
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Adobe®

 Dreamweaver® CS5.5
 Designing and Developing for Mobile
with jQuery, HTML5 and CSS3

David Powers

Studio Techniques

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Adobe Dreamweaver CS5.5 Studio Techniques:
Designing and Developing for Mobile with jQuery, HTML5, and CSS3

David Powers

This Adobe Press book is published by Peachpit.
For information on Adobe Press books, contact:

Peachpit
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

For the latest on Adobe Press books, go to www.adobepress.com
To report errors, please send a note to errata@peachpit.com
Peachpit is a division of Pearson Education.

Copyright © 2011 by David Powers

Associate Editor: Valerie Witte
Production Editor: Cory Borman
Developmental Editor: Anne Marie Walker
Copyeditor: Anne Marie Walker
Proofreader: Patricia Pane
Composition: WolfsonDesign
Indexer: Joy Dean Lee
Cover Image: Alicia Buelow
Cover Design: Charlene Charles-Will

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.
For information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of the book, neither the author nor Peachpit shall have any liability to any person or entity
with respect to any loss or damage caused or alleged to be caused directly or indirectly by the instructions contained
in this book or by the computer software and hardware products described in it.

Trademarks
Dreamweaver and Photoshop are either trademarks or registered trademarks of Adobe Systems Incorporated in the
United States and/or other countries.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and Peachpit was aware of a trademark claim, the designations appear
as requested by the owner of the trademark. All other product names and services identified throughout this book are
used in editorial fashion only and for the benefit of such companies with no intention of infringement of the trademark.
No such use, or the use of any trade name, is intended to convey endorsement or other affiliation with this book.

ISBN-13:	 978-0-321-77325-8
ISBN–10:	978-0-321-77325-X

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

www.adobepress.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

iii

Contents
About the Author iv
Acknowledgments v
Introduction vi

Section I Dreamweaver CS5.5	 1

Chapter 1 Dreamweaver Goes Mobile 3
Assessing HTML5 and CSS3 6
Using HTML5 and CSS3 with Dreamweaver CS5.5 14
Developing for Multiple Devices 27

Section II HTML5 and CSS3	 69

Chapter 2 �Progressive Enhancement
with HTML5 and CSS3 29
Improving an Existing Site 31
Sacrificing a Uniform Look 68

Chapter 3 �Adapting Pages for Mobile with
Media Queries 7
Understanding Media Queries 73
Adapting the Tozai Hotel Site 82
Assessing Media Queries 115

Chapter 4 �Making Your Site Available Offline 117
How Offline Sites Work 118
Making the Tozai Hotel Site Available Offline 124
Going Offline 138

Section III jQuery Mobile and PhoneGap 139

Chapter 5 Introducing jQuery Mobile 141
Creating a Basic Site with jQuery Mobile 143
Building on a Solid Foundation 173

Chapter 6 Diving Deeper into jQuery Mobile 175
A Guide to jQuery Mobile Custom Data Attributes 177
Rapid Deployment with jQuery Mobile Widgets 188
Case Study:  Creating a Reservation Form 207
Submitting a Form and Displaying the Response 216
Getting Your Hands Dirty with Code 218

Chapter 7 Building a Native App with PhoneGap 219
Setting Up PhoneGap in Dreamweaver 221
Case Study: A Travel Notes App 230
Going Further 270

 Index 271

 �Bonus material mentioned in this eBook is
available after the index.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

iv

About the Author

David Powers started developing websites in 1994 while
at the BBC (British Broadcasting Corporation). He’d just
taken on the role of Editor, BBC Japanese TV, and needed
a way of advertising the fledgling channel in Japan. The
problem was that he had no advertising budget. So, he
begged the IT department for a corner of server space and
singlehandedly developed an 80-page bilingual website,
which he regularly maintained for the next five years—on
top of all his other duties.

After three decades as a radio and TV journalist, David
left the BBC in 1999 to work independently. He created
multilingual websites for several leading clients, including
the Embassy of Japan in London and Oxford Analytica.
In 2003, he decided to combine his professional writing
and editing expertise with his passion for the web, and
began writing books on web development. This is his
fourteenth so far. Readers frequently comment on David’s
ability to explain complex technical subjects in a jargon-
free style that’s easy to understand. At the same time, he
doesn’t talk down to readers, thereby appealing equally to
more experienced web developers.

David is an Adobe Community Professional and Adobe
Certified Instructor for Dreamweaver. You’ll often find
him giving help and advice in the Dreamweaver forums
and Adobe Developer Center—to which he has contrib-
uted many popular tutorials and training videos. He greatly
enjoys traveling and taking photos—all the photos used in
this book were taken by him.

David has also translated a number of musical plays from
Japanese into English, and he likes nothing better than
sushi with a glass or two of cold sake.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

v

Acknowledgments

Writing a book about new software is a solitary activity,
grappling with a constantly moving target and pounding
the keyboard to deliver the chapters on time. But none of it
would be possible without an army of helpers. First, there’s
Scott Fegette, Senior Product Manager for Dreamweaver,
who kept me informed of the engineering team’s plans.
Then there’s Kin Blas, a Dreamweaver engineer actively
involved in developing jQuery Mobile, who clarified points
I found difficult to understand. My thanks go to them and
to the rest of the Dreamweaver team for their help both
directly and indirectly.

I’ve also had a strong backup team at Peachpit: Victor
Gavenda, who accepted the concept of this book and liked
it so much that he persuaded Adobe Press that it was high
time one of my books was printed in color; Valerie Witte,
my editor, who calmly accepted my frequent changes of
mind about the structure of the book; Anne Marie Walker,
my development editor, who picked up inconsistencies
and helped me (mis)spell the American way; Tom Muck,
my technical editor, who spotted problems with code and
made suggestions to improve it; and Cory Borman, who
oversaw the production process.

Many others have helped indirectly. At times, the Twitter
stream felt like an annoying distraction, but it provided
some invaluable leads, alerting me to changes in this fast-
moving industry. It also provided some essential light relief,
although I’m not sure I’m ready to watch another cat video
just yet.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

vi

Introduction

Don’t be fooled. Although the .5 might give the impression
that Dreamweaver CS5.5 is a point release, it’s anything but.
Dreamweaver engineers have packed a stunning amount
of new features into this version. To mention just a few,
there’s code hinting for the popular jQuery JavaScript
library, the ability to see what pages will look like at differ-
ent screen resolutions without leaving the Document win-
dow, support for jQuery Mobile widgets, and integration
of PhoneGap to build native apps for Android or iOS (the
operating system used in the iPhone, iPad, and iPod touch).

The emphasis in Dreamweaver CS5.5 is firmly on mobile
development and designing for multiple screens, but that’s
not all. There’s improved support for HTML5 and CSS3,
including tools to simplify the creation of rounded cor-
ners and drop shadows without images. Previous versions
of Dreamweaver supported only a limited range of CSS
selectors. Live view now supports them all. Oh yes, Dream-
weaver CS5.5 supports web fonts, too.

There’s a lot to absorb, and this book aims to guide you
through all the new features with the help of three case
studies. The first one centers on redesigning a website
for display on desktops, tablets, and smartphones using
HTML5, CSS3, and media queries. The second takes a cut-
down version of the same site and builds a dedicated mobile
version using jQuery Mobile, a sophisticated JavaScript and
CSS framework designed to work consistently on all major
mobile platforms. The final case study develops a simple
app that stores information in a database, accesses a mobile
phone’s GPS sensor, and displays a map.

Is This the Right Book for You?

The new features in Dreamweaver CS5.5 are aimed at web
designers and developers who are already comfortable with
HTML and CSS. It also helps to have at least a basic under-
standing of JavaScript and some jQuery experience. If the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

vii

Introduction

thought of diving into code sends shivers up your spine,
this might not be the most appropriate book for you. Web
development is becoming increasingly sophisticated, and
the days of just copying and pasting snippets of code are
rapidly drawing to a close.

Having said that, you don’t need to be an expert. I firmly
believe that if you understand why you’re being told to do
something a particular way, you’re more likely to remember
and be able to adapt it for your own projects. Each step is
explained, as are new concepts, but I don’t go back to basics,
such as describing what a function or event handler is.

Mac or Windows?

The differences between the Mac and Windows versions
of Dreamweaver are so few as to be negligible. In the rare
cases where there is a difference, I point it out and show a
screen shot if necessary. The most important difference,
as far as this book is concerned, lies in PhoneGap integra-
tion. Both Windows and Mac support Android, but the
software necessary to build apps for iOS runs only on a Mac.
The other difference, as always, lies in keyboard shortcuts.
I provide both versions, Windows first, followed by Mac.

Using a multibutton mouse is now so common among
Mac users that I refer only to right-click instead of giving
Control-click as the alternative. On most Macs, the F keys
now control hardware features, such as sound level and
brightness. When I refer to F keys, you need to hold down
the Fn key at the same time. Alternatively, open Keyboard
in System Preferences and select the “Use all F1, F2, etc.
keys as standard function key” check box.

Although I test on both operating systems, I had to choose
one for taking screen shots. Most of them have been taken
on Windows 7, but some have been taken on Mac OS X 10.6
where appropriate. However, this is a book about mobile
development. So, many screen shots have also been taken
on Android (HTC Desire and Samsung Galaxy Tab) and
iOS (iPad and iPod touch). I also tested on a BlackBerry
Torch and Windows Phone 7.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

viii

Introduction

Downloading the Case Study Files

This book doesn’t come with a CD. However, you can
download the files used in the case studies from my website
at http://foundationphp.com/dwmobile. In most cases,
all the necessary files are supplied. However, for licensing
reasons, you need to obtain the Calluna Regular web font
directly (the details are in Chapter 2). Also, the download
files don’t include the jQuery Mobile or PhoneGap libraries.
Dreamweaver copies them directly to your site when you
create a jQuery Mobile page (see Chapter 5) or define the
Native Application Settings (see Chapter 7).

Keeping Up to Date

The jQuery Mobile framework was feature complete at
the time Adobe locked down the code for the release
of Dreamweaver CS5.5. However, work continued on
stabilizing and optimizing performance. Consequently,
newer versions of the jQuery Mobile style sheet, external
JavaScript files, and images are likely to be available by the
time you read this. Adobe plans to release extensions to
update the files in Dreamweaver. Chapter 5 also describes
how to change the source folder for the files so that you
can use your own customized versions.

Because jQuery Mobile is a new framework, it’s likely to
continue to develop. I’ll try to keep abreast of its progress
and will post updates that affect this book on my website at
http://foundationphp.com/dwmobile.

Adobe is a jQuery Mobile project sponsor, and Dreamweaver
engineers are playing an active role in its development.
That holds the promise of even greater things to come.

http://foundationphp.com/dwmobile
http://foundationphp.com/dwmobile
http://lib.ommolketab.ir
http//lib.ommolketab.ir

ISECTION I

Chapter 1 Dreamweaver Goes Mobile 3

Dreamweaver CS5.5

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

chapter

1
Dreamweaver Goes Mobile

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4

Chapter 1	 Dreamweaver Goes Mobile

Change is inevitable in a progressive country.
Change is constant.

—Benjamin Disraeli

Dreamweaver Goes Mobile

Groundbreaking web technologies are like London
buses. You wait seemingly forever for one to come, and
then three come at the same time. Unlike buses, which
take you to a fixed destination, the journey promised by
HTML5, CSS3, and mobile is far less predictable. The road
map is constantly evolving, and the timetables implemented
by the major participants are rarely—if ever—coordinated.
It sounds like a nightmare.

Just as all leading browsers finally offered web designers the
prospect of stability through reasonably consistent support
for CSS2.1, everything is about to change again. At the
same time, it’s an exciting challenge: creating websites
and applications that take advantage of the new features
offered by HTML5, CSS3, and related technologies. Only
a couple of years ago, accessing the Internet on a mobile
device was relatively uncommon. That’s no longer the case.

In its key predictions for 2010 and beyond, Gartner, a
leading research company, forecast that mobile phones
would overtake desktop computers as the most common
web access device worldwide by 2013 (www.gartner.com/it/
page.jsp?id=1278413). Industry experts don’t all agree
on when it will happen, but there’s little dispute that the
explosive growth of mobile devices is making fundamental
changes to the way people access the Internet.

The dramatic early growth of Apple iPads prompted
Gartner to update its predictions the following year, esti-
mating that by 2013, 80 percent of businesses will support
a workforce using tablets. With regard to mobile phones,

www.gartner.com/it/page.jsp?id=1278413
www.gartner.com/it/page.jsp?id=1278413
http://lib.ommolketab.ir
http//lib.ommolketab.ir

5

I: Dreamweaver CS5.5

it predicted that enterprises will need to support a variety
of mobile platforms rather than be able to standardize on
one or two.

After years of designing for increasingly bigger desktop
monitors, web designers now face the need to display
content in a wide range of screen resolutions—from tiny
mobile phones to tablets and laptops to large desktops.
This forces web designers not only to think about the size
of the screen, but also the size of files. Mobile networks
tend to be slower than broadband connections, and many
users must pay extra if they exceed their monthly data limit.

To help web designers rise to the new challenges, Adobe
Dreamweaver CS5.5 incorporates a set of tools focused on
HTML5, CSS3, and development for mobile devices. This
book is your guide to using those tools.

This chapter provides a broad overview of the new features
in Dreamweaver CS5.5 and discusses some of the main
considerations you need to bear in mind when designing
websites likely to be viewed on a variety of devices. The
remaining chapters are project based:

	.	 Chapters 2 and 3 adapt an existing website so that it
works equally well on a desktop computer, tablet, or
mobile phone. The starting point is a small website
designed using XHTML 1.0 Strict. I’ll show you how to
convert it to HTML5 and add some sophisticated style
flourishes with CSS3, before using media queries to opti-
mize each page for display on different-sized devices.

	.	 Chapter 4 explains how to make your site available to
users even when they’re not connected to the Internet
by creating a cache manifest, a new feature in HTML5
that tells browsers which files to store locally.

	.	 Chapters 5 and 6 focus on building a dedicated website
for display on mobile phones and tablets using jQuery
Mobile, a new JavaScript framework that is integrated
into Dreamweaver CS5.5. As its name suggests, it’s
based on jQuery, the widely popular cross-browser
JavaScript library.

Media Queries

Introduced in CSS3, media queries are similar to
the HTML media attribute in that they let you
specify which devices your styles should be applied
to. But they’re much more powerful, because you
can serve different styles depending on such factors
as screen width. Media queries are supported by
most modern browsers, including Internet Explorer
9, but you need to provide a basic set of styles for
earlier browsers.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6

Chapter 1	 Dreamweaver Goes Mobile

	.	 Chapter 7 describes how to package a web application
built with HTML, CSS, and JavaScript for deployment
as a native app on Android or iOS using PhoneGap.
PhoneGap is an open-source framework that allows you
to author native apps without the need to learn Java or
Objective-C. Dreamweaver CS5.5 automatically installs
PhoneGap and simplifies the packaging process.

Before describing the new HTML5, CSS3, and mobile-
related features in Dreamweaver CS5.5, I’ll address what I
suspect is a burning question for many of you.

Assessing HTML5 and CSS3

Are HTML5 and CSS3 ready to use? The simple answer is
yes—as long as you know what you’re doing.

The editor of the HTML5 specification, Ian Hickson,
provoked an uproar in 2008, when he estimated that it
would take until 2022 for the World Wide Web Consortium
(W3C) to adopt the specification as a proposed recom-
mendation (http://blogs.techrepublic.com.com/program-
ming-and-development/?p=718). This was widely misinter-
preted as meaning that HTML5 wouldn’t be ready for use
before then. In fact, he was actually referring to the W3C’s
stringent requirements for approval. To qualify, the specifi-
cation must pass tens of thousands of test cases, and at least
two browsers must implement every feature completely. In
February 2011, the W3C announced it was speeding up the
process and set 2014 as the target for formally approving
the HTML5 specification. But you don’t need to wait until
then. Many aspects of HTML5 are widely supported, even
by the browser everyone loves to hate, Microsoft Internet
Explorer (IE) as far back as IE 6.

The version of PhoneGap integrated
in Dreamweaver CS5.5 supports only
Google’s Android and Apple’s iOS (for
iPhone, iPad, and iPod touch). Adobe
plans to expand Dreamweaver’s
support for other mobile operating
systems, such as BlackBerry, later.

W3C

The W3C (www.w3.org) is responsible for devel-
oping web standards, which are formally referred
to as recommendations. Its members include all
the big software and technology companies, as
well as government and research institutions
from over 40 countries. The need to find consensus
among its diverse membership often leads to slow
decision making.

www.w3.org
http://blogs.techrepublic.com.com/programming-and-development/?p=718
http://blogs.techrepublic.com.com/programming-and-development/?p=718
http://lib.ommolketab.ir
http//lib.ommolketab.ir

7

I: Dreamweaver CS5.5

Using HTML5 Now

One of the fundamental principles underlying HTML5 is
that it is backwards compatible. With only a small number
of exceptions—such as tags and frames—valid code
written according to the HTML 4.01 or XHTML 1.0 speci-
fications is also valid HTML5. Simply replace your existing
DOCTYPE declaration with the shorter HTML5 one:

<!DOCTYPE HTML>

That’s all there is to it! One of the reasons this DOCTYPE was
chosen is that it’s the shortest string that reliably prevents
browsers from rendering pages in quirks mode.

Of course, HTML5 introduces many new tags and attri-
butes, but there’s no obligation to use them unless you
need to—just as you probably never used every tag and
attribute in HTML 4.01. You also need to be aware of the
capabilities of the browsers your target audience is likely to
use. This is a constantly changing scenario, so it’s impos-
sible to lay down hard-and-fast rules in a book. In addition
to your own testing, a website like http://caniuse.com is
more likely to provide up-to-date information on what you
can use and what’s best to avoid.

Much of the discussion about HTML5 has focused on the
new semantic elements, such as <section>, <header>, <footer>,
and <nav>. The idea behind the introduction of these tags
is to give page markup greater meaning. Up to now, the
only way of grouping related elements on a page has been
with <div> tags. On its own, a <div> has no meaning, so
it’s common to indicate its role through an ID or class.
Rather than using <div id=”nav”>, it’s more logical (and
less code) to use <nav>—as long as your target browser sup-
ports the new tag.

Figure 1.1  shows the level of support for HTML5 semantic
elements as reported by caniuse.com in April 2011. Light
green shows full support; darker green shows partial sup-
port; and pink shows no support. Semantic means “related to

meaning in language or logic.” It’s
derived from the Greek word for
“significant.”

Dreamweaver CS5.5 uses uppercase
for the DOCTYPE declaration, but
it’s equally valid to use lowercase
or even a combination of uppercase
and lowercase. According to the
HTML5 specification, the DOCTYPE
is case-insensitive.

Quirks Mode

According to the CSS specification, the width and
height of an element refer only to its content.
Padding and borders are added outside. In the
early days of CSS, IE misinterpreted this rule, but
other browsers got it right. Microsoft eventually
acknowledged the error of its ways, and IE 6 applied
the rules correctly.

To prevent existing sites from breaking, browsers
used the DOCTYPE to switch between standards
and quirks modes. In standards mode, the browser
renders width and height according to the speci-
fication. In quirks mode, it emulates IE’s original,
incorrect behavior. The only browser known to slip
into quirks mode with the HTML5 DOCTYPE is
Netscape 6, which has an estimated market share of
less than 1 percent.

http://caniuse.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

8

Chapter 1	 Dreamweaver Goes Mobile

Figure 1.1  Support for HTML5 elements depends on the browser version.

If you’re in the fortunate position of being able to target
only the most recent browsers, you can forge ahead imme-
diately with the new semantic tags. However, most design-
ers need to cater to IE 6–8, which still represent a significant
proportion of the browser market and are likely to do so
for some time.

Supporting HTML5 Semantic Tags

Dealing with browsers listed in Figure 1.1 that offer only
partial support for HTML5 semantic tags is easy. All that’s
needed is to add the following rule to your style sheet:

article, aside, hgroup, header, footer, figure,

figcaption, nav, section {

 display: block;

}

You can apply other styles to these elements in exactly the
same way as you would to paragraphs or other HTML ele-
ments. For example, the following rule applies the same
font family and size to both <p> and <article> elements:

article, p {

 font-family: Arial, Helvetica, sans-serif;

 font-size: 14px;

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

9

I: Dreamweaver CS5.5

Unfortunately, IE 8 and earlier require an extra jolt of
encouragement to recognize the new HTML5 tags. You
need to use JavaScript to create a dummy element for each
type of semantic tag you want to use. For example, if you
want to use the <header>, <footer>, and <nav> tags, you
need to add the following in the <head> of each page:

<script>

 document.createElement(‘header’);

 document.createElement(‘footer’);

 document.createElement(‘nav’);

</script>

Alternatively, you can load a tiny script from the Google
content distribution network (CDN) by adding the follow-
ing just before the closing </head> tag:

<!--[if lt IE 9]>

<script src=”http://html5shiv.googlecode.com/svn/

Ê trunk/html5.js"></script>

<![endif]-->

This is a 2 KB file that contains a little bit of JavaScript
wizardry devised by Remy Sharp that forces earlier versions
of IE to recognize the new HTML5 tags and apply CSS to
them. It creates dummy elements for all semantic tags,
saving you the bother of using createElement() for each
one. Although the file is small enough to host on your own
site, the advantage of using Google’s CDN is that the file
might already be in the user’s browser cache after visiting
other sites, so it doesn’t need to be downloaded again.

The predefined HTML5 CSS layouts in Dreamweaver
CS5.5 (File > New > Blank Document) use Remy Sharp’s
script in combination with a style rule to display the seman-
tic tags as block-level elements, ensuring almost universal
support for them.

Therein lies the problem: It’s not 100 percent foolproof.
If JavaScript is disabled in the browser, IE leaves the
HTML5 tags completely unstyled. This wouldn’t be such
a problem if the whole page was unstyled, but you end up
with a horrendous mix of styled and unstyled elements.

In HTML5, you no longer need to add
type=”text/javascript”
in the opening <script> tag.
JavaScript is the default.

Remy Sharp and Bruce Lawson are
authors of Introducing HTML5 (New
Riders, 2010), a practical guide to
using HTML5 in websites today.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

10

Chapter 1	 Dreamweaver Goes Mobile

In HTML5 Now (New Riders, 2010), Tantek Çelik advocates
a belt and suspenders (braces, if you’re British) approach.
He recommends wrapping HTML5 semantic tags in a
<div> and assigning it a class named after the tag like this:

<div class=”header”>

 <header>

 <!-- header content goes here -->

 </header>

</div>

This is undoubtedly the safest way to implement HTML5
semantic tags in a website, but it duplicates markup need-
lessly. Although IE 9 and other modern browsers support
the HTML5 tags, assistive technology for the disabled hasn’t
caught up yet. Websites tend to need to be redesigned on
a regular basis, so there’s a strong argument in favor of
waiting for broader support for semantic tags.

HTML and CSS as Living Standards

Ian Hickson is no stranger to controversy. Barely a day
had passed after the W3C launched its proposed logo for
HTML5 (Figure 1.2) in January 2011, when he declared
that he was dropping the number 5 in favor of plain HTML.
This threw many web designers into total confusion, but
the decision made a lot of sense. However, to understand
why, you need to know a little history.

A breakaway group pulls HTML back from the brink

In the late 1990s, the W3C decided that HTML should
no longer be developed, and that the future of the web
rested with XML (Extensible Markup Language). As the
first step in the transition, HTML 4.01 was reformulated
according to the stricter rules of XML and released as
XHTML 1.0. Work then began on the XHTML 2.0 specifi-
cation. The idea was to start from a clean slate, devising a
“perfect” markup language without worrying about back-
wards compatibility.

Tantek Çelik is a respected web
standards advocate and principal
editor of many CSS specifications. He
led the team that developed IE 5 for
Macintosh. Although the browser
has now been discontinued, it was
widely regarded as having far supe-
rior CSS support than its Windows
equivalent (IE 6).

You don’t need to wait for semantic
tags to be supported before you can
start using other aspects of HTML5.

Figure 1.2  The HTML5 logo was
officially adopted by the W3C in
April 2011.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

11

I: Dreamweaver CS5.5

Eventually, this led to the establishment in 2004 of a
breakaway group called the Web Hypertext Application
Technology Working Group (WHATWG), composed of
individuals from Apple, the Mozilla Foundation (which
creates the Firefox browser), and Opera Software.
Disillusioned by the prospect of XHTML 2.0 breaking
billions of existing web pages, they began work on revising
the HTML standard to add new features without breaking
existing pages. Two years later, the W3C acknowledged
the need to develop HTML incrementally and revived the
HTML Working Group, which also included Microsoft.
Work on XHTML 2.0 was finally abandoned in 2009.

The HTML5 specification is unusual in that it has been
developed simultaneously by both the W3C and the
WHATWG, with Ian Hickson as the editor of both versions.
His decision to drop the number from HTML5 is intended
to reflect the fact that the web is constantly evolving. In
fact, the WHATWG’s online version at http://whatwg.org/
html is now officially called a “living standard” (Figure 1.3).

Meanwhile, the version of the W3C website at http://
dev.w3.org/html5/spec/Overview.html still uses the num-
ber (Figure 1.4). Like the WHATWG version, the editor’s
draft is updated on an almost daily basis. But the W3C
version makes it clear that some features in the WHATWG
version have been omitted because “they are considered
part of future revisions of HTML, not HTML5.” In other
words, the W3C version is a snapshot of HTML at a particu-
lar stage of development. Any new features will be part of a
different specification.

Figure 1.3  The WHATWG version of
the HTML specification is a constantly
evolving “living standard.”

For a humorous, musical interpreta-
tion of what a “living standard”
means, visit http://www.brucelaw-
son.co.uk/2011/living-standard.

http://www.brucelawson.co.uk/2011/living-standard
http://www.brucelawson.co.uk/2011/living-standard
http://whatwg.org/html
http://whatwg.org/html
http://dev.w3.org/html5/spec/Overview.html
http://dev.w3.org/html5/spec/Overview.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

12

Chapter 1	 Dreamweaver Goes Mobile

Innovation from outside formal standards

You might be asking if any of this matters. The decision to
call the WHATWG version a living standard simply reflects
the reality that web designers have been working with for
years. Formal web standards play a useful role as a common
framework; but some of the most useful developments
come from innovation outside the W3C specifications.

The <canvas> element, which allows you to draw dynamic
shapes and images onscreen, was originally a nonstandard
element introduced by Apple in its Safari browser. Firefox
and Opera liked what they saw and adopted it, leading to
its inclusion in HTML5. Similarly, the innerHTML property
and XMLHttpRequest object were IE proprietary innova-
tions, but they proved so useful that all other browsers
decided to support them. The innerHTML property has been
formally adopted as part of HTML5, and XMLHttpRequest
has a W3C specification all its own (www.w3.org/TR/
XMLHttpRequest).

Early adopters drive web standards

Until all the hype about HTML5, people rarely talked
about using a particular version of HTML, XHTML, or
CSS. It didn’t matter whether position: fixed was part
of CSS1, CSS2, or CSS2.1. All everyone cared about was
which browsers supported it and what happened in browsers
that didn’t.

Figure 1.4  The W3C version of the
specification is a snapshot of HTML at
a particular stage of development.

Rebels that Became Standards

The innerHTML property is a convenient
JavaScript shortcut that allows you to read or write
the content of an HTML element on the fly. It’s much
easier to use than the cumbersome node manipula-
tion methods laid down in the W3C Document
Object Model (DOM).

The XMLHttpRequest object enables the
browser to communicate with the web server in the
background, for example, to query a database. When
it receives the server’s response, the data can be
used to update part of the web page without need-
ing to reload (Ajax). Although IE’s method of creating
the object was proprietary, the agreed standard
works cross-browser.

www.w3.org/TR/XMLHttpRequest
www.w3.org/TR/XMLHttpRequest
http://lib.ommolketab.ir
http//lib.ommolketab.ir

13

I: Dreamweaver CS5.5

The CSS2.1 specification still hadn’t reached formal
approval by the beginning of 2011, but that hasn’t stopped
designers from using those parts of it that have reliable
cross-browser support. The same should be true for both
HTML5 and CSS3. Browser support will come in stages.
Fortunately, you can use many features to enhance the
user experience in modern browsers without causing prob-
lems in earlier ones. For example, HTML5 defines new
input type attributes, such as date and number, for forms.
Browsers that don’t recognize these values simply display a
standard text input field. By using the new type attributes
now, your forms will automatically display the specialized
input fields as soon as browsers support them.

Using vendor-specific prefixes for CSS

You can also use many CSS3 properties with vendor-specific
prefixes that ensure they won’t affect other browsers if
their implementation is buggy. To create rounded corners
with the border-radius property, you need to use three
style declarations like this:

-moz-border-radius: 8px;

-webkit-border-radius: 8px;

border-radius: 8px;

The -moz- and -webkit- prefixes indicate properties that
will be used only by Mozilla (Firefox) or WebKit (Safari and
Google Chrome) browsers. By placing the version without
a prefix last, the normal rules of the cascade ensure that
browsers will implement the standard property as soon as
the bugs are ironed out. This involves writing more code,
but is far better than resorting to hacks, which were the
bane of every web designer’s life until quite recently.

Browsers that don’t recognize the vendor-specific prefixes
or standard CSS3 properties simply ignore them. So, you
can use them without worrying.

Doesn’t HTML5 Encourage Poor Markup?

Web standards enthusiasts recoiled in horror when they
realized that HTML5 doesn’t insist on enclosing the
value of attributes in quotes or on using closing tags for

The small amount of extra work
needed to add the vendor-specific
prefixes to create rounded corners
and drop shadows with CSS3 is more
than made up for by the time saved
in not having to create the same ef-
fects with graphics. Your pages load
more quickly, too, because there are
no images for the browser to fetch.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

14

Chapter 1	 Dreamweaver Goes Mobile

paragraphs and list items. This seemed like a massive step
backwards from the strict rules imposed by XHTML 1.0.
However, it has been done for a very practical reason: to
avoid breaking the web. Countless millions of existing
web pages use poor markup, yet browsers manage to dis-
play them.

The looser rules adopted by HTML5 are not intended as a
signal to adopt bad practices. Clean, well-formed markup is
easy to maintain and is likely to be handled more efficiently
by browsers. Just because HTML5 allows you to omit the
closing </p> tag of a paragraph doesn’t mean you should.

When you select an HTML5 DOCTYPE, Dreamweaver
CS5.5 encloses all attribute values in quotes and always
uses closing tags. Converting XHTML pages to HTML5
in Dreamweaver CS5.5 is simple. Just choose File > Convert
> HTML5.

Using HTML5 and CSS3 with Dreamweaver CS5.5

Adobe took the initial steps to support HTML5 and CSS3
with the release of the 11.0.3 updater for Dreamweaver
CS5 in August 2010. The updater added code hints for
HTML5 tags and attributes, as well as widely supported
CSS3 properties. The other main feature was the introduc-
tion of the Multiscreen Preview panel, which made it pos-
sible to visualize the effect of media queries in screens of
three different resolutions.

Dreamweaver CS5.5 builds on those features by improving
the method of applying CSS3 properties, such as border-
radius, box-shadow, and text-shadow, and streamlining the
way it handles media queries. In addition, it has integrated
support for the jQuery Mobile and PhoneGap frameworks
to speed up the development of dedicated mobile websites
and the deployment of native applications on Android or
iOS. Code hints for jQuery have also been added.

These features are covered in detail in later chapters, but
the next few pages offer a brief description of each one.

Goodbye to XHTML

Web standards advocates embraced XHTML with
enthusiasm, attracted by its insistence on strict ad-
herence to rules. However, the fatal flaw in XHTML is
that most web servers don’t serve it with the correct
MIME type (application/xhtml+xml), and if
they do, the smallest error, such as a missing closing
tag or quotation mark, results in the page failing
to display.

Saying goodbye to XHTML doesn’t mean saying
goodbye to the stricter coding standards it encour-
aged. You can continue to use all the rules of XHTML
in HTML5, and your pages will validate. However, if
you choose an HTML5 DOCTYPE in Dreamweaver,
you must bid farewell to unnecessary markup,
such as a forward slash before the closing angle
bracket of an tag. There is no way to force
Dreamweaver to use XHTML syntax with an HTML5
DOCTYPE. If you have doubts about the wisdom of
following the new standard, take a look at http://
wiki.whatwg.org/wiki/FAQ. The WHATWG gives
detailed explanations of its decisions and makes it
clear that it doesn’t legitimize tag soup.

http://wiki.whatwg.org/wiki/FAQ
http://wiki.whatwg.org/wiki/FAQ
http://lib.ommolketab.ir
http//lib.ommolketab.ir

15

I: Dreamweaver CS5.5

Authoring HTML5

Dreamweaver CS5.5 has full support for all the new tags
and attributes in HTML5. But if you’re expecting to add
semantic elements, such as <header>, <nav>, and <footer>,
through the Insert panel/bar, you’ll be disappointed.
To add a semantic element to a page, you need to type it
manually in Code view. Alternatively, highlight an existing
element in Design view, right-click, and choose Wrap Tag
from the context menu. This brings up code hints for all
tags, including those added in HTML5 (Figure 1.5).

The Property inspector treats the new HTML5 tags as text.
This allows you to assign an ID or class to an element, but
it doesn’t give you access to any of the new HTML5 attri-
butes. Instead, you need to edit HTML5 tags manually in
Code view or use the Tag Inspector panel (Window > Tag
Inspector, or F9/Option+Shift+F9).

The Tag Inspector’s role is very similar to that of the
Property inspector. The difference is that the Tag Inspector
provides access to every attribute that can be applied to the
selected element, whereas the Property inspector concen-
trates on those most widely used. The Tag Inspector panel
also plays host to Dreamweaver’s JavaScript behaviors, so
you need to make sure the Attributes button is selected at
the top left (Figure 1.6). The two icons immediately below
toggle the display between attributes sorted by category
and an alphabetical list. Figure 1.6 shows the options avail-
able for an <input> tag. By selecting the type attribute, you
can convert a text input field to one of the many new form
fields. The Tag Inspector also lets you set other new attri-
butes for form elements, such as min, max, placeholder,
and required.

CSS3 Support Takes Off

Unlike previous versions, CSS3 is not a single specification,
but has been divided into modules to make it easier to roll
them out as soon as they’re ready. Dreamweaver is follow-
ing a similar rollout policy, adding support for those parts
of CSS3 that have already been implemented by the most
recent versions of browsers, as well as those expected to
become available in the not-too-distant future.

Figure 1.5  Wrapping an existing element in a
<header> tag.

Figure 1.6  The Tag Inspector provides complete
access to HTML5 attributes.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

16

Chapter 1	 Dreamweaver Goes Mobile

Creating rounded corners and drop shadows

The border-radius, box-shadow, and text-shadow proper-
ties are among the first CSS3 properties with widespread
support in modern browsers, answering designers’ prayers
for a way to create rounded corners and drop shadows
without the need for images. Dreamweaver CS5.5 makes
it straightforward to apply and adjust these properties
through the CSS Styles panel and Live view.

To apply one of the properties, use the following steps:

1.		 Click the Live View button.

2.		 In the CSS Styles panel, select the rule affecting the
element you want to style, or create a new style rule.

3.		 In the Properties pane, click Add Property and select
the property from the list that appears. Alternatively,
choose the property in Category view.

4.		 Click the icon that consists of a plus sign and a triangle
 next to the property.

5.		 Fill in the values in the subpanel that appears (Figure 1.7).
Live view automatically refreshes each time you make a
change, allowing you to adjust the effect visually rather
than relying on the numerical values.

Figure 1.7  Applying rounded corners visually in the CSS Styles panel and
Live view.

Technically speaking, text-shadow
was originally part of the CSS2
specification. Lack of browser sup-
port resulted in it being removed
from CSS2.1. Ironically, once it had
been dropped, browsers began to
support it.

Naming Confusion

If you’re new to Dreamweaver, you’re likely to be
confused by two aspects of the user interface (UI)
with almost identical names. The Property inspector
is the large panel located beneath the Document
window in the default Designer workspace layout.
The Properties pane is the bottom section of the
CSS Styles panel. What’s doubly confusing is that
the tab at the top left of the Property inspector is
labeled Properties. So, it’s not unreasonable to think
it should be called the Properties panel, but it has
always been known as the Property inspector, and
that’s its official name.

The main role of the Property inspector is to provide
quick access to HTML attributes. It’s context-sensitive,
and its contents depend on what’s currently select-
ed in the Document window. On the other hand, the
Properties pane of the CSS Styles panel displays the
CSS properties defined in the selected style rule.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

17

I: Dreamweaver CS5.5

Using embedded fonts

For years, web designers have been frustrated by the nar-
row range of “web safe” fonts at their disposal, because
browsers use the fonts installed on the visitor’s computer.
CSS2 sought to solve this problem through @font-face, but
browser support was lacking, so it was dropped. However,
@font-face now has widespread browser support and is
part of CSS3.

Unfortunately, the situation is complicated by licensing
issues and the font formats supported by different browsers.
Chapter 2 discusses these problems and potential solutions.
The good news is that Dreamweaver CS5.5 supports
@font-face in Live view (Figure 1.8), making it easier to
visualize how your page will look in a browser.

Figure 1.8  Live view displays embedded fonts as they will appear in a browser.

Expanded support for CSS3 selectors

Previous versions of Dreamweaver had support for only
a limited range of CSS selectors. A notable omission was
support for attribute selectors, such as input[type=submit]
(to select submit buttons). These have been part of CSS
ever since 1998, but have been of limited use because of
IE 6’s lack of support. However, IE 7 caught up with all
other browsers by adding support not only for CSS2.1
attribute selectors, but also three new ones from CSS3.
Dreamweaver CS5.5 now supports all attribute selectors,
which are listed in Table 1.1.

Live view currently supports the
W3C border-radius and
text-shadow properties, but
not box-shadow. To apply a drop
shadow on an element, you must
choose -webkit-box-shadow
from the Categories view of the
Properties pane.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

18

Chapter 1	 Dreamweaver Goes Mobile

Table 1.1  CSS Attribute Selectors

Selector	 Description	E xample

e[attr]	 Matches an e element with the attr attribute regardless 	 img[title]

	 of the attribute’s value.	

e[attr=val]	 Matches an e element with the attr attribute whose	 input[type=submit]

	 value is exactly equal to val.

e[attr~=val]	 Matches an e element with the attr attribute whose	 p[class~=aside]

	 value is a space-separated list of words; one of
	 which is exactly val.

e[attr|=val]	 Matches an e element with the attr attribute whose	 span[lang|=fr]

	 value is exactly val or val followed by a hyphen.
	 Used mainly to match language codes and subcodes.

e[attr^=val]	 Matches an e element with the attr attribute whose	 a[href^=http]

	 value begins with val.

e[attr$=val]	 Matches an e element with the attr attribute whose	 a[href$=.pdf]

	 value ends with val.

e[attr*=val]	 Matches an e element with the attr attribute whose	 div[class*=wide]

	 value contains the substring val.

CSS3 gives designers a much finer degree of control over the
selection of elements. With the exception of IE, browsers
have been quick to adopt the new selectors, many of which
will be familiar to you if you use jQuery. IE 9 has done a lot
of catching up, so Dreamweaver CS5.5 now supports all the
structural pseudo-classes listed in Table 1.2.

The :nth-child() and related pseudo-classes all take an
argument that indicates the position of the element you
want to select. The possible values are the following:

	.	 The keywords odd or even. To select every even-numbered
matching element, use :nth-child(even).

	.	 A single number counting from 1. Using :nth-child(5)
picks the fifth matching element.

	.	 The formula an+b or an-b. The letters a and b represent
numbers, and n is the literal character. This divides the
child elements into groups, each composed of the
number specified by a; and within that group, it selects
the element specified by b. For example, tr:nth-child
(5n+2) selects the second, seventh, twelfth, and so on

Peter-Paul Koch has published a use-
ful set of CSS compatibility charts at
www.quirksmode.org/css/contents.
html. According to his tests, all selec-
tors in Table 1.2 are supported by IE
9, Firefox 3.5, Safari 4, Chrome 4,
and later versions. Opera 10 also
supports them but has bugs with
:nth-child() and :nth-of-
type(). According to my own tests,
these bugs were fixed in Opera 11.

www.quirksmode.org/css/contents.html
www.quirksmode.org/css/contents.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

19

I: Dreamweaver CS5.5

rows of a table. If b is negative, it counts back from the
end of the group. For example, tr:nth-child(5n-2)
selects the third, eighth, thirteenth, and so on rows.

Table 1.2  CSS3 Structural Pseudo-classes

Selector	 Description

:root	 Selects the root of the document. In HTML, this is always the <html> element.

:nth-child()	� Selects elements based on their position in relation to their siblings within the
document tree. See main text for a description of how the position is calculated.

:nth-last-child()	 Same as :nth-child() but counting backwards.

:nth-of-type()	� Selects elements of the same type in relation to their siblings within the
document tree. For example, img:nth-of-type(odd) selects alternate images
that are children of the same parent element.

:nth-last-of-type()	 Same as :nth-of-type() but counting backwards.

:first-child	 Selects an element that is the first child of some other element.

:last-child	 Selects an element that is the last child of some other element.

:first-of-type	� Selects an element that is the first of its type in the list of children of its
parent element.

:last-of-type	� Selects an element that is the last of its type in the list of children of its parent
element.

:only-child	 Selects an element that is the only child of its parent element.

:only-of-type	� Selects an element that has no siblings of the same type. For example, img:only-
of-type selects an image only if its parent element contains no other images.

:empty	� Selects elements that contain no other elements or text. For example, div:empty
matches <div></div> but not <div>Hi!</div>.

Lack of support in IE 8 and earlier reduces the usefulness
of the selectors listed in Table 1.2 unless you are targeting
only the most recent browsers. However, it’s useful to know
they’re supported by Dreamweaver CS5.5.

A rather obscure change is the addition of support for the
CSS3 syntax for pseudo-elements. In CSS2.1, these were
preceded by a single colon. In CSS3, they’re preceded by a
double colon, as shown in Table 1.3.

In her book Stunning CSS3
(New Riders, 2010), Zoe Mickley
Gillenwater suggests a simple way
of dealing with the formula for
nth-child(). Treat it as a × n
± b. Start n at 0 and increment it
by 1 each time. So, 5 × 0 + 2 = 2,
5 × 1 + 2 = 7, and so on.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

20

Chapter 1	 Dreamweaver Goes Mobile

Table 1.3  CSS Pseudo-elements

CSS2.1	C SS3	M eaning

:first-line	 ::first-line	A pplies styles to the first line of an element.

:first-letter	 ::first-letter	A pplies styles to the first letter of an element.

:before	 ::before	A dds generated content before the element.

:after	 ::after	A dds generated content after the element.

Browser support for the double-colon syntax is limited.
Also, the requirement for backwards compatibility means
that the single-colon versions should continue indefinitely.

Support for other CSS3 properties

To get an idea of which new properties are supported
by Dreamweaver CS5.5, click the leftmost button at the
bottom of the Properties pane in the CSS Styles panel to
switch to Category view (Figure 1.9).

Eight new categories have been added, namely:

	.	 User Interface. The only property currently widely sup-
ported is box-sizing, which emulates the old quirks
mode box model when its value is set to border-box.
This forces the browser to include padding and borders
in the width and height of an element rather than add-
ing them outside. IE 8 and Opera support box-sizing
without a vendor prefix. Use -moz-box-sizing for
Firefox and -webkit-box-sizing for Safari and Chrome.

	.	 Multi-column Layout. Properties that allow you to display
text in newspaper-style columns. These properties
are currently supported only by Firefox, Safari, and
Chrome using vendor-specific prefixes.

	.	 Line Layout. Properties designed to give greater control
over the alignment of text and other elements. The
W3C ranks them as “low priority.”

	.	 Animations, Transforms, Transitions. Properties that rotate
and animate objects in 2D and 3D. These properties
are increasingly supported by recent browsers.

	.	 Mozilla. Vendor-specific (-moz) properties used by
Firefox.

The ::before and ::after
pseudo-elements and their single-
colon equivalents work only in
Live view.

Figure 1.9  Seven new categories have been add-
ed to the Properties pane of the CSS Styles panel.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

21

I: Dreamweaver CS5.5

	.	 Microsoft. Vendor-specific (-ms) properties used by IE.

	.	 Webkit. Vendor-specific (-webkit) properties used by
Safari and Chrome.

	.	 Opera. Vendor-specific (-o) properties used by Opera.

Support for CSS3 color values and opacity

The CSS3 Color module specifies several new ways to handle
colors in addition to hexadecimal and RGB (red, green,
blue) values. It allows you to use HSL (hue, saturation,
lightness) and to set the color’s opacity (or transparency,
depending on your point of view).

There are two basic ways of controlling opacity:

	.	 Specify the color using either rgba() or hsla().

	.	 Set the opacity property on the element.

The degree of opacity is always expressed as a number
between 0 (transparent) and 1 (opaque). With rgba() and
hsla(), it’s the fourth value in a comma-separated list of
RGB or HSL values. The opacity property takes it as its
sole value.

The color picker in previous versions of Dreamweaver
supported only hexadecimal notation, but it now supports
all formats. To switch to a different color format, click the
right-facing arrow at the top right of the color picker, and
choose the Color Format submenu (Figure 1.10) before
using the eyedropper tool to select the color.

Figure 1.10  Dreamweaver CS5.5 supports all CSS3 color formats.

Live view is powered by the WebKit
engine, so the only vendor-specific
properties it renders are those pre-
fixed with -webkit.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

22

Chapter 1	 Dreamweaver Goes Mobile

When you choose rgba() or hsla(), Dreamweaver auto-
matically sets the fourth value to 1 (opaque). You need to
edit the value manually in the CSS Styles panel or in the
style sheet.

The new color formats and the opacity property are sup-
ported by most modern browsers, including IE 9. They
don’t work in IE 8 or earlier.

You set the opacity property like any other CSS property
in the CSS Styles panel or in a style sheet.

Designing for Multiple Screen Resolutions

The Multiscreen Preview panel allows you to see what
your pages look like at three different screen resolutions
(Figure 1.12). Links within the panel are navigable. If you
click a link to another page, all three subpanels are updat-
ed simultaneously. You can also configure the subpanels to
display other viewport sizes.

The panel was added to Dreamweaver CS5 by the 11.0.3
updater, but its functionality has been improved by making
it easier to define CSS media queries for different devices
and attach them automatically to pages. Chapter 3 describes
this feature and the use of media queries in detail.

The other major change is the ability to set the size of the
Document window viewport to match different screen reso-
lutions. To switch sizes, click the down arrow to the right of
the Multiscreen button in the Document toolbar at the top
of the Document window (Figure 1.13).

The viewport sizes at the top of the list are predefined, but
you can edit the available range by choosing Edit Sizes at
the bottom. This opens the Dreamweaver Preferences pan-
el where you can edit the width, height, and description of
the preset sizes, as well as add new definitions and delete
existing ones.

The values displayed in the lower half of the list depend on
the media queries applied to the current page.

Opacity in CSS

The opacity property affects not only the ele-
ment it’s applied to, but also all of the element’s
children. To demonstrate the difference between
opacity and rgba(), opacity.html in the ch01
folder contains two <div> elements styled using
the following rules:

#opacity_test {
 background-color: #F90;
 opacity: 0.5;
}
#rgba_test {
 background-color:
 Ê rgba(255, 153, 0, 0.5);
}

As Figure 1.11 shows, the 50% opacity value is ap-
plied in the top <div> not only to the background
color, but also to the text inside. In the bottom
<div>, the opacity is applied only to the back-
ground color without affecting the text.

 Dreamweaver CS5.5 supports rgba(), hsla(),
and opacity only in Live view. Design view
renders all colors fully opaque.

Figure 1.11  The opacity property affects
the entire element.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

23

I: Dreamweaver CS5.5

Figure 1.12  The Multiscreen Preview panel shows the same page
at three different screen resolutions.

Figure 1.13  You can change the size of the Document window
viewport to match target devices.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

24

Chapter 1	 Dreamweaver Goes Mobile

Building Dedicated Mobile Sites with jQuery Mobile

Using media queries to change the look of a website in dif-
ferent devices gives you great flexibility, but it’s not always
the optimal solution. Very long pages can be difficult to
read on a small screen. Also, image-heavy sites are slow to
download on a mobile device. In many cases, it’s best to
create a custom-built site for mobile users.

The jQuery Mobile framework is ideal for doing this, and
it has been developed with the active participation of
Dreamweaver engineers. It’s designed to work on all main-
stream mobile operating systems and browsers, including
all versions of Android and iOS, BlackBerry OS version 5
and later, Windows Phone 7, and Symbian S60 version 5
(used mainly by Nokia, Sony Ericsson, and DoCoMo).

Dreamweaver CS5.5 speeds up the development of dedi-
cated mobile sites by integrating the jQuery Mobile
framework and widgets.

To create a skeleton mobile site with jQuery Mobile:

1.		 Choose File > New to open the New Document
dialog box.

2.		 Choose Page from Sample on the left of the dialog box.

3.		 Select Mobile Starters from the Sample Folder list. This
offers a choice of loading the jQuery Mobile library
from a CDN, using local versions of the files, or using
jQuery Mobile with PhoneGap.

4.		 Choose one of the options and click Create to insert
the basic structure of a jQuery Mobile site/application.

A single page containing four <div> elements is dis-
played as independent pages when viewed in a browser
or mobile device. Each “page” consists of nested <div>
elements with placeholder text (Figure 1.14).

Visit http://jquerymobile.com/gbs
for the most recent information on
the operating systems and browsers
supported by jQuery Mobile.

Figure 1.14  A Mobile Starter page contains
placeholders for a basic four-page mobile site
or application.

http://jquerymobile.com/gbs
http://lib.ommolketab.ir
http//lib.ommolketab.ir

25

I: Dreamweaver CS5.5

The Mobile Starter page automatically links to the jQuery
Mobile JavaScript files and basic style sheet; each element
is marked up with the code to build the individual pages,
attach the touch-responsive JavaScript events, and style the
content. In just a few minutes, you can convert the starter
page to look like Figure 1.15 on a smartphone.

The jQuery Mobile framework also features widgets to
add extra pages and page elements, such as layout grids,
collapsible panels, and form fields. You can insert them
from the Insert panel (Figure 1.16) or by choosing Insert >
jQuery Mobile.

Chapters 5 and 6 describe in detail how to use these fea-
tures in Dreamweaver CS5.5.

Code Hints for jQuery Core

As well as integrating jQuery Mobile into Dreamweaver,
Adobe has added code hints for jQuery Core. The code
hints are built into the program, so they’re also available
in external JavaScript files. As soon as you type a single or
double quotation mark after $(to create a jQuery selector,
Dreamweaver inserts the closing quote and displays a list
of HTML tags to choose from. If you type a period, you’re
presented with a list of classes defined in your style sheet; if
you type a hash or pound sign (#), the list displays all
declared IDs (Figure 1.17).

Figure 1.17  Code hints speed up the creation of jQuery
selectors by presenting a list of available IDs.

Figure 1.15  Just replace the place-
holder text for a basic mobile website.

Figure 1.16  A new category in the
Insert panel is dedicated to jQuery
Mobile widgets.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

26

Chapter 1	 Dreamweaver Goes Mobile

When you type a period after the closing parenthesis,
Dreamweaver presents you with a list of jQuery methods,
complete with hints for the arguments they expect. The
code hints are smart enough to continue working even
if you insert a new line for readability when chaining
jQuery methods.

Packaging Native Apps for Android and iOS with PhoneGap

The explosive growth of the smartphone and tablet market
has been accompanied—or perhaps driven—by the phenom-
enal growth of applications specifically designed for them.
However, a major barrier to creating native apps for mobile
devices is the need to learn new languages and technologies.
To develop native apps for the iPhone, iPod touch, and
iPad, you need to use Objective-C. Android apps run on
Java (not to be confused with JavaScript).

Fortunately, the open source PhoneGap framework
(www.phonegap.com) allows web developers to build apps
using technologies they already know—or are at least famil-
iar with—HTML, CSS, and JavaScript. The framework con-
verts the web files into code that runs as a native app on
the mobile operating system of your choice. Dreamweaver
CS5.5 not only automates the installation of the Android
software development kit, but it also makes packaging apps
with PhoneGap and testing them simplicity itself: Just enter
a few details in a couple of dialog boxes, and you’re done.

You can compile and test Android apps (Figure 1.18)
in both Windows and Mac OS X. The Mac version of
Dreamweaver CS5.5 also uses PhoneGap to compile and
test apps for the iPhone (Figure 1.19) and iPad. This
feature is covered in detail in Chapter 7.

As a bonus, similar code hints
appear when using JavaScript
DOM methods, such as
getElementById() and
getElementsByClassName().

A surprising number of web design-
ers don’t understand that Java and
JavaScript are completely unrelated
languages. JavaScript was originally
called LiveScript, but the name was
changed by Netscape in what many
regard as a misguided marketing
ploy. Confusion has remained ever
since. But you probably didn’t need
me to tell you that.

The Windows version of
Dreamweaver CS5.5 does not
support packaging native apps
for iPhone, iPod touch, and iPad,
because it requires the iOS SDK
(software development kit), which
runs only on Mac OS X.

www.phonegap.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

27

I: Dreamweaver CS5.5

Developing for Multiple Devices

The rapid spread of mobile devices presents web designers
and developers with challenges and opportunities. The
main challenges lie in the different operating systems and
the bewildering range of screen resolutions. However,
we’re fortunate that this coincides with a period when
mainstream vendors are taking web standards seriously.
Unlike desktop computers, mobile devices tend to be
replaced relatively frequently—at least in industrialized
countries—where a mobile phone is typically replaced at
the end of a two-year contract. Although designs for desk-
tops still need to accommodate earlier versions of IE, you
can start using some aspects of HTML5 and CSS3 to pro-
vide an enhanced experience for other modern browsers
and mobile devices.

This chapter provided an overall view of Dreamweaver
CS5.5’s new features designed to speed up the development
process. The remaining chapters explore those features in
greater detail, beginning with enhancing an existing web-
site with HTML5 and CSS3.

Figure 1.18  Testing in the Android
simulator after packaging the app
with Dreamweaver’s integrated ver-
sion of PhoneGap.

Figure 1.19  Testing in the iPhone
simulator on Mac OS X.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

IISECTION II

Chapter 2 �Progressive Enhancement with
HTML5 and CSS3 31

Chapter 3 �Adapting Pages for Mobile with
Media Queries 71

Chapter 4 �Making Your Site Available Offline 117

HTML5 and CSS3

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

chapter

2
Progressive Enhancement

with HTML5 and CSS3

http://lib.ommolketab.ir
http//lib.ommolketab.ir

32

Chapter 2	 Progressive Enhancement with HTML5 and CSS3

When we treat them as if they were what they should
be, we improve them as far as they can be improved.

—Goethe

Progressive Enhancement with
HTML5 and CSS3

Back in the 1990s, it was common for the front page
of a website to inform visitors that it was “best viewed” in a
particular browser. Designers often gave up trying to rec-
oncile incompatible differences between Internet Explorer
(IE) and Netscape. If you weren’t using the recommended
browser, that was just your hard luck. When IE eventually
emerged as the victor in the browser wars, many design-
ers breathed a sigh of relief and designed exclusively for
IE. But if you weren’t using IE—and many weren’t—it was
still your hard luck. A more enlightened approach known
as graceful degradation emerged with the web standards
movement in the first decade of the new century. If a fea-
ture couldn’t be supported by a particular browser—usu-
ally Netscape 4—a fallback solution prevented the design
from breaking completely.

In more recent times, leading designers have turned this
idea on its head, arguing that you shouldn’t need to wait
for the majority of browsers to implement a feature before
using it. They advocate progressive enhancement—build-
ing a website that works satisfactorily in all current browsers
and then adding features to improve the experience for
visitors using more advanced browsers. Visitors using
earlier browsers get a satisfactory experience; when they
upgrade, they automatically see the improved features.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

33

II: HTML5 and CSS3

In this chapter, you’ll learn how to apply progressive
enhancement to a website for a fictitious hotel. In the next
chapter, I’ll show you how to adapt it for display in mobile
phones and tablets through the use of media queries.

Improving an Existing Site

The Tozai Hotel site has been designed using an XHTML
1.0 Strict DOCTYPE. The main pages look identical in all cur-
rent browsers. Figure 2.1 shows index.html in IE 6.

Figure 2.1  The basic design looks satisfactory in IE 6.

The files for the site are in the ch02/
begin folder (see the Introduction
for details of where to download
them).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

34

Chapter 2	 Progressive Enhancement with HTML5 and CSS3

There’s just one minor exception. The styles for the inquiry
form in reservations.html include the following rules:

select + label, input + label {

 padding-left: 10px;

}

input[type=submit] {

 margin-left: 135px;

}

The first rule uses the adjacent sibling selector to add 10 pixels
of padding to the left of <label> tags that immediately fol-
low a <select> or <input> element. The second rule uses
an attribute selector (see Table 1.1) to add a 135-pixel mar-
gin to the left of the submit button. The result is a neatly
aligned form in all modern browsers (Figure 2.2).

Figure 2.2  In modern browsers, the form elements are neatly aligned.

IE didn’t support adjacent sibling or attribute selectors
until IE 7. As a result, the form is not so neatly aligned in
IE 6 (Figure 2.3). Also, the word Guests appears in a differ-
ent color, because it’s the <legend> element of a <fieldset>
surrounding the input fields for adults and children. These
minor differences don’t affect the usability of the form and
can be ignored for a browser with a small and declining
market share.

Adjacent Sibling Selector

Sometimes it’s convenient to apply a style rule to
an element only if it immediately follows another
element at the same level of the document
hierarchy (a sibling). For example, you might want
to apply a different style to each first paragraph
that follows a heading. The adjacent sibling selector,
which consists of two selectors separated by a plus
sign (+), is designed precisely for this purpose.
The selector on the left of the plus sign identifies
the element that must precede the element that
matches the selector on the right. In other words,
h1 + p tells the browser to apply the rule only to
<p> elements that immediately follow an <h1>
heading. If any other element comes between them,
the rule doesn’t apply.

Using selectors to target elements based on their
relationship to their immediate siblings avoids
the need to pepper your code with classes. The
downside is that changes to the page structure
might destroy the relationship, resulting in the style
rule no longer being applied. The CSS3 Selectors
module refers to the adjacent sibling selector as the
adjacent sibling combinator, but it’s simply a change
of name. The syntax and functionality remain
unchanged.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

35

II: HTML5 and CSS3

Figure 2.3  IE 6 doesn’t recognize all the CSS styles, which results in a less
pleasing but still usable layout.

In this chapter, you’ll make the following enhancements to
the site:

	.	 Convert from XHTML 1.0 to HTML5

	.	 Add accessibility attributes to key elements

	.	 Use an embedded font for headings

	.	 Enhance the design with CSS rounded corners and
drop shadows

	.	 Add HTML5 form elements and attributes

	.	 Use jQuery to improve the date pickers

	.	 Validate the finished pages

Converting to HTML5

As mentioned in Chapter 1, all that’s needed to convert a
page to HTML5 is to replace the existing DOCTYPE declara-
tion with the case-insensitive new one:

<!DOCTYPE HTML>

Because the pages in the Tozai Hotel site were created with
an XHTML 1.0 Strict DOCTYPE, tags that don’t have a cor-
responding closing tag, such as and <link>, have a
forward slash before the closing angle bracket like this:

<link href=”styles/tozai.css” rel=”stylesheet”

Ê type="text/css" />

Determining how far to go in
supporting a particular browser is
a decision that you should make
only on a case-by-case basis. If your
website’s server statistics show that
IE 6 still has a significant market
share, you might need to take a
different approach. Even if you
make the radical decision to drop all
support for IE 6, you should ensure
that the site remains functional.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

36

Chapter 2	 Progressive Enhancement with HTML5 and CSS3

To ease the transition between XHTML 1.0 and HTML5,
the closing slash is permitted, but it’s no longer required.
It was added to XHTML solely to conform to the rules
of XML. Dreamweaver CS5.5 makes it easy to switch the
DOCTYPE and strip out unnecessary code by choosing File >
Convert > HTML5.

Another change you need to make when converting to
HTML5 concerns the use of bold text and italics. For
many years, it was considered best practice to use
instead of for bold text and instead of <i> for ital-
ics. The idea was to handle all presentational aspects of a
web page through CSS. The and <i> tags were consid-
ered presentational, whereas and were said
to be related to the document’s structure.

Although well intentioned, this practice frequently made
little sense and simply replaced and <i> with longer
equivalents. In addition, it resulted in screen readers for
the blind giving unnecessary emphasis to words styled in
bold or italics. HTML5 has redefined the meanings of
these tags to clarify their use, as summarized in Table 2.1.

Table 2.1  HTML5 Tags for Bold, Italics, and Emphasis

Tag	M eaning

	�A span of text stylistically offset from the surrounding
text in bold type without conveying extra importance,
for example, keywords in a document or product names
in a review.

<i>	�A span of text that needs to be offset from the sur-
rounding text in italics, such as a technical term, foreign
language expression, thought, or ship’s name.

	� Indicates strong importance, for example,
Warning!. The level of importance
can be increased by nesting tags like this:
Very severe warning!

.

	� Indicates that the word(s) should be emphasized if
spoken aloud. Like , the level of emphasis can
be increased by nesting tags.

Dreamweaver CS5.5 doesn’t offer
the option to create HTML5 pages
with XHTML-style markup. If you
need to create XML-compliant code,
build your pages using an XHTML
1.0 DOCTYPE, and replace it with
an HTML5 DOCTYPE just before
deploying them online.

Picking the Right Tag

HTML contains many underused tags and attributes.
Finding the right one for a specific situation isn’t
always easy, but it’s likely to make your pages more
meaningful. The first time a keyword is introduced
in a page, consider wrapping it in <dfn> tags,
which represent the defining instance of a term. You
can use CSS to display the tag in bold, and use
tags for subsequent references to the keyword.

For a foreign language expression, use the lang
attribute to indicate which language is being used,
for example:
<i lang=”fr”>Bonjour le monde!</i>

This not only preserves the typographic convention,
but also provides useful information to search
engines and screen readers.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

37

II: HTML5 and CSS3

By default, Dreamweaver uses and for bold
and italic type. If you’re using an HTML5 DOCTYPE, you
should change this setting in the Preferences panel.

To convert a page to HTML5 and change how bold text
and italics are handled:

1.			 Open index.html in the Document window, and choose
File > Convert > HTML5. This changes the DOCTYPE
and strips out all closing slashes.

2.		 Open the Preferences panel by choosing Edit >
Preferences (Dreamweaver > Preferences on a Mac).

3.		 Select the General category from the list on the left
of the panel, and deselect the check box labeled Use
 and in place of and <i>.

4.		 Click OK to close the Preferences panel.

5.		 With index.html still in the Document window, switch
to Split view by clicking the Split button in the Document
toolbar or choosing View > Code and Design.

6.		 In Design view, double-click Tozai in the first paragraph
to select the whole word. In Code view, the highlighted
word is wrapped in tags. Tozai is a foreign word,
so it needs to be offset without giving it emphasis. The
 tags need to be replaced with <i> tags.

7.		 Make sure the Property inspector is in HTML mode
with the button selected, and click the button
to remove the italics and the tags.

8.		 Click the button again. This restores the italics, but
this time the word is wrapped in <i> tags (Figure 2.4).

Figure 2.4  The <i> tags offset the foreign word without giving it emphasis.

The best way to understand how
features work is to use them. Copy
the files from ch02/begin to a
new folder, and follow the steps in
each section.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

38

Chapter 2	 Progressive Enhancement with HTML5 and CSS3

9.		 With the word and its surrounding <i> tags still selected,
open the Tag Inspector panel, expand the Language
category, and click in the field next to the lang attri-
bute. Choose ja from the list of values to indicate the
language used is Japanese.

Alternatively, position the insertion point just before
the closing bracket of the opening <i> tag, and press
Enter/Return. Select lang from the code hints list, and
then select ja.

10.		 Repeat steps 6–9 with the other foreign words (sashimi
and sushi in the second paragraph).

11.		 Convert dining.html, garden.html, reservations.html,
and rooms.html to HTML5, and change the tags
to <i> tags in dining.html.

12.		 Choose File > Save All.

Using and tags

Resetting the Dreamweaver preferences to use and <i>
doesn’t prevent you from using and where
appropriate. Instead of using the and buttons in the
Property inspector in HTML mode, use the Text category
of the Insert panel, which has separate options for each tag
(Figure 2.5).

Alternatively, select the text in Design view, right-click, and
choose Wrap Tag from the context menu. Then type either
strong or em.

Improving Accessibility with ARIA Roles

Until IE 8 and earlier disappear from the scene, using
HTML5 semantic tags, such as <header> and <nav>, will
remain problematic unless you wrap them in <div> tags
(see “Supporting HTML5 Semantic Tags” in Chapter 1).
An alternative worth considering is to mark up your pages
with universally supported HTML elements, such as <div>
and , and to indicate their meaning by adding the
WAI-ARIA role attribute.

The role attribute has been adopted by HTML5, and
it’s understood by many screen readers. So, it provides a
useful transition until such time as the new semantic tags

See www.w3.org/International/
questions/qa-choosing-language-
tags for detailed advice on choosing
the correct value for the lang
attribute.

Figure 2.5  The and
tags can be inserted through the
Insert panel.

The and buttons in the
Property inspector can be used to
remove , , ,
and <i> tags that you don’t want
regardless of the Preferences setting.
However, make sure the
button is selected on the left of the
Property inspector. If the
button is selected instead, you’ll
be prompted to create a style rule.
An alternative way to remove
unwanted tags is to select the
element in the Tag selector at the
bottom of the Document window,
right-click, and choose Remove Tag.

www.w3.org/International/questions/qa-choosing-languagetags
www.w3.org/International/questions/qa-choosing-languagetags
www.w3.org/International/questions/qa-choosing-languagetags
http://lib.ommolketab.ir
http//lib.ommolketab.ir

39

II: HTML5 and CSS3

are fully supported. The attribute has a large number of
possible values (for a full list, see www.w3.org/TR/wai-aria/
roles#role_definitions). Table 2.2 lists the equivalent role
attributes for the main HTML5 semantic elements. Where
multiple values are shown, the primary one is listed first.

Table 2.2  WAI-ARIA Roles for HTML5 Semantic Elements

HTML5 Element	 WAI-ARIA Role

<article>	 article

<aside>	 note, complementary, search

<footer>	 contentinfo

<header>	 banner (see note)

<nav>	 navigation

<section>	 region, contentinfo, main, search

Unfortunately, code hints in Dreamweaver CS5.5 don’t
support the role attribute. You need to edit the code
manually. However, rather than accessing individual tags
to add ARIA roles, it’s more efficient to use Dreamweaver’s
Find and Replace dialog box.

1.		 Press Ctrl+F/Command+F or choose Edit > Find and
Replace to open the dialog box. It doesn’t matter
whether you have any documents open.

2.		 Select Folder from the “Find in” list, and click the
icon on the right of the text field to select the folder
that contains your working copies of the Tozai Hotel
site files.

3.		 Select Specific Tag from the Search list, and set the
field on the right to “div.”

4.		 If necessary, click the plus button to display the next
option, and set it to With Attribute. Set the values of
the three options to “id”, “=”, and “header” respectively.

5.		 If other search options are visible, click the minus button
to remove them from the dialog box.

Accessibility Standards

WAI-ARIA is the W3C’s Accessible Rich Internet
Applications specification (WAI stands for Web
Accessibility Initiative). Its purpose is to improve
the accessibility for disabled people by defining
the roles, states, and properties of user interface
elements. See www.w3.org/TR/wai-aria.

Many countries now make it a legal requirement
that websites must be accessible to people
with a wide range of disabilities, not just the
blind. Although some designers regard this as
unwarranted bureaucratic interference, most
accessibility measures are just common sense and
simple to implement, particularly if factored into
the design from the outset.

HTML5 allows you to use multiple
instances of the <header> tag on
a page. However, ARIA restricts the
use of banner to the main header
or logo. For section headers, set
the role attribute to heading
or omit it entirely. Heading tags,
such as <h1>, don’t need further
explanation. The tag name explicitly
defines the role its contents play in
the page structure.

www.w3.org/TR/wai-aria/roles#role_definitions
www.w3.org/TR/wai-aria/roles#role_definitions
www.w3.org/TR/wai-aria
http://lib.ommolketab.ir
http//lib.ommolketab.ir

40

Chapter 2	 Progressive Enhancement with HTML5 and CSS3

6.		 Set Action to Set Attribute.

7.		 Type role in the next field, and banner in the To field.

8.		 Check that the settings in the Find and Replace dialog
box look like Figure 2.6, and click Replace All.

Figure 2.6  Using Find and Replace is a quick way to add the role attribute to
multiple pages.

9.		 If the files aren’t currently open, Dreamweaver warns
you that the operation can’t be undone. Click Yes to
confirm you want to proceed.

10.		 Dreamweaver displays the results in the Search tab of
the Results panel (Figure 2.7). It should confirm that
five items were affected.

Figure 2.7  The Results panel displays the affected tags.

11.		 Click the right-facing green arrow at the top left of
the Results panel to reopen the Find and Replace
dialog box.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

41

II: HTML5 and CSS3

12.		 The main content in index.html is in a <div> with the
ID hero. In rooms.html, it’s in a <div> with the class
content-wide. In both pages, the main content stretch-
es the full width of the page.

In the other three pages, the main content is in a <div>
with the class content-medium. These pages also have a
sidebar, which is a <div> with the class aside.

Add the role attribute to these sections using the
settings in Table 2.3.

Table 2.3  Find and Replace Settings for ARIA Roles

Specific Tag	 With Attribute	 To

ul	 id = nav	 navigation

div	 id = hero	 main

div	 class = content-wide	 main

div	 class = content-medium	 main

div	 class = aside	 complementary

div	 id = footer	 contentinfo

13.		 After making the changes, close the Results panel by
right-clicking the gray area to the right of the tabs and
choosing Close Tab Group. Alternatively, collapse it by
pressing F7.

Embedding a Font with @font-face

Greater font choices in web pages have been a long time
coming. Believe it or not, but IE has supported embedded
fonts since the release of IE 4 in 1997, and @font‑face was
part of the original CSS2 proposals in 1998. But a com-
bination of technical and licensing problems prevented
widespread use of embedded fonts. Now they’re truly back
on the agenda.

The W3C has published a proposed new standard called
Web Open Font Format (WOFF). It has received the back-
ing of many font foundries and is supported in Firefox
3.6, IE 9, and Chrome 5. It’s not available in Safari 5 but is
expected to be supported in later releases.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

42

Chapter 2	 Progressive Enhancement with HTML5 and CSS3

WOFF is relatively new but has enjoyed a rapid rate of
adoption, leading to the prospect of a standard, unified
format for embedded fonts. That still leaves the problem of
earlier browsers. Prior to IE 9, IE used a proprietary format
called Embedded Open Type (EOT). Opera and Safari
currently support TrueType (TTF) and OpenType (OTF).

One solution is to use an online font library service, such
as Typekit (http://typekit.com). Instead of storing the font
files on your web server, they’re downloaded from the font
library’s content distribution network. The download script
detects the correct format to serve the browser, and the
library handles all licensing issues on your behalf. A disad-
vantage—at least in the case of Typekit—is that it doesn’t
work if JavaScript is disabled in the browser. Some free
options are available, but you normally have to pay, and the
pricing model varies from company to company.

Another solution is to use WOFF only and specify several
web-safe fonts as backup. You should always specify fallback
fonts anyway in case the embedded fonts can’t be down-
loaded. However, for the most reliable cross-browser support,
it’s best to offer the font files in multiple formats and let
the browser choose.

To demonstrate the use of @font‑face in Dreamweaver
CS5.5, I have chosen a free font called Calluna Regular,
which was created by the Dutch font designer Jos Buivenga.
The following instructions describe how to obtain the font
and embed it with @font‑face:

1.		 Go to www.fontspring.com/fonts/exljbris/calluna,
scroll down to Calluna Regular, and click Add to Cart.

2.		 Go to the checkout. If you haven’t used fontspring.com
before, you will be asked to create an account.

3.		 Click the download link, and save the ZIP file to your
local hard disk when prompted.

4.		 Unzip the contents of the file to a new folder. It should
contain a folder called web fonts, plus a copy of the
license and a file called Calluna-Regular.otf. This last file
is for desktop use. It should not be used in your website.

Using embedded fonts is a complex
subject. For detailed coverage, see
Stunning CSS3 by Zoe Mickley
Gillenwater (New Riders, 2010).

At the time of this writing, Calluna
Regular is free for unlimited use on
websites. Please check the price and
license terms applicable at the time
of downloading.

www.fontspring.com/fonts/exljbris/calluna
http://typekit.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

43

II: HTML5 and CSS3

One of the conditions of the web font license is that
you must put a link to www.exljbris.nl on your site.
Alternatively, you can add a notice to your style sheet
crediting the creator of the font.

5.		 Inside the web fonts folder is another called calluna_
regular_macroman, which contains the following files:

Calluna-regular-webfont.eot

Calluna-regular-webfont.svg

Calluna-regular-webfont.ttf

Calluna-regular-webfont.woff

These files contain the Calluna Regular font in the vari-
ous formats needed to support all browsers.

6.		 Create a folder called fonts in your working copy of the
Tozai Hotel site, and copy the four files from the cal-
luna_regular_macroman folder into the new folder.

7.		 Insert the following @font‑face rule at the top of styles/
tozai.css:

@charset “utf-8”;

@font-face {

 /* A font by Jos Buivenga (exljbris) ->

 www.exljbris.com */

 font-family: ‘CallunaRegular’;

 src: url(‘../fonts/Calluna-Regular-

 Ê webfont.eot’) format(‘eot’);

 src: url(‘../fonts/Calluna-Regular-

 Ê webfont.eot?iefix’) format(‘eot’),

 url(‘../fonts/Calluna-Regular-

 Ê webfont.woff’) format(‘woff’),

 url(‘../fonts/Calluna-Regular-

 Ê webfont.ttf’) format(‘truetype’),

 url(‘../fonts/Calluna-Regular-

 Ê webfont.svg#webfontrsodunSr’)

 Ê format('svg');

}

body {

This adds the credit to the font designer, as required by
the license, declares CallunaRegular as a font-family
property, and then tells the browser where to find the

www.exljbris.nl
http://lib.ommolketab.ir
http//lib.ommolketab.ir

44

Chapter 2	 Progressive Enhancement with HTML5 and CSS3

font files. For an explanation of the syntax, see
www.fontspring.com/blog/further-hardening-of-the-
bulletproof-syntax.

The value after the hash sign for the .svg file comes
from the stylesheet.css file in the calluna_regular_
macroman folder. It might be different in the version
that you download, so check the value.

8.		 Now that CallunaRegular has been defined with
@font‑face, you can use it in font‑family property
declarations like any other font. Add the following
style rule to tozai.css immediately after the @font‑face
declaration:

 h1, h2, h3 {

 font-family: CallunaRegular, “Palatino

 Ê Linotype", "Book Antiqua", Palatino,

 Ê serif;

 }

9.		 Save tozai.css, and open one of the HTML pages in the
Document window. Activate Live view to see how the
font in the headings changes from a heavy sans-serif
(Figure 2.8) to a more delicate serif (Figure 2.9).

Figure 2.8  Design view displays
the headings using the computer’s
installed font.

Figure 2.9  Live view uses the
embedded font defined by the
@font-face rule.

Efforts to perfect the @font-face
syntax to work in a reliable cross-
browser way have gone through
several iterations. The version shown
here is widely acknowledged to be
the most reliable—at least at the
time of this writing.

www.fontspring.com/blog/further-hardening-of-the-bulletproof-syntax
www.fontspring.com/blog/further-hardening-of-the-bulletproof-syntax
http://lib.ommolketab.ir
http//lib.ommolketab.ir

45

II: HTML5 and CSS3

Adding a Drop Shadow to Text

The text-shadow property adds a drop shadow to text
without the need for graphics. It’s not supported by IE,
but IE simply ignores it and renders the text as normal.

The text-shadow property usually takes a space-separated
list of four values:

	.	 The horizontal distance of the shadow from the text

	.	 The vertical distance from the text

	.	 The amount of blur

	.	 The color of the shadow

The first three values can be expressed in pixels, ems, or
any other measurement valid in CSS. The first two values
can be positive or negative: Positive values position the
shadow to the right and down; negative values move it
to the left and up. The third value cannot be negative,
although it can be 0, or omitted.

To simplify the application of text‑shadow, Dreamweaver
CS5.5 provides a subpanel of the CSS Styles panel, which
works in conjunction with Live view.

To add a drop shadow to the headings:

1.		 With one of the Tozai Hotel pages open in the Document
window, click anywhere in the text of the <h1> heading,
and open the CSS Styles panel. If it’s not already select-
ed, click the Current button at the top left of the panel
to display the properties for #header h1 (Figure 2.10).

2.		 Activate Live view.

3.		 Click the Add Property link at the bottom of the
Properties pane in the CSS Styles panel, and select
text‑shadow from the list.

4.		 Click the icon displayed to the right of the prop-
erty name to open the subpanel where you set the
text‑shadow values.

The text-shadow property
accepts an optional fourth
measurement to define how far the
shadow spreads in all directions. This
is rarely used and is not supported
by the Dreamweaver subpanel.

Figure 2.10  The Properties pane of the CSS Styles
panel shows the styles for the main heading.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

46

Chapter 2	 Progressive Enhancement with HTML5 and CSS3

5.		 Set X-Offset, Y-Offset, and Blur radius to 3px each. You
won’t see any change in Live view until you set the value
for Color.

6.		 Click the color box at the bottom of the subpanel to
open the color picker. Then click the right-facing arrow
at the top right of the color picker, and choose Color
Format > rgba() (Figure 2.11).

7.		 Use the eyedropper tool to select black, and click away
from the color picker to close it. Live view displays a
drop shadow on the main heading, but the effect of
the opaque black shadow is rather overpowering
(Figure 2.12).

8.		 In the Properties pane of the CSS Styles panel, click
the field that displays the text‑shadow setting to edit it,
and change the final rgba() value from 1 (opaque) to
0.25 (25 percent opacity) like this:

 3px 3px 3px rgba(0,0,0,0.25)

9.		 Press Enter/Return to save the change. Live view
updates the drop shadow, which now looks subtler
(Figure 2.13).

10.		 If you’re not happy with the drop shadow, you can ad-
just the settings by clicking the icon to reopen
the subpanel. Live view automatically updates with each
change. There’s no need to close the subpanel to see
the effect. If you decide to change the color, Dream-
weaver remembers your choice of color format.

11.		 With Live view still active, click the heading of the
page’s main content or of a sidebar to select the prop-
erties for the h2, h3 style rule in the Properties pane
of the CSS Styles panel.

12.		 Repeat steps 4–9 to add the text‑shadow property,
setting X‑Offset and Y‑Offset to 2px, and Blur radius
to 3px (Figure 2.14).

Figure 2.11  Change the color format for the drop
shadow to rgba().

Figure 2.12  Using opaque black produces an
overpowering drop shadow.

Figure 2.13  Reducing the opacity of the drop
shadow results in a subtler effect.

The Color Picker panel always
displays the opacity value as 1,
even if you have changed it. When
the panel closes, Dreamweaver
preserves your original opacity
setting but rounds the number to
one decimal place. For example, 0.25
is rounded up to 0.3.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

47

II: HTML5 and CSS3

Adding Shadows to Page Elements

The property that adds a drop shadow to elements other
than text is box‑shadow. It works almost identically to
text‑shadow, but the shadow can be inset instead of extend-
ing beyond the element. The Dreamweaver box‑shadow
subpanel also allows you to define how far the shadow
spreads in all directions.

Figure 2.15 demonstrates how box‑shadow works. The
examples in the top row display the shadow outside the
element. Using negative offset values in the example on
the right casts the shadow to the left and up. The examples
in the middle row use the same offsets and blur radius, but
the inset keyword puts the shadow inside the element.

The examples in the bottom row add a value for spread,
which affects all four directions after the horizontal and
vertical offsets have been applied. In the example on the

Figure 2.14  The drop shadow offset
for the other headings is smaller.

Figure 2.15  Examples of box-shadow
effects.

When inset is used, the shadow is
applied to the opposite sides of the
element. Although this might seem
counterintuitive, positive values cast
the shadow to the right and down,
so it needs to be applied to the left
and top sides to remain inside the
element. It might help to think of
positive values putting the light
source at the top left of the page.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

48

Chapter 2	 Progressive Enhancement with HTML5 and CSS3

left, the spread (6px) is smaller than the horizontal and
vertical offsets (8px). As a result, the spread to the left and
top remains hidden behind the element. The spread in the
example on the right is greater than the offsets, so a small
part of the shadow appears to the left and top, but the
main shadow extends to the right and down.

You’re not limited to a single shadow. You can apply
complex shadow effects by listing a comma-separated
list of shadow values as shown in Figure 2.16. The top
example applies red and green shadows on opposite sides,
followed by a gray shadow with no offsets or blur but a
15-pixel spread. The shadows are stacked with each suc-
cessive one displayed behind its predecessors. The bottom
example applies two inset shadows, followed by an external
drop shadow.

Using the box‑shadow subpanel is very similar to adding
text‑shadow, but it involves several extra steps, because
browser support for box‑shadow hasn’t reached the same
level of stability.

To add drop shadows on page elements:

1.		 Open one of the following pages in the Tozai Hotel
site—dining.html, garden.html, or rooms.html—and
deactivate Live view, if necessary.

2.		 In the CSS Styles panel, click the All button at the top
left of the panel, and select .floatright in the All Rules
pane (Figure 2.17).

	Selecting a rule in the All Rules pane before creating
a new style rule tells Dreamweaver to insert the new
rule immediately after the selected one. This helps
keep your style sheet logically organized and easier
to maintain.

3.		 Click the New Style Rule icon at the bottom right
of the CSS Styles panel to open the New CSS Rule
dialog box.

You can examine the code in the
examples shown in Figures 2.15
and 2.16 in box‑shadow.html and
multiple_box‑shadow.html in the
ch02/examples folder.

Figure 2.16  Multiple shadows can be applied as a
comma-separated list.

Figure 2.17  Selecting one of the classes used for
images in the CSS Styles panel.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

49

II: HTML5 and CSS3

4.		 Use the following settings:

	.	 Selector Type: Compound

	.	 Selector Name: .floatleft, .floatright

	.	 Rule Definition: tozai.css

This creates a group selector for the floatleft and
floatright classes. All images in the site, apart from
background images, use one of these classes. So, this
new style rule will affect all inline images.

5.		 Click OK to open the CSS Rule Definition dialog box.

6.		 The box‑shadow property is not supported by the CSS
Rule Definition dialog box, so click OK to close it and
create an empty style rule.

7.		 Check that the new style rule is selected in the All Rules
pane, and click the icon at the bottom left of the
CSS Styles panel to switch the Properties pane to
Category view.

8.		 Activate Live view, and make sure you can see one of
the inline images in the Document window.

9.		 In the Properties pane of the CSS Styles panel, expand
the Webkit category, and locate ‑webkit‑box‑shadow.

10.		 Click the icon next to the property name, and use
the following settings:

	.	 Inset: Deselected

	.	 X-Offset: 3px

	.	 Y-Offset: 3px

	.	 Blur radius: 5px

	.	 Spread: Leave blank

	.	 Color: #999

Dreamweaver supports comma-
separated values for box‑shadow
in Live view, but you need to code
them manually. The subpanel of the
CSS Styles panel supports only single
shadows.

You need to be in Category view
because Dreamweaver CS5.5
needs a vendor-specific version of
box‑shadow to display the effect
in Live view.

If you set Color first, you can see the
effect of the drop shadow as you
adjust the other values.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

50

Chapter 2	 Progressive Enhancement with HTML5 and CSS3

11.		 Click away from the subpanel to close it. The inline
images should now have a subtle drop shadow that
makes them stand out from the page (Figure 2.18).

Figure 2.18  The box-shadow property adds a subtle drop shadow.

12.		 The vendor-specific property has done the trick in
Dreamweaver, Safari, and Chrome, but it won’t work
in IE 9 or Firefox. You need to expand the style rule to
work cross-browser.

Select the .floatleft, .floatright rule in the All
Rules pane, right-click, and choose Go to Code. This
opens tozai.css in Split view with the insertion point
inside the style definition. Edit the rule to look like this:

 .floatleft, .floatright {

 -webkit-box-shadow: 3px 3px 5px #999;

 -moz-box-shadow: 3px 3px 5px #999;

 box-shadow: 3px 3px 5px #999;

 }

The values for each property are the same, so the
quick way is to copy and paste the ‑webkit‑box‑shadow
declaration twice, and then edit the property name.
Make sure the standard property (without prefix)
comes last.

Opera and IE 9 recognize the
standard box‑shadow property.
Earlier versions of IE ignore the
entire style rule.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

51

II: HTML5 and CSS3

If you would like further practice applying drop shadows,
add them to the navigation menu by selecting the #nav li
a rule and amending it like this:

#nav li a {

 display: block;

 width: 160px;

 padding: 10px;

 text-align: center;

 text-decoration: none;

 color: #FFF;

 background-color: #003;

 -webkit-box-shadow: 2px 2px 3px #999;

 -moz-box-shadow: 2px 2px 3px #999;

 box-shadow: 2px 2px 3px #999;

}

Also add a drop shadow to the main content and sidebar
containers by selecting the .content‑wide, .content‑medium,
.aside rule and amending it like this:

.content-wide, .content-medium, .aside {

 background-color: #fff;

 padding: 20px;

 margin: 20px;

 font-size: 14px;

 -webkit-box-shadow: 3px 3px 5px 2px #999;

 -moz-box-shadow: 3px 3px 5px 2px #999;

 box-shadow: 3px 3px 5px 2px #999;

}

Adding Rounded Corners

The CSS3 border‑radius property creates rounded cor-
ners in seconds—no more fiddling about with images and
nested elements. In spite of its name, the element doesn’t
need a border to use border‑radius. A really cool feature
is that it clips background images, so they share the same
rounded edge.

Vendor-specific Properties and the Cascade

The CSS cascade controls the way style rules are
applied to individual elements, adding together
values inherited from higher up the document’s
structure. When there’s a conflict between two style
rules of equal importance (specificity), the cascade
gives precedence to one lower down in the style
sheet. Browsers recognize only their own vendor-
specific properties, so you can list them in any order.

You should always list the standard property last.
This ensures that the cascade gives precedence to
the standard version as soon as a browser supports
it. For example, Google Chrome has supported
box‑shadow in version 9, but earlier versions
rely on the ‑webkit prefix. At the time of this
writing, all versions of Safari require the ‑webkit
prefix. Listing box‑shadow last ensures that the
cascade overrides ‑webkit‑box‑shadow and
‑moz‑box‑shadow in compliant browsers.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

52

Chapter 2	 Progressive Enhancement with HTML5 and CSS3

Although you can control each corner individually, there
are some inconsistencies between browsers; however, apply-
ing the same value to each corner is widely supported.

To apply equally rounded corners to a page element:

1.		 Open dining.html, garden.html, or reservations.html in
the Tozai Hotel site, and activate Live view.

2.		 Open the CSS Styles panel with the All button at the
top left selected.

3.		 If necessary, click the icon at the bottom of the
panel (it’s the third from the left) to display only set
properties in the Properties pane.

4.		 Select the .content‑wide, .content‑medium, .aside
rule in the All Rules pane, and click the Add Property
link in the Properties pane.

5.		 Choose border-radius from the list of properties.

6.		 Click the icon next to the property name.

7.		 Make sure the “Same for all” check box is selected,
and set Top Left to 18px. Live view should immediately
refresh to display the rounded corners (Figure 2.19).

Figure 2.19  The border-radius property creates rounded corners in seconds.

8.		 Click away from the subpanel to close it.

9.		 Although Dreamweaver supports the standard border‑
radius property, it’s wise to use the vendor-specific
prefixes as well, so right-click the style rule in the All
Rules pane, and choose Go to Code.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

53

II: HTML5 and CSS3

10.		 Amend the style rule like this:

 .content-wide, .content-medium, .aside {

 background-color: #fff;

 padding: 20px;

 margin: 20px;

 font-size: 14px;

 -webkit-box-shadow: 3px 3px 5px 2px #999;

 -moz-box-shadow: 3px 3px 5px 2px #999;

 box-shadow: 3px 3px 5px 2px #999;

 -webkit-border-radius: 18px;

 -moz-border-radius: 18px;

 border-radius: 18px;

 }

Add rounded corners to the navigation menu by amending
the #nav li a rule like this:

#nav li a {

 display: block;

 width: 160px;

 padding: 10px;

 text-align: center;

 text-decoration: none;

 color: #FFF;

 background-color: #003;

 -webkit-box-shadow: 2px 2px 3px #999;

 -moz-box-shadow: 2px 2px 3px #999;

 box-shadow: 2px 2px 3px #999;

 -webkit-border-radius: 8px;

 -moz-border-radius: 8px;

 border-radius: 8px;

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

54

Chapter 2	 Progressive Enhancement with HTML5 and CSS3

Also add rounded corners to the main content of index.
html by amending the #hero rule like this:

#hero {

 background-color: #FFF;

 background-image: url(../images/exterior.jpg);

 background-repeat: no-repeat;

 background-position: 340px center;

 width: 896px;

 padding: 20px;

 margin: 20px;

 border: #003 solid 2px;

 height: 404px;

 min-height: 404px;

 -webkit-border-radius: 15px;

 -moz-border-radius: 15px;

 border-radius: 15px;

}

Improving Forms with HTML5 Features

HTML5 heralds a quiet revolution in the way you create
online forms. What’s revolutionary is that HTML5 offers a
wide range of new input elements, such as date pickers and
number steppers. In addition, when browsers implement
all the new features, they will automatically validate user
input before submitting the form. No need for JavaScript
validation anymore.

The reason it’s quiet is because the overwhelming majority
of new features use the <input> tag. By default, browsers
display a single-line text input field if the type attribute is
missing or if they don’t recognize the attribute’s value. This
means you can use the new features now. Existing browsers
display them as ordinary text fields. Table 2.4 describes the
new <input> type attributes defined by HTML5.

Client-side validation in the browser
is mainly a convenience to the user,
avoiding the need for a round-trip
to the server if there are any errors.
Your form-processing script on the
web server should still validate user
input, because it’s all too easy for
spam bots and attackers to evade
client-side validation.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

55

II: HTML5 and CSS3

Table 2.4  New Type Attributes for <input> Elements

Type	 Description

color	 Color picker

email	� Single-line text field for email address or list of
addresses

number	 Single-line text field or number stepper

range	� Slider control for numeric value (exact value
unimportant)

search	 Search field

tel	 Single-line text field for phone number

url	 Single-line text field for URL

datetime	 Date and time picker with time zone set to UTC

date	 Date picker

month	 Date picker for year and month only

week	 Date picker for year and week number only

time	T ime picker

datetime‑local	 Date and time picker for local time zone

Another new type of form input is a <datalist> element,
which associates a list of options with a text input field. It’s
very similar to a <select> menu but is more versatile, as
described in the following section.

Creating an editable drop-down menu

A <select> menu provides users with a list of options to
choose from. It works fine when there’s a fixed range of
options, but there’s often a need to supply a text field for
users to enter a different value. The <datalist> element
avoids this problem by displaying a preset list of options
but allowing the user to enter a custom option. Figure 2.20
shows how it works. The <datalist> offers the preset
options of Mr., Mrs., and Ms. but allows the user to type
in another value, such as Dr.

Figure 2.20  The <datalist>
element creates an editable
<select> menu.

At the time of this writing, Opera
is the only desktop browser that
supports <datalist>, but it’s
widely supported on smartphones
and tablets.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

56

Chapter 2	 Progressive Enhancement with HTML5 and CSS3

Thanks to some clever experimentation by Jeremy Keith,
it’s possible to incorporate a <datalist> into a form so that
it works seamlessly in browsers that support it and provides
an elegant fallback for browsers that don’t.

The form in reservations.html in the Tozai Hotel site
contains a <select> menu for the user’s title with the
options Mr., Mrs., Ms., and Other. Next to the menu is
a text input field for users to type a value if they choose
Other (Figure 2.21).

The code for the two form elements looks like this:

<label for=”title”>Title: </label>

 <select name=”title” id=”title”>

 <option> </option>

 <option>Mr.</option>

 <option>Mrs.</option>

 <option>Ms.</option>

 <option>Other</option>

 </select>

<label for=”other”>Specify if other:</label>

<input name=”other” class=”narrowField” id=”other”>

Notice that the <option> elements don’t contain a value
attribute. When you omit this attribute, the browser auto-
matically submits the value between the opening and clos-
ing tags of the selected item.

You need to edit the code manually, but Dreamweaver
CS5.5 helps with code hints for <datalist>. The following
instructions explain the process:

1.		 On a new line between the first <label> element
and the opening <select> tag, create the opening
<datalist> tag and give it an ID like this:

 <datalist id=”titlelist”>

The ID associates the <datalist> with the text input field.

Jeremy Keith is a well-known author
and speaker at web development
conferences. Details of his cross-
browser solution for <datalist>
can be found on his website at
http://adactio.com/journal/4272.

Figure 2.21  Normally, a separate text input field is
needed for user input.

http://adactio.com/journal/4272
http://lib.ommolketab.ir
http//lib.ommolketab.ir

57

II: HTML5 and CSS3

2.		 Delete the ID from the opening <select> tag. Only the
name attribute is required.

3.		 Set an explicit value attribute for the Mr. option:

 <option value=”Mr.”>Mr.</option>

4.		 Do the same for the Mrs. and Ms. options but not
for Other.

5.		 Replace the <label> tags around “Specify with other”
with tags.

6.		 Change the name and id attributes of the <input>
element to match the name of the <select> element
(title).

7.		 Add list=”titlelist” to the <input> tag. This identi-
fies the <datalist> options as belonging to this field.

The finished code looks like this (with the changes
highlighted):

 <label for=”title”>Title: </label>

 <datalist id=”titlelist”>

 <select name=”title”>

 <option> </option>

 <option value=”Mr.”>Mr.</option>

 <option value=”Mrs.”>Mrs.</option>

 <option value=”Ms.”>Ms.</option>

 <option>Other</option>

 </select>

 If other, please specify:

 </datalist>

 <input name=”title” class=”narrowField”

 Ê id=”title” list="titlelist">

On its own, a <datalist> consists only of the <option> ele-
ments. It’s linked to an <input> element through the list
attribute, which is set to the <datalist> ID. According to
the HTML5 specification, the <datalist> must be hidden
by the browser. What’s clever about Jeremy Keith’s solution
is that it borrows the <option> elements of the <select>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

58

Chapter 2	 Progressive Enhancement with HTML5 and CSS3

menu for the <datalist>. If a browser recognizes the
<datalist> element, it hides the <select> menu but uses
its <option> tags. The <datalist> ignores <option> ele-
ments that don’t have an explicit value attribute. Browsers
that don’t recognize <datalist> ignore the tag and display
the <select> menu instead. Everyone’s happy!

In step 5, you replaced the <label> tags with tags,
so the adjacent sibling style rule needs to be amended like
this to maintain the padding in browsers that don’t yet
support <datalist>:

select + label, input + label, select + span {

	 padding-left: 10px;

}

To fix a problem with WebKit browsers, you also need to
add the following style rule to the style sheet:

datalist {

 display: inline-block;

}

Using HTML5 attributes with form elements

In addition to the new values for the type attribute,
HTML5 introduces new attributes, such as autofocus and
placeholder to improve usability, and required to aid
validation. To add or change any of these attributes, use
the code hints in Code view, or select the <input> element
in Design view and use the Tag Inspector panel. Figure
2.22 shows changes made to the Adult <input> tag, setting
type to number, min to 1, and max to 4, and turning on the
required attribute.

In browsers that support the number type, the input field is
displayed as a number stepper (Figure 2.23). If the min and
max attributes are set, the number stepper limits values to
that range. Opera allows you to type in a number directly
but displays an alert when you submit the form with an out-
of-range value (Figure 2.24).

Figure 2.22  The Tag Inspector panel provides
access to HTML5 form attributes.

For an in-depth discussion of HTML5
form elements and attributes, see
Introducing HTML5 by Bruce Lawson
and Remy Sharp (New Riders, 2010).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

59

II: HTML5 and CSS3

Choosing a foolproof date picker

Inputting dates is a minefield. Europeans write dates in the
order date, month, year. Chinese and Japanese reverse the
order: year, month, date. Americans use the format month,
date, year. Even if you can force users to input dates in a
particular order, there’s always a danger of choosing an
invalid date, such as September 31. HTML5 seeks to solve
this problem with the date type. Opera has pioneered the
way by automatically displaying a date picker when you
click in a date field (Figure 2.25).

Chrome 9 offers a different solution—a date field that acts
like a number stepper. However, users are in for a shock
if you don’t also set the min attribute to a recent date.
Figure 2.26 shows what happens when the user first clicks
the stepper arrow. To get to today’s date, you would need
to click more than 730,000 times!

You can avoid this problem by setting a min value using the
yyyy-mm-dd format. For example, the following code starts
the date stepper at February 7, 2011:

<input name=”date” type=”date” min=”2011-02-07”>

That’s still not much use if you want users to enter their
date of birth. Until there’s reliable cross-browser support
for the date type, you need an alternative solution. One
that I experimented with for this book was using <select>
elements for the year and month, combined with a text
input field for the date. I then used jQuery to hide the year
and month menus, and displayed a jQuery UI Datepicker
widget (http://jqueryui.com/demos/datepicker) when
the focus was in the date field. A browser with JavaScript
enabled would use the widget. Otherwise, the user would
fill in separate fields for each date part.

Figure 2.23  HTML5-compliant
browsers display number input
fields as number steppers.

Figure 2.24  Opera automatically displays an
error message for out-of-range values.

Figure 2.25  Opera’s date picker is automatic—no
coding is required.

Figure 2.26  Chrome’s date stepper
goes back in the mists of time.

http://jqueryui.com/demos/datepicker
http://lib.ommolketab.ir
http//lib.ommolketab.ir

60

Chapter 2	 Progressive Enhancement with HTML5 and CSS3

It worked beautifully—until I tested it on several mobile
devices. Figure 2.27 shows what happened on an iPod
touch. Triggering the widget also popped up the mobile
keyboard, cluttering the screen and making it very difficult
to use.

To prevent the mobile keyboard from appearing, I used
jQuery to make the date field read-only. However, tests
on a BlackBerry Torch revealed that the widget didn’t
always render correctly. With browser sniffing, I was able
to restrict making the field read-only on iOS and Android,
but that meant that BlackBerry users still had to dismiss
the mobile keyboard to access the widget.

In the end, I decided that the most reliable cross-browser
solution was to create three <select> menus, one each for
the month, date, and year. When JavaScript is disabled, the
values default to January 1, 2011. However, if JavaScript
is enabled in the browser, a jQuery script initializes the
arrival and departure dates to today and tomorrow, respec-
tively. The script automatically resets the number of days
in the date <select> menu to match the month, taking
leap year into account when the month is February. It also
prevents the user from setting dates in the past or setting a
departure date that isn’t at least one day after arrival.

It’s a long script, so I have broken it into sections to
explain how it works. Add the following code just before
the closing </body> tag in reservations.html.

<script type=”text/javascript” src=”js/

Ê jquery-1.5.min.js"></script>

<script>

$(function() {

 // initialize variable for date parts

 var dateParts;

 // create object for select menus

 // set all parts of a specific date

 // return Date object for next day

 // limit year to current and following years

 // adjust date options according to month

Figure 2.27  Selecting the date field
brings up both the widget and the
mobile keyboard.

The script is also in custom_
datepicker.js in ch02/complete/
js. If you want to use it in your own
pages, give the <select> menus
the same IDs as those used in
reservations.html.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

61

II: HTML5 and CSS3

 // return number of days in selected month

 // change handler for select menus

 // run the script

});

</script>

This includes the jQuery core library into the page, and
creates a <script> block with a jQuery document-ready
handler, which runs automatically as soon as the page loads.
Apart from declaring a single variable, the document-ready
handler doesn’t yet do anything. The series of comments
outlines the structure of the script. Each of the following
sections needs to be added under the appropriate comment.

The first section is a function that creates a JavaScript
object with properties that store a reference to each of the
<select> menus in the page using jQuery selectors. It looks
like this:

// create object for select menus

function initMenus() {

 var menus = {};

 menus.arr_month = $(‘#arrival_month’);

 menus.arr_date = $(‘#arrival_date’);

 menus.arr_year = $(‘#arrival_year’);

 menus.dep_month = $(‘#departure_month’);

 menus.dep_date = $(‘#departure_date’);

 menus.dep_year = $(‘#departure_year’);

 return menus;

}

This function is used to store an object in dateParts,
which is passed as an argument to subsequent functions.
Each property name consists of arr_ or dep_ followed
by the date part. This naming convention is designed so
that the same functions can be used to set the arrival and
departure dates.

Creating an object to reference the
<select> menus avoids using
global variables within the functions
that adjust the date parts.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

62

Chapter 2	 Progressive Enhancement with HTML5 and CSS3

The next part of the script is a function that sets all parts of
a specific date. It looks like this:

// set all parts of a specific date

function setValues(dateParts, menu, theDate) {

 // advance date by one day for departure menu

 if (menu == ‘dep’) {

 theDate = getNextDay(theDate);

 }

 // get the individual date parts

 var m = theDate.getMonth() + 1,

 d = theDate.getDate(),

 y = theDate.getFullYear(),

 today = new Date();

 // adjust options for date and year menus

 populateDate(dateParts, menu, m, y);

 populateYear(dateParts, menu,

 Ê today.getFullYear());

 // set the values for each select menu

 dateParts[menu + '_month'].val(m);

 dateParts[menu + '_date'].val(d);

 dateParts[menu + '_year'].val(y);

}

The setValues() function takes three arguments:

	.	 The dateParts object containing references to the
<select> menus

	.	 A string (‘arr’ or ‘dep’) identifying whether to set the
arrival or departure date

	.	 A JavaScript Date object representing the date to be set

When the page first loads, the arrival date is set to the cur-
rent date, and the departure is set to the following day. So,
if the value of menu is ‘dep’, the Date object in theDate
is advanced by one day by a function called getNextDay(),
which is defined shortly.

JavaScript Dates

JavaScript stores dates and times as the number
of milliseconds before or after midnight UTC
(Coordinated Universal Time) on January 1, 1970.
The valid range is plus or minus 100 million days
(273,785 years) from this date.

If no arguments are passed to the Date constructor,
an object representing the current date and time
(to the nearest millisecond) is created. Alternatively,
you can create a Date object for a specific date and
time using any of the following:

.	 An integer representing the number of mil-
liseconds since January 1, 1970

.	 A date string, such as ‘05 May 2011’

.	 A comma-separated list of integers, represent-
ing date parts in the order year, month, date,
hour, minutes, seconds, milliseconds

Care needs to be taken when using a date string,
because the syntax can be difficult to get right.
When using a comma-separated list of date parts,
the last four values are optional. JavaScript counts
months from zero, so 4 represents May, not April.

See https://developer.mozilla.org/en/JavaScript/
Reference/Global_Objects/Date.

https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Date
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Date
http://lib.ommolketab.ir
http//lib.ommolketab.ir

63

II: HTML5 and CSS3

The function then uses standard JavaScript Date methods
to assign the date part values to local variables. JavaScript
counts months from zero, so 1 is added to the value
assigned to m.

To prevent incorrect dates from being selected, the
function calls two other functions, populateDate() and
populateYear(), to adjust the values displayed by the
date and year <select> menus. These functions are
described later.

Finally, setValues() uses the jQuery val() method to set
the values of the <select> menus, using square bracket
notation to access the appropriate properties of the date-
Parts object. For example, if ‘arr’ is passed as the second
argument to setValues(), the last three lines of the func-
tion equate to this:

dateParts[‘arr_month’].val(m);

dateParts[‘arr_date’].val(d);

dateParts[‘arr_year’].val(y);

This is the equivalent of using the following dot notation
to access the object’s properties:

dateParts.arr_month.val(m);

dateParts.arr_date.val(d);

dateParts.arr_year.val(y);

The getNextDay() function is defined next. It takes a Date
object as its sole argument, and returns a new Date object
for the following day by adding the number of milliseconds
in 24 hours to the current value. The code looks like this:

// return Date object for next day

function getNextDay(date) {

 return new Date(date.getTime() +

 Ê (1000*60*60*24));

}

Using square bracket notation to
access object properties makes it
possible to build the property name
from a combination of a variable
and a string literal. You can’t build
property names dynamically with
dot notation.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

64

Chapter 2	 Progressive Enhancement with HTML5 and CSS3

The next two functions adjust the values in the year and
date <select> menus, taking into account the number of
days in a month and whether it’s a leap year. The code
looks like this:

// limit year to current and following years

function populateYear(dateParts, menu, yr) {

 dateParts[menu + ‘_year’].html(‘<option>’ + yr

 Ê + '</option>' +

 '<option>' + (yr + 1) + '</option>');

}

// adjust date options according to month

function populateDate(dateParts, menu, mon, yr) {

 var len = getNumDays(mon, yr);

 var html = ‘’;

 for (var i = 1; i <= len; i+=1) {

 html += ‘<option>’ + i + ‘</option>’;

 }

 dateParts[menu + ‘_date’].html(html);

}

Both functions use the jQuery html() method to generate
a new set of <option> elements to replace the existing ones.
The populateYear() function limits the years displayed to
the current and following years. The populateDate() func-
tion takes both the year and month among its arguments,
because February has 28 or 29 days depending on whether
it’s a leap year. The calculation regarding the number of
days to display is carried out by getNumDays(), which is
defined next.

// return number of days in selected month

function getNumDays(mon, yr) {

 var num_days = 31;

 if (mon == 4 || mon == 6 || mon == 9 ||

 Ê mon == 11) {

 num_days = 30;

 } else if (mon == 2) {

 // if leap year, Feb has 29 days

http://lib.ommolketab.ir
http//lib.ommolketab.ir

65

II: HTML5 and CSS3

 if (yr % 400 == 0 ||

 Ê(yr % 4 == 0 && yr % 100 != 0)) {

 num_days = 29;

 } else {

 num_days = 28;

 }

 }

 return num_days;

}

The getNumDays() function takes two arguments: a month
and a year. Most months have 31 days, so that’s set as the
default value of the local variable num_days. If the month is
April, June, September, or November, the value of num_days
is changed to 30. The else if clause checks if the month is
February and calculates the correct number of days.

The nested conditional statement uses modulo division to
calculate whether it’s a leap year. Leap years occur every
four years on years wholly divisible by 4. The exception is
that years divisible by 100 are not leap years unless they are
also divisible by 400.

The main part of this script is the change handler function
bound to all six <select> menus. It looks like this:

// change handler for select menus

function resetDates(e) {

 // find out whether arrival or departure

 // was changed, and get its value

 var dateParts = e.data.dateParts,

 menu = e.data.menu,

 m = dateParts[menu + ‘_month’].val(),

 d = dateParts[menu + ‘_date’].val(),

 y = dateParts[menu + ‘_year’].val(),

 num_days = getNumDays(m, y),

 today = new Date(),

 selected, arrival, departure;

 // make sure date menu displays

 // correct number of days

 populateDate(dateParts, menu, m, y);

 // if the month contains fewer days than

Modulo Division

Modulo division uses the percentage sign (%) as
its operator and produces the remainder left over
after a division. If a number is wholly divisible by
another, the remainder is zero. For example, 2000 is
wholly divisible by 400, so 2000 % 400 produces 0
as its result.

Modulo division by 2 is frequently used to find
whether a number is odd or even. If the result is 0,
the number is even.

Although JavaScript counts months
from zero, this script adds 1 to the
month values to bring them in line
with normal dates.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

66

Chapter 2	 Progressive Enhancement with HTML5 and CSS3

 // currently selected value, reset date

 // menu to last day of month

 d = (d <= num_days) ? d : num_days;

 dateParts[menu + ‘_date’].val(d);

 // create Date objects for selected dates

 selected = new Date(y, m-1, d);

 arrival = new Date(dateParts.arr_year.val(),

 dateParts.arr_month.val()-1,

 dateParts.arr_date.val());

 departure = new Date(dateParts.dep_year.val(),

 dateParts.dep_month.val()-1,

 dateParts.dep_date.val());

 // if changes were made to arrival date

 if (menu == ‘arr’) {

 // if the arrival earlier than today,

 // reset to today’s date

 if (selected < today) {

 setValues(dateParts, ‘arr’, today);

 setValues(dateParts, ‘dep’, today);

 }

 if (departure <= selected) {

 // set departure date to following day

 setValues(dateParts, ‘dep’, arrival);

 }

 } else {

 // if selected departure is today or

 // earlier, reset both dates to default

 if (selected <= today) {

 setValues(dateParts, ‘arr’, today);

 setValues(dateParts, ‘dep’, today);

 } else if (selected <= arrival) {

 // if selected departure date is same

 // as arrival date or earlier, reset

 // departure to one day after arrival

 setValues(dateParts, ‘dep’, arrival);

 }

 }

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

67

II: HTML5 and CSS3

The resetDates() function is bound to each <select>
menu using the jQuery change() method. The function
takes as its only argument the event object triggered by a
change in the value of the <select> menu to which the
function is bound. To allow you to pass other values to an
event-handler function, jQuery creates a data property on
the event object. You’ll see how to pass these values shortly,
but you retrieve them from the data property through dot
notation like this:

var dateParts = e.data.dateParts,

 menu = e.data.menu, // more definitions

This gives you access to the dateParts object and the string
identifying whether the value that has changed belongs to
the arrival or departure date. With this information, the
resetDates() function gets the current values for each part
of the affected date and calculates the correct number of
days in the month. The populateDate() function resets the
<option> tags for the date menu. But before you can set
the value of the date part, you need to find out if the cur-
rent value exceeds the number of days in the month. For
example, if the original date is January 31 and you change
the month to September, you end up with an invalid date.
So, the following line uses the ternary operator to reset d
to num_days if the month is shorter:

d = (d <= num_days) ? d : num_days;

If d is less than or equal to num_days, its original value is
preserved.

The jQuery val() method then sets the date menu to the
correct value, and three Date objects are created. The first
of these Date objects, selected, represents the complete
value of the date that has just been changed. The other
two Date objects represent the arrival and departure dates,
respectively. The rest of the function consists of a series of
conditional statements that prevent the arrival date from
being earlier than the current date, and ensuring that the
departure date is at least one day after the arrival date.

Ternary Operator

The ternary operator is a shorthand way of
assigning a value using a simple if/else condition.
The condition is placed between the assignment
operator (an equal sign) and a question mark. If
the condition equates to true, the value between
the question mark and a colon is assigned. If the
condition is false, the value after the colon is
assigned.

The line of code that uses the ternary operator in
resetDates() can be rewritten like this:

if (d <= num_days) {
 d = d;
} else {
 d = num_days;
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

68

Chapter 2	 Progressive Enhancement with HTML5 and CSS3

Finally, add the code to run the script:

 // run the script

 dateParts = initMenus();

 // set initial menu values to today and tomorrow

 setValues(dateParts, ‘arr’, new Date());

 setValues(dateParts, ‘dep’, new Date());

 // bind the resetDates function as the onchange

 //event handler to each select menu

 $(‘#arrival_date, #arrival_month, #arrival_year’)

 .change({dateParts: dateParts, menu: ‘arr’},

 Ê resetDates);

 $('#departure_date, #departure_month,

 Ê #departure_year')

 .change({dateParts: dateParts, menu: 'dep'},

 Ê resetDates);

});

This initializes the menus and sets the arrival and departure
dates to today and tomorrow, respectively. The resetDates()
function is then bound to each select menu as its onchange
event handler. The first argument to the jQuery change()
method is an object literal containing the values to be
passed to the resetDates() function. In both cases, the
dateParts object is assigned to a property of the same
name. The menu property for the arrival date menus is set
to ‘arr’, and for the departure date, it’s set to ‘dep’. As
you saw earlier, you access these values in resetDates()
through the data property of the event object.

Prior to version 1.4.3, the jQuery change() method does
not support passing an object literal as an argument. If
you’re using an earlier version of jQuery, you must use the
bind() method like this:

$(‘#arrival_date, #arrival_month, #arrival_year’)

 .bind(‘change’, {dateParts: dateParts, menu:

 Ê 'arr'}, resetDates);

$('#departure_date, #departure_month,

Ê #departure_year')

 .bind(‘change’, {dateParts: dateParts, menu:

 Ê 'dep'}, resetDates);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

69

II: HTML5 and CSS3

Even with all the comments, the script is a lightweight 5
KB. Contrast that with the jQuery UI Datepicker widget,
which is approximately 115 KB and consists of 16 files.
For desktop use, the widget is excellent. But for a site likely
to be accessed on mobile devices, the smaller the file size,
the better.

Validating the Adapted Pages

Dreamweaver CS5.5 restores the option to validate your
pages within the Document window. However, instead
of relying on its own validating tool, Dreamweaver now
uploads your files to the W3C validator.

To validate a page:

1.		 In the Document window, open one of the pages you
have edited.

2.		 Make sure you’re connected to the Internet, and
choose File > Validate > Validate Current Document
(W3C).

Dreamweaver displays an alert telling you that it will
send the document to the W3C validation service. If
you don’t want to see this every time you validate a
document, select the “Don’t show this dialog again”
check box.

3.		 Dreamweaver connects to the W3C and displays the
results in the W3C Validation tab of the Results panel
(Figure 2.28).

Figure 2.28  Confirmation that the
edited page is valid HTML5.

Adobe removed the internal
validator from Dreamweaver CS5
because it occasionally produced
inaccurate results. Because HTML5
is still evolving, it was decided
to entrust validation to the most
reliable source, the W3C. You must be
online to validate pages.

Server-side code, such as PHP or
ColdFusion, needs to be parsed
by a web server before it can be
submitted to the validator. Specify
a testing server in the Site Setup
dialog box, make sure the server is
running, and activate Live view. Then
choose File > Validate > Validate
Live Document (W3C). Validate
only complete pages, not individual
include files.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

70

Chapter 2	 Progressive Enhancement with HTML5 and CSS3

4.		 To test other pages, open the page first in the Document
window. You can then click the right-facing triangle at
the top left of the Results panel, and choose Validate
Current Document (W3C).

5.		 Test reservations.html. As Figure 2.29 shows, it fails vali-
dation because HTML5 doesn’t permit an empty value
for the action attribute in the opening <form> tag.

6.		 Double-click the error report or right-click and choose
Go to Line from the context menu. This takes you to
the line that needs to be edited.

7.		 Delete action=””, save the page, and revalidate it. This
time it passes without errors.

Sacrificing a Uniform Look

HTML5 and CSS3 often speed up development and result
in less code and use of decorative images. Smaller page
downloads are particularly important for sites that will be
viewed on mobile devices. Using CSS3 for rounded corners
and drop shadows means sacrificing those effects in earlier
browsers. But as long as you provide an acceptable basic
design for them, it’s a sacrifice worth making. Attempting
to make websites look identical in every browser makes
little sense when increasing numbers of people browse
the web on a variety of devices—a desktop in the office, a
smartphone while commuting, and a tablet at home.

To see what the Tozai Hotel website looks like after its
transformation with HTML5 and CSS3, view ch02/com-
plete in a variety of desktop browsers. The next chapter
takes the transformation further with the help of CSS
media queries to prepare the site for viewing on mobile
devices using different screen resolutions.

Figure 2.29  HTML5 doesn’t allow the
form action attribute to be empty.

The action attribute tells the
browser where to submit the
form for processing. If it’s missing,
the browser simply reloads the
page. A common technique with
a server-side language, such as
PHP, is to use what’s known as a
self-processing form. The processing
script is wrapped in a conditional
statement in a code block above the
DOCTYPE declaration, and it runs
when the page reloads. Processing
the contents of forms is beyond the
scope of this book. To learn about
processing forms with PHP, see my
book Dreamweaver CS5 with PHP:
Training from the Source (Adobe
Press, 2010).

The files in ch02/complete do not
include the Calluna Regular font.
You should download the font files
directly to obtain a personal license
to use them.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

chapter

3
Adapting Pages for Mobile

with Media Queries

http://lib.ommolketab.ir
http//lib.ommolketab.ir

72

Chapter 3	 Adapting Pages for Mobile with Media Queries

The great source of pleasure is variety. Uniformity
must tire at last, though it be uniformity of excellence.

—Samuel Johnson

Adapting Pages for Mobile with
Media Queries

The need for dedicated style sheets for mobile devices was
recognized as far back as 1997, when the HTML and CSS
specifications included handheld among the permitted
values for the media attribute. However, the specifications
describe handheld devices as “small screen, monochrome,
[and] limited bandwidth.” Apart from screen size, modern
smartphones and tablets frequently have capabilities that
rival and even surpass desktops. Fortunately, the W3C had
the foresight to establish rules for the way browsers should
handle the media attribute, paving the way for future exten-
sions. The result is the CSS3 Media Queries module, which
allows you to specify rules for different devices through
simple queries about the device’s features, such as screen
width, device width, color depth, and orientation.

The W3C began work on media queries in 2001, and the
specification has reached a high level of maturity and stabil-
ity. According to http://caniuse.com, all modern browsers,
including Internet Explorer (IE) 9, support media queries
(Figure 3.1). Perhaps most important of all, media queries
are well supported by iOS and Android. As a result, they’re
ideal for delivering different styles to smartphones and
tablets. The problem, as usual, is lack of support by IE 6–8,
but you can overcome this with a little planning.

In this chapter, you’ll learn how to use media queries to adapt
the styles for the Tozai Hotel website from Chapter 2 for
display on smartphones and tablets. Although Dreamweaver
provides the tools that assist in the process of designing
for devices with different screen resolutions, the success

http://caniuse.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

73

II: HTML5 and CSS3

of designing a site with media queries relies principally on
your knowledge of CSS.

Figure 3.1  Browser support for media queries.

The range of screen sizes on mobile devices is bewildering,
so your designs need to be flexible. Some devices automati-
cally reflow the layout when you switch from portrait to
landscape orientation and vice versa. Others preserve the
layout and scale the display. This involves testing the design
on as many mobile devices as possible, and inevitably leads
to some compromises. Don’t expect the redesign to be
a five-minute job. It’s a lot of work, but the result can be
very satisfying.

Let’s first take a look at how media queries work.

Understanding Media Queries

The media attribute lets you specify which types of devices
should use your style rules. For example, the screen media
type is intended primarily for color computer screens,
whereas print is intended for printers.

Media queries allow you not only to specify the media type,
but also to set conditions, such as minimum or maximum
screen width. Therefore, you can optimize your sites for
different devices, sending one set of style rules to desktop
computers and other rules to mobile phones and tablets.
You set the conditions using one or more of the media features

For a full list of media types
and their intended uses, see
www.w3.org/TR/CSS21/media.
html#media-types.

www.w3.org/TR/CSS21/media.html#media-types
www.w3.org/TR/CSS21/media.html#media-types
http://lib.ommolketab.ir
http//lib.ommolketab.ir

74

Chapter 3	 Adapting Pages for Mobile with Media Queries

listed in Table 3.1 to describe the characteristics of the
target devices.

Table 3.1  Media Features for Setting Conditions in Media Queries

Feature	 Value	M in/Max	 Description

width	 Length	 Yes	 Width of display area

height	 Length	 Yes	H eight of display area

device-width	 Length	 Yes	 Width of rendering area

device-height	 Length	 Yes	H eight of rendering area

orientation	 portrait or	 No	 Orientation of device
	 landscape

aspect-ratio	R atio	 Yes	R atio of width to height

device-aspect-ratio	R atio	 Yes	�R atio of device-width to device-height

color	 Integer	 Yes	� Number of bits per color component (if not
color, the value is 0)

color-index	 Integer	 Yes	� Number of entries in output device’s color
lookup table

monochrome	 Integer	 Yes	� Number of bits per pixel in the monochrome
frame buffer (if not monochrome, the
value is 0)

resolution	R esolution	 Yes	 Density of pixels of output device

scan	 progressive or	 No	 Scanning process used by TV devices
	 interlace	
	

grid	 0 or 1	 No	� If set to 1, this specifies that the device is
grid-based, such as a teletype terminal or a
phone display with only one fixed font (all
other devices are 0)

You can prefix most media features by min‑ or max‑ to
indicate minimum or maximum values. For example, in
addition to width, you can use min-width and max-width
to specify a condition. The Min/Max column in Table 3.1
indicates which media features you can prefix this way.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

75

II: HTML5 and CSS3

You specify the value for a media feature after a colon in
the same way you do for a CSS property. Each condition is
wrapped in parentheses and added to the media declara-
tion using the keyword and.

For example, the following media query targets visual dis-
plays with a minimum width of 361 pixels:

media=”screen and (min-width: 361px)”

To restrict the targeted devices to displays in the range of
361–768 pixels, add a second condition like this:

media=”screen and (min-width: 361px) and

Ê (max-width: 768px)”

Some media features, such as color, grid, and monochrome,
can be used as conditions without specifying a value. For
example, the following targets all color visual displays:

media=”screen and (color)”

Hiding Styles from Earlier Browsers

Browsers that don’t recognize media queries expect a comma-
separated list of media types, and the specifications say they
should truncate each value immediately before the first
nonalphanumeric character that isn’t a hyphen. So, with
all the examples in the preceding section, IE 6 and other
noncompliant browsers should simply see this:

media=”screen”

As a result, style rules intended for a particular type of
device should also be displayed by noncompliant browsers.
If you don’t want this to happen, precede the media type
with the keyword only like this:

media=”only screen and (min-width:361px) and

Ê (max-width:768px)”

Browsers that don’t recognize media queries should trun-
cate the value just before the first space like this:

media=”only”

In the Value column of Table 3.1,
length refers to a number followed
immediately by a unit of measure
valid in CSS, such as em or px.
Ratios are expressed as two integers
separated by a forward slash, for
example 16/9. The forward slash
can optionally be surrounded by
spaces. So, 16 / 9 is equally valid.
Resolution is expressed as an integer
immediately followed by dpi
(dots per inch) or dpcm (dots per
centimeter).

The full media queries specification
is at www.w3.org/TR/css3-
mediaqueries. It’s quite short and
easy to understand. It also contains
many examples.

www.w3.org/TR/css3-mediaqueries
www.w3.org/TR/css3-mediaqueries
http://lib.ommolketab.ir
http//lib.ommolketab.ir

76

Chapter 3	 Adapting Pages for Mobile with Media Queries

There is no only media type, so the style rules are completely
ignored by earlier browsers.

Unfortunately, IE 6–8 failed to implement the specification
correctly. If you have access to any of these versions of IE,
try the following experiment to see what happens when
they encounter a media query.

1.	 Open dining.html from your work folder in the
previous chapter (or use the file in the ch02/complete
folder) and switch to Code view or Split view.

2.	 In the <link> tag that attaches the style sheet, add a
media query like this (on line 6):

<link href=”styles/tozai.css” rel=”stylesheet”

Ê type="text/css" media=”screen and

Ê (min-width:768px)">

3.	 Save dining.html and view it in one of the browsers
listed in Figure 3.1 as supporting media queries. As
long as the viewport is at least 768 pixels wide, the page
remains fully styled. Figure 3.2 shows what it looks like
in Chrome.

4.	 Now view the same page in IE 6, IE 7, or IE 8. Although
browsers that don’t recognize media queries should
truncate the media attribute to media=”screen” and
apply the styles, the page is completely unstyled. Figure
3.3 shows the page in IE 7.

To ensure that your pages are styled in IE 6–8, you need to
create a basic style sheet that is processed by all browsers
and use media queries to override the styles for tablets and
mobile phones. Alternatively, use an IE conditional comment
to add a special style sheet for IE 6–8. Sometimes, a combi-
nation of both approaches is needed, as you’ll see later in
this chapter.

IE Conditional Comments

IE conditional comments are extremely useful for
hiding from other browsers code that you want
to be seen only by IE. For example, you can wrap a
link to an external style sheet in an IE conditional
comment to serve a special set of styles to specific
versions of IE. Although IE conditional comments
use proprietary Microsoft code, they’re wrapped in
standard HTML comment tags, so your code remains
valid and other browsers ignore them.

The basic structure of an IE conditional comment
looks like this:

<!--[if condition]>
Content seen only by IE
<![endif]-->

The condition is built using an optional
comparison operator followed by IE and an
optional version number. The main comparison
operators are

.	 lt (less than)

.	 lte (less than or equal to)

.	 gt (greater than)

.	 gte (greater than or equal to)

For example, the following IE conditional comment
applies to IE 8 and earlier:

<!--[if lte IE 8]>
Content seen by IE 6–8
<![endif]-->

All other browsers—including IE 9—ignore the
content inside the conditional comment.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

77

II: HTML5 and CSS3

Using Conditions with @media and @import

You can also make CSS @import and @media rules condi-
tional using the same media query syntax. For example,
the following @import rule loads the styles in phone.css
only if the display is no wider than 360 pixels:

@import url(“phone.css”) screen and (max-width:

Ê 360px);

Figure 3.2  The page displays as
expected in a browser that recognizes
media queries.

Figure 3.3  Prior to IE 9, media queries
result in IE completely ignoring the
style sheet.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

78

Chapter 3	 Adapting Pages for Mobile with Media Queries

To hide the same @import rule from browsers that don’t
recognize media queries, add the only keyword like this:

@import url(“phone.css”) only screen and

Ê (max-width:360px);

Inside a style sheet, you can use an @media rule to set condi-
tions for the use of certain style rules like this:

@media only screen and (max-width:360px) {

 #header h1 {

 font-size:36px;

 }

}

The style rule inside this @media block is applied only to
displays no wider than 360 pixels.

Specifying Width and Height

Dealing with width and height on mobile devices is like
stepping into a minefield. First of all, the media queries
specification draws a distinction between width and device‑
width, and similarly between height and device‑height.
According to the specification:

	.	 width and height are the dimensions of the viewport,
including any scrollbars.

	.	 device-width and device-height are the dimensions of
the screen.

In the case of desktop computers, this is an important dif-
ference, because not everyone runs a browser full screen.
When it comes to mobile devices, the distinction is less
clear. Mobile browsers fill the available screen, so it’s not
unreasonable to expect width and device‑width to have
the same meaning. Unfortunately, it’s not so simple.

Apple has created its own definition of the viewport on the
iPhone and iPod touch. Instead of regarding the viewport
as the visible area of the 320 × 480-pixel screen, Apple sets
it to a default width of 980 pixels. Consequently, if you
use width, min‑width, or max‑width in media queries, the
iPhone and iPod touch apply styles intended for a desktop

http://lib.ommolketab.ir
http//lib.ommolketab.ir

79

II: HTML5 and CSS3

version rather than those optimized for a mobile phone. The
result is impossible to read without rescaling (Figure 3.4).

Using the device‑width media features doesn’t really improve
the situation. The iPhone and iPod touch still treat the
viewport as 980 pixels wide. As a result, fluid layouts become
unacceptably stretched horizontally (Figure 3.5).

Fortunately, Apple has provided a simple solution: a new
<meta> tag to control the viewport. Many other mobile
phone manufacturers have adopted the viewport <meta>
tag; those that haven’t simply ignore it.

Using the viewport <meta> tag

To ensure that styles are applied correctly through media
queries, use the width, min‑width, and max‑width media
features rather than those related to device‑width, and
add the following code in the <head> of your web pages:

<meta name=”viewport” content=”width=

Ê device-width">

This constrains the viewport in compliant mobile devices
to the physical width of the screen (Figure 3.6).

Figure 3.5  Using a device‑width
media query still treats the viewport as
980 pixels wide.

Figure 3.6  The viewport <meta> tag
ensures that the styles are applied correctly.

Figure 3.4  An iPod touch displays the
desktop version instead of the styles
optimized for a mobile phone.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

80

Chapter 3	 Adapting Pages for Mobile with Media Queries

The content attribute in the viewport <meta> tag accepts a
comma-delimited list of properties. Table 3.2 lists the prop-
erties currently supported.

Table 3.2  Properties Supported by the Viewport <meta> Tag

Property	A ccepted Values	 Description

width	 Integer or device-width	�T his sets the width of the mobile viewport to
the specified number of pixels or to the width
of the device. When specifying an actual width,
the valid range is 200–10000.

height	 Integer or device-height	� On iOS, this sets the width of the viewport in
landscape orientation to the specified number
of pixels or to the height of the device. The
valid range is 223–10000.

initial-scale	 Number with decimal fraction	�T his sets the initial scaling factor of the dis-
play. The range is determined by the mini-
mum‑scale and maximum‑scale properties.

minimum-scale	 Number with decimal fraction	�T he valid range is any number above zero to
10.0. The default is 0.25.

maximum-scale	 Number with decimal fraction	�T he valid range is any number above zero to
10.0. The default is 1.6.

user-scalable	 yes or no	�T his determines whether the user can zoom
the display in and out. The default is yes.

The following <meta> tag sets the viewport to 768 pixels
and turns off the user’s ability to zoom in and out:

<meta name=”viewport” content=”width=768,

Ê user-scalable=no">

What might come as a surprise is that the iPhone, iPod
touch, and iPad use device-height to set the width of the
viewport in landscape orientation. This is different from
most other devices.

For a detailed explanation of
the viewport <meta> tag, see
http://developer.apple.com/
library/safari/#documentation/
AppleApplications/Reference/
SafariWebContent/UsingtheViewport/
UsingtheViewport.html.

http://developer.apple.com/library/safari/#documentation/AppleApplications/Reference/SafariWebContent/UsingtheViewport/UsingtheViewport.html
http://developer.apple.com/library/safari/#documentation/AppleApplications/Reference/SafariWebContent/UsingtheViewport/UsingtheViewport.html
http://developer.apple.com/library/safari/#documentation/AppleApplications/Reference/SafariWebContent/UsingtheViewport/UsingtheViewport.html
http://developer.apple.com/library/safari/#documentation/AppleApplications/Reference/SafariWebContent/UsingtheViewport/UsingtheViewport.html
http://developer.apple.com/library/safari/#documentation/AppleApplications/Reference/SafariWebContent/UsingtheViewport/UsingtheViewport.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

81

II: HTML5 and CSS3

Width and orientation

A simple way to check the width of a display is to add the
following JavaScript to a web page:

<script>

alert(screen.width);

</script>

When you load the page in a mobile device, the script
displays an alert with the screen width in pixels. On an
iPhone, iPod touch, or iPad, it doesn’t matter whether
you’re holding the device in portrait or landscape orienta-
tion; the result is always the same: Width is always reported
as the width in portrait orientation. By contrast, Android
and BlackBerry devices take orientation into account when
reporting width. This affects the way media queries are
interpreted:

	.	 On iOS, media queries based on width-related media
features are always applied on the basis of the width in
portrait orientation. When the user switches to landscape
orientation, the display is scaled up to fit the screen.

	.	 Android and BlackBerry (and probably other) devices
consider width to be the horizontal axis of the current
orientation.

Another complication is that the media queries specification
states that “user agents are expected, but not required, to
re-evaluate and re-layout the page . . . if the device is tilted
from landscape to portrait mode.” In my experiments, the
Samsung Galaxy Tab is particularly bad at responding to
changes in orientation, but the HTC Desire smartphone
responds immediately. Because both are running Android
2.2, the difference is device-specific, not related to the
operating system.

This poses design problems, because the Galaxy Tab’s 400
× 683 screen is more suited to a phone layout in portrait
orientation. But the physical dimensions (4.8 × 7.4 inches
or 11.8 × 18.7 centimeters) demand a tablet layout in land-
scape orientation. The HTC Desire’s 320 × 533 screen also
requires different portrait and landscape layouts. But in

http://lib.ommolketab.ir
http//lib.ommolketab.ir

82

Chapter 3	 Adapting Pages for Mobile with Media Queries

landscape orientation, it’s considerably smaller than a tablet.
Instead of just “one size fits all” for phones and tablets, you
need to tailor some rules for a wide range of sizes.

Adapting the Tozai Hotel Site

To display a website successfully on a range of devices, you
need to create separate styles for at least these categories:

	.	 Mobile phones. There’s a wide range of screen sizes,
but 320 pixels seems to be the most common among
modern smartphones. However, the BlackBerry Torch
screen is 360 pixels wide, and the Samsung Galaxy Tab
is only 400 pixels wide in portrait orientation.

	.	 Tablets. Again, there’s a great deal of variety, but the
iPad’s 768-pixel width is probably a good choice for the
maximum limit. This set of rules applies to all devices
wider than a mobile phone but no wider than 768
pixels.

	.	 Desktops. These rules apply to any device wider than 768
pixels.

Organizing the Style Rules

Opinions differ on how to organize rules for use with media
queries. The three main approaches available include:

	.	 	Full style sheet for each type of target device. Link to each
one with a media query. The advantage is that each set
of rules is independent from the rest. The disadvantage
is that if you make a change that should be applied
globally, such as background color or font size, you
need to make the same changes to each style sheet.

	.	 Common style sheet plus specific overrides. Locate all basic
rules in a common style sheet, and then use media que-
ries to attach separate style sheets to override only those
rules that need to be different for specific types of
device. This approach is more efficient, but it requires a
strong understanding of the cascade.

Categorizing style rules for each
group of devices—phones, tablets,
and desktops—is merely a conveni-
ence. As long as the browser recognizes
media queries, the rules are applied
according to the width of the
viewport, not the type of device.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

83

II: HTML5 and CSS3

	.	 Single style sheet with @media rules. Locate all rules in a
single style sheet and use media queries in @media rules
to target different devices. This reduces the number of
server requests, but it results in mobile phones need-
lessly downloading the styles aimed exclusively at tablets
and desktops. It also results in a long style sheet, which
can be hard to maintain.

My preferred approach is a combination of the last two.
I create a basic style sheet that is served to all browsers
regardless of whether they recognize media queries. The
rules for tablets and mobile phones are located in sepa-
rate style sheets, but I also use @media rules within those
files to handle special cases, such as phones that are wider
than average but too small to be considered tablets. This
keeps the style sheets relatively short and simple to main-
tain. Switching between style sheets is also easy thanks to
Dreamweaver’s Related Files toolbar.

An important consideration when planning to use media
queries is how to handle images. Inline images—in other
words, those embedded in the HTML with tags—
cannot be controlled by media queries. They are automati-
cally downloaded by all devices, even if you create a style
rule setting the display property to none. So, it’s important
for inline images to be an integral part of the content, not
just used for decoration.

One way to control the size of inline images on different
size screens is to remove the height attribute from the HTML
 tag and to use CSS to override the width. It’s a rela-
tively crude, yet effective method.

Purely decorative images should be served as background
images. Because background images are part of CSS, you
can use media queries to serve optimized versions for dif-
ferent screen widths. However, printers ignore background
images. So, if you expect your pages to be printed, use
 tags for important images.

The display Property

The CSS display property tells the browser how
to treat an element within the flow of a document.
When its value is set to none, the element is
removed completely from the page, and subsequent
elements move up to fill the empty space. However,
don’t be fooled into thinking that setting display
to none prevents the element from being
downloaded. The element is still there; it’s just not
displayed.

This behavior has important implications for
background images, which often need to be created
in a range of sizes to match the target screen width.
To prevent devices from downloading images they
don’t need, you should specify the appropriate
background images for each type of device within
style rules controlled by a media query.

In an ideal world, you should be able
to serve inline images optimized
for each type of device. A Boston-
based design agency, Filament
Group, has developed a technique
called context-aware image sizing,
which serves the smallest-size
image by default and dynamically
replaces it with a larger image,
depending on the screen size. For
details, see http://filamentgroup.
com/lab/responsive_images_
experimenting_with_context_
aware_image_sizing.

http://filamentgroup.com/lab/responsive_images_experimenting_with_context_aware_image_sizing
http://filamentgroup.com/lab/responsive_images_experimenting_with_context_aware_image_sizing
http://filamentgroup.com/lab/responsive_images_experimenting_with_context_aware_image_sizing
http://filamentgroup.com/lab/responsive_images_experimenting_with_context_aware_image_sizing
http://lib.ommolketab.ir
http//lib.ommolketab.ir

84

Chapter 3	 Adapting Pages for Mobile with Media Queries

The following style sheets adapt the Tozai Hotel site for
display on multiple devices:

	.	 tozai.css. This is the existing style sheet, which is served
to all browsers, ensuring that the site remains styled
even in browsers that don’t recognize media queries.
Most styles remain unchanged, but background images
are moved to other style sheets to prevent mobile
devices from downloading unnecessary images.

	.	 phone.css. Most styles in this style sheet are targeted at
screens with a maximum width of 320 pixels. However,
alternate styles for screens up to 400 pixels are wrapped
in @media rules.

	.	 tablet.css. This style sheet contains rules for screen
widths in the range of 401–768 pixels. Alternate styles
for screens narrower than 680 pixels are wrapped
in @media rules.

	.	 desktop.css. This style sheet contains the background
image styles from tozai.css, plus any rules designed to
deal with bugs in IE 6–8. A media query serves this file
to screens wider than 769 pixels. However, the style
sheet also needs to be served to IE 6–8 through an IE
conditional comment.

To attach these style sheets with media queries, you’ll use
Dreamweaver CS5.5 to create a site-wide media queries file.

Creating a Site-wide Media Queries File

The 11.0.3 updater for Dreamweaver CS5 provided the
ability to attach up to three style sheets to a page with
media queries. In Dreamweaver CS5.5, this functionality
has been considerably enhanced:

	.	 You can add more than three media queries.

	.	 You can add media queries to the current document or
to a site-wide media queries file.

	.	 An option to insert the viewport <meta> tag is available.

@import

You can attach an external style sheet in two
ways: with the HTML <link> tag or with a CSS
@import rule. As the name suggests, an @import
rule imports the styles from another location. For
example, the following line imports the styles from
tablet.css:

@import url(“tablet.css”);

Because they’re part of CSS, @import rules can be
used only inside a <style> block or an external
style sheet. They must come before other style rules
in the same file or <style> block. Otherwise,
the import fails. Consequently, imported styles are
higher up the cascade and can be overridden by
subsequent rules.

Browsers treat the style rules exactly the same
regardless of whether <link> or @import is
used to attach style sheets. In the past, @import
was used mainly to hide style rules from Netscape 4
because it supported only <link>. However,
all current browsers, including IE 6–8, support
@import rules.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

85

II: HTML5 and CSS3

The role of the site-wide media queries file is to import
styles from other style sheets using a series of @import rules
and media queries. This avoids the need to link to each
style sheet with media queries in every page. You just link
to the site-wide media queries file, and it imports the rel-
evant style rules. If you find the concept difficult to grasp,
it should become clear once you have used it.

There are four ways to open the Media Queries dialog box:

	.	 Click the Multiscreen button in the Document toolbar
to open the Multiscreen Preview panel, and then click
the Media Queries button at the top right of the panel.

	.	 Choose Modify > Media Queries.

	.	 Right-click in the CSS Styles panel, and choose Media
Queries from the context menu.

	.	 Click the icon at the top right of the CSS Styles
panel to open the panel menu, and then choose
Media Queries.

Using the Media Queries dialog box

The following instructions describe how to prepare the
Tozai Hotel site for use with media queries:

1.	 Open index.html from the work files from the previous
chapter. Alternatively, copy ch02/complete to a
working folder and open index.html.

2.	 Detach the tozai.css style sheet from the page. You can
do this by deleting the <link> tag on line 6 in Code
view.

Alternatively, open the CSS Styles panel, click the All
button at the top left, and select tozai.css in the All
Rules pane. Then click the icon at the bottom right
of the panel (Figure 3.7), or right-click and choose
Delete from the context menu.

3.	 The page is now completely unstyled, but the styles will
be restored by linking a site-wide media query file to it.
Choose Modify > Media Queries or use one of the other
methods outlined earlier to open the Media Queries
dialog box (Figure 3.8).

For licensing reasons, the ch02/
complete folder does not contain
the Calluna Regular font files. See
“Embedding a Font with @font-face”
in Chapter 2 for details on how to
obtain them.

Figure 3.7  Click the trash can icon to unlink the
style sheet.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

86

Chapter 3	 Adapting Pages for Mobile with Media Queries

4.	 In the section at the top of the dialog box, select the
“Site-wide media queries file” radio button, and click
the Specify button.

5.	 In the Specify Site-wide Media Query File dialog box,
choose “Create new file” from the CSS File menu, and
click the icon next to the text field.

6.	 Navigate to the styles folder in your work files, type
tozai_mq.css in the “File name” field, and click Save.
This returns you to the Specify Site-wide Media Query
File dialog box, which should now look like Figure 3.9.

Figure 3.8  The Media Queries dialog
box has options to create site-wide
media queries or media queries for
only the current document.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

87

II: HTML5 and CSS3

7.	 Click OK to close the Specify Site-wide Media Query
File dialog box. Although nothing appears to happen,
tozai_mq.css is now listed as the file that media queries
will be written to (Figure 3.10).

8.	 As Figure 3.10 shows, the “Force devices to report
actual width” check box is selected by default. This
automatically inserts the viewport <meta> tag into each
page attached to the site-wide media queries file and
sets the width value to device-width. This is what you
want, so leave the check box selected.

9.	 The bottom half of the Media Queries dialog box is
where you specify which style sheets to attach with
media queries. You can do this manually by clicking
the icon and filling in the fields at the bottom of the
dialog box.

However, it’s much quicker to click the Default Presets
button, which populates the area at the bottom of the
dialog box with suggested values for mobile phones,
tablets, and desktops (Figure 3.11).

Figure 3.9  Creating a new site-wide
media query file.

Figure 3.10  Setting up a site-wide
media queries file disables the option
to write media queries to the current
document.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

88

Chapter 3	 Adapting Pages for Mobile with Media Queries

10.	The Properties section at the bottom of the dialog
box lets you change the description and the min‑ and
max‑width settings, as well as specify the CSS file to use.

With Phone selected, change the value in the Max
Width field from 320 to 400.

11.	Click the icon next to the CSS File field, and create a
new CSS file called phone.css in the styles folder in the
same way as you created tozai_mq.css in step 6.

12.	Select Tablet, and change Min Width from 321 to 401.
Then create a new CSS file called tablet.css.

13.	Select Desktop. Leave Min Width and Max Width at
their default values, and create a new CSS file called
desktop.css.

The values at the bottom of the dialog box should now
look like Figure 3.12.

Figure 3.11  The default presets
speed up the creation of media
queries.

Figure 3.12  The default presets have
now been edited.

When you navigate to the styles
folder, don’t worry if tozai_mq.css or
the new CSS files you create aren’t
listed. Dreamweaver creates the
new files when you finally close the
Media Queries dialog box.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

89

II: HTML5 and CSS3

14.	Click OK to close the Media Queries dialog box.

15.	Select tozai_mq.css in the Related Files toolbar. It
should contain the following code:

/* Phone */

@import url(“phone.css”) only screen and

Ê (max-width:400px);

/* Tablet */

@import url("tablet.css") only screen and

Ê (min-width:401px) and (max-width:768px);

/* Desktop */

@import url("desktop.css") only screen and

Ê (min-width:769px);

At the moment, the imported style sheets are empty.
But browsers that recognize media queries will import
the rules in phone.css only if they detect a screen no
wider than 400 pixels. Similarly, the rules in tablet.css
will be imported only if the screen width is in the range
of 401–768 pixels, and those in desktop.css only if the
screen is wider than 769 pixels.

16.	The page is still unstyled. You need to import the
original style sheet, tozai.css, without a media query.
Because the style sheets controlled by media queries
use the cascade to override the basic styles, tozai.css
must be imported first. Add it to the top of tozai_mq.css
like this:

/* Basic styles */

@import url(“tozai.css”);

/* Phone */

@import url(“phone.css”) only screen and

Ê (max-width:400px);

17.	Click in Design view. The original styles are restored.

18.	Choose File > Save All Related Files to save the changes
to index.html and the new style sheets.

The CSS comments in the media
queries file are derived from the
Description fields in the Media
Queries dialog box.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

90

Chapter 3	 Adapting Pages for Mobile with Media Queries

19.	Inspect the changes that have been made to the <head>
of the page in Code view:

<head>

<meta charset=”utf-8”>

<meta name=”viewport” content=”width=

Ê device-width">

<title>Tozai Hotel: Home</title>

<link href=”styles/tozai_mq.css”

Ê rel="stylesheet" type="text/css">

</head>

The viewport <meta> tag forces mobile devices to use
the actual screen width rather than a notional viewport
when implementing media queries. An ordinary
<link> attaches the site-wide media queries file to the
page. This ensures that tozai_mq.css is accessed by all
browsers, allowing IE 6–8 to read the styles in tozai.css
but not in any of the other style sheets that use media
queries. You’ll add a link to desktop.css in an IE
conditional comment later.

Attaching the site-wide media queries file to other pages

After you have created a site-wide media queries file,
Dreamweaver remembers the details, simplifying the pro-
cess of adding the viewport <meta> tag and attaching the
file to other pages.

1.	 Open dining.html in the Document window, and
detach tozai.css in the same way as in step 2 of the
preceding section.

2.	 Choose Modify > Media Queries or one of the other
methods of opening the Media Queries dialog box.

3.	 Select the “Site-wide media queries file” radio button,
and click OK.

4.	 Repeat steps 1–3 in garden.html, reservations.html, and
rooms.html.

5.	 Choose File > Save All.

If you modify any settings in the
bottom half of the Media Queries
dialog box, the site-wide media
queries file is updated and the
changes are applied to all pages
attached to it. You can have only
one site-wide media queries file
in each site. If you want to attach
alternative media queries files to
different parts of a site, you need to
do so manually.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

91

II: HTML5 and CSS3

Hiding the Desktop Background Images from
Mobile Devices

The style rules for mobile phones omit most background
images, and tablets often use smaller versions. So, it’s
necessary to move the background image styles rules to
desktop.css to prevent them from being downloaded by
devices that won’t display them.

It’s also a good idea to hide the embedded fonts from
mobile phones. They increase the amount of data that
needs to be downloaded and add very little to the site
when viewed on a small screen.

1.	 With one of the Tozai Hotel site’s pages open in the
Document window, click tozai.css in the Related Files
toolbar to open the style sheet in Split view.

2.	 Select the @font-face rule at the top of tozai.css
(Figure 3.13), and cut it to your clipboard.

Figure 3.13  Preparing to move the @font-face rule.

3.	 Switch to desktop.css by selecting it in the Related
Files toolbar, and paste the @font-face rule into the
style sheet.

Using the Related Files toolbar
allows you to switch quickly
between style sheets, make changes,
and see the results in Design view
or Live view.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

92

Chapter 3	 Adapting Pages for Mobile with Media Queries

4.	 Switch back to tozai.css, and scroll down to the #wrapper
style rule (around lines 12–20), which looks like this:

#wrapper {

 width: 980px;

 margin: 0 auto;

 background-image: url(../images/

 Ê basin_bg.jpg);

 background-repeat: no-repeat;

 background-color: #B4C4BA;

 border-left: #594431 solid 1px;

 border-right: #594431 solid 1px;

}

5.	 Select the line that defines the background-image
property (highlighted in the preceding step), and cut it
to your clipboard. It’s only the image that you want to
hide from mobile phones and tablets, so leave the other
background properties untouched.

6.	 Switch to desktop.css, create a style block for #wrapper,
and paste the background-image property inside:

#wrapper {

 background-image:url(../images/

 Ê basin_bg.jpg);

}

7.	 Repeat steps 4–6 for the background-image property
in the #hero style rule using #hero as the ID selector in
desktop.css.

8.	 The background image in the #dining style rule is used
in all layouts, so leave it untouched.

9.	 Locate the #sake style rule in tozai.css. It should now be
around lines 161–166 and looks like this:

#sake {

 background-image:url(../images/sake.jpg);

 background-repeat:no-repeat;

 background-position:bottom;

 padding-bottom:140px;

}

As you switch from tozai.css to
desktop.css after cutting the
background-image property,
you’ll see the background image
disappear from the top of the page
in Design view. When you have
created the new rule in desktop.
css, click in Design view to refresh it.
The background image is restored.
Keeping an eye on Design view is
a good way to check the effect of
your edits.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

93

II: HTML5 and CSS3

This displays a background image at the bottom of the
sidebar in dining.html (Figure 3.14).

The design for tablets moves the sidebar below the
main content and displays a different background
image next to the sidebar text (Figure 3.15).

Because the tablet layout is completely different and
no background image is used for mobile phones, cut
the entire #sake rule from tozai.css and paste it in
desktop.css.

Figure 3.15  In the tablet layout, the background image and its position are
different.

10.	There’s one more background image—in the #blossom
style rule. It’s purely decorative, but it’s only 8 KB. The
same image is used in all layouts, so leave the #blossom
style rule as it is.

11.	Choose File > Save All Related Files to save your changes.

Figure 3.14  In the desktop
layout, the background image is
at the bottom of the sidebar.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

94

Chapter 3	 Adapting Pages for Mobile with Media Queries

12.	The contents of desktop.css should now look like this:

@charset “utf-8”;

@font-face {

 /* A font by Jos Buivenga (exljbris) ->

 Ê www.exljbris.com */

 font-family: 'CallunaRegular';

 src: url('../fonts/Calluna-Regular-webfont

 Ê .eot') format('eot');

 src: url('../fonts/Calluna-Regular-webfont

 Ê .eot?iefix') format('eot'),

 url('../fonts/Calluna-Regular-webfont

 Ê .woff') format('woff'),

 url('../fonts/Calluna-Regular-webfont

 Ê .ttf') format('truetype'),

 url('../fonts/Calluna-Regular-webfont

 Ê .svg#webfontrsodunSr') format('svg');

}

#wrapper {

 background-image:url(../images/basin_bg

 Ê .jpg);

}

#hero {

 background-image: url(../images/exterior

 Ê .jpg);

}

#sake {

 background-image:url(../images/sake.jpg);

 background-repeat:no-repeat;

 background-position:bottom;

 padding-bottom:140px;

}

13.	Activate Live view. With a full-size screen, you should
see all background images.

14.	Click the down arrow to the right of the Multiscreen
button in the Document toolbar and choose Tablet
from the list of screen sizes. Alternatively, click the
window size in the status bar at the bottom right of the
Document window, and choose Tablet (Figure 3.16).
The background images, apart from chef.jpg and
blossom.jpg, are hidden.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

95

II: HTML5 and CSS3

Figure 3.16  Changing the size of the Document window viewport confirms
that the background images are hidden from tablets.

15.	Choose 320 × 480 Smart Phone from the list of screen
sizes and verify that the background images are still
not displayed.

Serving desktop.css to IE 6–8

Although the media queries file hides desktop.css from
devices with screens less than 769 pixels wide, IE 6–8 can’t
see it either. So, you need to attach desktop.css to each
page in the normal way and wrap the <link> in an IE
conditional comment. The Dreamweaver Snippets panel
doesn’t have a conditional comment that covers all three
versions of IE, but it takes only a few moments to adapt an
existing snippet.

1.	 Exit Live view, if necessary, and choose Format > CSS
Styles > Attach Style Sheet.

2.	 Click the Browse button, select desktop.css in the styles
folder, and click OK (Choose on a Mac).

As with most features, Dreamweaver
offers several different ways to
attach an external style sheet. I have
listed only one for brevity.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

96

Chapter 3	 Adapting Pages for Mobile with Media Queries

3.	 Select the Link radio button (it’s the default), and
click OK.

4.	 Open Split view. You should see the new <link>
immediately before the closing </head> tag:

<link href=”styles/tozai_mq.css”

Ê rel="stylesheet" type="text/css">

<link href=”styles/desktop.css”

Ê rel="stylesheet" type="text/css">

</head>

5.	 Open the Snippets panel by choosing Window >
Snippets. On Windows, you can also press Shift+F9, but
there is no keyboard shortcut on a Mac.

6.	 Expand the Comments folder in the Snippets panel,
and select If Less Than IE 8 Conditional Comment
(Figure 3.17).

7.	 Click the icon at the bottom right of the panel to
open the snippet for editing.

8.	 Amend the text in the Name field to Less Than or
Equal to IE 8 Conditional Comment.

9.	 (Optional) Update the Description field to indicate
that the browser version is less than or equal to Internet
Explorer 8.

10.	Amend the code in the “Insert before” block like this:

<!--[if lte IE 8]>

The settings in the Snippet dialog box should look like
Figure 3.18.

11.	Click OK to save the changes.

12.	In Code view, select the <link> to desktop.css. Make
sure the entire tag is selected.

Figure 3.17  The Snippets panel contains
commonly used IE conditional comments.

Even though you no longer have a
snippet for less than IE 8, the Less
Than or Equal to IE 7 Conditional
Comment snippet serves exactly the
same purpose.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

97

II: HTML5 and CSS3

13.	The edited snippet should still be selected in the
Snippets panel. If not, select it before clicking the
Insert button at the bottom left of the panel.

The <link> should now be wrapped in an IE
conditional comment like this:

<!--[if lte IE 8]>

<link href=”styles/desktop.css”

Ê rel="stylesheet" type="text/css">

<![endif]-->

14.	Copy and paste the IE conditional comment and <link>
into the other pages in the same location. Then save
all files.

It’s a nuisance having to attach desktop.css twice like this,
but it’s essential to prevent files from being downloaded
unnecessarily by mobile devices. Although desktop.css is
attached twice, browsers download it only once. Those
browsers that recognize media queries import desktop.css
through the site-wide media queries file. Only IE 6–8 use
the <link> you just wrapped in a conditional comment.

Figure 3.18  Editing the snippet.

Because IE conditional comments
are wrapped in standard HTML
comment tags, they are grayed out
in Code view, and any content is
ignored by Design view and Live view.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

98

Chapter 3	 Adapting Pages for Mobile with Media Queries

Creating the Styles for Tablets

The wide range of screen sizes in tablet devices poses con-
siderable problems for designing a suitable layout. In portrait
orientation, some tablets are barely wider than the average
smartphone. But in landscape orientation, they all offer
considerably more space. My strategy is to adapt the desk-
top design to fit the 768-pixel width of an iPad screen and
then add supplementary @media rules to adjust the display
for narrower screens.

In the Tozai Hotel site, dining.html, garden.html, and
reservations.html all consist of a main content section with
a sidebar on the right (Figure 3.19). To adapt the layout to
increasingly narrower screens, the sidebar is moved below
the main content and displayed full width (Figure 3.20).

In my experiments, I found that the iPad handled embed-
ded fonts without difficulty, but the Samsung Galaxy Tab
and HTC Desire failed to render them correctly. So, I
decided to use an @media rule to limit the use of embedded
fonts to screens at least 700 pixels wide. This is far from
ideal, but media queries handle only the media features
listed in Table 3.1. They can’t identify individual devices or
the level of support they offer for fonts.

Figure 3.19  Several pages in the
desktop version consist of main
content and a sidebar.

Figure 3.20  The sidebar is moved down and
displayed full width in the tablet layout.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

99

II: HTML5 and CSS3

Creating the basic rules for tablets

The following instructions describe the style rules aimed
at tablets and explain their purpose. To avoid lengthy
descriptions, I show only the finished CSS code as seen in
Split view. Choose your own preferred method of generat-
ing the rules.

1.	 Open index.html in the Document window, and click
the down arrow to the right of the Multiscreen button
to display the list of screen sizes. Choose 768 × 1024
Tablet, and activate Live view. This enables you to
follow the effect of the changes as you progress.

2.	 Copy the @font-face rule from desktop.css to tablet.css:

@font-face {

/* A font by Jos Buivenga (exljbris) ->

 www.exljbris.com */

font-family: ‘CallunaRegular’;

src: url(‘../fonts/Calluna-Regular-webfont

 Ê .eot') format('eot');

src: url(‘../fonts/Calluna-Regular-webfont

 Ê .eot?iefix') format('eot'),

 url(‘../fonts/calluna-regular-webfont

 Ê .woff') format('woff'),

 url('../fonts/calluna-regular-webfont

 Ê .ttf') format('truetype'),

 url('../fonts/calluna-regular-webfont

 Ê .svg#webfontrsodunSr') format('svg');

}

3.	 The .eot font format is used only by IE 6–8, so you can
delete both references to it. Then wrap the @font-face
rule in an @media rule to apply it only to devices with a
minimum screen width of 700 pixels.

@media screen and (min-width: 700px) {

 @font-face {

 /* A font by Jos Buivenga (exljbris) ->

 www.exljbris.com */

 font-family: ‘CallunaRegular’;

 src: url(‘../fonts/calluna-regular-webfont

 Ê .woff') format('woff'),

To refresh Live view after you edit
the style rules, click inside the
Document window or press F5. There
is no need to save the style sheet
between each change, although it’s
a good idea to save your changes
periodically.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

100

Chapter 3	 Adapting Pages for Mobile with Media Queries

 url('../fonts/calluna-regular-webfont

 Ê .ttf') format('truetype'),

 url('../fonts/calluna-regular-webfont

 Ê .svg#webfontrsodunSr')

 Ê format('svg');

 }

}

4.	 The desktop design is based on a 980-pixel fixed-width
wrapper <div>. However, the tablet layout needs to
be flexible. So, I changed width to 100%, but also set
the max-width property to 700px, the same width as a
smaller version of the background image. The #wrapper
style rule looks like this:

#wrapper {

 width: 100%;

 max-width: 700px;

 background-image: url(../images/

 Ê basin_bg_tab.jpg);

 background-size: contain;

}

The most interesting aspect of this style rule is the
use of the CSS3 background-size property. By setting
its value to contain, the background image scales in
proportion to the page width.

5.	 The main heading and navigation menu need to be
made smaller and repositioned to fit the narrower
space. Add the following style rules to tablet.css:

#header h1 {

 font-size: 58px;

 text-align: center;

 padding-left: 0;

 padding-top: 10px;

 margin-bottom: 0px;

}

#nav {

 width: 660px;

 margin-left: auto;

 margin-right: auto;

}

The background-size Property

The background-size property allows you to
scale a background image. It accepts the following
values:

.	 Physical measurements, such as px, or
percentages. If two values are given, the first
controls the width and the second controls the
height. If only one value is given, it controls only
the width, and the image’s original height is
preserved.

.	 The keywords contain or cover.

The keywords preserve the image’s aspect ratio
while stretching or shrinking it. The difference is
that contain scales the image to the largest size
to fit the background, whereas cover scales it to
the smallest size needed. If the background image
is smaller than the element, use cover to fill the
whole background.

The property is supported by IE 9, Firefox 4, Safari
5, Chrome 4, and Opera 10.53. Earlier browsers
ignore it.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

101

II: HTML5 and CSS3

#nav li a {

 width: 120px;

 padding: 10px 5px;

}

The main heading is kept centered at all screen widths
by zeroing the left padding and setting text‑align to
center. The navigation menu is also centered by giving
the #nav style rule a fixed width of 660px and setting
the horizontal margins to auto. These values will be
overridden later by @media rules for smaller screens.

6.	 The style rules for the hero <div> in the desktop
version have a fixed width. You need to override this by
setting the width property to auto, leaving the left and
right margins to control the overall width. The #hero
rule in tozai.css also contains a fixed height for the
benefit of IE 6 and min-height for other browsers. Both
values need to be reset. The other changes substitute
a smaller version of the background image and
reposition it in relation to the text.

#hero {

 margin-right: 10px;

 margin-left: 10px;

 padding-right: 15px;

 padding-left: 15px;

 width: auto;

 height: auto;

 min-height: 279px;

 background-image: url(../images/

 Ê exterior_tab.jpg);

 background-position: 265px;

}

#hero p {

 padding-right: 410px;

}

#hero h2 {

 padding-right: 0;

}

The width of the navigation menu
is calculated by adding the width
of #nav li a (120px) plus 5px
of horizontal padding and 1px of
horizontal margin on each side. The
horizontal margin is inherited from
tozai.css. The final width calculation
looks like this: (120+5+5+1+1) ×
5 = 660.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

102

Chapter 3	 Adapting Pages for Mobile with Media Queries

When you refresh Live view, index.html should look
like Figure 3.21. The changes so far simply rescale the
design to fit within a narrower screen.

7.	 Open rooms.html, set the Document window viewport
to the tablet size, and activate Live view. The page
doesn’t look too bad as it is, although the image of the
bedroom is too big and slightly off center (Figure 3.22).

The design won’t hold together on a tablet with a
smaller screen. So, you need to make some changes.
Add the following style rules to tablet.css:

.content-wide {

 margin-right: 15px;

 margin-left: 15px;

 padding-right: 10px;

 padding-left: 10px;

}

.floatright.img-large {

 width: 450px;

}

Figure 3.21  The styles preserve the
original layout within the constraints
of a tablet screen.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

103

II: HTML5 and CSS3

This slightly changes the horizontal margins and pad-
ding for the content‑wide class for the main content.
The image of the bedroom has the floatright and
img‑large classes applied to it, so the compound
selector overrides the width in the HTML markup and
resets it to 450 pixels.

8.	 When you refresh Live view, the text wraps around the
smaller image, but the image is distorted because its
height is hard-coded in the HTML.

Exit Live view, select the image in the Document
window, and delete the height in the Property inspector
(circled in Figure 3.23).

Figure 3.22  The image looks out of
proportion with the rest of the page.

Figure 3.23  To prevent the image
from being distorted, you need to
delete its height in the underlying
HTML.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

104

Chapter 3	 Adapting Pages for Mobile with Media Queries

9.	 Reactivate Live view. The image should now be in
proportion.

10.	Save rooms.html, and then open dining.html in the
Document window. This page contains two inline
images, sashimi.jpg and sushi.jpg. Select each one in
turn and delete its height in the Property inspector.

11.	In the desktop layout, the main content is styled with
the class content‑medium, whereas the sidebar uses the
class aside. The sidebar has a 720-pixel left margin into
which the main content is floated left. To stack the two
elements vertically, you need to cancel the float, set the
main content’s width to auto, and adjust the margins
and padding like this:

.content-medium {

 float: none;

 width: auto;

}

.aside {

 margin-left: auto;

}

.content-medium, .aside {

 margin-right: 15px;

 margin-left: 15px;

 padding-right: 10px;

 padding-left: 10px;

}

 12.	When you refresh Live view, you should immediately
spot a problem. The main content’s background
disappears, and the margins and padding aren’t
applied (Figure 3.24).

Figure 3.24  Removing the float from
the main content also affects the
background.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

105

II: HTML5 and CSS3

The clue lies in the lack of margins and padding.
Switch to tozai.css, and locate the .content‑medium style
rule (around lines 143–148), which looks like this:

.content-medium {

 float: left;

 width: 640px;

 margin-top: 5px;

 display: inline; /* Fixes double-margin

 bug in IE 6 & 7 */

}

When the <div> was floated, setting its display property
to inline fixed a bug in IE 6–7 without affecting other
browsers adversely. But now that the <div> is no longer
floated, it destroys the layout for mobile devices.

13.	Cut the line highlighted in the preceding step, and
paste it into desktop.css to create a new rule for the
content‑medium class like this:

.content-medium {

 display: inline; /* Fixes double-margin

 bug in IE 6 & 7 */

}

The background and margins now display correctly
because desktop.css is read only by screens wider than
768 pixels.

14.	In the desktop version, a background image is at the
bottom of the sidebar in dining.html. Now that the
sidebar is displayed the full width of the content area,
you need a different approach. Add the following rules
to tablet.css:

#sake {

 background-position: 440px bottom;

 background-repeat: no-repeat;

 background-image: url(../images/

 Ê sake_tab.jpg);

}

#sake p {

 max-width: 400px;

}

The IE Double-margin Bug

When you add a margin to an element and float it
to the same side, IE 6 and IE 7 double the margin.
The solution is to set the display property of
the floated element to inline. This coaxes IE 6
and IE 7 into removing the extra margin without
causing problems in other browsers.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

106

Chapter 3	 Adapting Pages for Mobile with Media Queries

When you refresh Live view, the sake <div> looks like
Figure 3.25.

The new styles position a larger image at the bottom of
the <div> and 440 pixels from the left. The maximum
width of a paragraph is set at 400 pixels. This ensures
that the width of the text contracts on very narrow
tablet screens.

15.	Open garden.html, select the inline image
stone‑lantern.jpg, and delete its height in the Property
inspector.

16.	Activate Live view. The only problem is that the text
overlaps the cluster of cherry blossoms in the sidebar.
Add the following rule to fix it:

#blossom h3 + p {

 padding-right: 90px;

}

This uses an adjacent sibling selector (see the
“Adjacent Sibling Selector” Close-Up in Chapter 2)
to target just the first paragraph after the heading in
the blossom <div>, giving the blossom space of its own
(Figure 3.26).

Figure 3.25  A different background
image is used when the sidebar is
displayed full width.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

107

II: HTML5 and CSS3

17.	Choose File > Save All Related Files.

Using @media rules for supplementary styles

The styles in tablet.css work fine for larger tablets, such as
the iPad or the Samsung Galaxy Tab in landscape orienta-
tion. But the media query applies these styles to all devices
wider than 400 pixels. When viewed on an HTC Desire in
landscape orientation (533 pixels wide), the design falls
apart (Figure 3.27).

The #nav style rule fixes the width of the navigation menu
at 660 pixels, pushing it out of the wrapper <div>. The font
size in the heading also needs to be smaller.

I have added three @media rules with media queries to tab-
let.css. Let’s take a look at each one in turn. The first one
contains most of the rules, which override previous settings
and apply to all screen widths in the range of 401–680 pixels.

@media screen and (min-width: 401px) and

Ê (max-width: 680px) {

 #header h1 {

Figure 3.26  Extra padding on the first
paragraph moves the text away from
the background image.

Figure 3.27  The HTC Desire’s
533-pixel screen in landscape
orientation reveals problems with the
tablet layout.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

108

Chapter 3	 Adapting Pages for Mobile with Media Queries

 font-size: 40px;

 padding-top: 7px;

 }

 #nav {

 width: 396px;

 height: 75px;

 }

 #nav li a {

 margin-bottom: 2px;

 }

 #nav li:nth-child(4) a {

 margin-left: 66px;

 }

 #hero {

 width: 87%;

 background-image: none;

 margin: 5px auto;

 min-height: 0;

 }

 #hero p {

 padding-right: 0;

 }

 #sake {

 background-position: 380px bottom;

 }

 #sake p {

 max-width: 340px;

 }

 .floatright, .floatleft {

 float: none;

 display: block;

 margin: 10px auto;

 max-width: 90%;

 }

}

The first point of interest is the navigation menu. The
#nav rule resets width to 396px, forcing the fourth and fifth
navigation buttons onto a second row. Because the
elements used for the buttons are floated, you need to

http://lib.ommolketab.ir
http//lib.ommolketab.ir

109

II: HTML5 and CSS3

assign an explicit height to prevent the second row from
overlapping the following content. The rows are separated
by giving the navigation links a bottom margin of 2px.

To center the second row of buttons, the fourth one is given
a left margin of 66px (132 ÷ 2) using the :nth‑child()
pseudo-class (see Table 1.2 in Chapter 1).

The #hero style rule sets background-image to none for
smaller screens. As noted earlier, this doesn’t prevent the
image from being downloaded. However, flexible design
inevitably involves some compromises. One way to avoid
downloading this image unnecessarily would be to create
separate style sheets for smaller and larger tablets, but that
is likely to make maintenance more difficult.

The #sake and #sake p style rules change the position of
the background image and the width of the text to fit the
narrow screen better.

Finally, all inline images that use the floatleft and
floatright classes are no longer floated, but are cen-
tered by setting their display property to block and their
horizontal margins to auto. To prevent the images from
protruding outside their containing elements, max‑width
is set to 90%. The percentage refers to the width of the
containing block, so a 400-pixel wide image is rescaled only
when the available space is less than 445 pixels.

Figure 3.28  shows dining.html on an HTC Desire in land-
scape orientation after making these changes.

Figure 3.28  The heading and
navigation menu now fit comfortably
in the HTC Desire’s 533-pixel screen.

To center an image, set its display
property to block, and set the
left and right margins to auto. The
image must have a declared width.
By default, browsers use the value in
the width attribute in the
tag, but you can override this in your
style sheet.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

110

Chapter 3	 Adapting Pages for Mobile with Media Queries

The next @media rule fixes some problems with the align-
ment of form elements on screens narrower than 480
pixels.

@media screen and (max-width: 480px) {

 select:last-of-type {

 display:block;

 margin-left:135px;

 margin-top:5px;

 }

 #adults {

 margin-right:80px;

 }

 input + label {

 padding-left:50px;

 }

 input[type=submit] {

 margin-left:50px;

 }

}

The first style rule uses the CSS3 :last-of-type pseudo-class
(see Table 1.2 in Chapter 1) to select the last <select>
menu in each of the date pickers. Without this rule, the
year menus are likely to drop to the next line and sit flush
with the label on the left (Figure 3.29).

By setting the display property to block and setting margins,
you can align the year menus with the months (Figure 3.30).

The other rules align the Adults and Children text input
fields and the submit button.

The final @media rule simply assigns a bigger font size to
the main heading when the screen width is in the range of
500–680 pixels.

@media screen and (min-width: 500px) and

Ê (max-width: 680px) {

 #header h1 {

 font-size: 48px;

 }

}

Figure 3.29  On a narrow screen the
year menus are sometimes pushed
onto the next line.

Figure 3.30  The date picker menus
are now neatly aligned.

:last-of-type

The :last-of-type pseudo-class selects an
element that is the last of its type in the list of
children of its parent element. It’s fully supported by
iOS, Android, and BlackBerry. The three <select>
menus used for each date picker are wrapped in a
paragraph. So, this rule selects the last <select>
element within each paragraph.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

111

II: HTML5 and CSS3

Viewing the styles at varying screen widths

As with desktop browsers, the only reliable way to know
what your designs look like is to test them on actual
devices. However, even the most dedicated geek with
unlimited financial resources is unlikely to possess more
than a handful of tablets and mobile phones for test-
ing. Nevertheless, you can get a good idea of what your
designs will look like by using Live view and adjusting the
Document window viewport in Dreamweaver CS5.5.

In addition to selecting one of the default sizes, you can
create your own presets.

1.		 Open the list of window sizes using one of the following
methods:

	.	 �Click the down arrow on the right of the
Multiscreen button on the Document toolbar.

	.	 �Click the window size in the status bar at the bottom
of the Document window.

	.	 �Choose View > Window Size.

2.		 Choose Edit Sizes to open the Window Sizes category of
the Dreamweaver Preferences panel (Figure 3.31).

Figure 3.31  You can add your own
presets and edit existing ones in
the Window Sizes category of the
Preferences panel.

If you prefer, you can open the
Preferences panel directly by
choosing Edit > Preferences
(Windows) or Dreamweaver >
Preferences (on a Mac), or by
pressing Ctrl+U/Command+U.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

112

Chapter 3	 Adapting Pages for Mobile with Media Queries

3.		 Click the icon at the bottom left of the panel to add
your own presets. To remove a preset, select it and click
the minus button.

4.		 Click OK to save the changes. The new presets are
immediately available in the list of window sizes.

You can also change the width of the Document window
viewport dynamically like this:

1.		 Open the list of window sizes (not the Window Sizes
category of the Preferences panel).

2.		 Choose Full Size.

3.		 Activate Live view.

4.		 Select Split view, and make sure the screen is split
vertically (choose View > Split Vertically, if necessary).

5.		 Drag the border between Code view and Live view. Live
view automatically refreshes as you drag, applying the
styles dynamically in response to the changing width.

Creating the Styles for Mobile Phones

The process of creating the styles for mobile phones is
exactly the same as for tablets. The only difference is that
you’re dealing with a much narrower width, so it’s mainly
a question of adjusting margins, padding, and font sizes. A
full listing of the styles in phone.css follows:

@charset “utf-8”;

#wrapper {

 background-image: url(../images/

 Ê basin_bg_phone.jpg);

 background-size: contain;

 width: 100%;

}

#header h1 {

 font-size: 36px;

 margin-bottom: 0px;

 padding-left: 90px;

 padding-top: 5px;

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

113

II: HTML5 and CSS3

/* Basic styles */

h2 {

 font-size:24px;

}

.floatleft, .floatright {

 float: none;

 max-width: 290px;

 margin: 0.5em auto;

 display: block;

}

/* Main navigation */

#nav {

 width: 308px;

 height: 95px;

 margin: 0 auto 5px auto;

}

#nav li a {

 width: 136px;

 margin: 0 6px 2px 6px;

 padding: 5px 2px;

}

#nav li: last-child a {

 margin-left: 74px;

}

/* Main content on index page */

#hero {

 width: auto;

 margin: 5px;

 padding: 10px;

 min-height: 0;

 height: auto;

}

#hero h2 {

 padding-right: 10px;

 font-size: 24px;

}

#hero p {

 padding-right: 0;

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

114

Chapter 3	 Adapting Pages for Mobile with Media Queries

/* Content containers on other pages */

.content-wide, .content-medium, .aside {

 margin: 0 5px 5px 5px;

 padding: 10px;

 width: auto;

 float: none;

}

/* Form elements */

form {

 margin-left: 10px;

}

label {

 width: 100px;

}

label[for=title] {

 float: left;

}

datalist {

 float: left;

}

datalist span {

 display: block;

 margin: 5px;

}

input[name=title] {

 display: block;

 clear: left;

 margin-left: 105px;

}

select:last-of-type {

 display: block;

 margin-left: 105px;

 margin-top: 5px;

}

input[type=submit] {

 margin-left: 50px;

}

fieldset label {

 width: 80px;

 padding-left: 30px;

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

115

II: HTML5 and CSS3

/* Alternate rules for screens wider than 360px */

@media screen and (min-width: 360px) {

 #header h1 {

 padding-left: 125px;

 }

 #nav {

 margin-left: 40px;

 }

 #hero {

 width: 87%;

 margin: 5px auto;

 }

 #hero p {

 padding-right: 0;

 }

 .floatright.img-large, img.floatleft,

 Ê img.floatright {

 width: 330px;

 }

 #adults {

 margin-right: 80px;

 }

}

The screen on a BlackBerry Torch is 360 pixels wide, so
an @media rule adjusts some dimensions to fit the larger
screen.

After applying these styles, rooms.html looks like Figure 3.32
on an iPod touch.

The image of the bedroom, which is 600 pixels wide in
the desktop layout, is scaled down to fit in the narrower
confines of a mobile phone screen.

Assessing Media Queries

Using media queries to adapt an existing desktop design
to display satisfactorily on tablets and mobile phones is a
time-consuming process that involves a lot of testing and
fine-tuning. However, the effort is worthwhile if you want

Figure 3.32  The site still looks good
on a 320-pixel screen.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

116

Chapter 3	 Adapting Pages for Mobile with Media Queries

to give visitors a similar experience regardless of their
screen size. Instead of trying to reproduce the same design
pixel-perfect on every browser, you need to adapt the
design to fit a wide range of screen widths.

Media queries work well for tablets, but they’re not neces-
sarily the best choice for mobile phones. People who access
websites on their phones are usually on the go. They’re
looking for quick information, not in-depth, image-heavy
content. Although you can hide content by setting its
display property to none, the phone still downloads it,
wasting precious bandwidth for both the site owner and the
phone user. Often, it makes more sense to create a dedicated,
lightweight site for mobile phones and include a link to the
main site for anyone who wants more in-depth coverage.

In Chapter 5, you’ll explore using the jQuery Mobile frame-
work, which is integrated in Dreamweaver CS5.5, to build
dedicated mobile sites. Before doing so, the next chapter
introduces the new features in HTML5 that enable users to
continue interacting with a website even when offline.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

chapter

4
Making Your Site
Available Offline

http://lib.ommolketab.ir
http//lib.ommolketab.ir

118

Chapter 4	 Making Your Site Available Offline

You can’t always get what you want,
But if you try sometimes,
You might get what you need.

—The Rolling Stones

Making Your Site Available Offline

Loss of signal is probably one of the most frustrating aspects
of surfing the web with a mobile device. You’ve just clicked
a link and the page is beginning to load when your train
enters a tunnel. Your connection disappears. Even when
the train emerges from the tunnel, your mobile has to
hunt for a signal and you often need to start all over again.

HTML5 can’t improve mobile connectivity, but it does
make it possible to continue interacting with websites, even
when no network connection is available. The secret lies
in caching the necessary files. Although browsers auto-
matically cache recently downloaded files, what’s different
about HTML5 is that you can instruct the browser to down-
load files in advance of their being needed. You can also
specify alternative files to be displayed if the user is offline.

In this chapter, you’ll learn how to make a site available
offline by creating a file that not only tells the browser
which files to cache, but also specifies substitute files for
offline use. To speed up this process, the download files for
this chapter contain a Dreamweaver extension that I cre-
ated to generate a list of all files used in a site or folder.

How Offline Sites Work

To make a site available without a network connection—
an offline web application, as the HTML5 specification calls
it—you need to create a manifest. This is a list of files that
the browser needs to download and store in an application
cache. The first time someone visits your site, the browser

http://lib.ommolketab.ir
http//lib.ommolketab.ir

119

II: HTML5 and CSS3

checks the manifest and downloads the listed files ready for
use offline. The next time the same user visits your site, the
browser checks the manifest. If it detects a change, all the
files are downloaded again, updating the application cache.

Figure 4.1 shows which browsers support offline applica-
tions as reported by caniuse.com. Light green shows full
support; darker green shows partial support; and pink
indicates no support. Internet Explorer (IE) is the only
mainstream browser with no support. Crucially, though,
iOS Safari, Android, and Opera Mobile all support offline
access, making it ideal for websites that you expect to be
accessed on mobile devices.

Figure 4.1  Most modern browsers apart from IE support offline access.

Creating a Manifest

The manifest is a plain text file that must be saved with a
.manifest filename extension. It’s not important where
you locate the manifest, but the most logical place is in the
site root. However, if you want to make only part of a site
available offline, the manifest should be located in the rel-
evant folder and cover the files in all subfolders. The first
line inside the manifest file should look like this:

CACHE MANIFEST

There should be only a single space between CACHE and
MANIFEST, both of which should be in uppercase.

Firefox alerts users that the site is
asking to store data on your com-
puter for offline use and offers the
option to decline. Most other brows-
ers download the files without asking.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

120

Chapter 4	 Making Your Site Available Offline

Following this is a list of files grouped according to how
you want them to be treated when the user is offline:

	.	 	Explicit section. All files in this section are downloaded
automatically, even if they’re not required for the
current page.

	.	 Online whitelist section. Files in this section are never
cached. The browser always tries to access the online
version.

	.	 Fallback section. This is where you specify substitute files
that the browser should use when the user is offline.

The following basic rules apply to all sections:

	.	 Each file must be listed on a separate line, except in the
fallback section where the original and substitute files
are listed on the same line with a space between them.

	.	 Document-relative paths should be relative to the
manifest.

	.	 Paths relative to the site root (in other words, those that
begin with a leading slash) or fully qualified URLs are
also acceptable.

	.	 The list should include not only web pages, but other
assets, such as images, style sheets, and JavaScript files.

	.	 Blank lines are permitted.

	.	 Comments can be included, but they must be on a
separate line beginning with a hash or pound sign (#)
optionally preceded by spaces or tab characters.

Sections can be listed in any order and don’t need to be a
single block. For example, you might want to make some
files available offline only for a limited period. So, it makes
sense to list them separately from the core files that don’t
normally change.

You create sections by placing a section header on a sepa-
rate line.

Specifying files that should be cached

The explicit section is the default, so files listed immedi-
ately after CACHE MANIFEST are automatically downloaded
and cached. To switch back to the explicit section after the

Section headers must be written
in uppercase and are followed by a
colon. Headers can be preceded by
spaces, but there should be nothing
else on the same line.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

121

II: HTML5 and CSS3

online whitelist or fallback section, place the following
section header on a separate line:

CACHE:

Specifying files that must always be accessed online

Server-side scripts and other files that you don’t want to
be cached locally should be listed in the online whitelist
section. You create this by adding the following header on
a separate line:

NETWORK:

Then list the path or URL of each file on a separate line in
the same way as for files that you want to be downloaded.

If your site accesses resources on other domains or subdo-
mains, you should add an asterisk (*) on a line of its own
in the online whitelist section like this:

NETWORK:

*

This indicates that access to resources on other domains is
not blocked.

Specifying alternative files to use offline

To specify alternatives for files that can’t be accessed
offline, create a fallback section by placing the following
section header on a separate line:

FALLBACK:

Each entry in the fallback section lists a file in the online
site followed by the location of a substitute file to be used
when offline. Both files are listed on the same line and
separated by one or more spaces.

To represent any file, use a single forward slash (/) as the
first part of the entry. For example:

FALLBACK:

/ offline.html

This substitutes offline.html for any file not listed elsewhere.

Technically speaking, you can use
the CACHE: section header imme-
diately after CACHE MANIFEST,
but it’s unnecessary.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

122

Chapter 4	 Making Your Site Available Offline

Keeping the cache up to date

More often than not, updates to a site involve changing the
contents of a file without changing its name. This presents
a problem for the application cache. The browser checks
only the filenames in the manifest. If they’re the same, it
assumes the cache doesn’t need updating.

To force the browser to update the cache, you need to
change the contents of the manifest. The simplest way to
do this is to add a comment with a version number like this:

CACHE MANIFEST

version 4

Increment the version number each time you make
changes to the site, and upload the revised manifest after
all the changes have been uploaded. You don’t need to
use a version number. Any unique value—such as a time-
stamp—in a comment will do.

Serving the Manifest

You attach a manifest to a web page with the HTML5
manifest attribute in the opening <html> tag like this:

<html manifest=”mysite.manifest”>

The value of the manifest attribute should be a document-
relative or site-root-relative path to the manifest file.

You should do this in every page in a site that you want to
make available offline.

It’s important to serve the manifest with the correct MIME
type: text/cache‑manifest.

Because this is a new MIME type, it might not be supported
by all servers.

Setting the correct MIME type on Apache

If your web server runs on Apache, you should be able to
configure it using an .htaccess file in your site root. If you
already have an .htaccess file, add the following line to it:

AddType text/cache-manifest .manifest

Browser Caches

Application caches are designed to make the
website—or parts of it—available offline. They’re
separate from the normal browser cache, which
speeds up the rendering of pages by avoiding the
need to download files that haven’t changed. When
the normal cache reaches capacity, older files are
deleted to make way for newer ones. The location of
both types of cache is dependent on the browser.

The HTML5 specification doesn’t prescribe any limit
for the amount of disk space used by an application
cache. The specification is equally vague about
allowing users to delete specific application caches.
Web developers should exercise their judgment
about which files to make available offline and not
fill up users’ disk space unnecessarily.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

123

II: HTML5 and CSS3

If you don’t have an .htaccess file, you can create one
in Dreamweaver:

1.		 Choose File > New.

2.		 In the New Document dialog box, select Other from
the list on the left, and set Page Type to Text. Click
Create.

3.		 Type the following line of code into the new document,
paying careful attention to spelling (Apache directives
are case-sensitive):

AddType text/cache-manifest .manifest

4.		 Save the file in your site root with the name .htaccess.
The name begins with a dot. Although it’s a text file,
make sure it’s not saved with a .txt filename extension.

On Windows, the file will be saved as normal.

On a Mac, you’ll see a warning that files with names
that begin with a dot are reserved for the system and
will be hidden (Figure 4.2). Click Use “.”. The file will
be listed as normal in the Dreamweaver Files panel.
However, you won’t be able to see it in the Finder or
any other Mac program unless it supports hidden files.

5.		 Upload the .htaccess file to your website.

Setting the MIME type on other web servers

If your website is on a server other than Apache, you
need to ask the server administrator to enable the text/
cache‑manifest MIME type.

Figure 4.2  On a Mac, Dreamweaver
warns you that names beginning with
a dot have special status.

.htaccess

An .htaccess file is a mini-configuration file
for the Apache web server. It has the advantage
that all the settings are applied immediately
without the need to restart the server. Normally,
an .htaccess file is located in the site root
and applies to the whole site. However, you can
apply different settings to individual folders
(directories) by placing an .htaccess file in
the folder you want to control (the same settings
apply to all subfolders unless overridden by another
.htaccess file).

Most hosting companies configure their servers
to allow site owners to fine-tune their settings
with .htaccess. However, if you don’t have
permission to use .htaccess, you need to ask
the server administrator to enable the text/
cache‑manifest MIME type.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

124

Chapter 4	 Making Your Site Available Offline

Creating a “Lazy” Manifest

The HTML5 specification includes among its examples the
following extremely simple manifest:

CACHE MANIFEST

FALLBACK:

/ /offline.html

NETWORK:

*

Instead of downloading all pages immediately, the browser
stores only the fallback page (offline.html) and pages that
are visited while the user is online. When the user goes
offline, cached pages are retrieved from the user’s applica-
tion cache. But if the user clicks a link to a page that hasn’t
previously been visited, offline.html is displayed instead.

This lazy way of caching can be very useful on a large site.
However, you still need to update the manifest with a ver-
sion number or other unique value each time a page is
edited. Otherwise, the old version of the page remains in
the application cache.

Only HTML pages can be linked to a manifest. So, other
resources—such as style sheets and images—are not stored
in the application cache unless they’re listed in the explicit
section of the manifest.

Making the Tozai Hotel Site Available Offline

As you just learned, making a website available offline is a
simple matter of generating the manifest, uploading it to
your website, and making sure that it’s served with the cor-
rect MIME type. The user’s browser takes care of the rest.
If the browser doesn’t support offline web applications, it
simply ignores the manifest.

The Tozai Hotel website consists of only 28 files, so typing
out the manifest manually isn’t a major chore, although
it’s important to get the spelling and path names right.
However, life would be a lot easier if you could generate a
file list automatically. So, I created a Dreamweaver exten-
sion to do it for you.

As long as they’re attached to a
manifest, visited pages are stored
in the application cache because
a page that links to the manifest
is automatically included in the
explicit section. However, it’s gener-
ally recommended that you list files
individually rather than relying on
this default behavior.

Web pages that use a server-side
technology, such as PHP, ColdFusion,
or ASP.NET, can also be linked to a
manifest. However, the offline ver-
sion stored by the application cache
contains only the HTML output.
For example, if the dynamic code
outputs the current date, the ver-
sion stored in the application cache
displays the date when the online
version was most recently accessed.
As soon as you go back online, the
stored date is updated.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

125

II: HTML5 and CSS3

Installing the Generate Site Manifest Extension

The Generate Site Manifest extension is included in the
download files for this book, and it takes only a minute or
so to install.

1.		 Launch Adobe Extension Manager CS5.5 from within
Dreamweaver or directly using one of the following
methods:

	.	 �Choose Commands > Manage Extensions.

	.	 �Choose Help > Manage Extensions.

	.	 �Launch the Extension Manager from the Start
menu in Windows or from the Finder in Mac OS X.

2.		 Click the Install button in the Extension Manager title
bar, and navigate to the ch04/extension folder in the
download files.

3.		 Select GenerateSiteManifest_1_0.mxp, and click Open
(Select on a Mac).

4.		 Read the Extension Disclaimer and choose to accept
the terms. The extension should install immediately
and display a brief description in the Extension
Manager (Figure 4.3).

Figure 4.3  The Generate Site
Manifest extension has been
successfully installed.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

126

Chapter 4	 Making Your Site Available Offline

5.		 The Generate Site Manifest extension should now
be listed at the bottom of the Commands menu in
Dreamweaver (Figure 4.4).

6.		 Close the Extension Manager.

Using the Generate Site Manifest Command

The Generate Site Manifest command installed by the
extension inspects the site’s folder structure and builds
a list of all files (except manifests and their backups, and
.htaccess files), which it stores in a manifest file ready for
you to edit. The command’s dialog box (Figure 4.5) has
the following options:

	.	 �The radio buttons let you choose whether to list files
starting from the current folder or the site root.

	.	 �	If you choose the “Current folder,” all paths are
relative to the folder, and the manifest is created in
the same folder.

	.	 �If you choose “Site root,” the paths are relative to the
site root and the manifest is created in the root folder.

	.	 �By default, the manifest is saved as site.manifest.
However, you can change this by entering your own
value in the Name text field. The command automati-
cally adds the .manifest filename extension to the name.

When you run the command the first time, it sets the
manifest’s version number to 1. If the command detects
an existing manifest with the same name, it saves a backup
with a .manifest.bak filename extension before generat-
ing a new manifest with an updated version number. This
avoids the need to build the online whitelist and fallback
sections from scratch each time you generate a new mani-
fest file. You can copy and paste them from the backup
when editing the new file.

Try out the command with the Tozai Hotel files.

1.		 Open one of the HTML files in your working copy
of the Tozai Hotel site. Alternatively, open one of the
HTML files in ch03/complete.

Figure 4.4  The extension adds a new item at the
bottom of the Commands menu.

The extension should be enabled
immediately in Dreamweaver.
However, if it fails to appear at the
bottom of the Commands menu,
close and relaunch Dreamweaver.

Figure 4.5  The Generate Site Manifest dialog
box lets you choose the scope and name of
the manifest.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

127

II: HTML5 and CSS3

2.		 Choose Commands > Generate Site Manifest.

3.		 Leave the options in the Generate Site Manifest dialog
box at their default settings, and click OK.

4.		 If site.manifest doesn’t immediately appear in the
Files panel, click the icon at the top of the panel
to refresh its contents. You should now see site.manifest
listed in the same folder as the file you opened
(Figure 4.6).

5.		 Before you can edit the manifest file in Dreamweaver,
you need to make a small adjustment to the program’s
preferences. Choose Edit > Preferences (Dreamweaver >
Preferences on a Mac), and select the File Types / Editors
category from the list on the left.

6.		 In the “Open in code view” field, insert a space at the
end of the existing list of filename extensions, and type
.manifest (Figure 4.7).

Figure 4.7  You need to add the .manifest filename extension to the list of
files that Dreamweaver can edit.

Figure 4.6  The manifest file has been created in
the same folder.

Don’t forget the period at the begin-
ning of .manifest.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

128

Chapter 4	 Making Your Site Available Offline

7.		 Click OK to close the Preferences dialog box.

8.		 In the Files panel, double-click site.manifest to open
it in the Document window. You should see the follow-
ing code:

CACHE MANIFEST

version 1

dining.html

garden.html

index.html

reservations.html

rooms.html

fonts/Calluna-Regular-webfont.eot

fonts/Calluna-Regular-webfont.svg

fonts/Calluna-Regular-webfont.ttf

fonts/Calluna-Regular-webfont.woff

images/basin_bg.jpg

images/basin_bg_phone.jpg

images/basin_bg_tab.jpg

images/chef.jpg

images/cherry_blossom.png

images/exterior.jpg

images/exterior_tab.jpg

images/hotel-room.jpg

images/sake.jpg

images/sake_tab.jpg

images/sashimi.jpg

images/stone-lantern.jpg

images/sushi.jpg

js/jquery-1.5.min.js

styles/desktop.css

styles/phone.css

styles/tablet.css

styles/tozai.css

styles/tozai_mq.css

http://lib.ommolketab.ir
http//lib.ommolketab.ir

129

II: HTML5 and CSS3

You now have a complete list of files ready to divide
into the explicit, online whitelist, and fallback sections.

9.		 Edit the code by adding an online whitelist section
header before the list of font files like this:

CACHE MANIFEST

version 1

dining.html

garden.html

index.html

reservations.html

rooms.html

NETWORK:

fonts/Calluna-Regular-webfont.eot

10.	Save site.manifest and close it.

11.	Run the Generate Site Manifest command again and
refresh the Files panel if necessary. You should now
have both site.manifest and site.manifest.bak in the
same folder as the HTML file you opened.

12.	Double-click site.manifest to open it. The first few lines
should look like this:

CACHE MANIFEST

version 2

dining.html

garden.html

index.html

reservations.html

rooms.html

fonts/Calluna-Regular-webfont.eot

The version number has changed, and the list has been
generated anew, so the online whitelist section header
has disappeared.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

130

Chapter 4	 Making Your Site Available Offline

13.	Right-click site.manifest.bak and choose Open with >
Dreamweaver from the context menu. The file contains
the edit you made in step 9.

You can continue experimenting with the Generate Site
Manifest command, selecting the option to list files starting
from the site root, and changing the name.

Editing the Manifest File

When deciding how to organize your manifest file, it’s a
good idea to look at the size of the files in your site. Unlike
media queries, you can’t restrict what is cached by each
type of device. It’s an all-or-nothing decision. Unless you’re
careful, you could undo all the good work of your media
queries by forcing mobile phones to download files they’ll
never use.

Overall, the Tozai Hotel site weighs in at 696 KB, broken
down as follows:

	.	 �Fonts. 212 KB

	.	 �Images. 370 KB

	.	 �JavaScript (external). 83 KB

	.	 �	Style sheets. 9 KB

	.	 �HTML files. 22 KB

Quite clearly, the bulk of the weight lies in the first three
categories. The fonts are used purely for aesthetic reasons,
so they can easily be sacrificed offline. The styles specify
alternative fonts anyway. Many of the images are decora-
tive, but the site would be less attractive and meaningful if
you got rid of all of them. However, the external JavaScript
file is used only by reservations.html, which is meaningless
offline. Although the form isn’t connected to a processing
script in the example files, in a real website users would need
to be online to submit a request about the availability of
rooms. So, the external JavaScript can be dispensed with; and
reservations.html needs to have a fallback page for offline use.

Losing the fonts, external JavaScript, and some of the
images reduces the overall download by approximately
half. You can’t avoid serving all the style sheets to every
device, but the size is trivial and could be reduced by elimi-
nating comments and unnecessary whitespace.

If you delete the existing manifest
files, the version number reverts to 1.
This is fine when experimenting be-
fore deploying a manifest file, but it
could cause problems with a live site.
If users have an earlier copy of the
manifest with the same number, the
updated files won’t be downloaded.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

131

II: HTML5 and CSS3

Here’s my suggested version of site.manifest for the Tozai
Hotel site:

CACHE MANIFEST

version 1

dining.html

garden.html

index.html

rooms.html

images/basin_bg.jpg

images/chef.jpg

images/cherry_blossom.png

images/hotel-room.jpg

images/sashimi.jpg

images/stone-lantern.jpg

images/sushi.jpg

styles/desktop.css

styles/phone.css

styles/tablet.css

styles/tozai.css

styles/tozai_mq.css

FALLBACK:

images/basin_bg_phone.jpg images/basin_bg.jpg

images/basin_bg_tab.jpg images/basin_bg.jpg

reservations.html reservations_off.html

NETWORK:

fonts/Calluna-Regular-webfont.eot

fonts/Calluna-Regular-webfont.svg

fonts/Calluna-Regular-webfont.ttf

fonts/Calluna-Regular-webfont.woff

images/exterior.jpg

images/exterior_tab.jpg

images/sake.jpg

images/sake_tab.jpg

http://lib.ommolketab.ir
http//lib.ommolketab.ir

132

Chapter 4	 Making Your Site Available Offline

The following points should be noted:

	.	 Only one version of the background image at the top of
the page, basin_bg.jpg, is in the explicit section. It’s 37
KB but is required for the desktop layout.

	.	 The fallback section instructs browsers to replace
basin_bg_phone.jpg and basic_bg_tab.jpg with the
larger image, basin_bg.jpg, when offline. The styles
for tablets and phones use the CSS3 background-size
property to scale the image, so it looks the same in all
devices.

	.	 The fallback section tells browsers to substitute reser-
vations_off.html for reservations.html when offline.
This tells users to go online to check the availability of
rooms (Figure 4.8).

	.	 In addition to the fonts, four images that are 183 KB
in total have been added to the online whitelist sec-
tion. This prevents them from being downloaded to
the application cache. It means these particular images
won’t be available offline (Figure 4.9), but they’re
mainly decorative. However, they need to be listed
explicitly here. Otherwise, they aren’t displayed even
when the user is online.

	.	 The manifest results in browsers caching 177 KB, just
25 percent of the total size of the site.

Figure 4.8  When accessed offline, the
reservations page displays a different
message.

In a real-world situation, it would
make more sense to use the same
background image for all devices
rather than serving smaller ones
through media queries. Alternatively,
you could add the background im-
ages to the online whitelist section
to prevent them from being cached
and display the site offline without
the background image.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

133

II: HTML5 and CSS3

Attaching the Manifest File

The manifest file needs to be attached to all web pages
listed in the explicit section. However, it should not be
attached to any pages that you don’t want to be cached,
because attaching a manifest automatically adds the file to
the explicit section, even if it isn’t listed there.

There are two ways to attach a manifest file in Dreamweaver:

	.	 Manually in Code view

	.	 With the Find and Replace dialog box

To attach a manifest file in Code view:

1.		 Position the insertion point just before the closing
angle bracket of the opening <html> tag at the top of
the page.

2.		 Insert a space to bring up code hints. Use your
keyboard down arrow key or mouse to select manifest
(Figure 4.10), and press Enter/Return or double-click.
This inserts manifest=”” and moves the insertion point
to between the quotes.

Figure 4.9  The exterior image isn’t
shown when the index page is viewed
offline on a tablet.

Instead of listing all files that you
don’t want to be downloaded, you
can use an asterisk (*) on a line of its
own after the NETWORK: section
header as a convenient shortcut.

Figure 4.10  Dreamweaver displays a code hint for
manifest in the <html> tag.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

134

Chapter 4	 Making Your Site Available Offline

3.		 Type site.manifest (or the name of your manifest file)
between the quotes.

Alternatively, right-click and choose Code Hint Tools
> URL Browser from the context menu. Click Browse,
and navigate to the manifest file. Click OK (Choose on
a Mac) to insert the filename and path.

In a small site like Tozai Hotel, attaching a manifest file
manually to each HTML file takes only a couple of min-
utes, but you need a more efficient approach on a larger
site. Dreamweaver doesn’t have a dedicated dialog box to
handle this, but the Find and Replace dialog box does the
job quickly and easily.

This is how you do it:

1.		 In the Files panel, Ctrl-click/Command-click to select the
files you want to attach the manifest file to (Figure 4.11).

2.		 Choose Edit > Find and Replace or press Ctrl+F/
Command+F to open the Find and Replace dialog box.

3.		 Set “Find in” to Selected Files in Site.

4.		 Set Search to Specific Tag, and select html from the
adjacent list.

5.		 If necessary, click the icon to remove further search
option menus.

6.		 Set Action to Set Attribute, and select manifest from
the adjacent list.

7.		 In the To field, type the name (and path, if necessary)
of the manifest file. The settings in the Find and
Replace dialog box should now look like Figure 4.12.

Figure 4.12  Find and Replace offers
a quick way to attach a manifest to
multiple pages.

Figure 4.11  Select only the files that you want to
be cached by the manifest.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

135

II: HTML5 and CSS3

8.		 Click Replace All.

9.		 Dreamweaver warns you that the operation cannot be
undone in files that are not currently open and asks
you to confirm. Click Yes.

10.	The Search tab of the Reports panel opens to display
the changes (Figure 4.13).

Right-click the gray area to the right of the tabs, and
choose Close Tab Group to close the Reports panel.

Testing a Site Offline

As soon as you add a manifest file to the pages in a site,
browsers that support offline web applications start cach-
ing the files. Once they’re stored in the application cache,
the browser relies on the manifest file to inform it of any
changes. It’s worth repeating that the manifest file needs
to be updated not only when you add or remove files from
the site, but also if existing pages are edited. Consequently,
you should attach the manifest file only in the final stages
of testing a site. Otherwise, you need to update the mani-
fest’s version number every time you make an adjustment
to the site.

When you have decided the site’s ready, create the mani-
fest file, and attach it to the pages you want to make avail-
able offline. Then upload the manifest and web pages to
your web server.

In theory, the application cache should be created and
populated by visiting just one page. However, the time it
takes for all files to be downloaded depends entirely on the
browser and network conditions.

Figure 4.13  The Reports panel
confirms that the manifest attribute
has been added to the selected pages.

If you attach the wrong file or make
a mistake in the path name, you can
use the Find and Replace dialog box
to change the value of the mani-
fest attribute. You can also remove
the manifest attribute by setting
Action to Remove Attribute.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

136

Chapter 4	 Making Your Site Available Offline

To test the application cache on a mobile device, disable
all wireless connections:

	.	 	On iOS, choose Settings, and turn on Airplane Mode.

	.	 On Android devices, choose Settings > Wireless and
network(s), and tap Airplane mode or Flight mode to
select it.

	.	 On BlackBerry, choose Manage Connections, and tap
Turn All Connections Off.

It might take a short while for the mobile device to discon-
nect from Wi-Fi and other networks.

Once disconnected, open the browser and navigate to the
site. Usually, the browser displays a warning telling you
there is no network connection (Figure 4.14) or telling you
to turn off Airplane Mode (Figure 4.15).

Click OK to dismiss the alert. You should now be able to
continue to the site, which should be loaded from the
application cache. If you have specified an alternative page
in the fallback section, it should be displayed instead of the
normal page, as shown in Figure 4.8 earlier in this chapter.

If the alternative page fails to display or if images are miss-
ing, there are two likely explanations:

	.	 The manifest file is not being served with the correct
MIME type.

	.	 The files are being served from the browser’s normal
cache rather than from the application cache.

A simple way to check whether the manifest file is being
served with the correct MIME type is to try to load it
directly in Firefox, Safari, or IE 9. If the browser asks if you
want to save the file, the MIME type is probably OK. The
Firefox dialog box actually confirms it as a manifest file
(Figure 4.16). If the manifest opens in the browser as plain
text, you need to check the .htaccess file or ask the server
administrator to verify the MIME type.

Figure 4.14  In Flight mode, the Samsung Galaxy
Tab warns about the lack of a network connection.

Figure 4.15  iOS tells you to turn off
Airplane Mode and offers a shortcut
to Settings.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

137

II: HTML5 and CSS3

The second issue is not quite as easy to check. In my
experiments on a small number of mobile devices, brows-
ers appeared to use the application cache only if a file
couldn’t be found in the normal cache. For example, my
iPad continued to display the online version of reserva-
tions.html, even offline. However, going back online and
visiting several other sites cleared it out of the cache. Only
then did the offline version display correctly.

Generally speaking, the fact that browsers store files in
their local cache is beneficial. It avoids unnecessary down-
loads, saving bandwidth and speeding up the user’s experi-
ence. However, you might want to add the following line
to the <head> of pages that you don’t want to be available
offline:

<meta http-equiv=”expires” content=”-1”>

This doesn’t prevent the page from being cached, but it
expires the page immediately, so the browser always fetches
a new version. The downside of using this technique is that
the page will always be downloaded afresh.

Figure 4.16  Firefox correctly
identifies the MIME type.

At the time of this writing, Opera
and Chrome open manifest files
as plain text, even when they are
served with the correct MIME type.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

138

Chapter 4	 Making Your Site Available Offline

Going Offline

It doesn’t take a great deal of effort to make a website
available offline, although it’s important to update the
manifest file by adding a version number or another unique
identifier each time you make any changes to the site’s
content. However, just because you can make a site avail-
able offline doesn’t necessarily mean that you should. Ask
yourself whether the site makes sense offline. Remember
that a manifest forces the browser to download all files
listed in the explicit section, taking up bandwidth and valu-
able disk space on the user’s device. Firefox asks the user’s
permission to create an application cache, but most other
browsers don’t.

When creating a manifest, give careful thought to the size
and importance of files you add to the explicit section. Are
they really vital to the offline version of the site? If not, add
them to the online whitelist section or specify substitutes in
the fallback section.

All the techniques explored in Chapters 2–4 can be used in
websites designed for a wide range of devices from desktops
to mobile phones. The rest of the book is devoted to build-
ing websites and apps designed specifically for modern
smartphones using the jQuery Mobile framework, which
has been integrated into Dreamweaver CS5.5.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

IIISECTION III

Chapter 5 �Introducing jQuery Mobile 141

Chapter 6 �Diving Deeper into jQuery Mobile 175

Chapter 7 �Building a Native App with PhoneGap 219

jQuery Mobile
and PhoneGap

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

chapter

5
Introducing jQuery Mobile

http://lib.ommolketab.ir
http//lib.ommolketab.ir

142

Chapter 5	 Introducing jQuery Mobile

Round round get around
I get around, yeah

—The Beach Boys

Introducing jQuery Mobile

Websites are traditionally made up of individual pages,
each stored in a separate HTML file. Even if the site is
generated by a content management system, such as
WordPress or Drupal, loading a new page usually involves a
round trip to the web server. The need to fetch the HTML
for each new page is a bottleneck for mobile devices, par-
ticularly on a slow or unreliable connection. To overcome
this problem, jQuery Mobile stores the HTML markup
for multiple pages in a single file and uses JavaScript to
manipulate the file’s document object model (DOM) to
display only the first page. Tapping a link hides the page
and replaces it with another. But jQuery Mobile does much
more. It’s a sophisticated JavaScript and CSS framework
designed to build websites that act and feel like mobile apps.

Pages glide in and out or flip. Each page has a back but-
ton, and JavaScript keeps track of visited pages to ensure
smooth navigation. Less frequently visited pages can be
stored in separate files to reduce the size of the initial
download. There’s also a wide range of user interface (UI)
and form widgets, such as navigation bars, accordions,
check box and radio button groups, and sliders.

Dreamweaver CS5.5 not only supports jQuery Mobile, but
two of its engineers, Kin Blas and Jorge Taylor, have been
actively involved in the development of the framework,
with Kin contributing significant parts of the JavaScript
code. As the name suggests, jQuery Mobile is based on the
extremely popular jQuery JavaScript framework. You don’t
need to know JavaScript or jQuery to use jQuery Mobile,
although you’ll get a lot more out of it if you do.

Sites built with jQuery Mobile work
in all current browsers, including
Internet Explorer 7 and later, not just
on mobile devices.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

143

III: jQuery Mobile and PhoneGap

In this chapter, you’ll learn how to create a simple jQuery
Mobile site and navigate between pages. You’ll also insert
a couple of widgets and learn some of the basic principles
underlying jQuery Mobile. Although the starter pages and
Insert panel do a lot of the coding for you, it’s important
to understand what the code means, so you can edit or
customize the widgets.

Creating a Basic Site with jQuery Mobile

To help you get started with jQuery Mobile, Dreamweaver
CS5.5 provides three sample pages, which you access
through the New Document dialog box.

1.			 Choose File > New to open the New Document
dialog box.

2.			 Select Page from Sample in the list on the left.

3.			 In the Sample Folder column, select Mobile Starters
(Figure 5.1).

Figure 5.1  The starter pages create a
jQuery Mobile site with placeholders
for four pages.

Updating jQuery Mobile

When Dreamweaver CS5.5 was released, work on
version 1.0 of the jQuery Mobile framework was
at an advanced stage, but still incomplete. Check
www.adobe.com/support/dreamweaver to see if a
Dreamweaver extension is available to update the
jQuery Mobile files and Mobile Starter pages.

Also refer to the Close-Up titled “Changing the
Library Source” later in this chapter for details of
how to obtain and link to the most up-to-date
versions of the jQuery Mobile files.

www.adobe.com/support/dreamweaver
http://lib.ommolketab.ir
http//lib.ommolketab.ir

144

Chapter 5	 Introducing jQuery Mobile

Although there are three sample pages, they all create an
identical skeleton site. The difference lies in the external
JavaScript and CSS files they attach to the HTML page.
When you select Mobile Starters, you’re presented with the
following choices:

	.	 jQuery Mobile (CDN). This version links to files served by
the jQuery content distribution network (CDN). The
potential advantage of using the CDN is that visitors to
your site might already have the files in their cache if
they have visited other sites that also use the CDN. This
speeds up the display and reduces the amount of band-
width used. The disadvantages are that there’s a small
possibility the CDN might be down, and that you need
to be online when testing your files in Dreamweaver.

	.	 	jQuery Mobile (Local). This version creates a folder called
jquery-mobile in your site root, copies all the necessary
files and images to it, and links to the local versions
of the files. When deploying the site on the Internet,
you need to upload the jquery-mobile folder and all its
contents to your web server.

	.	 jQuery Mobile (PhoneGap). This is the same as the local
version with the addition of a link to an extra JavaScript
file, which is required for accessing the mobile device’s
native features—such as accelerometer, camera, and
geolocation—through the PhoneGap framework. You’ll
learn more about PhoneGap in Chapter 7.

Using a Starter Page

The best way to understand how jQuery Mobile works is
to create a basic site using a starter page. It’s not necessary
to define a new Dreamweaver site unless you want to; you
can just save the starter page in a separate working folder.
However, don’t call the folder jquery-mobile, because that’s
the name Dreamweaver uses for the local files that it installs.

You are not restricted to using static
HTML pages. You can also use jQuery
Mobile with pages dynamically gen-
erated by a server-side technology,
such as PHP, ColdFusion, or ASP.NET.

The jQuery Mobile framework makes
extensive use of HTML5 features.
It’s important to use the correct
DOCTYPE to ensure browsers
handle the pages correctly.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

145

III: jQuery Mobile and PhoneGap

1.		 Choose File > New to open the New Document dialog
box, and select Page from Sample. Then select Mobile
Starters in the Sample Folder column and jQuery Mo-
bile (Local) in the Sample Page column.

2.		 Check that DocType is set to HTML 5 (the setting is on
the right of the New Document dialog box under the
thumbnail image). Change the setting if necessary.

3.		 Click Create. Dreamweaver inserts in Design view the
basic structure for what will become a four-page site
when viewed on a mobile phone or in a browser. It’s a
single HTML page with four jQuery Mobile page blocks
(Figure 5.2).

4.		 Choose File > Save, and save the file as index.html in
your working folder or in the site root if you created a
new Dreamweaver site.

5.		 When you click Save, Dreamweaver displays the Copy
Dependent Files dialog box (Figure 5.3). Click Copy
to save the jQuery Mobile files to your Dreamweaver
site root.

Figure 5.3  Dreamweaver creates local copies of all the files required by
jQuery Mobile.

Figure 5.2  The starter page contains only the bare
bones of a mobile site.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

146

Chapter 5	 Introducing jQuery Mobile

6.		 In the Files panel, expand the jquery-mobile folder.
It contains two JavaScript files, a style sheet, and an
images folder with several .png files (Figure 5.4). The
actual number of image files varies according to the
version of jQuery Mobile.

To reduce the number of files that need to be down-
loaded, jQuery Mobile uses CSS3 rather than images
for many effects, such as gradients and rounded corners.
Many of the icons are stored as CSS sprites and displayed
using background positioning.

7.		 Resize Design view by clicking the down arrow next to
the Multiscreen button in the Document toolbar and
choosing 320 × 480 Smart Phone from the list of win-
dow sizes.

Alternatively, choose View > Window Sizes or click
the window size in the status bar at the bottom of the
Document window to open the list of window sizes.

8.		 Activate Live view. The previously unstyled skeleton
is transformed with only Page One displayed and the
unordered list converted into a series of buttons with
right-facing arrows indicating they’re links (Figure 5.5).

9.		 The whole area of each button is clickable. Click a link
to one of the other pages. As you click, you should notice
the button turn light blue before the existing page is
replaced by the one you selected. The new page has a
Back button at the top left of the header (Figure 5.6).

Figure 5.4  The jquery-mobile folder is always
created in the site root.

Figure 5.5  The first page is turned
into a navigation menu.

Figure 5.6  Each page block is
displayed as a separate page, even
though the underlying HTML is in
the same file.

Normally, you need to hold down the
Ctrl/Command key while clicking
links in Live view. However, jQuery
Mobile links appear to work without
the need to do so. If nothing happens
when you try to click a link, try
holding down the appropriate
key. Alternatively, choose View >
Live View Options > Follow Links
Continuously. This option works only
with the current file and needs to
be reselected each time you activate
Live view.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

147

III: jQuery Mobile and PhoneGap

10.		 Click the Back button to return to the first page block.
The transition in Live view might seem jerky, but it’s
normally very smooth when viewed in a browser or on
a mobile device.

Because the starter page contains only placeholder text,
the content is far from exciting. But once you start filling
the page blocks with your own content and adding
widgets, you’ll begin to appreciate the power of the jQuery
Mobile framework. First, let’s take a closer look at the
HTML markup.

Inspecting the Structure of a jQuery Mobile Site

When you activate Live view or load index.html into a
browser, jQuery Mobile manipulates the DOM, dynamically
adding classes to most HTML elements. In some cases, this
styles the elements and hides or reveals a section of the file.
In other cases, it injects new elements, such as the Back
button, into the DOM. The JavaScript also binds event
handlers to many elements. Because jQuery Mobile is spe-
cifically designed for mobile devices, the events respond
not only to clicks, but also to touch gestures. Consequently,
a jQuery Mobile site should work equally well on a smart-
phone, tablet, or desktop browser.

Let’s take a look at the code inserted by the starter page to
see how a jQuery Mobile site is structured.

CSS Sprites

A CSS sprite is an image that contains several smaller images. For example, icons‑18‑black.png (Figure 5.7) combines 18 icons in a single file. Each
icon is 18 pixels wide, so CSS is used to apply the image as the background to an 18-pixel-wide element. The horizontal position of the background
image is adjusted to move the correct icon into view. To display the right-facing arrow, background‑position is set to -54px 0, moving the
background image 54 pixels to the left and zero pixels down.

Creating CSS sprites can be time-consuming because the background positioning needs to be very accurate. However, they significantly reduce the
number of resources that the browser needs to download, and they’re supported by all mainstream browsers in current use.

Figure 5.7  Storing multiple icons as a single image reduces the number of downloads.

Not all browsers are equal. The
jQuery Mobile team is concentrating
its efforts on the most widely used
mobile platforms, giving top priority
to Android, iOS, BlackBerry 6, Palm
WebOS, and Windows Phone 7.
There are plans to extend support
to BlackBerry 5 and Nokia. Details of
mobile device support can be found
at http://jquerymobile.com/gbs.

http://jquerymobile.com/gbs
http://lib.ommolketab.ir
http//lib.ommolketab.ir

148

Chapter 5	 Introducing jQuery Mobile

1.		 Open the starter page that you created in the previous
section in the Document window, and click the Split
button to reveal the underlying code.

2.		 The code at the top of the page looks like this:

<!DOCTYPE html>

<html>

<head>

<meta charset=”utf-8”>

<title>jQuery Mobile Web App</title>

<link href=”../../jquery-mobile/jquery.mobile-

Ê 1.0a3.min.css" rel="stylesheet" type=

Ê "text/css"/>

<script src="../../jquery-mobile/jquery-1.5.

Ê min.js" type="text/javascript"></script>

<script src="../../jquery-mobile/jquery.mobile

Ê -1.0a3.min.js" type="text/javascript">

Ê </script>

</head>

The page begins with an HTML5 DOCTYPE declaration
and sets the character set to Unicode (UTF-8). The
highlighted lines of code attach the jQuery Mobile style
sheet and two external JavaScript files: the jQuery core
library and the jQuery Mobile script.

Recent best practice recommends against loading
JavaScript files in the <head> of a document because it
blocks all other activity until the JavaScript has been
parsed. However, it’s essential to load these three files
first because jQuery Mobile applies many markup
enhancements before the document.ready event fires.
Don’t move the <script> tags to the bottom of the page.

The jQuery Mobile team is likely
to release regular updates to the
JavaScript files and style sheet. I’ll
show you in “Creating and linking to
an external file with a single page
block” later in this chapter how to
keep your versions up to date.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

149

III: jQuery Mobile and PhoneGap

3.		 Scroll down to the <body> section. The code used to
build the first two page blocks of the jQuery Mobile site
looks like this:

<div data-role=”page” id=”page”>

 <div data-role=”header”>

 <h1>Page One</h1>

 </div>

 <div data-role=”content”>

 <ul data-role=”listview”>

 Page Two

 Ê

 Page Three

 Ê

 Page Four

 Ê

 </div>

 <div data-role=”footer”>

 <h4>Page Footer</h4>

 </div>

</div>

<div data-role=”page” id=”page2”>

 <div data-role=”header”>

 <h1>Page Two</h1>

 </div>

 <div data-role=”content”>

 Content

 </div>

 <div data-role=”footer”>

 <h4>Page Footer</h4>

 </div>

</div>

Your initial impression is likely to be that someone has
run riot with <div> elements. Each page block is wrapped
in a <div>, as are the headers, footers, and content
sections. Although this sounds contrary to HTML5’s
aims of a more meaningful, semantic structure, the
reality is somewhat different, as you’ll see in a moment.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

150

Chapter 5	 Introducing jQuery Mobile

The other points to note in this basic structure are

	.	 �Most elements contain a data‑role attribute that
describes the element’s role within the structure.
This attribute is one of the most important features
of jQuery Mobile. It’s what the HTML5 specification
calls a custom data attribute. So, it’s a perfectly valid
markup.

	.	 �Each <div> that represents a page within the site is
identified by data‑role=”page”.

	.	 �Each page block has a unique ID. By default,
Dreamweaver assigns page to the first one, page2 to
the second, and so on.

	.	 �The links that load these internal page blocks
point to named anchors—in other words, the ID
preceded by a hash sign. For example, the link
to the second page block uses href=”#page2”. It’s
only DOM manipulation that makes it appear to
be a separate page. As you’ll see later in this chap-
ter, links to external pages point to the filename
or URL.

4.		 Click the Live Code button to see the HTML code
generated by jQuery Mobile when the page is loaded
in a browser (Figure 5.8).

The generated code is considerably more complex than
the raw HTML. The jQuery Mobile framework uses the
data-role attributes to assign classes to each element
according to its function in the page. To make the site
accessible to visually impaired people using a screen
reader, it also injects WAI-ARIA role and aria‑level
attributes (see Table 2.2 in Chapter 2). As Figure 5.8
shows, the <div> with the data-role value content is
assigned the WAI-ARIA main role, indicating that it
contains the main content of the page.

Custom Data Attributes

The HTML5 specification allows web page authors
to create custom attributes to store data about
HTML elements when there’s no suitable official
attribute. A custom data attribute must begin with
data- and be followed by at least one character.
Alphabetic characters after the hyphen should be
all lowercase.

The jQuery Mobile framework handles custom data
attributes automatically. But if you need to access
the value of custom data attribute in a script of your
own, use the jQuery attr() method like this:

var role = $(‘#page’).

Êattr(‘data-role’);

As you’ll learn in Chapter 6, jQuery Mobile makes
extensive use of other custom data attributes in
addition to data-role.

WAI-ARIA is the Web Accessibility
Initiative Accessible Rich Internet
Applications specification.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

151

III: jQuery Mobile and PhoneGap

Figure 5.8  The jQuery Mobile framework makes sites accessible by injecting
WAI-ARIA roles into the HTML elements.

5.		 With Live code still active, pass your mouse pointer
over the page link buttons in Live view. As the pointer
moves from one button to the next, you should see the
class names highlighted in pink as they change dynami-
cally (Figure 5.9).

Figure 5.9  As you move the mouse pointer over the buttons, the classes switch
between hover and up.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

152

Chapter 5	 Introducing jQuery Mobile

6.		 Keep your eye on Live code as you click one of the links
in Live view. You should see several sections of code
highlighted in pink (Figure 5.10).

As Figure 5.10 shows, the <base> tag in the <head> of
the document is updated to show the name of the page
being navigated to, and the <body> tag is assigned the
ui-mobile-viewport-transitioning class. The clicked
button is also assigned the ui-btn-active class.

These classes are applied for less than a second during
the transition from one page to the next. When the
new page loads, further dynamic changes to the classes
display it within the viewport.

Figure 5.10  Clicking a link results in multiple changes to the CSS classes.

If you want to inspect the changes
to the code during the transition
to another page, press F6 to freeze
the JavaScript. Pressing F6 again
normally toggles JavaScript back
on, but disrupting jQuery Mobile
is likely to prevent the page from
responding further. Exit Live view
and then reactivate it to restore
normal functionality.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

153

III: jQuery Mobile and PhoneGap

You don’t need to understand the minute details of how
jQuery Mobile handles the page transitions, but it’s useful
to be able to inspect the code generated by the browser. As
you just learned, jQuery Mobile applies multiple classes to
most HTML elements. Knowing which classes are applied
at any particular time helps you customize the styles to give
your site an individual look (styling a jQuery Mobile site is
the subject of Chapter 7).

Adding Content to the Starter Page

Now that you understand the basic structure of a jQuery
Mobile multiple-page file, let’s flesh out the starter page
with some content. For a dedicated mobile site, it’s gener-
ally a good idea to pare down the content to avoid visitors
having to scroll through long pages on a small screen. The
download files for this chapter contain a shorter version of
the text in the Tozai Hotel case study from Chapters 2–4.
Of course, feel free to use your own content if you prefer.

1.		 With the starter page open in the Document window,
exit Live view if necessary. In the Document toolbar,
replace the default value in the Title field with
Tozai Hotel.

2.		 Select the Page One heading in Design view, and
replace it with Tozai Hotel.

3.		 Select each of the links in the unordered list in turn,
and replace them with Guest Rooms, Dining, and
Garden.

4.		 Position the insertion point after Garden in the final
list item, and press Enter/Return to insert a new list
item. Type Reservations.

5.		 Select the text you have just typed in the new list item,
and type reservations.html in the Link field of the
Property inspector. The page you’re linking to doesn’t
exist yet; you’ll create it later.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

154

Chapter 5	 Introducing jQuery Mobile

6.		 Open Split view, and click the turquoise “jQuery
Mobile: listview” tab at the top left of the unordered
list of links to select the underlying HTML code
(Figure 5.11).

7.		 Press the keyboard right arrow key once to deselect the
unordered list and move the insertion point outside the
closing tag.

8.		 The text for the Tozai Hotel site is available in three
formats in the ch05/source folder. Open index.docx,
index.doc, or index.txt; copy the Where East Meets
West heading; and the following two paragraphs.

9.		 If you used one of the Microsoft Word documents,
choose Edit > Paste Special or press Ctrl+Shift+V/
Shift+Command+V. In the Paste Special dialog box,
select the “Text with structure (paragraphs, lists, tables,
etc.)” radio button and the “Clean up Word paragraph
spacing” check box. Then click OK to paste the text
into the page.

If you used the plain text version, simply copy and
paste the text. Instead of wrapping the heading
and paragraphs in the appropriate HTML tags,
Dreamweaver inserts line breaks (
 tags). You need
to format the text manually.

10.		 Click anywhere inside the Where East Meets West head-
ing, and format it as a level 2 heading using the Format
menu in the Property inspector in HTML mode or by
pressing Ctrl+2/Command+2.

Figure 5.11  Each jQuery Mobile
widget has a turquoise tab that can be
used to select the HTML code.

If you can’t see the turquoise tab
when you move your mouse pointer
over a jQuery Mobile widget, choose
View > Visual Aids and make sure
there’s a check mark next to Invisible
Elements. If there isn’t, select Invis-
ible Elements to turn on the option.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

155

III: jQuery Mobile and PhoneGap

11.		 Click anywhere inside the Page Footer heading in the
first page block, and select Paragraph from the Format
menu in the Property inspector. Replace the placehold-
er text by copying and pasting the address from the
Word document or text file that you opened in step 8.

12.		 Save index.html and change the Document window
size by choosing View > Window Size > 320 × 480
Smart Phone.

13.		 Activate Live view. The page should look like Figure 5.12.

14.		 Click the Reservations button. You should briefly see
an animated Loading image followed by an error alert
(Figure 5.13).

In this case, the target page, reservations.html, doesn’t
exist. But on a mobile device, a page might fail to load
because of connectivity problems. Whatever the reason,
jQuery Mobile gracefully abandons the attempt to
load the file and automatically displays a warning for a
couple of seconds.

Fixing the look of the footer

Customizing the default styles of a jQuery Mobile site is the
subject of Chapter 7, but the address in the footer section
needs to be in a smaller font size and better aligned. So,
let’s fix that now.

1.		 Create a new CSS file called custom.css, and save it a
new folder called styles within your working folder.

2.		 Open the CSS Styles panel, click the icon to open
the Attach External Style Sheet dialog box, and link
styles/custom.css to index.html.

Dreamweaver automatically attaches new style sheets
just before the closing </head> tag, so any styles you add
to custom.css are lower in the cascade than the jQuery
Mobile default styles, allowing you to override them.

3.		 Activate Live view, and click the Inspect button in the
Document toolbar. As you move your mouse pointer
over the page in Live view, Dreamweaver highlights
the current element showing margins in yellow and

Figure 5.12  The first page links to
the other sections and displays some
short text.

Figure 5.13  An error message is dis-
played when the page can’t be found.

Using the CSS Styles panel is the
most efficient way to attach an
external style sheet when working
with jQuery Mobile. If you choose
Format > CSS Styles or open the
Class menu in the Property inspector,
you need to scroll through a list of
approximately 200 jQuery Mobile
classes to get to the Attach Style
Sheet option.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

156

Chapter 5	 Introducing jQuery Mobile

padding in magenta. With the mouse pointer over one
of the paragraphs in the footer, you can see that it has
big top and bottom margins (Figure 5.14).

4.		 To style the paragraphs inside the footer, you need to
find out which rules have already been applied to the
footer. As long as you don’t click anywhere in Live view,
you can climb up the document hierarchy by pressing
the left arrow key. Pressing once selects the <div> that
contains the footer (Figure 5.15).

5.		 You can now read the names of the classes applied
dynamically to the footer: ui‑bar‑a and ui‑footer.
The main purpose of the ui‑bar‑a class is to define
the color scheme, and it isn’t exclusive to the footer.
However, there’s no doubt about the meaning of
ui‑footer. You can base a new style rule for the footer
paragraphs on this class.

6.		 Add the following style rule to custom.css:

.ui-footer p {

 font-size: 12px;

 margin: 0;

 padding: 3px 15px;

}

This uses a descendant selector that applies to all
paragraphs nested inside elements with the class
ui‑footer. It changes the font size, zeroes the margins,
and adds 3 pixels of vertical padding and 15 pixels of
horizontal padding.

7.		 Save custom.css and refresh Live view. The first page
now looks much smarter (Figure 5.16).

Adding text to the other pages

Replacing the placeholder text in the other jQuery Mobile
page blocks is a straightforward cut-and-paste job. Just use
the data‑role of each <div> to determine what goes where.
The page heading has a data‑role of header; for the main
content, it’s content; and for the footer, it’s footer.

Figure 5.14  CSS Inspect mode in Live view reveals
the margins surrounding an element.

Figure 5.15  The status bar lists the classes applied
to the footer <div>.

Figure 5.16  The footer paragraphs
are now in better proportion to the
rest of the page.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

157

III: jQuery Mobile and PhoneGap

You need to be careful how much text you put in the
header. In a website designed for a desktop, it’s normal
to have a banner heading with the site or company name.
The heading that describes the page’s content usually
comes below. When designing for a small screen, though,
space is at a premium. For example, let’s say you decide to
combine the site name with the subject of the page in the
second page block like this:

<div data-role=”page” id=”page2”>

 <div data-role=”header”>

 <h1>Tozai Hotel Guest Rooms</h1>

 </div>

Figure 5.17  shows what happens when the header is
viewed on a screen that’s only 320 pixels wide.

The default jQuery Mobile styles for headers, footers, and
most list items use the white‑space and overflow proper-
ties to keep the text on a single line and hide the over-
flow, adding an ellipsis to indicate that the text has been
truncated.

If you use the default layout, you need to keep headers and
footers short.

Using headings to preserve the document structure

The recommended best practice for search engine optimi-
zation and accessibility is to build web pages with head-
ings organized in a logical structure. The most important
heading at the top of the page should be wrapped in <h1>
tags, the next most important level of headings should be
in <h2> tags, and so on.

The multiple-page structure is merely an illusion created
by jQuery Mobile manipulating the DOM. Search engines
and screen readers see only a single page, so your head-
ing levels should be organized accordingly. There should
be one <h1> heading at the top of the file, and subsequent
header sections should use <h2> headings. Headings in the
content sections should use <h3> tags.

Figure 5.17  Long text is truncated in
the header.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

158

Chapter 5	 Introducing jQuery Mobile

The jQuery Mobile team anticipated the need to use differ-
ent level headings to maintain a logical file structure while
at the same time presenting the visual illusion of separate
pages. All levels of headings from <h1> through <h6> are
styled identically in headers, footers, and other elements
that have a specific data-role, such as the headings of
collapsible blocks and accordions. Figure 5.18 shows the
second page’s header with shorter text and using <h2> tags
instead of <h1>.

Inserting a List View widget

The List View widget is one of the most versatile jQuery
Mobile components and is useful for navigating to other
parts of the site. It’s not only styled automatically, but you
can also add images, which are automatically rescaled as
icons (Figure 5.19).

Figure 5.18  The font size of <h1>
through <h6> is always the same in a
header or footer.

To save you time, index_text.html
in ch05/begin contains the text for
the remaining page sections copied
from the Word document with the
headings formatted to reflect the
file’s logical structure.

Figure 5.19  A List View
widget can make an attractive
navigation device.

When inserting jQuery Mobile
widgets, it’s extremely important
to make sure the insertion point
is in the right place. Unfortu-
nately, Dreamweaver CS5.5 does not
automatically move the insertion
point outside the current element.
For example, if the insertion point
is just before a closing paragraph
tag, the widget is inserted inside the
paragraph, generating invalid code.

1.		 With index.html open in the Document window,
deactivate Live view if necessary, and open Split view.
Make sure the Document window viewport is fully
expanded (View > Window Size > Full Size). Setting up
the workspace like this makes it easier to add new ele-
ments accurately.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

159

III: jQuery Mobile and PhoneGap

2.		 In Design view, locate the third page block, and click at
the end of the second paragraph following the heading
Japanese Cuisine at Its Finest.

3.		 Check the position of the insertion point in Code view.
Dreamweaver puts it just before the closing </p> tag
(Figure 5.20).

4.		 It’s vital to move the insertion point so that it’s between
the closing </p> tag and the opening <p> tag of the next
paragraph. The simplest way is to move into Code view
and click to the right of the closing </p> tag.

The alternative is to click the <p> in the Tag selector
at the bottom of the Document window to select the
entire paragraph (Figure 5.21). Then press the right
arrow key once to move the insertion point to the right
of the closing </p> tag (Figure 5.22).

5.		 In the Insert panel, select the jQuery Mobile category,
and click List View to open the jQuery Mobile List View
dialog box.

Alternatively, choose Insert > jQuery Mobile > List View.

6.		 In the dialog box, set List Type to Unordered, Items
to 4, and select the Inset check box, as shown in
Figure 5.23.

Figure 5.20  Pay close attention to the position of
the insertion point.

Figure 5.21  Use the Tag selector to select the
whole paragraph.

Figure 5.22  The insertion point is now in the
correct position.

Figure 5.23  The options can be combined to produce
different types of lists.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

160

Chapter 5	 Introducing jQuery Mobile

7.		 Click OK to insert the List View widget. If the insertion
point was in the correct place, you should see an unor-
dered list with four list items after the closing </p> tag
in Code view. In Design view, you should see a List View
widget with four placeholder links (Figure 5.24).

Figure 5.24  Check that the widget has been inserted in the correct location.

8.		 You’ll convert the first placeholder link into a title bar
for the widget by removing the link and assigning the
list item the data‑role of list‑divider.

In Design view, right-click in the first placeholder link,
and choose Remove Tag <a> from the context menu.
Replace the text with Japanese Food & Drink.

9.		 With the insertion point inside the text you just typed,
open the Tag Inspector panel (Window > Tag Inspector
or F9/Option+Shift+F9). Make sure that the Attributes
button and Category view icon at the top left of the
panel are selected, and that the current tag is , as
shown in Figure 5.25.

10.		 Expand the jQuery Mobile category, and select
list‑divider from the data‑role options.

11.		 Replace the three other placeholders with Sashimi,
Sushi, and Sake. The underlying code for the List View
widget should now look like this:

<ul data-role=”listview” data-inset=”true”>

 <li data-role=”list-divider”>Japanese Food

 Ê & Drink

 Sashimi

 Sushi

 Sake

Figure 5.25  The Tag Inspector gives you access to
all the jQuery Mobile attributes.

Category view

http://lib.ommolketab.ir
http//lib.ommolketab.ir

161

III: jQuery Mobile and PhoneGap

At the moment, the last three items are only dummy
links. You’ll fix that later.

12.		 Activate Live view and click the Dining link. The List
View widget should now look like Figure 5.26. Adding
the list‑divider data‑role to the first item turns it
into a heading. The other three items are displayed as
buttons with right-facing arrows, and the widget is inset
from the edge of the page with rounded corners.

Adding icons to a List View widget

You can add icons to each item in a List View widget. This
not only makes it more attractive, but it also gives the user
an indication of what each item links to. Creating custom
icons is time-consuming and increases the number of
resources that need to be downloaded. So, jQuery Mobile
automatically rescales a full-sized image that’s used else-
where in the site. All you need to do is to insert the image
as the first child of the item; jQuery Mobile handles
the rest for you.

1.		 Exit Live view if it’s still enabled.

2.		 The images need to be inserted between the opening
 and <a> tags. As you did earlier, you can either
click directly in Code view to position the insertion
point, or select the <a> tag in the Tag selector and press
the left arrow key.

3.		 With the insertion point between the and <a> tags
of the second list item, choose Insert > Image, navigate
to ch05/images, and select sashimi.jpg.

4.		 When you click OK (Choose on a Mac), the Image
Tag Accessibility Attributes dialog box appears. Select
<empty> from the “Alternate text” menu, and click OK.

Figure 5.26  The widget is
automatically styled by jQuery Mobile.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

162

Chapter 5	 Introducing jQuery Mobile

The image is inserted in front of the link and looks
completely out of proportion in Design view (Figure 5.27).
Don’t worry. As long as the image is the first child of
the element, jQuery Mobile styles it dynamically in
a browser or Live view.

Figure 5.27  The image is displayed full size in Design view.

5.		 Repeat steps 2–4 to insert sushi.jpg and sake_380.jpg in
the other two list items. The underlying code now looks
like this:

<ul data-role=”listview” data-inset=”true”>

 <li data-role=”list-divider”>Japanese Food

 Ê & Drink

 <img src=”../images/sashimi.jpg” width

 Ê ="400" height="244" alt="">

 Ê Sashimi

 <img src=”../images/sushi.jpg” width

 Ê ="400" height="241" alt="">

 Ê Sushi

 <img src=”../images/sake_380.jpg”

 Ê width="380" height="279" alt=""><a href

 Ê ="#">Sake

6.		 Save index.html, activate Live view, and click the Dining
link. The List View widget should now look like Figure 5.19.

You can check your code against index_listview.html in
ch05/complete.

The jQuery Mobile styles scale the
images to a maximum width and
height of 80 pixels without preserv-
ing the original aspect ratio. This
results in the images being slightly
distorted, but I decided it was ac-
ceptable at this size. However, square
images or those with approximately
equal width and height scale better.
Customizing the CSS to preserve the
aspect ratio involves editing not only
the style rules for the images, but
also for the List View widget.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

163

III: jQuery Mobile and PhoneGap

Creating and Linking to External Pages

The danger of storing multiple pages in a single file is that
the file might become difficult to maintain. It also forces
visitors to download your whole site, even though they
might be interested in only a specific section. Therefore,
it’s a good idea to split up a jQuery Mobile site into several
files. You can link to external files that contain either one
or multiple page blocks. Let’s start by looking at a file with
a single page block because it’s easier to handle.

Creating and linking to an external file with a single page block

The final link on the first page of index.html points to
reservations.html, which hasn’t yet been created. The fol-
lowing steps describe how to create a file with a single page
block and link to it.

1.		 Choose File > New > Blank Page. Set Page Type to
HTML and Layout to <none>. Make sure DocType is set
to HTML 5, and click Create.

2.		 Save the new file as reservations.html in the same
folder as index.html, and set the page title to Tozai
Hotel: Reservations.

3.		 In the jQuery Mobile category in the Insert panel, click
Page. Alternatively, choose Insert > jQuery Mobile >
Page. This opens the jQuery Mobile Files dialog box
(Figure 5.28).

4.		 Select the Local radio button to use the local versions
of the jQuery Mobile files.

5.		 When you click OK, the jQuery Mobile Page dialog box
appears. Type reservations in the ID field, select the

Figure 5.28  Dreamweaver gives you
the choice of using remote or local
versions of the jQuery Mobile files.

The jQuery Mobile Updates link at
the bottom of the jQuery Mobile
Files dialog box takes you to a web
page where extensions to update
the jQuery Mobile library assets will
be posted when new versions are
released.

Changing the Library Source

When you select Local in the jQuery Mobile Files
dialog box, Dreamweaver copies the files from
its main configuration folder. However, you can
tell Dreamweaver to get the files from a different
source. This is useful if an extension isn’t available to
update Dreamweaver’s versions of the files, or if you
need to use a customized version.

To change the source folder, click the folder icon
to the right of the jQuery Library Source field. The
new source folder must contain the jQuery core
library, the jQuery Mobile JavaScript file and style
sheet, and an images folder containing the jQuery
Mobile CSS sprites. The filenames can include the
version number or a client name, but they must
contain “jquery” for the core library .js file and
“jquery.mobile” for the jQuery Mobile .css and .js
files. You can get the most up-to-date version of the
jQuery Mobile files from http://jquerymobile.com/
download, and the jQuery core library from
http://jquery.com.

Dreamweaver remembers the new source folder
until you change it or click the “Reset to defaults”
button.

http://jquerymobile.com/download
http://jquerymobile.com/download
http://jquery.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

164

Chapter 5	 Introducing jQuery Mobile

Header and Footer check boxes, and click OK to insert
the skeleton code for a single jQuery Mobile page block.

6.		 Replace the placeholder text with a header, content,
and footer like this:

<div data-role=”page” id=”reservations”>

 <div data-role=”header”>

 <h1>Reservations</h1>

 </div>

 <div data-role=”content”>

 <h2>Check Availability</h2>

 </div>

 <div data-role=”footer”>

 <p>Tozai Hotel, Dokoka 1-chome,

 Ê Nijinomuko, Japan</p>

 <p>Phone: 012-345 678 </p>

 </div>

</div>

7.		 Save reservations.html, and switch to index.html as the
active document.

8.		 Activate Live view and click the Reservations button to
load the page you just created. As Figure 5.29 shows, a
Back button is automatically created to the left of the
header.

9.		 Click the Back button to return to the first page, and
exit Live view.

Linking to an external file from a page block other than the first

In the preceding section, you linked to reservations.html
from the first page block in index.html. However, linking
to an external file from a subsequent page block within
a file with multiple page blocks is slightly more complex.
The following instructions explain how to insert a jQuery
Mobile Button widget to link to reservations.html from the
second page block within index.html.

Normally, IDs should be unique
within a page but can be reused in
other pages. However, jQuery Mobile
uses DOM manipulation to load
content from external pages into
the current page, so IDs should be
unique within the site rather than
just within the current page.

Figure 5.29  The new page creates
an automatic link back to the
previous page.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

165

III: jQuery Mobile and PhoneGap

1.		 In Design view, locate the second page block, and click
at the end of the first paragraph following the Wake
Up to a Stunning View heading. Press Enter/Return to
insert an empty paragraph.

2.		 In the jQuery Mobile category in the Insert panel, click
Button. Alternatively, choose Insert > jQuery Mobile >
Button.

3.		 In the jQuery Mobile Button dialog box (Figure 5.30),
set Buttons to 1, Button Type to Link, and Icon to
None. Then click OK to insert the Button widget.

4.		 Replace the placeholder text with Check Room
Availability, and link to reservations.html. The HTML
code should look like this:

<p><a href=”reservations.html” data-role=

Ê "button">Check Room Availability</p>

When you set the Button Type to Link, Dreamweaver
simply inserts an ordinary link with data‑role=”button”
in the opening <a> tag.

5.		 Activate Live view, and click the Guest Rooms button
to navigate to the second page. The link is styled as a
button that stretches the full width of the paragraph
(Figure 5.31).

6.		 Click the Check Room Availability button. You should
see a Loading widget followed by the yellow error
alert (see Figure 5.13 earlier in this chapter). See the
“jQuery Mobile Navigation” Close-Up on the next page
to understand why the page can’t be loaded.

7.		 Chose Site > Manage Sites, select the name of your
current site, and click Edit to open the Site Setup
dialog box.

8.		 Expand Advanced Settings in the column on the left, and
select Local Info. Select the Site Root radio button for
“Links relative to,” and type http://www.example.com/
in the Web URL field. Of course, if you’re building a
real site, use the actual domain name.

Figure 5.30  The jQuery Mobile Button widget has
many options.

You might need to delete the
 HTML entity for a non-
breaking space after the opening
<p> tag. Dreamweaver normally
deletes it automatically when you
start typing in an empty paragraph,
but it doesn’t always do so when you
insert a widget. Failure to remove
the nonbreaking space adds an extra
line of space above the widget.

Figure 3.31  Styling a link as a button
makes it easier to tap on a mobile phone.

http://www.example.com/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

166

Chapter 5	 Introducing jQuery Mobile

9.		 Click Save and Done to close the Site Setup and Manage
Sites dialog boxes.

10.		 Changing the setting in the Site Setup dialog box
affects only future links. You need to change existing
links manually to be relative to the site root.

Exit Live view, and relink the Button widget to
reservations.html using a site-root-relative link:

<a href=”/ch05/working/reservations.html” data

Ê -role="button">Check Room Availability

11.		 Save index.html and reactivate Live view. Click the Guest
Rooms link and then the Check Room Availability
button. This time the reservations page should load
correctly, and you should be able to use the Back but-
ton to get back to the Guest Rooms page and then to
the first page.

Creating and linking to a file with multiple page blocks

There are two ways to create a file with multiple page blocks:

	.	 Use a mobile starter page and delete any elements you
don’t want.

	.	 Create a blank HTML page and use the Insert panel or
Insert menu to add as many jQuery Mobile page blocks
as you need. The jQuery Mobile Files dialog box (see
Figure 5.28 earlier in this chapter) appears only when
you insert the first page block.

The most important aspect of linking from one file with
multiple page blocks to another is that you need to tell
the browser to clear the history of visited links. Otherwise,
you rapidly run into navigation problems. Unfortunately,
clearing the history of visited links prevents the Back but-
ton from being added automatically to the header. Still, it’s
simple to add it manually.

To save you time, I have created a file called food.html in
ch05/begin. It contains three jQuery Mobile page blocks
with the IDs sashimi, sushi, and sake. You’ll link to this
page from the List View widget that you created earlier in
this chapter.

jQuery Mobile Navigation

Links in jQuery Mobile use DOM manipulation
to load content into the current page, and the
framework keeps track of where you have been,
allowing you to retrace your steps through the Back
button. When you linked to reservations.html from
the first page, jQuery Mobile sent an Ajax request to
the external file and loaded the jQuery Mobile Page
widget into index.html. Clicking the Back button
unloaded the content from the external file.

Navigating to the Guest Rooms section of index.
html changes the URL to index.html#page2. When
you try to navigate to reservations.html from this
location using a document-relative link, the browser
can no longer find it. To make the link work, it must
be relative to the site root rather than relative to
the document.

Linking to multiple-page files requires special
handling, as described in “Creating and linking to a
file with multiple page blocks.”

Even though custom.css isn’t
attached to reservations.html, the
footer is styled the same way as
in index.html. This is because the
content of reservations.html is
loaded into the DOM of index.html,
so it picks up the same styles. If you
load reservations.html directly in
Live view, the footer uses a larger
font size and is flush against the
left margin.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

167

III: jQuery Mobile and PhoneGap

1.		 Copy food.html from ch05/begin and save it in your
working folder.

2.		 With food.html the active document, activate Live view
to load the first page, which contains internal links to
the other two page blocks (Figure 5.32).

3.		 Click one of the links to load one of the other internal
page blocks. When the next page loads, a Back button
automatically appears in the header. You can use this
to return to the first page, or you can click one of the
other internal links. Whenever you return to the first
page, the Back button disappears.

4.		 Switch to index.html in the Document window. Locate
the List View widget you created earlier in this chapter,
and link to food.html, adding a hash or pound sign
(#) and the ID of the appropriate jQuery Mobile Page
widget at the end of each URL. The HTML code for
the List View widget should look like this:

<ul data-role=”listview” data-inset=”true”>

 <li data-role=”list-divider”>Japanese Food

 Ê & Drink

 <img src="../images/sashimi.jpg" width

 Ê ="400" height="244" alt=""><a href="

 Ê /ch05/working/food.html#sashimi”>

 Ê Sashimi

 <img src="../images/sushi.jpg" width

 Ê ="400" height="241" alt=""><a href="

 Ê /ch05/working/food.html#sushi”>Sushi

 Ê

 <img src="../images/sake_380.jpg"

 Ê width="380" height="279" alt=""><a

 Ê href="/ch05/working/food.html#sake”>Sake

 Ê

5.		 Activate Live view and click the Dining button to load
the third page block in index.html.

6.		 Click one of the links in the List View widget. The ap-
propriate page block of food.html loads, complete with
a Back button.

Figure 5.32  Only the first page
block shows when the file is loaded
in Live view.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

168

Chapter 5	 Introducing jQuery Mobile

7.		 Click the Back button. You are taken back to the Dining
page of index.html.

8.		 Click another link in the List View widget to load food.
html again. This time click one of the internal links in
food.html. You should see the error alert. The page
can’t be loaded.

As explained earlier, when you navigate to an external
page, jQuery Mobile fetches the content of the external
page and loads it into the DOM of the current page.
So, when you try to navigate to an internal link, jQuery
Mobile looks for a page with that ID in the current
document. But the page block with the ID you’re trying
to load is still in the external document, and jQuery
Mobile can’t find it.

9.		 When linking to an external file with multiple page
blocks, you need to tell jQuery Mobile to clear its his-
tory and load the page directly. You do this by adding
rel=”external” to the opening <a> tag of the link.

Exit Live view. Then click anywhere in the Sashimi
link in the List View widget in the third page block
of index.html, open the Tag Inspector, and expand
the Uncategorized category. Type external in the rel
attribute field (Figure 5.33).

Alternatively, add the rel attribute manually in
Code view:

<a href=”/ch05/working/food.html#sashimi”

Ê rel=”external”>Sashimi

10.		 Add rel=”external” to the other two links in the List
View widget.

11.		 Activate Live view and navigate to the Dining page. Click
 one of the links in the List View widget. The appropri-
ate page block in food.html should load. Click one of
the internal links. This time the correct page block
should load.

12.		 Click the Back button to return to the page block in
food.html that originally loaded from the Dining page.
There’s no Back button because jQuery Mobile cleared
its navigation history when it loaded food.html.

In theory, you should also be able to
link to an external file with multiple
page blocks by setting the jQuery
Mobile custom data attribute da-
ta‑ajax to false in the opening
<a> tag. However, in my tests, I
found data‑ajax=”false”
often resulted in the site freezing,
whereas rel=”external” was
consistently reliable.

Figure 5.33  When linking to a multiple-page file,
set rel to external.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

169

III: jQuery Mobile and PhoneGap

You can use the Back button in the Browser Navigation
toolbar (Figure 5.34) to return to the Dining page, but
it would be more consistent to add a jQuery Mobile
Back button.

Figure 5.34  You can use Dreamweaver’s Browser Navigation toolbar to
navigate in Live view.

Adding Back and Home buttons to page headers

If you add a link inside a header, jQuery Mobile automati-
cally turns it into a button and places it to the left of the
heading. A second link is automatically located on the right.
The following instructions describe how to add two buttons
to the headers in food.html. The first one mimics the Back
button, whereas the other links back to the home page.

1.		 Open food.html in the Document window, and exit
Live view if necessary.

2.		 Click anywhere in the Sashimi heading, and then click
<h1> in the Tag selector at the bottom of the Document
window to select the entire element.

3.		 Press the left arrow key once to move the insertion
point to the left of the opening <h1> tag, and type Back.

4.		 Select the text you just typed, and create a site-root-
relative link to index.html#page3 (the Dining page
block).

5.		 To mimic the browser’s Back button, you need to use
another jQuery Mobile custom data attribute, data‑rel
and set its value to back. With the link still selected,

In this and the following section,
you’ll encounter several new jQuery
Mobile custom data attributes.
They’re described in detail in
Chapter 6.

It’s recommended to link to a named
page for the benefit of mobile brows-
ers that are not fully supported by
jQuery Mobile.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

170

Chapter 5	 Introducing jQuery Mobile

expand the jQuery Mobile category in the Tag Inspector,
and type back in the data‑rel field.

Alternatively, add data‑rel=”back” manually in the
opening <a> tag in Code view.

The link should look like this:

<a href=”/ch05/working/index.html#page3”

Ê data-rel=”back”>Back

6.		 Select the <h1> tag again, and press the right arrow key
to move the insertion point to the right of the closing
</h1> tag.

7.		 Type Home and convert the text into a link to index.
html.

8.		 You want this link to reload the main page, so add
rel=”external” to the opening <a> tag in the same way
as in the previous section.

The code in the header should now look like this:

<div data-role=”header”>

 <a href=”/ch05/working/index.html#page3”

 Ê data-rel="back">Back

 <h1>Sashimi</h1>

 <a href=”/ch05/working/index.html”

 Ê rel="external">Home

</div>

9.		 Add the same links to the other two headers in food.
html.

10.		 Save food.html and test the new links by switching to
index.html and activating Live view. Click the Dining
link, and then click one of the links to food.html. You
should now see Back and Home buttons on either side
of the header (Figure 5.35).

11.		 Test the links thoroughly. When you click one of the
internal links in food.html, jQuery Mobile is savvy
enough to realize there’s a Back button hard-coded
into the header, so it doesn’t add another one.

Because the code in the links is
identical in each page block, it’s
quicker to copy and paste the links
rather than going through all the
steps again.

Figure 5.35  The Back and Home links
make the external page user friendlier.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

171

III: jQuery Mobile and PhoneGap

Even though the link in the Back button points to the
Dining page, clicking the button always takes you back
one step in the navigation history. Clicking the Home
button takes you to the first page block in index.html
and clears the navigation history so you can continue
moving around the site normally.

12.		 There’s just one fly in the ointment: When you click the
Back button to return to the Dining page, there’s no
way to navigate to the rest of the site. You need to hard-
code a Back button that links back to the home page in
this page block too. Amend the header section of the
Dining page block like this:

<div data-role=”page” id=”page3”>

 <div data-role=”header”>

 Back

 <h2>Dining at Tozai</h2>

</div>

13.		 This hard-coded Back button uses an internal link, so
jQuery Mobile automatically inserts a Back button in
the first page block when you return there. It seems
counterintuitive to have a Back button on the site’s home
page, but it’s easy to suppress with the data‑backbtn
custom data attribute.

Select the <div> that contains the header for the first
page, and use the Tag Inspector to set the value of
data‑backbtn to false. The code looks like this:

<div data-role=”page” id=”page”>

 <div data-backbtn=”false” data-role="header">

 <h1>Tozai Hotel</h1>

 </div>

This prevents the Back button from appearing on the
home page.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

172

Chapter 5	 Introducing jQuery Mobile

Adding icons to the Back and Home buttons

At the moment, the hard-coded Back and Home buttons
are text only. You can also add icons to them with the
data‑icon and data‑iconpos custom data attributes by
following these steps.

1.		 Exit Live view, and switch to food.html.

2.		 Click inside one of the Back links, and expand the
jQuery Mobile category in the Tag Inspector. Select
arrow‑l from the data‑icon list (Figure 5.36) to add a
left-facing arrow icon to the button.

Figure 5.36  You can choose from a wide range of icons.

As Figure 5.36 shows, there is also an attribute called
data‑iconpos, which determines the position of the
icon. The default position is on the left of the button,
so there’s no need to add data‑iconpos to the Back link.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

173

III: jQuery Mobile and PhoneGap

3.		 Click inside one of the Home links, and select home
from the data‑icon list in the Tag Inspector. To place
the icon on the right of the button, select right from
the data‑iconpos list.

4.		 Repeat steps 2 and 3 for the other Back and Home
links, including the Back link in the Dining page block
in index.html.

5.		 Test the links as before by switching to index.html and
activating Live view. When you click one of the links in
the Dining page, you should see that icons have been
added to the Back and Home buttons (Figure 5.37).

You can compare your code with index.html and food.
html in ch05/complete.

Building on a Solid Foundation

This chapter has provided you with an overview of build-
ing a dedicated mobile site with jQuery Mobile using one
of the Mobile Starter pages in Dreamweaver CS5.5. The
starter page speeds up development by creating a file with
multiple page blocks complete with a List View widget to
navigate to the other pages. You also learned how to create
and link to external jQuery Mobile files, which can contain
single or multiple page blocks. Navigation to and from
external files that contain only a single jQuery Mobile page
block is straightforward, but external files with multiple
page blocks require more complex handling.

In addition, you learned how to insert List View and Button
widgets. The next chapter explores the other jQuery Mobile
widgets in Dreamweaver CS5.5 and delves deeper into the
many custom data attributes, such as data‑role, that lie at
the heart of the jQuery Mobile framework.

The jQuery Mobile team added
home and search to the list of
default icons at a late stage in the
Dreamweaver CS5.5 development
cycle. If home is not listed in the
code hints for data‑icon, enter
the value manually.

Figure 5.37  Icons can be added on
either side or above or below the text.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

chapter

6
Diving Deeper

into jQuery Mobile

http://lib.ommolketab.ir
http//lib.ommolketab.ir

176

Chapter 6	 Diving Deeper into jQuery Mobile

If this be magic, let it be an art
Lawful as eating.

—William Shakespeare

Diving Deeper into jQuery Mobile

The jQuery Mobile framework weaves its magic through a
combination of JavaScript and CSS. When a page initially
loads, the JavaScript analyzes the custom data attributes in
each HTML element and uses them to assign CSS classes,
bind event handlers, and insert page elements. Tapping a
link or button triggers an event, showing or hiding con-
tent, or loading a new page block. Each time this happens,
jQuery Mobile dynamically updates the CSS classes applied
to each element.

Under the hood are more than 12,000 lines of JavaScript
and approximately 2,000 lines of CSS. Using the custom
data attributes mercifully hides this complexity from the
web designer. Dreamweaver’s jQuery Mobile widgets auto-
matically insert the appropriate custom data attributes into
the HTML. Even so, you need to know what they mean to
troubleshoot problems and customize the default settings.
What’s more, the widgets don’t exploit every feature in
jQuery Mobile. You miss out on a lot if you rely solely on
the widgets.

This chapter begins with a reference guide to jQuery
Mobile attributes to help you unleash more of the frame-
work’s power. The rest of the chapter is devoted to show-
ing you how to use Dreamweaver’s prebuilt jQuery Mobile
widgets. There are 13 altogether, which you can access
through the Insert panel or Insert menu. Many of them
are designed for use in forms. You’ll learn how to build a
simple form and handle the response. In addition, you’ll
explore the many options offered by the List View and
Button widgets that you used in the previous chapter.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

177

III: jQuery Mobile and PhoneGap

A Guide to jQuery Mobile Custom Data Attributes

Let’s start the exploration of the custom data attributes
with the most important one: data‑role.

Designating an Element’s Role

The data‑role attribute assigns the role that an HTML ele-
ment plays in the jQuery Mobile framework. Page blocks have
a data‑role of page; a page block’s main content is in a
<div> that has a data‑role of content, and so on. Table 6.1
lists the data-role values and describes their meaning.

Table 6.1  jQuery Mobile data-role Values

Value	� Description

autoform	�� Not documented.

button	� Converts an <a> tag into a button.

collapsible	� Creates a collapsible block of content consisting of a heading (h1–h6) and other HTML
elements. Clicking the heading toggles the remaining elements open and closed.

collapsible-set	� Creates an accordion when applied to a <div> wrapped around a set of collapsible blocks.

content	� Designates the main content section of a page block.

controlgroup	� Groups buttons, radio buttons, and check boxes.

fieldcontain	� Styles and aligns form elements. Wrap each form element in a <div> or <fieldset>
and apply this data-role.

footer	� Designates the footer element of a page block.

header	� Designates the header element of a page block.

list-divider	� Converts an element into a divider styled differently from the rest of the list.

listview	� Converts an ordered or unordered list into a series of buttons.

navbar	� Converts an unordered list into a navigation bar. Apply to a <div> wrapped around
the list.

nojs	� If JavaScript is disabled, the browser displays only the content in elements with this
data-role. JavaScript-enabled browsers hide these elements.

none	� When applied to an individual form element, this prevents jQuery Mobile from
styling it, leaving the browser to display it normally.

page	� Designates a page block.

slider	� In spite of its name, this does not create a slider widget. It converts a <select>
element with two <options> into a flip toggle switch, such as an on/off switch.
Slider widgets are automatically created by using an <input> element with the
HTML5 range type.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

178

Chapter 6	 Diving Deeper into jQuery Mobile

Many of these data‑role values are inserted automatically
by Dreamweaver’s jQuery Mobile widgets, which are described
later in this chapter. The following sections concentrate on
those that aren’t handled by widgets.

Creating a collapsible block

A collapsible block consists of a heading, which can be any
level from <h1> through <h6>, followed by content that you
want to toggle open and closed. In its collapsed state, only
the heading is displayed (Figure 6.1).

When the user taps the heading, the hidden content is
revealed, moving the remaining content farther down the
page (Figure 6.2).

Figure 6.1  The heading of a
collapsible block is styled as a button
and displays a plus icon in the block’s
collapsed state.

Figure 6.2  When the block is
expanded, the minus icon indicates
it can be collapsed.

The example shown in Figures
6.1 and 6.2 is in ch06/examples/
collapsible.html.

Dreamweaver has a Collapsible
Block widget that creates a set of
interlinked collapsible blocks that
work like an accordion. Only one
block can be open at any time. See
“Creating an accordion with the
Collapsible Block widget” later in
this chapter. Tapping the heading again hides the content again.

To create a collapsible block, wrap the heading and con-
tent in a <div> and assign it the data‑role of collapsible
like this:

<div data-role=”collapsible”>

 <h2>There’s More!</h2>

 <p>Ut labore et dolore magna aliqua. . .</p>

</div>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

179

III: jQuery Mobile and PhoneGap

This example uses a single paragraph, but you can put any
HTML elements inside a collapsible block. By default, the
block is displayed open. To show it initially closed, add the
data‑collapsed attribute to the opening <div> tag and set
its value to true:

<div data-collapsed=”true” data-role=”collapsible”>

 <h2>There’s More!</h2>

 <p>Ut labore et dolore magna aliqua. . .</p>

</div>

Collapsible blocks are independent of each other, allowing
the user to open and close them in different combinations.

Creating a navigation bar

Wrapping an unordered list in a <div> that has the
data‑role of navbar creates a navigation bar with the fol-
lowing characteristics:

	.	 The bar can be nested in a header or footer <div> or in
the main content.

	.	 It fills the entire width of its parent element.

	.	 Up to a maximum of five items can be displayed
horizontally.

	.	 All items are equal width.

	.	 Text in each item is kept on a single line and truncated
if the text is too wide to fit.

The basic code for a navigation bar looks like this:

<div data-role=”navbar”>

 One

 Two

</div>

Figure 6.3 shows examples of a five-item navigation bar
nested in the header, plus navigation bars with two to six
items in the main content section.

Figure 6.3  The layout of navigation
bars is controlled automatically.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

180

Chapter 6	 Diving Deeper into jQuery Mobile

As Figure 6.3 shows, unordered lists that contain more
than five items default to displaying two items in each row.
However, you can override this default behavior by add-
ing the data‑grid attribute to the opening <div> tag. This
attribute accepts as its value a letter in the range a–d. The
default value of data‑grid is a, which results in two cells in
each row. Incrementing the letter increases the number of
cells in each row by one, up to a maximum of five (d).

Figure 6.4 shows two navigation bars, each with ten items.
The top one uses the default layout, so it has two items in
each row. The bottom one is laid out five items to a row
because data‑grid is set to d like this:

<div data-role=”navbar” data-grid=”d”>

 One

 . . .

 Ten

</div>

Providing content for browsers with JavaScript disabled

The jQuery Mobile framework depends entirely on JavaScript
being enabled in the browser. The data‑role of nojs
performs a similar function to the HTML <noscript> tag.
Content is hidden from JavaScript-enabled browsers and
displayed only when JavaScript is disabled.

The file nojs.html in ch06/examples is a copy of
collapsible.html with the addition of the following <div>:

<div data-role=”nojs”>

 <p>WARNING: JavaScript needs

 to be enabled. . .</p>

</div>

When you load nojs.html into Live view, it looks identical
to Figure 6.1. However, if you choose View > Live View
Options > Disable JavaScript, you’ll see the warning message
instead (Figure 6.5).

Figure 6.4  Use data‑grid to control
the layout for navigation bars with
more than five items.

Figure 6.5  It’s a good idea to redirect
visitors who have JavaScript disabled.

The examples in Figures 6.3 and 6.4
are in navbars.html and navbars2.
html in ch06/examples.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

181

III: jQuery Mobile and PhoneGap

Attributes that Control Behavior and Style

In addition to the data‑role attribute, jQuery Mobile has
many other custom data attributes that control the behav-
ior and style of individual elements. Table 6.2 describes
each one and lists the values it expects.

Table 6.2  jQuery Mobile Custom Data Attributes

Attribute	 Values	 Description

data-ajax	 true/false	� Determines whether Ajax is used to load content. The default
is true.

data-back-btn-text	 Text	 Sets custom text for the Back button. The default is “Back.”

data-backbtn	 true/false	� Set this attribute to false to prevent a Back button from being
generated in a header.

data-collapsed	 true/false	� Determines whether a collapsible block is closed or open on
initial display. The default is false. Set to true to hide content.

data-counttheme	 a–f	 Sets the theme for count bubbles in a List View widget.

data-direction	 reverse	�R everses the direction of a page transition. See “Controlling
page transitions” later in this chapter.

data-dividertheme	 a–f	� Sets the theme for elements with the data‑role of
list‑divider.	

data-filter	 true/false	�A dds a search box above a List View widget when set to
true. See “Creating a searchable List View widget” later in this
chapter.

data-fullscreen	 true/false	� When added to a page block and set to true, the page is
displayed full screen. Headers and footers are toggled on and
off by tapping the screen. See “Creating persistent headers and
footers” later in this chapter.

data-grid	 a–d	� Controls the number of cells in each row of a navigation bar.
See “Creating a navigation bar” earlier in this chapter.

data-groupingtheme	 a–f	� Sets the theme for dividers in a List View widget. The default
is b.

data-icon	 See Figure 6.7	�A dds an icon to a button using either jQuery Mobile’s default
icons or custom icons. When specifying a custom icon, this
generates a CSS class using the specified name prefixed by
ui‑icon‑.

data-iconpos	 See Table 6.3	� Specifies the position of an icon in relation to the button text.

data-id	T ext	�A pplies a common identity to elements in different page
blocks. See “Creating persistent headers and footers” later in
this chapter.

Table continues on next page

http://lib.ommolketab.ir
http//lib.ommolketab.ir

182

Chapter 6	 Diving Deeper into jQuery Mobile

Table 6.2  jQuery Mobile Custom Data Attributes (continued)

Attribute	 Values	 Description

data-inline	 true/false	� When set to true, displays buttons as inline elements only
as wide as their content. The default is false, which displays
buttons the full width of their containing element.

data-inset	 true/false	� When set to true, insets a List View widget from the margins.
The default is false, which stretches the List View widget the
full width of its containing element.

data-native-menu	 true/false	� When set to false, jQuery Mobile styling is applied to
<select> menus.

data-placeholder	 true/false	� Set this attribute to true in an <option> element to prevent
it from being selected in a <select> menu. Works only if
data‑native‑menu is set to false.

data-position	 fixed/inline/	 Determines how headers and footers are displayed. The
	 fullscreen 	� default is inline, which displays headers and footers in the

normal flow of the document. See “Creating persistent headers
and footers” later in this chapter.

data-rel	 back/dialog	� Setting this attribute to back on a link mimics the browser’s
Back button. Setting it to dialog, opens the new page as a
dialog box suspended above the existing page. See “Creating a
dialog box” later in this chapter.

data-role	 See Table 6.1	�A ssigns the role of an element. See “Designating an Element’s
Role” earlier in this chapter.

data-split-icon	 See Figure 6.7	�A dds an icon to a split button in a List View widget.

data-split-theme	 a–f	� Sets the theme for a split button in a List View widget.

data-state	 collapsed/	 Originally in Alpha 1, but no longer appears to be used.
	 horizontal/	 Replaced by data‑collapsed and data‑type.
	 vertical	�

data-theme	 a–f	� Sets the theme for an element and its children.

data-track-theme	 a–f	� Not documented.

data-transition	 See description	� Determines how the transition to the next page block is
handled, as described in “Controlling page transitions” later
in this chapter.

data-type	 horizontal/	 Determines whether grouped buttons, radio buttons, and
	 vertical	� check boxes are displayed horizontally or vertically.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

183

III: jQuery Mobile and PhoneGap

Creating persistent headers and footers

By default, the header scrolls out of view as you move down
the page, and the footer scrolls into view only when you
get to the bottom. However, it’s often useful to keep the
header and/or footer in view all the time, particularly if
one of them contains a navigation bar. To make a header
or footer persistent, add the data‑position attribute to its
opening <div> tag and set the value to fixed like this:

<div data-position=”fixed” data-role=”header”>

 Back

 <h2>Dining at Tozai</h2>

</div>

If you use the same footer on each page, you should also
give it a common ID. However, because you can’t reuse a
normal ID within a single document, jQuery Mobile pro-
vides the custom data‑id attribute. Add it to the opening
<div> tag of each footer like this:

<div data-id=”myfooter” data-position=”fixed”

Ê data-role="footer">

 <p>Tozai Hotel, Dokoka 1-chome, Nijinomuko,

 Ê Japan</p>

 <p>Phone: 012-345 678</p>

</div>

While the user is scrolling the page, the header and footer
disappear temporarily, but they reappear when the page
comes to a halt (Figure 6.6).

To toggle on and off the display of fixed headers and footers,
add data‑position to the opening <div> tag of the page
block and set it to fullscreen like this:

<div data-role=”page” id=”page3”

Ê data-position=”fullscreen”>

 <div data-position=”fixed” data-role=”header”>

When the page loads, the fixed header and footer appear
as usual, but tapping the screen causes them to disappear.
They come back into view when you tap the screen again.

Figure 6.6  When data‑position
is set to fixed, the header and
footer reappear after you scroll down
the page.

Setting the data‑position of a
footer to fixed locks the footer to
the bottom of the screen regardless
of the length of the page. This can
leave a large gap between the
content and the footer when a short
page is viewed on a large screen,
such as an iPad.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

184

Chapter 6	 Diving Deeper into jQuery Mobile

Adding icons to buttons

As you learned in Chapter 5, adding data‑icon to the
opening <a> tag of a link inserts an icon. Figure 6.7 shows
the icons displayed by each of the 18 preset values.

By default, icons are displayed on the left of the button.
To display the button on a different side, set data‑iconpos
to one of the values in Table 6.3.

Table 6.3  Specifying the Position of an Icon

Value	 Description

bottom	P ositions the icon below the button text.

left	�P ositions the icon to the left of the button text. This is
the default, so setting it is optional.

notext	�H ides the button text onscreen but adds it as
a title attribute to provide context for screen readers.

top	P ositions the icon above the button text.

right	P ositions the icon to the right of the button text.

Figure 6.8 shows the effect of the different values of
data‑iconpos.

Figure 6.7  To add an icon to a button,
set data‑icon to the appropriate
value.

Figure 6.8  Icons can be displayed
in four different positions around a
button.

notext

The examples in Figures 6.7 and 6.8
are in icons.html and iconpos.html
in ch06/examples.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

185

III: jQuery Mobile and PhoneGap

The code for the icon-only button at the bottom left of
Figure 6.8 looks like this:

<a href=”#” data-icon=”home” data-iconpos=”notext”

Ê data-role="button">Home

Setting the value of data‑iconpos to notext adds
title=”Home” to the link, and suppresses the text onscreen.

Creating a dialog box

A dialog box is an ordinary jQuery Mobile page block but
is displayed as an inset panel with rounded corners against
a dark background, giving the impression of a modal win-
dow (Figure 6.9).

You don’t need to apply any special styling to a dialog box;
jQuery Mobile does it automatically when you add the
data‑rel attribute to a link and set it to dialog.

To distinguish a dialog box from an ordinary page, it’s a
good idea to use a different type of transition, such as pop
or flip (page transitions are covered in the next section).

By default, a dialog box has an X-shaped icon at the top
left of the header, which can be used to close it. However,
it’s a good idea to add a button to dismiss the dialog box.
Add the data‑rel attribute to the link and set its value
to back.

The following brief exercise demonstrates how to create a
dialog box and link to it.

1.		 Choose File > New > Page from Sample. In the Sample
Folder column, select Mobile Starters, and then select
jQuery Mobile (Local) in the Sample Page column.

2.		 Click Create, and save the file in your working folder as
dialog.html.

3.		 Delete the link to Page Four in the unordered list
under the Page One heading.

4.		 Scroll down to the content section under the Page Two
heading, and type Terms of Use.

5.		 Select the text, and create a link to #page4.

Figure 6.9  Dialog boxes are styled
differently and are not added to the
navigation history.

Dreamweaver CS5.5 fails to detect
the existing jquery-mobile folder
and presents you with the Copy
Dependent Files dialog box again.
You need to click Copy, even though
the files already exist. If you click
Cancel, the file isn’t saved. Hopefully,
this problem will be fixed in an
updated version.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

186

Chapter 6	 Diving Deeper into jQuery Mobile

6.		 With your insertion point inside the link, expand
the jQuery Mobile category in the Attributes view of
the Tag Inspector and set the following attributes
(Figure 6.10):

	.	 data-rel. dialog

	.	 data-role. button

	.	 data-transition. flip

7.		 Change the Page Four heading to Terms of Use.

8.		 In the content area under the new heading, type
Return to Previous Page, and create a dummy link by
typing # in the Link field of the Property inspector.

9.		 Set the link’s data‑rel attribute to back and data‑role
to button.

10.		 Save the page, and activate Live view to test it. Click
the link to Page Two, and then click the Terms of Use
button to load the dialog box. It should look similar to
Figure 6.9.

11.		 Click the Return to Previous Page button to return to
Page Two. When you click the Back button in Page
Two, you should be returned to the first page, not the
dialog box.

You can compare your code with dialog.html in ch06/
examples.

Controlling page transitions

By default, page blocks slide in from the right. To give
your site some variety, you can change the transition from
one page block to the next by adding the data‑transition
attribute to the opening <a> tag of a link and setting it to
one of the following values:

	.	 fade. This fades in the new page.

	.	 flip. This uses a 3D transition to flip the page
horizontally like a revolving panel, revealing the next
page on the reverse as it passes beyond 90 degrees.

	.	 pop. This displays the new page expanding from the
center of the screen.

Figure 6.10  Use a different page transition when
linking to a dialog box.

In Live view, the flip transition to
and from the dialog box looks very
jerky. It’s usually very smooth in
Android or iOS.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

187

III: jQuery Mobile and PhoneGap

	.	 slide. This is the default behavior, sliding the new page
in from the right.

	.	 slidedown. The new page slides down from the top of
the screen.

	.	 slideup. The new page slides up from the bottom of
the screen.

To reverse the transition direction, add data‑direction to
the opening <a> tag and set its value to reverse. For exam-
ple, using data‑direction=”reverse” in combination with
data‑transition=”pop” results in the existing page shrink-
ing toward the center, revealing the new page behind.

Controlling the look of page elements with themes

Table 6.2 lists several custom data attributes that incor-
porate the word “theme.” The most important of these
is data‑theme, which controls the look of elements by
applying styles from the default jQuery Mobile style sheet.
Dreamweaver code hints for data‑theme and related
attributes offer the choice of a lowercase letter from a to f.
The letter refers to the names of classes in the style sheet.
For example, setting an element’s data‑theme to a applies
classes ending in -a, such as ui‑body‑a and ui‑btn‑up‑a,
to the element and all its children. Setting data‑theme to b
applies classes ending in -b, and so on. Figure 6.11 shows
the effect of applying themes a–e to individual list items in
a List View widget.

When you apply a theme to a page block, jQuery Mobile
adjusts the color of buttons and page backgrounds to
blend with the theme, as Figure 6.12 shows.

Creating your own themes

The jQuery Mobile style sheet defines only themes a to e.
Adding the code hint for theme f is to encourage you to
devise your own theme. This is how you do it:

1.		 Open the jQuery Mobile style sheet.

2.		 The line breaks have been removed to reduce the file
size, so choose Commands > Apply Style Formatting to
make the style sheet more readable.

Figure 6.11  The data‑theme attribute
changes the default color of elements.

Figure 6.12  Applying a theme to a
page block gives it a unified look.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

188

Chapter 6	 Diving Deeper into jQuery Mobile

3.		 Copy the classes for the a theme. At the time of this
writing, there are 16 of them beginning with ui‑bar‑a.
You can easily find the end of the theme by choosing
Edit > Find and Replace, and searching for ui‑bar‑b,
which is the first class in the next theme.

4.		 Close the jQuery Mobile style sheet without saving. This
reverts the file to its minified state.

5.		 Paste the classes into your own style sheet, and run Find
and Replace to change all instances of -a to -f.

6.		 Change the colors and other properties to suit your
taste.

7.		 Attach your style sheet to your jQuery Mobile pages,
and set data‑theme to f in elements or page blocks in
which you want to use your custom theme.

Creating custom themes will be even easier when the jQuery
Mobile ThemeRoller tool becomes available. Similar
to the jQuery UI ThemeRoller (http://jqueryui.com/
themeroller), it should provide a simple web interface,
where you can choose your own color combinations and
effects, and automatically generate a custom style sheet.
The ThemeRoller tool for jQuery Mobile is expected to
be released shortly after this book is published. Check the
jQuery Mobile website at http://jquerymobile.com for
up-to-date information.

Rapid Deployment with jQuery Mobile Widgets

Mastering custom data attributes unlocks the jQuery
Mobile framework’s power, but it requires a lot of effort.
Fortunately, Dreamweaver CS5.5 eases the learning curve
with prebuilt widgets, which allow you to select the avail-
able options through a dialog box. Many of the widgets are
form input elements that are designed to respond in a way
that’s familiar to smartphone users. The form elements are
also aligned automatically.

Exploring Dreamweaver’s Prebuilt Widgets

The jQuery Mobile category in the Insert panel (Figure 6.13)
offers a choice of 13 prebuilt widgets. The same options

You can create 21 custom themes
(f to z).

Figure 6.13  The Insert panel
creates the most useful jQuery
Mobile widgets automatically.

The examples in Figure 6.14 are in
listviews.html in ch06/examples.

http://jqueryui.com/themeroller
http://jqueryui.com/themeroller
http://jquerymobile.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

189

III: jQuery Mobile and PhoneGap

are also available by choosing Insert > jQuery Mobile and
selecting from the submenu that appears.

The following widgets are available:

	.	 Page. This inserts a single page block. It can be used to
add extra pages to a file with multiple page blocks or
to create a single page block in an empty document.
The dialog box gives you the option to omit the header
and/or footer.

	.	 List View. This inserts an ordered or unordered list,
which can be styled in multiple ways (Figure 6.14). The
options in the widget’s dialog box can be combined for
different effects.

	.	 Layout Grid. This creates a layout grid with two to five
columns of equal width.

	.	 Collapsible Block. This creates a set of three collapsible
blocks similar to an accordion widget.

	.	 Text Input. This inserts a text input field wrapped in a
container that displays a label and aligns the widget
with other form elements. All form-related widgets,
apart from Button, are similarly wrapped.

	.	 Password Input. This inserts a password field.

	.	 Text Area. This inserts a <textarea> element that
expands and contracts automatically depending on the
amount of user input.

	.	 Select Menu. This inserts a <select> element.

	.	 Checkbox. This inserts a group of check boxes. The
dialog box has options for assigning the group’s name,
the number of check boxes to insert, and whether to
lay them out horizontally or vertically.

	.	 Radio Button. This inserts a group of radio buttons. The
widget’s dialog box has the same options as for a check
box group.

	.	 Button. On mobile sites, links are often converted to
buttons because they are easier to tap than ordinary
text links. This widget can insert one to ten buttons in
a single operation, offering a wide range of options,
including button type, layout, and whether to include an
icon and the icon’s position. In addition to displaying

Figure 6.14  Some of the many options for the
List View widget.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

190

Chapter 6	 Diving Deeper into jQuery Mobile

links as buttons, the widget has options for standard
form buttons.

	.	 Slider. This inserts an <input> element with the range type,
which is displayed as a horizontal slider (Figure 6.15).
The default range is 0–100, but this can be changed by
editing the <input> element’s min and max attributes.

	.	 Flip Toggle Switch. This creates a sliding switch with two
options (Figure 6.16).

Chapter 5 described how to insert a page block using the
Insert panel, so I won’t repeat the same information here.
The following sections describe the options available for
the other widgets.

Choosing options for a List View widget

The List View widget is very versatile. You can combine the
options in the jQuery Mobile List View dialog box (Figure
6.17) in many ways to produce different effects. Figure
6.14 shows some of the combinations you can use.

Figure 6.15  The Slider widget is
useful for entering numeric values
within a specified range.

Figure 6.16  A flip toggle switch is
used mainly for mutually exclusive
options, such as On/Off.

The examples in Figures 6.15 and
6.16 are in slider.html and flip_
toggle.html in ch06/examples.

Figure 6.17  Most options for the List View widget can be
combined with each other.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

191

III: jQuery Mobile and PhoneGap

The dialog box offers the following options:

	.	 List Type. The default is Unordered. Selecting Ordered
inserts a number before the text in each item.

	.		 Items. The maximum is ten. To insert more, you need to
copy and paste extra list elements manually.

	.	 Inset. This insets the List View widget and adds rounded
corners. The default is to display the widget the full
width of the parent element.

	.	 Text Description. This adds a single line of text under the
item heading. Text that is too wide is truncated.

	.	 Text Bubble. This is primarily intended to display
numbers, but you can use any text. Because the bubble
uses absolute positioning, you need to edit the text in
Code view.

	.	 Aside. This inserts a short section of text floated to the
right of the item heading. Because the text is floated,
it’s difficult to identify the list item that it relates to in
Design view. To make sure you select the correct text
for editing, it’s better to work in Code view.

	.	 	Split Button. This option creates two separate clickable
areas, one for text and the other for an icon. The
underlying code for the icon is a text link, but the text
is automatically hidden and converted into a title
attribute in the same way as if you set data‑iconpos
to notext.

	.	 Split Button Icon. This menu is activated when you select
the Split Button check box. Selecting Default displays
a right-facing arrow.

Creating a searchable List View widget

The jQuery Mobile List View dialog box doesn’t include
the option to make the List View widget searchable, but
this is an awesome enhancement—and it’s incredibly easy
to implement. Just add the data‑filter attribute to the
List View widget’s opening or tag and set its value
to true like this:

<ul data-filter=”true” data-role=”listview”>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

192

Chapter 6	 Diving Deeper into jQuery Mobile

This automatically adds a search field at the top of the List
View widget (Figure 6.18). As you start typing in the search
field, the widget displays only those items that contain the
text you have entered. For example, Figure 6.19 shows
what happens when the letter d is entered in the search
field. The search is case-insensitive and matches the text
anywhere in the list items, not just the first letter. As you
continue typing, the widget narrows down the options until
you find the entry you’re looking for (Figure 6.20).

Figure 6.18  Searchable List View
widgets are useful for long lists.

Figure 6.19  The widget narrows
down the options as soon as you
begin typing in the search field.

Figure 6.20  The search is case-
insensitive.

The example in Figures 6.18 through
6.20 is in listview_search.html in

ch06/examples.

Understanding the Layout Grid widget

The Layout Grid widget inserts a series of <div> elements
that create a borderless grid with two to five columns of
equal width. Although mobile screens are usually too
narrow for a grid layout, this widget is useful in situa-
tions where you want to align buttons or text in a uniform
way. The examples of icons and icon positions in Figures
6.7 and 6.8 earlier in the chapter were created using the
Layout Grid widget.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

193

III: jQuery Mobile and PhoneGap

The widget’s dialog box (Figure 6.21) has just two options:
the number of rows and columns in the grid. The maximum
for both is five. In the case of columns, this limit is imposed
by jQuery Mobile. To add extra rows, you need to copy and
paste the underlying code.

When you insert a Layout Grid widget, Dreamweaver
inserts placeholder text in each <div> indicating its row
and column number (Figure 6.22).

Unfortunately, if the grid has more than two rows, some
<div> elements are superimposed on top of others in
Design view, forcing you to work directly in the code.
That’s why it’s essential to understand how a Layout Grid
widget is constructed. Unlike other widgets, it uses classes
instead of custom data attributes. The following code is for
a grid with two rows and three columns:

<div class=”ui-grid-b”>

 <div class=”ui-block-a”>Block 1,1</div>

 <div class=”ui-block-b”>Block 1,2</div>

 <div class=”ui-block-c”>Block 1,3</div>

 <div class=”ui-block-a”>Block 2,1</div>

 <div class=”ui-block-b”>Block 2,2</div>

 <div class=”ui-block-c”>Block 2,3</div>

</div>

The final letter in the class assigned to the outer <div>
determines the number of columns as follows:

	.	 ui-grid-a. Two-column grid.

	.	 	ui-grid-b. Three-column grid.

	.	 ui-grid-c. Four-column grid.

	.	 ui-grid-d. Five-column grid.

Similarly, the final letter in the class assigned to each <div>
within the grid indicates which column it belongs to as
follows:

	.	 ui-block-a. Column 1.

	.	 ui-block-b. Column 2.

	.	 ui-block-c. Column 3.

	.	 ui-block-d. Column 4.

	.	 ui-block-e. Column 5.

Figure 6.21  The Layout Grid widget
has only two options.

Figure 6.22  Design view has difficulty
displaying the layout grid accurately.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

194

Chapter 6	 Diving Deeper into jQuery Mobile

The structure of a Layout Grid widget is easy to understand,
although the naming of the classes would be more intuitive
if numbers were used instead of letters. It’s confusing that
a represents 2 when preceded by ui‑grid‑, but it’s 1 when
preceded by ui‑block‑.

However, the main problem with the Layout Grid widget
is that you need to change nearly all the class names if you
change your mind about the number of columns in a grid.
You can’t just change the class in the outer <div>. The
inner <div> elements must be in the correct a–e sequence
depending on the number of columns in each row. Unlike
HTML tables, Dreamweaver CS5.5 doesn’t have menu
options to add or delete columns or rows in a Layout Grid
widget. You need to edit the code manually or delete the
widget and start again.

Creating an accordion with the Collapsible Block widget

Dreamweaver’s jQuery Mobile Collapsible Block widget is
misleadingly named. Instead of inserting a single collaps-
ible block (see “Creating a collapsible block” earlier in this
chapter), it inserts three collapsible blocks wrapped in an
outer <div> with the data‑role of collapsible‑set. This
creates what is commonly called an accordion widget—a
set of collapsible blocks in which only one block can be
open at any time.

The Dreamweaver widget doesn’t have any options; it simply
inserts the following HTML structure:

<div data-role=”collapsible-set”>

 <div data-role=”collapsible”>

 <h3>Header</h3>

 <p>Content</p>

 </div>

 <div data-role=”collapsible” data-collapsed=

 Ê "true">

 <h3>Header</h3>

 <p>Content</p>

 </div>

 <div data-role=”collapsible” data-collapsed=

 Ê "true">

http://lib.ommolketab.ir
http//lib.ommolketab.ir

195

III: jQuery Mobile and PhoneGap

 <h3>Header</h3>

 <p>Content</p>

 </div>

</div>

Figure 6.23 shows what this produces in Live view. By
default, the first collapsible block is displayed open.
However, you can override this by adding the data‑col-
lapsed attribute to the opening <div> tag of the first block
and setting its value to true.

After inserting the widget, replace the placeholder text
with your own content. The heading inside each inner
<div> is automatically converted into the collapsible block’s
label. All other HTML inside an inner <div> is treated as
the collapsible block that is toggled open and closed by
clicking the heading. Although Dreamweaver uses <h3>
tags, the headings can be any level from <h1> through <h6>.
As explained in “Using headings to preserve the document
structure” in Chapter 5, all levels of headings in elements
that have a specific data‑role are styled identically. Change
the level of the headings to fit your document structure.

To increase the number of blocks within the accordion,
just copy and paste one of the inner <div> elements to cre-
ate as many blocks as you need.

Inserting a Text Input widget

In common with other jQuery Mobile form widgets, the
Text Input widget is wrapped in a <div> with a data‑role
of fieldcontain. This ensures that the element’s label and
input field are styled and aligned uniformly. Inside the
<div>, the widget consists of a <label> element and an
<input> element with the type attribute set to text. The
HTML code looks like this:

<div data-role=”fieldcontain”>

 <label for=”textinput”>Text Input:</label>

 <input type=”text” name=”textinput”

 Ê id="textinput" value="" />

</div>

Figure 6.23  Only one block of a
collapsible set can be open at any
given time.

The example in Figure 6.23 is in
collapsible_set.html in ch06/
examples.

Form widgets must be inside
an HTML <form> element.
Dreamweaver CS5.5 does not add
the <form> tags automatically.
You need to add them yourself by
choosing Insert > Form > Form.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

196

Chapter 6	 Diving Deeper into jQuery Mobile

By default, Dreamweaver names the element textinput.
If you insert more Text Input widgets, Dreamweaver auto-
matically names them textinput2, textinput3, and so on.
However, you should assign your own names to form ele-
ments to match your processing script. Because the same
value is applied to the for, name, and id attributes, all three
need to be changed. The simple way to do so is to select
the <input> element in Design view and change the name
in the field on the left of the Property inspector (circled in
Figure 6.24).

Figure 6.24  Changing the input element’s name in the Property inspector
automatically updates the id and for attributes.

For example, if you change the name in the Property
inspector to first_name, Dreamweaver updates all three
values simultaneously:

<label for=”first_name”>Text Input:</label>

<input type=”text” name=”first_name”

Ê id="first_name” value=”” />

Although the Text Input widget sets the <input> tag’s type
attribute to text, you’re not limited to using the default
value. In fact, I strongly recommend changing the type to
match the expected input (see Table 2.4 in Chapter 2 for a
complete list of types). You can change the type attribute
manually in Code view or through the Tag Inspector (see
Figure 2.22 in Chapter 2).

Never use spaces in form names.
Separate words with an underscore
or use camel case, for example
first_name or firstName.
Spaces in form names are a common
cause of errors in form-processing
scripts.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

197

III: jQuery Mobile and PhoneGap

If you set type to number, recent mobile devices automati-
cally display a numeric input pad when you tap in the
input field (Figure 6.25).

Setting type to tel brings up the same numeric pad on
an Android device; in iOS it brings up a dedicated phone
number keypad (Figure 6.26).

Unfortunately, at the time of this writing, setting type to
date does not bring up a date picker. The input field is
treated simply as text.

Figure 6.25  Choosing the
appropriate type of input element
brings up the relevant keypad.

Figure 6.26  A tel input type
prevents users from entering invalid
characters in a phone number in iOS.

Inserting a Password Input widget

A jQuery Mobile Password Input widget is identical to a
Text Input widget except the type attribute is set to pass-
word. In most modern phones, the most recently input
character is displayed briefly to allow the user to verify
that the correct one was chosen. The character is then
displayed as a dot to prevent revealing the password to
anyone looking over the user’s shoulder.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

198

Chapter 6	 Diving Deeper into jQuery Mobile

Inserting a Text Area widget

A Text Area widget inserts a <label> and a <textarea> tag
wrapped in a <div> like this:

<div data-role=”fieldcontain”>

 <label for=”textarea”>Textarea:</label>

 <textarea cols=”40” rows=”8” name=”textarea”

 Ê id="textarea"></textarea>

</div>

The jQuery Mobile style sheet initially displays the Text
Area widget with sufficient space for two lines of text, but
the height automatically expands as the user enters more
(Figure 6.27).

You can change the default name of the Text Area widget
through the Property inspector in the same way as for a
Text Input widget.

Choosing options for a Select Menu widget

A Select Menu widget inserts a <div> containing a <label>
and a <select> menu with three <option> elements like
this:

<div data-role=”fieldcontain”>

 <label for=”selectmenu” class=”select”>

 Ê Options:</label>

 <select name="selectmenu" id="selectmenu">

 <option value="option1">Option 1</option>

 <option value=”option2”>Option 2</option>

 <option value=”option3”>Option 3</option>

 </select>

 </div>

The cols and rows attributes in
the opening <textarea> tag
specify the width and height of the
text area in browsers that don’t
support CSS. They are required by
the HTML 4.01 specification but are
optional in HTML5. You can delete
them if you want, but leaving them
in does no harm.

Figure 6.27  The Text Area widget is
a great example of jQuery Mobile’s
responsive design.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

199

III: jQuery Mobile and PhoneGap

You change the name of the <select> menu in the Property
inspector in the same way as for a Text Input widget. You
change the <option> elements in the same way as for an
ordinary <select> menu; namely, select the menu in Design
view and click the List Values button in the Property
inspector (Figure 6.28).

Figure 6.28  Access the List Values dialog box through the Property inspector.

This opens the List Values dialog box (Figure 6.29). Text
entered in the Item Label column is inserted between a
pair of <option> tags and is displayed onscreen when the
<select> menu is activated. Text entered in the Value
column is assigned to the value attribute of the opening
<option> tag. Use the plus and minus buttons at the top
left of the dialog box to add or remove options. Use the
up and down arrows at the top right of the dialog box to
reorder the options.

After setting the options, select one of the values in the
“Initially selected” field in the Property inspector to add
Selected to its opening <option> tag.

Figure 6.29  Use the List Values dialog
box to set the options in a Select
Menu widget.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

200

Chapter 6	 Diving Deeper into jQuery Mobile

When a <select> menu gains focus, jQuery Mobile displays
the options using the platform’s default style (Figures 6.30
and 6.31).

Figure 6.30  In iOS, a Select Menu
widget is displayed as a rolling barrel.

Figure 6.31  In Android, the screen is
darkened and the menu is presented
as a radio button group.

Dreamweaver CS5.5 code hints don’t
list the data‑native‑menu
attribute. You need to add it
manually.

However, if you prefer the menu options to be displayed
in a uniform style on all platforms, as shown in Figure
6.32, add the data‑native‑menu attribute to the opening
<select> tag and set its value to false like this:

<select name=”meals” id=”meals” data-native-menu=

Ê "false">

It’s common practice to use the first <option> tag in a
<select> menu to invite users to make a selection. To
prevent that option from being selected, add data‑place-
holder to the opening <option> tag and set its value to true
like this:

<select name=”meals” id=”meals” data-native-menu=

Ê "false">

 <option data-placeholder=”true”>Choose One

 Ê </option>

 <option value="none">None</option>

As Figure 6.33 shows, the first item is displayed as a head-
ing, not as an option.

It’s important to note that when setting data‑placeholder
to true, you must also set data‑native‑menu to false.

Figure 6.32  The Select Menu widget
can also be styled to look the same on
all platforms.

Figure 6.33  Setting
data‑placeholder to true
prevents a menu option from being
selected.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

201

III: jQuery Mobile and PhoneGap

The default style for <select> menus leaves the first
option selectable.

Offering multiple choices with a Checkbox widget

To insert a Checkbox widget, click Checkbox in the jQuery
Mobile category in the Insert panel, or choose Insert >
jQuery Mobile > Checkbox. This opens the jQuery Mobile
Checkbox dialog box (Figure 6.34).

The dialog box has the following options:

	.	 Name. This sets the name attribute that is shared by all
check boxes in the same group. Dreamweaver also
uses this value to assign a unique ID to each <input>
element. For example, if you enter meals in this field,
the check boxes are assigned the IDs meals_0, meals_1,
and so on.

	.	 Checkboxes. Select the number of check boxes you want
in the group. The dialog box permits a maximum of
ten. If you want more, you need to add them manually
to the HTML code later.

	.	 Layout. In a vertical layout, the check boxes are
stacked on top of each other with labels on the right.
The horizontal layout presents only the labels as a
horizontal bar (Figure 6.35).

Figure 6.34  The Checkbox widget has options for
vertical and horizontal layout.

If the form-processing script uses
PHP, you need to append an empty
pair of square brackets to the name,
for example meals[]. This tells
the processing script to treat the
selected values as an array. Because
brackets are illegal characters in IDs,
Dreamweaver ignores them when
assigning the IDs to each check box,
keeping your code valid.

Figure 6.35  The Checkbox widget
has options for vertical and
horizontal layout.

The examples in Figure 6.35 are in
checkbox.html in ch06/examples.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

202

Chapter 6	 Diving Deeper into jQuery Mobile

The horizontal option is suitable only for two or three
items with short labels. Otherwise, the bar is broken over
two lines. Also, it might not be immediately obvious to
users that multiple choices are possible unless you say
so explicitly.

When you insert a jQuery Mobile Checkbox widget, the
check boxes are always displayed horizontally in Design
view, even if you choose the option for vertical layout. This
is because the classes that control the layout are added
dynamically only when the page is loaded in a browser.
Figure 6.36 shows what a widget with three check boxes
looks like when it’s first inserted in a page.

The underlying HTML inserted by the widget looks
like this:

<div data-role=”fieldcontain”>

 <fieldset data-role=”controlgroup”>

 <legend>Option</legend>

 <input type=”checkbox” name=”meals”

 Ê id="meals_0" class="custom" value="" />

 <label for="meals_0">Option</label>

 <input type="checkbox" name="meals"

 Ê id="meals_1" class="custom" value="" />

 <label for="meals_1">Option</label>

 <input type="checkbox" name="meals"

 Ê id="meals_2" class="custom" value="" />

 <label for="meals_2">Option</label>

 </fieldset>

</div>

Because each check box requires a separate <label> tag,
the check box group is wrapped in a <fieldset>. The
heading is wrapped in <legend> tags.

In addition to replacing the Option placeholder text in the
<legend> and <label> tags, you also need to set the value
attribute for each check box. This is the value that is passed
to the form-processing script if a check box is selected. You
can do this directly in Code view or by selecting the check
box in Design view and entering the value in the “Checked
value” field in the Property inspector (Figure 6.37).

Figure 6.36  A new Checkbox widget contains
placeholders for the heading and labels.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

203

III: jQuery Mobile and PhoneGap

Figure 6.37  You can set the properties for each check box in the Property
inspector.

If you want a check box to be selected by default, set
the “Initial state” radio button in the Property inspector
to Checked.

If you change your mind about the orientation of a
Checkbox widget, it’s very easy to switch. To convert a verti-
cal widget to a horizontal one, add the data‑type attribute to
the opening <fieldset> tag and set its value to horizontal
like this:

<fieldset data-role=”controlgroup”

Ê data-type=”horizontal”>

To convert a horizontal Checkbox widget to a vertical
one, just delete the data‑type attribute or set its value
to vertical.

Inserting a Radio Button widget

A radio button group is similar to a check box group, but
it allows only one item to be selected. The options in the
jQuery Mobile Radio Button dialog box are identical to
those for a Checkbox widget. You also edit the HTML code
in the same way. Refer to the preceding section for details.

Selecting the options for a Button widget

Buttons play a big role in jQuery Mobile because they
offer a bigger target than ordinary links for users to tap
on a small screen. Some links are automatically converted
to buttons—for example, links in header sections. You
can also convert other links into buttons by adding the
data‑role attribute to the link’s opening <a> tag and set-
ting it to button. The jQuery Mobile Button widget in the
Insert panel and menu opens up even more options.

Editing the value in the field labeled
“Checkbox name” affects only the
selected check box. If you want to
change the name for the whole
group, you need to edit each one
separately.

If your form-processing script uses
PHP, do not add an empty pair of
square brackets after the name.
Only one value can be selected in a
Radio Button widget, so the user’s
selection should not be transmitted
as an array.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

204

Chapter 6	 Diving Deeper into jQuery Mobile

The jQuery Mobile Button dialog box (Figure 6.38) has
the following settings:

.		 Buttons. This allows you to create 1–10 buttons at the
same time.

	.	 Button Type. This option offers three choices:

Link. This inserts <a> tags styled as buttons.

Button. This inserts <button> tags, allowing you to add a
greater amount of content, including images, between
the opening and closing tags.

Input. This inserts <input> tags.

	.	 Input Type. This option is available only when Button
Type is set to Input. It sets the type attribute of the
<input> tag to button, submit, reset, or image.

	.	 Position. This option is grayed out for single buttons.
When Buttons is set to more than 1, there are two choices:

Group. The buttons are grouped together as a continu-
ous block vertically or horizontally depending on the
Layout setting (Figure 6.39).

Inline. The buttons are displayed inline independent of
each other. As Figure 6.39 shows, buttons drop to the
next line if there isn’t sufficient room to display them
next to each other.

Figure 6.38  The range of options in the jQuery
Mobile Button dialog box reflects the importance
of buttons in a mobile site.

Figure 6.39  Buttons can be
displayed as a continuous group or
independent of each other.

The examples in Figure 6.39 are in
buttons.html in ch06/examples.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

205

III: jQuery Mobile and PhoneGap

	.	 Layout. This option is available only when Buttons is set
to more than 1 and Position is set to Group.

	.	 Icon. This allows you to add an icon to the buttons. The
same icon is applied to all buttons created at the same
time. See Figure 6.7 earlier in this chapter for the range
of available icons.

	.	 Icon Position. This sets the position of the icon in
relation to the button text. See Table 6.3 for the
options available.

Inserting a Slider widget

There’s no dialog box for the jQuery Mobile Slider widget.
It simply inserts the following HTML code:

<div data-role=”fieldcontain”>

 <label for=”slider”>Value:</label>

 <input type=”range” name=”slider” id=”slider”

 Ê value=”0” min=”0” max=”100” />

</div>

The <input> tag uses the HTML5 range type. The value
attribute sets the initial value displayed in a text field next
to a horizontal slider (see Figure 6.13 earlier in this chap-
ter) that changes the value within the range set by the min
and max attributes.

To change the values of the for, name, and id attributes,
select the input field in Design view, and edit the “Input
name” field on the left of the Property inspector
(Figure 6.40).

Figure 6.40  The Property inspector displays only some attributes of a
Slider widget.

The Home and Search icons are
missing from the Icon menu in the
jQuery Mobile Button dialog box.
Hopefully, they will be added in an
updated version of Dreamweaver
CS5.5.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

206

Chapter 6	 Diving Deeper into jQuery Mobile

In the Value field, enter the initial value that you want the
widget to display. Alternatively, edit the value attribute
through the Tag Inspector or in Code view. The value must
be a number. The Slider widget cannot handle a range of
letters, such as A–F.

By default, the widget displays a range of 0–100. To change
this, edit the min and max attributes in one of the following
ways:

	.	 Edit the values directly in Code view.

	.	 With the <input> element selected, edit the attributes
in the Uncategorized category in the Tag Inspector.

	.	 With the <input> element selected, click the Parameters
button in the Property inspector and edit the values in
the Parameters dialog box (Figure 6.41).

The Parameters dialog box displays the values of the id,
max, and min attributes. In addition to editing their values,
you can add other attributes, such as step, by clicking the
plus icon at the top left of the dialog box and entering the
attribute name in the Parameter column and its value in
the Value column. The Parameter column is case-insen-
sitive. Dreamweaver automatically converts attributes to
lowercase when it inserts them in the <input> tag.

Figure 6.41  The Parameters dialog
box lets you set other attributes.

The step attribute sets the
increment between numbers in the
range. For example, in a range of
0–100, setting step to 10 displays
10, 20, 30, and so on. If omitted, the
default is to increment the numbers
by 1.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

207

III: jQuery Mobile and PhoneGap

Inserting a Flip Toggle Switch widget

The jQuery Mobile Flip Toggle Switch widget is a stylized
<select> menu with two <option> tags. There is no dialog
box. Dreamweaver inserts the following HTML code into
the page:

<div data-role=”fieldcontain”>

 <label for=”flipswitch”>Option:</label>

 <select name=”flipswitch” id=”flipswitch”

 Ê data-role=”slider”>

 <option value=”off”>Off</option>

 <option value=”on”>On</option>

 </select>

</div>

Confusingly, the data‑role attribute of the Flip Toggle
Switch widget has a value of slider. This converts the
<select> menu into a horizontal set of buttons designed
primarily for selecting mutually exclusive options, such as
On/Off (see Figure 6.16 earlier in this chapter).

You edit the options for a Flip Toggle Switch widget in the
same way as for a <select> menu or directly in Code view.

Case Study:  Creating a Reservation Form

After all that theory, let’s put some of it into practice by
building a reservation form for the Tozai Hotel case study.
In most respects, creating a form with jQuery Mobile is
no different from any other web form. However, jQuery
Mobile’s use of dynamic styling presents some challenges
when working in Design view. The next few pages offer
some hints on how to overcome these challenges.

You’ll also learn how to dynamically replace a <select>
menu with a text input field when the user chooses an
option that calls for direct input.

	Building the Form with jQuery Mobile Widgets

The following instructions assume you have read the previ-
ous sections describing how to edit the options for the
various jQuery Mobile widgets.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

208

Chapter 6	 Diving Deeper into jQuery Mobile

Configuring a Select Menu widget

Continue working with reservations.html from the previ-
ous chapter. Alternatively, copy reservations.html from
ch06/begin and save it in a working folder.

1.		 With reservations.html open in the Document window,
put the insertion point in the Check Availability
heading, and click <h2> in the Tag selector to select the
whole element. Press the right arrow key once to move
the insertion point outside the closing </h2> tag.

2.		 Insert a form by choosing Insert > Form > Form.

3.		 Click Select Menu in the jQuery Mobile category in the
Insert panel to insert a Select Menu widget inside the
form.

4.		 Select the <select> menu element and change its name
in the Property inspector from selectmenu to title.

5.		 Click the List Values button, add two extra options to
the <select> menu, and set their values to Choose, Mr.,
Mrs., Ms., and Other.

6.		 In Code view, add the data‑native‑menu attribute to the
opening <select> tag and set its value to false.

7.		 Set the value attribute in the first <option> element to
an empty string, add the data‑placeholder attribute,
and set its value to true.

8.		 Change the menu’s label to Title. The HTML code
should now look like this:

<form name=”form1” method=”post” action=””>

 <div data-role=”fieldcontain”>

 <label for=”title” class=”select”

 Ê data-native-menu=”false”>Title:

 Ê </label>

 <select name="title” id=”title”>

 <option value=”” data-placeholder=

 Ê "true">Choose</option>

 <option value=”Mr.”>Mr.</option>

 <option value=”Mrs.”>Mrs.</option>

 <option value=”Ms.”>Ms.</option>

Selecting the heading and using
the right arrow key to position
the insertion point prevents
Dreamweaver from inserting an
unwanted empty paragraph.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

209

III: jQuery Mobile and PhoneGap

 <option value=”Other”>Other

 Ê </option>

 </select>

 </div>

</form>

Configuring Text Input widgets

The next stage in building the form is to insert several Text
Input widgets.

1.		 In Design view, click the turquoise tab labeled “jQuery
Mobile: fieldcontain” at the top left of the Select Menu
widget to select the entire <div>. Then press the right
arrow key once to move the insertion point to the right
of the closing </div> tag.

Alternatively, position the insertion point manually in
Code view.

2.		 You need two text input fields for first and last names.
Click jQuery Mobile Text Input in the jQuery Mobile
category in the Insert panel to insert the first one, press
the right arrow key once to move the insertion point
to the correct position, and insert another Text Input
widget. Your page should now look like Figure 6.42 in
Design view.

3.		 Because jQuery Mobile styles elements dynamically, the
classes that insert vertical space between the widgets
aren’t applied in Design view, making it extremely
difficult to edit the first Text Input widget.

One way to deal with this problem is to turn off the
display of invisible elements by choosing View > Visual
Aids > Invisible Elements. This hides the widgets’
turquoise tabs (choosing the same option toggles them
back on). However, the tabs are useful for selecting
widgets not only to move the insertion point, but also
to copy and paste, move, or delete them.

My preferred solution is to create a style rule to add
some vertical space between widgets in Design view.
Scroll up to the <head> of the page in Code view and

It’s worth repeating how important
it is to move the insertion point
outside an existing HTML element
before inserting a new jQuery
Mobile widget. Failure to do so
results in the new widget being
nested inside the existing element.

Figure 6.42  The second Text Input widget’s tab
obscures the previous widget.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

210

Chapter 6	 Diving Deeper into jQuery Mobile

add the following <style> block just before the closing
</head> tag:

<style>

div[data-role=fieldcontain] {

 margin: 1em inherit;

}

</style>

This uses an attribute selector (see Table 1.1 in Chapter
1) to select all <div> elements that have a data‑role of
fieldcontain—in other words, all form widgets. The
style rule applies top and bottom margins of one em
but leaves the horizontal margins untouched. Adding
this rule has the effect of pushing the form widgets one
line apart (Figure 6.43).

An added bonus of this style rule is that it doesn’t
increase the vertical margins between form widgets when
viewed in a browser, so it doesn’t matter if you forget
to delete it when you have finished editing the form.

Figure 6.43  The style rule makes it easier to edit
the form widgets.

Select the <style> block created
in step 3, right-click, and choose
Create New Snippet. Give the snippet
a name, such as jQuery Mobile
Widget Separator, and click
OK to save it in the Snippets panel
ready for reuse in other pages.

The placeholder and data‑placeholder Attributes

HTML5 and jQuery Mobile have similarly named attributes—placeholder
and data‑placeholder—that are also similar in purpose but work very
differently. In browsers that support the HTML5 placeholder attribute, the
attribute’s value is displayed as a text hint inside a text input field. The text hint is
usually dimmed, and it disappears as soon as the input field has focus (Figure 6.44).

On the other hand, the jQuery Mobile data‑placeholder attribute turns an
<option> element in a <select> menu into a heading that can’t be selected,
normally prompting the user to select one of the other options. See Figure 6.33 in
“Choosing options for a Select Menu widget” earlier in this chapter for an example.

Figure 6.44  The placeholder
attribute reminds users what to
enter in a form field.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

211

III: jQuery Mobile and PhoneGap

4.		 Edit the Text Input widgets, changing their labels
to First Name and Family Name, and their names to
first_name and family_name respectively.

5.		 Make sure the insertion point is after the closing </div>
tag of the second Text Input widget and insert two
more Text Input widgets. Change the labels to Arrival
and Departure. Also change the names in the Property
inspector to arrival and departure, respectively.

6.		 With the arrival text input element selected, open
the Tag Inspector panel, expand the Uncategorized
category, type MM/DD/YYYY in the placeholder field,
and set required to (Yes), as shown in Figure 6.45.

7.		 Repeat the previous step with the departure text input
element selected. Also, set required to (Yes) for the
first_name and family_name input fields.

Adding Radio Button and Slider widgets

The final part of the form asks the user to enter the number
of adults and children. Normally, you would use the same
input elements for both fields, but this example shows how
different widgets can be used for similar purposes.

1.		 Move the insertion point to after the closing </div> tag
for the departure input field, and click Radio Button in
the jQuery Mobile category of the Insert panel. Use the
following settings in the jQuery Mobile Radio Button
dialog box:

	.	 Name. adults

	.	 Radio buttons. 4

	.	 Layout. Horizontal

2.		 Change the <legend> text to Adults: and edit the labels
for the radio buttons to read 1, 2, 3, 4. You also need to
select each radio button in turn, and enter the relevant
number in the “Checked value” field in the Property
inspector. A hotel booking requires a minimum of one
adult, so set “Initial state” of the first radio button to
Checked.

Figure 6.45  The Tag Inspector exposes all HTML5
attributes for the selected element.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

212

Chapter 6	 Diving Deeper into jQuery Mobile

3.		 Move the insertion point outside the Radio Button
widget’s closing </div> tag, and insert a jQuery Mobile
Slider widget in the form. Edit the Slider widget to
change its name to children and set max to 3. Also
change the label to Children.

4.		 Move the insertion point outside the Slider widget’s
closing </div> tag, and click Button in the jQuery
Mobile category in the Insert panel. Use the following
settings in the jQuery Mobile Button dialog box:

	.	 Buttons. 1

	.	 Button Type. Input

	.	 Input Type. Submit

	.	 Icon. None

5.		 Click OK to insert the Submit button. Dreamweaver
doesn’t automatically give it a name, so enter send in
the “Button name” field on the left of the Property
inspector. The completed form should look like
Figure 6.46 in Design view.

6.		 Save reservations.html and activate Live view. The
jQuery Mobile styles automatically align the previously
disorganized form elements. Depending on the window
size you choose, the labels are displayed above or to the
left of the elements.

7.		 Scroll down to the bottom of the form. The radio
buttons are displayed as a horizontal group with
rounded corners, and the slider offers a choice of 0–3
(Figure 6.47).

You can compare your code with reservations_noscript.
html in ch06/complete.

Improving the Form with jQuery

Although the form is perfectly functional, it needs to be
improved before it can be deployed. The first issue that
needs to be fixed is providing a text input field if the user
selects Other in the Title <select> menu.

Figure 6.46  The unstyled form
elements look disorganized in
Design view.

The Submit button is not wrapped in
a <div> like other form elements,
but jQuery Mobile styles it to blend
with the rest of the form.

Figure 6.47  The form demon-
strates alternative ways of selecting
a number with the Radio Button
and Slider widgets.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

213

III: jQuery Mobile and PhoneGap

Dynamically loading a text input field to replace a
Select Menu widget

In Chapter 2 you learned how to create an editable drop-
down menu using the HTML5 <datalist> element. The
jQuery Mobile framework doesn’t offer the same func-
tionality, but it’s quite simple, as you’ll see in this exercise,
to remove a Select Menu widget and replace it with a text
input field when the user selects a specific option.

1.		 In Code view, scroll down to the bottom of reservations.
html and insert a <script> block with a jQuery
document-ready function like this:

 </div>

<script>

$(function() {

	

});

</script>

</div>

</body>

Pay particular attention to the location of the <script>
block. It must be inside the page block <div>. Otherwise,
the JavaScript code you’re going to add won’t be
available to the form when it’s loaded dynamically into
the browser.

2.		 On the blank line inside the document-ready function,
type $(followed by an opening quotation mark.
Dreamweaver CS5.5’s built-in jQuery code hinting
displays a list of HTML tags. Choose select and type #.
This triggers the jQuery code hints again to offer you
a list of all IDs on the page (Figure 6.48).

3.		 Choose title from the list of IDs. Dreamweaver
automatically adds a closing quotation mark, so move
the insertion point outside the quotes and add a closing
parenthesis. This selects the <select> element with the
ID title as a jQuery object.

4.		 You need to bind an onchange event handler to the
selected element using the jQuery live() method like

Because jQuery Mobile uses DOM
manipulation to load content into
the current page, custom jQuery
functions need to be inside the
jQuery Mobile page block that
requires access to them. They
aren’t loaded if you locate custom
functions outside the page block.

Figure 6.48  The jQuery code hints
help you avoid spelling mistakes by
presenting a list of IDs on the current
page.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

214

Chapter 6	 Diving Deeper into jQuery Mobile

this (Dreamweaver provides code hints as you continue
typing):

$(function() {

 // Change handler for Select Menu widget

 $(‘select#title’).live(‘change’,

 Ê function(e) {

 // Check selected value

 });

});

5.		 You want to replace the Select Menu widget with a
text input field only if the user selects Other. So, add a
condition inside the event handler like this:

$(‘select#title’).live(‘change’, function(e) {

 // Check selected value

 if ($(this).val() == ‘Other’) {

 // Replace with text input field

 }

});

Inside the event handler, $(this) refers to the element
that the function is bound to—in other words, the
<select> menu. The val() method gets the selected
value. The double equal sign compares the selected
value with “Other.” The code inside the curly braces
will be executed only if the values match.

6.		 To work out how to replace the Select Menu widget
with a text input field, you need to call on the assistance
of Live Code. Click the Live Code button in the
Document toolbar or choose View > Live Code.

Locate the dynamically generated code for the widget.
Figure 6.49 shows what it looks like.

The comparison operator in
JavaScript (and many other
programming languages) consists
of two equal signs. It’s a common
mistake to use just one. A single
equal sign assigns a value. Two equal
signs compare values. Comparisons
are case-sensitive.

Figure 6.49  You need
to inspect the widget’s
dynamically generated
code to style the replace-
ment appropriately.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

215

III: jQuery Mobile and PhoneGap

Although the code looks complex, it can be simplified
like this:

<div><a>Link to hidden pop-up

 <select></select>

</div>

So, to replace the Select Menu widget with a text input
field, you need to replace the <select> menu’s parent
<div> rather than just the <select> element. Removing
only the <select> element leaves an unwanted jQuery
Mobile button in the DOM.

7.		 To replace one element with another, jQuery provides
the appropriately named replaceWith() method, which
takes as its argument the replacement element. Exit
Live view and add the following code between the curly
braces of the conditional block that you added in step 4:

if ($(this).val() == ‘other’) {

 // Replace with text input field

 $(this).parent().replaceWith(‘<input type=

 Ê "text" name="title" id="title">');

}

This chains the parent() method to $(this) to select
the <select> menu’s parent <div> and then chains
the replaceWith() method. The argument passed to
replaceWith() is a string containing the HTML for
a text input field with the same name and ID as the
element it’s replacing.

8.		 Save reservations.html and activate Live view. Click
the Select Menu widget and test it by changing to any
value except Other. The value should be selected. Next,
change the value to Other. The Select Menu widget
should be replaced by a text input field (Figure 6.50).

9.		 To match the style of other text input fields, activate
Live Code again, locate the dynamically generated
markup for the First Name field, and copy its class
definition (Figure 6.51).

Use the line numbers in Figures
6.49 and 6.51 only as a guide to the
approximate location of the code. It
might be different in your file.

Figure 6.50  The widget has been
replaced, but the input field needs to
be styled to match the rest of
the form.

Figure 6.51  Live Code
reveals the class definition
for the Text Input widget.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

216

Chapter 6	 Diving Deeper into jQuery Mobile

10.		 Exit Live view and paste the class definition into
the HTML markup that’s passed as an argument to
replaceWith(). The complete script now looks like this:

$(function() {

 // Change handler for Select Menu widget

 $(‘select#title’).live(‘change’,

 Ê function(e) {

 // Check selected value

 if ($(this).val() == 'Other') {

 // Replace with text input field

 $(this).parent().replaceWith(

 Ê '<input type="text" name="title"

 Ê id="title" class=”ui-input-text

 Ê ui-body-null ui-corner-all

 Ê ui-shadow-inset ui-body-c">’);

 }

 });

});

11.		 Test the Select Menu widget in Live view again. This
time the new text input field should be styled the same
as the others.

You can compare your code with reservations_select.
html in ch06/complete.

The form would also benefit from the addition of scripts
to validate the date format and to check that all required
fields have been filled in. For space reasons, detailed
instructions are not included here, but the completed
scripts are in reservations.html in the ch06/complete
folder. See http://foundationphp.com/dwmobile for
more information about the scripts.

Submitting a Form and Displaying the Response

Although the jQuery Mobile framework has all the com-
ponents necessary to create and submit an online form,
it cannot process data input. That’s the responsibility of
a server-side technology, such as PHP, ColdFusion, ASP.
NET, or Perl. Writing form-processing scripts is beyond the
scope of this book.

Among the many books that deal
with form processing, you might
find my Adobe Dreamweaver
CS5 with PHP: Training from the
Source (Adobe Press, 2010) helpful.
Alternatively, if your server supports
ColdFusion, consult ColdFusion 9
Web Application Construction Kit
by Ben Forta and others (Adobe
Press, 2010).

Replacing the <select> menu
with a text input field has a
disadvantage: It prevents the user
from returning to the menu if Other
is selected by accident, which could
easily happen on a touch-sensitive
device. However, the user is left with
a normal text input field, so the form
remains functional.

http://foundationphp.com/dwmobile
http://lib.ommolketab.ir
http//lib.ommolketab.ir

217

III: jQuery Mobile and PhoneGap

By default, jQuery Mobile attempts to submit the form
input using Ajax. All that’s necessary is to set the value of
the form’s action attribute to the URL of the file that pro-
cesses the form input. If the form-processing script outputs
the response as a jQuery Mobile page block, it’s loaded
automatically like any other content, complete with a
Back button.

However, sending and loading the response by Ajax has the
following limitations:

	.	 Using Ajax results in the form being submitted directly,
thereby sidestepping any validation.

	.	 The Back button takes the user back to the same form.

	.	 At the time of this writing, using Ajax works only when
the form is submitted using the GET method.

To set up a form for submission in jQuery Mobile:

1.			 Select the form by clicking its red border in Design
view. Alternatively, click anywhere in the form and
select <form> in the Tag selector at the bottom of the
Document window.

2.		 Enter the URL of the form-processing script in the
Action field of the Property inspector.

3.		 Set Method to GET or POST.

If you select Default, Dreamweaver removes the method
attribute from the <form> tag, which results in the form
being submitted by the GET method.

4.		 If you select the POST method, expand the jQuery
Mobile category in the Tag Inspector and set data‑ajax
to false. Alternatively, add data‑ajax=”false” to the
opening <form> tag in Code view.

The script that processes the form should output a jQuery
Mobile page block or redirect the user to such a page.

If the form was submitted by the GET method, the response
page automatically adds a Back button to the header.
Clicking the button returns the user to the page that con-
tains the form.

GET and POST

The method attribute in the opening <form>
tag determines how the browser handles user input
when the form is submitted. When the attribute
is set to GET (the value is case-insensitive) or
omitted, the form appends the data to the URL as a
query string—a question mark followed by a series
of name/value pairs. The GET method is normally
used in search forms because the URL can be
bookmarked. Browsers also try to cache the results.

When the method attribute is set to POST,
the data is sent in the background and cannot be
bookmarked. The POST method should be used
when the form is intended to update a database,
upload files, or send the input by email. It should
also be used when a large amount of data needs
to be transmitted, because Internet Explorer limits
the amount of data that can be sent by the GET
method to approximately 2,000 characters.

Do not set data‑ajax to false
if the form is submitted by the GET
method and you want users to be
able to return to the form after
viewing the response.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

218

Chapter 6	 Diving Deeper into jQuery Mobile

When you set data‑ajax to false, you need to hard-code
navigation buttons into the response page’s header in the
same way as described in “Adding Back and Home buttons
to page headers” in Chapter 5.

Getting Your Hands Dirty with Code

As this chapter has demonstrated, the jQuery Mobile widgets
in Dreamweaver CS5.5 speed up development. But you still
need a good understanding of the code they use, and you
need to be prepared to dive into the code to achieve the
results you want. In the next chapter, you’ll learn how to
convert a jQuery Mobile site into a native app for Android
and iOS using the PhoneGap framework, which is integrated
into Dreamweaver CS5.5. It’s another code-heavy chapter,
so take a well-earned rest before diving in.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

chapter

7
Building a Native App

with PhoneGap

http://lib.ommolketab.ir
http//lib.ommolketab.ir

220

Chapter 7	 Building a Native App with PhoneGap

Receipted bills and invitations
To inspect new stock or to visit relations
And applications for situations

—W.H. Auden

Building a Native App
with PhoneGap

Modern smartphones and tablets are capable of much
more than browsing websites on the move. They have
cameras, storage space, global positioning system (GPS)
sensors, and more. These enhanced features have ger-
minated a whole new industry of developing specialized
applications—or apps—for mobile devices. The drawback
from the developer’s point of view is the proliferation of
operating systems. You need to program in Objective-C for
iOS, whereas Android apps are written in Java. BlackBerry
and Windows Phone 7 use other operating systems.

PhoneGap is an open-source development tool that allows
web developers to use familiar technologies—HTML, CSS,
and JavaScript—and then convert them into native apps
for the most widely available mobile operating systems.
PhoneGap exposes access to a device’s native features, such
as a camera, GPS, and storage through a simple JavaScript
application programming interface (API). If you can write
JavaScript, you can start creating native apps right away.

For an up-to-date list of the native
features supported by PhoneGap,
see www.phonegap.com/features.

www.phonegap.com/features
http://lib.ommolketab.ir
http//lib.ommolketab.ir

221

III: jQuery Mobile and PhoneGap

Dreamweaver CS5.5 helps you get started developing
native apps by incorporating support for PhoneGap.
Although PhoneGap supports a wide range of mobile plat-
forms, Dreamweaver currently supports only two:

	.	 Android. Supported on Windows, Mac OS X 10.5, and
Mac OS X 10.6

	.	 iOS. Requires Mac OS X 10.6

This chapter describes how to set up Dreamweaver to
work with PhoneGap. You’ll build a simple travel notes app
that stores the current location and displays it on a map.
In addition to using parts of the PhoneGap API, the app
introduces you to jQuery Mobile custom events. Most of
this chapter is devoted to hand-coding JavaScript, jQuery,
and SQL. All the code is explained in detail, but you might
find this chapter a challenge without a basic knowledge
of JavaScript.

You don’t need an Android device or an iPhone, iPod
touch, or iPad to follow along in this chapter. The Android
and iOS software development kits (SDKs) include simula-
tors that show how your app would work on a real device.

Setting Up PhoneGap in Dreamweaver

To build native apps with PhoneGap, you need to install
the SDK for each platform that you intend to target. If you
already have the Android SDK installed, you simply need to
tell Dreamweaver where to find it. Otherwise, you can have
Dreamweaver install it for you.

To develop for iOS, you need to be running Mac OS
X 10.6. Download and install the most recent versions
of Xcode and the iOS SDK from the iOS Dev Center at
http://developer.apple.com.

Structured Query Language (SQL)
is the most widely used language
for communicating with databases.
Although SQL is a formal standard,
most database systems use their
own dialect of SQL. The version
adopted by mobile devices is SQLite
(www.sqlite.org).

Developing for iOS

Allow plenty of time for downloading and installing
Xcode and the iOS SDK. The disk image is 4.6 GB,
and the installation process can take an hour or
longer. You need to register with Apple to download
the SDK, but there is no need to pay the annual
developer registration fee until you’re ready to start
deploying apps. The SDK includes simulators for the
iPhone and iPad that allow you to launch and test
your apps from within Dreamweaver.

Xcode and the iOS SDK cannot be installed on
Windows. Dreamweaver’s integration of the iOS SDK
requires Mac OS X 10.6. Check with www.adobe.
com/support for information about compatibility
with later versions of OS X.

www.sqlite.org
www.adobe.com/support
www.adobe.com/support
http://developer.apple.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

222

Chapter 7	 Building a Native App with PhoneGap

Configuring Dreamweaver for Android and iOS

Apart from a slight difference in the dialog box, the setup
process for working with your chosen SDK(s) is identical
on Windows and Mac OS X.

1.		 Choose Site > Mobile Applications > Configure
Application Framework to open the dialog box to tell
Dreamweaver where to find the files it needs to convert
web pages into native apps.

In Windows, the only option in the dialog box is for the
Android SDK (Figure 7.1).

In the Mac version, the dialog box has options for
Android and iOS (Figure 7.2).

2.		 If you don’t have the Android SDK installed, skip to
step 3.

If you have already installed the Android SDK, click the
folder icon next to the Android SDK Path text field,
and choose the folder that contains the SDK. In the
Windows version of Dreamweaver or Mac OS X 10.5,
that’s all you need to do. Just click Save and skip to the
next section.

If you’re running Mac OS X 10.6 and have installed
Xcode and the iOS SDK, skip to step 6.

Figure 7.1  The Windows version of
Dreamweaver supports only Android.

Figure 7.2  You need the Mac version
of Dreamweaver to develop for iOS.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

223

III: jQuery Mobile and PhoneGap

3.		 If you don’t have the Android SDK installed on your
computer, click the Easy Install button. This opens your
operating system’s dialog box asking where you want to
install the SDK (it’s approximately 180 MB).

You need to be connected to the Internet, because as
soon as you click OK (Choose on a Mac), Dreamweaver
starts downloading and installing the files (Figure 7.3).

If the Internet connection is dropped before the SDK
has completed installing, just click Easy Install again.

4.		 Downloading and installing the Android SDK usually
takes only a few minutes on a broadband connection.
When the process is complete, Dreamweaver informs
you that the SDK was installed successfully (Figure 7.4).

In the event that the installation fails, try clicking
Easy Install again to overwrite the previous files.
Alternatively, drag the folder to the Recycle Bin or
Trash for a clean start. Also, make sure that you’re
logged in with administrative privileges and that the
target folder is writeable.

5.		 Once the Android SDK has been successfully installed
on Windows, click Save to close the Configure
Application Framework dialog box.

Figure 7.4  Installing the Android
SDK through Dreamweaver is much
simpler than installing the individual
components yourself.

Figure 7.3  Dreamweaver
downloads the Android SDK
directly from Google.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

224

Chapter 7	 Building a Native App with PhoneGap

6.		 On a Mac, if you have installed Xcode and the iOS
SDK, enter the location of the iOS SDK in the iOS
Developer Tools Path text field. The default location
is /Developer (Figure 7.5). The path begins with a
leading slash.

7.		 Click Save to close the Configure Application
Framework dialog box.

Setting Up a Dreamweaver Site for a Native App

Because PhoneGap packages your HTML, CSS, JavaScript,
and images in a format suitable for installation in a
mobile device, you need to create each app in a separate
Dreamweaver site. You also need to specify the application
settings.

The Mobile Starter pages in the New Document dialog box
have an option for jQuery Mobile (PhoneGap) that creates
a basic jQuery Mobile page with multiple page blocks. The
only difference from the other Mobile Starter pages is that
it includes a <script> tag in the <head> of the page that
links to an external JavaScript file, phonegap.js. However,
phonegap.js isn’t copied to your site until you specify the
application settings. Consequently, it’s more convenient to
start with a blank HTML page and add only the elements
you actually need.

Figure 7.5  Dreamweaver has been
configured for Android and iOS on
a Mac.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

225

III: jQuery Mobile and PhoneGap

The following steps describe how to set up the site and
specify the application settings for this chapter’s case study,
a simple app called Travel Notes.

1.		 Choose Site > New Site to open the Site Setup dialog box.

2.		 In the Site Name field, type Travel Notes.

3.		 In the Local Site Folder text field, create a new folder
called trnotes.

4.		 Click Save to create the site in Dreamweaver.

5.		 Use Windows Explorer or the Finder to copy ic_
launcher.png and splash.png from the ch07/begin
folder. Paste them into the trnotes folder. These will be
used as the app’s launch icon (Figure 7.6) and startup
screen (Figure 7.7).

6.		 Create a blank HTML page with an HTML5 DOCTYPE,
and save it in the Travel Notes site root as index.html.
You must use this name. Otherwise, PhoneGap won’t
know which page to load when the app launches.

7.		 Make sure the focus is in Design view, and click Page in
the jQuery Mobile category in the Insert panel.

8.		 In the jQuery Mobile Files dialog box, select the Local
radio button and click OK.

9.		 In the jQuery Mobile Page dialog box, type home in
the ID field and select only the Header check box.
Click OK to insert the jQuery Mobile page block.

10.	Save index.html and click Copy when Dreamweaver
prompts you to copy the dependent files to your site.

11.	You now need to define the application settings. In the
Travel Notes site, choose Site > Mobile Applications >
Application Settings to open the Native Application
Settings dialog box (Figure 7.8).

I have followed the Android naming
conventions for the launch icon and
startup screen, but you can use any
names you like for your own projects.

Figure 7.6  The
recommended bounding
box for a square launch icon
is 56 × 56 pixels, so it can’t
contain a lot of detail.

Figure 7.7  The startup screen is displayed while
PhoneGap launches.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

226

Chapter 7	 Building a Native App with PhoneGap

Figure 7.8  You need to create a unique identity for each app and define its
target operating system(s).

The main settings are the same in both Windows and
Mac OS X. However, the Mac version also has options
for iOS.

Here is a description of each setting:

	.	 �Bundle ID. This creates a unique ID for the app.
When developing locally, the value is unimportant,
but a unique value is required for distribution in an
app store. By default, Dreamweaver sets the value
to com.company.site_name. You should replace
com.company with your own reverse domain name.
For example, my website is foundationphp.com, so
I’ve used com.foundationphp.travel_notes as the
Bundle ID.

	.	 �Application Name. This is the name of the app as you
want it to appear when installed in a mobile device.
Dreamweaver automatically uses the same name as
in your site definition.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

227

III: jQuery Mobile and PhoneGap

	.	 �Author Name. This is the name of the person or com-
pany that creates the app.

	.	 �Version. By default, Dreamweaver sets this to 1.0.
In the testing stage, you might want to use a lower
number, such as 0.5.

	.	 �Application Icon PNG. Although this is marked as
optional, it’s a good idea to create an icon to distin-
guish your app from the thousands of others on
the market. For the Travel Notes app, click the
folder icon and select ic_launcher.png in the
trnotes folder.

	.	 �Startup Screen PNG. It takes a few seconds for
PhoneGap to load, so it’s a good idea to create a 320
× 480 pixel startup screen. For the Travel Notes app,
select splash.png in the trnotes folder. See the note
in the margin if this field is missing.

	.	 �Target Path. This is where you want PhoneGap to
build the app and store its related files. The default
is on your Desktop.

	.	 �Select Target OS Version. On Windows, the only option
is Android. By default, Dreamweaver sets the target
version to DW_AVD. This is the Dreamweaver ver-
sion of the Android Virtual Device (AVD), which
simulates a mobile phone. The Manage AVDs but-
ton launches the Android SDK and AVD Manager,
which you can use to download and install updates
to the SDK, as well as AVDs for different versions
of Android.

	If you have installed the iOS SDK on Mac OS X, you
can also select the versions of iOS that you want to
target for the iPhone, iPod touch, and iPad. PhoneGap
builds separate versions of the app for Android and iOS
from your HTML, CSS, and JavaScript files.

12.	Click Save to close the Native Application Settings
dialog box. If you check the Files panel, you should
now see that phonegap.js has been added to your site
(Figure 7.9).

The Native Application Settings
dialog box in the original release of
Dreamweaver CS5.5 has a couple of
rough edges that are expected to
be eliminated in an update. When
you select an image for the icon
or startup screen, Dreamweaver
displays a warning about document-
relative paths, which you should
ignore. Also, the Windows version
doesn’t have the option for the
startup screen. Details of how to fix
this problem are in “Specifying a
startup screen in Windows” later in
this chapter.

Figure 7.9  The site now has the main files needed
to develop the Travel Notes app.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

228

Chapter 7	 Building a Native App with PhoneGap

13.		 Although phonegap.js has been added to the site, you
need to link it to index.html. In Code view, position the
insertion point immediately before the closing </head>
tag and click Script in the Common category in the
Insert panel.

14.		 Type phonegap.js in the Source field and click OK.
You’re now ready to begin developing a native app.

Specifying a startup screen in Windows

When PhoneGap was being integrated into Dreamweaver,
only the iOS version of PhoneGap supported startup
screens. As a result, the Windows version of Dreamweaver
CS5.5 doesn’t have an option to specify an image for a
startup screen. However, if you’re willing to make a minor
edit to a Dreamweaver configuration file, you can enable
the option.

If your version of the Native Application Settings dialog
box looks like Figure 7.10, use the following instructions to
reveal the Startup Screen PNG field.

Figure 7.10  The Startup Screen PNG
field is missing in the Windows version.

Launch Icons and Startup Screens

Creating an icon and startup screen for an app is
arguably just as important as the rest of the design
and development process. The Android Developers
Dev Guide has advice on what makes a good launch
icon at http://developer.android.com/guide/
practices/ui_guidelines/icon_design_launcher.html.
You can also download a template pack in Photoshop
format from http://developer.android.com/guide/
practices/ui_guidelines/icon_design.html.

When developing in PhoneGap, a startup screen
should be 320 × 480 pixels. It can be saved as a
.png or .jpg file.

Editing configuration files always
carries the risk of making changes
that prevent Dreamweaver from
working. However, the changes are
so trivial that you should have no
problem. If you have any doubts,
back up the configuration folder first.

http://developer.android.com/guide/practices/ui_guidelines/icon_design_launcher.html
http://developer.android.com/guide/practices/ui_guidelines/icon_design_launcher.html
http://developer.android.com/guide/practices/ui_guidelines/icon_design.html
http://developer.android.com/guide/practices/ui_guidelines/icon_design.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

229

III: jQuery Mobile and PhoneGap

1.		 Close Dreamweaver CS5.5.

2.		 You need to edit a JavaScript file in the main
Dreamweaver configuration folder. Notepad will do,
but it’s better if you have an editor that shows line
numbers. To change a program file, being logged on
as administrator is not sufficient. Locate the text editor
in the Windows Start menu or use the editor’s shortcut
icon, right-click, and choose Run as Administrator.

3.		 In the text editor, choose File > Open, and navigate to
C:\Program Files\Adobe\Adobe Dreamweaver CS5.5\
configuration\NativeAppFramework. On Windows
64-bit, the folder is in the same location in C:\Program
Files (x86).

4.		 Select NativeAppSetup.js and open it. If you can’t see it
listed, set File Type to All Files (*.*).

5.		 Locate the section of code shown in Figure 7.11.

Figure 7.11  These lines are responsible for hiding the startup screen field
in Windows.

6.		 Comment out the code in lines 106–107 by typing // at
the beginning of both lines, as shown in Figure 7.12.

Figure 7.12  Commenting out the two lines reenables the startup screen field.

7.		 Save NativeAppSetup.js and close your text editor.

8.		 Relaunch Dreamweaver CS5.5 and open the Travel
Notes site.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

230

Chapter 7	 Building a Native App with PhoneGap

9.		 Choose Site > Mobile Applications > Application
Settings. You should now see the Startup Screen PNG
field (Figure 7.13).

Figure 7.13  After editing the configuration file, you can specify a startup screen.

10.	Select the startup screen for your app (splash.png in
the case of the Travel Notes app) and click Save. You’re
now ready to begin developing the native app in the
following case study.

Case Study: A Travel Notes App

The PhoneGap API gives you access to the following native
features of mobile devices:

	.	 �Accelerometer

	.	 �Camera

	.	 �Compass

	.	 �Contacts

	.	 �File (not on iOS)

	.	 �Geolocation

	.	 �Media (audio recording)

	.	 �Notification (sound)

	.	 �Notification (vibration)

	.	 �Storage

http://lib.ommolketab.ir
http//lib.ommolketab.ir

231

III: jQuery Mobile and PhoneGap

To demonstrate how to use some of these features, this
case study builds a simple app that allows you to store
brief travel notes about a place you’re visiting. On a GPS-
enabled device, it automatically detects and stores the
current latitude and longitude (as long as the user gives
consent). The stored coordinates are then used to display
a map on demand.

Creating the App’s HTML Structure

The Travel Notes app needs two forms: one for inserting
new notes and the other for editing existing notes. It also
needs to be able to display a searchable list of existing
notes and link to a map. As soon as you start adding notes,
a list of the most recent is displayed on the first page
(Figure 7.14).

To build the app, you need five jQuery Mobile page blocks,
as follows:

	.	 �Home screen. By default, this displays the 20 most recent
notes but also has a button to retrieve all notes.

	.	 �New entry. This is a simple form that stores new notes.

	.	 �Edit note. This loads the contents of an existing note
ready for updating.

	.	 �Display note. This displays an individual note and has
Edit and Delete buttons. If GPS is enabled, it also links
to a map of the location.

	.	 �Display map. This displays a map of the location.

The following steps describe how to build the HTML
structure.

1.		 In index.html, change the page title and the <h1>
heading to Travel Notes.

2.		 Delete the Content placeholder text, and with the inser-
tion point still inside the <div>, click List View in the
jQuery Mobile category in the Insert bar. Set the List
Type to Unordered and Items to 1. Leave all the check
boxes deselected, and click OK to insert the widget.

3.		 Change the placeholder text in the List View widget
to New Entry, and type #new in the Link field in the
Property inspector.

Figure 7.14  The opening screen lets you create
new notes and search existing ones.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

232

Chapter 7	 Building a Native App with PhoneGap

4.		 Click in the Tag selector at the bottom of the
Document window to select the List View widget, and
press the right arrow key once to move the insertion
point past the closing tag but still within the main
content <div>.

5.		 The rest of the first screen needs to be hidden when
there are no entries in the app’s database. So, insert a
<div> by choosing Insert > Layout Objects > Div Tag. In
the Insert Div Tag dialog box, set Insert to “At inser-
tion point” and type entries in the ID field. Click OK to
insert the <div>.

6.		 Press Ctrl+2/Command+2 to convert the placeholder text
into an <h2> heading, and change it to Most Recent Notes.

7.		 The rest of the code in the first page block needs to
be the List All button and an empty List View widget.
Although you can continue working in Design view, it’s
probably more efficient to switch to Code view and hand-
code the remaining tags with the help of code hints. The
finished code for the first page block looks like this:

<div data-role=”page” id=”home”>

 <div data-role=”header”>

 <h1>Travel Notes</h1>

 </div>

 <div data-role=”content”>

 <ul data-role=”listview”>

 New Entry

 Ê

 <div id="entries">

 <h2>Most Recent Notes</h2>

 <a href=”#” data-role=”button”

 Ê data-inline="true" id="limit">

 Ê List All

 <ul id="recent" data-role=

 Ê "listview" data-inset="true"

 Ê data-filter="true">

 </div>

 </div>

</div>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

233

III: jQuery Mobile and PhoneGap

The List All button is an <a> tag that has been assigned
the data‑role of button with data‑inline set to true.
The empty List View has data‑inset set to true to inset
it from the edges of the screen and data‑filter set to
true to add a search field.

Both elements have been given IDs to make it easy to
attach event handlers with jQuery later.

8.		 Make sure the insertion point is outside the closing
</div> tag of the first page block but still inside the
<body>. Insert a new jQuery Mobile page, and set its ID
to new. As before, the page block needs only a header.

9.		 Change the text in the <h1> heading to New Note.

10.		 Delete the Content placeholder text, and insert a form.
Name the form insert and set the method to POST.

11.		 The form needs a jQuery Mobile Text Input widget, a
Text Area widget, and a submit button. Name the Text
Input widget title, the Text Area widget details, and
the submit button create. Also, the opening <form> tag
needs data‑ajax set to false.

Using jQuery Mobile form widgets was covered in detail
in Chapter 6, so I’ll just show the completed code for
the second page block.

<div data-role=”page” id=”new”>

 <div data-role=”header”>

 <h1>New Note</h1>

 </div>

 <div data-role=”content”>

 <form action=”” method=”post”

 Ê name="insert” id=”insert” data-ajax=

 Ê "false">

 <div data-role=”fieldcontain”>

 <label for=”title”>Title:</label>

 <input type=”text” name=”title”

 Ê id="title” value=”” />

 </div>

 <div data-role=”fieldcontain”>

 <label for=”details”>Details:

 Ê </label>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

234

Chapter 7	 Building a Native App with PhoneGap

 <textarea cols="40" rows="8"

 Ê name="details” id=”details”>

 Ê </textarea>

 </div>

 <input name="create” type=”submit”

 Ê id="create” value=”Insert” />

 </form>

 </div>

</div>

12.		 Select the page block containing the new entry form
and copy it to your clipboard. Move the insertion point
outside the closing </div> tag, and paste the page block
back into the page. You should now have two identi-
cal page blocks. However, Dreamweaver automatically
detects the existing IDs in the code and appends 2 at
the end of the duplicates. So, new becomes new2, title
becomes title2, and so on.

13.		 The duplicate form is for updating existing notes, so
the title2 and details2 IDs are OK, but you need to
change the others to make the JavaScript code more
understandable and easier to maintain. Edit the dupli-
cate page block like this (the changes are highlighted):

<div data-role=”page” id=”editNote”>

 <div data-role=”header”>

 <h1>Update Note</h1>

 </div>

 <div data-role=”content”>

 <form action=”” method=”post” name=

 Ê "edit” id=”edit” data-ajax=”false”>

 <div data-role=”fieldcontain”>

 <label for=”title2”>Title:

 Ê </label>

 <input type="text" name=

 Ê "title2" id="title2"

 Ê value="" />

 </div>

 <div data-role="fieldcontain">

 <label for="details2">Details:

 Ê </label>

Always paste into the same view
of the Document window as you
copied from. If you copy in Code
view, paste in Code view. If you copy
in Design view, paste in Design view.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

235

III: jQuery Mobile and PhoneGap

 <textarea cols="40" rows="8"

 Êname="details2" id=

 Ê "details2"></textarea>

 </div>

 <input name="update” type=”submit”

 Ê id="update” value=”Update” />

 </form>

 </div>

</div>

14.		 Make sure the insertion point is outside the closing
</div> tag of the page block you have just edited, and
insert another jQuery Mobile page block. Set its ID
to display.

15.		 Change the text in the <h1> heading to Display Note,
and delete the Content placeholder text in Design view.

16.		 With the insertion point still between the content <div>
tags, right-click, and choose Insert HTML from the
context menu. This displays a mini panel that lets you
insert an HTML tag at the current location (Figure 7.15).

Type art to select the code hint for article, and press
Enter/Return twice to insert an empty pair of <arti-
cle> tags. This element will be used to display the
contents of the selected travel note.

17.		 You need to add a button to display the map.
Unfortunately, Dreamweaver’s handling of HTML5
semantic tags in Design view is still rather unpolished,
so it’s best to add the button and a <footer> element in
Code view like this:

<article></article>

<p><a href=”#” id=”showmap” data-role=

Ê "button">Show Map</p>

<footer></footer>

The <footer> element will be used to display the date
the note was originally entered and, if appropriate,
updated.

Figure 7.15  Choose Insert HTML
from the context menu in Design
view to add HTML5 semantic tags to
a page.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

236

Chapter 7	 Building a Native App with PhoneGap

18.		 Create a blank new line after the closing </footer> tag
in Code view, and click Button in the jQuery Mobile
category in the Insert panel. In the dialog box, use the
following settings:

	.	 Buttons. 2

	.	 Button Type. Link

	.	 Position. Group

	.	 Layout. Horizontal

This inserts the code for a grouped pair of buttons. Edit
the code to change the button labels and add IDs like
this:

<div data-role=”controlgroup” data-type=

Ê "horizontal"><a href="#" data-role="button"

Ê id=”editItem”>Edit Note

Ê

Ê Delete Note</div>

19.		 Make sure the insertion point is outside the closing
</div> tag of the page block you just created, and
insert a new jQuery Mobile page block. Set the ID of
the new page block to map.

20.		 Change the text in the <h1> heading to Display Map,
and delete the Content placeholder text.

21.		 The HTML structure is now complete, but you need to
add a <style> block in the <head> of the page to display
the <article> and <footer> tags as block-level ele-
ments. Add the following code to the <head> of index.
html:

<style>

article, footer {

 display: block;

}

</style>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

237

III: jQuery Mobile and PhoneGap

22.		 Activate Live view. The List All button is too far below
the Most Recent Notes heading and sits directly on top
of the search box (Figure 7.16).

23.		 Add the following definitions to the <style> block that
you created in step 21:

#home h2 {

 margin-bottom: 5px;

}

#limit {

 margin: 0 auto 20px 40px;

}

Refresh Live view by clicking anywhere inside or by
pressing F5. The button is now evenly positioned
between the heading and search box (Figure 7.17).

You can compare your code with index_struct.html in
ch07/complete.

Programming the App

Although the HTML structure consists of five page blocks,
you can access only two of them at the moment: the initial
screen and the new entry form. To bring the app to life,
you need to develop the programming logic that creates
the database, populates it with data, and displays the loca-
tion map. The HTML page has access to three JavaScript
libraries:

	.	 jQuery Core. This simplifies the selection of page
elements, reducing the complexity of code needed to
attach event handlers and manipulate the Document
Object Model (DOM) to display and remove content
on the fly.

	.	 	jQuery Mobile. This exposes extra events that are
specific to mobile applications, for example, allowing
you to trigger page transitions or rebuilding content
dynamically.

	.	 	PhoneGap. This gives you access to native features, such
as database storage and geolocation.

Figure 7.17  That looks better!

Figure 7.16  The List All button is badly positioned.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

238

Chapter 7	 Building a Native App with PhoneGap

Each library has its own methods and properties, but they
all work together seamlessly. And because they’re all writ-
ten in JavaScript, they all share the same syntax. All are well
documented:

	.	 jQuery Core. http://docs.jquery.com

	.	 jQuery Mobile. http://jquerymobile.com

	.	 PhoneGap. http://docs.phonegap.com

Planning the app’s functionality

The Travel Notes app needs to do the following:

	.	 Create a database on the mobile device.

	.	 Retrieve a list of existing records.

	.	 Get the user’s current location.

	.	 Store new records, including the current location.

	.	 Update and delete existing records.

	.	 Display a map of a specific location.

The functions that implement these features also need
to be bound as event handlers to the relevant buttons in
the HTML structure. For ease of maintenance, all the
JavaScript coding is stored in an external file.

Combining your own JavaScript with jQuery Mobile

When jQuery Mobile starts executing, it triggers it triggers
an event called mobileinit, which lets you set custom prop-
erties and override default values. Because the event is
triggered immediately, a mobileinit event handler must be
defined before the jQuery Mobile script is loaded. So, the
recommended order of scripts is as follows:

1.		 jQuery Core

2.		 Custom script

3.		 jQuery Mobile

http://docs.jquery.com
http://jquerymobile.com
http://docs.phonegap.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

239

III: jQuery Mobile and PhoneGap

Create a file for the custom script and attach it to index.
html as follows:

1.		 Choose File > New and select Blank Page from the list
on the left of the New Document dialog box.

2.		 Select JavaScript as the Page Type, and click Create.

3.		 Create a folder called js in the Travel Notes site root,
and save the file as trnotes.js in the new folder.

4.		 Open index.html in Code view, and position the inser-
tion point immediately before the <script> tag that
attaches the jQuery Mobile file.

5.		 Click Script in the Common category in the Insert
panel, and then click the folder icon next to the
Source field.

6.		 Navigate to the js folder, select trnotes.js, and click OK
(Choose on a Mac).

7.		 Click OK to close the Script dialog box.

The new <script> tag should have been added between
those that attach the jQuery and jQuery Mobile files
like this:

<script src=”jquery.mobile/jquery-1.5.2.min

Ê .js" type="text/javascript"></script>

<script type=”text/javascript” src=”js/

Ê trnotes.js"></script>

<script src=”jquery.mobile/jquery.mobile-1

Ê .0a4.min.js" type="text/javascript">

Ê </script>

8.		 To keep the files organized, select phonegap.js in
the Files panel and drag it into the js folder. When
Dreamweaver asks if you want to update the links,
click Update.

The phonegap.js <script> tag should have been
updated like this:

<script type=”text/javascript” src=”js/

Ê phonegap.js"></script>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

240

Chapter 7	 Building a Native App with PhoneGap

Storing data with the Web SQL Database API

The Web SQL Database API is a World Wide Web Consortium
(W3C) specification (www.w3.org/TR/webdatabase) that
defines how web pages can store and retrieve data from a
database. It has been adopted by WebKit browsers, such as
Safari and Google Chrome. It’s also supported by Android,
iOS, BlackBerry 6, and Palm. However, in the complex and
sometimes political atmosphere of web standards develop-
ment, the W3C’s Web Applications Working Group has
stopped work on the specification and is now devoting its
efforts to the Indexed Database API (www.w3.org/TR/
IndexedDB).

The Web SQL Database API has been abandoned because
of a dispute over which database to use. All implementa-
tions of the API use SQLite. The W3C wants the API to be
database-neutral. Although that’s a noble ambition, there
are no implementations of the W3C’s favored solution,
whereas the Web SQL Database API is in active use.

Normally, I hesitate to recommend using a specification
that’s no longer under active development. However, I
think it’s safe to use the Web SQL Database API in the
closed environment of a native app. But it’s unsuitable for
use in a website because Firefox and Internet Explorer
(IE) don’t support it.

Using the Web SQL Database API is fairly simple. You first
need to connect to a database with the openDatabase()
method, which expects the following arguments:

	.	 Database name. This shouldn’t contain spaces, hyphens,
or special characters.

	.	 Version number. Only one version can be open at a time.

	.	 Display name. This is a text description of the database.
It can contain spaces and special characters.

	.	 Maximum size. This specifies in bytes the maximum
amount of storage space allocated to the database.

www.w3.org/TR/webdatabase
www.w3.org/TR/IndexedDB
www.w3.org/TR/IndexedDB
http://lib.ommolketab.ir
http//lib.ommolketab.ir

241

III: jQuery Mobile and PhoneGap

If the database doesn’t already exist, it’s automatically cre-
ated the first time you call openDatabase(). Opening the
database returns a JavaScript object, which you need to
store in a variable like this:

var db = openDatabase(‘trnotes’, ‘1.0’, ‘Travel

Ê Notes', 2*1024*1024);

This creates or opens version 1.0 of a database called
trnotes, which has a maximum size of 2 MB, and stores a
reference to it as db.

To insert, update, delete, or select data, you call the
transaction() method on the database object. The basic
syntax looks like this:

db.transaction(function(t) {

 t.executeSql(SQL, arguments, success, fail);

}

The arguments passed to the executeSql() method are
as follows:

	.	 A SQL query with question marks as placeholders
for variables

	.	 An array of variables that contain the values
represented by the placeholders (optional)

	.	 A callback function to be executed if the transaction
succeeds (optional)

	.	 A callback function to be executed if the transaction
fails (optional)

Using question marks as placeholders for variables in the
SQL query is designed to prevent SQL injection and to
preserve the integrity of your database.

SQL Injection

SQL injection is a common type of attack that
attempts to inject spurious data into a database
query. Depending on the nature of the attack, it
can insert malicious scripts into your data, gain
unauthorized access to protected areas, reveal
sensitive information, or completely wipe your
database. It exploits scripts that fail to handle
quotation marks and other special characters cor-
rectly. The Web SQL Database API protects against
SQL injection by automatically formatting the
values that replace the question mark placeholders.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

242

Chapter 7	 Building a Native App with PhoneGap

Setting up the app’s database

The Travel Notes app interacts with the database all the
time. So, the script uses the mobileinit event to establish
a connection to the database on startup, and it stores the
database object as a custom property of the jQuery Mobile
$.mobile object.

1.		 Add the following code to trnote.js:

$(document).bind(“mobileinit”, function(){

 $.mobile.notesdb = openDatabase(‘trnotes’,

 Ê '1.0', 'Travel Notes', 2*1024*1024);

}

This binds a mobileinit event handler to the docu-
ment. All code inside the event handler is executed as
soon as jQuery Mobile starts.

The Web SQL API’s openDatabase() method opens
(or creates) version 1.0 of a database called trnotes
and sets its maximum storage limit at 2 MB (1 MB =
1024 × 1024 bytes). The database object is stored as
the notesdb property of $.mobile, giving access to it
through the rest of the script.

2.		 The first time you open the database, you need to
define its structure. The database needs a table to store
the following information:

	.	 An ID to identify each record (primary key)

	.	 Title

	.	 Details

	.	 Latitude

	.	 Longitude

	.	 Date created

	.	 Date updated

When developing a native app with
HTML, CSS, and JavaScript, it’s a good
idea to test each stage in a browser.
This not only saves you the time it
takes to build the native app in a
simulator, but it also allows you to
use the browser’s error console to
check for JavaScript errors. To test
your code at various stages of devel-
opment, you need to preview index.
html in Safari or Google Chrome.
Although Opera supports the Web
SQL Database API, it doesn’t offer an
easy way to inspect the contents of
the database.

To learn more about the
mobileinit event and how
to use it to configure default
properties, see “Configuring defaults”
in the jQuery Mobile documentation
at http://jquerymobile.com.

http://jquerymobile.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

243

III: jQuery Mobile and PhoneGap

Amend the code in the mobileinit event handler to
execute a SQL query to build the table like this:

$(document).bind(“mobileinit”, function(){

 $.mobile.notesdb = openDatabase(‘trnotes’,

 Ê '1.0', 'Travel Notes', 2*1024*1024);

 $.mobile.notesdb.transaction(function(t) {

 t.executeSql(‘CREATE TABLE IF NOT

 Ê EXISTS notes (id INTEGER NOT NULL

 Ê PRIMARY KEY AUTOINCREMENT,

 Ê title TEXT NOT NULL, details TEXT

 Ê NOT NULL, entered TEXT NOT NULL,

 Ê updated TEXT, latitude REAL,

 Ê longitude REAL);');

 });

The SQL query creates a table called notes and defines
the data type for each column. The table needs to be
created only once, so the query uses the command
CREATE TABLE IF NOT EXISTS. The id column is designa-
ted as the table’s primary key and is set to AUTOINCREMENT,
which automatically increments the number by 1 each
time. SQLite stores dates as TEXT. The latitude and
longitude columns use the REAL data type, which stores
the values as floating point numbers.

In this case, only one argument is passed to the
executeSql() method. There are no placeholders in
the SQL query, so the second argument is not needed.
Using callback functions for success and failure has
little value here, because the query will succeed only
once—when the table is created. Thereafter, it will
always fail. You can use a browser’s debugging tools to
check whether your code works.

3.		 Save trnotes.js and index.html. With index.html the
active document, choose File > Preview in Browser, and
then choose either Safari or Google Chrome. The page
should look the same as it did when you tested it earlier
in Live view (see Figure 7.17 in “Creating the App’s
HTML Structure”).

Primary Key

A primary key is a unique value that identifies
a record in a database. It plays a vital role in
selecting specific records, as well as updating and
deleting them. Although any unique value can be
used as a primary key, it’s common to use an auto-
matically incremented number. In more complex
databases, primary keys are used to link records in
different tables.

Windows users, if you don’t have
Safari or Chrome listed in the Preview
in Browser submenu, choose Edit
Browser List to open the Preview in
Browser category in the Preferences
panel. Click the plus icon next to
Browsers, and add your browser of
choice. Safari is in Program Files,
but Google Chrome is located in
your user account’s AppData\Local
or Application Data folder, which is
normally a hidden folder.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

244

Chapter 7	 Building a Native App with PhoneGap

4.		 In Safari, open the Web Inspector by pressing
Ctrl+Alt+I/Option+Command+I. Select Storage and
expand Databases. You should see the trnotes database
and the notes table listed (Figure 7.18).

In Chrome, open the Developer Tools by pressing
Ctrl+Shift+I/Option+Command+I. Select Resources
and expand Databases. You should see the trnotes
database and the notes table listed (Figure 7.19).

If the database and table weren’t created, select Console
in the Safari Web Inspector or Chrome Developer Tools
to see if any JavaScript errors are listed. Also, check the
SQL code carefully. Because it’s in a JavaScript file, it
mustn’t be broken across several lines.

You can check your code with trnotes_create.js in
ch07/complete.

Getting the current location and inserting data

When the user taps on the New Entry button, the app
needs to get the current latitude and longitude to store
along with the user input. The PhoneGap geolocation

Figure 7.18  Confirmation in the
Safari Web Inspector that the database
and table have been created.

Figure 7.19  The Chrome Developer
Tools provide the same information in
a slightly different location.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

245

III: jQuery Mobile and PhoneGap

object provides access to the device’s GPS sensor, and the
getCurrentPosition() method does exactly what you would
expect. The method expects up to three arguments: a call-
back to be executed on success, a callback to be executed
on failure, and an options object.

The jQuery Mobile framework provides a pageshow event
that is triggered after a page block is displayed. So, we’ll
use the new page block’s pageshow event to trigger the
acquisition of the GPS data.

The following instructions also show how to dynamically
load a page using the $.mobile.changePage() method.

1.		 Add the following code to trnotes.js:

$(function() {

 $(‘#new’).live(‘pageshow’, getLocation);

 $(‘#insert’).live(‘submit’, insertEntry);

});

This document-ready handler binds a function called
getLocation()to the new page block’s pageshow event
and a function called insertEntry() to the submit
event of the insert form. You’ll define both functions
in a moment.

2.		 You need access to the latitude and longitude values in
several places. Rather than creating global variables for
both, create an object to store commonly used values.
Add the following code immediately after the preced-
ing block:

var trNotes = {

 lat: null,

 lng: null,

 limit: 20

};

This initializes an object called trNotes with three
properties: lat, lng, and limit. The first two properties
are for the latitude and longitude. The third property
sets the default number of records to be retrieved from
the database.

See the PhoneGap documentation
at http://docs.phonegap.com for
full details of the geolocation
object and examples of its use.

Other event handlers will be added
to the document-ready event
handler as you continue to build this
script. They’ll be added at the same
time as the functions are defined to
avoid generating errors by calling
undefined functions.

http://docs.phonegap.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

246

Chapter 7	 Building a Native App with PhoneGap

3.		 Add the definition for the getLocation() function:

function getLocation() {

 navigator.geolocation.getCurrentPosition(

 locSuccess,

 locFail,

 {enableHighAccuracy: true}

);

}

The PhoneGap geolocation object is accessed
through the JavaScript navigator object. The first two
arguments to getCurrentPosition() call two new func-
tions, locSuccess() and locFail(), which you’ll define
next. The third argument is an object that sets the
enableHighAccuracy property to true. This tells the app
to get the best possible results from the GPS sensor.

4.		 The code for the locSuccess() function looks like this:

function locSuccess(position) {

 trNotes.lat = position.coords.latitude;

 trNotes.lng = position.coords.longitude;

}

If the getCurrentPosition() method succeeds, it
returns an object containing the data from the GPS
sensor, which is automatically passed as the first argu-
ment to the success callback. The coords property of
this object contains the latitude and longitude, which
are stored as the lat and lng properties of the trNotes
object that you created in step 2.

5.		 The locFail() function looks like this:

function locFail(error) {

 var msg = ‘Cannot determine location.’;

 if (error.code == error.PERMISSION_DENIED)

 {

 msg += ‘ Geolocation is disabled.’;

 }

 try {

 navigator.notification.alert(

 Ê msg, null, 'Geolocation');

http://lib.ommolketab.ir
http//lib.ommolketab.ir

247

III: jQuery Mobile and PhoneGap

 } catch (e) {

 alert(msg);

 }

};

If the getCurrentPosition() method fails, it returns an
object containing details of the error, which is auto-
matically passed as the first argument to the failure
callback. If the code property of the error object is
PERMISSION_DENIED, it indicates that the user or the
system refused access to the GPS sensor, so this infor-
mation is added to the message stored in msg.

The try/catch blocks attempt to display the message
using the PhoneGap notification object, which uses
the mobile device’s native alert panel. The first argu-
ment passed to the alert() method is the text of the
message. The second is a callback function to be exe-
cuted when the user dismisses the alert. In this case, it
has been set to null because no callback is needed. The
third argument is used as the title of the panel. You can
also pass a fourth argument to set the text of the button
(the default is “OK”).

Desktop browsers don’t support PhoneGap, so the
catch block displays the default browser alert.

6.		 Define the insertEntry() function by adding the fol-
lowing code at the bottom of trnotes.js:

function insertEntry(e) {

 var title = $(‘#title’).val(),

 details = $(‘#details’).val();

 $.mobile.notesdb.transaction(function(t) {

 t.executeSql(‘INSERT into notes (title,

 Ê details, entered, latitude,

 Ê longitude) VALUES

 Ê (?,?,date("now"),?,?);',

 [title, details, trNotes.lat,

 Ê trNotes.lng],

 function() {

 $.mobile.changePage('#page',

 Ê 'slide', false, true);	

 $('#title').val('');

http://lib.ommolketab.ir
http//lib.ommolketab.ir

248

Chapter 7	 Building a Native App with PhoneGap

 $('#details').val('');

 },

 null

);

 });

 e.preventDefault();

};

The function begins by storing the values entered in
the title and details fields of the form. These values
are passed to the SQL query together with the latitude
and longitude stored in trNotes.lat and trNotes.lng.

Let’s take a quick look at how the values are passed into
the query. To make it easier to understand, the SQL
query is formatted with line breaks:

INSERT into notes

(title, details, entered, latitude, longitude)

VALUES (?,?,date(“now”),?,?);

The comma-separated list in the first set of parentheses
specifies the names of the columns into which the data
is to be inserted. The second set of parentheses speci-
fies the values for each column in the same order as
the first list. With the exception of entered, each value
is a question mark placeholder. The value for entered
is date(“now”), which is SQLite’s way of inserting the
current date.

The values represented by the placeholders are in the
following argument, which is a JavaScript array:

[title, details, trNotes.lat, trNotes.lng]

In other words, the value held in the title variable
is inserted in the title column, the value held in the
details variable is inserted in the details column, and
the values in trNotes.lat and trNotes.lng are inserted
in the latitude and longitude columns, respectively.

When using question mark
placeholders in SQL queries, there
must be the same number of
elements in the array of values as
placeholders—and they must be in
the same order.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

249

III: jQuery Mobile and PhoneGap

Following the array of variables is the callback function
that’s executed if the executeSql() method succeeds.
Viewed in isolation, it looks like this:

function() {

 $.mobile.changePage(‘#home’, ‘slide’,

 Ê false, true);	

 $('#title').val('');

 $('#details').val('');

}

The key feature here is $.mobile.changePage(), which
dynamically loads a new jQuery Mobile page block.
It takes four arguments, as follows:

	.	 The destination page block or URL.

		� The type of page transition, using one of the values
in “Controlling page transitions” in Chapter 6.

		� Whether the transition should be in reverse (the
default is false).

	.	 Whether to update the URL (the default is true).

Because the last two arguments use the default values,
they could be omitted, but I have included them to
show their meaning.

The last two lines of the callback function reset the
values of the title and details fields to empty strings
to prevent the form from loading the same values the
next time.

The failure callback is set to null. This has been done
for simplicity. In a commercial app, you should use
$.mobile.changePage() to redirect the user to a page
block that describes the reason for the error.

The final line of the insertEntry() function calls the
jQuery preventDefault() method on the event object.
This is the same as calling return false and prevents
the submit event handler from reloading the form.

7.		 Save trnotes.js and reload index.html in the browser.
Test the code so far by clicking the New Entry button.
Depending on your setup, you might be prompted to
allow the browser to disclose your location. Even if you

http://lib.ommolketab.ir
http//lib.ommolketab.ir

250

Chapter 7	 Building a Native App with PhoneGap

do so, you might see an alert that the location couldn’t
be determined. If so, dismiss the alert. Testing geoloca-
tion on a desktop or laptop is unreliable. What’s
important is seeing the messages.

8.		 Enter some text in the title and details fields, and
click the Insert button. You should be taken back to
the initial screen.

9.		 The new entry isn’t listed on the initial screen because
that part of the script hasn’t been created yet. However,
you can check that the script is working by refreshing
the Databases display in the Safari Web Inspector or
Chrome Developer Tools (Figure 7.20).

Figure 7.20  The first record is displayed in the Safari Web Inspector.

You can check your code against trnotes_insert.js in
ch07/complete.

Displaying a list of existing records

Now that you have at least one record in the database, you
need to add the code to display a list of travel notes on the
first screen. The list is displayed each time the first page
block loads, so you can use another jQuery Mobile event,
pagebeforeshow, to trigger the function before the transi-
tion takes place.

The code needs to perform the following tasks:

	.	 Retrieve a list of records in the database.

	.	 If records are found, populate the recent List View
widget in the initial screen.

	.	 Store each record’s primary key in the button that
loads it into the display page block.

	

Safari displays columns without val-
ues as null, whereas Chrome leaves
them blank. This is unimportant.
Also note that the date is formatted
as YYYY-MM-DD in the database.
You’ll learn later how to customize
the format when displaying the
value in the app.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

251

III: jQuery Mobile and PhoneGap

.		 Bind a click event handler to each button to pass the
primary key to a function that retrieves the selected
record and loads its details in the display and editNote
page blocks.

	.	 Display the entries <div> in the initial screen.

	.	 If no records are found, hide the entries <div> in the
initial screen.

The following steps describe the code in detail and show
you how to handle the result of a SQL query.

1.		 Amend the document-ready event handler at the top of
trnotes.js to bind a new function called getTitles() to
the pagebeforeshow event of the home page block
like this:

$(function() {

 $(‘#home’).live(‘pagebeforeshow’,

 Ê getTitles);

 $(‘#new’).live(‘pageshow’, getLocation);

 $(‘#insert’).live(‘submit’, insertEntry);

});

I’ve added it as the first item because it needs to run
immediately when the app is first launched. Using the
pagebeforeshow event also means that the getTitles()
function is executed each time you return to the
first screen.

2.		 Add the code for the getTitles() function. It’s not
really important where you locate it in trnotes.js.
However, your code is easier to maintain if you organize
functions in the order they’re used. In the download
files, I have put it after the definition of the trNotes
object and before the getLocation() function. The
code looks like this:

function getTitles() {

 var list = $(‘#recent’),

 items = [];

 $.mobile.notesdb.transaction(function(t) {

 t.executeSql(‘SELECT id, title FROM

 Ê notes ORDER BY id DESC LIMIT ?',

The constraints of the printed page
result in many lines being broken up,
so you might find it easier to study
the code for the getTitles()
function in trnotes_titles.js in ch07/
complete.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

252

Chapter 7	 Building a Native App with PhoneGap

 [trNotes.limit],

 function(t, result) {

 var i,

 len = result.rows.length,

 row;

 if (len > 0) {

 for (i = 0; i < len; i += 1) {

 row = result.rows.item(i);

 items.push('<a href="

 Ê #display" data-trnote="'

 Ê + row.id + '">' + row.

 Ê title + '');

 }

 list.html(items.join());

 list.listview('refresh');

 $('a', list).live('click',

 Ê function(e) {

 getItem(($(this).attr(

 Ê 'data-trnote')));

 });

 $('#entries').show();

 } else {

 $('#entries').hide();

 }

 })

 });

}

The function begins by creating two variables: list
holds a reference to the empty unordered list in the
home page block, and items is an empty array that will
be used to populate the list with the results of the
SQL query.

The SELECT query retrieves the id and title columns
from the notes table in descending (reverse) order, so
the most recent appears first. The query uses a LIMIT
clause to restrict the number of results. The number is
represented by a question mark placeholder, and the
specified value (trNotes.limit) is passed to the query
as a single-element array in the second argument to
executeSql().

Even when there’s only one place-
holder in a SQL query, the second
argument to executeSql() still
needs to be an array.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

253

III: jQuery Mobile and PhoneGap

The rest of the code is an anonymous callback function
that handles the result. When a SQL query is success-
fully executed, two objects are automatically passed to
the callback: the first is the transaction object, and the
second is an object containing the results of the query.
It’s the second object, which I have called result, that
you’re interested in.

The result object has a rows property, which contains
an array of the records that the SELECT query retrieved
from the database. By storing the length of the array in
len, the function determines if any records were found.
If len is greater than zero, a loop iterates through each
record, building an array of list items for the empty
unordered list. The code that builds each item looks
like this:

‘<a href=”#display” data-trnote=”’ +

Ê row.id + '">’ + row.title + ‘’

This builds an HTML <a> tag nested in an tag. The
link points to the display page block, and it contains
a custom data attribute that I have called data‑trnote,
which stores the ID of the current record. Each record
in the result is extracted to a temporary variable called
row. To get the value stored in each column, you
append the column name after a period. So, row.id
gets the value from the id column, and row.title gets
the value from the title column. Storing the record’s
ID or primary key like this ensures that you select the
correct record from the database when the user taps a
link. When the JavaScript variables are substituted by
their values, the resulting string looks similar to this:

‘

Ê This is a test’

After the loop, the items array is converted to a single
string using the standard JavaScript join() method and
is passed to the jQuery html() method, populating the
previously empty unordered list. Because the list has
been updated, you need to call listview(‘refresh’),
which tells jQuery Mobile to rebuild the List View widget.

Pay close attention to the combina-
tion of single and double quotation
marks. The single quotation marks
define the string, whereas the
double quotation marks are an
integral part of the string.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

254

Chapter 7	 Building a Native App with PhoneGap

The next section of code binds a click event handler to
each link in the List View widget like this:

$(‘a’, list).live(‘click’, function(e) {

 getItem($(this).attr(‘data-trnote’));

});

The jQuery selector uses list as a second argument,
limiting the target elements to the recent List View
widget. The event-handler function calls a function called
getItem() and passes it $(this).attr(‘data-trnote’)
as an argument. $(this) refers to the event target—in
other words, the <a> link—and the attr() method
retrieves the value of data‑trnote. In effect, this passes
the primary key of the selected item as an argument to
getItem().

After the List View widget has been built, the jQuery
show() method displays the entries <div>, which con-
tains the List All button, the search field, and the List
View widget.

The code that builds and displays the List View widget
is wrapped in a conditional statement, so it’s executed
only if there are any results from the SELECT query. If
there are no results, the else clause uses the jQuery
hide() method to conceal the entries <div>.

3.		 Save trnotes.js and reload index.html in your browser.
You should see the title of your first record listed in the
initial screen.

4.		 Click New Entry and insert one or two more items.
When you click Insert, you should be taken back to the
initial screen where each item is displayed, with the
most recent one first (Figure 7.21).

You can check your code against trnotes_titles.js in
ch07/complete.

Displaying an individual record’s details

The getItem() function has to do the following:

	.	 Retrieve the selected item’s details from the database.

	.	 Display the item’s details in the display page block.

Figure 7.21  New items are added at the top of the
List View widget.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

255

III: jQuery Mobile and PhoneGap

	.	 Control the button to display a map of the specified
location.

	.	 Bind event handlers to the Edit Note and Delete Note
buttons.

	.	 Populate the form in the editNote page block, so the
item is ready for updating.

Here’s the full listing:

function getItem(id) {

 $.mobile.notesdb.transaction(function(t) {

 t.executeSql(‘SELECT * FROM notes

 Ê WHERE id = ?',

 [id],

 function(t, result) {

 var row = result.rows.item(0),

 entered = convertToMDY(

 Ê row.entered),

 updated = row.updated;

 $('#display h1').text(row.title);

 $('#display article').text(

 Ê row.details);

 if (row.latitude == null) {

 $('#showmap').parent('p').hide();

 } else {

 $('#showmap').parent('p').show();

 $('#showmap').unbind('click');

 $('#showmap').click(displayMap);

 }

 $('#display footer').html('<p>

 Ê Created: ' + entered + '</p>');

 if (updated != null) {

 updated = convertToMDY(updated);

 $('#display footer').append('<p>

 Ê Updated: ' + updated + '</p>');

 }

 $('#delete, #update').attr(

 Ê 'data-trnote', id);

 $('#title2').val(row.title);

 $('#details2').val(row.details);

 })

 });

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

256

Chapter 7	 Building a Native App with PhoneGap

The getItem() function takes as its argument the ID of the
selected item and uses it in the WHERE clause of the SELECT
query to retrieve the item’s details from the database.
The callback function that handles the result of the query
assigns the result to row and then uses it to populate the
display page block. The value of the entered column is
passed to a utility function called convertToMDY(), which
converts it to an American date format.

The value of the title column replaces the text in the
<h1> heading, and the value of details populates the
<article> element.

If the value of latitude is null, there’s no map to show,
so the paragraph that contains the Show Map button is
hidden. Otherwise, the paragraph is displayed and a func-
tion called displayMap() is bound to the button as a click
event handler. However, to prevent multiple click events
from being bound to the Show Map button each time
the getItem() function runs, the unbind() method first
removes any previous event handler.

The reformatted date is displayed in the <footer> element,
and if updated is not null, it’s reformatted and appended
to the HTML in the <footer>.

Finally, the item’s primary key is stored as data‑trnote in
the Delete and Update buttons, and the title and details
fields of the update form are prepopulated with the rel-
evant values. Even if the user doesn’t intend to update the
item, prepopulating the update form avoids the need to
query the database again.

Because getItem() calls two functions that haven’t yet been
created, you can’t test it yet.

1.		 Add the getItem() function definition to trnotes.js.

2.		 Add the following definition for the convertToMDY()
function:

function convertToMDY(date) {

 var d = date.split(‘-’);

 return d[1] + ‘/’ + d[2] + ‘/’ + d[0];

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

257

III: jQuery Mobile and PhoneGap

This uses basic JavaScript to split the date, which
SQLite stores in the YYYY-MM-DD format, into an array
using the hyphens as a separator. So, the first element
of the array contains the year, the second contains the
month, and the third contains the date. The array ele-
ments are returned reordered with slashes in between
as MM/DD/YYYY.

3.		 You’ll define the displayMap() function later, but you
need to create a dummy function to prevent the script
from generating an error. Add this to trnotes.js:

function displayMap() {

}

4.		 Save trnotes.js and refresh index.html in your browser.
Click one of the items in the list in the initial screen.
A new screen should load and display the details of the
item you selected (Figure 7.22).

If your network connection permits geolocation data to
be accessed, you should also see the Show Map button
(Figure 7.23).

The Show Map, Edit Note, and Delete Note buttons
don’t do anything yet.

You can check your code with trnotes_item.js in
ch07/complete.

Updating and deleting items

The functions for updating and deleting items follow the
same pattern as the other functions that you already cre-
ated, so you can add them to the script at the same time.
In addition to defining the functions, you also need to
bind them as event handlers to the relevant buttons, as
described in the following steps.

1.		 Amend the document-ready event handler at the top
of trnotes.js to bind the new functions to the Edit Note,
Delete Note, and Update buttons:

$(function() {

 $(‘#home’).live(‘pagebeforeshow’,

 Ê getTitles);

To convert the date to the European
DD/MM/YYYY format, just swap the
positions of d[1] and d[2] in the
last line of the convertToMDY()
function.

Figure 7.22  The date is reformatted American style
when the selected item’s details are shown.

Figure 7.23  The Show Map button is displayed
only if the latitude has been detected.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

258

Chapter 7	 Building a Native App with PhoneGap

 $('#new').live('pageshow', getLocation);

 $('#insert').live('submit', insertEntry);

 $(‘#editItem’).live(‘click’, editItem);

 $(‘#delete’).live(‘click’, deleteItem);

 $(‘#update’).live(‘click’, updateItem);

});

2.		 Add the function definitions related to the three buttons.
The code looks like this:

function editItem() {

 $.mobile.changePage(‘#editNote’,

 Ê 'slideup', false, true);

}

function deleteItem(e) {

 var id = $(this).attr('data-trnote');

 $.mobile.notesdb.transaction(function(t) {

 t.executeSql('DELETE FROM notes WHERE

 Ê id = ?',

 [id],

 $.mobile.changePage('#home', 'slide',

 Ê false, true),

 null);

 });

 e.preventDefault();

}

function updateItem(e) {

 var title = $('#title2').val(),

 details = $('#details2').val(),

 id = $(this).attr('data-trnote');

 $.mobile.notesdb.transaction(function(t) {

 t.executeSql('UPDATE notes SET title =

 Ê ?, details = ?, updated = date("now")

 Ê WHERE id = ?',

 [title, details, id],

 $.mobile.changePage('#home', 'flip',

 Ê false, true),

 null);

 });

 e.preventDefault();

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

259

III: jQuery Mobile and PhoneGap

The editItem() function simply calls the jQuery Mobile
$.mobile.changePage() function to load the editNote
page block. To indicate the screen’s different purpose,
the transition is set to slideup. The form fields were
populated earlier by the getItem() function, so
editItem() doesn’t need to do anything else.

The deleteItem() and updateItem() functions obtain
the record’s primary key from the data‑trnote attribute
stored on the relevant button, execute the SQL query,
and reload the initial screen.

3.		 Save trnotes.js and reload index.html in your browser.
Test the amended script by selecting an item and updat-
ing it. If you edit the title, the revised version should be
displayed immediately when you return to the initial
screen (Figure 7.24).

4.		 Select the same item. This time when it’s displayed, you
should also see when it was updated (Figure 7.25).

5.		 Add the following rules to the <style> block in the
<head> of index.html:

footer p {

 text-align:right;

 font-style:italic;

 font-size:90%;

 margin: 5px inherit;

}

#entries {

 display: none;

}

6.		 Save index.html and reload it in your browser. Although
the second style rule you just added sets the display
property of the entries <div> to none, the List All but-
ton, search field, and List View widget of recent travel
notes are still visible. That’s because the getTitles()
function displays the <div> when there are records in
the database.

7.		 Click one of the items to view its details. The dates
are now aligned right and in a smaller italic font
(Figure 7.26).

Figure 7.24  The updated title is displayed
immediately.

Figure 7.25  The dates need to be styled differently
from the rest of the text.

Figure 7.26  The dates now look less overpowering.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

260

Chapter 7	 Building a Native App with PhoneGap

8.		 Test the Delete button. When the initial screen reloads,
the item that you deleted is no longer listed.

9.		 Delete the remaining items. After you delete the last one,
the List All button and search field are no longer displayed.

10.		 Add a new entry. The List All button, search field, and
List View widget all reappear.

11.		 The List All button doesn’t do anything yet. So, let’s
fix that. Add the following line to the document-ready
event handler at the top of trnotes.js:

$(function() {

 $(‘#home’).live(‘pagebeforeshow’,

 Ê getTitles);

 $('#new').live('pageshow', getLocation);

 $('#insert').live('submit', insertEntry);

 $('#editItem').live('click', editItem);

 $('#delete').live('click', deleteItem);

 $('#update').live('click', updateItem);

 $(‘#limit’).live(‘click’, swapList);

});

12.		 Add the swapList() function definition at the bottom
of the script:

function swapList() {

 var btn = $(‘#limit’);

 if (btn.text() == ‘List All’) {

 btn.text(‘List Most Recent’);

 $(‘#entries h2’).text(‘All Notes’);

 trNotes.limit = -1;

 } else {

 btn.text(‘List All’);

 $(‘#entries h2’).text(‘Most Recent

 Ê Notes');

 trNotes.limit = 20;

 }

 getTitles();

}

The List All button has the ID limit, so this stores a
reference to it as btn. The conditional statement then
uses the text() method to check the value of the text
in the button and toggle it to List Most Recent. At the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

261

III: jQuery Mobile and PhoneGap

same time, the <h2> heading in the entries <div> is
also changed.

If the button displays List All before it’s clicked, you
want the SELECT query in the getTitles() function
to retrieve all results. SQLite ignores the LIMIT clause
if a negative number is supplied, so trNotes.limit is
set to -1. When you click List Most Recent, the limit is
changed back to 20.

Finally, the function calls getTitles() to refresh the
List View widget.

13.		 Save trnotes.js and index.html, and reload index.html
in your browser. Click the List All button. The text
changes, but the button collapses (Figure 7.27).

14.		 To find out why this happens, you need to inspect the
dynamically generated HTML code. You can’t use
Dreamweaver’s Live Code in this case, because Live
view doesn’t support some of the features used in this
script. However, Safari’s Web Inspector and Chrome’s
Developer Tools come to the rescue.

Reload index.html in your browser so the List All button
is restored to its normal size and shape. Right-click the
text in the List All button, and choose Inspect Element
from the context menu (it’s the same in both browsers),
as shown in Figure 7.28.

This launches the Web Inspector or Developer Tools
panel with the element highlighted. As Figure 7.29
shows, the List All text is dynamically wrapped in two
 tags. The text is in a , which has the class
ui‑btn‑text.

Figure 7.29  Inspecting the generated
code reveals how the button text is
styled.

Figure 7.27  The button loses its style as soon as
the text is replaced.

Figure 7.28  Use Inspect Element in Safari or
Chrome to see the generated HTML code.

You might need to expand some of
the collapsed elements in the Web
Inspector or Developer Tools panel to
see the button text.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

262

Chapter 7	 Building a Native App with PhoneGap

15.		 Edit the selector in the first line inside the swapList()
function definition to add the ui‑btn‑text class like
this:

function swapList() {

 var btn = $(‘#limit .ui-btn-text’);

16.		 Save trnotes.js and reload index.html. This time,
when you click the List All button, it retains its styling
(Figure 7.30).

17.		 To test whether the List All button retrieves the correct
amount of records, change both instances of trNotes.
limit: 20 in the script to trNotes: 1. As long as you
have more than one record, only one will be displayed
normally. But they should all be displayed when you
click List All.

Change both instances back to 20 after you have
finished testing.

You can check your code against trnotes_update.js and
index_update.html in ch07/complete.

Displaying the map

The final section of the script displays a map of the loca-
tion if geolocation is enabled. The ideal approach would
be to launch the mobile device’s Maps application, giving
you access to all its interactive features. However, PhoneGap
can’t do that—at least not at the time of this writing.

As a compromise, I used window.location to load Google
Maps directly into the app. On Android, this prompts the
user to choose whether to complete the action through
the device’s browser or by launching the Maps application
(Figure 7.31).

As a result, the map is loaded in a separate application,
allowing the user to interact with it. Clicking the Android
Back button returns to the Travel Notes app.

On iOS, calling window.location loads the map directly
into the app. That’s great until you realize that iOS devices
don’t have a Back button, so there’s no way to exit the
map. To get round this problem, I loaded a static map as

Figure 7.30  The button no longer collapses when
the text changes.

Figure 7.31  Android gives users a choice of how
to load the map.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

263

III: jQuery Mobile and PhoneGap

an image in the map page block. It’s not interactive, but at
least you can continue using the Travel Notes app after
viewing the map by clicking the Back button generated by
jQuery Mobile.

The script uses the PhoneGap device object to detect
which operating system the app is running on.

The following steps describe how the script works.

1.		 The displayMap() function needs access to some of the
information retrieved from the database by getItem().
To pass data to an event handler in jQuery, you need to
create an object that’s attached to the Event instance.
Amend the getItem() function by adding the high-
lighted code:

function getItem(id) {

 $.mobile.notesdb.transaction(function(t) {

 t.executeSql(‘SELECT * FROM notes

 Ê WHERE id = ?',

 [id],

 function(t, result) {

 var row = result.rows.item(0),

 entered = convertToMDY(

 Ê row.entered),

 updated = row.updated,

 opts = {};

 $(‘#display h1’).text(row.title);

 $(‘#display article’).text(

 Ê row.details);

 if (row.latitude == null) {

 $('#showmap').parent('p').

 Ê hide();

 } else {

 $('#showmap').parent('p').

 Ê show();

 opts.title = row.title;

 opts.lat = row.latitude;

 opts.lng = row.longitude;

 $(‘#showmap’).unbind(‘click’);

 $(‘#showmap’).click(opts,

 ÊdisplayMap);

 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

264

Chapter 7	 Building a Native App with PhoneGap

 $('#display footer').html('<p>

 Ê Created: ' + entered + '</p>');

 if (updated != null) {

 updated = convertToMDY(

 Ê updated);

 $('#display footer').append(

 Ê '<p>Updated: ' + updated +

 Ê '</p>');

 }

 $('#delete, #update').attr(

 Ê 'data-trnote', id);

 $('#title2').val(row.title);

 $('#details2').val(row.details);

 })

 });

}

The first line of new code assigns an empty pair of curly
braces to opts, initializing it as an empty object.

The next three lines of new code assign the title,
latitude, and longitude values from the database as
properties of the opts object.

Finally, the opts data object is passed to the click()
method like this:

$(‘#showmap’).click(opts, displayMap);

This ensures that the opts properties are passed to
the displayMap() function when the Show Map button
is clicked.

2.		 You now need to add the code to the displayMap()
function. The complete function looks like this:

function displayMap(e) {

 var title = e.data.title,

 latlng = e.data.lat + ‘,’ + e.data.lng;

 if (typeof device !=’undefined’ &&

 Ê device.platform.toLowerCase() ==

 Ê 'android') {

 window.location = 'http://maps.google.

 Ê com/maps?z=16&q=' +

 Ê encodeURIComponent(title) + '@'

 Ê + latlng;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

265

III: jQuery Mobile and PhoneGap

 } else {

 $('#map h1').text(title);

 $('#map div[data-role=content]').html(

 Ê '<img src="http://maps.google.com/

 Ê maps/api/staticmap?center=' + latlng

 Ê + ' &zoom=16&size=320x420&markers='

 Ê + latlng + '&sensor=false">');

 $.mobile.changePage('#map', 'fade',

 Ê false, true);

 }

}

When you pass a data object to an event handler, its
properties are assigned to the event’s data property. The
event is passed to displayMap() as e, so displayMap()
receives the value of opts.title as e.data.title, opts.
lat as e.data.lat, and opts.lng as e.data.lng.

The displayMap() function begins by storing the item’s
title as title and by combining its latitude and longi-
tude as a comma-separated value in latlng.

The rest of the function consists of a conditional
statement that determines how to display the map
depending on the platform. The condition uses the
platform property of PhoneGap’s device object to
detect if the app is running on Android. Because the
object isn’t supported by all devices, you need to test
for its existence like this:

if (typeof device !=’undefined’ . . .)

The rest of the condition uses toLowerCase() to convert
the value of device.platform to lowercase and compare
it with “android.” If the app is running on Android,
the script calls window.location and points it to Google
Maps. The else clause loads a Google static map as an
image into the map page block and then calls $.mobile.
changePage() to load the map page block. In both
cases, the latitude and longitude are incorporated in
the URL to display the map of the selected location.

For details of the Google Maps
and Google Static Maps APIs, see
http://code.google.com/apis/maps/
index.html.

http://code.google.com/apis/maps/index.html
http://code.google.com/apis/maps/index.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

266

Chapter 7	 Building a Native App with PhoneGap

3.		 To test the script, you need to use a computer that
can access geolocation information. Save the files and
reload index.html in your browser. Then access an
item and click the Show Map button. This loads the map
page block because desktop browsers don’t support the
PhoneGap device object. As Figure 7.32 shows, there’s
an unsightly gap on the top and left of the map.

4.		 Add the following rule to the <style> block in the
<head> of index.html:

#map div[data-role=content] {

 padding:0;

}

This eliminates the 15-pixel padding surrounding the
content <div> in the map page block and moves the map
into the correct position.

That completes the code for the Travel Notes app. You
can compare your code with index.html and trnotes.js
in ch07/complete.

Building and Testing the Native App

After you have created the HTML, CSS, and JavaScript
for an app, it needs to be packaged in a format that the
target platforms understand. As long as you set up the
Native Application Settings as described in “Setting up a
Dreamweaver Site for a Native App” earlier in this chapter,
you’re just a couple of clicks away.

The following steps describe how to test the Travel Notes app.

1.		 Choose Site > Mobile Applications > Build and Emulate.

On Windows and Mac OS X 10.5, you have only one
option: Android.

If you installed Xcode and the iOS SDK on Mac OS X
10.6, you have the choice of iPhone, iPad, and Android.

2.		 Select the target device from the submenu.
Dreamweaver displays a progress bar that keeps you
informed of what’s happening.

If you selected Android, be prepared to wait a couple of
minutes. The Android emulator takes a long time to
start up. The iOS simulator is much quicker off the mark.

Figure 7.32  The map needs to be moved up and
to the left.

No, I don’t actually live at 10 Downing
Street. It’s already occupied by
someone else.

The Build option on the submenu
packages the app without launching
a simulator.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

267

III: jQuery Mobile and PhoneGap

3.		 When PhoneGap has finished building the native app,
Dreamweaver installs it in the appropriate simulator and
displays a message telling you where the files have been
created. Dismiss the message, and switch to the simulator.

4.		 If the Android emulator displays the screen shown in
Figure 7.33, use your mouse to drag the green padlock
icon to the right.

5.		 After unlocking the screen in the Android emulator,
the Travel Notes splash screen should display as soon as
the app loads (Figure 7.34).

Figure 7.33  The Android emulator
often needs to be unlocked in the
same way as a real device.

Figure 7.34  The splash screen
provides visual interest while the app
is being initialized.

The Android and iOS SDKs both
include software for you to simulate
running your apps on a mobile
device. Android calls its program
an emulator, whereas iOS uses the
term simulator. They both do the
same thing.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

268

Chapter 7	 Building a Native App with PhoneGap

6.		 The simulators don’t support touch gestures, but you
get an immediate feel for how the app behaves. For
example, if your network connection permits access to
geolocation information, you’ll see a native dialog box
rather than one generated by a browser (Figure 7.35).

7.		 Click the New Entry button and put the focus in the
Title field. The simulator displays the native keypad
(Figure 7.36).

The simulator stores data, so you can also test inserting,
updating, and deleting entries.

Figure 7.35  Using a simulator lets
you see the app in a more realistic
environment.

Figure 7.36  The simulator shows the
type of keypad displayed when a form
field has focus.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

269

III: jQuery Mobile and PhoneGap

Removing apps from a simulator

If you need to rebuild an app, running Build and Emulate
automatically replaces an existing version. However, if you
make significant changes to an app and it ceases to work as
expected, you should uninstall it from the simulator.

You remove an app from a simulator in the same way as on
a real device. To remove an app from the Android emula-
tor, follow these steps.

1.		 Click the Home icon on the right of the emulator panel.

2.		 Click the Launcher icon (Figure 7.37) at the bottom of
the screen.

3.		 Click the Settings icon. Then click Applications fol-
lowed by Manage Applications to display a list of apps
installed in the emulator.

4.		 Click the name of the app that you want to uninstall.

5.		 Click Uninstall and confirm that you want to uninstall
the app.

To remove an app from the iOS simulator:

1.		 Click the Home button at the bottom of the simulator.

2.		 Drag the simulator screen horizontally until you can see
the app’s launch icon.

3.		 Position your mouse pointer over the icon and hold
down the mouse button until the icon begins shaking.

4.		 Click the icon’s Close button (Figure 7.38) and confirm
that you want to uninstall the app.

5.		 Click the Home button to stop the other icons from
shaking.

Figure 7.37  Use the Launcher icon to
access the Android emulator’s settings
and other apps.

Figure 7.38 
Click the Close button
to remove the app from
the iOS simulator.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

270

Chapter 7	 Building a Native App with PhoneGap

Going Further

The case study in this chapter provides only a brief insight
into developing native apps with PhoneGap, showing how
to store and update data, accessing the GPS sensor, display-
ing native alerts, and detecting the device’s platform. In
addition to the core PhoneGap API, there are plug-ins that
extend access to other native features. The integration of
PhoneGap in Dreamweaver CS5.5 simplifies the mechanics
of installing the Android SDK and of building apps ready
for launch in a simulator. However, developing an app
requires a solid understanding of JavaScript and the
PhoneGap API.

If you plan to deploy your app in the Android or Apple
markets, you need to remove debugging code and sign the
app with a digital certificate. The procedure is different
for each operating system. Check the Android Developers
website at http://developer.android.com or the iOS Dev
Center at http://developer.apple.com for the most up-to-
date information.

Adobe describes the mobile development features in
Dreamweaver CS5.5 as the first part of a multirelease
effort, so there should be plenty to look forward to as the
mobile scene develops.

http://developer.android.com
http://developer.apple.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

271

Index

A
Accelerometer mobile device feature,

230
accessibility. See ARIA
Accessible Rich Internet

Applications. See ARIA
action attribute, 68
a–d values, data-grid attribute,

180–181
adjacent sibling selectors, 32
Adobe Dreamweaver CS5 with PHP:

Training from the Source, 216
Adobe Extension Manager CS5.5, 125
a–f values, attributes

data-counttheme, 181
data-dividertheme, 181
data-groupingtheme, 181
data-split-theme, 182
data-theme, 182, 187–188
data-track-theme, 182

::after CSS pseudo-element, 20
Ajax, online forms, 217
alert() method, 247
alert value, data-icon attribute,

184
and keyword, 75
Android

Android Developers website, 270
Android SDK, 221, 270

configuring Dreamweaver,
222–224

display width and orientation, 81
jQuery Mobile, 24, 147
packaging apps for deployment, 6
PhoneGap, 26–27, 221
support

for CSS3 media queries,
72–73

for HTML5, 8
for last-of-type pseudo-

class, 110
for offline applications, 119

testing
offline web applications, 136
Travel Notes app, 266–269

Animations, Transforms, Transitions
category, CSS Properties pane, 20

Apache web server, 122–123
Apple. See also iOS; iPad; iPhone;

iPod
Safari Web Inspector, 250, 261

WHATWG involvement, 11
Apple, Safari support

for columns without values, 250
for CSS3

background-size property,
100

@import rule, 84
media queries, 72–73
prefixes, 13
selectors, 18

for drop shadows, 48
for HTML5, 8
for jQuery Mobile, 142
for offline applications, 119

manifest MIME type, 136
for OTF, 40
for TTF, 40
for WOFF, 39

ARIA (Accessible Rich Internet
Applications) roles, 36–39, 150–151

Find and Replace settings, 39
for HTML5 semantic elements,

37
arrow-d value, data-icon attribute,

184
arrow-l value, data-icon attribute,

184
arrow-r value, data-icon attribute,

184
arrow-u value, data-icon attribute,

184
<article> element, 8

rule to apply font family/size, 8
WAI-ARIA roles, 37

article role, 37
<article> tag, 236
<aside> element, 8

WAI-ARIA roles, 37
Aside option, List View widget, 191
aspect ratio

aspect-ratio media feature, 74
jQuery Mobile, 162

ASP.NET
jQuery Mobile, 144, 216
manifests, 124

attr() method, 150, 254
attribute selectors, CSS, 17–18
auto property, margins, 109
autofocus attribute, 56
autoform value, data-role attribute,

177

B
 property, 34–36
Back and Home buttons, 172–173
back value, attributes

data-icon, 184
data-rel, 169–170, 182,

185–186
background images, hiding, 91–95
background-image property, 92, 109
background-size property, 100
banner role, 37
::before CSS pseudo-element, 20
bind() method, 66
BlackBerry OS

display width and orientation,
81–82, 115

jQuery Mobile, 24, 147
PhoneGap, 220

support
for CSS3 media queries,

72–73
for last-of-type pseudo-

class, 110
by PhoneGap, lack of, 6

testing offline web applications,
136

Blas, Kin, 142
block attribute, 109–110
#blossom style rule, 93
border-radius property, 13, 14, 16,

49–52
Live view support, 17

bottom value, data-iconpos
attribute, 184

box-shadow property, 14, 16, 45–49
lack of Live view support, 17

browsers. See also specific browsers
standard and quirks modes, 7
support for HTML5, 6

semantic elements, 7–8
Buivenga, Jos, 40
button value, data-role attribute,

165–166, 177
Button widget, 164–166, 189–190,

203–205

C
cache manifest, 5
CACHE MANIFEST, 119, 128–129

CACHE: section, 120–121

Index

http://lib.ommolketab.ir
http//lib.ommolketab.ir

272

Index

FALLBACK: section, 121, 131
NETWORK: section, 121, 129, 133
version numbers, 122, 130

Camera mobile device feature, 230
caniuse.com, 7, 119
<canvas> element, 12
case sensitivity, HTML5, 7
CDN (content distribution network),

Google, 9
Çelik, Tantek, 10
change() method, 65–66
check value, data-icon attribute,

184
Checkbox widget, 189, 201–203
Chrome (Google), support

for columns without values, 250
for CSS3

background-size property,
100

@import rule, 84
media queries, 72–73
prefixes, 13
selectors, 18

for drop shadows, 48
for HTML5, 8
for jQuery Mobile, 142
for offline applications, 119

manifest file MIME type, 137
for WOFF, 39

Chrome Developer Tools, 250, 261
click event, 251
click() method, 264
ColdFusion

jQuery Mobile, 144, 216
manifests, 124
parsing before validator

submission, 67
ColdFusion 9 Web Application

Construction Kit, 216
collapsed value, data-state

attribute, 182
Collapsible Block widget, 189,

194–195
collapsible blocks, 178–179
collapsible value, data-role

attribute, 177–178, 194
collapsible-set value, data-role

attribute, 177, 194
color

drop shadows, 43–44, 47
values and opacity, 21–22

color attribute, 47, 53
color media feature, 74–75
Color module, CSS3, 21
color-index media feature, 74
comma-separated values, box

shadows, 46–47
comparison operators, JavaScript, 214
Compass mobile device feature, 230

compatibility charts, CSS (Cascading
Style Sheets), 18

complementary role, 37
conditional comments, IE, 76, 96–97
Contacts mobile device feature, 230
contain keyword, 100
content distribution network. See

CDN
content value, data-role attribute,

149–150, 156–157, 164, 177
contentinfo role, 37
context-aware image sizing, 83
controlgroup value, data-role

attribute, 177, 202–203
convertToMDY() function, 256
Coordinated Universal Time. See

UTC
Copy Dependent Files dialog box

problem, 185
cover keyword, 100
createElement() method, 9
CSS (Cascading Style Sheets), 14–15.

See also CSS3
compatibility charts, 18
IE (Internet Explorer), 7
jQuery Mobile, 142
Media Queries module, 72
PhoneGap, 220
predefined layouts, 9
progressive enhancement, 30–31
sprites, 147
vendor-specific prefixes, 13

CSS3 (Cascading Style Sheets),
14–15. See also CSS

attribute selectors, 17–18
code hints, properties, 14
color values and opacity, 21–22
Document window size, 22–23
drop shadows, 16
embedded fonts, 17
Multiscreen Preview panel, 14,

22–23
properties, 20–21
pseudo-classes, 18–19
pseudo-elements, 19–20
rounded corners, 16
Styles panel Properties pane

new categories, 20–21
versus Property inspector, 16

custom data attributes
data-ajax, true/false values,

168, 181
data-backbtn, true/false

values, 171, 181
data-back-btn-text, text

values, 181
data-collapsed, true/false

values, 177, 179, 181, 194

data-counttheme, a–f values,
181

data-direction, reverse
values, 181, 187

data-dividertheme, a–f values,
181

data-filter, true/false
values, 181, 191

data-fullscreen, true/false
values, 181

data-grid, a–d values, 180–181
data-groupingtheme, a–f

values, 181
data-icon, 172, 181

values, 184
data-iconpos, 172, 181

values, 184
data-id, text values, 181, 183
data-inline, true/false

values, 182
data-insert, true/false

values, 182
data-native-menu, true/false

values, 182, 200
data-placeholder

versus HTML5 placeholder
attribute, 210

true/false values, 182, 200
data-position, fixed/inline/
fullscreen values, 182–183

data-rel
back/dialog values,

169–170, 182, 185–186
external value, 168, 170

data-role, 150, 160, 182
collapsible value, 177–178,

194
collapsible-set value,

177, 194
controlgroup value, 202–203
fieldcontain value, 195, 202
navbar value, 177, 179–180
nojs value, 177, 180
values, 177–178

data-split-icon, 182
data-split-theme, a–f values,

182
data-state, collapsed/
horizontal/vertical values,
182

data-theme, a–f values, 182,
187–188

data-track-theme, a–f values,
182

data-transition, 182
fade value, 186
flip value, 185–186
pop value, 185–187
slide value, 187

http://lib.ommolketab.ir
http//lib.ommolketab.ir

273

Index

slidedown value, 187
slideup value, 187

data-type, horizontal/
vertical values, 182, 203

D
data attributes. See custom data

attributes
data-ajax attribute, true/false

values, 168, 181
data-backbtn attribute, true/false

values, 171, 181
data-back-btn-text attribute, text

values, 181
data-collapsed attribute, true/
false values, 177, 179, 181, 194

data-counttheme attribute, a–f
values, 181

data-direction attribute, reverse
values, 181, 187

data-dividertheme attribute, a–f
values, 181

data-filter attribute, true/false
values, 181, 191

data-fullscreen attribute, true/
false values, 181

data-grid attribute, a–d values,
180–181

data-groupingtheme attribute, a–f
values, 181

data-icon attribute, 172, 181
values, 184

data-iconpos attribute, 172, 181
values, 184

data-id attribute, text values, 181,
183

data-inline attribute, true/false
values, 182

data-insert, true/false values,
182

<datalist> element, 53–56
cross-browser solutions, 54

data-native-menu attribute, true/
false values, 182, 200

data-placeholder attribute
versus HTML5 placeholder

attribute, 210
true/false values, 182, 200

data-position attribute, fixed/
inline/fullscreen values,
182–183

data-rel attribute
back/dialog values, 169–170,

182, 185–186
external value, 168, 170

data-role attribute, 150, 160, 182
collapsible value, 177–178, 194
collapsible-set value, 177, 194

controlgroup value, 177,
202–203

fieldcontain value, 195, 202
navbar value, 177, 179–180
nojs value, 177, 180
values, 177–178

data-split-icon attribute, 182
data-split-theme attribute, a–f

values, 182
data-state attribute, collapsed/
horizontal/vertical values, 182

data-theme attribute, a–f values,
182, 187–188

data-track-theme attribute, a–f
values, 182

data-transition, 182
fade value, 186
flip value, 185–186
pop value, 185–187
slide value, 187
slidedown value, 187
slideup value, 187

data-trnote attribute, 259
data-type attribute, horizontal/
vertical values, 182, 203

date() method, 248
date pickers, 57–67, 110
Datepicker widget, jQuery, 57, 67
dates and times

attributes
date, 13, 53
datetime, 53
datetime-local, 53

date type, 57
dateParts object, 59–60
<select> menus, 110
UI Datepicker widget, jQuery,

57, 67
UTC (Coordinated Universal

Time), 60
default value, data-iconpos

attribute, 184
delete value, data-icon attribute,

184
deleteItem() function, 258–259
Desire (HTC)

display width and orientation,
81, 107

embedded fonts, 98
navigation menu, 109

desktop computers, style rules, 82–84
desktop.css, 95–97
device-aspect-ratio media

feature, 74
device-height media feature, 74,

78–80
device-width media feature, 74,

78–79
<dfn> tags, 34

dialog boxes, 185
dialog value, data-rel attribute,

182
display property, 83, 109–110
displayMap() function, 256–257,

263–265
<div> elements

nested <div> elements, 24
universally supported, 36

DOCTYPE and <!DOCTYPE HTML>
declarations, case sensitivity, 7

Document Object Model. See DOM
Document window viewport, sizing,

95, 102
DOM (Document Object Model), 12

jQuery Mobile, 142, 147, 157,
166, 213

dot notation versus square bracket
notation, 61

dpc (dots per centimeter), 75
dpi (dots per inch), 75
Dreamweaver CS5 with PHP: Training

from the Source, 68
Dreamweaver CS5.5

code hints
for CSS properties, 14
for HTML5 tags, 14–15
for JQuery Core, 14–15,

25–26
CSS3, 14–15

attribute selectors, 17–18
color values and opacity,

21–22
Document window size,

22–23
drop shadows, 16
embedded fonts, 17
Multiscreen Preview panel,

14, 22–23
properties, 20–21
pseudo-classes, 18–19
pseudo-elements, 19–20
rounded corners, 16
Styles panel Properties pane,

new categories, 20–21
Styles panel Properties pane,

versus Property inspector, 16
development for multiple

devices, 27
HTML5

code hints, 14–15
editing tags manually, 15

jQuery Mobile, 14–15, 24–26
media query handling, 14
PhoneGap, 14, 26–27
Property inspector, 15

versus Properties pane, CSS
Styles panel, 16

http://lib.ommolketab.ir
http//lib.ommolketab.ir

274

Index

support, lack of, for role
attribute, 37

Tag Inspector, Behaviors tab, 15
W3C validator, 67
Windows version, no support for

iOS, 26
drop shadows, 13, 16

to page elements, 45–49
to text, 43–45

E
editItem() function, 258–259
 property, 34–36
em unit of measure, 75
email attribute, 53
embedded fonts, 17, 39–42, 91–95
Embedded Open Type (EOT), 40
:empty() CSS pseudo-class, 19
EOT (Embedded Open Type), 40
executeSql() method, 241, 252
external value, data-rel attribute,

168, 170

F
fade value, data-transition

attribute, 186
fieldcontain value, data-role

attribute, 177
<figcaption> element, 8
<figure> element, 8
Filament Group, 83
File mobile device feature, 230
Find and Replace dialog box, 37–39
Firefox (Mozilla), support

for CSS3
background-size property,

100
@import rule, 84
media queries, 72–73
prefixes, 13
selectors, 18

for HTML5, 8
for jQuery Mobile, 142
for offline applications, 119

manifest MIME type, 136
for WOFF, 39

:first-child() CSS pseudo-class,
19

::first-letter CSS pseudo-
element, 20

::first-line CSS pseudo-element,
20

:first-of-type() CSS pseudo-
class, 19

fixed value, data-position
attribute, 182

Flip Toggle Switch widget, 190, 207

flip value, data-transition
attribute, 185–186

@font-face rule, 17, 39–42, 91
wrapping in @media rule, 99–100

fonts
embedded fonts, 17, 39–42
@font-face declaration, 39–42
online font library services, 40

<footer> element, 7–8, 235–236, 256
WAI-ARIA roles, 37

footer value, data-role attribute,
149, 164, 177

footers, 155–156, 183
forms, 52–53

client-side validation, 52
date pickers, 57–66
editable drop-down menus, 53–56
elements

<datalist>, 53–56
<form>, 195
<input>, 52–53
<select>, 53–56

HTML5 attributes, 56–57
autofocus, 56
date type, 57
max, 56
min, 56
placeholder, 56
required, 56

jQuery Mobile
with Radio Button widget,

211–212
with Select Menu widget,

208–209
with Select Menu widget,

replacing with text input
field, 213–216

with Slider widget, 211–212
submitting and displaying

response, 216–218
with Text Input widget,

209–211
spaces, 196

Forta, Ben, 216
forward value, data-icon attribute,

184
fullscreen value, data-position

attribute, 182

G
Gartner research company, 4
gear value, data-icon attribute, 184
Generate Site Manifest extension,

125–130
Geolocation mobile device feature,

230
getCurrentPosition() method,

245–247

getElementByClassName() method,
26

getElementById() method, 26
getItem() function, 254–256, 259,

263
getLocation() function, 251
getNextDay() function, 59–60,

60–61
getNumDays() function, 62–63
getTitles() function, 251, 259–261
Gillenwater, Zoe Mickley, 19, 40
Google

CDN (content distribution
network), 9

Chrome Developer Tools, 250,
261

Google Maps, 265
Google Static Maps APIs, 265
Google’s Chrome, support

for columns without values, 250
for CSS3

background-size property,
100

@import rule, 84
media queries, 72–73
prefixes, 13
selectors, 18

for drop shadows, 48
for HTML5, 8
for jQuery Mobile, 142
for offline applications, 119

manifest file MIME type, 137
for WOFF, 39

grid media feature, 74–75
grid value, data-icon attribute, 184

H
<h1> tags, ARIA rules, 37
handheld value, media attribute, 72
<header> element, 7–8

ARIA restrictions, 37
WAI-ARIA roles, 37
wrapping in <div> tags, 36

header value, data-role attribute,
149, 156–158, 164, 170–171, 177

headers, 157–158, 169–171, 183
height media feature, 74, 78–79
height property, 80, 101

removing from HTML
tags, 83

#hero style rule, 92, 101, 109
hexadecimal notation, 21
Hickson, Ian, 6, 10
home value, data-icon attribute, 184
horizontal value, attributes

data-state, 182
data-type, 182, 203

HSL (hue, saturation, lightness),
CSS3 Color module, 21

http://lib.ommolketab.ir
http//lib.ommolketab.ir

275

Index

hsla() method, 21–22
.htaccess file, 123
HTC Desire

display width and orientation,
81, 107

embedded fonts, 98
navigation menu, 109

HTML
development history, 10–13
“living standard,” 11–12
poor markup encouragement,

13–14
versus XML (Extensible Markup

Language), 10
html() method, 253
HTML5

assistive technology for disabled,
10

backwards compatibility, 7
cache manifest, 5
caniuse.com, 7
case sensitivity, 7
code hints, 14–15
converting from XHTML 1.0

Strict, 5
custom data attributes, 150
editing tags manually, 15
HTML 4.01 compatibility, 7
JavaScript default, 9
jQuery Mobile, 142, 144,

147–151, 154, 165–166
logo, 10
new elements and attributes, 7
PhoneGap, 220

Travel Notes app, 231–237
progressive enhancement, 30–31
semantic elements, 7

style sheet rule for partial
support browsers, 8

W3C specification approval
process, 6

HTML5 Now, 10

I
<i> property, 34–36
icons, adding to buttons, 184–185
IE (Internet Explorer), Microsoft

conditional comments, 76
and Netscape, 30
support or lack of, 136

for background-size
property, 100

for CSS, 7, 9
for CSS3, @import rule, 84
for CSS3, media queries,

72–73, 76–77
for CSS3, selectors, 18–19
for drop shadows, 48
for EOT, 40

for HTML5, 6, 8
for HTML5, workarounds,

9–10
for jQuery Mobile, 142
for offline applications, 119
for offline applications,

manifest file MIME type,
136

for WOFF, 39
images. See also inline images

context-aware image sizing, 83
embedded, 83
hiding background images, 91–95

 tags, 83
width attribute, 109

@import media rule
conditions, 77–78
style sheets, 84

Indexed Database API, 240
info value, data-icon attribute, 184
initial-scale property, 80
inline images, 83. See also images

floatleft and floatright
classes, 109

inline value, data-position
attribute, 182

innerHTML property, 12
<input> element, 190, 201, 204–206

attributes available, 15
insertEntry() method, 247, 249
Inset option, List View widget, 191
Introducing HTML5, 9, 56
Invisible Elements widget, 154
iOS

display width and orientation, 81
iOS SDK

configuring Dreamweaver,
222–224

downloading, 221
jQuery Mobile, 24, 147
packaging apps for deployment, 6
PhoneGap, 26–27, 220–221

configuring Dreamweaver,
222–228

support
for CSS3 media queries,

72–73
for last-of-type pseudo-

class, 110
for offline applications, 119

testing
offline web applications, 136
Travel Notes app, 266–269

iPad (Apple)
device-height media feature, 80
display width and orientation,

81, 98
mobile Internet access, 4
PhoneGap, 26

testing, Travel Notes app,
266–269

iPhone (Apple)
display width and orientation, 81
media features

device-height, 78–80
device-width, 78–79
max-width, 78–79
min-width, 78–79
width, 78–79

PhoneGap, 26
testing, Travel Notes app,

266–269
iPod (Apple)

display width and orientation,
81, 115

media features
device-height, 78–80
device-width, 78–79
max-width, 78–79
width, 78–79

PhoneGap, 26
Items option, List View widget, 191

J
Java versus JavaScript, 26
JavaScript

default for HTML5, 9
DOM methods, 26
versus Java, 26
jQuery Mobile, 5, 142
PhoneGap, 26, 220

JavaScript-disabled content, 180
jQuery Core library, 237–238
jQuery html() method, 62
jQuery Mobile (Local) Mobile

Starter, 144, 163
jQuery Mobile (PhoneGap) Mobile

Starter, 144, 224
jQuery Mobile (CDN–content

distribution network) Mobile
Starter, 144

jQuery/jQuery Mobile, 5, 14–15,
24–26

code hints, 14–15, 25–26
data attributes (See custom data

attributes)
DOM (Document Object Model),

142, 147, 157, 166, 213
forms

with Radio Button widget,
211–212

with Select Menu widget,
208–209

with Select Menu widget,
replacing with text input
field, 213–216

with Slider widget, 211–212

http://lib.ommolketab.ir
http//lib.ommolketab.ir

276

Index

submitting and displaying
response, 216–218

with Text Input widget,
209–211

HTML5, 142, 144, 147–151, 154,
165–166

library, 237–238
Library Source field, 163
mobile site creation, 143–144

Back and Home buttons,
172–173

collapsible blocks, 178–179
dialog boxes, 185
footers, 155–156, 183
headers, 157–158, 169–171,

183
icons, adding to buttons,

184–185
IDs, 164
JavaScript-disabled content,

180
linking to external pages,

163–169
Mobile Starters, 144–147
Mobile Starters, adding

content, 153–155
navigation bars, 179–180
page transitions, 186–187
static versus dynamic pages,

144
structure, 147–153
text, 156–157
themes, 187–188

processing data input with server-
side technology, 216–218

ThemeRoller tool, 188
updating files, 143, 163
widgets

Button, 164–166, 189–190,
203–205

Checkbox, 189, 201–203
Collapsible Block, 189,

194–195
Flip Toggle Switch, 190, 207
insertion point importance,

158
Invisible Elements, 154
Layout Grid, 189, 192–194
List View, 158–162, 166–168,

189–192, 231–233, 250,
253–254, 259–261

Loading, 165
Page, 166, 189
Password Input, 189, 197
Radio Button, 189, 203,

211–212
Select Menu, 189, 198–201,

208–209

Select Menu, replacing with
text input field, 213–216

Slider, 190, 205–206, 211–212
Text Area, 189, 198
Text Input, 189, 195–197,

209–211, 233

K – L
Keith, Jeremy, 54–55
Koch, Peter-Paul, 18

<label> tags, 198, 202
<lang> tag, 34, 36
:last-child() CSS pseudo-class, 19
:last-of-type() CSS pseudo-class,

19, 110
Lawson, Bruce, 9, 56
Layout Grid widget, 189, 192–194
lazy manifests, 124
left value, data-iconpos attribute,

184
<legend> tags, 202
Less Than or Equal to IE &

Conditional Comment, 96
Line Layout category, CSS Properties

pane, 20
<link> tag, style sheets, 84, 97
List Type option, List View widget,

191
List View widget, 158–162, 166–168,

189–192, 231–233, 250, 253–254,
259–261

list-divider value, data-role
attribute, 160, 162, 167, 177

listview() method, 253
listview value, data-role attribute,

149, 160, 162, 167, 177
LiveScript. See JavaScript
Loading widget, 165

M
main role, 37
.manifest filename extension, 119,

127
manifests, offline websites, 118

CACHE MANIFEST listings,
120–121, 129

creating, 119–120
files, attaching, 133–135
files, editing, 130–133
lazy manifests, 124
manifest attribute, 122–123
PHP, ColdFusion, or ASP.NET

files, 124
serving, 122–123
site manifest extensions, 125–130
up-to-date caches, 122
version numbers, 122, 126, 130

max attribute, 15, 56
maximum-scale property, 80
max-width media feature, 74, 78–79
media attribute, 5

handheld value, 72
Media mobile device feature, 230
media queries, 5, 14. See also Media

Queries module, CSS3
assessing, 115–116
CSS comments, 89
inline images, 83
site-wide files, 84–90

Media Queries dialog box, 85–90
Media Queries module, CSS3, 72
@media rules, 101, 110

conditions, 77–78
@font-face rule, wrapping in,

99–100
style sheets, 83

<meta> tag, 79–80
Microsoft category, CSS Properties

pane, 20–21
Microsoft’s IE (Internet Explorer)

conditional comments, 76
and Netscape, 30
support or lack of, 136

for background-size
property, 100

for CSS, 7, 9
for CSS3, @import rule, 84
for CSS3, media queries,

72–73, 76–77
for CSS3, selectors, 18–19
for drop shadows, 48
for EOT, 40
for HTML5, 6, 8
for HTML5, workarounds,

9–10
for jQuery Mobile, 142
for offline applications, 119
for offline applications,

manifest file MIME type,
136

for WOFF, 39
MIME type, 122–123, 136–137
min attribute, 15, 56
min-height media feature, 101
minimum-scale property, 80
minus value, data-icon attribute,

184
min-width media feature, 74, 78–79
Mobile Starters, 144–147

adding site content, 153–155
Mobile Starter page, 24–25
updating pages, 143

$.mobile.changePage() method,
249, 259, 265

mobile-init event, 238
modulo division, 63

http://lib.ommolketab.ir
http//lib.ommolketab.ir

277

Index

monochrome media feature, 74–75
month attribute, 53
-moz- prefix, 13
Mozilla category, CSS Properties

pane, 20
Mozilla’s Firefox, support

for CSS3
background-size property,

100
@import rule, 84
media queries, 72–73
prefixes, 13
selectors, 18

for HTML5, 8
for jQuery Mobile, 142
for offline applications, 119

manifest MIME type, 136
for WOFF, 39

Mozilla’s Firefox, WHATWG, 11
Multi-column Layout category, CSS

Properties pane, 20
Multiscreen Preview panel, 14

N
<nav> element, 7–8

WAI-ARIA roles, 37
#nav rule, 101, 107–108
navbar value, data-role attribute,

177, 179–180
navigation bars, 179–180
navigation role, 37
Netscape

CSS3, @import rule, 84
IE (Internet Explorer),

Microsoft, 30
quirks mode, 7

nojs value, data-role attribute,
177, 180

non-breaking spaces, 165
none value, data-role attribute, 177
note role, 37
notext value, data-iconpos

attribute, 184–185
Notification mobile device feature,

230
:nth-child() CSS pseudo-class,

18–19, 109
:nth-last-child() CSS pseudo-

class, 19
:nth-last-of-type() CSS pseudo-

class, 19
:nth-of-type() CSS pseudo-class,

18–19
number attribute, 13, 53

O
offline websites

manifests, 118

CACHE MANIFEST listings,
120–121, 129

creating, 119–120
files, attaching, 133–135
files, editing, 130–133
lazy manifests, 124
manifest attribute, 122–123
PHP, ColdFusion, or ASP.

NET files, 124
serving, 122–123
site manifest extensions,

125–130
up-to-date caches, 122
version numbers, 122, 126,

130
offline web applications, 118–119

going offline, 138
online access only files, 121
testing offline, 135–137

only keyword, 75, 78
:only-child() CSS pseudo-class, 19
:only-of-type() CSS pseudo-class,

19
opacity property, 21–22, 44
Open Type (OTF), 40
openDatabase() method, 240–242
Opera

support
for CSS3, background-size

property, 100
for CSS3, @import rule, 84
for CSS3, media queries,

72–73
for CSS3, selectors, 18
for drop shadows, 48
for HTML5, 8
for jQuery Mobile, 142
for offline applications, 119
for offline applications,

manifest file MIME type,
137

for OTF, 40
for TTF, 40

WHATWG involvement in W3C,
11

Opera category, CSS Properties pane,
20–21

<option> elements, 198
orientation media feature, 74
OTF (Open Type), 40
overflow property, 157

P
</p> tag, omitted in HTML5, 14
<p> tag, rule to apply font family/

size, 8
packaging apps for deployment, 6
page transitions, 186–187

page value, data-role attribute,
149–150, 157, 164, 171, 177

Page widget, 166, 189
pagebefoeshow event, 250–251
Palm WebOS, jQuery Mobile, 147
Password Input widget, 189, 197
percentages, units of measure, 100
Perl, jQuery Mobile, 216
PhoneGap, 14, 26–27

API access to mobile device
features, 230–231

jQuery Mobile (PhoneGap)
Mobile Starter, 144, 224–228

library, 237–238
packaging apps for deployment, 6
startup screen for Windows

Phone OS, 228–230
support for Android and iOS, 6
Travel Notes app, 230–231

building and testing, 266–269
database, 242–244
database, current location,

244–250
database, displaying record

details, 254–257
database, displaying records,

250–254
database, inserting data,

244–250
database, updating and

deleting items, 257–262
HTML structure, 231–237
map, displaying, 262–266
programming, 237–241
removing from simulator,

269–270
up-to-date features, 220

PHP (PHP Hypertext Preprocessor)
jQuery Mobile, 144, 216

form-processing scripts, 201
manifests, 124
parsing before validator

submission, 67
placeholder attribute, 15, 56

versus jQuery Mobile data-
placeholder attribute, 210

plus value, data-icon attribute, 184
pop value, data-transition

attribute, 185–187
populateDate() function, 61–62, 65
populateYear() function, 61–62
preferences

bold and italics, 35
File Types / Editors, filename

extensions, 127
window sizes, 111

preventDefault() method, 249
Property inspector, 15

http://lib.ommolketab.ir
http//lib.ommolketab.ir

278

Index

versus Properties pane, CSS Styles
panel, 16

pseudo-classes, CSS3, 18–19
pseudo-elements, CSS3, 19–20
px unit of measure, 75, 100

Q – R
quirks mode, browsers, 7, 18
quotation marks, caution, 253
Radio Button widget, 189, 203,

211–212
range attribute, 53
refresh value, data-icon attribute,

184
region role, 37
Related Files toolbar, 83, 89, 91
rel=”external” data attribute, 168,

170
required attribute, 15, 56
resetDates() function, 65–66
resolution media feature, 74–75
RGB (red, green, blue) values, CSS3

Color module, 21
rgba(), 21–22
right value, data-iconpos attribute,

184
role attribute, WAI-ARIA, 36–39
:root CSS pseudo-class, 19
rounded corners, 13, 16, 49–52
rows property, 253

S
Safari (Apple), support

for columns without values, 250
for CSS3

background-size property,
100

@import rule, 84
media queries, 72–73
prefixes, 13
selectors, 18

for drop shadows, 48
for HTML5, 8
for jQuery Mobile, 142
for offline applications, 119

manifest MIME type, 136
for OTF, 40
for TTF, 40
for WOFF, 39

Safari Web Inspector, 250, 261
#sake style rule, 92–93, 109
Samsung Galaxy Tab, display width

and orientation, 81–82, 98
scan media feature, 74
<script> tags, 59, 239
search attribute, 53
search role, 37

search value, data-icon attribute,
184

<section> element, 7–8
WAI-ARIA roles, 37

<select> elements, 189, 198–201,
207

date pickers, 57–65
text input field disadvantage, 216

Select Menu widget, 189, 198–201,
208–209

replacing with text input field,
213–216

SELECT query, 252–254
semantic elements, HTML5

browser support, 7–10
style sheet rule for partial

support browsers, 8
Code view, adding elements, 15
new, 7
WAI-ARIA roles, 36–37

setValues() function, 60–61
Sharp, Remy, 9, 56
show() method, 254
slide value, data-transition

attribute, 187
slidedown value, data-transition

attribute, 187
slider value, data-role attribute,

177
Slider widget, 190, 205–206, 211–212
slideup value, data-transition

attribute, 187
Snippets panel, 95–97
 tag, 256
Specify Site-wide Media Query dialog

box, 86–87
Split Button Icon option, List View

widget, 191
Split Button option, List View widget,

191
sprites, CSS (Cascading Style Sheets),

147
SQL (Structured Query Language),

221
Indexed Database API, 240
SQL injection, 241
Web SQL Database API, 240–242

SQL injection, 241
SQLite, 221
square bracket notation versus dot

notation, 61
star value, data-icon attribute, 184
Storage mobile device feature, 230
 property, 34–36
Structured Query Language. See SQL
Stunning CSS3, 19, 40
<style> block, 236

@import media rule, 84
Styles panel Properties pane, CSS3

new categories, 20–21
versus Property inspector, 16

styles/style sheets
external, attaching, 84–90

jQuery Mobile, 155
hiding from earlier browsers,

75–77
for mobile phones, 112–115
for multiple devices, 84
organizing, 82–84
for tablets, 98–115
for varying screen widths,

111–112
swapList() function, 260, 262
Symbian S60, jQuery Mobile, 24

T
Tag Inspector

Attributes tab, 160
Behaviors tab, 15

Taylor, Jorge, 142
tel attribute, 53
tenary operator, 65
Text Area widget, 189, 198
Text Bubble option, List View widget,

191
Text Description option, List View

widget, 191
Text Input widget, 189, 195–197,

209–211, 233
text values, attributes

data-back-btn-text, 181
data-id, 181, 183

<textarea> element, 189
<textarea> tag, 198
text-shadow property, 14, 17, 43–45
themes, 187–188
time attribute, 53
times and dates

attributes
date, 13, 53
datetime, 53
datetime-local, 53

date type, 57
dateParts object, 59–60
<select> menus, 110
UI Datepicker widget, jQuery,

57, 67
UTC (Coordinated Universal

Time), 60
toLowerCase() function, 256–265
top value, data-iconpos attribute,

184
Travel Notes app, 230–231

building and testing, 266–269
database, 242–244

current location, 244–250
displaying record details,

254–257

http://lib.ommolketab.ir
http//lib.ommolketab.ir

279

Index

displaying records, 250–254
inserting data, 244–250
updating and deleting items,

257–262
HTML structure, 231–237
map, displaying, 262–266
programming, 237–241
removing from simulator,

269–270
true/false values, attributes

data-ajax, 168, 181
data-backbtn, 171, 181
data-collapsed, 177, 179, 181,

194
data-filter, 181, 191
data-fullscreen, 181
data-inline, 182
data-insert, 182
data-native-menu, 182, 200
data-placeholder, 182, 200

TrueType (TTF), 40
try/catch blocks, 247
TTF (TrueType), 40
type attributes, 13
Typekit, 40

U
UI Datepicker widget, jQuery, 57, 67
ui-btn-active class, 152
ui-mobile-viewport-
transitioning class, 152

 elements, 36
Unicode (UTF-8), 148
updateItem() function, 258–259
url attribute, 53
User Interface category, CSS

Properties pane, 20
user-scalable property, 80
UTC (Coordinated Universal Time),

60

V
val() method, 61
validation of adapted pages, 67–68
vertical value, attributes

data-state, 182
data-type, 182, 203

viewport <meta> tag, properties,
79–80

W
W3C (World Wide Web Consortium)

ARIA (Accessible Rich Internet
Applications) specification, 37

DOM (Document Object Model),
12

HTML5

logo, 10
specification approval

process, 6
HTML5 specification approval

process, 6
Indexed Database API, 240
language tags usage, 36
media attribute rules, 72
media queries specification, 75
Web SQL Database API, 240
WOFF (Web Open Font Format),

39–40
W3C validator, 67
WAI (Web Accessibility Initiative)-

ARIA (Accessible Rich Internet
Applications) roles, 36–39, 150–151

Find and Replace settings, 39
for HTML5 semantic elements,

37
Web Accessibility Initiative. See WAI
web applications, offline, 118–119.

See also offline websites
going offline, 138
online access only files, 121
testing offline, 135–137

Web Open Font Format (WOFF),
39–40

web safe fonts, 17, 40
Web SQL Database API, 240–242
WebKit browsers, CSS3 prefixes, 13
Webkit category, CSS Properties

pane, 20–21
-webkit property, 13, 21
-webkit-box-shadow property, 17
week attribute, 53
WHATWG (Web Hypertext

Application Technology Working
Group)

FAQs, 14
HTML5 development, 11

white-space property, 157
widgets, jQuery Mobile

Button, 164–166, 189–190,
203–205

Checkbox, 189, 201–203
Collapsible Block, 189, 194–195
Flip Toggle Switch, 190, 207
insertion point importance, 158
Invisible Elements, 154
Layout Grid, 189, 192–194
List View, 158–162, 166–168,

189–192, 231–233, 250,
253–254, 259–261

Loading, 165
Page, 166, 189
Password Input, 189, 197
Radio Button, 189, 203, 211–212
Select Menu, 189, 198–201,

208–209

replacing with text input
field, 213–216

Slider, 190, 205–206, 211–212
Text Area, 189, 198
Text Input, 189, 195–197,

209–211, 233
width attribute, 109
width media feature, 74, 78–79
width property, 80
Windows Phone 7

jQuery Mobile, 24, 147
PhoneGap, 220

configuring Dreamweaver,
228–230

Windows version, no support for
iOS, 26

WOFF (Web Open Font Format),
39–40

World Wide Web Consortium. See
W3C

#wrapper style rule, 92, 100

X – Z
Xcode

downloading, 221
testing Travel Notes app, 266–269

XHTML 1.0, 10
development of HTML, 10
DOCTYPE declaration

HTML 1.0 Strict, 31
replacing with HTML5
DOCTYPE declaration, 7

HTML5
compatibility, 7
converting to, 5, 33–36

XHTML 2.0, 10–11
converting to HTML5, 14

XML (Extensible Markup Language)
versus HTML, 10

XMLHttpRequest object, 12

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Unlimited online access to all Peachpit, Adobe
Press, Apple Training and New Riders videos
and books, as well as content from other
leading publishers including: O’Reilly Media,
Focal Press, Sams, Que, Total Training, John
Wiley & Sons, Course Technology PTR, Class
on Demand, VTC and more.

No time commitment or contract required!
Sign up for one month or a year.
All for $19.99 a month

Sign up today
peachpit.com/creativeedge

http://lib.ommolketab.ir
http//lib.ommolketab.ir

A-1

Bonus Material

Validating the date format

There are plans to adapt the jQuery UI Datepicker widget
for use in a jQuery Mobile site. At the time of this writing,
the widget was still highly experimental. When a stable
version becomes available, you might prefer to use it
instead of the following solution, which checks only the
date format, not the validity of the date.

This solution uses a complex regular expression. Copying
regular expressions from printed books often leads to
mistakes, so I suggest that you copy the code for the regex
from reservations_date.html in ch06/complete.

1.		 Insert the following code inside the jQuery document-
ready function that you created in the previous section
(the change-handler script for the Select Menu widget
has been omitted for brevity):

$(function() {

 // Change handler for Select Menu widget

 . . .

 // Check date format

 $(‘#arrival, #departure’).live(‘blur’,

 Ê function(e) {

 });

});

This creates a jQuery selector for the arrival and
departure text input fields, and binds an onblur event
handler to both of them.

2.		 Inside the new event-handler function, define a variable
to hold the regex. Because of the limitations of the
printed page, it’s split over two lines, but it must be on
a single, unbroken line in your code:

var pattern = /^(1[0-2]|0[1-9])\/(3[01]|

Ê [12][0-9]|0[1-9])\/201[1-9]$/;

This matches a date in the MM/DD/YYYY format in the
years 2011–2019. The date must include leading zeros.

Regular Expressions

A regular expression—or regex for short—is
a pattern for matching text. Regexes use a
combination of literal text and characters with
special meanings. For example, \w matches
any alphanumeric character or an underscore.
Learning how to build regexes isn’t easy, but it’s a
skill worth acquiring if you use a lot of JavaScript
or other programming languages. You’ll also find
regexes extremely useful in the Dreamweaver Find
and Replace dialog box. For a basic introduction
to regexes, see my tutorial at www.adobe.
com/devnet/dreamweaver/articles/regular_
expressions_pt1.html.

www.adobe.com/devnet/dreamweaver/articles/regular_expressions_pt1.html
www.adobe.com/devnet/dreamweaver/articles/regular_expressions_pt1.html
www.adobe.com/devnet/dreamweaver/articles/regular_expressions_pt1.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

A-2

Chapter 6	 Diving Deeper into jQuery Mobile

To match a date in the European DD/MM/YYYY
format, use the following pattern instead:

var pattern = /^(3[01]|[12][0-9]|0[1-9])\/

Ê (1[0-2]|0[1-9])\/201[1-9]$/;

To match a date in the YYYY/MM/DD format
commonly used in East Asia, use this:

var pattern = /^201[1-9]\/(1[0-2]|0[1-9])\/

Ê (3[01]|[12][0-9]|0[1-9])$/;

3.		 You need to obtain the value entered by the user
using $(this).val() and pass it as an argument to
the JavaScript test() method, which returns true or
false depending on whether the value matches the
regex. If the input doesn’t match, display an alert. The
completed code looks like this:

$(function() {

 // Change handler for Select Menu widget

 . . .

 // Check date format

 $(‘#arrival, #departure’).live(‘blur’,

 function(e) {

 var pattern = /^(1[0-2]|0[1-9])\/(3

 Ê [01]|[12][0-9]|0[1-9])\/201[1-9]$/;

 if (!pattern.test($(this).val())) {

 alert(‘Date must be in MM/DD/YYYY

 Ê format with leading zeros');

 }

 });

});

The exclamation mark after the opening parenthesis
of the condition is the logical NOT operator, which
negates the meaning of the following expression. In
other words, the condition means “if the value doesn’t
match the pattern.”

Checking that all required fields have been filled in

Because you can’t be sure that all browsers recognize the
HTML5 required attribute, it’s a good idea to check that
required fields aren’t blank before submitting the form.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

A-3

Bonus Material

If any fields are missing, you can dynamically add a warn-
ing message to the form, highlight the affected fields, and
prevent the form from being submitted.

1.		 Add the following style rule to the <style> block in the
<head> of reservations.html:

.invalid {

 background-color: rgba(255,0,0,0.1);

}

This uses the rgba() color format to set the background
color to red with 10% alpha transparency—in effect,
pale pink.

2.		 Add the following code inside the jQuery document-
ready function at the bottom of the page:

$(function() {

 // Change handler for Select Menu widget

 . . .

 // Check date format

 . . .

 // Check required fields

 $(‘form’).live(‘submit’, function(e) {

 // Initialize Boolean variable

 var OK = true;

 // Test each required field

 $(‘input[required]’).each(function() {

 if ($.trim($(this).val()) == ‘’) {

 // If blank, set OK to false

 OK = false;

 // Style current element

 $(this).addClass(‘invalid’);

 }

 });

 if (!OK) {

 // Add warning if field(s) blank

 $(‘form’).before(‘<p id=”errors”>

 Ê Please fill in required fields.

 Ê </p>');

 // Scroll to top of page

 window.scrollTo(0,0);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

A-4

Chapter 6	 Diving Deeper into jQuery Mobile

 } else {

 // Remove warning if OK

 $('#errors').remove();

 }

 return OK;

 });

});

This binds an onsubmit event handler to the form.
It must be bound to the form instead of the submit
button because of the way that jQuery Mobile handles
form submission. The script begins by initializing a
Boolean variable OK, which the event handler ultimately
returns. If any required fields are blank, OK is reset to
false, which prevents the form from being submitted.

The each() method is applied to the attribute selector
$(‘input[required]’). This executes the same function
on each required field. The condition inside the
function uses the jQuery $.trim() utility method to
strip leading and trailing spaces from the user input,
and compares the value with an empty string. If the
field is blank, OK is reset to false, and the invalid class
is applied to the current element.

If OK is false, the before() method prepends a warning
paragraph to the form, and the page is scrolled to the
top to bring the warning into view. The paragraph is
given an ID so that it can be removed later if the form
is submitted without errors.

3.		 There’s just one final refinement: Add the following
code inside the jQuery document-ready handler:

$(function() {

 // Change handler for Select Menu widget

 . . .

 // Check date format

 . . .

 // Check required fields

 . . .

 // Clear invalid class on focus

 $(‘input[required]’).live(‘focus’,

 Ê function(e) {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

A-5

Bonus Material

Figure 6.1  The form now warns users
about required fields that have been
left blank.

Live view does not clear the invalid
class from required fields when you
give them focus. However, the fields
are cleared as expected in a browser.

 $(this).removeClass('invalid');

 });

});

This binds an onfocus event handler to the required
fields to remove the invalid class when the focus
moves into the field. Of course, this is needed only on
required fields that were left blank when the form was
submitted, but the function fails silently if the class
hasn’t been applied to an element.

4.		 Before you can test the page in Live view, you need to
add data‑ajax to the opening <form> tag and set its
value to false.

5.		 Activate Live view and scroll down to the Submit
button without filling in any fields. Hold down the
Ctrl/Command key and click Submit. The page should
scroll to the top and display the warning message. The
blank fields should also be highlighted in pale red
(Figure 6.1).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

	Contents
	About the Author
	Acknowledgments
	Introduction
	Section I: Dreamweaver CS5.5
	Chapter 1 Dreamweaver Goes Mobile
	Assessing HTML5 and CSS3
	Using HTML5 and CSS3 with Dreamweaver CS5.5
	Developing for Multiple Devices

	Section II: HTML5 and CSS3
	Chapter 2 Progressive Enhancement with HTML5 and CSS3
	Improving an Existing Site
	Sacrificing a Uniform Look

	Chapter 3 Adapting Pages for Mobile with Media Queries
	Understanding Media Queries
	Adapting the Tozai Hotel Site
	Assessing Media Queries

	Chapter 4 Making Your Site Available Offline
	How Offline Sites Work
	Making the Tozai Hotel Site Available Offline
	Going Offline

	Section III: jQuery Mobile and PhoneGap
	Chapter 5 Introducing jQuery Mobile
	Creating a Basic Site with jQuery Mobile
	Building on a Solid Foundation

	Chapter 6 Diving Deeper into jQuery Mobile
	A Guide to jQuery Mobile Custom Data Attributes
	Rapid Deployment with jQuery Mobile Widgets
	Case Study: Creating a Reservation Form
	Submitting a Form and Displaying the Response
	Getting Your Hands Dirty with Code

	Chapter 7 Building a Native App with PhoneGap
	Setting Up PhoneGap in Dreamweaver
	Case Study: A Travel Notes App
	Going Further

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K-L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W
	X-Z

