data
	5.2 Core RDF Schema Elements
	5.3 Refining RDF Vocabularies with Constraints
	5.4 RDF Schema Alternatives

	Chapter 6. Creating an RDF Vocabulary
	6.1 How RDF Vocabularies Differ from XML Vocabularies
	6.2 Defining the Vocabulary: Business and Scope
	6.3 Defining the Vocabulary: Elements
	6.4 Formalizing the Vocabulary with RDFS
	6.5 Integrating the Dublin Core

	Chapter 7. Editing, Parsing, and Browsing RDF/XML
	7.1 BrownSauce
	7.2 Parsers
	7.3 Editors

	Chapter 8. Jena: RDF in Java
	8.1 Overview of the Classes
	8.2 Creating and Serializing an RDF Model
	8.3 Parsing and Querying an RDF Document
	8.4 In-Memory Versus Persistent Model Storage

	Chapter 9. RDF and Perl, PHP, and Python
	9.1 RDF/XML and Perl
	9.2 RDF API for PHP
	9.3 RDF and Python: RDFLib

	Chapter 10. Querying RDF: RDF as Data
	10.1 RDF and the Relational Data Model
	10.2 Roots: rdfDB QL
	10.3 Inkling and SquishQL
	10.4 RDQL
	10.5 Sesame

	Chapter 11. A Brief Look at Additional RDF Application Environments
	11.1 RDF and C#
	11.2 Wilbur — RDF API CLOS
	11.3 Overview of Redland—a Multilanguage-Based RDF Framework
	11.4 Redfoot

	Chapter 12. Ontologies: RDF Business Models
	12.1 Why Ontology?
	12.2 Brief History of the Ontology Movement
	12.3 OWL Use Cases and Requirements
	12.4 OWL Specifications
	12.5 Basic Constructs of OWL
	12.6 Bits of Knowledge: More Complex OWL Constructs
	12.7 The Complementary Nature of RDF and OWL
	12.8 Ontology Tools: Editors

	Chapter 13. Subscription and Aggregation with RSS
	13.1 RSS: Quick History
	13.2 RSS 1.0: A Quick Introduction
	13.3 A Detailed Look at the Specification
	13.4 Extending the Specification Through Modules
	13.5 The RSS Modules
	13.6 RSS Aggregators
	13.7 Creating Your Own RSS Content
	13.8 Build Your Own RSS Consumer
	13.9 Merging RDF/RSS Files

	Chapter 14. A World of Uses: Noncommercial Applications Based on RDF
	14.1 Mozilla
	14.2 Creative Commons License
	14.3 MIT's DSpace System Documentation
	14.4 FOAF: Friend-of-a-Friend

	Chapter 15. A World of Uses: Commercial Uses of RDF/XML
	15.1 Chandler: RDF Within an Open Source PIM
	15.2 RDF Gateway, a Commercial RDF Database
	15.3 Siderean Software's Seamark
	15.4 Plugged In Software's Tucana Knowledge Store
	15.5 RDF and Adobe: XMP
	15.6 What's It All Mean?

	Colophon
	Index
	Index SYMBOL
	Index A
	Index B
	Index C
	Index D
	Index E
	Index F
	Index G
	Index H
	Index I
	Index J
	Index K
	Index L
	Index M
	Index N
	Index O
	Index P
	Index Q
	Index R
	Index S
	Index T
	Index U
	Index V
	Index W
	Index X
	Index Z

