
[Team LiB]

• Table of Contents

• Index

• Reviews

• Reader Reviews

• Errata

• Academic

qmail

By John Levine

Publisher: O'Reilly

Pub Date: March 2004

ISBN: 1-56592-628-5

Pages: 248

qmail concentrates on common tasks like moving a sendmail setup to qmail, or setting up a "POP
toaster," a system that provides mail service to a large number of users on other computers sending
and retrieving mail remotely. The book fills crucial gaps in existing documentation, detailing exactly
what the core qmail software does.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

• Table of Contents

• Index

• Reviews

• Reader Reviews

• Errata

• Academic

qmail

By John Levine

Publisher: O'Reilly

Pub Date: March 2004

ISBN: 1-56592-628-5

Pages: 248

 Copyright

 Preface

 What's Inside?

 Style Conventions

 Examples and Patches

 Comments and Questions

 Acknowledgments

 Part I: Introduction to Qmail

 Chapter 1. Internet Email

 Section 1.1. Mail Basics

 Section 1.2. Mailstore

 Section 1.3. The Structure of Internet Mail

 Chapter 2. How Qmail Works

 Section 2.1. Small Programs Work Together

 Section 2.2. What Does a Mail Transfer Agent (MTA) Do?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 2.3. The Pieces of Qmail

 Chapter 3. Installing Qmail

 Section 3.1. Where to Find Qmail

 Section 3.2. Creating the Users and Groups

 Section 3.3. Configuring and Making the Software

 Section 3.4. Patching Qmail

 Chapter 4. Getting Comfortable with Qmail

 Section 4.1. Mailboxes, Local Delivery, and Logging

 Section 4.2. An Excursion into Daemon Management

 Section 4.3. Setting Up the Qmail Configuration Files

 Section 4.4. Starting and Stopping Qmail

 Section 4.5. Incoming Mail

 Section 4.6. Procmail and Qmail

 Section 4.7. Creating Addresses and Mailboxes

 Section 4.8. Reading Your Mail

 Section 4.9. Configuring Qmail's Control Files

 Section 4.10. Using ~alias

 Section 4.11. fastforward and /etc/aliases

 Chapter 5. Moving from Sendmail to Qmail

 Section 5.1. Running Sendmail and Qmail in Parallel

 Section 5.2. User Issues

 Section 5.3. System Issues

 Section 5.4. Converting Your Aliases File

 Section 5.5. Trusted Users

 Chapter 6. Handling Locally Generated Mail

 Section 6.1. qmail-queue

 Section 6.2. Cleaning Up Injected Mail

 Section 6.3. Accepting Local Mail from Other Hosts

 Section 6.4. Distinguishing Injected from Relayed Mail

 Chapter 7. Accepting Mail from Other Hosts

 Section 7.1. Accepting Incoming SMTP Mail

 Section 7.2. Accepting and Cleaning Up Local Mail Using the Regular SMTP Daemon

 Section 7.3. Dealing with Roaming Users

 Section 7.4. SMTP Authorization and TLS Security

 Section 7.5. POP-before-SMTP

 Chapter 8. Delivering and Routing Local Mail

 Section 8.1. Mail to Local Login Users

 Section 8.2. Mail Sorting

 Chapter 9. Filtering and Rejecting Spam and Viruses

 Section 9.1. Filtering Criteria

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 9.2. Places to Filter

 Section 9.3. Spam Filtering and Virus Filtering

 Section 9.4. Connection-Time Filtering Tools

 Section 9.5. SMTP-Time Filtering Tools

 Section 9.6. Delivery Time Filtering Rules

 Section 9.7. Combination Filtering Schemes

 Part II: Advanced Qmail

 Chapter 10. Local Mail Delivery

 Section 10.1. How Qmail Delivers Local Mail

 Section 10.2. Mailbox Deliveries

 Section 10.3. Program Deliveries

 Section 10.4. Subaddresses

 Section 10.5. Special Forwarding Features for Mailing Lists

 Section 10.6. The Users Database

 Section 10.7. Bounce Handling

 Chapter 11. Remote Mail Delivery

 Section 11.1. Telling Local from Remote Mail

 Section 11.2. qmail-remote

 Section 11.3. Locating the Remote Mail Host

 Section 11.4. Remote Mail Failures

 Section 11.5. Serialmail

 Chapter 12. Virtual Domains

 Section 12.1. How Virtual Domains Work

 Section 12.2. Some Common Virtual Domain Setups

 Section 12.3. Some Virtual Domain Details

 Chapter 13. POP and IMAP Servers and POP Toasters

 Section 13.1. Each Program Does One Thing

 Section 13.2. Starting the Pop Server

 Section 13.3. Testing Your POP Server

 Section 13.4. Building POP Toasters

 Section 13.5. Picking Up Mail with IMAP and Web Mail

 Chapter 14. Mailing Lists

 Section 14.1. Sending Mail to Lists

 Section 14.2. Using Ezmlm with qmail

 Section 14.3. Using Other List Managers with Qmail

 Section 14.4. Sending Bulk Mail That's Not All the Same

 Chapter 15. The Users Database

 Section 15.1. If There's No Users Database

 Section 15.2. Making the Users File

 Section 15.3. How Qmail Uses the Users Database

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 15.4. Typical Users Setup

 Section 15.5. Adding Entries for Special Purposes

 Chapter 16. Logging, Analysis, and Tuning

 Section 16.1. What Qmail Logs

 Section 16.2. Collecting and Analyzing Qmail Logs with Qmailanalog

 Section 16.3. Analyzing Other Logs

 Section 16.4. Tuning Qmail

 Section 16.5. Tuning to Deal with Spam

 Section 16.6. Looking at the Mail Queue with qmail-qread

 Chapter 17. Many Qmails Make Light Work

 Section 17.1. Tools for Multiple Computers and Qmail

 Section 17.2. Setting Up mini-qmail

 Chapter 18. A Compendium of Tips and Tricks

 Section 18.1. Qmail Won't Compile

 Section 18.2. Why Qmail Is Delivering Mail Very Slowly

 Section 18.3. Stuck Daemons and Deliveries

 Section 18.4. Mail to Valid Users Is Bouncing or Disappearing

 Section 18.5. Mail Routing

 Section 18.6. Local Mail Delivery Tricks

 Section 18.7. Delivering Mail on Intermittent Connections

 Section 18.8. Limiting Users' Mail Access

 Section 18.9. Adding a Tag to Each Outgoing Message

 Section 18.10. Logging All Mail

 Section 18.11. Setting Mail Quotas and Deleting Stale Mail

 Section 18.12. Backing Up and Restoring Your Mail Queue

 Appendix A. A Sample Script

 Section A.1. A Mail-to-News Gateway

 Appendix B. Online Qmail Resources

 Section B.1. Web Sites

 Section B.2. Mailing Lists

 Colophon

 Index

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Copyright

Copyright © 2004 O'Reilly Media, Inc.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safari.oreilly.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. qmail, the image of the tawny owl, and related trade dress are trademarks of
O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

[Team LiB]

http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Preface
Since its release in 1998, qmail has quietly become one of the most widely used applications on the
Internet. It's powerful enough to handle mail for systems with millions of users, including Yahoo Mail
and VSNL (the largest ISP in India), while being compact enough to work on even the smallest PC
Unix and Linux systems. Its component design makes it easy to extend and customize while keeping
its key functions secure.

Qmail's design is rather different from its best-known predecessor, sendmail. People who are familiar
with sendmail often have trouble recasting their problems and solutions in qmail terms. In this book,
I try first to help the reader establish a qmail frame of mind, then show how the pieces of qmail
work, and finally show how qmail can deal with some more complex mailing tasks such as handling
mail for multiple domains, mailing lists, and gateways to other services.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

What's Inside?

This book is organized into two sections, consisting of the following chapters.

Part I: Introduction to Qmail

Chapter 1, provides an overview of Internet email and the terminology used to describe it.

Chapter 2, outlines how qmail works, and gives a description of its basic parts and the philosophy
behind its design and use.

Chapter 3, covers the basics of downloading, configuring and installing qmail, and other essential
packages.

Chapter 4, finishes the job of configuring and starting qmail.

Chapter 5, addresses issues encountered when converting an existing sendmail system and its
configuration files to qmail.

Chapter 6, looks at the issues involved in accepting mail from users on the qmail host and other
systems, including cleaning up the sloppily formatted mail that most user mail programs send.

Chapter 7, describes the processing of incoming mail, various tricks to let users identify themselves
as local users when roaming away from the local network, and adding cryptographic security to mail
transfers.

Chapter 8, covers sorting, reading, and otherwise dealing with local mailboxes.

Chapter 9, covers anti-virus and anti-spam techniques, both those that can be built into qmail and
ways to call external filters like Spamassassin.

Part II: Advanced Qmail

Chapter 10, defines the way that qmail delivers mail to local addresses.

Chapter 11, defines the way that qmail delivers mail to remote addresses.

Chapter 12, describes qmail's simple but powerful abilities to handle domains with their own sets of
addresses, including building mail gateways to other services, and special routing for selected mail
destinations.

Chapter 13, covers POP and IMAP, the standard ways that users pick up mail from PC mail programs,
as well as "POP toasters," dedicated POP servers with many mailboxes.

Chapter 14, details qmail's built-in mailing list features, the companion ezmlm mailing list manager,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and offers some advice on connecting qmail to other mailing list managers such as mailman and
majordomo.

Chapter 15, describes qmail's built-in database of local mail addresses and subaddresses.

Chapter 16, describes log analysis tools and offers rules of thumb for tuning qmail for best
performance.

Chapter 17, covers applications with multiple copies of qmail on one computer, copies of qmail
cooperating on many computers, and the mini-qmail package to run a mail hub serving many small
client systems.

Chapter 18, shows many problems and solves them.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Style Conventions

This book uses the following typographical conventions:

Italic

Indicates the names of files, databases, directories, hostnames, domain names, usernames,
email addresses, sendmail feature names, Unix utilities, programs, and it is used to emphasize
new terms when they are first introduced.

Constant width

Indicates configuration files, commands and variables, m4 macros and built-in commands, and
Unix command-line options. It is used to show the contents of files and the output from
commands. Keywords are also in constant width.

Constant width bold

Used in examples to show commands or text that you would type.

Constant width italic

Used in examples and text to show variables for which a context-specific substitution should be
made. (The variable filename, for example, would be replaced by some actual filename.)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Examples and Patches

The examples from this book and the author's source code patches for qmail and related packages
are freely downloadable from the author's web site at:

http://qmail.gurus.com

[Team LiB]

http://qmail.gurus.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Comments and Questions

We have verified the information in this book to the best of our ability, but you may find that features
have changed (or even that we have made mistakes!). Please let us know about any errors you find,
as well as your suggestions for future editions, by writing to:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, or any additional information. You
can access this page at:

http://www.oreilly.com/catalog/qmail

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

You can sign up for one or more of our mailing lists at:

http://elists.oreilly.com

For more information about our books, conferences, software, Resource Centers, and the O'Reilly
Network, see our web site at:

http://www.oreilly.com

You may also write to the author directly at:

qmail@gurus.com

[Team LiB]

http://www.oreilly.com/catalog/qmail
http://elists.oreilly.com
http://www.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Acknowledgments

I wish to thank my reviewers, Mark Delany and Russell Nelson, for careful reading of the manuscript
and many suggestions to improve it. I particularly thank my editor Simon St.Laurent and the staff at
O'Reilly for believing my assurances that this book would in fact be finished, despite mounting
evidence to the contrary.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Part I: Introduction to Qmail
The first nine chapters provide an introduction to Internet email and qmail. They describe
installing and configuring qmail, including advice on setting up a qmail system as a mail hub,
converting an existing system from sendmail, and filtering out viruses and spam from incoming
mail:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 1. Internet Email
Despite being one of the oldest applications on the Internet, email remains the Net's "killer
application" for most users. For users' email to be sent and delivered, two kinds of programs have to
work together, a mail user agent (MUA)[1] that a person uses to send and read mail, and a mail
transfer agent (MTA) that moves the mail from server to server. Qmail is a modern MTA for Unix and
Unix-like systems.

[1] Popular MUAs include pine and mutt on Unix systems, and Eudora, Netscape, Outlook, and Outlook Express
on PCs and Macs.

Before diving into the details of qmail, it's a good idea to closely examine some of the basics of
Internet email that apply to all MUAs and MTAs. Common terms like envelope and mailbox have
special meanings in Internet mail parlance, and both the structure of mail messages and the path
that messages take through the mail system are carefully defined. The essential documents are RFC
2821, which defines the Simple Mail Transfer Protocol (SMTP) used to move mail from one place to
another, and RFC 2822, which defines the format of mail messages. These RFCs were published in
April 2001, updating the original RFCs 821 and 822 published in 1982. (All RFCs are available online
at http://www.rfc-editor.org.)

For many years, the only widely used MTA for Unix and Unix-like systems was the venerable
sendmail, which has been around in one form or another for 20 years. As a result, many people
assume that whatever sendmail does is correct, even when it disagrees with the RFCs or has
unfortunate consequences. So even if you're familiar with sendmail (indeed, especially if you're
familiar with sendmail), at least skim this chapter so we all can agree on our terminology.

[Team LiB]

http://www.rfc-editor.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.1 Mail Basics

The Internet's SMTP mail delivers a message from a sender to one or more recipients. The sender
and recipients are usually people, but may also be mailing lists or other software agents. From the
point of view of the mail system, the sender and each recipient are addresses. The message is a
sequence of lines of text. (RFC 2821 uses the word "mailbox" as a synonym for "address" and
"content" for the message.)

1.1.1 Addresses

All email addresses have the simple form local-part@domain. The domain, the part after the at-sign,
indirectly identifies a host to which mail should be delivered (although the host rarely has the same
name as the domain). The local-part, the part before the at-sign, identifies a mailbox within that
domain.

The set of valid domains is maintained by the Internet's Domain Name System (DNS). Every domain
is a sequence of names separated by dots, such as example.com. The names in email domains
consist of letters, digits, and hyphens. (If current efforts to internationalize domain names ever settle
down, the set of valid characters will probably become larger.)

The local-part is interpreted only by the host that handles the address's domain. In principle, the
mailbox can contain any characters other than an at-sign and angle brackets, but in practice, it is
usually limited to letters, digits, and a small set of punctuation such as dots, hyphens, and
underscores. Upper- and lowercase letters are equivalent in domains. It's up to the receiving mail
host whether upper- and lowercase are equivalent in local parts, although most mail software
including qmail treats them as equivalent.

Addresses appear in two different contexts: "envelope" data that is part of an SMTP transaction
defined by RFC 2821, or in the header of a message defined by RFC 2822. In an SMTP envelope,
addresses are always enclosed in angle brackets and do not use quoting characters or permit
comments. In message headers, the address syntax is considerably more flexible. An address like
"Fred.Smith"@example.com (Fred Smith) is valid in message headers but not in SMTP. (The form

Fred.Smith@example.com is valid in either.)[2]

[2] Sendmail has often confused the two address contexts and has accepted message header formats in SMTP,
both causing and masking a variety of bugs.

1.1.2 Envelopes

Every message handled by SMTP has an envelope containing the addresses of the sender and
recipients). Often the envelope addresses match the addresses in the To: and From: headers in the
message, but they don't have to match. There are plenty of legitimate reasons why they might not.

The envelope sender address is primarily used as the place to send failure reports (usually called

http://lib.ommolketab.ir
http://lib.ommolketab.ir

bounce messages) if message can't be delivered. If the sender address is null (usually written in
angle brackets as <>), any failure reports are discarded. Bounce messages are sent with null

envelope senders to avoid mail loops if the bounce message can't be delivered. The sender address
doesn't affect normal mail delivery.

The envelope recipient address(es) control where a message is to be delivered. Usually a message
starts out with the envelope recipients matching the ones on the To: and Cc: lines, but as a message
is routed through the network, the addresses change. If, for example, a message is sent to
able@example.com and baker@domain.com, the copy sent to the host handling example.com will
only have able's address in the envelope and the one sent to the host handling domain.com will only
have baker's address. In many cases a user will have a different internal than external address-for
example, mail to john.q.public@example.com is delivered to jqpublic@example.com, in which case
the envelope recipient address is changed at the place where the mail is received for the original
address and readdressed to the new one.

1.1.3 Messages

An Internet email message has a well specified format defined in RFC 2822. The message consists of
lines of text, each ended by a carriage-return line-feed pair. All of the text must be seven-bit ASCII.
(The 8BITMIME extension to SMTP permits characters with the high bit as well but still doesn't permit
arbitrary binary data. If you want to send binary material as email, you must encode it using MIME
encodings.)

The first part of the message is the header. Each header line starts with a tag that says what kind of
header it is, followed by a colon, usually some whitespace, and then the contents of the header line.
If a header is too long to fit on one line, it can be split into multiple lines. The second and subsequent
lines start with whitespace to identify them as continuations. Every message must have From: and
Date: header lines, and most have other headers such as To:, Cc:, Subject:, and Received:. The
contents of some headers (such as Date:) are in a strictly defined format, while the contents of
others (such as Subject:) are entirely arbitrary.

Some mail programs are more careful than others to create correct headers. (Many, for example, put
invalid time zones in Date: headers.) Qmail is quite careful when it creates headers at the time a new
message is injected into the mail system, but doesn't look at or change message headers on
messages that are transported through the system. The only change it makes to existing messages is
to add Received: and Delivered-To: headers at the top, to chronicle the message's path through the
system.

The headers are separated from the body of the message by an empty line. The body can contain
any arbitrary text, subject to a rarely enforced limit of 998 characters per line. The message must
end with CR/LF, that is, no partial line at the end.

1.1.4 Lines

Every line in a message must end with CR/LF, the two hex bytes 0D 0A. This simple sounding
requirement has caused a remarkable amount of confusion and difficulty over the years. Different
computer operating systems use different conventions for line endings. Some use CR/LF, including all
of Microsoft's systems and a string of predecessors from CP/M to the 1960s era TOPS-10. Unix and
Unix-like systems use LF. Macintoshes use CR, just to be different.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Regardless of the local line-ending convention, messages sent and received via SMTP have to use
CR/LF, and the MTA has to translate from local to CR/LF when sending mail and back from CR/LF to
local when receiving mail. Unfortunately, a common bug in some MTAs has been to forget to make
this translation, typically sending bare LFs rather than CR/LF. Furthermore, RFC 822 said nothing
about what a bare CR or LF in a mail message means. Some MTAs (sendmail, notably) treat a bare
LF the same as CR/LF. Others treat it as any other data character. Qmail rejects incoming SMTP mail
containing a bare CR or LF on the theory that it's impossible to tell what the sender's intent was, and
RFC 2822 agrees with qmail that a bare CR or LF is forbidden. (It's easy enough to tweak qmail's
SMTP daemon to accept bare LF, of course, if you really want to. See Chapter 6.)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.2 Mailstore

The mailstore is the place where messages live between the time that qmail or another MTA delivers
them and the user picks them up. Often, it's also the place where the user saves messages after
reading them.

I divide mailstores into two varieties: transparent and opaque. A transparent mailstore is one that an
MUA can directly access as files, while an opaque one requires a network protocol to access. (As you
might expect, there's considerable overlap between the two, with an MUA running on the system
where the mail is stored using a user's mailstore as transparent and one running on a PC elsewhere
using the same mailstore as opaque.)

A mailstore has several jobs beyond receiving messages. It must:

Maintain a little per-message status information, such as whether a message is read, answered,
or deleted

Make it possible to group messages into multiple folders

Make it possible to delete messages and move them from folder to folder

1.2.1 Transparent Mailstore

Unix systems have had a variety of mailstore file formats over the years. The oldest and still most
popular is mbox, a format invented in two minutes in the 1970s for an early Unix mail program, and
largely unchanged since then. An mbox is just a text file with the messages one after another. Each
message is preceded by a From line and followed by a blank line. The From line looks like this:

From fred@example.com Wed Oct 06 19:10:49 1999

The address is usually (but not always) the envelope sender of the following message, and the
timestamp is the time the message was added to the mailbox. Although it's easy to add a new
message to an mbox, it's difficult to manipulate messages in the middle of a mailbox, and sharing a
mailbox reliably between two processes is very tricky due to problems with file locking on disks
shared over a network. Mboxes have been surprisingly durable considering their nearly accidental
origins and their drawbacks, discussed in more detail in Chapter 10.

The MH mail system, developed at the RAND corporation in the 1980s, used a more sophisticated
mailstore that made each mailbox a directory, with each message a separate file in the directory.
Separate files made it easier to move messages around within mailboxes but still didn't solve the
locking problems.

Qmail introduced Maildir, a mailbox format that uses three directories per mailbox to avoid any need
for locking beyond what the operating system provides. Maildirs are covered in detail in Chapter 10.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.2.2 Opaque Mailstore

Opaque mailstores became popular when PCs started to gain dial access to the Internet, and users
started running mail programs on the PCs rather than using Telnet to connect to shared servers and
running mail programs there. The two popular opaque schemes are Post Office Protocol (POP3 for
Version 3), and Internet Message Access Protocol, (IMAP4, pronounced eye-map, for Version 4).

1.2.2.1 POP3

POP3 is by far the most popular scheme used to deliver mail to PC clients. It is a fairly simple scheme
that lets client systems download mail messages from servers. A client program connects to the POP
server, sends user and password information, and then usually downloads all the waiting mail and
deletes it from the server. It is possible for the client to leave the mail on the server, for people who
check their mail from multiple places and want to receive all the mail on their primary computer even
if they've peeked at it from somewhere else. POP3 can also assign unique ID strings (UIDs) to
messages so that client programs can check to see which messages on the server haven't been seen
before. (Despite these features, IMAP is usually better suited for people who read mail from more
than one place.)

Qmail comes with a POP3 server that uses Maildirs for its internal mailstore. You can also use
Qualcomm's popular qpopper that uses mbox mailboxes or the POP server from the Courier mail
package that uses Maildirs. See Chapter 13.

1.2.2.2 IMAP4

IMAP is a scheme that lets client software manipulate messages and mailboxes on the mail server. It
is much more powerful than POP at the cost of being much more complex as well. The client can tell
the IMAP server to copy messages in either direction between client and server, create folders, move
messages among folders, search for text strings in messages and mailboxes, and just about any
other function that a mail client could possibly do to a message or mailbox.

The goal of IMAP is to allow client programs to manipulate mailboxes on the server just as though
they were on the client system. This makes it possible for users to leave all their mail on the server
so that they see a consistent view of their mail no matter from where they check it.

Qmail does not come with an IMAP server, but several IMAP servers work with qmail. The original
IMAP server from the University of Washington uses mbox mailboxes, while the Courier IMAP server,
part of the Courier MTA package, and the newer binc IMAP server use Maildirs.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.3 The Structure of Internet Mail

Now that we've seen all the pieces of Internet mail, let's put them together and watch the typical
path of a message as it's sent from one person to another.

First the sender runs a MUA, such as Pine or Eudora, and creates the message. Then a click of the
Send button (or the equivalent) starts it on its way by passing it to the MTA (most likely qmail if
you're reading this book), a process known as submitting the message. If the MUA is running on the
same computer as the MTA, the MUA submits the message by running the MTA's injection component
with the message as an input file. If the MUA is running on a separate computer, such as a Windows
PC, the MUA makes a network connection to the computer running the MTA, and transfers the
message using SMTP or a minor variant of SMTP called SUBMIT that's specifically intended for host-
to-host message submission.

Either way, the MTA receives the message envelope with the sender and recipient addresses and the
message text. Typically the MTA fixes up the header lines in the submitted message so that they
comply with RFC 2822, then looks at the domain parts of each recipient address. If the domain is one
that the MTA handles locally, the MTA can deliver the message immediately. In the more common
case that it's not, the MTA has to send the message over the Net.

To figure out where to send the message, the MTA consults the DNS. Every domain that receives mail
has an MX (Mail eXchanger) record in DNS identifying the host that receives mail for the domain.[3]

Once the MTA has found the MX host for a domain, it opens an SMTP connection to the MX host and
sends the message to it. In some cases, the MX host uses SMTP to forward the message again if, for
example, the MX host is a firewall that passes mail between MTAs on a private network and the rest
of the Internet.

[3] Well, they're supposed to at least. For backward compatibility with pre-1980 mail systems, if a domain has no
MX record but does have an A record containing a numeric IP address, the mail system uses that instead.

Eventually the message arrives at a host where the MTA knows how to deliver mail to the recipient
domain. Then the MTA looks at the local part of the recipient address to figure out where to deliver
the mail. In the simple case that the address is a user mailbox, the MTA either deposits the message
directly into the mailstore or, more likely, calls a local delivery agent program to deliver the mail. (On
Unix, a popular local delivery agent is procmail, which does mail sorting and filtering as well as
delivery.) Depending on the MUA that the recipient user has, the MUA may read the message directly
from a transparent mailstore on the mail server, or use POP or IMAP to read the mail on a client PC.

A domain can have more than one MX record in its DNS. Each MX record contains a numeric value
known as the preference or distance along with the name of a host. Sending systems try the MX host
with the lowest distance first, and if that MX host can't be contacted, successively higher distances
until one answers or it runs out of MXes. If there are several MX hosts at the same distance, it tries
them all in any order before going on to hosts at a higher distance. If the sending host can't contact
any of the MXes, it holds onto the message and retries later.

When the Internet was less reliable, backup MXes with a higher distance than the main MX were
useful to receive mail for a domain when the main MX was unavailable, and then send it to the main
MX when it came back. Now, backup MXes are only marginally useful, because sending hosts retry

http://lib.ommolketab.ir
http://lib.ommolketab.ir

mail for at least a few days before giving up. They wait until the main MX is available and then deliver
the mail. Multiple MXes at the same distance are still quite useful for busy domains. Large ISPs often
have a dozen or more MXes to share the incoming mail load.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 2. How Qmail Works
People who are familiar with other mail transfer agents (MTAs), notably sendmail, rarely receive
satisfactory results from qmail. Qmail was designed and written in a very different way from most
other mail programs, so approaches used to solve problems with other programs don't work with
qmail and vice versa.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

2.1 Small Programs Work Together

Earlier MTAs were written as large monolithic programs. Sendmail, for example, is one large
executable program that listens for incoming SMTP connections, accepts locally generated mail,
queues mail, attempts outgoing SMTP deliveries, performs local deliveries, interprets .forward files,
retries mail that for which earlier delivery attempts failed, and about 50 other functions. While this
means that all of these functions can share utility routines and it's easy for one function to call on
another or pass a message to another, it also means that sendmail is a large program (300 KB of
code on my system, not including any libraries it uses) that is slow to start up and expensive to fork,
and bugs anywhere in the code can potentially make any of the functions misbehave or fail. Other
monolithic MTAs, such as smail and exim, share these problems.

Qmail, on the other hand, is about 10 small programs, none with as much as 30 KB of code, working
together. This design approach offers many advantages.

2.1.1 Each Program Does One Thing

Each of qmail's programs performs a single function. For example, qmail-lspawn spawns (starts up)
local deliveries, and qmail-clean deletes the queue files of messages that have been completely
processed. The various programs use documented protocols to communicate, which makes it easier
both to debug them and to substitute one version of a program for another.

For example, on a local area network (LAN) with several workstations, the most common mail setup
is for one server to handle all of the incoming mail and deliveries. All the other workstations use that
server as a "smarthost" and immediately forward locally generated mail to the smarthost. In this
arrangement, each workstation traditionally has a complete implementation of the MTA, with
configuration files set to forward mail to the smarthost. Note that about 90% of the MTA's function is
present but not used, and strange bugs often surface when the configuration files on the
workstations get out of sync with each other. The optional QMQP package makes it possible to install
a tiny "mini-qmail" package on the workstations, with the only configuration being the address of the
smarthost. In a regular qmail installation, the program qmail-queue takes a message and creates a
queue entry so the message can be processed and delivered. Several other programs call qmail-
queue, including qmail-smtpd, which receives incoming mail via SMTP, and qmail-inject, which
receives locally generated mail. QMQP replaces qmail-queue with a small program that immediately
forwards incoming mail to the smarthost. There's no need to install the queueing and delivery part of
qmail on the workstations, but to the programs that call qmail-queue, mail works the same as it
always did.

2.1.2 The Principle of Least Privilege

Most monolithic MTAs have to run as the super-user to open the "privileged" port 25 for SMTP service
and deliver mail to user mailboxes that are not world-writable. Qmail uses the principle of least
privilege, which means it runs only the program that starts local mail deliveries, qmail-lspawn, as
root. All of the other programs run as nonprivileged user IDs. Different parts of qmail use different

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IDs-for example, only the parts that change the mail queue run as the user that can write to the
queue directories. This offers an extra level of resistance to accidental or deliberate errors.

Qmail also offers the very useful ability to delegate management of a virtual domain to a Unix user in
a simple and secure way. The user can manage all the addresses in the domain by adjusting his own
files as needed without ever having to bother the system manager or run super-user privileged
programs.

2.1.3 Program Wrapping

Qmail makes extensive use of program wrapping to allow users and administrators to add and modify
features.[1] A wrapper program runs a second program, modifying the second program's action in
some way. The syntax for wrapper programs is:

[1] There's no standard name for this clever software design. Some people call it program chaining, and some
people call it Bernstein chaining or a djb pipeline because Dan Bernstein is one of its best-known users.

wrapper wrapargs program progargs

That is, first come any arguments the wrapper takes, then the name of the program to run.

For example, when qmail runs a program for local delivery, it does not normally insert a mailbox
separator line at the beginning of the message, but some programs, such as the procmail mail
sorting package, require that line. The preline wrapper program provides the needed line:

| preline procmail arguments

That is, preline runs the program given as its argument, inserting a separator line ahead of the input.

In some cases, multiple wrappers can be cascaded, with several setup programs running each other
in turn to create the environment for a main program. For example, the qmail POP3 daemon is
implemented in three parts. The outermost, qmail-popup reads the username and password from the
client. It then runs checkpassword, which validates the username and password, and changes to the
directory that contains the mail. Finally, it then runs qmail-pop3d, which runs the rest of the POP3
session. By substituting different versions of checkpassword, it's easy to handle mail-only users,
addresses in virtual domains, or any other local mailbox and password conventions.

2.1.4 No New Languages

Qmail tries very hard not to create new configuration or command languages, in reaction to the
baffling complexity of the sendmail configuration-file language. Instead, qmail uses standard Unix
features wherever possible. We saw program wrapping, previously, as one way to make programs
configurable. The other way is to use the standard Unix shell. Rather than put a lot of options into the
syntax of .qmail files, which control local deliveries, qmail builds in only the two most common
options: delivery to a mailbox and forwarding to a fixed address. For anything else, you put shell
commands in the .qmail file, generally using a few small helper programs such as forward, which
sends a message to the address(es) given as arguments. This has proven in practice to be very
flexible, and it's usually possible to express complex delivery rules in a few lines of shell script.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.1.5 Configuration Files

Rather than put all of the configuration information into one huge file, qmail splits it up into multiple
small files. The global configuration information goes into files in /var/qmail/control, while per-user
delivery instructions go into files in each user's home directory.

Most of the files are simple lines of text, such as /var/qmail/localhosts, which lists the hostnames that
should be treated as local to the system on which qmail is running, one per line. As a concession to
efficiency, files that could potentially become large, such as the list of virtual domains, are compiled
into CDB files that use a hashing technique to permit programs to look up any entry with one or two
disk reads. Each file contains only one kind of information, so there's no need for a language to
define file sections or subsections.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

2.2 What Does a Mail Transfer Agent (MTA) Do?

The Internet model of email delivery divides the process into several separate stages and the
software into several parts. The two important kinds of software are the Mail User Agent (MUA) and
the Mail Transfer Agent (MTA). The MUA is the program that permits a user to send and receive mail.
Familiar mail programs such as Pine, Elm, and Gnus on Unix and Eudora, Pegasus, Outlook, and
Netscape or Mozilla on PCs are all MUAs. Each MUA has a rather complex user interface, and has
many features, such as composing and reading mail, moving mail among mailboxes, and selecting
the order in which to read mail. But an MUA doesn't deliver mail to other users; for that it hands its
messages to an MTA.

In the first stage of mail delivery, the message is submitted or injected to the MTA. Usually the
message comes from an MUA, but it can just as well come from another program, such as a mailing
list manager. The MTA examines the address(es) to which each message is sent, and either attempts
to deliver the message locally if the address is local to the current host, or attempts to identify a host
to which it can relay the message, relaying the message to that host. (If that last sentence sounds a
little vague, it's deliberately so, because there are many different ways that mail relaying happens.)
Each of these steps could fail-a local address might not exist, it might exist but the MTA might be
temporarily or permanently unable to deliver the message to it, the MTA might be temporarily or
permanently unable to identify a relay host, or the MTA might be able to identify a relay host, but
temporarily or permanently unable to relay messages to it. In case of permanent failure, the MTA
sends a failure report back to the message's sender. In case of temporary failure, the MTA hangs on
to the message and retries until either the delivery succeeds or eventually the MTA treats the failure
as permanent.

Although the basic idea of an MTA is simple, the details can be complex, particularly the details of
handling errors. Fortunately, qmail handles most of the details automatically, so administrators and
users don't have to.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

2.3 The Pieces of Qmail

Qmail consists of five daemons that run continuously, and about ten other programs run either from
those daemons or from other commands, as shown in Figure 2-1.

Figure 2-1. How the qmail daemons connect to each other

The primary daemon is qmail-send, which manages the message queue and dispatches messages for
delivery. It is connected to two other daemons, qmail-lspawn and qmail-rspawn, which dispatch local
and remote deliveries, respectively, using qmail-local and qmail-remote.

Once a message has been completely processed, with all deliveries having either succeeded or
permanently failed, qmail-send notifies qmail-clean to remove the files for the message. The fifth
daemon, tcpserver is discussed next.

2.3.1 A Message's Path Through Qmail

A message enters qmail either from another program within the system or via incoming SMTP.
Regardless of where the mail originates, the originating program runs qmail-queue, which copies the
message to a file in the queue directory, copies the envelope sender and recipient to a second file,
and notifies qmail-send. For locally originating mail, qmail-queue is generally called from qmail-inject,
or newinject, which adds missing header lines and cleans up address fields. (It's entirely legitimate
for programs to call qmail-queue directly if they create messages with all needed headers. Mailing list
managers such as Majordomo2 do for efficiency.) Most often, qmail-inject is run from sendmail, a
small program that interprets its arguments like the legacy sendmail and calls qmail-inject. It's a
useful shim to maintain compatibility with the many applications that call sendmail directly to send
mail.

For mail arriving from remote systems, tcpserver runs as a daemon listening for incoming
connections on the SMTP port. Each time a connection arrives, it runs qmail-smtpd, which receives a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

message via SMTP and calls qmail-queue to queue the message.

Regardless of where the message originates, qmail-queue writes the message to a temporary file in
the queue/todo directory, putting a new Received: line at the top, and also saves the envelope
sender and recipient addresses to files. Then it notifies qmail-send by writing a byte to a "trigger"
socket file.

qmail-send takes the message out of queue/todo, and analyzes each recipient address to see if it's
local, remote, or virtual.

For local addresses, it notifies qmail-lspawn to run qmail-local to do the local deliveries. For each local
delivery, qmail-local sets up the context of the user that controls the delivery address (user id, group
id, home directory, and a few environment variables) and then performs the actions listed in the
address's .qmail file. Depending on the contents of the .qmail file, the local delivery may store the
message into a mailbox, provide a different address to which to deliver the message, run a program
to handle the message, or any combination of the three. Qmail doesn't provide any other built-in
facilities for local deliveries, instead using separate programs run from .qmail files.

For each remote address, qmail-send notifies qmail-rspawn to run qmail-remote to do the remote
deliveries. Every remote address is delivered through a separate SMTP session, even if there are
several addresses in the same domain. (This is one of the most controversial features of qmail. See
Chapter 11 for some ways you can merge multiple deliveries together and why you probably don't
want to.)

For virtual addresses, qmail-send rewrites each virtual address as a modified local address, using the
information from the virtualdomains files. (See Chapter 12.) Once it's translated a virtual address to
the corresponding local address, the message is delivered the same as to any other local address.

For each delivery, local or remote, the spawn program writes back status reports to qmail-send. Each
delivery can succeed, fail temporarily, or fail permanently. A delivery that fails temporarily is retried
later until the message is "too old," by default a week, but usually configured to be less. A delivery
that fails permanently, or that fails temporarily but is too old, produces a bounce report that is mailed
back to the message's envelope sender.

Once all of a message's addresses have succeeded or failed, qmail-send notifies qmail-clean to
remove the message's files from the queue, and qmail is done with it.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 3. Installing Qmail
Qmail probably doesn't come preinstalled on your machine. It probably isn't even shipped in source
form with your machine. You must go to the FTP server, download it, configure it, compile it, test it,
and install it. If this sounds like a huge amount of work, it's not-some of these steps can be a single
command.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

3.1 Where to Find Qmail

The official place to get qmail is through Dan Bernstein's web and FTP server at http://cr.yp.to. (The
.to domain is actually the island nation of Tonga, but they'll sell a "vanity" address to anyone willing
to pay, and Dan's professional interests center around cryptography.) An alternate address is
http://pobox.com/~djb/qmail.html.

Both URLs are currently redirected to Dan's FTP server, koobera.math.uic.edu, at the Math
department of University of Illinois at Chicago. For the rest of this book, we'll nickname that site
koobera. The actual name of the site is subject to change at any time, which is the whole point
behind using cr.yp.to and pobox.com.

If you use a web browser or a graphical FTP program to open an FTP connection to koobera, the list
of files you receive may be scrambled. Dan uses an FTP server of his own creation, publicfile, which is
good and bad. It's good because it's a typical Dan Bernstein program: small, secure, and fast. It's
bad because most web browsers and visual FTP programs don't know how to parse the server's
listing format.

Visual FTP programs without special support for anonftpd's file format (EPLF, Easily Parsed Listing
Format) cannot give you a listing of files. The standard command-line FTP that comes with BSD,
Linux, and most versions of Unix has no such troubles, nor does the FTP distributed with versions of
Windows, because neither attempts to parse the listing. The current version of squid, a popular proxy
server, has support for EPLF, so if you're accessing the Net through a squid FTP proxy, you should
have no troubles.

Once you've made sure you can contact the FTP server, make a directory where you're going to
download and build your software such as /var/src or /usr/local/src, and FTP a copy of qmail there.
Use gunzip and tar or pax to unpack it into a subdirectory.

3.1.1 Copyright

Dan Bernstein reserves most rights when he distributes qmail. Copyright law lets him prohibit anyone
from making copies (except within fair use, which includes actually loading the software from disk
into memory, memory into cache, cache into processor, and disk onto backup media and back
again). Dan has given users several permissions, however. You can redistribute the source to any of
qmail 1.00, 1.01, 1.02, and 1.03. This source must be unmodified, in the original .tar.gz format, and
match a certain checksum provided by Dan.

In addition to redistributing unmodified source, you can also redistribute certain derived works. An
executable that is equivalent to that which a user would create through the documented install
process is also redistributable. In practice, this means that you can download, compile, patch, install,
and use qmail any way you want. The one thing you can't do is to distribute modified versions of
qmail. That's why all of the user modifications are distributed as patches relative to the distributed
1.03, rather than as modified versions of qmail itself.[1]

[1] Disclaimer: this description undoubtedly has a different legal import than Dan's permissions. Read Dan's

http://cr.yp.to
http://pobox.com/~djb/qmail.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

license before you make any decisions about redistributing qmail yourself.

Netqmail

Three well-known members of the qmail user community, Charles Cazabon, Russell
Nelson, and Dave Sill, made a package called netqmail 1.05 that includes qmail 1.03, a
small set of recommended patches, and a script to create a patched version of qmail
ready to build. It also contains a few recommended patches for other packages often used
with qmail. For people installing qmail from scratch, netqmail is the best place to start. It's
on the web at http://www.qmail.org/netqmail.

To use netqmail, download and unpack it, which will create a directory called netqmail-
1.05. Go into that directory and run ./collate.sh to unpack qmail 1.03 and apply the
patches. Once you've done that, there will be a second netqmail-1.05 directory within the
first one containing a patched set of sources ready to build as we describe in this chapter.

3.1.2 Should I Upgrade?

For better or worse, there's never been a good answer to that question. The best answer that I can
offer is that in qmail 1.02 a user could crash the copy of qmail-smtpd she was running, by issuing a:

rcpt to: <>

However, this would only cause the user's copy to crash. Nobody else would be affected.

A good answer might be "because there's a bug that prevents X from working." This has never
happened. Another good answer might be "because there's a security hole that endangers the
security of your machine." This has also never happened.

The only way to answer your question is to examine the CHANGES file that comes with qmail. If you
see a change there that affects you, then you should consider upgrading your version of qmail.
Otherwise, the wise maxim "If it's not broken, don't fix it" applies.

The most important reason to upgrade is that if you're running the same version as most other qmail
users, it's easier to ask them specific questions, pass patches and configuration tricks around, and
otherwise be part of the qmail community. For most people, this is the best reason to stay in sync
with new versions. I assume that you're using Version 1.03, the most recent as of the time this book
was published, or netqmail 1.05, which is 1.03 with some recommended patches.

3.1.3 Other Software You Should Fetch

As long as you're accessing koobera, there's some other software you should fetch. I'm going to
leave the version number out of the package name. Look for the current version when you're
downloading.

Unpack most of these packages the same way you do qmail, with gunzip and tar or pax, each into its
own subdirectory of your download directory. Starting with Version 0.75 of daemontools and,

http://www.qmail.org/netqmail
http://lib.ommolketab.ir
http://lib.ommolketab.ir

presumably, new versions of other packages, Dan has invented a new installation setup described at
the end of this chapter.

ucspi-tcp

A package for servers that respond to incoming TCP connections, as an alternative to the old
inetd daemon. It used to be optional, but its tcpserver is now the only supported way to run
qmail's SMTP daemon. If your system has the newer xinetd, it's possible to run qmail's SMTP
daemon from it, although I don't recommend it. See
http://www.barriebremner.com/qmailxinetd.html.

checkpassword

If you're using qmail's built-in POP3 server, you want Dan's checkpassword program, which
validates user logins as well. Even if you're installing an alternative checkpassword, it's nice to
have Dan's checkpassword installed for testing.

dot-forward

For compatibility with sendmail's .forward file. It interprets the contents of a .forward file, and
forwards the mail or deliver, it to a mailbox as needed.

fastforward

For compatibility with sendmail's /etc/aliases file and handling large tables of forwarding
addresses. It converts an aliases-format file into a CDB (Constant Data Base-another of Dan's
packages) and forwards by a CDB lookup, which is fast and efficient. If you have more than a
thousand aliases, you'll probably want this package.

serialmail

To deliver mail on-demand. Qmail's queue is designed to deliver mail to hosts that should
always be available. Its queuing and scheduling policy presumes that domains' MX hosts are
usually able to receive mail at any time other than relatively short downtimes. If this is not the
case for any reason, then serialmail should be used to deliver mail when the host is able to
receive it. Serialmail is also useful to single-thread deliveries to recipient hosts that can't
handle parallel deliveries.

mess822

Contains ofmipd, the Old-Fashioned Mail Injection Protocol (OFMIP) daemon. SMTP isn't

http://www.barriebremner.com/qmailxinetd.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

supposed to fix up mail that it transfers (a rule too widely ignored by sendmail and other
MTAs). OFMIP is just like SMTP, except that ofmipd rewrites any hostnames or headers in
messages it handles into standard compliant form. Mail sent by your users using desktop mail
clients should be accepted using ofmipd.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

3.2 Creating the Users and Groups

Qmail uses a set of user ids and group ids to control access to various qmail facilities. Because Dan
doesn't trust the system libraries (history is on his side), he doesn't make system calls to determine
these uids. Instead, the uids are compiled into various programs. That means that the qmail users
must exist prior to compiling the programs.

Some versions of Unix and Linux are distributed with the qmail users and groups already defined. If
your /etc/passwd (or equivalent) contains entries for alias, qmaild, qmaill, qmailp, qmailq, qmailr,
and qmails, and your /etc/group contains entries for qmail and nofiles, you're all set and can skip
ahead to "Configuring and making the software." Otherwise you must create the users and groups
yourself. There are several ways to do this.

3.2.1 The adduser Script

Some Unices have a program called useradd or adduser to create users and groups. Often, use of
this program is mandatory, because the machine uses shadow passwords. To be safe, use the
program when it exists. The INSTALL.ids file has the necessary commands. Copy that file to
/tmp/mu, locate the right set of commands, delete everything else, delete the pretend root prompt
characters in front of the commands, save it to a file, and run that file using sh /tmp/mu.

3.2.2 Adding by Hand

Some Unices let you create groups by editing the /etc/group file and users by editing the /etc/passwd
file, the latter typically through the vipw program. Edit /etc/group and add the following two lines:

qmail:*:2107:
nofiles:*:2108:

Make sure that 2107 and 2108 are unique group id numbers. If you have to change them, also
change them in the user information in the next section.

Always edit /etc/passwd using the vipw program, if it exists. It ensures that your shadow password
database (if you're using one) is kept up to date. It also locks the password file against other
programs changing it. If you have no vipw program, then go ahead and edit with your favorite text
editor.

Add the following set of lines to /etc/passwd:

alias:*:7790:2108::/var/qmail/alias:/bin/true
qmaild:*:7791:2108::/var/qmail:/bin/true
qmaill:*:7792:2108::/var/qmail:/bin/true
qmailp:*:7793:2108::/var/qmail:/bin/true
qmailq:*:7794:2107::/var/qmail:/bin/true

http://lib.ommolketab.ir
http://lib.ommolketab.ir

qmailr:*:7795:2107::/var/qmail:/bin/true
qmails:*:7796:2107::/var/qmail:/bin/true

Verify that 7790 through 7796 are unique user id numbers. If they're already in use, pick some other
unused numbers. The exact id numbers don't matter so long as they're all different from each other
and different from every other user on the system.

3.2.3 Nofiles Group Really Has No Files

The Unix "groups" concept makes it convenient to allow access to some files and deny it to others.
One commonly overlooked possibility is that some users do not need to have any group permissions.
The Unix kernel requires that each user belong to at least one group. However, obtain the effect of
"no group" by a user-level discipline.

Qmail creates a group that no files ever use. This group is called nofiles, naturally enough. Qmail
uses this group for users who do not need group permissions. Users alias, qmaild, qmaill, and qmailp
have no need to read or write files other than some very specific ones, and each owns the files it
needs to write. Some Unices have a "nogroup" or "nobody" group; however, these cannot be used by
a process and so cannot be used by qmail.

On most Unix systems, audit your system to see if any files are owned by "nofiles" using the following
find command:

find / -group nofiles

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

3.3 Configuring and Making the Software

The vast majority of the qmail configuration occurs at runtime. There are, however, a few
configuration options that can only be changed at compile time. These options are, as you might
expect, not often changed. If you're reading this book front to back, skip this section and come back
to it later, because most of the compile-time options won't make any sense to you.

These configuration options are each in a separate file in the qmail source directory, the first line or
lines of which are the value. Lines beyond those have an explanation of the meaning of the value.

3.3.1 conf-break

Qmail permits users to have subaddresses, which qmail calls extensions. For example, nelson-qmail-
book@crynwr.com has an extension of "qmail-book" if the break character is a dash. By default it is a
dash character, but some sysadmins may wish to use a plus or equals character for compatibility with
other software. (Sendmail uses a plus sign.[2])

[2] One potential cause of confusion is the difference between the break character and the character that
separates the parts of extensions. conf-break specifies the break between the username and the extension.
Extensions are also split into parts; however, they are always split at a dash character. So, if you set your break
character to a plus, then nelson+list-qmail will be matched by ~nelson/.qmail-list-default if there's no better
match. See Chapter 7 on local delivery for more information.

3.3.2 conf-cc

The compiler is not set in the makefile, as is typical for a Unix program. The makefile actually uses a
generic compile script. This script is created by the makefile. It combines conf-cc with some more
information. If your C compiler needs special optimization flags, this is the place to put them.

3.3.3 conf-groups

The first two lines of this file list the names of the groups that qmail uses. They are used in the
building process to get the group id (gid) for the install process. The first is the name of the group
that several qmail users use to share information through group permissions. The second is the name
of the group used by the other qmail users who don't need to use group permissions. Don't change
this unless your system already has groups called qmail or nofile that conflict with qmail's use of
them.

3.3.4 conf-ld

The first line of this file is the command used to link .o files into an executable. The most common

http://lib.ommolketab.ir
http://lib.ommolketab.ir

change is to replace the --s flag it contains with --g to preserve symbols for debugging. If your

linker supports static shared libraries, which start up faster than the more usual dynamic shared
libraries, this is where you put the flags or command to use them.

3.3.5 conf-patrn

Qmail refuses to deliver mail to insecure accounts. If a user allows anyone to modify files in his home
directory, anyone can modify his .qmail files. And that means that anyone can execute any command
as the user. So, giving away write permission gives away everything.

An insecure account is identified by excess write permissions on the user's home directory and on the
user's .qmail files. The excess write permissions are given as an octal number in the first line of this
file. The default (002) is that other-write permission cannot be given. A stricter value would be 022,
which disallows group-write in addition.[3]

[3] The Red Hat Linux useradd program creates a separate group for each user. In this context, group-write
permissions are not a security hole, so using a conf-patrn of 022 rather than 002 just causes extra work without
improving security.

3.3.6 conf-qmail

Qmail installs all its files (configuration, manpages, binaries, and mail queue) under a single
directory, /var/qmail. This is advantageous because qmail is not a special program (for example, it
needs to be located at /usr/lib/sendmail, or to own the queue at /var/spool/mqueue).

This directory (by default, /var/qmail) must be a local directory, not mounted via a network
filesystem. Don't change it unless you have a very good reason to do so. The most likely reason to do
this is to create two copies of qmail to run in parallel, as described in Chapter 17.

3.3.7 conf-spawn

This is one of the few static limits in qmail. It's imposed by the underlying operating system. A
program can wait only for so many children at one time, and this number is the limit. It's set to 120
for portability reasons. You would need to increase it only if you need a concurrencylocal or
concurrencyremote higher than 120, and if your operating system also allows it. (This number has to
be less than half the number of file descriptors that a select() system call can wait for. On many

Unix-like systems, it's possible to increase this limit at compile time. See Chapter 16.)

3.3.8 conf-split

The qmail queue is split into a number of hashed subdirectories, with one message in each of the
subdirectories. The default of 23 is chosen so that the typical queue doesn't make the subdirectories
too large. If your queue isn't typical (because, say, you run a big ISP or send mail to many
customers) and has more than 10,000 messages in it, you might want to increase this number to a
larger prime value. See Chapter 16.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.3.9 conf-users

The first eight lines of this file list the names of the users that qmail uses. They are used in the
building process to get the user ID (uid) for the install process. The first one (usually alias) is the user
qmail uses when no other user matches. The second (qmaild) is used for the SMTP daemon. The third
(qmaill) is used to log information. The fourth (root) is used to own binaries and documentation. The
fifth (qmailp) is used to map a username into a uid/gid/homedir combination. The sixth (qmailq) is
used to own files in the queue. The seventh (qmailr) is used to make remote connections as an SMTP
client. The eighth (qmails) is used to schedule messages for delivery from the queue and generate
bounce messages. Don't change this file.

What About RPMs?

Most versions of Linux provide Red Hat Package Manager (RPM) files that automatically
install a package, doing whatever compilation and preprocessing is needed. Even if a qmail
RPM is available, I recommend building qmail from the qmail or netqmail source code. For
one thing, it's critical that qmail be built using the user and group IDs defined on your
system. Building it yourself ensures this. All of the qmail RPMs contain some patches, but
unlike netqmail, they rarely document which ones. You'll probably want to install some
other patches and add-ons that are available to extend qmail, all of which involve
recompiling from source anyway. And finally, unlike most other packages, building qmail is
so quick and straightforward that using an RPM doesn't save much time.

3.3.10 Build Using make

To build qmail, simply run make. There's no separate configuration program as in some other
packages. A number of portability problems are solved by Dan's inclusion of his own library functions.
His library is the same from host to host and so are the calls to the library.

Because qmail uses less of the C library, qmail is less vulnerable to security holes in the C library.
Unfortunately, some functions cannot be rewritten, because they require internal knowledge about
the OS. For example, to read a directory, some versions of Unix require read() to be called and
others require an internal interface routine to be called; there's no alternative to readdir().

3.3.11 If the Build Fails

There are only three reasons why the build might fail. First, because you didn't create the qmail users
listed previously; seond, because a necessary external program-such as make, cc, or nroff-isn't
present; or third, your platform isn't close enough to Unix to support qmail.

If your build fails with complaints about errno, you've tripped over a compatibility problem between
qmail and recent versions of the C library. See Building with Recent GLIBC and Fixing the errno
Problem later in this chapter for the simple fix.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.3.12 Building the Other Packages

You must build at least the ucspi package, which includes tcpserver, to get qmail going. Fortunately,
Dan's other packages are even easier to set up than qmail, because none of them depend on user
IDs. For each package, just unzip and unpack the downloaded tar file into a work directory and type
make. Normally all of the files in each package are installed under /usr/local, with programs in
/usr/local/bin. If that's not where you want them before you make the package, edit the file conf-
home and put the installation directory on the first line of the file.

Starting with daemontools 0.75, Dan has developed an extremely automatic and somewhat
incompatible system to install his programs, described at http://cr.yp.to/daemontools/install.html. All
of the packages are built in the directory /package, which you have to create, most likely as a
symlink to a directory on a disk with more space than your root partition. (I link it to /usr/package.)
Packages are built in /package, with commands symlinked into the new directory /command. For
backward compatibility it also links them into /usr/local/bin. Documentation, if any, goes into /doc.
See http://cr.yp.to/unix.html for more details.

To install daemontools, FTP the package (or copy it if you've already FTP'ed it somewhere else) into
/package and unpack it, at which point the files will be in /package/admin/daemontools-0.76 (or
whatever the current package name and version are). Then chdir to admin/daemontools-0.76 and,

as super-user, run the script package/install, which builds and installs the whole thing, building the
commands in commands and symlinking them into /command and /usr/local/bin.

Finally, it creates /service and arranges to start svscan at boot time. It adds lines to /etc/inittab if it
exists, otherwise to /etc/rc.local to run svscanboot at boot time to startup svscan. If you have
/etc/inittab, the build process pokes the init process to start svscan for you; if not, it suggests that
you reboot. Rather than rebooting, run the command it just added to rc.local:

csh -cf '/command/svscanboot &'

If your system has a daemon command to run programs unattached to any terminal, use it:

daemon /command/svscanboot

3.3.13 Installing Qmail

First become the super-user. Change to the directory where you built qmail, and type make setup.
This makes all of the directories and installs all of the qmail files into /var/qmail. Now type make
check, which checks to make sure that all of the required files and directories are present. Assuming
it reports success, qmail is installed and ready to go.

3.3.14 Installing Other Programs

To install the other programs, notably the ucspi package, change to the directory where you built
each package and type make setup to install the files into /usr/local (or if you changed conf-home,
into the home directory you selected). For daemontools and other packages using the new /package
scheme, the build process already installed them.

[Team LiB]

http://cr.yp.to/daemontools/install.html
http://cr.yp.to/unix.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

3.4 Patching Qmail

Dan's license for qmail forbids the distribution of modified versions of qmail, so many people offer
add-ons and patches that you can apply to qmail yourself. Add-ons are distributed as installable
packages that you download and install like any other package, but patches are distributed as text
files of differences between the original and the patched version of qmail, as created by the diff
utility. You don't need any patches to get qmail going (other than the errno patch for recent Linux
versions), but because so many useful changes are distributed as patches, nearly everyone uses a
few of them, so you should be prepared to use them.

The patch program, distributed with most Unix-like systems, reads the patch files and applies the
changes. If your system doesn't have it, it's available for download from the Free Software
Foundation at http://www.fsf.org/software/patch/patch.html. To apply a patch to a package, be sure
the source code for the package is stored in a subdirectory of the current directory with the
package's usual name (such as qmail-1.03), then feed the patch file to patch:

$ patch < some-patch.txt

patch produces a chatty report of its progress. Patch files invariably contain context diffs, so patch
warns you if the file you're patching appears not to match the one on which the patch is based. You
must look at the rejected patches in the source directory with filenames like filename.rej and figure
out where the patches should go. Occasionally when you're applying multiple patches to the same set
of files, the patches can collide, but for the most part, the useful patches to qmail apply without
trouble. Once a patch is applied, rebuild and reinstall the package from the patched source code.

If you're installing the recommended netqmail package, you've already patched the source. Netqmail
includes a patch file called netqmail-1.05.patch that is automatically applied by ./collate.sh.If you
want to try patching qmail, a good patch to start with is the QMAILQUEUE patch, available at
http://www.qmail.org/qmailqueue-patch. (Netqmail users needn't bother, because it's already
applied.) It's quite small but very useful. Once you've applied the patch, any qmail component that
calls qmail-queue to queue a mail message checks the QMAILQUEUE environment variable and if it's
set, uses it as the name of a program to run instead. This makes it easy to insert filters of various
sorts into qmail's processing without having to add special code to individual programs.

Now that you've built and installed qmail, daemontools, and perhaps other add-on packages, the
next chapter tells you how to start it all up.

http://www.fsf.org/software/patch/patch.html
http://www.qmail.org/qmailqueue-patch
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Building with Recent GLIBC and Fixing the errno Problem

If your system uses the GNU GLIBC Version 2.3.1 or newer, qmail won't compile without
some small patches. This problem affects most recent versions of Linux. The qmail source
code defines errno, the place where system calls put error codes, to be an int variable,

but in these libraries it's not, it's a macro.

In the source file errno.h, replace the line that declares errno with this:

#include <errno.h>

In the source files dns.c and cdb_seek.c, find any lines that declare errno or h_errno and
delete them so that the system errno is used instead. Then recompile.

The netqmail package available at http://www.qmail.org/netqmail includes the errno
patch for qmail and, in its other-patches subdirectory, the errno patch for four other
packages.

[Team LiB]

http://www.qmail.org/netqmail
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 4. Getting Comfortable with Qmail
This chapter guides you through the basics of running qmail and delivering mail to users on your
qmail host. It's quite possible to run qmail in parallel with your old mail system, which is usually a
good idea during a transition, so you can do everything in this chapter while leaving your old mail
system in place.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.1 Mailboxes, Local Delivery, and Logging

Before you start up qmail, you must make a few configuration decisions. None of these are
irrevocable, but if you know what you want, it's easier to set them that way at first than to change
them later.

4.1.1 Mailbox Format

Qmail supports two mailbox formats: the traditional mbox and Dan's newer Maildir. I won't belabor
the difference here (see Chapter 10 for more details) other than to note that mbox stores all its
messages in a single file and is supported by all existing Unix mail software, while Maildir stores each
message in a separate file in a directory, and is supported by a reasonable set of software (including
procmail, the mutt MUA, and several POP and IMAP servers) but not as many as mboxes. If you're
converting from an existing mail system that uses mboxes, it's easier to keep using mboxes, but if
you're starting from scratch, go with Maildirs.

4.1.2 Local Delivery

If you use mbox files, qmail normally puts the incoming mailboxes in users' home directories. That is,
for user fred, the mailbox would be ~fred/Mailbox. Older mail programs often put all of the mailboxes
into /var/mail. For both security and disk management reasons, it's better to put the mail in the
user's home directory with his or her other files, but if you have existing mailboxes in /var/mail, it's
not hard to persuade qmail to continue delivering mail there.

If you're converting from an older MTA, you can either set up qmail to deliver into the same
mailboxes as the old MTA or, if you're feeling cautious, set qmail to deliver into Maildirs or home
directory mboxes while the old MTA still delivers to /var/mail. (The disadvantage is that once you're
happy with qmail, you have to convert and merge the old mailboxes. See Section 4.7 later in this
chapter.)

4.1.3 Logging

The traditional way to make log files is with the system syslog facility. It turns out that syslog is a
serious resource hog and on a busy system can lose messages. On a small system this doesn't
matter, but on a busy mail host, it sucks up significant resources that otherwise could be devoted to
something more useful. Dan Bernstein wrote a logging program called multilog, part of the
daemontools package, which is far faster and more reliable than syslog, but not particularly
compatible with it. If you're sure that syslog won't be a bottleneck, go ahead and use it, but if you
might eventually want to use multilog, you're better off starting with it because switching a running
system is a pain in the neck.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.2 An Excursion into Daemon Management

A daemon is a program that runs in the background (that is, without interacting with a user) and is
useful. On Unix systems, there are two kinds of daemons: the ones that run continuously and the
ones that run on demand. Familiar Unix examples of continuous ones include named, the DNS server,
and httpd, the Apache web server, while on-demand ones include servers for network services, such
as telnet and ftp, and cleanup scripts run once a day or once a week. The on-demand ones are all
started from continuous servers such as cron for time-based services, and inetd or tcpserver (the
qmail replacement for inetd) for network services.

The daemontools package provides a consistent way to run continuous daemons, optionally (but
almost invariably) also arranging to collect log information that the daemons produce. The two key
programs are supervise, which controls a single daemon, and svscan, a "superdaemon," which
controls multiple copies of supervise and connects each daemon with its logger.

For each daemon to be controlled, supervise uses a directory containing information about the
daemon. The only file that you must create in that directory is run, the program to run. Although it
can be a link to the daemon, it's usually a short shell script that sets up the environment and then
exec's the daemon. The supervise program creates a subdirectory also called supervise, where it
stores info about what it's doing. Once supervise is running, you can use the svc program to stop and
start the daemon, and send signals to it. (This consistent way to signal daemons is one of supervise's
greatest strengths.)

To run supervise, follow these two steps: create /service, which you do with a regular mkdir

command as the super-user, and start svscan, which I cover in the next section. Once svscan is
running, it looks at /service and starts a supervise process in each of its subdirectories. Every five
seconds it looks again and creates new processes for any new subdirectories. If a subdirectory has a
sub-subdirectory called log, svscan arranges to log the output of the program. In this case, it starts a
pair of processes connected by a pipe, equivalent to:

supervise subdir | supervise subdir/log

The log subdirectory contains a run file that invariably runs multilog to write the output into a rotating
set of log files.

4.2.1 Starting a Daemon

One of the least standardized aspects of Unix and Unix-like systems is the way that you start
daemons at system boot time. Even if you use supervise as I recommend, you still must start the
svscan daemon to get everything else going. Here are some hints to start svscan. If you ignore my
advice and run daemons directly, start each of them the way I recommend you start svscan.

Versions 0.75 and later of daemontools include a startup script for svscan called svscanboot, and the
daemontools installation process tries, usually successfully, to edit a call to that program into your
system startup scripts. It sets up the environment and runs svscan, piping its output into a new
program called readproctitle that copies anything it reads on top of its program arguments, which

http://lib.ommolketab.ir
http://lib.ommolketab.ir

means that any error messages from svscan will show up in ps listings in the arguments to
readproctitle. This kludge makes it possible to see what's wrong if svscan has trouble starting up or
starting supervise for any of the directories under /service:

Single rc file

Solaris and some versions of BSD put all of the startup commands in a file called /etc/rc,
usually with local modifications in /etc/rc.local. If the daemontools installation hasn't already
done so, add this line to either of those files:

/command/svscanboot

If it's convenient to reboot your system, do so. If not, just run svscanboot from a root shell prompt,
detaching it from the terminal:

daemon /command/svscanboot # if you have the "daemon" command
csh -cf '/command/svscanboot &' # if not

Either way, check with ps to be sure that svscan is running.

SysV /etc/inittab

System V and its derivatives and clones, including most versions of Linux, start daemons from
a file called /etc/inittab. If the daemontools installation hasn't already done so, add this line to
the end of it:

SV:123456:respawn:/command/svscanboot

Then, to tell the system to rescan inittab, type:

kill -HUP 1

Again, check with ps to be sure that svscan is running.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.3 Setting Up the Qmail Configuration Files

The final hurdle before starting up qmail is to create a minimal set of configuration files. The qmail
distribution includes a script called config that makes a set of configuration files that's usually nearly
right. I suggest you run the config script, then look at the files to see what it did and fix the files up
as needed. All of the configuration files are in /var/qmail/control. The ones you need to create
include:

me

The name of this host, e.g., mail.example.com. This provides the default to use for many other
configuration files.

defaulthost

The hostname to add to unqualified addresses in submitted mail. If your email addresses are of
the form mailbox@example.com, this would contain example.com, so that mail to, say, fred is
rewritten to fred@example.com. (Note that this rewriting happens only to locally submitted
mail sent via qmail-inject, not to mail that arrives via SMTP.)

defaultdomain

The domain to add to unqualified domains in submitted mail addresses, usually your base
domain, such as example.com. This would rewrite fred@duluth to fred@duluth.example.com.
(This rewriting also happens only in locally submitted mail.)

locals

Domain names to be delivered locally, one per line. Mail to any domain listed in locals is
delivered by treating the mailbox part as a local address. This usually contains the name of the
host and the name of the domain used for user mailboxes, such as example.com and
mail.example.com. Do not list virtual domains (domains hosted on this machine but with their
own separate sets of mailboxes) in locals. I discuss them later.

rcpthosts

Domains for which this host should accept mail via SMTP. This generally contains all of the
domains in locals, as well as any virtual domains and any domains for which this host is a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

backup mail server. If rcpthosts does not exist, qmail accepts and delivers mail for any domain,
a severe misconfiguration known as an "open relay," which will be hijacked by spammers. Be
sure your rcpthosts file exists before starting qmail. If you haven't defined any virtual domains,
just copy locals to rcpthosts.

There are over 20 more control files, but the rest can be left for later.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.4 Starting and Stopping Qmail

Starting qmail is easy in principle. You run qmail-start and it starts the four communicating daemons
that qmail needs. Two details complicate the situation: the default delivery instructions, and
connecting the daemons to whatever you want to use for logging.

Because the daemontools package of which supervise is a part wasn't written until after qmail 1.03
was released, all of the provided startup files use splogger to send the log information to syslog. I
find daemontools greatly preferable, so I primarily discuss how to set up qmail using supervise.

4.4.1 Choosing a Startup File

Qmail 1.03 comes with a selection of startup files you can use, either directly or as a starting point
for a customized startup file of your own. You can find the startup files in /var/qmail/boot. None of
them are usable directly with daemontools, but they're useful as templates. The differences among
them only affect what happens when mail is delivered to a user who has no .qmail file, because the
only difference is the string to use as a default .qmail. They include:

binm1

Default delivery using /usr/libexec/mail.local, the 4.4BSD mail delivery agent, which puts mail
in /var/spool/mail

binm1+df

Same as binm1, also providing dot-forward emulation

binm2

Default delivery using /bin/mail with SVR4 flags, which also puts mail in /var/spool/mail

binm2+df

Same as binm2, also providing dot-forward emulation

binm3

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Default delivery using /bin/mail with flags for older versions of Unix; puts mail in
/var/spool/mail

binm3+df

Same as binm3, also providing dot-forward emulation

home

Default delivery using qmail's internal qmail-local, which puts mail in the user's Mailbox

home+df

Same as home, also providing dot-forward emulation

proc

Default delivery using procmail, which puts mail wherever procmail puts it, usually
/var/spool/mail unless you patch procmail as I describe later

proc+df

Same as proc, also providing dot-forward emulation

Which flavor of startup depends mostly on your existing mail configuration. If you use procmail, keep
using it. If you have a lot of users with .forward files, use a dot-forward version. (If you only have a
few .forward files, it's easier to hand-translate them into .qmail files.) I don't recommend using any
of the old mail delivery programs unless you really, really want to keep delivering mail in /var/mail.
For testing and usually for production, I suggest either plain home-directory mailbox delivery or
procmail.

Assuming that you've installed and started daemontools as suggested earlier in this chapter, you now
must create a pair of supervise directories for qmail. I use /var/qmail/supervise/qmail-send and
/var/qmail/supervise/qmail-send/log to be consistent with the widely used qmail setup instructions at
http://www.lifewithqmail.org. Create them like this (as the super-user, which is why the following
command lines start with a # prompt):

mkdir /var/qmail/supervise/qmail-send
mkdir /var/qmail/supervise/qmail-send/log
chown root /var/qmail/supervise/qmail-send /var/qmail/supervise/qmail-send/log

mkdir /var/qmail/supervise/qmail-send/log/main
chown qmaill /var/qmail/supervise/qmail-send/log/main

http://www.lifewithqmail.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The log directory contains a subdirectory main that contains the actual logs. It belongs to qmaill, the
qmail log pseudo-user.

Then create run files in both the main qmail and log directories, as in Example 4-1.

Example 4-1. qmail run

1. #!/bin/sh
2.
3. limit open 1000
4. limit maxproc 100
5.
6. exec env - PATH="/var/qmail/bin:$PATH" \
7. qmail-start ./Mailbox

The two limit commands on lines 3 and 4 ensure that qmail can run many deliveries in parallel. Set
maxproc to be larger than the number of parallel remote deliveries permitted. (By default the number

of deliveries is 20, but you'll probably want to increase it unless you have a very slow or overloaded
network connection, or handle a very small amount of mail.) Also set open, the per process open-file

limit, to be at least twice the greater of the number of simultaneous local or remote deliveries
permitted, because qmail-lspawn and qmail-rspawn use two pipes per delivery subprocess. Then the
exec env command on line 6 clears out the environment, sets PATH to a known value, and runs

qmail-start. The argument to qmail-start is copied from the example in /var/qmail/boot/home to
default deliveries to Mailbox in a user's home directory. (You can copy the startup command from
one of the other example files, such as boot/proc.)

Also create log/run to start up the logging process, as in Example 4-2.

Example 4-2. qmail log/run

 1. #!/bin/sh
 2. exec setuidgid qmaill \
 3. multilog t s4000000 ./main

The setuidgid command switches to the qmail log pseudo-user, then runs multilog to store qmail's

output into rotating log files. The arguments say to prefix each line with a time stamp, and to create
log files of up to 4 MB in the subdirectory main.

Supervise starts the run scripts directly, so they need to be executable:

chmod +x /var/qmail/supervise/qmail-send/run
chmod +x /var/qmail/supervise/qmail-send/log/run

Be sure the initial #!/bin/sh line is present in each of the scripts so they are self-running.

4.4.2 Fire `er Up

Once you've created the run files, it's time to start qmail:

ln -s /var/qmail/supervise/qmail-send /service

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Assuming you have svscan running, within a few seconds of making the line, qmail will start. Look at
the log file /var/qmail/supervise/qmail-send/log/main/current to be sure. It should contain a line
similar to this:

status: local 0/10 remote 0/20

Now try telling qmail to send some local mail:

$ /var/qmail/bin/qmail-inject

To: me

my first qmail message
^D

(Use your own username instead of me, of course.) The log file should now contain lines logging the

local delivery:

new msg 175283
info msg 175283: bytes 230 from <fred@example.com> qp 5524 uid 100
starting delivery 1: msg 175283 to local fred@example.com
status: local 1/10 remote 0/20
delivery 2: success: did_0+0+1/
status: local 0/10 remote 0/20
end msg 175283

Your file Mailbox should contain the message. If not, the log should contain evidence of the problem,
which is usually files or directories not created with the correct owner or permissions.

Now try a message to a nonexistent address:

$ /var/qmail/bin/qmail-inject
To: baduser

oops
^D

In this case, qmail attempts to deliver the message, then finds it can't and sends back a failure
notice, which should end up in your mailbox. The log should look like this:

new msg 175283
info msg 175283: bytes 212 from <fred@example.com> qp 5690 uid 100
starting delivery 1: msg 175283 to local baduser@example.com
status: local 1/10 remote 0/20
delivery 1: failure: Sorry,_no_mailbox_here_by_that_name._(#5.1.1)/
status: local 0/10 remote 0/20
bounce msg 175283 qp 5695
end msg 175283
new msg 175284
info msg 175284: bytes 746 from <> qp 5695 uid 124
starting delivery 2: msg 175284 to local fred@example.com
status: local 1/10 remote 0/20
delivery 2: success: did_0+0+1/
status: local 0/10 remote 0/20

http://lib.ommolketab.ir
http://lib.ommolketab.ir

end msg 175284

Finally, try a test message to a mailbox on a remote system. If you don't have a remote mailbox
handy, use the author's autoresponder at qmail@gurus.com. (It will send a response message telling
you how clever you were to write to it, with a blurb for my books.)

$ /var/qmail/bin/qmail-inject
To: qmail@gurus.com

boing
^D

The logs show the remote delivery, including the IP address of the remote system and the remote
system's response:

new msg 175283
info msg 175283: bytes 223 from <me@example.com> qp 6808 uid 100
starting delivery 3: msg 175283 to remote qmail@gurus.com
status: local 0/10 remote 1/20
delivery 3: success: 208.31.42.43_accepted_message./Remote_host_said:_250_ok_
993021663_qp_16918/
status: local 0/10 remote 0/20
end msg 175283

If all three of these tests work, you have correctly installed qmail. Congratulations!

4.4.3 Stopping Qmail

When you're running qmail for real, you'll almost never want to stop it, but when debugging, just tell
supervise to stop qmail and mark it as down:

svc -td /service/qmail-send

If there are deliveries in progress, qmail will wait for them to finish or time out. Then it exits. Use svc
-u to bring qmail back up.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.5 Incoming Mail

Next, install the SMTP daemon to receive incoming mail. If you have another mail system already
running, set up qmail's SMTP daemon for testing on a different port than the standard port 25.

4.5.1 Configuration Files

The SMTP daemon only needs one configuration file to run: /var/qmail/rcpthosts. For simple
applications, rcpthosts can contain the same list of domains as locals. It is very important that you
set up rcpthosts before starting your SMTP daemon. If you don't, your mail system will be an "open
relay," which will transmit mail from anywhere to anywhere and be abused by spammers and
blacklisted.

A little later we'll also be setting up a control file to tell the daemon what IP addresses are assigned
to local users allowed to relay mail.

4.5.2 Setting Up the Daemons

Setting up SMTP involves three layers of daemons. Supervise runs tcpserver, which waits for
incoming network connections. Each time a remote system connects, tcpserver starts a copy of
qmail-smtpd, which collects the incoming message and passes it to qmail-queue for delivery. To run
it under supervise, create a pair of directories, and call them /var/qmail/supervise/qmail-smtpd and
/var/qmail/supervise/qmail-smtpd/log:

mkdir /var/qmail/supervise/qmail-smtpd
mkdir /var/qmail/supervise/qmail-smtpd/log
chown root /var/qmail/supervise/qmail-smtpd /var/qmail/supervise/qmail-smtpd/log

mkdir /var/qmail/supervise/qmail-smtpd/log/main
chown qmaill /var/qmail/supervise/qmail-smtpd/log/main

The run script eventually becomes rather complex as you add code to handle local versus remote
users, spam filters, and the like, but this is adequate to start (see Example 4-3).

Example 4-3. Running the SMTP daemon

 1. #!/bin/sh
 2. limit datasize 3m
 3. exec tcpserver \

 4. -u000 -g000 -v -p -R \
 5. 0 26 \
 6. /var/qmail/bin/qmail-smtpd 2>&1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The limit command on line 2 defends against a denial-of-service attack in which the attacker feeds

the SMTP daemon a gargantuan message that fills up all of memory and crashes the machine. Then
the tcpserver command on line 3 accepts SMTP connections and runs qmail-smtpd for each one.
The -u and -g flags on line 4 set the user and group numbers; substitute the values on your system
for qmaild. The -v flag does verbose logging (recommended, it's not that verbose) and -p does
"paranoid" validation of deduced hostnames of remote systems. The -R flag means to not try to

collect ident information from the remote host. (Ident information is rarely useful and a failed ident
request can stall the daemon startup for 25 seconds.) On line 5, host number 0 means to accept
connections on any IP address assigned to this machine, and 26 means to use port 26 rather than

standard SMTP port 25, which allows you to run the daemon for testing without interfering with an
existing MTA on port 25. (If there's no other MTA running, you might as well use port 25.) Finally,
line 6 has the command for tcpserver to run once a connection is open. At the end, 2>&1 combines

any output to standard error with the regular output so both appear in the log files.

The log/run file is the same as the one for qmail logging:

 1. #!/bin/sh
 2. exec setuidgid qmaill \
 3. multilog t s4000000 ./main

Once you have all the files created, symlink the smtpservice directory so svscan starts it up:

chown +x /var/qmail/supervise/qmail-smtpd/run
chown +x /var/qmail/supervise/qmail-smtpd/log/run

ln -s /var/qmail/supervise/qmail-smtpd /service

If you look at log/current, you should see this:

tcpserver: status: 0/40

Now try sending yourself some mail, using Telnet to talk to the SMTP server:

$ telnet localhost 26
Trying 127.0.0.1...
Connected to localhost.example.com.
Escape character is '^]'.
220 example.com ESMTP
helo localhost
250 tom.example.com
mail from:<me@example.com>
250 ok
rcpt to:<me@example.com>
250 ok
data
354 go ahead
Subject: a message

hi
.
250 ok 993620568 qp 5602
quit
221 example.com

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Connection closed by foreign host.

The log file for the SMTP daemon in /service/qmail-smtpd/log/main/current should show the
connection to the daemon:

tcpserver: status: 1/40
tcpserver: pid 5582 from 127.0.0.1
tcpserver: ok 5582 localhost:127.0.0.1:26 localhost:127.0.0.1::54044
tcpserver: end 5582 status 0
tcpserver: status: 0/40

Check the qmail log in /service/qmail-send/log/main/current to be sure the message has been
delivered:

new msg 175297
info msg 175297: bytes 198 from <me@example.com> qp 5845 uid 120
starting delivery 1: msg 175297 to local me@example.com
status: local 1/10 remote 0/20
delivery 1: success: did_0+0+1/
status: local 0/10 remote 0/20
end msg 175297

(The numbers vary somewhat; qmail uses the inode number of the spool file as the msg number.)

If this works, you now have a working mail system. If not, the qmail and tcpserver logs should give
you hints about what's wrong. The most likely problems are missing directories or configuration files,
or incorrect file modes. Also be sure you just didn't make a typing error while telnetting to the SMTP
port.

If you want to stop the SMTP daemon, use svc -td just as you did to stop qmail. It's perfectly OK for

the SMTP daemon to be running while qmail isn't. In this case, incoming mail is queued but won't be
delivered until qmail is started.

Once you believe that qmail works, kill any other mail daemon listening on port 25, change port 26 to
25 in the run file, and restart the daemon with svc -t to start receiving mail on the standard port.

The rest of the examples in this chapter use port 25 rather than port 26, on the assumption that
qmail is now your production mail system, but for testing, they all work equally well on port 26.

4.5.3 Make Some Mail Aliases

Every mail system on the Internet should define a few standard addresses, such as postmaster,
webmaster, and mailer-daemon. (The last is the return address in the From: line of bounce
messages.) To define an address, just create a .qmail file for the address in the home directory of the
alias user:

echo fred > /var/qmail/alias/.qmail-postmaster
echo fred > /var/qmail/alias/.qmail-mailer-daemon

(If your login name isn't fred, adjust these examples appropriately.)

Now try using qmail to send mail to postmaster and check that it lands in your mailbox. On a busy
system, postmaster gets a lot of mail and you'll probably want to use procmail (discussed later) to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

sort it to some place other than your personal mailbox.

4.5.4 Relaying for Local Users

Your qmail system most likely is a mail hub for a bunch of PCs or workstations. You want to accept
mail destined for any address from your users so they can use your mail hub as a "smart host," but
for security reasons, you want to accept only mail destined for your own network from elsewhere.
Setting up relay control involves two steps: defining the list of locally handled domains for which
you'll accept mail from outside and defining the addresses of hosts that are allowed to relay. A third
step is to treat mail from local PCs as "injected" mail that must have its headers validated and
completed. (As opposed to mail that's relayed from other systems that should already have valid
headers, but I save that for later in this chapter.)

You should have already put the list of locally handled domains into /var/qmail/rcpthosts. (If not, do
so now.)

Arranging for your users to relay is a little more complicated, because tcpserver and qmail-smtpd
provide a general scheme that permits mail to be treated differently depending on what IP address it
is received from. You create a file of IP address ranges and environment variables to set and compile
it into a CDB database that tcpserver reads. When it receives a connection from an IP address in the
database, it passes the corresponding environment variable to qmail-smtpd. For relay control, the
relevant variable is RELAYCLIENT. If it's set, qmail-smtpd permits mail to any address, not just the
ones in relayhosts, and appends the contents of RELAYCLIENT to each envelope recipient address.

Different people have different preferences for the location of the TCP rules file. I prefer to keep them
with the rest of the qmail files in a directory called /var/qmail/rules, so create a file called
/var/qmail/rules/smtprules.txt with contents like this (the # lines are comments):

allow relay from this host
127.:allow,RELAYCLIENT=""

allow relay from other hosts on this network
172.16.42.:allow,RELAYCLIENT=""
172.16.15.1-127.:allow,RELAYCLIENT=""

otherwise, allow connections but no relay
:allow

The first line says to accept connections from any address starting with 127, that is, the loopback
pseudo-network used for connections from the qmail host to itself, and to create an empty
RELAYCLIENT variable. This permits any SMTP connection from the host that qmail is running on to
relay. The second and third lines permit relay from any address in 172.16.42.x, and in the range
172.16.15.1 through 172.16.15.127. Replace these lines with ones listing the IP range(s) of your own
network. You can have as many lines as you want; more lines don't make the lookup any slower once
the file is compiled into a CDB. The last line is the default, and permits connections from anywhere
else, but without setting any variables.

Now you must compile the rules into a CDB file, using tcprules. Although it's not hard to run tcprules
by hand, it's a pain to do it every time you update your smtprules file (which you will, to block IP
addresses that send a lot of spam). It's easy to automate the process using a Makefile to rebuild the
CDB, as in Example 4-4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 4-4. Makefile to rebuild the rules file for the SMTP listener

default: smtprules.cdb

smtprules.cdb: smtprules.txt
 cat $> | /usr/local/bin/tcprules $@ $@.$$$$

(The odd looking $@.$$$$ is the temporary name of the new CDB, the real name with the PID of the

make process added to ensure uniqueness.) Finally, tell tcpserver to look at the rules file. Edit
/var/qmail/supervise/qmail-smtpd/run and add an --x flag to the tcpserver line, as in Example 4-5.

Example 4-5. Running the SMTP listener

 1. #!/bin/sh
 2. limit datasize 2m
 3. exec \

 4. tcpserver -u000 -g000 -v -p -R \
 5. -x/var/qmail/rules/smtprules.cdb 0 25 \
 6. /var/qmail/bin/qmail-smtpd 2>&1

You're all set. Finally, use svc -t /service/supervise/qmail-smtpd to restart tcpserver with the

new arguments.

To test this, send mail from a computer on the local network to an address somewhere else (such as
a Hotmail account), and check the logs to verify that it's accepted and mailed back out.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.6 Procmail and Qmail

If you do any sorting or filtering of incoming mail, you should install the popular procmail mail
filtering package. Although procmail's filter definition language is terse to the point of obscurity, it's
very powerful and easy to use once you get the hang of it. In the past, procmail's default mailbox
location was in /var/mail, and it didn't support Maildirs. Recent versions of procmail work well with
qmail. Version 3.14 added support for Maildirs, and it's now easy to compile procmail to put the
default mailbox in qmail's preferred place.

The source for procmail is available at http://www.procmail.org. Download it to a local work directory
and unpack it. To make its default delivery be to Mailbox, edit the file src/authenticate.c. Around line
47 find the definition of MAILSPOOLHOME, remove the comment characters at the start of the line, and

change the file name to Mailbox:

#define MAILSPOOLHOME "/Mailbox"

Or to make the default delivery to a user's Maildir, type:

#define MAILSPOOLHOME "/Maildir/"

(Note the slash after the directory name, which tells procmail that it's a Maildir rather than an mbox.)

Then make and install procmail as described in its INSTALL file. The procmail installation recommends
that you install procmail as set-uid to root. When working with qmail, it does not need set-uid to work
correctly, and I recommend that you don't do this. When used as the mail delivery agent for
sendmail, procmail needs set-uid to run as the id of the delivered-to user. Qmail switches to the
correct user ID before running procmail, as it does for any delivery agent, so procmail doesn't need
to do so. Installing as set-uid won't cause any immediate problems, but it will pose a possible security
problem should there turn out to be lurking bugs in procmail.

To use procmail as your default delivery agent, use this in your qmail run file:

exec env - PATH="/var/qmail/bin:$PATH" \
 qmail-start '|preline procmail'

(The preline command is a qmail component that inserts a From line that procmail needs at the

front of the message.) Alternatively, to make procmail the delivery agent for an individual user, put
the procmail command into the user's .qmail file:

|preline procmail

Sendmail systems often pass the address extension as an argument to procmail so it can be used as
$1 in scripts. That's easy enough to do in .qmail-default:

|preline procmail -a "$EXT"

Procmail makes most environment variables available in its rule files anyway, so if you're not
converting from sendmail, just use $EXT in your scripts.

http://www.procmail.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

It's frequently advantageous to use different procmail filter definitions for different qmail
subaddresses. For example, if you are user fred and use the address fred-lists for your mailing list
mail, .qmail-lists could contain this:

|preline procmail procmaillists

to use procmaillists to sort list mail.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.7 Creating Addresses and Mailboxes

With the setup so far, every user in /etc/passwd automatically has a mailbox with the same name as
the login name.[1] If you're using mbox mailboxes, each mailbox is created the first time a message
is delivered to it. If you're using Maildirs, you must create the Maildirs yourself using maildirmake. If

all of your home directories are stored in /usr/home or /home, it's easy enough to give everyone a
Maildir. Run a script like this as root to create them:

[1] That's not quite true; for security reasons qmail won't deliver mail to the root user.

cd /home
for u in *
do
 maildirmake $u/Maildir
 chown -R $u/Maildir
done

The chown is important so that each user owns his own Maildir.

If you have more than two or three mailboxes to create, use the convert-and-create script from
http://www.qmail.org/. It creates Maildirs for every user with a mailbox, and copies the mail from
/var/mail mboxes into the new Maildirs.

Once you've created Maildirs for all of your existing users, creating them for new users is
considerably easier. Just add a line or two to your system's adduser script to create the Maildir as it
creates the rest of the new user's files. On Linux systems, use maildirmake to create

/etc/skel/Maildir, a prototype that gives every subsequent new user a Maildir.

[Team LiB]

http://www.qmail.org/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.8 Reading Your Mail

If you use mbox mailboxes, the only additional change you may have to make is to tell your mail
program (and your shell if it's one that reports new mail) that the mailbox is in ~/Mailbox rather than
in /var/mail. Most mail programs check the shell variable $MAIL. For testing, change the MAIL

variable at your shell prompt:

% setenv MAIL ~/Mailbox (in csh)
$ export MAIL=~/Mailbox (ksh and bash)
$ export MAIL=$HOME/Mailbox (in sh)

Once you're committed to qmail and your mail is in /var/mail, you want to copy everyone's mailbox
to their home directory, using the convert-and-create script mentioned previously. Then, find the
place in /etc/profile or /etc/cshrc that sets MAIL and change it to refer to the new mailbox location.

If you use Maildirs, your options are simpler. The only mail program with built-in Maildir support is
mutt. On qmail.org there are some patches for pine to handle Maildirs, and a version of movemail for
GNU Emacs users. If you use something else, you can use the scripts distributed with qmail such as
elq or pinq that copy mail from a Maildir into an mbox and then run elm or pine. Honestly, if a user
normally uses a mail program that expects mbox mailboxes, it's easier to tell qmail to use mboxes
than to tell the program to use Maildirs.

An alternative that makes Maildirs available to most mail clients is to use an IMAP server such as
Courier that handles Maildirs (see Chapter 13). The IMAP server can retrieve mail from the Maildir
and from any number of Maildir-format subfolders. You can set up pine or Mozilla to use IMAP to deal
with the Maildir folders, and use its built-in mbox support to handle mboxes directly as files. This has
the added advantage that you can check your mail using any IMAP client from other computers if
you're away from your usual computer.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.9 Configuring Qmail's Control Files

Qmail is controlled by a large set of control files stored in /var/qmail/control. Unlike some other MTAs
that group everything into one huge file that they have to parse to figure out what's what, qmail puts
each different kind of information into a separate file, so that each file needs little or no parsing. All
files are lines of plain text (although a few files are compiled into CDB databases before use). Some,
noted below, allow comment lines with a # at the beginning of the line. In files where each line

contains multiple fields, the fields are separated by colons.

Most of the control files are optional, and qmail uses a reasonable default in most cases if a file isn't
present. The only files that are absolutely essential are me, which contains the hostname of the local
host, and rcpthosts, which lists the names of the domains for which this host accepts mail.

Here's a list of all the control files in alphabetical order, noting which component uses each one. Many
of the optional patches introduce new control files, which are discussed during the description of the
patch.

Checking Your Configuration with qmail-showctl

Because qmail has a long and somewhat daunting set of configuration files, the package
includes a program to tell you what your current configuration is. Run
/var/qmail/bin/qmail-showctl and pipe its output through a pager like more to see a
detailed narrative of the contents of all of the configuration files. For missing files it tells
you what defaulted values are in use.

If you receive the message I have no idea what this file does , it means that the

file is not one that qmail-showctl recognizes. You can put any extra files you want in the
control directory and qmail doesn't care. Occasionally, it's useful to leave notes to yourself
or to save an old version of a file you're changing. There is an exception: qmail-showctl
looks at all the files and makes that complaint about the ones not in its list. If you apply
patches that use new configuration files, most of the patches don't bother to update
qmail-showctl, so it'll typically complain about those files too, which is equally harmless.

badmailfrom (qmail-smtpd)

Envelope addresses not allowed to send mail. If the envelope From address on an incoming
message matches an entry in badmailfrom, the SMTP daemon will reject every recipient
address. Entries may be either email addresses, or @dom.ain to reject every address in a
domain. This is a primitive form of spam filtering. These days, it's mostly useful to block quickly
a mailbomb or flood of rejection messages.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

bouncefrom (qmail-send)

Default: MAILER-DAEMON. The mailbox of the return address to put in bounce messages. I've

never found any reason to change it.

bouncehost (qmail-send)

Default: me. The domain of the return address to put in bounce messages. I've never found
any need to change it, although it's possible that if your mail host is mail.example.com, you
might want to have the bounces come from example.com.

concurrencylocal (qmail-send)

Default: 10. The maximum number of simultaneous local deliveries. Unless you have very slow
delivery programs, the default is adequate for all but very large systems. Keep in mind that if
you have slow delivery programs, it is quite possible to have all 10 or however many running
as the same user, so be sure that the per-user process limit is high enough to permit them all
to run.

concurrencyremote (qmail-send)

Default: 20. The maximum number of simultaneous remote deliveries. The default is adequate
for small systems, but too low for large systems or systems that host mailing lists. You should
adjust it so that qmail uses as much of your outgoing bandwidth as you want it to. In the
distributed version of qmail, you can increase this up to 120, which is enough for a moderately
busy system with mailing lists sharing a T1 with other services. See Chapter 16 for advice on
increasing it past 120 on large systems.

defaultdomain (qmail-inject)

Default: the literal string defaultdomain. The domain to add to unqualified host names (names
with no dot) on outgoing mail. That is, if someone injects a message with a sender or recipient
address of fred@bad and this file contains example.com, the address is rewritten as
fred@bad.example.com. You invariably want to set this to the local domain. Note that only mail
injected via qmail-inject has its header addresses rewritten. Addresses in mail that arrives via
SMTP or is injected directly via qmail-queue aren't modified.

defaulthost (qmail-inject)

Default: me. Similar to defaultdomain; the domain to add to addresses in outgoing mail that
have no domain at all. If defaulthost doesn't contain a dot, defaultdomain is added, too. Set
this to the name of the local domain.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

databytes (qmail-smtpd)

Default: 0, meaning no limit. The maximum message size to accept via SMTP. I usually set it to
about 1/10 the size of the typical amount of free space on the partition where the qmail queue
resides, to keep a single bloated incoming message from causing qmail to run out of disk
space. The DATABYTES environment variable overrides the control file, so if there are certain
systems from which you want to accept huge messages, you can put entries into the SMTP
rules file to permit that. For example:

allow 50 megabyte powerpoints from the boss
209.58.173.10:allow,DATABYTES="50000000"

allow 20 meg outgoing mail from nearby hosts
172.16.15.1-127.:allow,RELAYCLIENT="",DATABYTES="20000000"

doublebouncehost (qmail-send)

Default: me. The domain to which to send double-bounce messages. There's rarely any reason
to change it.

doublebounceto (qmail-send)

Default: postmaster. The mailbox to which to send double-bounce messages, that is, they go

to doublebounceto@doublebouncehost. You can also send these messages to a special mailbox
that you examine rarely, or because these days there are vast numbers of double bounces
caused by spam with fake return addresses, you can set it to nobody or some other address
that just throws them away.

envnoathost (qmail-send)

Default: me. The domain to add to envelope recipient addresses with no domain. This value is
used by qmail-send, while defaultdomain is used by qmail-inject, so in practice this value is
used to fix up mail received by SMTP. The default value is fine, unless you receive a lot of spam
with bare addresses, in which case you can set it to something like invalid to make incoming
mail with no domain bounce.

helohost (qmail-remote)

Default: me. The domain to use in the HELO command of outgoing SMTP sessions. The default
is fine.

idhost (qmail-inject)

Default: me. The domain to use when creating Message-ID: lines in outgoing mail. The default

http://lib.ommolketab.ir
http://lib.ommolketab.ir

is fine. If you want to do something special with message ID's, you can provide them yourself
on mail you send, in which case qmail won't alter them.

localiphost (qmail-smtpd)

Default: me. When qmail-smtpd sees incoming mail to an address using a dotted quad rather
than a domain name, like fred@[10.11.12.99], and the IP address is one on this host, it
substitutes in localiphost. The default is usually fine unless you want to change it to the local
mail domain.

locals (qmail-send)

Default: me. Domains to treat as local. Any addresses in domains listed in this file are
considered to be local and are routed using the local delivery rules. All local domains are
equivalent; if foo.org and bar.com both appear in locals, the addresses fred@foo.org and
fred@bar.com are handled identically.[2] This file always includes the name of the local host
(the same as what's in me) and generally includes the local domain as well and any other
domains that may have been used for the same set of addresses. For example, the locals file
on my mail server tom.iecc.com also includes iecc.com (the current local domain),
iecc.cambridge.ma.us (its old name), and iecc.us (a trendy vanity equivalent.)

[2] A very perverse user could test $HOST in a delivery rule in a .qmail file to tell two local domains apart,

but I don't think I've ever seen anyone do so.

Note that local domains are not the same as virtual domains, nor are they the same as the
SMTP recipient domains listed in rcpthosts.

me (qmail-send)

Default: none; this file is required. The name of the current host. This should be the same as
what the hostname command returns.

morercpthosts (qmail-smtpd and qmail-newmrh)

Default: none. More domains for which this host accepts SMTP mail. The contents of this file
are compiled into morercpthosts.cdb by qmail-newmrh. The SMTP daemon consults the cdb file
after it checks rcpthosts. If a host accepts mail for more than about 50 domains, Dan suggests
that you put the 50 busiest into rcpthosts and the rest into morercpthosts.

percenthack (qmail-send)

Default: none. The "percent hack" is a primitive form of source routing introduced by sendmail
in the early 1980s. If you send mail to user%in.side@out.side, the mail would be sent to
out.side, where the address would be rewritten to user@in.side and sent along to in.side. In

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the past 20 years, most of the connectivity problems that require source routing have been
solved, and for the ones that remain there are better tools such as smtproutes (described
later), so the percent hack is obsolete. If for some reason you absolutely need it (you have an
ancient mission-critical program for which all the source code has been lost that sends mail
using the percent hack, perhaps) any addresses in domains listed in percenthack are scanned
for percent signs and rewritten. In the previous example, out.side would have to be listed
there.

If a domain listed in percenthack is also listed in rcpthosts, your system is an open relay,
because spammers can send mail anywhere through your system by putting the actual target
address in percent form inside an address in the listed domain. Yes, spammers actually do so.
The solution is simple: don't do it.

plusdomain (qmail-inject)

Default: me. If the domain part of an address in an injected message ends with a plus sign, the
contents of plusdomain are appended to the end. In environments with many subdomains of a
single main domain, say east.bigcorp.com, west.bigcorp.com, and south.bigcorp.com, this lets
people abbreviate addresses to fred@south+. No longer widely used.

qmqpservers (qmail-qmqpc)

Default: none. A list of servers to which messages can be queued using QMQP. See Chapter 17.

queuelifetime (qmail-send)

Default: 604800 seconds (a week). How long to keep trying to deliver a message. More
precisely, if qmail tries to send a message and the attempt fails with a temporary error, the
error is treated as permanent if the message is older than queuelifetime, in which case the
message bounces.

The default time of a week is reasonable, but you might want to decrease it to three or four
days if you'd rather know sooner that a message isn't getting through, at the risk that the
destination host might have come back to life if you'd waited longer.

rcpthosts (qmail-smtpd)

Default: every domain. The list of domains for which this host accepts SMTP mail. It is
extremely important that this file exist. If it doesn't, qmail will accept mail destined for
anywhere and will be an "open relay," and a magnet for spammers.

If you receive mail for more than 50 domains, see morercpthosts.

smtpgreeting (qmail-smtpd)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Default: me. When another hosts connects via SMTP to send you mail, the greeting string to
send. The default is fine.

smtproutes (qmail-remote)

Default: none. Explicit routes to use to deliver outgoing mail, overriding MX data. Each line is of
one of these forms:

domain:relay

domain:relay:port

domain is the domain in the destination email address, relay is the name of the host to which to

deliver the mail, and the optional port is the port number if not the standard port 25.

The domain can use wildcards; if it starts with a dot, it matches any target domain that ends with

that domain. If the domain is empty, it matches all addresses, providing "smarthost" routing to send

all mail to a single smarthost for delivery. If relay is empty, qmail uses the standard MX lookup,

letting you override a broader wildcard or smarthost route.

Most systems can get by without smtproutes, but there are three situations where it can come in
handy. The first is a smarthost, mentioned previously, if your computer is on a dialup, DSL, or cable
modem, and the smarthost is your ISP's outgoing mail server. The second is to temporarily patch
around broken MX records or mail relays. The third is to route mail for private domains within your
network.

timeoutconnect (qmail-remote)

Default: 60 seconds. How long to wait for a remote server to accept the initial connection to
send mail. Unless you need to exchange mail with extremely slow and overloaded remote
servers, don't change it.

timeoutremote (qmail-remote)

Default: 1200 seconds. Once a remote server is connected, how long to wait for each response
before giving up. The default of 20 minutes is extremely conservative, and can lead to all of
your remote sending slots being tied up while waiting for somnolent remote hosts to time out.
Unless you communicate with extraordinarily slow and overloaded remote servers, you can
drop it to a minute.

timeoutsmtpd (qmail-smtpd)

Default: 1200 seconds. How long qmail-smtpd waits for each response from a remote client
before timing out and giving up. As with timeoutremote, you can decrease this to a minute
unless you have some really slow remote clients.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

virtualdomains (qmail-send)

Default: none. The list of virtual users and domains for which this system receives mail. If you
don't handle any virtual domains, you don't need this file.

The virtual domain scheme works by taking the mailbox in the virtual domain, prepending a
string and a hyphen to create a local address, and redelivering the mail to the local address.
The virtual domain file lists the prepend string to use for each virtual user and domain. (See
Chapter 12.) Each line is of one of these forms:

user@dom.ain:string (1)
dom.ain:string (2)
.domain:string (3)
domain: (4)
:string (5)

Form (1) controls mail to a specific address. Forms (2) and (3) control mail to any address in a
domain or in subdomains of a domain, respectively. Form (4), with an empty prepend, is used to
create an exception to a domain that would otherwise be handled by a line of form (3) or (5) and
means to handle the domain normally, not as a virtual domain. Form (5) is a catchall and controls all
domains not listed in locals or elsewhere in virtualdomains.

If a domain erroneously appears both in locals and virtualdomains, the listing in locals takes
precedence. Don't do that.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.10 Using ~alias

Although qmail automatically handles deliveries to most users with entries in the Unix password file
(or qmail's adjusted version of it; see Chapter 15), any useful mail setup also needs to deliver mail to
addresses unrelated to entries in the password file. Qmail handles this in a simple, elegant way with
the alias pseudo-user. As part of the installation process, create a user called alias and set its home
directory to /var/qmail/alias. When qmail is running, if mail arrives for a local mailbox that isn't in the
normal list of users, qmail prepends alias- to the address and retries the delivery. This makes any
address not otherwise handled in effect a subaddress of alias, so you can handle addresses by putting
.qmail files into ~alias. For example, if you have a user robert and want mail addressed to bob to be
forwarded to him, create ~alias/.qmail-bob and in it put &robert. Since qmail handles deliveries

using the .qmail files in ~alias the same way that it handles any other deliveries, you have all of the
same options delivering to nonuser addresses that you do to user addresses.

Because qmail doesn't deliver to root and other users that have a 0 user ID or that don't own their
home directories, you should arrange to send root's mail to the system manager by creating
~alias/.qmail-root. Also create .qmail-postmaster, .qmail-abuse, .qmail-webmaster, and any other
role addresses that you want to support.

The final default delivery is, not surprisingly, found in ~alias/.qmail-default. If that file doesn't exist,
unknown addresses bounce, often just what you want. The most common thing to put in that file is a
line to run the fastforward program (see the next section) to take delivery instructions from a file of
addresses, roughly as sendmail does. You can also implement other default delivery rules. For
example, if you want to make mail to subaddresses of ~alias users default to the base address, so
mail to fred-foop is delivered to fred if it's not otherwise handled, put a line like this in your default
delivery file. (It appears wrapped here, but it has to be on one long line in the file.)

| case "$DEFAULT" in *-*) forward "${DEFAULT%%-*}" ;; *) bouncesaying
"Sorry, no mailbox here by that name. (#5.1.1)" ;; esac

This says that if an address contains a hyphen, strip off the hyphen and everything after it and
redeliver it. Otherwise bounce the message. The bouncesaying command lets you provide your own
failure message, but a simple exit 100 would do the trick as well, telling qmail to bounce.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.11 fastforward and /etc/aliases

Sendmail and other MTAs use configuration files such as /etc/aliases that contain lists of mailboxes
and forwarding instructions. While qmail doesn't have a built-in feature to do that, the add-on
fastforward package (available at http://cr.yp.to/fastforward.html provides both a mostly compatible
way to handle existing /etc/alias files) and a more general scheme to handle files with forwarding
instructions and mailing lists.

4.11.1 Installing fastforward

You can download and install the fastforward package the same way you install Dan's other
programs, as described in Chapter 3. This section describes fastforward Version 0.51.

4.11.2 Using fastforward

The central program in the fastforward package is fastforward itself. It's designed to be run from a
.qmail file. When run, it gets the recipient address from $RECIPIENT or optionally $DEFAULT@$HOST,

looks up the address in a delivery database, and if it finds the address, follows the delivery
instructions for the address.

fastforward takes its instructions from a CDB-format file. There are two ways to create the file: using
newaliases to create /etc/aliases.cdb from /etc/aliases, which is in sendmail format, or using
setforward to create a CDB from an arbitrary file, which is in a different, more flexible format. All of
fastforward's CDB files have the same format, regardless of which program created them.

The CDB file can refer to mailing list files of addresses; the difference is that the CDB file contains
addresses and delivery instructions, while a mailing list file just contains a list of addresses and other
mailing list files, for use within a delivery instruction. Mailing list files can be created by newinclude,
which reads input containing a list of addresses in a format similar to the one sendmail uses for
:include: files, or by setmaillist, which reads input in a more flexible format. Mailing list files created
by either program have the same format, so you can use the input format that is more convenient.
Compiled mailing list files have the extension .bin. In this section, I describe /etc/alias compatibility
and leave the rest for the sections on virtual domains (Chapter 12) and mailing lists (Chapter 14).

The most common way to use fastforward is to call it from ~alias/.qmail-default so it can take a
crack at any addresses not handled otherwise:

| fastforward /etc/aliases.cdb

Or you can also combine it with other default rules. For example, to use fastforward and then
redeliver mail to subaddresses to the base address of the subaddress:

| fastforward -p /etc/aliases.cdb
| case "$DEFAULT" in *-*) forward "${DEFAULT%%-*}" ;; *) bouncesaying "Sorry, no

http://cr.yp.to/fastforward.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

mailbox here by that
name. (#5.1.1)" ;; esac

The -p flag says to "pass through," that is, exit 99 if an address is found or exit 0 if not, so qmail
goes on to the next line in the .qmail file if fastforward didn't deliver it. (In the absence of -p,

fastforward exits 0 if it forwards the message and 100 otherwise to bounce the mail.)

4.11.3 Alias File Format

The format of /etc/alias is a sequence of forwarding instructions. The most common instruction
forwards an address to one or more other addresses:

bob: robert
ted: edward, edwin, eduardo
fred@example.com: frederick
fred@bad.example.com: nobody
@good.example.com: mary

Mail to ted is forwarded to edward, edwin, and eduardo. This form is useful for role accounts that are
handled by several people or tiny mailing lists that change rarely. If there are multiple names in
localhosts for this host, distinguish addresses by putting the domain of the address, and forward all
addresses in a domain by using @domain. (This feature is more often used to handle addresses in
virtual domains; see Chapter 12.) As a concession to sendmail compatibility, addresses can have
comments and can be quoted as they are in To: and From: lines. Any line that starts with # is a

comment, and any line can be continued by starting continuation lines with whitespace:

bell: |ringthebell
klaxon: "|ringthebell --reallyloud"

Any address that starts with a vertical bar is treated as a command for program delivery. If the
command contains whitespace or at-signs, it has to be quoted. fastforward runs the program as
whatever user it's running as, which is alias if it's called from ~alias/.qmail-default. (To run a
program as another user, it has to be called from a .qmail file belonging to that user. See Chapter
15.) The program is run as:

preline sh -c command

so that the message starts with a sendmail-style From line.

cephalopods: :include:/usr/fred/cephalopods
owner-cephalopods: fred

Any address that starts with :include: refers to the contents of a mailing list file. The mailing list file
must have been compiled by newinclude or setmaillist, so in the previous example, fastforward looks
for /usr/fred/cephalopods.bin, and the delivery is deferred if the file isn't available. If there is an
entry for both listname and owner-listname, any forwarded mail to listname has its envelope sender
changed to owner-listname so bounces will go back to the owner of the list.

Note that mailing list files are read by fastforward when they're needed, not by newaliases. This
means that, in the previous example, the addresses on the list belong to user fred, who can update
the list file and rerun newinclude as needed. Mailing list files can refer to other mailing list files, but

http://lib.ommolketab.ir
http://lib.ommolketab.ir

for security reasons (and unlike sendmail), they cannot contain program deliveries. This is not much
of a problem in practice. In the previous example, if Fred wanted to, say, fax list messages to
someone using a fax program, he could add an address fred-squidfax to the mailing list, then create
~fred/.qmail-squidfax with whatever program deliveries he wants, running as fred, not as alias.

fastforward lives up to its name when doing list deliveries, and it can dispatch messages to huge lists
very quickly. Nonetheless, if you have a large list with hundreds or thousands of recipients, it's better
to use a mailing list manager like ezmlm (Chapter 14) to provide automated bounce handling, and a
partly or fully automated subscribe and unsubscribe service for list members.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 5. Moving from Sendmail to Qmail
More often than not, a site that plans to run qmail is already running some other mail software on a
Unix-ish server, and more often than not, that software is sendmail. This chapter walks through the
steps involved in moving a mail system from sendmail to qmail.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.1 Running Sendmail and Qmail in Parallel

Users tend to be upset when they can't access their email, so it's rarely possible to shut down the old
mail system, spend a day getting the new system installed and tested, then turn the mail back on.
Fortunately, you don't have to. It's easy to run sendmail and qmail in parallel on the same machine,
delivering mail into the same mailboxes, until you're satisfied qmail is working properly, and then
shut sendmail down.

Any MTA receives mail through two routes: local and remote. On Unix systems, local mail is injected
via the sendmail program, and remote mail is injected via SMTP. When you're running qmail and
sendmail in parallel, as long as /usr/lib/sendmail is a link to sendmail, local mail will go to sendmail,
and as long as sendmail is listening on port 25, remote mail will also go to sendmail. While you're
testing, put qmail's version of sendmail somewhere else, say /var/qmail/bin/sendmail, and run
qmail's SMTP daemon on port 26.

Once you're happy with your qmail installation, move the original /usr/lib/sendmail to
/usr/lib/sendmail.old (and similarly for any other links to it such as /usr/sbin/sendmail) and link the
qmail version in its place. That will start routing local mail to qmail.

For remote mail, kill the sendmail daemon, and restart the qmail SMTP daemon running on port 25.
That will start routing remote mail to qmail. Because sendmail probably still has some mail to flush
out, restart the sendmail daemon but without the -bd flag that makes it listen on port 25. A typical
command would be sendmail -q30m to keep retrying failed deliveries every 30 minutes. After a few
days, or when the sendmail queue is empty, you can shut sendmail down for good.

5.1.1 Sendmail Switching Systems

Some versions of BSD and Linux have their own schemes to handle multiple mail systems with
different versions of sendmail by providing a layer of indirection between the sendmail program that
other applications call and the actual program provided by the mail package. These schemes don't do
anything that the direct approach can't also do, but they document the setup better and are more
likely to survive system upgrades, so you should use them when you can.

NetBSD and FreeBSD use a program called mailwrapper, which is installed where sendmail would
usually go. It consults a file called /etc/mail/mailer.conf, which has the names of the actual programs
to run when sendmail is called under any of its many aliases. (See Example 5-1.)

Example 5-1. Typical mailer.conf

sendmail /var/qmail/bin/sendmail
send-mail /var/qmail/bin/sendmail
newaliases /var/qmail/bin/newaliases

Debian and Red Hat Linux have an "alternatives" scheme that uses symlinks. In a typical alternatives
setup, /usr/sbin/sendmail is a symlink to /etc/alternatives/mta, which is in turn a symlink to the real

http://lib.ommolketab.ir
http://lib.ommolketab.ir

sendmail program. You can just symlink /etc/alternatives/mta to /var/qmail/bin/sendmail or use the
alternatives (Red Hat) or update-alternatives (Debian) command to make the links.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.2 User Issues

There are two important differences visible to mail users when moving from sendmail to qmail:
mailbox format and location, and .forward files. The standard qmail distribution includes some
examples in /var/qmail/boot to set up for various degrees of sendmail compatibility, discussed in
Chapter 4.

5.2.1 Mailbox Format and Location

Sendmail invariably delivers mail into mbox format mailboxes, which are usually all located in
/var/mail or /var/spool/mail. Qmail can deliver to either mbox or Maildir files, but normally puts each
user's mailbox in the user's home directory. You have several options during a conversion.

The easiest option is to leave all the mailboxes in /var/mail or a similar shared directory. The
disadvantage is that /var/mail isn't a very good place to put mail, because mail doesn't count toward
individual disk quotas, and minor protection errors on mailboxes make it possible to snoop on mail.
Because qmail doesn't have a built-in delivery agent that puts mail in /var/mail, you must tell it to
use an external one such as /usr/libexec/mail.local (4.4 BSD and descendants) or /bin/mail (older
versions of BSD, System V, and Linux).

It is not a good idea to leave mail in /var/mail other than for testing. A reasonable compromise is to
have qmail deliver to mbox files in the home directories, and leave sendmail delivering to /var/mail.
Then when you're happy with qmail, copy all the old mailboxes to the new location using scripts
described later in this chapter. You must also adjust the .profile and .login files so that they set the
MAILBOX environment variable to point to the new location.

Although Maildir mailboxes have many operational advantages over mboxes, switching users over on
systems with shell users is painful due to the dearth of Maildir mail clients. On systems where most
or all of your users pick up mail with POP or IMAP, switching to Maildirs is easier, and I recommend it.
Again, set up qmail with Maildirs, then when you stop sendmail, copy the contents of the old
mailboxes into the new ones, converting mbox to Maildir at that time.

Qmail comes with a pair of scripts called pinq and elq, which copy the user's incoming mail from
~/Maildir to ~/Mailbox and then run pine or elm. While they work fine, if a user is going to use a mail
client that expects an mbox, it makes more sense to deliver to the mbox in the first place. One
semiplausible reason to use pinq or elq is if the filesystem to which the mail is delivered is on a
different host than the one uses to read mail, with the files mounted using NFS. Because NFS has
locking problems with mboxes, it makes sense to do the deliveries into Maildirs, which work reliably.
Assuming the user runs only one copy of pinq or elq at a time, it can safely copy mail from the Maildir
into an mbox on his local disk, and then run pine or elm.

5.2.2 Qmail and .forward Files

Sendmail shell users frequently have .forward files to handle their mail deliveries. The most common

http://lib.ommolketab.ir
http://lib.ommolketab.ir

uses are to forward mail to another address and feed incoming mail to procmail for filtering and
sorting, but the .forward scheme is quite general, albeit not very well specified.

Qmail offers two migration paths for .forward. The format of .qmail files is similar enough to .forward
files that the most common .forward files can be turned into .qmail files with little or no tweaking. If
you have a small number of shell users, turn them into .qmail files when you convert, to get rid of
.forward files once and for all.

Alternatively, if you have a lot of .forward files, Dan has an add-on package called dot-forward that
provides most of the sendmail .forward features. You can run qmail and make the default delivery
instructions to be to run dot-forward. This means that anyone without a .qmail file will use dot-
forward to interpret a .forward file, if any, while users who have created .qmail files will use those
instead. This is the best approach for larger shell setups.

Keep in mind that dot-forward doesn't do everything that sendmail does, so some .forward files,
notably those that use :include: to forward to a mailing list or group of people, won't work. The
conversion to .qmail isn't hard, but someone has to do it before stopping sendmail.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.3 System Issues

The sendmail.cf configuration file provides a fantastic amount of configurability to sendmail, some of
which is quite useful. Most of sendmail's tricks have straightforward equivalents in qmail. It may be
useful to print out sendmail.cf so you can check off each configuration option as you deal with it.

5.3.1 Deconstructing sendmail.cf

Much of the configuration information in a typical sendmail.cf needs no qmail equivalent. Since
sendmail was written in an era when it wasn't clear what mail system would predominate, it can
handle a wide variety of long-dead mail addressing formats, and much of sendmail.cf defines the
syntax of email addresses, something that's built into qmail.

Nonetheless, sendmail.cf files usually do have some local customization that you need to translate.
Because the configuration language is so arcane, most sites use a set of m4 macros to generate the
file. In the following discussion, I mention primarily the m4 macros rather than the generated
configuration codes.

5.3.2 Local Deliveries

Sendmail uses several macros starting with LOCAL_MAILER to define the local mail configuration. The
qmail equivalent is the default delivery agent set at startup time. The sample boot scripts described
in Chapter 4 cover most of the common cases.

If you want to deliver mail into mbox files in /var/spool, use one of the binm boot scripts, whichever
one calls the same mailer that sendmail is calling. If any of your users have .forward files, use the
+df versions of the boot scripts.

If you want to deliver to mbox files in users' home directories, use the home or home+df boot script.
If you want to deliver into Maildirs, start with the home or home+df script, but change ./Mailbox to
./Maildir/. Don't forget the trailing slash, which tells qmail that it's a Maildir. Qmail will not create
Maildirs automatically, so you must create them yourself. If your user directories are all under
/home, running this script as root does the trick:

cd /home
for i in *
do
 maildirmake $i/Maildir
 chown -R $i $i/Maildir
done

If the sendmail configuration has FEATURE('local_procmail'), it's using procmail to deliver local

mail. See Section 4.6 in Chapter 4 for details on setting up procmail.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.3.3 Hostnames and Masquerading

Sendmail provides an elaborate masquerading system to rewrite addresses on mail. Historically,
people used masquerading so that the syntax of mail addresses within an organization could be
different from (generally simpler than) the addresses visible outside. While this made some sense
when mail systems had different, incompatible, and mutually hostile addressing syntaxes, it's not a
very good idea now that mail systems all use Internet-style addresses. Not surprisingly, qmail
provides only minimal help for masquerading.

The one function of masquerading that is still useful is to hide hostnames within a network. If your
domain were example.com with hosts named good.example.com and bad.example.com, you would
probably like the return address on your mail to be fred@example.com rather than
fred@good.example.com or fred@bad.example.com. Qmail makes this easy.

Several control files in /var/qmail/control set the hostnames to use:

me

The hostname of this host, such as good.example.com.

locals

A list of local domains. Lists the local domain and the machine's hostname, for example:
example.com
good.example.com

The domains in the sendmail virtusertable and mailertable files are virtual domains, not local
domains, so don't list them here.

envnoathost

If qmail-send encounters an unqualified address without a domain, add this host name. Make
this the domain, such as example.com. Such addresses are only likely to occur in incoming
SMTP mail.

defaulthost

If qmail-inject encounters an unqualified address without a domain, add this hostname. Make
this the domain, such as example.com. This handles addresses coming in via the sendmail
compatibility program.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

defaultdomain

If qmail-inject encounters an address where the host part does not contain a dot, add this
hostname. Make this the domain, such as example.com. This turns addresses like root@bad
into root@bad.example.com, so on networks with multiple mail subdomains, local users can
abbreviate the addresses.

These aren't all of the control files that affect addressing, but all of the others have reasonable
defaults, so there's no need to create them.

Sendmail provides several ways to specify multiple names for the local host. If your sendmail setup
has /etc/mail/local-host-names, all the names in that file are names for the local host. Or you may
have LOCAL_DOMAIN lines in the configuration file, each specifying another name for the local host. In

qmail, all of these turn into lines in the locals file.

5.3.4 Local and Virtual Domains

Sendmail and qmail handle domains somewhat differently. Qmail has a simple division into local,
virtual, and remote domains, whereas sendmail has many special cases. Fortunately, most of the
special cases translate easily into virtual or remote domains.

Qmail's local domains treat mailbox names as mailboxes on the local computer.

Virtual domains can handle any domains that are neither treated as local mailboxes (local) or sent
elsewhere via SMTP (remote). Virtual domains deliver to a set of mailboxes other than the standard
set on the computer and route mail via something other than SMTP.

The usual sendmail approach to virtual domains is with a virtusertable file that contains instructions
on how to route every address in every virtual domain. The easiest way to translate virtusertables is
to use the add-on fastforward program, as described in Chapter 12.

5.3.5 Remote Domains, and Primary and Backup MXes

Qmail's remote domains deliver mail to other hosts via SMTP. Anything that's not local (listed in
locals) or virtual (listed in virtualdomains) is remote.

Normally a host receives mail only for domains it handles itself, so the list in rcpthosts is the
combination of local and virtual domains. Mail hosts can also be "backup" or "secondary" MXes,
receiving mail for domains handled elsewhere, to provide a place to buffer the mail if the primary MX
isn't available. To make qmail a backup MX, just add the domains to back up to rcpthosts or
morercpthosts. If an incoming message isn't handled locally, qmail will automatically forward it to the
primary MX when it can. Sendmail has some backup MX kludges, like the one that automatically
provides backup service for any domain that has an MX pointing at the host. For security reasons,
qmail doesn't do that; the list of domains has to be explicit. For systems that handle many domains,
it's not hard to generate a suitable morercpthosts automatically from whatever database maintains
the DNS, and it's more secure than letting any random domain point its MX at you and make you an
unwilling relay.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.3.6 Smarthosts

Many small systems deliver mail using a "smarthost," a larger or better-connected system that
handles all outgoing mail, typically a gateway system on the local network or at one's ISP. Qmail has
a very simple, if not obvious, way to specify a smarthost. Put the smarthost's name into smtproutes
preceded by a colon, e.g.:

:mail.myisp.com

The syntax of each line in smtproutes is the name of the domain to route, colon, the name of the
host to route it. A missing domain makes the entry the default to use for all domains that don't have
explicit routes.

5.3.7 Uucp and Other Specialized Deliveries

Sendmail can specify that mail to particular domains be routed specially, for example, if the sendmail
system is acting as a gateway to dialup uucp hosts. Qmail's virtual domain system is flexible enough
that it can easily implement all sorts of gateway and specialized routing. See Chapter 12.

5.3.8 Spam Filtering

Sendmail can configure DNS blacklists and other spam filters in sendmail.cf. Qmail can do all of the
same filtering, but it's set up completely differently because qmail's SMTP daemon, where the filtering
happens, runs independently of the core mail delivery system. See Chapter 9.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.4 Converting Your Aliases File

An important but tedious part of a transition from sendmail to qmail is to convert /etc/aliases. There
are two general strategies. The first is to create a .qmail file in ~alias corresponding to each entry,
which works fine for small alias files but becomes unwieldy after a few dozen entries. The other is to
install the fastforward package (described at the end of Chapter 4) which handles a version of
/etc/aliases pretty close to sendmail's, and then just adjust the alias entries that fastforward doesn't
handle well.

When sendmail runs a program for a delivery from the aliases file, it uses a variety of heuristics to
decide which user runs the program. Qmail's model is much simpler: all programs run from ~alias,
including fastforward when it does /etc/aliases deliveries, are run as the alias user. In most cases
that's fine for deliveries that don't store messages or update files. For deliveries that do store
messages or update files, you may need to rewrite the delivery rules to be sure that they're run as
the appropriate, user as described next.

5.4.1 Address Forwarding

The syntax for addressing forwarding is:

address1: address2
address1: address2, address3, address4

Alias entries that just forward one address to another can be left in aliases as is. To rewrite them as a
.qmail file instead, create ~alias/.qmail-address1 and put address2 in it. If an address is forwarded to
multiple addresses, put each one on a separate line in the .qmail file.

5.4.2 Mailing Lists

The syntax for mailing lists is:

mylist: :include: /usr/fred/listfile
owner-mylist: fred

fastforward's aliases emulation supports sendmail-style lists directly. The only difference is that the
included file has to be compiled into a .bin file using newinclude, as described in Chapter 4.

Although included lists are most easily handled by fastforward, it's also possible to convert them to
.qmail files. Copy listfile to ~alias/.qmail-mylist, stripping out any address comments that aren't
permitted in .qmail files, and create ~alias/.qmail-owner-mylist containing the address of the list
owner. Qmail provides more facilities for list management, including easy ways for users to handle
their own lists. See Chapter 14.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.4.3 Program Deliveries

The syntax for program deliveries is:

progaddr: "|someprogram -flags"

Program deliveries are supported by fastforward, so long as it's acceptable to run the programs as
the alias user. To run programs as any other user, rewrite the delivery instructions to forward to a
subaddress of the desired user. If, for example, this program should run as user fred, change the
aliases entry to:

progaddr: fred-progaddr

Then as user fred, create ~fred/.qmail-progaddr with instructions to run the program:

|someprogram -flags

Program delivery lines in .qmail files start with a vertical bar and feed everything after the bar to the
shell. See Chapter 10 for details of how qmail runs program deliveries.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.5 Trusted Users

Sendmail has trusted users who can perform certain mail actions not permitted to the hoi polloi.
Depending on your point of view, qmail either trusts all users or no users. Each user has full control
over his own files and deliveries, but no user has any special ability to masquerade as others, run
programs, or anything else. If a sendmail setup depends on trusted users (not many do), the setup
must be redesigned to work with qmail.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 6. Handling Locally Generated Mail
Mail comes from two conceptual places: inside your system and outside it. In this chapter, we look at
mail that originates inside your system, mail generated locally on the host where qmail is running.
We also take a first look at mail injected by MUAs on computers running on the same LAN, and mail
injected by "roaming" local users elsewhere on the Net, which we address in detail in the next
chapter.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

6.1 qmail-queue

The only way to pass a message into qmail is qmail-queue. All of the other relay and injection
programs, for both local and remote originated mail, call qmail-queue to queue a message and
schedule it for delivery. This design has two advantages: it's easy to write new frontends to inject
mail because they only need to call qmail-queue to pass along the mail, and by replacing qmail-
queue with another program that offers the same interface, you can create interestingly different
systems, such as mini-qmail. (See Chapter 16 for details.) It also offers security advantages, because
qmail-queue is one of the few set-uid programs (to qmailq, not root) in the qmail package, so it can
write files in the queue directories.

qmail-queue is intended to be run from other programs, not from the command line, so it has an
interface that only another program could love. It takes no command-line arguments and reads its
input from two file descriptors. The first input is read from file descriptor and is the text of the
message. qmail-queue treats the message as an uninterpreted block of bytes and doesn't change it
at all, other than prefixing a Received: line at the front. The received line includes the PID, the
message source, and a timestamp:

Received: (qmail pid invoked source); 4 Apr 2004 22:35:00 -0000

The source is by alias if the invoking user is the alias user; from network if the invoking user is
qmaild, the daemon user that means the caller was the SMTP daemon; for bounce if the user is

qmails, the qmail-send user; or by uid NNN otherwise.

Then qmail-queue reads the envelope information from file descriptor 1 in a concise binary format.
(In most programs, that's the standard output, but this isn't most programs.)

Fsender@sender.com\0 Trcpt1@rcpt.org\0 ... Trcptn@rcpt.net\0 \0

First is the letter F, the sender's address, and a null byte. Then there is a list of recipient addresses,
each preceded by the letter T and followed by a null byte. Finally there comes an extra null byte.

Once it has the message and the envelope, qmail-queue writes them in files in the queue directories
and notifies qmail-send to process queued messages.

The only output from qmail-queue is the return code, which is zero if the message could be queued,
and any of a long list of other values if not. (See the manpage for the list.) Because qmail-queue only
queues a message, its return code says nothing about whether the message could be delivered, only
that it could be queued for the rest of qmail to do something with it. If there are delivery problems,
qmail reports them by sending bounce messages to the message's sender address.

6.1.1 Passing Input to qmail-queue

qmail-queue reads two input files from two file descriptors, and more often than not both input files
are pipes from the calling program, so some care is needed to avoid deadlock. It's important to
remember that qmail-queue reads the message from fd 0 first, then the envelope from fd 1. This

http://lib.ommolketab.ir
http://lib.ommolketab.ir

isn't an implementation accident; it's part of the spec.

If you're writing programs that call qmail-queue and use pipes, be sure that you write the entire
message first, then close the message pipe, and then write the envelope. If the structure of the
program doesn't make that convenient, write the envelope information to a file in /tmp. (You could
write the message to a temporary file instead, but the envelope is usually a lot smaller than the
message.)

If you're writing programs that use the same interface as qmail-queue, read the entire input message
before reading the envelope. If you want to look at the envelope before doing anything with the
message, you must stash the message in a file first. In practice, this isn't often a problem, because
the message needs to be stored in a file anyway.

6.1.2 Other Queueing Programs

Qmail comes with one other compatible queueing program, qmail-qmqpc, the mini-qmail QMQP client
that queues the mail on another host. Because the interface is so simple, it's quite simple to add a
"shim" between the calling program and qmail-queue to do tasks like making a copy of all the mail
(just add the address of the log mailbox to the list of recipients) or invoking spam filters. We'll see
many of these elsewhere in the book.

6.1.3 Wrapping qmail-queue

If you want to replace qmail-queue, you have three alternatives. One is to move the real qmail-queue
and rename or symlink the replacement to /var/qmail/bin/qmail-queue. If you want to use the
replacement every single time you normally use qmail-queue, this is the easiest approach. Mini-qmail
(see Chapter 16) does this because it moves the entire mail queue to another system. More often,
you only want to replace qmail-queue when a message is first introduced into the system, not every
time it's forwarded, so a more flexible approach is called for. One possibility is to individually patch
the code in qmail-inject and qmail-smtpd and new-inject, and whatever other programs you use to
inject mail. This turns out to be extremely messy programming, because all of the programs in the
qmail package use a single library routine to call qmail-queue, so you must create multiple versions
of that routine.

A third approach, and the one I recommend, is the "qmailqueue" patch that takes the name of the
program from the environment. Once it's applied, if the variable QMAILQUEUE is defined, it names
the program to run instead of qmail-queue. There's a very short patch file at qmail.org (search for
QMAILQUEUE on the home page) that's easy to apply to the qmail source. If you use the netqmail-
1.05 package, it's already had the patch applied.

Several of Dan's add-on packages also call qmail-queue, using the same qmail.c library file, so you
can use the same patch. These include dot-forward-0.71, fastforward-0.51, mess822-0.58, and
serialmail-0.75. Either apply the patch to each of them, or copy the patched copy of qmail.c from the
qmail or netqmail source directory into the source directories of the add-on packages. In each of the
add-on packages, if you apply the patch file, the patch program will complain that the patch failed on
Makefile, which you can ignore because in all of the add-ons, only qmail.c needs patching. Don't
forget to recompile and reinstall all the packages you patched.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

6.2 Cleaning Up Injected Mail

Unlike some other MTAs, qmail distinguishes between injected mail, new messages entered into the
mail system, and relayed mail, which is delivered from somewhere else. The difference is that
injected mail needs to have its headers cleaned up, while relayed mail doesn't. Configuring qmail to
clean up injected mail isn't hard, but depending on your setup, there are several possible ways to
handle it.

The new-inject package contains two programs: new-inject, which is a replacement for qmail-inject,
and ofmipd (Old Fashioned Mail Injection Protocol Daemon), an SMTP daemon that includes the
functions of new-inject. Although you can survive without new-inject, it's easy to install and I
encourage you to use it.

6.2.1 Accepting and Cleaning Up Locally Injected Mail

The usual ways to inject local mail are to feed it to qmail-inject or sendmail. Both do the cleanup
automatically. (The qmail version of sendmail is a small wrapper that runs qmail-inject.)

Because new-inject is almost completely upward compatible with qmail-inject, use it in place of
qmail-inject:

cd /var/qmail/bin
mv qmail-inject qmail-inject.old
ln new-inject qmail-inject

(I've saved the old qmail-inject as qmail-inject.old in case there turned out to be some application
that needed exactly qmail-inject's features, but after a year, I have yet to need it.)

Some programs inject local mail by opening an SMTP connection to the loopback address 127.0.0.1.
If you've installed an SMTP listener following the instructions in Chapter 4, injecting mail via that
route already works, but without any cleanup. There are two alternatives to clean up mail injected by
SMTP: adjusting the setup of the regular SMTP server to detour locally injected mail through a
cleanup program or setting up a separate SMTP daemon running ofmipd to receive locally originating
mail. I discuss both options later in the chapter.

The standard way to give a freshly created message to qmail for delivery is to use qmail-inject or its
replacement new-inject. Both programs accept a message from the standard input, clean up and
complete the headers without modifying the message body, construct the envelope information from
the message and command arguments, and pass the result to qmail-queue for delivery. A
combination of flags on the command line and environment variables give you some control over the
header rewriting and control where it gets the envelope addresses. In the following discussion
capitalized names refer to environment variables passed to qmail-inject or new-inject.

The QMAILINJECT environment variable, if it exists, contains a string of letters from the set cfimrs
that control the header rewriting, as described later. new-inject also accepts the uppercase letters
FIMRS with the equivalent meanings and also accepts command-line --FIMRS flags.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For testing purposes, the --n flag causes the rewritten message to be copied to standard output

rather than queued. To show the envelope addresses, new-inject prefixes Envelope-Sender: and
Envelope-Recipients: headers, while qmail-inject puts the sender address in a Return-Path: line but
doesn't do anything with the recipient addresses.

6.2.1.1 Setting the envelope addresses

Like sendmail, qmail-inject and new-inject can take the recipient addresses from the command line,
from the message itself, or both. In the absence of any flags or with the --A flag, they deliver the

message to the addresses on the command line if there are any, otherwise to the addresses in the
To:, Cc:, Bcc:, and Apparently-To: (a sendmail-ism). new-inject uses Envelope-Recipients: line(s), if
any exist, in preference to those headers. The --a flag says to use only command-line addresses, --
h says to use only the header recipients, and --H says to use both. All addresses are rewritten as

described in Section 6.2.1.3.

The envelope sender address is taken from the --f flag if present. Otherwise, unless the

environment flag "s" is set, it uses Envelope-Sender: (new-inject only) or Return-Path:. If those
headers aren't present, the user part of the sender is taken from QMAILSUSER, QMAILUSER,
MAILUSER, USER, or LOGNAME. The host part is taken from QMAILSHOST, QMAILHOST, or
MAILHOST, or if none of those are set, the defaulthost control file.

The environment flags "m" and "r" handle Variable Envelope Return Paths (VERP), a way to encode
information about the message and its sender in the envelope return address to aid bounce
processing. (VERP is discussed at length in Chapter 14.) If environment flag "m" is set, it appends a
dash, the time in seconds, a dot, and the process ID as a per-message VERP. If environment flag "r"
is set, it rewrites the sender address for the per-recipient VERP (described in Chapter 14). Either or
both kinds of VERP can be present; for example, if the sender fred@example.com might be turned
into fred-1059105280.24559-@example.com-@[]. Note that neither kind of VERP is done if the
sender is set explicitly with --f; in that case it's up to you to put whatever you want into the sender

string.

6.2.1.2 Header rewriting

Both qmail-inject and new-inject rewrite most message headers:

From:

If environment flag "f" is set, any existing From: header is discarded; if not, an existing From:
header is passed through. When creating a From: header, the user part is taken from
QMAILUSER, MAILUSER, USER, or LOGNAME, and the host part is taken from QMAILHOST,
MAILHOST, or the defaulthost control file. (Note that QMAILSUSER and QMAILSHOST don't
affect the From: line, providing the occasionally useful ability to concoct different header and
envelope return addresses.) The comment on the From: line is taken from QMAILNAME,
MAILNAME, or NAME. If the environment flag "c" is set, qmail-inject uses the address
(comment) style; otherwise it uses comment <address>. new-inject ignores the "c" flag and
always uses comment <address>.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To: and Cc:

Addresses are rewritten as described in the next section, and put into standard format with
commas between the addresses and address comments in the preferred form. new-inject
combines multiple To: lines or multiple Cc: into one. If there are no To: or Cc: addresses at all,
it adds a syntactically valid Cc: group address of "recipient list not shown: ;".

Bcc: and Apparently-To:

These lines are deleted.

Notice-Requested-Upon-Delivery-To:, and Mail-Reply-To: and Reply-To:

The addresses are rewritten but otherwise don't affect delivery.

Date:

If there's an existing date header with a date that it can decode, the date is standardized into
the form 23 Jun 2004 12:02:00 -0500. If not, it adds a Date: header with the current time

and date.

Message-ID:

If there's an existing header, it's passed through, unless the environment variable "i" is set, in
which case any existing Message-ID: header is deleted. In the absence of a passed-through
header, it creates a new one. The domain part of the new Message-ID: comes from
QMAILIDHOST if present, otherwise the idhost or me control files. The user part is always a
combination of the date and PID in the form 20020623170200.2345.qmail.

Resent- headers

new-inject moves these to the top of the message with the Received: headers but doesn't
otherwise rewrite them. If qmail-inject sees any of them, it adds Resent-Date: and Resent-
Message-ID:, and treats the Resent-To: as the header addresses to which the message is
delivered. This is the most significant incompatibility between qmail-inject and new-inject,
although it rarely causes trouble in practice because MUAs tend to put either a full set of
Resent- headers on messages or none of them.

Mail-Followup-To:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If this header is not already present, and the environment variable QMAILMFTFILE is the name
of a file that contains a list of mailing list posting addresses, one per line, and one of those
addresses appears in the To: or Cc: line of the message, it adds a Mail-Followup-To: header
containing all of the To: and Cc: addresses. This is a little-used feature intended for some
varieties of mailing list software.

Content-Length:

If this field is present, it's removed. Some MUAs attempt to use it to make it faster to scan
mboxes, but it's not useful in mail in transit.

6.2.1.3 Address rewriting

Addresses in the message headers are rewritten into a standard form. (Envelope addresses aren't
rewritten, other than with the VERP options discussed earlier. If the envelope recipients are taken
from the headers, it uses the rewritten versions.)

The rewriting involves adding or completing the domain. Qmail's rewriting rules work best in an
environment with multiple subdomains, such as a university where each department has its own
subdomain (so fred@alchemy.bigu.edu and fred@phrenology.bigu.edu are different addresses, and
on-campus users would likely abbreviate them as fred@alchemy and fred@phrenology).

If an address has no host part at all, it adds a default hostname from QMAILDEFAULTHOST, or the
contents of defaulthost or me.

If the host part (whether it came from the previous step or was already present) contains no dot, it
adds a dot and QMAILDEFAULTDOMAIN, or the contents of defaultdomain or me.

If the host part ends with a plus sign, it changes the plus to a dot and adds QMAILPLUSDOMAIN, or
the contents of plusdomain or me.

In the usual case of "flat" addressing where all the addresses are in the second or third-level domain,
both defaulthost and defaultdomain should contain that domain. In the aforementioned campus
example, defaulthost should contain the name of the local subdomain (such as alchemy.bigu.edu),
and defaultdomain should contain the main domain (such as bigu.edu) so that short addresses like
fred@alchemy and fred@phrenology work. Plus addresses are for the more esoteric situation where
there are multicomponent subaddresses, so a user can type fred@lead.alchemy+ and have that turn
into fred@lead.alchemy.bigu.edu.

new-inject has a more elaborate rewriting system controlled by patterns from rewrite (or if it exists,
the file named by QMAILREWRITE.) See the rewriting(5) manpage for details. I don't recommend
doing more elaborate rewriting, because that makes the addresses your users type into their MTAs
different from the ones that the rest of the world uses, causing great confusion when they tell their
friends to write to jerry@boam and it doesn't work because that address is locally rewritten into
jerry@bo.am.bigcorp.com. However, rewriting is useful to compensate for users who insist on writing
to stevec@aol when they mean stevec@aol.com.

6.2.2 Passing in Large Numbers of Addresses

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The simplest way to send mail to a list of addresses is to put all the addresses in a file, and then
either directly or, more likely, via a mailing list manager (such as ezmlm, majordomo, or mailman)
type:

new-inject -a $(cat mylist) << EOF
To: mylist
Subject: Free beer

Look behind the coffee machine at 5 PM
EOF

This works as long as the list of addresses remains small enough to fit on a command line. The To:
address in the message, which is normally the address of the list, is ignored for delivery purposes.
But what happens when the list doesn't fit on a command line? A typical command-line limit is 20 K,
which only fits a thousand 20-character addresses-not a very big list.

The usual way to get around the command-line limit is to queue the message directly, either by
running qmail-queue or by connecting to the local port 25 SMTP daemon to send the mail. They both
work, but they have the disadvantage of doing no header cleanup. Can we run new-inject and give it
thousands of addresses? Yes.

The obvious approach is to put all the addresses on Bcc: lines, because they're normally copied into
the envelope and deleted. But the problem is that addresses on the To: and Cc: lines are copied into
the envelope as well. The To: address is generally the address of the list itself, so this is a fairly
efficient route to a mail loop.[1] Instead, put the addresses into Envelope-Recipients: headers at the
top of the message, either one huge line with addresses separated by commas (like all parts of qmail,
it allocates line buffers to be as big as they need to be so there's no limit on line length) or in multiple
header lines. Either way, all of the recipients will be extracted from those headers, and then the rest
of the message will be cleaned up and sent on its way to all the recipients.

[1] A mail loop, for the fortunate few who have never encountered one, is a chain of forwarding addresses that
forms a loop so that mail keeps recirculating forever, frequently growing at each stage as forwarders add
headers or comments to the message. Qmail breaks mail loops by scanning the Delivered-To: headers at
delivery time and bouncing any mail that has a Delivered-To: that's the same as the address it's delivering to
now, but avoiding loops is far preferable to breaking them.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

6.3 Accepting Local Mail from Other Hosts

Most networks have a small number of mail servers that handle the mail for many users who use
MUAs on their individual PCs to read and send mail. Outgoing mail from these PCs is sent to the mail
server using SMTP, at which point it is the mail server's job to clean up the headers and send the
mail on its way.

Locally injected SMTP mail presents two problems. One is to tell which SMTP mail is injected mail
from local users rather than the normal incoming mail. This is a crucial distinction, because local
users can inject mail addressed anywhere, while incoming mail should be accepted only for the
domains that this server handles. (Hosts that promiscuously accept and forward mail from third
parties are known as "open relays" and tend to be quickly blacklisted, because the third parties are
invariably spammers.) The other, simpler problem is to arrange to clean up the headers in the
injected mail the way that qmail-inject or new-inject clean up locally injected mail.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

6.4 Distinguishing Injected from Relayed Mail

All of these techniques involve configuring and patching the SMTP daemons. They're discussed in
detail in the next chapter, but here is a short overview.

Hosts on the local network are easily recognized by their IP addresses. Each time tcpserver accepts a
connection, it consults a rule database indexed by IP address and marks each connection as local or
remote. In the common case that a network has a fixed, known set of IP addresses, and users on the
network have PCs that use the qmail host to send and receive mail, this is the only setup needed.

Most networks have at least a few "roaming" users who sometimes or always connect from outside
the local network. In order for the network to recognize their mail as local, the users have to provide
a username and password. The most common way is SMTP AUTH, an extension to SMTP defined in
1999 that adds password authentication to SMTP. Qmail doesn't provide SMTP AUTH, but it's not hard
to patch it into the SMTP daemon.

If you have old MUAs that don't handle SMTP AUTH, an older kludge called pop-before-smtp implicitly
uses POP logins to authenticate SMTP. Each time a user logs in for POP (or IMAP, for systems that
run an IMAP server), the system notes the IP address from which the user logged in. For an hour or
so thereafter, SMTP connections from the IP address are treated as local. Users only need to check
their mail before sending new mail, so MUAs need no special features to support it. Qmail doesn't
support pop-before-smtp either, but add-on packages are available that fit in as "shims" that can be
configured to run between the standard parts of the qmail POP and SMTP daemons. These are
covered in the next chapter.

Most systems that support SMTP AUTH also support Transport Layer Security (TLS), the same
cryptographic security scheme known as SSL on the Web. TLS permits authentication in both
directions; the client can check the server's TLS certificate to be sure that the server is who it
purports to be, and the client can also present a certificate to the server. In practice, most TLS
systems use self-signed certificates that provide no authentication, but like SSL it adds extra security
if the traffic passes through networks where it's subject to snooping. Patching qmail to use TLS is also
straightforward, but the steps required to set up MUAs with appropriately signed certificates that can
be used for authentication are a lot more difficult than setting up SMTP AUTH.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 7. Accepting Mail from Other
Hosts
Unlike some other mail systems, qmail uses separate daemons for incoming and outgoing mail.
Incoming mail is handled primarily by qmail-smtpd. As discussed at the end of the previous chapter,
local mail injected from MUAs on other computers also arrives by SMTP, and it's important to
distinguish the local from the incoming mail because they're handled differently.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.1 Accepting Incoming SMTP Mail

Chapter 4 discussed the basic setup of the SMTP daemon in /service/qmail-smtpd. The supervise
daemon runs tcpserver, which listens for incoming connections, then runs qmail-smtpd to run the
SMTP session and queue the received mail. The control file rcpthosts lists the domains for which it
accepts mail. (If that file doesn't exist, it accepts mail for all domains and can be an open relay,
which spammers see as an open invitation to abuse.)

The normal SMTP setup consults a tcprules file that lists the IP addresses from which to accept and
deny connections. The rules file is /var/qmail/rules/smtprules.txt, which is compiled into the binary
/var/qmail/rules/smtprules.cdb that tcpserver consults.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.2 Accepting and Cleaning Up Local Mail Using the
Regular SMTP Daemon

In the FAQ distributed with qmail 1.03, question 5.5 describes the classic technique for cleaning up
remotely injected mail. The smtprules.cdb file that tcpserver consults contains lines that set the
RELAYCLIENT environment variable for hosts allowed to inject and relay mail. If RELAYCLIENT is set,
qmail-smtpd both skips the usual relay validation and appends the contents of RELAYCLIENT to all
envelope destination addresses. If RELAYCLIENT has the value @fixme, mail addressed to
fred@example.com is sent to fred@example.com@fixme. If you define fixme as a virtual domain, all
mail from these hosts is handled as virtual domain mail.

More concretely, start by creating a fixme virtual domain in virtualdomains:

fixme:alias-fixup

Then create ~alias/.qmail-fixup-default:

| bouncesaying 'Permission denied' ["@$HOST" != "@fixme"]
| qmail-inject -f "$SENDER" -- "$DEFAULT"

The first line checks that the mail is really sent to the fixme virtual domain, so that sneaky bad guys
can't relay mail by sending it to alias-fixup-victim@otherdomain@example.com (assuming
example.com is your local domain.) The second line feeds the mail through qmail-inject, preserving
the original sender and remailing it to $DEFAULT, which was the original destination address before
@fixme was added. Finally, add the @fixme strings to the local network entries in smtprules.txt and
rebuild smtprules.cdb:

127.:allow,RELAYCLIENT="@fixme"
172.16.42.:allow,RELAYCLIENT="@fixme"
172.16.15.1-127:allow,RELAYCLIENT="@fixme"
:allow

Use svc -h /service/qmail-send to make qmail notice the new virtual domain.

Although as we see in the next section, this is no longer the best way to handle mail injection, the
basic model for treating mail depending on its source IP address remains useful. For example, I find
that I receive certain spam from AOL over and over again with very predictable strings in the
message. So I route all mail from AOL to a pseudodomain aoltrap in which commands in the .qmail
file grep each message for the known spammy strings, forward the mail to an abuse reporting script
if they find any of the strings, and otherwise forward the mail to $DEFAULT to deliver it normally.
While I use a more general spam filter for other incoming mail, the stuff from AOL is different enough
that it was worth setting up a special filter, particularly because it only took 10 minutes to set the
filter up.

7.2.1 Using Separate Relay and Injection Daemons

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Since the new-inject package includes ofmipd, which combines an SMTP daemon and the same mail
cleanup that new-inject does, the best way to clean up incoming mail is to arrange for mail clients to
inject mail through ofmipd rather than qmail-smtpd. ofmipd doesn't do relay checking, so you have
to ensure that only authorized clients can use it.

If you assign more than one IP address to your qmail host, run qmail-smtpd on one address and
ofmipd on another. It's also a good idea to run a copy of ofmipd on port 587, the SUBMIT port that is
defined (and increasingly used) for mail submission (another name for injection) from MUAs on other
hosts.[1] And you must run ofmipd on 127.0.0.1 to accept mail from programs that inject mail by
setting up a local SMTP session (such as pine and some mailing list packages). You must run
separate copies of tcpserver, each bound to a separate IP address and port. First, change
/var/qmail/supervise/qmail-smtpd/run to run tcpserver only on a single IP address, which should be
the address in the MX record pointing at the server, as in Example 7-1.

[1] If you have roaming users who connect from hotels and the like, SUBMIT is particularly important. Many
networks block attempts to connect to port 25, but they permit connections to 587.

Example 7-1. The SMTP listening script for incoming mail

 1. #!/bin/sh
 2. limit datasize 2m
 3. exec \

 4. tcpserver -u000 -g000 -v -p -R \
 5. -x/var/qmail/rules/smtprules.cdb 10.1.2.3 25 \
 6. /var/qmail/bin/qmail-smtpd 2>&1

In the log directory, create a subdirectory log/logfiles, chown it to qmaill (the log user), and create
log/run, as in Example 7-2.

Example 7-2. Log file script for SMTP and ofmip daemons

 1. #!/bin/sh
 2. exec setuidgid qmaill \
 3. multilog t s1000000 ./logfiles

In line 3, s1000000 says to make each log file a megabyte. Depending on how much log traffic the

server generates, you may want to adjust this number up or down to adjust how far back the log
data goes. The log setup for all of the servers described in this chapter is the same, so I won't repeat
it.

Second, create directories /var/qmail/supervise/ofmipd and /var/qmail/supervise/ofmipd/log to run
ofmipd. Set up the log directory the same as the one for qmail-send described in Chapter 4. Set the
file modes the same as you did for SMTP service and create ofmipd/run, as in Example 7-3.

Example 7-3. The ofmipd script, for SMTP mail injected from other hosts

 1. #!/bin/sh
 2. limit datasize 2m
 3. exec \

 4. tcpserver -u000 -g000 -v -p -R \
 5. -x/var/qmail/rules/ofmipdrules.cdb 10.1.2.4 25 \

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 6. /usr/local/bin/ofmipd 2>&1

Third, create /var/qmail/rules/ofmipdrules.txt to permit connections only from the local network and
deny everyone else, and create /var/qmail/rules/ofmipdrules.cdb from it:

172.16.42.:allow
172.16.15.1-127.:allow
:deny

Finally, symlink /var/qmail/supervise/ofmipd to /service and your injection daemon should start up.
Telnet to your injection daemon's address, port 25, and use HELO, MAIL FROM, RCPT TO, and DATA
commands to send yourself a test message.

Once that works, copy everything in /var/qmail/supervise/ofmipd to
/var/qmail/supervise/ofmipdlocal, and /var/qmail/supervise/ofmipd/log to
/var/qmail/supervise/ofmipdlocal/log. Then edit the run file to use 127.0.0.1, as shown in Example 7-
4.

Example 7-4. The ofmipd script, for SMTP mail injected from this host

 1. #!/bin/sh
 2. limit datasize 2m
 3. exec \

 4. tcpserver -u000 -g000 -v -p -R \
 5. 127.0.0.1 25 \
 6. /var/qmail/bin/ofmipd 2>&1

You can omit the -x flag because only processes on the local computer can connect to 127.0.0.1.

Now symlink /var/qmail/supervise/ofmipdlocal to /service, and test your local daemon by telnetting
to 127.0.0.1 port 25, and send yourself another test message.

To create an ofmipd running on the SUBMIT port, create /var/qmail/supervise/ofmipdsubmit and
/var/qmail/supervise/ofmipdsubmit/log with the same contents as /var/qmail/supervise/ofmipd and
/var/qmail/supervise/ofmipd/log, except that the port number on line 5 is 587 rather than 25. It can
(and should) share the same ofmipdrules.cdb file because the rules for who you accept mail from are
the same, regardless of which port a client uses. Symlink /var/qmail/supervise/ofmipdsubmit to
/service, telnet to your injection daemon's address, port 587, and send one more test message, and
you're done setting up mail injection.

To someone familiar with sendmail, it may seem awfully complicated and perhaps slow to set up four
separate daemons just to receive mail, but the four are all configured slightly differently, and because
tcpserver is small and fast, it doesn't place an undue load on the system.

7.2.2 Deciding On the Fly Which Daemon to Use

Although I don't really recommend this approach, it's easy to arrange to run either qmail-smtpd or
ofmipd on connections to the same IP address depending on the remote address from which a
connection arrives. Do this by adding an environment variable to entries in smtprules that says which
daemon to run, and testing that variable in the programs run from tcpserver. Let's put the name of
the server to use in the SERVER variable, so smtprules.txt looks like this:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

127.:allow,SERVER="ofmipd"
172.16.42.:allow,SERVER="ofmipd"
172.16.15.1-127:allow,SERVER="ofmipd"
:allow,SERVER="smtpd"

Now adjust the run file to use SERVER to decide what to run, as shown in Example 7-5.

Example 7-5. The SMTP listening script for incoming mail

 1. #!/bin/sh
 2. limit datasize 2m
 3. exec \

 4. tcpserver -u000 -g000 -v -p -R \
 5. -x/var/qmail/rules/smtprules.cdb 10.1.2.3 25 \
 6. sh -c 'case "$SERVER" in
 7. smtpd) exec /var/qmail/bin/smtpd ;;
 8. ofmipd) exec /usr/local/bin/ofmipd ;;
 9. esac' 2>&1

When tcpserver receives an incoming connection, it runs the shell script[2] on lines 6-9, which in turn
exec's whichever program SERVER tells it to. Be sure to use single and double quotes exactly as
shown here, so that the value of SERVER is expanded by the shell run from tcpserver, rather than by
the shell that interprets the run script.

[2] Because the script is in single quotes, it doesn't need \ at the end of each line.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.3 Dealing with Roaming Users

The most difficult part of dealing with injected mail is to recognize mail from "roaming" users not
located on the local network. You can recognize them directly by requiring a user/password when
they send mail or indirectly by noting their IP when they log into the POP server, then treating mail
from the same IP address as local. The former is SMTP authorization, the latter is pop-before-SMTP.

Using an IP Tunnel

A different approach to the roaming user problem is to make the roaming user's computer
logically part of the local network by assigning it an IP address on the local network, and
arranging to "tunnel" the traffic over the Internet between the PC and the local network.
Tunnels have the advantage that once they're set up, they allow access to any local-only
service, such as intranet web servers.

The most popular tunnelling systems are the IETF's IP security (IPSEC) and Microsoft's
point to point tunnelling protocol (PPTP). IPSEC is available on most recent Unix-like
systems and on Windows 2000 and XP. It is quite tedious to set up but is very secure in
use, with strong encryption on both the login and all the data that's passed through the
tunnel. PPTP is built into all recent versions of Windows, and free Unix servers called
poptop and pptpd are available. It's considerably easier to set up than IPSEC but is much
less secure, passing data either unencrypted or at best using an encryption scheme that's
known to be easy to break.

The widely used ssh secure remote login system provides a per-port version of tunnelling
called "port forwarding." For example, users can specify that port 2025 on their remote
machine is forwarded to port 25 on the mail host on the home network, then set up their
mail application to use localhost:2025 for outgoing mail, with the SMTP server seeing the
ssh host on the local network as the source of the mail. Even though it's possible to log
into POP and IMAP servers directly from remote networks, it's also useful to forward
remote ports to ports 110 or 143 on the mail server so that the login passwords and
retrieved messages are transferred via ssh's encrypted connection rather than in the
clear. ssh requires a shell login for authentication on the home network, and must be set
up (one time) for each port that's to be forwarded. Regardless, ssh is often a good
compromise, because it is easier to set up than IPSEC while still being reasonably secure.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.4 SMTP Authorization and TLS Security

To use SMTP authorization with qmail, you must patch qmail-smtpd to handle the AUTH command for
remote users to log into the server. Although AUTH lets remote users prove who they are, it doesn't
provide any security against third parties snooping on the mail as it leaves whatever network the
roaming users are on, nor does it provide security against port redirection, where a network connects
you to their own SMTP server rather than the one you asked for. (AOL does port redirection, not for
malicious purposes, but because it lets their users send out modest amounts of mail as roamers
without needing to reconfigure their MUAs, while blocking blasts of spam and viruses.)

The transport-level security (TLS) extension provides an encrypted channel for SMTP sessions similar
to that used by SSL secure web servers. TLS is based on certificates that include the host owner's
name and address along with the hostname and an email address. Each certificate is in two parts, the
private key, which needs to be kept secret, and everything else including the public key, which is not
secret. For incoming SMTP sessions, SMTP clients start a secure session, verify the server's certificate
and check that the hostname in the certificate matches the name of the host that the client thinks it's
talking to. The client can optionally present a certificate to the server for which the server can make
the same checks. The server can also use the address in the client certificate to authenticate the user
instead of a separate AUTH step, as described later in Authenticating Client Hosts with TLS.

There's a combined patch for qmail-smtpd that adds both SMTP AUTH and TLS, and a doubly
combined patch that adds SMTP AUTH and TLS, as well as the badrcptto anti-spam patch described in
Chapter 9 and some extra logging (the version that I use). The two combined patches both add the
same SMTP AUTH and TLS code, so they're the ones I describe here. These are the largest patches
described in this book, which makes it more likely that they contain bugs. I've looked at the code and
it appears OK to me, but if you're concerned about security, you should read through the patch you
use yourself.

For SMTP AUTH, the setup involves setting up a login/password checking program to validate the
authorization values that remote hosts present and adjusting the tcpserver invocation of qmail-
smtpd. If you're using the qmail POP server, use the same password validator. Users generally only
need to set an option in their MUAs to use AUTH on outgoing mail using the same userid/password
pair they use for POP or IMAP.

TLS requires the openssl library (included with many but not all recent Unix-like systems) and a TLS
certificate for the SMTP server. If you happen to have an SSL web server with the same name as the
mail server, use the same certificate it uses. Otherwise, make a new certificate. All certificates are
signed; you can sign yours yourself, but most MUAs expect server certificates to be signed by a
certificate authority (CA) that vouches for the authenticity of the certificate. The MUA has a set of
validation certificates from well-known CAs built-in (Outlook and Outlook Express share their list with
Internet Explorer), and if the signature isn't from one of the authorities in the list, the MUA at least
warns the user that the certificate isn't properly signed, and in many cases refuses to transfer any
mail. There's generally some way for the MUA's user to tell the MUA to accept the self-signed
certificate from the server. If you have very sophisticated users, you can set up your own miniature
CA to sign your certificates and try to get your users to install your CA certificate into their MUA's
well-known lists. Alternatively, you can pay one of the well-known CAs to sign your certificate, which
costs between $50 and $300 depending on the CA. At this point, most TLS users are sophisticated

http://lib.ommolketab.ir
http://lib.ommolketab.ir

enough to get their MUA to accept one self-signed certificate for the smarthost they use regularly,
but if you plan to offer TLS to a less technical user community, your easiest course is to pay a well-
known CA for a signature.

If this all sounds like more trouble than it's worth, build your patched qmail with the TLS code turned
off, and worry about it later if your users ask for it.

Authenticating Client Hosts with TLS

It's possible, albeit quite cumbersome, to use TLS to identify client hosts that are allowed
to relay. If the email address in a verified client certificate is listed in control/tlsclients,
qmail-smtpd lets the client send mail to any address, as though RELAYCLIENT were set.

To do the verification, qmail-smtpd checks the signature on the client certificate against
the signer certificate(s) in control/clientca.pem. Although it would be possible in principle
to have all of the client certs signed by a commercial CA, at $50/cert it rapidly becomes
expensive, so in practice you must set up your own tiny CA. Fortunately, the script CA.pl
distributed with the openssl library lets you create a CA with a certificate you can put in
clientca.pem. Then for each client host create a signing request for the host, sign it, and
turn the signed certificate into the PKCS12 format that most PC MUAs need. See the
manpage for CA.pl for details.

For most purposes, using SMTP AUTH over a TLS link is adequately secure, and is a lot
easier to set up than making, distributing, and installing all those certificates.

7.4.1 Installing and Building SMTP AUTH and (Optionally) TLS

Download either of the combined SMTP AUTH/TLS patches (see www.qmail.org for links to the latest
versions), and apply the patch.

The TLS code depends on the open source openssl library. If you want to use TLS and your system
doesn't have a recent version of the openssl library (0.9.6 or later), download the source from
http://www.openssl.org, and build and install it. The configuration and installation procedure,
documented in its INSTALL file, is straightforward.

If you don't want to use TLS, edit conf-cc to remove the option to compile in the TLS code. The patch
changes the first line of the file to something like this:

cc -O2 -DTLS -I/usr/local/ssl/include

To turn off TLS, change it back to:

cc -O2

(Because the compilation process uses only the first line of that file, add the simpler line in front of
the patched one in case you want to try TLS later.)

Before you rebuild qmail, if you're using the standard checkpassword 0.90 or any other password
checker that doesn't keep plain text passwords, you need to turn off one of the SMTP AUTH features.

http://www.openssl.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The patch supports three varieties of AUTH known as LOGIN, PLAIN, and CRAM-MD5. The CRAM-MD5
variety needs plain text passwords, so you must disable it if your password checker doesn't support
them. (A modified checkpassword that supports CRAM-MD5 using a separate password file with
plaintext passwords is available at http://members.elysium.pl/brush/cmd5checkpw.) To turn off
CRAM-MD5, edit qmail-smtpd.c and around line 40 is a definition of AUTHCRAM:

#define AUTHCRAM

Comment it out:

/* #define AUTHCRAM */

Now make to rebuild the patched qmail.

If you're using TLS, you must install a certificate for TLS to use. To create a self-signed certificate,
become super-user and make cert. It will ask for identifying information for the certificate, including
the host's two-letter country code (US for the United States), state name, company name, common
name, and email address. Most of the info is merely for display if someone checks the certificate, but
the common name should be the SMTP server's hostname, and the email address a contact address
for the server's manager. It will put the public and private keys into control/servercert.pem, and also
link it to control/clientcert.pem for use in outgoing mail. This is all the setup you need if clients who
use TLS are willing to tell their MUAs to accept self-signed certificates. If you want a certificate signed
by a CA, use make cert-req instead. It puts a "certificate request" into req.pem, which you can
submit to the CA. When the CA sends back the signed version, add that to the end of
control/servercert.pem.

Whether or not you're using TLS, now become super-user and make setup check to install the
patched qmail. (If you have the new configuration files set up, it's OK to install this over the running
version of qmail because the AUTH and TLS features do nothing until someone tries to use them.)

To configure AUTH, the run file for the SMTP server needs three new arguments to qmail-smtpd: the
server's hostname, the password checker, and a dummy program that the password checker can
run, usually /bin/true. (See Example 7-6.)

Example 7-6. The SMTP listening script for incoming mail

 1. #!/bin/sh
 2. limit datasize 2m
 3. exec \

 4. tcpserver -u000 -g000 -v -p -R with SMTP AUTH \
 5. -x/var/qmail/rules/smtprules.cdb 10.1.2.3 25 \
 6. /var/qmail/bin/qmail-smtpd \
6a. mail.example.com \
6b. checkpassword \
6c. /bin/true 2>&1

The hostname in line 6a is used only for CRAM-MD5 authorization, but the argument has to be there
regardless of whether CRAM is used. A common error is to leave out the hostname argument, making
/bin/true the password checker, which means that any user/password pair will be accepted, making
the server an open relay.[3] After adding the new arguments, restart tcpserver with svc -t, and test
out AUTH by sending mail from client MUAs with both valid and invalid logins, making sure that the
invalid login is rejected. Because an invalid login doesn't end the SMTP session (it just doesn't

http://members.elysium.pl/brush/cmd5checkpw
http://lib.ommolketab.ir
http://lib.ommolketab.ir

authorize) you must address the test messages to an address that wouldn't be permitted without
AUTH. If you're using TLS, test it from your favorite PC MUA. Just turn on the MUA option to use TLS
on outgoing mail, send a message, observe that the MUA complains about the server's self-signed
certificate, tell the MUA to accept it anyway, and check that the mail is delivered.

[3] So don't do that.

On outgoing mail, qmail-remote with TLS turned on automatically starts a TLS session whenever a
server announces that it has TLS available. If control/clientcert.pem exists, its contents are used as
the client certificate in outgoing sessions. Normally, make cert links the clientcert file to the

servercert file, but if you're sending TLS mail to a smarthost run by your ISP, the ISP may provide
you a client certificate to use instead. If there are some SMTP servers to which mail should only be
sent using TLS connections with signed certificates, create the directory control/tlshosts, and for each
server, put the CA certificates of the allowable signers in control/tlshosts/hostname.pem. Usually all
of the hosts share the same set of signers, so all of the .pem files are links to the same file. In
practice, the only host that you're likely to verify this way is your ISP's smarthost.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.5 POP-before-SMTP

An older and more indirect scheme for roaming user authentication is POP-before-SMTP, first used in
1997. It's a very simple idea and has been implemented many times. Whenever a user successfully
logs in using POP or IMAP to pick up mail, it notes the IP address where the user logged in. For the
next hour or so, that IP address is allowed to use the mail gateway. It has the practical advantage of
working with any POP or IMAP MUA, merely by telling users to check their mail before sending. For
MUAs that support SMTP AUTH, which is now most of them, AUTH is better than POP-before-SMTP
because it doesn't require the extra mail check, and it identifies sent mail with a particular user, not
just an IP address. But for the benefit of users who never upgrade their MUA, it's worth keeping POP-
before-SMTP around.

I wrote a homebrew POP-before-SMTP system with a daemon that updates the smtprules files, but I
now prefer Bruce Guenther's relay-ctrl package (http://untroubled.org/relay-ctrl/), which has the
advantage of not needing any patches to existing software and working reasonably well on clusters of
multiple hosts running POP, IMAP, and SMTP servers.

POP-before-SMTP has three parts. The first part observes the POP and IMAP logins and notes the IP
addresses. relay-ctrl uses the filesystem for its database, so if a user logs in from address 10.1.2.3, it
creates a file /var/spool/relay-ctrl/allow/10.1.2.3. The second part checks the IP address on each
incoming SMTP connection, and if the IP has a corresponding file in /var/spool/relay-ctrl/allow, it sets
the environment to allow relay. The third cleans up stale entries by deleting files in /var/spool/relay-
ctrl/allow that are older than the window of time allowed for POP-before-SMTP. The relay-ctrl
documentation suggests 15 minutes, but I've used times as long as a day without trouble. To keep
the relay database reasonably secure, make /var/spool/relay-ctrl owned by root with mode 0500 so
that only root can chdir into it, but make /var/spool/relay-ctrl/allow mode 777 so that the
unprivileged program that notes logins can write there.

For clusters of multiple hosts, whenever a user is authenticated on one host, relay-ctrl sends notices
to the other hosts about the IP that authenticated, using UDP packets.

To install relay-ctrl, download it from http://untroubled.org/relay-ctrl/. (This description is of Version
3.1.1.) Unpack it, adjust the conf-cc, conf-ld and conf-man if you need to reflect your local
commands for compiling and linking, and the place to put the man files, then make. Become super-

user and run ./installer to install the various programs. The runtime configuration of the relay-ctrl
package is almost entirely done through environment variables. I suggest creating a directory
/etc/relay-ctrl so you can use envdir from the daemontools package to set the environment. (Each
file in the directory is the name of a variable, the contents of the file becomes the value of the
variable.) Files and environment variables to create include:

RELAY_CTRL_DIR

The directory where the relay data goes, usually /var/spool/relay-ctrl/allow.

http://untroubled.org/relay-ctrl/
http://untroubled.org/relay-ctrl/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

RELAY_CTRL_EXPIRY

The time in seconds to permit relay after a user is validated. Defaults to 900 (15 minutes), but
I suggest 3600 (an hour.)

RELAY_CTRL_RELAYCLIENT

The value to use for the RELAYCLIENT variable when a user is allowed to relay. Defaults to the
null string, but if you're using the "fixme" trick to clean up headers on injected mail, make it
@fixme, the same as the value in RELAYCLIENT lines in the smtprules file.

RELAY_CTRL_LOG_IPS

If defined, print log messages when an SMTP connection is authenticated for relay. The
messages goes the same place as the log output from tcpserver and qmail-smtpd, typically the
log files kept by multilog.

RELAY_CTRL_REMOTES

A comma-separated list of IP addresses to which UDP messages containing notices of IP
addresses should be sent when a host is authenticated. Not needed if you're not using multiple
hosts.

RELAY_CTRL_PORT

UDP port number to use for notifications. Defaults to 811, and there is no reason to change it
unless something else on your network is using UDP port 811 packets.

RELAY_CTRL_TIMEOUT

How many seconds to wait for each remote host to acknowledge a notification packet before
retrying. Defaults to one second, and there is no reason to change it unless your mail hosts are
very slow.

RELAY_CTRL_TRIES

How many times to retry each notification if it doesn't get an acknowledgement. Defaults to 5,
and there is no reason to change it unless your network is extremely congested.

7.5.1 Adding POP-before-SMTP to the POP Server

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 13 describes the procedure for setting up the qmail POP server. Example 7-7 shows the
modifications to handle POP-before SMTP, in the script /etc/popd/run.

Example 7-7. The POP listening script with POP-before-SMTP

 1. #!/bin/sh
 2. limit datasize 2m
 3. exec \
3a. envdir /etc/relay-ctrl \
3b. relay-ctrl-chdir \
 4. tcpserver \
 5. -HRv -l pop.example.com \
 6. -x /etc/popd/rules.cdb \
 7. 0 110 \
 8. /var/qmail/bin/qmail-popup pop.example.com \
 9. checkpassword \
9a. relay-ctrl-allow \
9b. relay-ctrl-send \
10. /var/qmail/bin/qmail-pop3d Maildir 2>&1

Line 3a sets the environment from the files in /etc/relay-ctrl, and line 3b, which runs with root
privileges, opens the allow directory so that later nonroot programs can modify it. Line 9a creates the
allow/nn.nn.nn.nn file noting that the IP has authenticated, and line 9b sends UDP notifications to
other local mail servers. (If you only have one server, leave out line 9b.) The rest of the script is
unmodified from the version in Chapter 13.

7.5.2 Adding POP-Before-SMTP to the SMTP Server

The additions to the SMTP script in /var/qmail/supervise/qmail-smtpd/run are similar to the ones for
the POP server, as shown in Example 7-8.

Example 7-8. The SMTP listening script, with POP-before-SMTP

 1. #!/bin/sh
 2. limit datasize 2m
 3. exec \
3a. envdir /etc/relay-ctrl \
3b. relay-ctrl-chdir \

 4. tcpserver -u000 -g000 -v -p -R \
4a. relay-ctrl-check \
 5. -x/var/qmail/rules/smtprules.cdb 10.1.2.3 25 \
 6. /var/qmail/bin/qmail-smtpd 2>&1

Lines 3a and 3b set environment variables and open the allow directory, as before. Line 4a checks to
see if allow/nn.nn.nn.nn exists and isn't too old (older than RELAY_CTRL_EXPIRY seconds), and if so
sets RELAYCLIENT.

If you want to provide both POP-before-SMTP and SMTP AUTH, install the SMTP AUTH patches as
described earlier in this chapter, and then add in the POP-before-SMTP programs to the run script, as

http://lib.ommolketab.ir
http://lib.ommolketab.ir

shown in Example 7-9.

Example 7-9. The SMTP listening script with POP-before-SMTP and SMTP
AUTH

 1. #!/bin/sh
 2. limit datasize 2m
 3. exec \
3a. envdir /etc/relay-ctrl \
3b. relay-ctrl-chdir \

 4. tcpserver -u000 -g000 -v -p -R \
4a. relay-ctrl-check \
 5. -x/var/qmail/rules/smtprules.cdb 10.1.2.3 25 \
 6. /var/qmail/bin/qmail-smtpd \
6a. mail.example.com \
6b. checkpassword \
6c. /bin/true 2>&1

7.5.3 Using POP-before-SMTP with ofmipd

If you use ofmipd to accept injected mail, it's a little harder to use POP-before-SMTP. The reason is
that :deny rules prevent relay-ctrl-check from running at all for IP addresses that aren't on the

local network. There's a straightforward workaround using the anti-spam program rblsmtpd,
discussed in Chapter 9.

7.5.4 Other POP-before-SMTP Daemons

Every once in a while, you should delete expired files from the allow directory to avoid clutter. There's
no great urgency since relay-ctrl-check checks each time it uses a file that the file isn't expired, so
running the cleanup program once a day is plenty. If your system has a daily or daily.local script
that's run as root once a day, add a line to the end that says:

envdir /etc/relay-ctrl relay-ctrl-age

If not, run that line directly from cron once a day.

Finally, if you have multiple mail servers, on each SMTP server you must run the UDP server that
receives messages about IP addresses that have authenticated. The server does no validation at all
of source addresses, so if possible you should adjust your router to discard all packets addressed to
UDP port 811 (or whatever other port you use). Create directories /var/qmail/supervise/relay-
ctrl/udp and /var/qmail/supervise/relay-ctrl/udp/log. The run file just starts the UDP listener as root,
as in Example 7-10.

Example 7-10. The POP-before-SMTP UDP listener script

 1. #!/bin/sh
 2. exec \
 3. envdir /etc/relay-ctrl \
 4. relay-ctrl-udp 2>&1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IMAP Before SMTP

If you use the Courier IMAP server or the Courier POP server, relay-ctrl is designed to

work with them as well, using the Courier authorization library interface. See the relay-ctrl
README file for more details.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 8. Delivering and Routing Local
Mail
Mail isn't very useful unless it's delivered successfully. This chapter looks at delivering mail addressed
to local mailboxes, both for local delivery and for redelivery elsewhere.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

8.1 Mail to Local Login Users

Local login users usually receive mail in mbox format in ~/Mailbox and ~/.mail.[1] Or they receive
mail in Maildir format in ~/Maildir/.

[1] For historical compatibility, some still use /var/spool/mail/username, but in this chapter I assume that you
have at least moved your users' mailboxes into their home directories where they belong.

8.1.1 Local Delivery .qmail Files and Default Delivery Rules

In the simplest case, a user's .qmail file needs to contain only a single line to specify the user's
mailbox, either the mbox format mailbox:

deliver into $HOME/Mailbox
./Mailbox

or the Maildir:

deliver into a file in $HOME/Maildir/
./Maildir/

I suggest that every shell user should have a .qmail file (add it to the set of skeleton files that your
adduser procedure creates), but for users who don't, be sure to set a reasonable default as the
argument to qmail-start in /service/qmail/run, as described in Chapter 3.

8.1.2 Maildirs and Mail Clients

Although Maildirs have all sorts of advantages over mboxes, they are not supported in many mail
clients. For the popular elm and pine clients, qmail provides small scripts, elq and pinq, which move
mail from the Maildir into an mbox, then run the client. These use the maildir2mbox utility, which
requires three environment variables to be set. MAIL is the mbox file, usually $HOME/Mailbox.
MAILTMP is the name of a temporary file used to hold a copy of the updated mbox, which must be on
the same filesystem as $MAIL, usually $HOME/Mailbox.tmp. MAILDIR is the name of the Maildir,
usually $HOME/Maildir.

While these two scripts work adequately, in the long run if you're using Maildirs, you should use a
Maildir client. Unix and Linux command-line users can try mutt, a nice freeware client, Courier IMAP
(see Chapter 13), and IMAP clients including pine and the KDE mail client.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

8.2 Mail Sorting

Unless users receive very little mail, they generally want to sort it before they read it. While Windows
mail users tend to pick up all their mail from a single POP mailbox and sort it into local mailboxes in
their mail client, Unix users often arrange to sort the mail as it's delivered into mailboxes on the
server, and use a client that can handle multiple mailboxes either directly or using IMAP.

There are two general strategies to mail sorting: use multiple incoming addresses or use a filtering
program on incoming mail.

8.2.1 Mail Sorting with Subaddresses

The easiest way to sort mailing list mail is to subscribe to each list with a different subaddress. That
is, if your address is mary@example.com, you might sign up for three lists as mary-
gold@example.com, mary-nade@example.com, and mary-land@example.com.[2] If your system is
set up with per-user subdomains as described in Chapter 12, the three addresses could be written as
gold@mary.example.com, nade@mary.example.com, and land@mary.example.com. Then create
three files ~mary/.qmail-gold, ~mary/.qmail-nade, ~mary/.qmail-land, each with the delivery
instructions for the list mail. If you are using a mail client that handles multiple mailboxes, either
directly or through the Courier IMAP server (see Chapter 13), deliver each list to its own mailbox.

[2] These are presumably lists about horticulture, cooking, and geography.

This scheme works very well when you only receive mail from a list and you can access the signup
through a web site. I use a unique address every time I buy something from a web site that wants an
email address. That's useful for both mail sorting and reminding me that a dubious looking piece of
mail is in fact from a place to whom I gave the address. It doesn't work so well on discussion lists to
which you send as well as receive mail, because it's not easy to put the subaddress on outgoing mail,
either to set up the subscription or to send messages to the list. (I've occasionally been reduced to
running qmail-inject and typing mail headers to it.) It's possible to write a wrapper around qmail's
sendmail program or qmail-inject or, if you're using the QMAILQUEUE patch from Chapter 3, write a
wrapper around qmail-queue that looks up the destination addresses for a user's outgoing mail in a
file and adjusts the return address for mail going to lists. As far as I know, though, nobody's done so.
The pragmatic approach is to subscribe both a subaddress and your regular address to a list, and set
your regular address to NOMAIL or alias the two together if the list management software permits, so
incoming mail from the list goes to the subaddress, while you send outgoing mail from your regular
address.

8.2.2 Mail Sorting with Filter Programs

For mail that's sent to a user's regular address, procmail and maildrop provide flexible script-driven
mail sorting. They both provide similar sets of features, with the largest difference being one of style.
The procmail control language is extremely terse with single-letter commands and options, while
maildrop's language is more reminiscent of the Unix shells or Perl. Maildrop includes some extra

http://lib.ommolketab.ir
http://lib.ommolketab.ir

features to do simple text processing intended mostly for extracting and handling email addresses,
and an optional interface to GDBM keyed files. A significant practical difference is that procmail reads
an entire message into memory, which means it won't work on very large messages that don't fit.
Maildrop falls back to temporary files so it can handle even the largest messages, slowly.

I use procmail, mostly because I've been using it since before maildrop was available. The size limit
isn't a problem in practice, because I rarely get mail bigger than 10 MB (certainly not mail that I
want), and the filtering I do doesn't need the extra features in maildrop.

8.2.2.1 Mail sorting with procmail

Procmail works well when run from .qmail files. It expects an mbox-style From line at the beginning
of the message, so run it via preline:

| preline /usr/bin/procmail || exit 111

This tells procmail to read the standard control file .procmailrc, preceded by /etc/procmailrc if it
exists. The exit 111 is optional, but it's there to ensure that a message stays in the queue if

procmail crashes, giving you a chance to fiddle around and figure out what went wrong and try again.
On the other hand, if your procmail script sets the EXITCODE variable to return a particular value,
you should leave off the exit so qmail sees your code.

The procmail documentation discusses special provisions for using procmail as a mail delivery agent,
and the fine points of its set-uid code. None of this applies to qmail. When procmail starts, whether
it's run explicitly from a .qmail file or implicitly as the default argument to qmail-start, it is like all
delivery agents run under the recipient user's ID and home directory. You should not install procmail
as setuid, because you don't need it and it would be a potential security hole.

If you have multiple mailboxes, either mboxes or Maildir subfolders, procmail can deliver to them
directly:

catch messages that appear to be duplicates based on msgid
(this cryptic recipe cribbed from the procmail examples)
:0 Whc: msgid.lock
| formail -D 8192 msgid.cache

file them in a subfolder
:0 a
Maildir/.duplicates/

deliver mail about breakfast to an mbox
:0
* Subject:.*breakfast
Mail/breakfast

deliver mail from the lunch list to a Maildir subfolder
use the List-ID: tag to identify it
:0
* List-ID:.*lunchlist.example.com
Maildir/.lunchlist/

http://lib.ommolketab.ir
http://lib.ommolketab.ir

bounce mail about dinner, we're on a diet
:0
* Subject:.*dinner
{
 EXITCODE=100
}

deliver everything else to my regular Maildir
:0
Maildir/

Note that the Maildir deliveries end with a slash to identify them as Maildirs rather than mboxes, just
like in .qmail files.

It's quite possible and often useful to combine tagged addresses with procmail. You'll generally want
to create separate procmail files for the subaddresses, so put this in .qmail-color and tell it to use
procmail-color:

| preline /usr/bin/procmail procmail-color

You can use all of qmail's environment variables in your procmail scripts, because procmail makes
them available as variables in the script and in the environment of any commands it runs. All but
one, that is, because procmail has its own (not very useful) definition of $DEFAULT, which overrides
qmail's. Fortunately, this is easily circumvented by giving it a different name. Put this in .qmail-color-
default to refer to the default part of the address as $SUBADDR:

| preline /usr/bin/procmail procmail-color SUBADDR="$DEFAULT"

8.2.2.2 Mail sorting with maildrop

In principle, anything you can do with procmail, you can do with maildrop, just differently. In
practice, I've found maildrop's code to have severe portability bugs on non-Linux systems, so I can't
recommend it for production use, at least not on BSD systems.

To use maildrop, run it from your .qmail file:

| maildrop

The script comes from /etc/mailfilter if it exists, then .mailfilter in the user's home directory. With no
arguments, it delivers mail to the default place determined when maildrop was built, usually
~/Maildir. Here's the maildrop equivalent of the delivery script:

catch messages that appear to be duplicates based on msgid
(this code from the maildrop manual)
`reformail -D 8192 duplicate.cache`
if($RETURNCODE = = 0)
 to Maildir/.duplicates

deliver mail about breakfast to an mbox
if(/Subject:.*breakfast/)
 to Mail/breakfast

http://lib.ommolketab.ir
http://lib.ommolketab.ir

deliver mail from the lunch list to a Maildir subfolder
use the List-ID: tag to identify it
if(/List-ID:.*lunchlist.example.com/)
 to Maildir/.lunchlist/

bounce mail about dinner, we're on a diet
if(/Subject:.*dinner/)
{
 EXITCODE=100
 exit
}

deliver everything else to my regular Maildir
to Maildir

8.2.3 More Mail Sorting

Although procmail and maildrop are the most popular programs for mail sorting, it's not hard to roll
your own. For example, using qmail's condredirect program, you can sort mail based on text strings:

| condredirect fred-breakfast grep -q 'Subject:.*breakfast'
| condredirect fred-lunch grep -q 'List-ID:.*lunchlist.example.com'
Maildir/

Because qmail doesn't include separate programs to store mail into mailboxes, conditional deliveries
need to use separate subaddresses for each mailbox they use. If you have programs handy to do
deliveries (mine's called mds for Maildir Store, available at www.qmail.org), you can write these as
short shell commands:

| if grep -q 'Subject:.*breakfast'; then mds Maildir/.breakfast; exit 99; else exit
0; esac
 ... and so forth ...

(The grep command reads through the input message, so any program like mds has to be sure to
rewind its input so it starts delivering the message from the beginning.) For most purposes, you're
better off with procmail or maildrop, but if you find you want to do some sorting that you can't easily
express in procmail-ese, you can always roll your own.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 9. Filtering and Rejecting Spam
and Viruses
Filtering spam and viruses out of incoming mail is an unfortunate necessity on today's Internet. It
would be easy to write a book on spam filtering techniques, but this chapter is designed to present
techniques and examples rather than a complete filtering strategy. (Even if it did have a complete
strategy, by the time you read it, the character of spam would have changed enough that you'd have
to change your filters anyway.)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.1 Filtering Criteria

Spam and virus filters can use any of a wide range of message characteristics for filtering. They
include:

The IP address from which the message is received

The information sent in commands in the SMTP session, including the argument to the HELO or
EHLO command, the envelope sender in MAIL FROM, and the envelope recipients in RCPT TO

The contents of message headers, including From:, To:, Subject:, and Received:

The contents of the message body

It's also possible and often useful to make filtering decisions based on combinations of messages,
such as the number of messages received per minute from a particular IP address, or "bulkiness"
scores based on the number of messages seen with similar or identical contents.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.2 Places to Filter

Filtering can be applied at several places in the receipt and delivery process. The earlier a filter is
applied, the more quickly a message is dealt with. Filtering points include:

At connection time, for IP address and rDNS-based filters

During the SMTP session, before the message is received, for filters based on envelope
information

During the SMTP session, after the message is received, for filters based on message contents

As the message is delivered, for user-customizable filters

Most systems use multiple filters applied at different points. The standard qmail SMTP daemon is very
lightweight compared to most other MTAs, and does as little work as possible to collect the message
and queue it, leaving all of the rest of the work for delivery time. Many of the spam filtering tools,
such as Spamassassin, a complex filter that computes a "spamminess" score based on multiple
criteria, can run at either SMTP time or delivery time.

If you run it at SMTP time, the disadvantage is that it ties up an incoming SMTP process a lot longer
than normal, possibly causing mail to be rejected if tcpserver reaches its concurrency limit. Also, the
SMTP daemon doesn't know where the mail will be delivered, which makes it hard to apply per-user
parameters. The advantages of filtering at SMTP time are that mail can be rejected before it's
queued, so the bounce goes back to the actual sending system rather than a probably forged return
address; a message addressed to multiple recipients can be processed once rather than separately
for each user; and in case of a barrage of spam, the tcpserver concurrency limits prevents mail from
being accepted faster than it can be delivered.[1]

[1] Hitting the concurrency limit and rejecting mail is good if the rejected mail is spam; it's not so good if the
rejected mail isn't spam. But legitimate mail software will retry the delivery, so real mail will only be delayed,
not lost.

I used to think that only lightweight filters, such as IP address lookups in DNS blacklists and envelope
address lookups in badmailfrom, should be run at SMTP time, but as the ratio of spam to real mail
has grown, and I see blasts of spam come in that flood the queue and can take hours to filter at
delivery time, now I think that it makes sense to run anything at SMTP time that isn't user-specific
and doesn't need access to data that the SMTP daemon doesn't have.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.3 Spam Filtering and Virus Filtering

Although spam and virus filtering have historically been different applications, their implementations
are as much similar as different. The most important difference is that while nobody wants to get
viruses (except perhaps the abuse desk so they can figure out where they're coming from), users
have varying taste in spam filters, and many filters permit some user customization. The only way to
detect a virus is to examine the body of a message and see if there's a virus inside, which means it
has to be done either at SMTP time after the message is received or as the message is delivered.
Virus-filtering vendors have come up with long, frequently updated lists to match all of the viruses
that they're aware of. While there are plenty of commercial anti-virus products available that can be
plugged into qmail (see qmail-scanner and Amavis), it's possible to catch just about every virus with
a simple filter (see Russ Nelson's anti-virus patch).

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.4 Connection-Time Filtering Tools

The ucspi-tcp package contains a set of tools to accept, reject, or conditionally accept mail using
rules that key on the IP address or rDNS of the remote site.[2] Some rules are locally defined and
used only on a single host, while others are shared among multiple hosts. The standard way to
handle shared rules is via DNS blacklists or blocklists (DNSBLs, either way). Local IP and rDNS rules
are handled by tcpserver, using a rule file created by tcprules. This is the same rule file we set up in
Chapter 8 to distinguish between local injection hosts and remote relay hosts. DNSBLs are handled
by rblsmtpd, which runs between tcpserver and qmail-smtpd.

[2] tcpserver can also use info from an IDENT (port 113) server on the remote host. IDENT has almost
disappeared from the Net, so I won't say much about it beyond noting that if tcpserver receives IDENT data
from the remote host, it's put in the TCPREMOTEINFO environment variable. See the tcprules documentation for
more details.

What Are DNSBLs and DNSWLs?

Many people keep recommended lists of IP addresses to block that they share with others.
The standard way to publish these lists is through DNS. The form of a DNSBL is very
simple, a DNS zone with a name like any other DNS zone, say badguys.example.com. For
each IP address in the DNSBL, there's a pair of records in the zone whose name is the
components of the IP address in reverse order. One record is an A record with a value of
127.0.0.2, the other is a TXT record with a string to use as the error message when
someone uses the record to block mail. For example, if the address 10.1.2.3 were in the
zone, the records would be named 3.2.1.10.badguys.example.com and the text record
might contain Blocked due to abuse. Some DNSBLs use the same text record for every

entry; others include a URL for each address or range of addresses blocked that provides
more information about the entry. Reversing the components of the IP address makes it
easier to handle IP address ranges with wild cards, so that *.2.1.10.badguys.example.com
would cover all of 10.1.2.0-10.1.2.255. A few DNSBLs only have A records and no TXT
records. The standard rblsmtpd requires the TXT records, but a patch at
http://www.qmail.org/ucspi-rss.diff lets it simulate TXT data for zones without it.

A variant of a DNSBL is a DNS whitelist, or DNSWL, that lists IP addresses from which you
should accept mail. The structure of a DNSWL is the same as a DNSBL except that there
are only A records, no TXT records. The most common use of a DNSWL is for the operator
of a cluster of SMTP servers to override entries in public DNSBLs that the servers use.
There are also a few public DNSWLs, such as the HUL from habeas.com, that lists hosts
that have committed to send mail in a responsible fashion. Earlier versions of the ucspi-
package had a separate antirbl program to handle DNSWLs, but as of Version 0.88, its
function has been folded into rblsmtpd, which now handles both DNSBLs and DNSWLs.

9.4.1 Using Local Filtering Rules

http://www.qmail.org/ucspi-rss.diff
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Local filtering rules go into the file that is used to build the CDB file used by tcpserver. If you set up
your qmail system as suggested in Chapter 4, the CDB file is called /var/qmail/rules/smtprules.cdb,
and the source from which it's built is /var/qmail/rules/smtprules.txt.

To refuse mail connections from hosts that you never want to accept any mail from, use a deny line:

10.1.2.3:deny
10.20.96-127.:deny

These rules reject connections from the single address 10.1.2.3 and the range 10.20.96.0 through
10.20.127.255. (Omitted components are considered to be wildcards and match any value.) You can
also match on the rDNS name of a host. To reject connections from mail.imaspammer.com and any
host whose rDNS ends with .dialup.badlyrunisp.net, use these lines:

=mail.imaspammer.com:deny
=.dialup.badlyrunisp.net:deny

Each time tcpserver gets an incoming connection. It looks first for a rule with a name in the form
IDENT@IP and IDENT@=rDNS, if it's retrieved IDENT data for the connection, it looks for IP, then
=rDNS, then wildcard IPs, then wildcard rDNS, then just an equals sign if there's any rDNS, and
finally, an empty catch-all rule. For example, if the host IP is 10.1.2.3, its rDNS is mail.myvirt.com,
and the IDENT info is fred, it looks for these rules in this order:

fred@10.1.2.3
fred@=mail.myvirt.com
10.1.2.3
=mail.myvirt.com
10.1.2.
10.1.
10.
.
=.myvirt.com
=.com
=
 (empty rule)

If there's no IDENT info (there usually isn't), it doesn't look for the first two rules. If there's no rDNS,
it doesn't look for any of the rDNS rules with equals signs. Note the three different catchalls: a single
dot that matches any IP address, a single equals sign that matches any host that has rDNS, and an
empty name that matches anything. The dot rule and empty name both match everything, with the
difference being that the dot rule takes precedence over rDNS wildcards. (Or to put it another way, if
there's a dot rule, it never looks at rDNS wildcards because the dot rule matches first.) The actions in
the rules can be :allow or :deny. An :allow action can be followed by any number of environment

variable assignments, separated by commas.

A typical rules file has a few :allow rules with RELAYCLIENT for hosts on the local network that inject
mail, a few IP-based :deny rules for hosts that send viruses or pure spam, often some rDNS :deny

rules for IP ranges of retail dialup or broadband hosts that have sent nothing but viruses, and a
catchall :allow rule. It's a bad idea to use rDNS-based :allow rules, because rDNS is technically

easy to forge. If you're using POP-before-SMTP, described in Chapter 7, note that if an address has a
:deny rule, tcpserver will summarily reject the connection, never giving the POP-before-SMTP

program a chance. Fortunately, as we'll see in the next section, it's possible to use rblsmtpd to do the
rejections in a way that makes POP-before-SMTP work:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

allow relay from this host
127.:allow,RELAYCLIENT=""

allow relay from other hosts on this network
172.16.42.:allow,RELAYCLIENT=""
172.16.15-18.:allow,RELAYCLIENT=""

reject all connections from spam source
10.10.88.99:deny

reject connections from badly managed DSL pool
=.dsl.ineptisp.com:deny

otherwise, allow connections but no relay
:allow

9.4.2 Using DNSBLs and DNSWLs

A rules file is a fine way to manage IP rejection rules for a single host. For a small network, it's
practical to distribute copies of rules of CDB to all of the hosts using scp or rdist that need it. But to
share a set of rules among hundreds or thousands of hosts, only a DNSBL will do. To use DNSBL,
insert a call to rblsmtpd in between tcpserver and qmail-smtpd. Early versions of rblsmtpd could only
check one DNSBL per invocation (dating from the era when Paul Vixie's RBL was the only DNSBL),
but Version 0.88 checks any number, as shown in Example 9-1.

Example 9-1. Running the SMTP daemon

 1. #!/bin/sh
 2. limit datasize 2m
 3. exec \

 4. tcpserver -u000 -g000 -v -p -R \
 5. -x/var/qmail/rules/smtprules.cdb 0 25 \
 5a. rblsmtpd -b \
 5b. -ahul.habeas.com \
 5c. -rsbl.spamhaus.org \
 5d. -rcbl.abuseat.org \
 6. /var/qmail/bin/qmail-smtpd 2>&1

rblsmtpd either runs the next program in line, generally qmail-smtpd, if the DNSBLs and DNSWLs
don't tell it to block mail from the connecting IP, or else turns into a tiny SMTP "rejection server" that
only accepts HELO, EHLO, MAIL FROM, and QUIT, returning an error message to anything else. With
any luck, the SMTP client on the other end passes the error message back to the sender so that a
human sender realizes there's a problem and mailing list software takes the address off its list. The
message can be prefixed by either a 451 code, a temporary error that tells the sender to try again
later, or 553, a permanent error that tells the sender that it can't send mail to that address. It drops
the connection after 60 seconds if the client hasn't already done so. Normally it gives a temporary
rejection unless it's run with the --b flag, as in the previous example. (These days most rejections

are for mail that you'll never want delivered, so there's no point in retrying.)

To decide what to do, rblsmtpd first checks the environment variable RBLSMTPD that might have

http://lib.ommolketab.ir
http://lib.ommolketab.ir

been set by tcpserver or the run script. If the variable is set to a null string, that's a whitelist entry so
rblsmtpd runs the next program in the chain. If it's set to a string, RBLSMTPD runs the rejection
server, using the string as the error message. If the string is prefixed with a hyphen, the rejection
server gives permanent rather than temporary errors.

In the absence of RBLSMTPD, it then goes through the list of --r and --a flags, checking each
DNSBL or anti-DNSWL in turn. The argument to each --r or --a flag is the name of the list to check.

If a DNSBL has a TXT entry for the IP in TCPREMOTEIP, it starts the rejection server. If an anti-
DNSWL has an A entry for the IP, it runs the next program. If it gets to the end of the list of DNSBLs
and anti-DNSWLs with no matching entries, it runs the next program.

For the most part, you need to select only the DNSBLs you want to use, add them to your run file,
and restart the SMTP daemon. Some of the DNSBLs I use in early 2004 include (all have web pages
at the same address as the blocklist unless otherwise noted):

sbl.spamhaus.org

The Spamhaus Block List, a manually maintained list of chronic spam sources

cbl.abuseat.org

The Composite Block List, created mechanically from spam received at some high-volume
spam traps

relays.visi.com

A mechanically created list of open relays

opm.blitzed.org

The Open Proxy Monitor, a mechanically maintained list of abused open proxy servers

dul.dnsbl.sorbs.net

A manually maintained list of dynamically allocated IP addresses (mostly retail dialup ISP
space) that shouldn't be sending mail directly

The one public DNSWL I currently use is the Habeas Users List. It requires a no-charge license
agreement; see http://hul.habeas.com/services.html.

The list of effective DNSBLs and DNSWLs changes every month or two, and some of these may no
longer be available or may have been replaced by the time you read this.

http://hul.habeas.com/services.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sometimes you'll find that you want to override a few of the entries in one of the DNSBLs you use
because they block mail from someone your users want to hear from. (If the listing is a mistake,
most DNSBL maintainers take it out reasonably promptly, but your user will of course want it fixed
right away.) rblsmtpd looks at the environment before it looks at any of the DNSBLs, so you can put
override entries in your rules file. To whitelist an address, add an entry that sets RBLSMTPD to an
empty string. To block an address with a rejection message, add an entry that makes the message
the contents of RBLSMTPD:

accept mail from this address, overriding any DNSBL entries
10.20.1.2:allow,RBLSMTPD=""

send temporary rejections to this one
10.30.2.3:allow,RBLSMTPD="Please pay your bill to regain mail access"

reject this entirely
10.40.5.6:allow"RBLSMTPD="-All mail blocked due to pornographic spam".

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.5 SMTP-Time Filtering Tools

Once qmail-smtpd has started, filters can use the message envelope and data to trigger more filter
rules. Some of the filters require patching the filter code into qmail-queue, while others can use the
QMAILQUEUE patch to run the filters on the incoming message before queueing it for delivery.

9.5.1 Filtering in the SMTP Daemon

The three most useful checks in the daemon itself are MAIL FROM rejection, RCPT TO rejection, and
Windows EXE virus rejection.

The standard qmail control file badmailfrom lists addresses and domains to reject as MAIL FROM
arguments. The addresses are listed literally, domains preceded by @, so an address
annoying@example.com is rejected if either annoying@example.com or @example.com appears. The
rejection actually happens at subsequent RCPT commands because it's clearer to some SMTP clients
that the mail can't be delivered.

I wrote a "badrcptto" patch, available at qmail.org, that lets you list recipient addresses to reject by
putting them in badrcptto or morebadcptto, which is compiled into morebadrcptto.cdb by the new
program qmail-newbrt. It only lists addresses; the way to reject recipient domains is to not put them
in rcpthosts. The rejections happen after the DATA command to deter dictionary validation attacks.
(Typical dictionary attacks start by trying a garbage address or two, in order to see whether the
recipient MTA rejects them, and if they're not rejected, the attacker goes away.) The main point of
badrcptto is one of efficiency. My system has a lot of addresses that get nothing but spam, and it's
much faster to reject mail to those addresses at SMTP time than at delivery time. Also, if the
message has multiple RCPT TO recipient addresses, it's rejected and not delivered to any of them if
any of the addresses appear in badrcptto, on the theory that one can presume that any message
sent to a known-to-be-bad address is spam even if it's also sent to a valid address. Another minor
point is that rejecting at SMTP time sends the rejection to the actual sending host, rather than to the
innocent return address, in the usual case that the return address is a fake.

There's a "goodrcptto" version of my patch floating around that flips the sense of the test and accepts
mail only to listed addresses. I don't suggest you use it, because it breaks mail sent to subaddresses
and -default addresses, some of qmail's most useful features.

The third daemon check deals with viruses. I observed in 2002 that all current viruses are Windows
.exe files, and it's rare for anyone to send mail with an individually attached .exe files that's not a
virus. Russ Nelson wrote a simple and extremely effective anti-virus patch, available at
www.qmail.org, that recognizes the fixed code pattern present at the beginning of each .exe file. I
suggest you use it, and tell your users who just have to mail around .exe files to put them in ZIP files
before sending.

There are some other filtering patches for the SMTP daemon, none of which I recommend. One fairly
popular one does a DNS lookup on the domain of each MAIL FROM address and rejects any that don't
resolve. Several years back, a lot of spam used nonexistent fake addresses, but once the DNS checks
became popular, spammers started forging genuine domains to defeat the DNS check. Nowadays,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the DNS check slows mail delivery, because it can require a round-trip DNS lookup to a faraway DNS
server, but stops almost no spam.

9.5.2 Separate Filters Called from the SMTP Daemon

Once qmail-smtpd has collected the incoming message, it normally runs qmail-queue to queue the
message for delivery. If you've installed the QMAILQUEUE patch recommended in Chapter 3, it will
instead run whatever program is named by the QMAILQUEUE environment variable. In practice you
almost always run a shell script that calls the various filtering programs. In the simplest case, run
incoming mail through a filter and then queue it. For example, create /var/qmail/bin/smtp-spa with
the following contents, and chmod it 755 to make it executable, as shown in Example 9-2.

Example 9-2. Excessively simple Spamassassin SMTP-time filter

#!/bin/sh

/usr/local/bin/spamassassin | /var/qmail/bin/qmail-queue

This works because qmail-queue first reads the body of the message from file descriptor 0, which is
connected to the pipe, and then reads the envelope from file descriptor 1, which the shell doesn't
change because there's no output redirection. Then add a line to the SMTP run script (line 2a in
Example 9-3) that sets the environment variable.

Example 9-3. Running the SMTP daemon with an SMTP-time post-filter

 1. #!/bin/sh
 2. limit datasize 40m
2a. export QMAILQUEUE=/var/qmail/bin/smtp-spa
 3. exec \

 4. tcpserver -u000 -g000 -v -p -R \
 5. -x/var/qmail/rules/smtprules.cdb 0 25 \
 5a. rblsmtpd -b \
 5b. -ahul.habeas.com \
 5c. -rsbl.spamhaus.org \
 5d. -rcbl.abuseat.org \
 6. /var/qmail/bin/qmail-smtpd 2>&1

Note line 2, where the data limit is increased to be large enough for Spamassassin to run. This
example works, assuming you have Spamassassin installed, but there are two reasons that you
probably want to set up a slightly more complex filtering script. One reason is that if Spamassassin
fails, the mail disappears without a trace and qmail-queue delivers an empty message instead. The
other reason is that Spamassassin has quite a few user-adjustable parameters, but when it's run
here it has no access to the users' home directories where the parameter files live. The first problem
is easily solved by using qmail-qfilter (described next) in the shell script to run the filter programs,
but the only way to solve the second is to run at least some of the filtering code at delivery time if
you let your users customize their filters.

It's possible to install extremely complex and slow spam and virus filters to run at SMTP time, but in
my experience, you quickly reach the point of diminishing returns. Most users don't customize

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Spamassassin very much, so I find it reasonably effective to run Spamassasin at SMTP time,
configured to add headers with a spam score, then use procmail at delivery time to look at the score
and decide what to do with it.

To do SMTP-time filtering, you need at least two parts. One is the program that runs the filters, such
as qmail-qfilter or qmail-scanner; the rest are the actual filters. This can go to a third level if you do
virus filtering with amavis, which unpacks a message into its individual parts and then passes each
part to a third-party filter.

While qmail-qfilter is a fairly simple program that runs a message through a few filters you specify
before handing it to qmail-queue, qmail-scanner combines built-in message scanning with separate
virus and spam filters to provide one-stop mail filtering (which is fine if their stop is the one you
want).

9.5.2.1 Filtering with qmail-qfilter

You can download qmail-qfilter from http://untroubled.org/qmail-qfilter/, as either an RPM or a tar.gz
file. Pay attention to the note in the README file that points out that it defines TMPDIR in qmail-
qfilter.c, the place to put temporary copies of messages as /tmp, which you may want to change to
/var/tmp or /usr/tmp if you have a small /tmp on a ramdisk. Compile and install it like any other
application; it's a separate program, not a patch. To use it, you must apply the QMAILQUEUE patch
to qmail, as described in Chapter 3.

When qmail-qfilter runs, it takes as arguments the names of the filters to which it will pass the mail
message. If there's more than one program, they're separated by - -arguments. qmail-qfilter runs
the filters one at a time, using temporary files to store the possibly modified message, and then if all
of the filters succeeded (returned 0), passes the output of the last filter to qmail-queue. The
QMAILQUEUE patch only passes the name of a command, so in practice qmail-qfilter is always run
from a shell script. For example, Example 9-4 presents a script to run incoming mail through the
popular Spamassassin spam filter using qmail-qfilter.

Example 9-4. Run incoming mail through a spam filter

#!/bin/sh

spam filter incoming mail

exec /var/qmail/bin/qmail-qfilter \
 /usr/local/bin/spamassassin

The version I use first runs mail through DCC, which counts similar messages to estimate bulkiness
(see http://www.rhyolite.com/anti-spam/dcc/), and then through Spamassassin, which already
contains rules to use the info that DCC adds to the mail header. DCC doesn't have built-in support for
qmail, but I wrote qmaildcc (available as always at www.qmail.org), a small Perl script intended to be
run from qmail-qfilter, which passes incoming mail through DCC and adds a header noting the DCC
bulkiness score (see Example 9-5). DCC can optionally also perform greylisting, temporary rejection
of mail from unfamiliar sources, on the theory that real mailers will retry later but spamware won't.

Example 9-5. Run incoming mail through DCC and a spam filter

http://untroubled.org/qmail-qfilter/
http://www.rhyolite.com/anti-spam/dcc/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

#!/bin/sh

greylist, bulk count and spam filter incoming mail

exec /var/qmail/bin/qmail-qfilter \
 /usr/local/bin/qmaildcc -- \
 /usr/local/bin/spamassassin

DCC can optionally whitelist based on incoming IP address. Because tcpserver provides the IP
address in the environment variable TCPREMOTEIP, qmaildcc can pass it along to DCC. Note the --

separating the DCC arguments from the call to Spamassassin. If you use a separate virus filter like
Clamav, add it here, too.

This script doesn't try very hard to do per-user customization. qmail-qfilter passes the list of recipient
addresses to the filter programs as the environment variable QMAILRCPTS, and qmaildcc has a little
code that checks to see whether an address is in a domain in locals, in which case it passes the
mailbox to DCC as the username, or a domain in virtualdomains in which it passes the first
component of the corresponding address as the username. However, this only works for the simplest
user setups. For better per-user customization, see delivery-time filtering, described next.

To hook this script into qmail, the QMAILQUEUE variable needs to be set. Assuming the script is
called dofilter, the easiest approach is to set it in the run script, as we already did. In line 2, increase
the datasize to be big enough to run whatever filter software you're running. Spamassassin is pretty
big, but 40 MB should be enough. As always, whenever you change the run script, svc -t to reread
the script and restart tcpserver (see Example 9-6).

Example 9-6. Running the SMTP daemon with an SMTP-time post-filter

 1. #!/bin/sh
 2. limit datasize 40m
2a. export QMAILQUEUE=/var/qmail/bin/dofilter
 3. exec \

 4. tcpserver -u000 -g000 -v -p -R \
 5. -x/var/qmail/rules/smtprules.cdb 0 25 \
 5a. rblsmtpd -b \
 5b. -a'hul.habeas.com' \
 5c. -r'sbl.spamhaus.org' \
 5d. -r'cbl.abuseat.org' \
 6. /var/qmail/bin/qmail-smtpd 2>&1

You can and probably should put some entries into the rules file to override QMAILQUEUE for some
hosts, as shown in Example 9-7. For example, you probably don't want to spam filter injected
outgoing mail, unless you have extremely unruly users, and there are probably some known friendly
hosts that you can trust not to send unwanted mail, so there's no point in running slow spam filtering
software on their mail.

Example 9-7. Sample smtprules line

mail from a friend, no filtering needed
10.30.10.10:allow,QMAILQUEUE="/var/qmail/bin/qmail-queue"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

allow relay from this host, but clean up the mail (see below)
127.:allow,RELAYCLIENT="",QMAILQUEUE="/var/qmail/bin/qinject"

allow relay from other hosts on this network
172.16.42.:allow,RELAYCLIENT="",QMAILQUEUE="/var/qmail/bin/qinject"
172.16.15-18.:allow,RELAYCLIENT="",QMAILQUEUE="/var/qmail/bin/qinject"

If your mail server handles injected mail, you can run the injected mail through new-inject to clean it
up, like the @fixme trick described in Chapter 6, but without needing an extra trip through the
delivery queue. Create a script called qinject (see Example 9-8).

Example 9-8. qinject: Using qmail-qfilter to clean up injected mail

#!/bin/sh

unset potentially wrong env vars
unset MAILUSER; unset USER; unset LOGNAME; unset MAILNAME; unset NAME
unset MAILNAME

exec /var/qmail/bin/qmail-qfilter /var/qmail/bin/new-inject -n

This unsets the environment variables used to concoct a From: line, so that the mail won't seem to
come from the qmail daemon user, then it runs the message through new-inject. qmail-qfilter sets
QMAILUSER and QMAILHOST from the message's envelope sender, so new-inject can create a
reasonable From: line if need be.

Create as many filtering scripts as you want and assign them to different hosts or sets of hosts via
entries in the rules file. A plausible setup would be to do spam and virus filtering (if you don't use the
EXE patch to qmail-smtpd) for incoming mail, just virus filtering for mail injected from local hosts that
run Windows, and no filtering at all for mail injected locally or from other Unix systems.

In the previous examples, the filtering programs always accept the mail, but they don't have to. If a
filter program returns a nonzero code, the code is passed back to qmail-smtpd, which returns an
error message to the SMTP client. Useful return codes include 31 for a permanent "554 mail server
permanently rejected message" error, 71 for a temporary "451 mail server temporarily rejected
message" error, and 73 for a temporary "451 connection to mail server rejected" error. As a special
case, return code 99 discards the message without returning an error.

9.5.2.2 Filtering with qmail-scanner

qmail-scanner is a large Perl script, also run via QMAILQUEUE, which runs mail through a gauntlet of
tests and filters. Conceptually, qmail-scanner is simpler than using qmail-filter. You just download it
from http://qmail-scanner.sourceforge.net/, run the configuration script as root which builds the Perl
script to call the tools that are available, and plug it into QMAILQUEUE. In practice it's a little more
complex.

Before you can use qmail-scanner, as well as the QMAILQUEUE patch, you must install maildrop (or
at least the reformime program from maildrop), some Perl modules described in the README file, and
all of the spam and virus filters you want it to call. You also need to create a separate user ID,
usually called qscand, for it to run as. By default it "quarantines" incoming viruses in

http://qmail-scanner.sourceforge.net/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

~qspamd/Maildir, so you must remember to look there from time to time and clean it out.

qmail-scanner does work, but it's extremely slow (the suggested timeout in case something hangs is
20 minutes) and is overkill for most qmail systems.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.6 Delivery Time Filtering Rules

The most practical way to do delivery time filtering is to call filter programs from procmail or
maildrop. (All these examples use procmail, but you can do the same things from maildrop.) Procmail
is called in the context of the delivery user, so it's straightforward to use the user's personal
preferences for filtering. These procmail rules, for example, call DCC and Spamassassin, both of
which add X- message headers to the mail to report what they found. Tagged mail is filed in a
separate mailbox, in this case a spam subfolder of Maildir where it's visible as a subfolder in Courier
IMAP. The procmail rules can either go in /usr/local/etc/procmailrc, the global file used by default, or
go in an individual user's procmailrc for users who want to fiddle with their own rules (see Example 9-
9).

Example 9-9. Filtering in procmail

filter through dcc using the user's whitelist
:0 f
| dccproc -cCMN,40 -ERw .dcc/whiteclnt

:0
* X-DCC-IECC-Metrics: .*bulk
{
 LOG="Reject: tagged by DCC
"
 :0
 ./Maildir/.spam/
}

filter through spamassassin for messages under 300K
:0 fw
* < 300000
| spamassassin

:0
* X-Spam-Status: Yes
{
 LOG="Reject: tagged by spamassassin
"
 :0
 ./Maildir/.spam/
}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.7 Combination Filtering Schemes

You can mix and match the pieces described previously to construct hybrid filtering schemes. For
example, on one of my servers I have some domains that deliver into a POP/IMAP "pop toaster," and
other domains that deliver to a variety of shell accounts, mailing lists, and mail forwarders. For the
pop toaster domains, I want to do the filtering at SMTP time, because all of the mailboxes are
handled the same, while for the other domains I want to do it at delivery time.

To arrange this, I assigned two different IP addresses to the server, and set up the DNS so that the
MX records for the pop toaster domains point to the first MX and the rest point to the second MX.
Then I set up two separate SMTP server setups under /service. The one for the pop toaster runs
tcpserver with QMAILQUEUE set to point to the filtering script, while the other one leaves
QMAILQUEUE alone, so mail is queued directly. Hence mail for the pop toaster domains goes to the
first MX where it's handled by the first setup, filtered and then queued for delivery, and the .qmail
files for toaster domains just deliver the mail. The rest of the domains go to the second tcpserver
setup where mail is not filtered at SMTP time, but the .qmail files for the various recipients run
procmail to do the filtering at delivery time.

In theory, a bad guy who knew the details of this setup could deliberately misroute mail for pop
toaster accounts to the second MX, thereby avoiding the spam filtering, but that's unlikely because
there's no obvious connection between the two sets of domains other than that the two IP addresses
are numerically close. If it became a problem, I could set up two completely separate instances of
qmail with separate configurations and separate rcpthosts files, as described in Chapter 17.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Part II: Advanced Qmail
The last nine chapters build on the foundation in the first part. They start with detailed
definitions of qmail's local and remote mail delivery system, and then cover other topics,
including virtual domains, mail pickup from remote PCs, running mailing lists, system tuning,
and ways to use qmail to solve complex mail handling problems:

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Chapter 16

Chapter 17

Chapter 18

Appendix A

Appendix B

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 10. Local Mail Delivery
The way that qmail delivers local mail is fundamentally quite simple but is extremely configurable.
This chapter looks in detail at the way that local mail is delivered, then looks at some common
problems and applications.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.1 How Qmail Delivers Local Mail

Every local message is delivered to the local part of its target address, the part of the address to the
left of the at-sign. The local part may come directly from an incoming message, or it may be
generated internally by qmail, particularly for mail to virtual domains (see Chapter 12), which
construct the local part from a combination of the incoming address and information about the virtual
domain.

If the local part of an address contains one or more hyphens, the part before the first hyphen is
consider the user and the rest is the extension. If the local part doesn't contain a dash (hyphen), the
local part is the user and there's no extension.

10.1.1 Identifying the User

The first step in a local delivery is to identify the user corresponding to the local part and retrieve
several items about the user. The items are:

Username, that is, the login name that is usually but not necessarily the same as the qmail
user.

The numeric user ID.

The numeric group ID.

The home directory.

The dash character, if the local part had an extension. This is almost always an actual dash,
although for maximum sendmail compatibility some people use a plus sign instead.

The extension, usually the extension from the local part.

Qmail uses two techniques to retrieve the user information. First it checks the users database, which
the qmail manager can and usually should create. (I discuss it in more detail Chapter 15.) If there is
no users database or an address doesn't appear in the database, it runs qmail-getpw to get the
information from the Unix password file. If both of those fail, it prepends alias- to the address and
tries again, so that unknown addresses are treated as subaddresses of the alias user.

10.1.2 Locating the .qmail File

All local deliveries are controlled through a .qmail file. Once qmail has the user information
corresponding to a local part, selecting the qmail file is straightforward. All .qmail files are located in
the user's home directory.[1] If the local part has no extension, the .qmail file is called .qmail. If
Fred's home directory is /home/fred, mail for the address fred is handled by /home/fred/.qmail. If
there's an extension, it's .qmail-extension; for example, mail to fred-fishing would be handled by

http://lib.ommolketab.ir
http://lib.ommolketab.ir

/home/fred/.qmail-fishing. If the .qmail file for an address with an extension doesn't exist, qmail also
looks for a .qmail file, replacing the extension with -default, as in /home/fred/.qmail-default. If there
are multiple levels of extension, qmail searches for defaults one level at a time, and mail for fred-
fishing-lures is now handled by /home/fred/.qmail-fishing-lures, or /home/fred/.qmail-fishing-default,
or /home/fred/.qmail-default. Notice that a single extension is not defaulted to the plain .qmail file,
so the final default for any address with an extension is .qmail-default, not .qmail. To prevent funny
business, any dots in the address are replaced by colons in the filename, so the .qmail file for fred-
fishing.stories is /home/fred/.qmail-fishing:stories.

[1] Well, almost. If the extension contains slashes, the .qmail file will be in a subdirectory of the home directory.

If a .qmail file is empty, qmail uses the default delivery instructions passed to qmail-start at startup
time. If there is no plain .qmail file, qmail also uses the default delivery instructions. On the other
hand, if .qmail-default doesn't exist, mail to addresses with an extension bounces.

The alias user is handled the same as any other user. This means that mail to unmatched addresses
is handled by ~alias/.qmail-address if it exists, otherwise ~alias/.qmail-default. That means you can
handle arbitrary addresses by creating .qmail files in ~alias. You can also handle arbitrary addresses
by running fastforward from ~alias/.qmail-default, to look up addresses in a sendmail-style
/etc/aliases database. I cover that later in this chapter.

10.1.3 Processing the .qmail File

Once qmail has selected a .qmail file, it reads and processes the file one line at a time. The first
character on the line determines the type of line:

Lines that start with a sharp sign (#) are comments and are ignored.

Lines that start with a vertical bar (|) are commands. Qmail hands the command to the shell

(/bin/sh, regardless of what your login shell might be) in a known approximation to the
recipient's login environment. See Section 10.3 later for more detail on how qmail runs
commands.

Lines that start with a slash or a dot are mailboxes. The line is the filename of the mailbox. If
the line ends with a slash, it's the name of a Maildir mailbox, otherwise it's the name of an
mbox mailbox. See Section 10.2 for more details.

Lines that start with an ampersand (&) are forwards. The entire line after the ampersand is

taken to be an envelope-format address to which the message is to be forwarded, with no
comments, decorations, or extra whitespace other than whitespace at the end of the line, which
is ignored. That is, if you want to forward your message to sarah@example.com, this line is
correct:
&sarah@example.com

and these are all wrong:

&sarah@example.com (Sarah Bande)
&Sarah Nade <sarah@example.com>
&sarah (Sarah Pheem) @example.com
&sarah @ example.com

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you want to forward to more than one address, put each address on a separate line. If you
want to forward to addresses computed on the fly, use the forward program in a command line.

Lines that start with a letter or digit are also taken to be forwarding addresses, as though they
were preceded by an ampersand. Again, the entire line is taken to be an envelope-format
address, with no comments or decorations.

Completely blank lines are ignored, except at the beginning of a .qmail file where a blank line is
an error.

A .qmail file can have any combination of these kinds of lines. The lines are interpreted one at a time.
Command and mailbox lines are interpreted in sequence. (Maildir and mbox deliveries are handled by
internal routines in qmail-local that return exit codes like commands do to indicate whether the
delivery was successful.) If a command exits with a failure code (anything other than 0 or 99), the
delivery failed and qmail-local stops immediately. If a command exits with code 99, the command is
considered to have succeeded, but the rest of the .qmail file is ignored. If a command exits with code
100, the failure is permanent and the message bounces. If with code 111, the failure is temporary
and qmail will retry the delivery (the entire .qmail file, not just the command that failed) later. For
historical reasons, exit codes 64, 65, 70, 76, 77, 78, and 112 are also considered permanent failures,
any other nonzero exit code is temporary failure, but for compatibility with future versions of qmail,
programs should only return 0 for success, 99 for success and skip the rest of the file, 100 for
permanent failure, or 111 for temporary failure.

If you want qmail to continue interpreting a .qmail file if a command fails, the qmail documentation
suggests putting each command in a separate .qmail-whatever file and having the main .qmail file
forward the mail to the subaddresses corresponding to each of those files. A much easier approach is
to just force the exit code of each command line to zero:

| somecommand ; exit 0

The cabalistically inclined can abbreviate to:

| somecommand ;:

Forward lines are noted but not acted on until all of the lines in the .qmail have been interpreted. At
the end of the file, if there were any forward lines and no command or mailbox line has failed, qmail-
local calls qmail-queue to requeue the message to the forwarding addresses. If a command or
mailbox delivery fails, qmail-local does no forwards, even if the forward lines preceded the failing
delivery line in the .qmail file.

10.1.4 Defensive Features in qmail-local

Mail deliveries can be fouled up in a remarkable number of ways. qmail-local has several features
intended to prevent mail foul-ups, or to limit the damage when a foul-up occurs:

Every time qmail-local forwards a message or delivers it to a mailbox, it places a Delivered-To:
line at the front of the message. (The Delivered-To: line is available to program deliveries as the
DTLINE environment variable for programs that remail the message.) If a message already has
a Delivered-To: line with the exact same address as the current delivery, qmail-local won't
deliver the message and fails permanently. This prevents mail loops in which a circular chain of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

forwarding addresses keeps forwarding a message along forever.

If the home directory in which the .qmail file resides is world-writable or the .qmail file itself is
world-writable, qmail-local won't deliver the message and fails permanently, on the theory that
the .qmail file might have been tampered with by someone other than the intended user.

If the sticky bit is set on the home directory, qmail-local fails temporarily. Qmail uses that bit as
a flag that the user is editing .qmail files. This allows a user to set the sticky bit, edit .qmail
files, then turn off the sticky bit, to be sure that qmail won't attempt to interpret a partially
edited or partially rewritten file before the edits are done.

If the first line of a .qmail file is blank, qmail-local fails temporarily. It's not clear to me what
problem this solves. Blank lines elsewhere in the file are ignored.

If the execute bit is set on a .qmail file, the file should contain only forward lines, and mailbox or
command lines will fail. This helps make mailing lists more secure, so even if a bad guy sneaks
an address onto a list that looks like a mailbox or command, it won't do any damage. If a .qmail
file contains a +list line, subsequent lines in the file must be forwards, which makes it possible
to use mailing list files with a few commands at the front to validate the message or reset
bounce counters. (The +list feature is undocumented.)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.2 Mailbox Deliveries

Qmail has two built-in delivery programs: one for mbox mailbox files and one for Maildir directories.
In either case, the delivery is attempted under the recipient's user ID and primary group ID, so the
mailbox must be writable by the user.

If a line in a .qmail file starts with a dot or slash and doesn't end with a slash, it's taken to be the
name of an mbox mailbox file. To do the delivery, qmail-local opens the file for appending, creating it
if it doesn't exist. It then locks the file using the flock() or lockf() system call.[2] If it can't set the
lock within 30 seconds, the delivery fails temporarily. Once the file is opened and locked, qmail-local
writes a traditional separator line, then the Return-Path: and Delivered-To: lines to provide the
message envelope information, then the message, and a newline at the end. Any message line that
starts with From, possibly preceded by some number of > angle brackets is quoted by preceding the

line with an angle bracket. (This makes it possible to recover the original message by deleting one
bracket from any such line.) It then calls fsync() to flush the file to disk and closes the file. The
delivery fails if qmail-local can't create or lock the file, or if any of the writes to the file or the fsync()
fail.

[2] Some mail systems lock mailboxes in different ways, but qmail doesn't. If flock or lockf isn't adequate for
locking your mailboxes, you should switch to Maildirs, which don't need locks to work correctly.

If a line in a .qmail starts with a dot or slash and does end with a slash, it's taken to be the name of a
Maildir directory. First, qmail-local forks, and the child process does the delivery. The child makes the
Maildir its current directory, then creates a new file named tmp/t.p.h where t is the time in seconds

since 1970 (the standard internal Unix time format), p is the process ID, and h is the hostname, so a

typical name would be tmp/1012345678.34567.mail.example.com. It then writes the Return-Path:
and Delivered-To: lines to the file, followed by the message. Unlike mailbox format files, the message
is written literally and there is no need to quote lines. It then calls fsync() to flush the file to disk,
closes the file, links the file from tmp to new, and unlinks the tmp file. The delivery fails if qmail-local
can't change directory to the Maildir, create or lock the file, or if any of the writes to the file, the
fsync, or the link fail. The delivery also fails temporarily if the delivery subprocess doesn't complete in
24 hours, an error I have never seen but might occur with deliveries to an unavailable NFS
filesystem. Maildir deliveries do not need explicit locking because the operating system has internal
locks that make system calls to create and rename files atomic.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.3 Program Deliveries

Qmail defines a complex but well-specified environment in which to run the programs specified in
.qmail command lines. Each command is run under the user's user ID and primary group ID, in the
user's home directory, via /bin/sh -c . The command's standard input is the message file, while the
standard output and standard error are a pipe back to qmail-lspawn , which logs anything the
command writes to its output. If the program fails (exit 100), its output is mailed back to the sender as
part of the error report. The message file is guaranteed to be an actual file, so that programs can read
the message, seek back to the beginning, and read it again. (This isn't very useful for individual
programs, but it's quite useful for programs like condredirect that fork off a child program that reads
and analyzes the message, then when the child is done, reprocess the message itself.)

The program's environment variables are inherited from the qmail-start command that originally
started qmail, with quite a few added variables to help manage the delivery:

USER

The delivery username

HOME

The user's home directory

LOCAL

The local part of the recipient address

HOST

The domain part of the recipient address

RECIPIENT

The envelope recipient address, $LOCAL@$HOST

DTLINE

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Delivered-To: line, Delivered-To : $RECIPIENT\n ; any newlines within the recipient

address are changed to underscores

SENDER

The envelope sender address

NEWSENDER

The envelope sender, modified for mailing list deliveries; see Section 10.5

RPLINE

The Return-Path: line, Return-Path : $SENDER\n ; any newlines within the sender address are

changed to underscores

UFLINE

The uucp From line, the separator line that would be written to an mbox file, From $SENDER Thu
Nov 29 21:33:09 1973\n . If the sender is null, it uses MAILER-DAEMON, and any spaces, tabs,

or newlines within the sender address are changed to dashes (not underscores)

EXT

The address extension, the part of $LOCAL that follows the first dash; if there's no dash, the null
string

EXT2

The second address extension, the part of $LOCAL that follows the second dash; if there's no
second dash, the null string

EXT3

The third address extension, the part of $LOCAL that follows the third dash; if there's no third
dash, the null string

EXT4

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The fourth address extension, the part of $LOCAL that follows the fourth dash; if there's no
fourth dash, the null string.

DEFAULT

If the .qmail file is a default file, the part of the local part that matched the default (see Section
10.4); not set if this is not a default file

HOST2

The part of $HOST preceding the last dot

HOST3

The part of $HOST preceding the penultimate dot

HOST4

The part of $HOST preceding the antepenultimate dot

Other than the translations of whitespace to underscores or dashes, there's no attempt to defend
against strange or hostile characters in environment variables, so scripts should be sure to double-
quote variable references and remember that hostile senders can put any characters they want,
including punctuation and spaces, into a message's envelope. Programs called from .qmail files should
be equally cautious if they use the environment variables either directly or as program arguments. For
example, if a Perl script uses a subaddress to select a file to use, be sure it does something reasonable
when a sender sends you a message where the subaddress is |rm -f .

There is no provision for continuation lines in a .qmail file, so each command has to be on a single line.
There's no limit to the length of that single line, so you can put arbitrarily complex shell commands in
your .qmail file. In practice, if the shell script is more than about 100 characters, it's easier to put the
script in a separate file and call the script file from the .qmail file.

Any program run from .qmail files should run to completion and exit. If it forks and continues in the
background, the results are unpredictable, because all program and mailbox deliveries from a .qmail
file share the same input file descriptor, and the program's file reads are intermixed with those of other
commands run from the same .qmail file. (qmail-local resets the seek pointer to the beginning of the
file before each delivery.)

Delivery programs should not take very long to complete. Qmail normally limits itself to 10
simultaneous local deliveries, so 10 long-running delivery programs lock out all other local deliveries.

10.3.1 Delivery Utilities

Qmail provides a small set of programs intended for use in deliveries.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.3.1.1 forward

The most useful of the programs is forward , which remails the input message to all of the addresses
given on the command line, as though the addresses were each on a forward line in the .qmail file.
This is useful both because forward can be embedded in shell scripts to be run conditionally and the
addresses can be calculated at runtime. For example, to forward a message to a different address
depending on what the day of the week is, type:

| forward "day-$(date +%a)@example.com"

Or to route mail from one sender specially, type:

| case "$SENDER" in fred@domain.com) forward fredflame ;; *) forward inquiries ;; esac

10.3.1.2 bouncesaying

Bounce a message back to the sender either unconditionally or if a program succeeds. Most often,
bouncesaying is used to turn off addresses that are no longer active:

| bouncesaying "Sorry, this employee has left the company"

It's occasionally useful as a simple mail filter:

| bouncesaying "No tropical fruit, please" grep -q "guava|mango|papaya"
./Maildir/

This scans the message for forbidden words and bounces the message if the grep succeeds. Otherwise
it delivers the message to the user's Maildir. Note that the -q flag keeps the grep command from

producing unwanted output that would be mailed back with the bounce message.

10.3.1.3 condredirect

Conditionally remail a message to a different address. The arguments are the new address and a shell
command to run. If the command succeeds and exits 0, the message is mailed to the new address,
and condredirect exits 99, telling qmail to ignore any subsequent lines in the .qmail file. If the
command exits 111, so does condredirect . If the command exits with any other code, condredirect
exits 0:

| condredirect subscriptions grep -q -i "Subject:.*subscribe"
./Maildir/

Except in the most simple applications, it's usually easier to use procmail.

10.3.1.4 except

Reverse the exit code of a program:

| bouncesaying "Tropical fruit required here" except grep -q "guava|mango|papaya"
./Maildir/

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The except command reverses the sense of the grep so the mail is bounced if the magic words don't
appear in the message.[3]

[3] Yes, I could have used --v in the grep command. It's an example.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.4 Subaddresses

Qmail provides each user with an unlimited number of subaddresses, which are the user's address
followed by a dash[4] and the address extension. Subaddresses are most useful with virtual domains,
where qmail maps each address in the virtual domain to a domain-specific subaddress, but
subaddresses are useful for regular users as well. Their primary use is for mail sorting. If you use a
different subaddress for every mailing list to which you subscribe, you can use .qmail files to sort list
mail into separate mailboxes or to reformat incoming mail. I also find it handy to use a unique
subaddress every time I register on a web site so in case one of the site owners misuses the address,
I know who to blame.

[4] It's possible to use a character other than a dash, but I ignore that option for now.

Remember that subaddressed mail must be handled by a .qmail file or it will bounce. Here's a handy
one-liner to put in .qmail-default:

| sed "s/^Subject:/Subject: [$DEFAULT]/" | forward username

It puts the address extension in the Subject line of the message to make it easier to see in your mail
program. (It will also have a Delivered-To: line showing the subaddress, but most mail programs
don't display that.)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.5 Special Forwarding Features for Mailing Lists

Qmail has some relatively obscure features that make it easier to use .qmail files to manage mailing
lists. They rewrite the envelope sender on forwarded messages that are remailed to forwarding
addresses in .qmail files, so that bounces come back to the list owner, who can do something about
them, rather than to the original sender, who can't. They can also rewrite the sender address in a
special form that tells qmail-send to create per-recipient sender addresses, known as Variable
Envelope Return Paths (VERPs). The rewritten sender address is used on any forwards, and is also
placed in the NEWSENDER variable for command deliveries. Although these features are mostly used
by automated list management packages such as ezmlm (see Chapter 14), they can also be useful
for small manually maintained lists.

If the local part of the recipient address is user-ext and there is a file .qmail-ext-owner, qmail-local
changes the sender address to user-ext-owner. If there is both .qmail-ext-owner and .qmail-ext-
owner-default, qmail-local changes the sender address to user-ext-owner-@host-@[]. This latter

address will be rewritten again by qmail-send.

Assume as an example that you're user fred@example.com, and you have a list fred-fishing. You list
all of the recipients in .qmail-fishing, and set the execute bit on that file to tell qmail that it's a list so
all of the entries are forwards. Now any mail sent to fred-fishing@example.com is forwarded to all of
the people listed in the qmail file. But what if one of the recipient addresses bounces? The bounce
goes back to the original sender. To fix that problem, create a file .qmail-fishing-owner, which stores
responses in a mailbox or forwards them to someone who can read and act on them. (A simple &fred
puts them in your regular mailbox.) Now mail to the list is resent with an envelope sender of fred-
fishing-owner@example.com, which will be handled by .qmail-fishing-owner. For manually handled
lists that's probably adequate, but to finish the example, let's also create .qmail-fishing-owner-
default and put these lines in it:

| echo "$DEFAULT" | sed 's/=/@/' >> badaddrs
./fishingbounces

Now mail to the fishing list is queued with an envelope sender of fred-fishing-owner-@example.com-
@[]. When qmail-send processes each recipient address, it further translates the sender address so
that a message sent to, say, margaret@domain.com is sent to the recipient host with a sender
address of fred-fishing-owner-margaret=domain.com@example.com. If that message bounces, the
bounce is handled by .qmail-fishing-owner-default. The first line in that file takes $DEFAULT, which in
this case is margaret=domain.com, changes the equals sign back to an at-sign, and appends the
bouncing address to badaddrs. Then it saves the bounce in a mailbox, in case a person wants to look
at it. In a more realistic case, the address from the bounce is used to remove the bad address from
the list. A complete bounce handler is also needed to analyze mail to fred-fishing-owner-
@example.com (that is, with a null $DEFAULT) since mail addresses for which qmail can't even
attempt a delivery bounce differently. I cover that in more detail in Section 10.7.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.6 The Users Database

We now return to the question of how qmail figures out what user handles each local delivery. Each
local address is mapped to a set of user data including:

Username

Numeric user ID

Numeric group ID

Home directory

Character to separate parts of a subaddress, usually a dash

Extension, used to find an appropriate .qmail file

Qmail provides two schemes to find the user data. The preferred scheme is to use a static lookup
table known as the users file. The table is a CDB file (Dan's Constant Data Base, designed for quick
lookups) in /var/qmail/users/cdb, which is created from /var/qmail/users/assign by qmail-newu. For
every local delivery, qmail-lspawn looks up the local part of the address in that file. If there's no
match or the file doesn't exist (which it doesn't unless you create it), as a fallback it calls qmail-
getpw, which invents user data on the fly from the system password database using the getpwnam()
system library routine. Either way, qmail obtains an appropriate users entry for an address, which
qmail-lspawn uses to perform the delivery.

See Chapter 15 for more details on the users database.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.7 Bounce Handling

Sometimes a message can't be delivered to the intended address. The process of dealing with an
undeliverable message is known as bouncing the message, and a message sent back to report a
delivery failure is known, somewhat ambiguously, as a bounce. Sometimes a bounce message can't
be delivered, leading to a double bounce and, if a double bounce can't be delivered, occasionally to a
triple bounce.

Bounces can originate in two ways. A message sent to a local address can bounce either because the
address doesn't exist or because a program run from a qmail file exits with code 100 to tell qmail to
bounce it. (There is considerable overlap between these two causes. Many qmail systems have a
global default qmail file ~alias/.qmail-default that runs fastforward to look up the address in a
sendmail-style /etc/aliases file. If the address isn't in the file, fastforward exits with code 100, which
causes a bounce. From the point of view of the sender, the two kinds of local bounces look the
same.) A message sent to a remote address may have an invalid domain with no DNS information, or
the server(s) that handle that domain aren't available or won't complete an SMTP delivery, or the
remote server may explicitly reject the recipient address or the entire delivery using a 4xx or 5xx
error code.

In each case, qmail usually generates a bounce message and mails it back to the envelope sender of
the original message. If the envelope sender is null, which is the case if the bouncing message is
itself a bounce message, qmail handles it as a double bounce and treats it specially, as discussed
next.

10.7.1 Single Bounces

If a message delivery attempt bounces, qmail sends a bounce message back to the sender. If a
single message is sent to multiple addresses, all of the bounce reports are sent back in a single
message.[5] Qmail produces bounce messages in qmail-send Bounce Message Format (QSBMF) that
Dan Bernstein designed as a much simpler alternative to the rather baroque Delivery Status Notices
(DSNs) defined in RFCs 1892 and 1894. (Qmail does use the three-part error numbers defined in RFC
1893, though.) QSBMF is defined in detail at http://cr.yp.to/proto/qsbmf.txt. Here's a typical QMSBF
bounce message:

[5] A message can have multiple addresses if it is injected locally with multiple recipients, if a .qmail file remails
it to multiple addresses, or if the message arrives via SMTP from a system that, unlike qmail, delivers to
multiple recipients in a single SMTP transaction. If a message is sent from qmail system A to multiple invalid
recipients on system B, system A sends a separate copy of the message to each recipient, so system B sees all
the copies as separate messages. If system B rejects invalid addresses in the SMTP transaction, as sendmail
systems usually do, the rejections are all be collected by system A into a single bounce message. But if system
B accepts the messages and bounces them later, as qmail does, it sends back its own separate bounce
messages for each address that bounces in whatever format B's mail system produces.

Return-Path: <>
Received: (qmail 17296 invoked for bounce); 19 Jul 2003 11:30:58 -0400
Date: 19 Jul 2003 11:30:58 -0400
From: MAILER-DAEMON@tom.iecc.com

http://cr.yp.to/proto/qsbmf.txt
http://lib.ommolketab.ir
http://lib.ommolketab.ir

To: ChrissyFoster52@yahoo.com
Subject: failure notice

Hi. This is the qmail-send program at tom.iecc.com.
I'm afraid I wasn't able to deliver your message to the following addresses.
This is a permanent error; I've given up. Sorry it didn't work out.

<regan@iecc.com>:
Sorry, no mailbox here by that name. (#5.1.1)

<scarlett@iecc.com>:
Sorry, no mailbox here by that name. (#5.1.1)

<scorpio@iecc.com>:
Sorry, no mailbox here by that name. (#5.1.1)

<shay@iecc.com>:
Sorry, no mailbox here by that name. (#5.1.1)

<shelton@iecc.com>:
Sorry, no mailbox here by that name. (#5.1.1)

--- Below this line is a copy of the message.

[a complete copy of the bounced message appeared here]

The message is a sequence of paragraphs separated by blank lines. The first paragraph starts with
the string Hi. This is the to identify the message as a QMSBF report. (Yes, Dan has an odd sense
of humor.) Subsequent paragraphs start with < to report failing addresses. Each failed address

appears in angle brackets on the first line of the paragraph. A paragraph that starts with a hyphen is
the break paragraph, which indicates that the rest of the bounce message is a copy of the message
that bounced. Each paragraph can and usually does include explanatory text for the benefit of people
reading the bounce, so the computer doesn't need to try to interpret the rest of the text.

QMSBF messages are designed to be extremely easy for computer programs to parse, so that mailing
list software can tell what list addresses are bouncing and do something about it. (See Chapter 14.)

You can control the return address in the From: line of single bounces if you want, although in
practice the defaults are invariably fine. The local part defaults to MAILER-DAEMON but is overridden

by the contents of bouncefrom in /var/qmail/control if that file exists. The domain defaults to the
local hostname from me but is overridden by bouncehost if that file exists.

10.7.2 Double Bounces

Single-bounce messages have a null envelope sender address, because the sender is a computer
program that is unlikely to understand a response. If a message with a null sender bounces, that's a
double bounce. In practice, most double bounces are due to incoming spam with forged return
addresses.

Qmail normally sends double bounces to postmaster at the local host, but the local part and domain
of the double-bounce target address can be overridden by the contents of doublebounceto and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

doublebouncehost. The From: line return address is set the same as in single bounces, but the
envelope sender is set to the impossible address #@[].

The vast majority of double bounces are now due to spam with forged return addresses, so some
system managers find that wading through them is more trouble than it's worth. To get rid of double
bounces, create an address "nobody" that discards all mail sent to it by putting a line with a single #

into ~alias/.qmail-nobody. Then put nobody into doublebounceto to send the bounces there. If your
system generates many double bounces, there's a small patch to qmail-send at www.qmail.org called
doublebounce-trim that discards double bounces directly if doublebounceto exists but contains a
blank line.

10.7.3 Triple Bounces

If a double-bounce message bounces, which should never happen because postmaster is supposed to
be an address that's always valid, qmail logs the failure and discards the message. This means that if
you want to send mail within your qmail system that doesn't provoke bounce messages if it's
undeliverable, set the envelope sender to #@[].

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 11. Remote Mail Delivery
Remote mail delivery is actually somewhat simpler than local mail delivery, because there's really
only one way to deliver remote mail: locate a suitable host for the message and deliver the mail to
that host.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

11.1 Telling Local from Remote Mail

Any domain that is listed in locals or virtualdomains is local. Anything else is remote. Note in
particular that whether a domain appears in rcpthosts or morercpthosts has no bearing on whether
it's local or remote. (If a domain is in rcpthosts but isn't local, that makes this host a backup or
secondary MX for the domain, which I discuss later in this chapter.)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

11.2 qmail-remote

As we saw in Chapter 2, the main qmail-send daemon passes remote deliveries to qmail-rspawn,
which runs qmail-remote to attempt each delivery. The arguments to qmail-remote are the remote
hostname, the envelope sender, and the envelope recipients, with the message to send on its
standard input. Within qmail, qmail-remote is always run with a single recipient, and the host is the
domain part of the recipient address. Other applications can use qmail-remote as a simple mail
sending application, with as many recipients per message as desired.

Once qmail-remote has attempted delivery, it writes recipient report(s) and a message report to its
standard output. The format of the reports is documented in the qmail-remote manpage.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

11.3 Locating the Remote Mail Host

qmail-remote can identify the remote host for a message in two ways. If the smtproutes control file
has an entry for the recipient domain, that entry determines the remote host, and qmail-remote
pretends it found a single MX record for that host with distance zero and makes a list of the IP
addresses for that host. The list usually has one entry, unless the host has multiple IP addresses.

Failing that, the usual way is through DNS. First, it looks up the hostname and retrieves any MX
records, randomizing the order of multiple MX records with the same distance, then finds the IP
addresses for each of the MX hosts.

Once it has the list of IP addresses, DNS goes down the list, starting at the lowest distance, trying to
contact each host. Once it finds a host that answers, that's the host used for the SMTP delivery. (This
description is slightly oversimplified; the omitted details are covered shortly.)

11.3.1 The smtproutes File for Outbound Mail

It's sometimes useful to override MX data with explicit routes for particular domains. The smtproutes
control file consists of a list of two- or three-field lines, with the fields separated by colons. The first
field is the domain to route, the second is the name or IP address of the host to which to deliver mail
for that host, and the optional third field is the port to contact on the delivery host, defaulting to port
25.

The three primary uses for smtproutes are to override MX data that's known to be wrong, or at least
suboptimal, to route mail to private pseudo-domains, and to send outgoing mail to a smarthost. The
first situation occurs if a domain has several equal-distance MX hosts, one of which accepts SMTP
connections but doesn't actually accept mail on those connections. An smtproutes entry forces mail
to a host that's working.

Within a local network, it can often be useful to have private pseudo-domains for special applications.
For example, I set up a mail-to-news gateway on my news host in the pseudo-domain news so that
mail addressed to comp.whatever@news is posted to the appropriate newsgroup. The news gateway
isn't accessible to outside users and doesn't appear in the DNS, so I use entries in smtproutes on
other hosts to route the news pseudo-domain to the gateway machine. (The gateway's rcpthosts
doesn't list news, so gateway mail from outside is automatically rejected.)

If an entry in smarthosts has an empty domain field, that is, it starts with a colon, that entry is taken
to be the default route for remote domains. This feature can be useful to send outgoing mail to a
gateway host on a local network, or to an ISP's mail server for dialup or consumer broadband users.

When qmail-remote looks up domains in smtproutes, it looks for successive tails of the recipient
domain; if the target domain is bad.example.com, an entry for example.com matches it, unless
there's also a more specific entry for bad.example.com.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.3.2 Secondary MX Servers for Inbound Mail

The DNS makes it possible to list multiple MX hosts for a domain. If the hosts don't have the same
distance value, the ones with greater distances are known as secondary servers. The server with the
smallest distance is the primary server. A large domain can have several primary servers, and the
primaries all have the same MX distance.

The SMTP specification requires that senders check closer hosts first, so secondary servers receive
mail only if the closer servers are all unavailable. Qmail automatically handles secondary mail service
for incoming mail. If a domain lists the qmail server as an MX for a domain but the domain isn't in
locals or virtualdomains, qmail assumes it's a secondary server for that domain. When qmail-remote
looks for a host to deliver mail to, it always checks servers starting with the ones at the smallest
distance, but if it's a secondary for the domain, it ignores any MX with an equal or greater distance
than its own, so that it always forwards the mail to a closer server.

If there is no lower distance server for a nonlocal domain, mail to the domain fails with the message
Sorry. Although I'm listed as a best-preference MX or A for that host, it isn't in
my control/locals file, so I don't treat it as local . This always indicates a configuration

error. If there is supposed to be a different primary server, the DNS configuration is wrong. If the
qmail system is supposed to be the primary server, the domain should be listed in locals or
virtualdomains.

For outbound mail, qmail-remote's strategy, contacting the lowest-distance server for a domain,
delivers to a primary server if one is available, otherwise to a secondary.

11.3.3 TCP Time-Outs

Sometimes an MX host is unavailable, either because the host itself isn't working or because there's a
network failure somewhere between that host and yours. It can take a while for an attempted TCP
connection to time out and tell a calling program that there's no answer at the other end, so an SMTP
client should avoid trying to contact remote hosts that don't answer.

qmail-remote uses a simple scheme to track TCP failures. In the queue directory, the file
queue/lock/tcpto contains a set of up to 64 entries of 16 bytes, each representing a failed remote
host. (This makes the file size 1024 bytes, which generally fits in a single disk block that can be read
or written in one operation.) Each entry in the file contains an IP address, the time the host was last
tried, and the number of consecutive times it tried and failed to contact the host, capped at 10.

After qmail-remote makes its list of MX records to contact, before it tries to contact each MX, it looks
up the host's IP address in tcpto. If the IP is present and has been tried at least twice, and it's been
less than about an hour since the last try, it skips the host and goes on to the next. The exact wait
time is randomized for each qmail-remote process, in the range of 60 to 90 minutes, to avoid having
a whole bunch of simultaneous attempted connections when the time-out is up. Whenever qmail-
remote connects successfully to a host, its IP is removed from tcpto. If it tries and fails to contact a
host, it updates the host's record, incrementing the retry count and resetting the last contact time
(unless the last contact time is less than two minutes old). If the host isn't already in tcpto, and tcpto
is full, it discards an old entry, using a heuristic that looks for an entry that was last tried a long time
ago and has a low retry count.

The overall effect of this scheme is to track unavailable remote hosts and retry each host no more

http://lib.ommolketab.ir
http://lib.ommolketab.ir

than about once an hour. Once a host starts responding again, connections are tried whenever
needed. If qmail-remote finds that all of the MX hosts for a delivery are unavailable, either because it
tried and failed to contact them or because they're listed in tcpto as recently tried, the delivery
attempt fails, and qmail-send will reschedule the delivery later using its quadratic backoff rule.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

11.4 Remote Mail Failures

Remote delivery attempts can fail in a myriad of ways. Failures fall into two general categories:
temporary, which means that the delivery might work later and should be retried, or permanent,
which means that the message can't be delivered at all. On a temporary failure, qmail-send retries
the delivery later, while on a permanent failure, it immediately sends back a bounce message with
whatever error report qmail-remote produced. Errors include:

Connected to host but greeting failed

Temporary. The remote server accepted the connection but never sent the initial SMTP
greeting.

Connected to host but my name was rejected

Temporary. The remote host rejected the HELO command.

Connected to host but sender was rejected

Temporary or permanent. The remote host rejected the MAIL FROM command. If the remote
code was 4xx it's a temporary error, if 5xx a permanent error.

Host does not like recipient

Temporary or permanent. The remote host rejected the RCPT TO command. If the remote code
was 4xx it's a temporary error, if 5xx a permanent error.

Failed on DATA command

Temporary or permanent. The remote host rejected the DATA command. If the remote code
was 4xx it's a temporary error, if 5xx a permanent error.

Failed after I sent the message

Temporary or permanent. The remote host accepted the DATA command and the text of the
mail message, but returned an error code after the message was accepted. If the remote code

http://lib.ommolketab.ir
http://lib.ommolketab.ir

was 4xx it's a temporary error, if 5xx a permanent error.

Qmail only delivers mail to one recipient at a time, but qmail-remote accepts multiple recipient
arguments, and tries to deliver to multiple recipients. It returns separate status codes for each RCPT
TO and sends the message if any of the recipients were accepted.

QMQP and QMTP

Dan has invented two host-to-host protocols for people who aren't thrilled with SMTP.
Despite their similar names, QMQP and QMTP are not compatible with each other and are
intended for very different purposes. Qmail comes with servers for both, called qmail-
qmqpd and qmail-qmtpd. Both run from tcpserver and are set up the same way as qmail-
smtpd.

The simpler one is Quick Mail Queueing Protocol (QMQP) described at
http://cr.yp.to/proto/qmqp.html. QMQP is currently used only by mini-qmail, a stripped-
down version of qmail that passes all mail directly to a smarthost for delivery. It has no
queueing, no secondary hosts, and no internal security. To avoid creating open spam
relays, the TCP rules for tcpserver must permit connections only from known friendly
hosts and deny connections from everywhere else.

Mini-qmail is primarily useful to pass incoming mail across a firewall, and to run on
clusters of computers that share a single smart host (running regular qmail) for mail
queueing and delivery. It's also occasionally useful for mailing list load sharing with ezmlm
running on one host, passing messages for delivery to a smarthost. See Chapter 17 for
details of setting up mini-qmail.

QMQP does not require or encourage single recipient deliveries; if a message has many
recipients, the message and all of the recipient addresses can be transferred quickly via
QMQP. This means that for mailing list load sharing, there's no need to split or cache the
subscriber database on the smarthost. For each message distributed to a list, ezmlm can
send the message and all of the recipient addresses quickly via QMQP, even if there are
many recipients.

Quick Mail Transfer Protocol (QMTP) is intended as a replacement for SMTP. It's much
simpler than SMTP, and just transfers a messages along with an envelope sender and a
set of envelope recipients. To receive QMTP mail, set up qmail-qmtpd the same way you
set up qmail-smtpd. To control mail relay, it uses the same rcpthosts and morercpthosts
files and RELAYCLIENT tcpserver variable as qmail-smtpd.

The only QMTP client currently available is in the serialmail package, maildirqmtp, which is
invoked exactly the same way as maildirsmtp. Although QMTP indisputably transfers mail
faster than SMTP, almost nobody uses it. Partly this is because the QMTP client isn't
integrated into qmail (and isn't available at all in other MTAs), but mostly this is because
there's no standard way for a server to announce that it has a QMTP server available,
analogous to a DNS MX record for SMTP. Dan proposed in 1997 to redefine the distance
value in MX records to encode both the server distance and the service (smtp, qmtp,
etc.), and Russ Nelson offers a patch to make qmail-remote use both qmtp and smtp, but
QMTP remains an oddity not in general use.

http://cr.yp.to/proto/qmqp.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

11.5 Serialmail

Qmail was designed for an environment with fairly fast network connections, where the roundtrip
delay on a connection dominates the data transfer time, so it's faster to have multiple single-recipient
deliveries in progress that can share the connection. In environments where this is not true, the
serialmail add-on package delivers one message at a time. It's also useful to deliver mail to hosts via
intermittent dialup connections.

To use serialmail, first configure qmail to deliver mail to a Maildir, then run programs from the
serialmail package to take mail out of the Maildir and send it across the Net. You can run it on a
schedule to push out mail to a slow host or on demand to send mail when a dialup host connects.

The serialmail package is installed the same way as other DJB software. It depends on the tcpclient
program that is in the UCSPI package. (That's the same package that contains tcpserver, so you
should already have it installed.) The most useful programs in the package include:

maildirserial

The driver program that selects messages from a Maildir, calls another program to try to
deliver them, and deals with the results

serialsmtp

The actual SMTP client called indirectly from maildirserial

maildirsmtp

A shell wrapper that calls maildirserial to deliver the files in a directory via SMTP

setlock

Runs a program with a file locked to ensure that multiple copies of the program aren't running
simultaneously

To deliver mail to a domain with serialmail, first define the domain as a virtual domain and deliver all
its mail into a Maildir. If you want to handle the domain bad.example.com, add a line to
virtualdomains like this:

bad.example.com:alias-badex

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Then create ~alias/.qmail-badex-default, containing ./bemaildir/, to deliver all of the mail for that
domain into bemaildir.

Then, when it's time to deliver the mail, run a command like this:

setlock bemaildir.lock \
 maildirsmtp bemaildir alias-badex- 10.2.3.4 my.example.com 2>&1 |
 splogger serial

The setlock command uses bemaildir.lock as a semaphore to keep a new delivery session from

starting if a previous one hasn't finished yet. It runs maildirsmtp to do the deliveries. To find
messages to deliver, it looks in bemaildir for files with Delivered-To: lines starting with alias-badex-,
which is the string that the virtual domain alias prefixes to mail delivered there. (It ignores files with
other Delivered-To: lines, so you can store mail for several different domains in the same Maildir,
running maildirsmtp with different address prefixes.) It connects to IP address 10.2.3.4 to deliver the
mail, and in the SMTP session uses my.example.com as the argument to the HELO command, which
should be the name of this machine. The messages are sent by SMTP, with the envelope recipient
addresses being the ones in the Delivered-To: lines with the alias-badex- removed, so the mail is
redelivered to the original addresses.

All of the details are handled by maildirserial: finding the files, passing their names to smtpserial,
checking the return codes and deleting the files if the delivery was successful, sending back a bounce
if the delivery failed and the file has been there too long, and leaving the file for another try
otherwise.

11.5.1 Using Serialmail

If you're delivering to a slow host at a fixed address, the easiest way to push out the mail is to run
maildirsmtp from cron on a suitable schedule. Run it once an hour, or if the remote host is busier at
some times of day than others, run hourly during the slow part of the day.

If you're delivering to a host that connects intermittently via dialup, start maildirsmtp from the script
that runs when the remote host connects. Typically the script will have a variable like $REMOTE with
the current IP address of the remote, which you can use in the call to maildirsmtp. If the host stays
connected for a long time, you may want to push out mail periodically while it's connected. There's no
elegant way to do that, but see Chapter 18 for an example of a serviceable approach.

If your host is one that dials into a hub, you can also use maildirsmtp. In virtualdomains set a catch-
all route to put all outgoing mail into a Maildir:

:alias-catchall

with ~alias/.qmail-catchall delivering into the maildir. Then run maildirsmtp from the dialout startup
script to send your mail to the hub. Again, if you stay connected for a long time, you may want to run
it periodically while you're connected.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 12. Virtual Domains
In qmail-speak, a virtual domain is one handled locally but with a different set of mailboxes from the
home domain. Qmail's virtual domain handling is one of its strongest features, thanks to a simple and
clean design.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.1 How Virtual Domains Work

Qmail turns addresses in a virtual domain into subaddresses of a local user, then handles the
subaddressed message like any other local message. The translation from virtual to local addresses is
in the control file virtualdomains. Assume, for example, that it contained the line:

myvirt.com:virtuser

Then mail addressed to marvin@myvirt.com is translated to virtuser-marvin, and then delivered
normally. If there's a user virtuser, it checks for ~virtuser/.qmail-marvin or ~virtuser/.qmail-default.
If there's no such user (which is often the case), the address is turned into alias-virtuser-marvin and
delivered under the control of ~alias/.qmail-virtuser-marvin or ~alias/.qmail-virtuser-default or
~alias/.qmail-default.

When qmail translates the mailbox part of a virtual domain address, it does not change the domain.
That is, in the previous example, marvin@myvirt.com is translated to virtuser-marvin@myvirt.com.
This seems like a mistake, because this is not Marvin's address, until you realize that the translated
address is used only within qmail. The virtual domain remains with the address throughout the
delivery process, so delivery programs can check $HOST or $RECIPIENT to tell whether a message
was addressed to a virtual domain or to the (nearly) equivalent local address. Later in this chapter,
fastforward makes good use of this ability.

Don't Forget the DNS

If you want the outside world to be able to send mail to your virtual domains, they all
need MX records in the DNS. If your local tests all work fine, but people elsewhere can't
send you mail, DNS misconfiguration is a likely problem. If people can send you mail but
your server rejects it, you forgot to put the domains in rcpthosts or morercpthosts.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.2 Some Common Virtual Domain Setups

Although qmail's virtual domain mechanism is extremely flexible, most of its applications fall into a
few common models.

In each case, you must pick a local user or subaddress to assign the virtual domain to. It can be a
real user in /etc/passwd, or if you use qmail's users mechanism (see Chapter 15), a qmail-only user.
If you handle several virtual domains in the same way, all the domains can share a user, with
delivery programs distinguishing among them by checking $HOST or $RECIPIENT. If you're only
forwarding mail, you can handle virtual domains under ~alias; otherwise, it's a good idea to set up
separate user IDs per virtual domain or per kind of virtual domain so that the programs you run can
only smash that user's files when they break. Also, if you want to delegate the management of a
virtual domain to someone else, make a separate Unix user account for the domains so the manager
can log in as that user and change the domain's mail setup.

If you want people outside your network to be able to send mail to the virtual domain, you must list
the domain in rcpthosts. If you're using a virtual domain as a service gateway for your own users to
a fax server or the like, don't put it in rcpthosts.

Finally, each time you change the contents of virtualdomains or locals, you must tell qmail to reread
them by sending a hang-up signal. Assuming you're running qmail under daemontools, use:

svc -h /service/qmail

12.2.1 Mapping a Few Addresses with .qmail Files

In the simplest case, you can just create a .qmail file per address. Assume you have the domain
myvirt.com, with addresses william, wilbur, and wilfred, which you want to forward to local addresses
biff, buddy, and butch, respectively. This example doesn't do any special processing on the mail, so
just set it up as a subuser of alias. Add this to virtualdomains:

myvirt.com:alias-myvirt

(Don't forget to signal qmail to reread the configuration.) Now you need to create only three .qmail
files in ~alias and you're done:

.qmail-myvirt-william &biff

.qmail-myvirt-wilbur &buddy

.qmail-myvirt-wilfred &butch

That's it. Mail to the three addresses is now forwarded to the three mailboxes.

In a realistic example, you'll probably want to define a few more standard addresses such as
postmaster and abuse. Either you can create individual control files like .qmail-myvirt-abuse, or you
can make a catchall file to collect mail to all other addresses in the domain, .qmail-myvirt-default. A
catchall file catches mail to misspelled versions of the three explicit addresses as well as to other
administrative addresses such as webmaster, hostmaster, and support. Unfortunately, the majority

http://lib.ommolketab.ir
http://lib.ommolketab.ir

of mail to other addresses is likely to be spam. If you have a spam filter, aim the default file at a
filtering program and deliver whatever survives the process, or do nothing about the process and
bounce the mail. If you have no .qmail-myvirt-default in ~abuse, but there is a global catchall .qmail-
default, the global catchall will handle all of the misaddressed myvirt mail, which you do not want. To
bounce any misaddressed mail, put something like this in .qmail-myvirt-default:

| bouncesaying "Not a valid address at myvirt.com."

12.2.2 Mapping Many Addresses with fastforward

If you have more than a handful of addresses to forward, rather than creating dozens or hundreds of
.qmail files, it's easier to put the forwarding instructions in one file and use fastforward to forward the
mail. The table for fastforward is created by either newaliases (from /etc/aliases) or setforward (from
any file you want). For virtual domains, setforward is more convenient.

If you have several virtual domains, either put the forwarding rules for each domain into a separate
file or put the rules for several domains into a single file. Unless the rules for all the domains are
identical or nearly so, it's easier to have a file per domain.

First, set up the virtualdomains line(s) for the domain in question. Each fastforward file needs a
different user or subuser. Again, the forwarding can be via subaddresses of ~alias or else delegated
to a different user. Here are some lines for three domains handled in a single file and a fourth domain
handled separately, all in ~alias:

example.com:alias-example
example.org:alias-example
example.net:alias-example
myvirt.com:alias-myvirt

Then create the .qmail files. In .qmail-example-default, put:

| fastforward -d example.cdb

And in .qmail-myvirt-default, put:

| fastforward -d myvirt.cdb

The --d flag tells fastforward to use $DEFAULT@$HOST as the address to forward rather than the
normal $RECIPIENT. The difference is that with --d the user prefix is stripped off, so that even

though mail to, say, fred@example.com is delivered to alias-example-fred@example.com, the
address that fastforward uses is stripped back to fred@example.com.

Put the forwarding instructions in files called example and myvirt, and set up Makefile to make the
CDBs:

makefile for two fastforward files
example.cdb: example
 /var/qmail/bin/setforward $@ $@.tmp < example

myvirt.cdb: myvirt
 /var/qmail/bin/setforward $@ $@.tmp < myvirt

Finally, make the files of forwarding instructions. As described in Chapter 4, the instructions are

http://lib.ommolketab.ir
http://lib.ommolketab.ir

either addresses to forward or programs to run. In the single-domain file, each address is just a
mailbox:

fred: phred

In the multidomain file, each address is just a mailbox if it applies to all of the domains, or it can
include the domain if the address is handled differently in the various domains:

fred@example.com, fred@example.org, and fred@example.net all same
fred: phred@realdomain.com
robert handled differently
robert@example.com: bob
robert@example.org: robbie
robert@example.net: | bouncesaying "No such mailbox. Go away."

One thing that fastforward cannot do is deliver directly to a Maildir or mailbox. If a few of the
addresses in a domain go to mailboxes, you can create .qmail files for those addresses, but handle
everything else with fastforward. If, say, you want to put all the abuse mail in a mailbox, create
.qmail-myvirt-abuse or .qmail-example-abuse containing:

./abuse.mbx

You can't distinguish among domains without running a command that tests the value of $HOST, so
you can't distinguish domains and deliver to a mailbox in one step. If you want to deliver the three
example abuse addresses to separate mailboxes, forward each of them to a different local address,
then make .qmail files for each of those local addresses.

12.2.3 Per-User Subdomains

Although qmail makes it possible to give users an unlimited number of subaddresses using hyphens,
some people dislike hyphenated addresses, either because they confuse their correspondents or
because it's too easy to "untag" the address by removing the part after the hyphen. Using virtual
domains, you can give each user a separate subdomain, so that, for example, if user ella has a
subscription to the "mental" list and wanted to use a tagged address, she could use
mental@ella.myvirt.com, which qmail could internally handle as the subaddress ella-mental.

This trick turns out to be extremely easy to set up. First, put wildcard subdomain entries into
virtualdomains (note the leading dot):

.myvirt.com:alias-sub

and into rcpthosts:

.myvirt.com

Then create .qmail-sub-default containing:

| forward "$HOST3-$DEFAULT@myvirt.com"

You may want to treat a few administrative addresses specially, so that the system manager still gets
all of the mail to postmaster and abuse. That's easily arranged (all on one line, although it's split
here):

http://lib.ommolketab.ir
http://lib.ommolketab.ir

| case "$DEFAULT" in postmaster|abuse) forward $DEFAULT ;;
 *) forward "$HOST3-$DEFAULT@myvirt.com" ;; esac

Now mail to any subdomain of myvirt.com is handled as a virtual domain, and the .qmail file takes
the subdomain ($HOST3, because it's the third component of the hostname from the right) sticks it in
front of the existing mailbox name, and then forwards to that address.

This trick works well so long as all subdomains of a given domain are to be treated as mailbox
addresses. If some subdomains are used for other purposes, such as hostnames or web server
names, I find the results confusing, particularly if some of the hostnames appear in locals. Either use
a virtual domain for mail that isn't used for anything else or, if the number of users is small, list the
individual user subdomains in virtualdomains or rcpthosts, so mail to subdomains you don't use won't
be accepted:

in virtualdomains
alan.myvirt.com:alias-sub
barb.myvirt.com:alias-sub
chad.myvirt.com:alias-sub
debi.myvirt.com:alias-sub
ella.myvirt.com:alias-sub
fred.myvirt.com:alias-sub

in rcpthosts
alan.myvirt.com
barb.myvirt.com
chad.myvirt.com
debi.myvirt.com
ella.myvirt.com
fred.myvirt.com

12.2.4 Service Gateways

Virtual domains provide an elegant mechanism for gateways from SMTP email to other services.
They're useful both for sending mail by other means such as uucp, and for nonmail services such as
mail-to-usenet and mail-to-fax. The mailbox part of the address tells the gateway how to pass the
message to the other service. For uucp, it is the username on the remote system, for a usenet
gateway, the newsgroup, for a fax server, the phone number to fax to. It's also possible to encode
other information in the address; in my local mail-to-news gateway, I encode hints about moderated
groups and bounce handling of unforwardable messages, as described in the next section.

The general strategy for a service gateway is to create a virtual domain, then deliver all the mail for
that domain to a program that performs the gateway function. Depending on how long the gateway
program takes to run and how quickly you want messages passed along, you can either set up the
gateway program to run each time a message arrives or collect all the messages in a Maildir and run
the gateway program every once in a while to process all the messages in a batch.

12.2.4.1 Gateway design

When setting up gateways, take a few minutes to be sure that your setup will work well for your

http://lib.ommolketab.ir
http://lib.ommolketab.ir

users. Most importantly, be sure that the gateway setup makes sense from the point of view of
users, and not just for the convenience of the gateway administrator. One of the worst mistakes of
sendmail's design is that the syntax of addresses depends on the scheme used to transport the mail
to a remote system, a detail that users rarely care about. When setting up service gateways, be sure
not to recreate the same mistake. If you're setting up a gateway to forward mail by uucp, don't
create a local virtual domain called uucp with addresses like fred@faraway.uucp or
faraway!fred@uucp, thereby forcing remote users to use awful hacks like
fred%faraway.uucp@example.com or faraway!fred%uucp@example.com. Instead, use a naming
system that reflects the details that matter to the user. If faraway is a system that sends and
receives mail, integrate its addresses into the rest of the mail addressing system, something like
fred@faraway.example.com. This means, among other things, that if the remote system switches to
a different mail system, user addresses don't have to change.

It's not hard to arrange your virtual domain setup so that the choice of the remote service is entirely
handled by the virtualdomains file. Assume you have three uucp peers called faraway, distant, and
pluto. Then you could set them up like this, and have the gateway program check $HOST or, more
likely, $HOST3 to pick out just the hostname:

faraway.example.com:alias-uucp
distant.example.com:alias-uucp
pluto.example.com:alias-uucp

As discussed in the next section, you can easily handle all three with a single gateway.

12.2.4.2 Gateway addressing

A little planning when setting up your gateway can make it both easier for people to use and easier
for you to implement. If the gateway is to another email system, the only sensible approach is to give
the other system a domain name so mail to its users looks like mail to any other domain on the Net.

If the gateway is to another service, try to arrange for addresses to be easy to remember. For
example, a fax gateway would take addresses like 13115552368@fax, but you might as well also
accept 1-311-555-2368@fax and 311-555-2368@fax and, if all the users are in the same area code,
555-2368@fax. For a mail-to-news gateway, use addresses like alt.flame@news.

Sometimes it makes sense to embed some options into the gateway address. For example, in my
mail-to-news gateway, I sometimes want the gateway to add an Approved: header to the posted
article, and sometimes I want to avoid sending bounce messages about failed posts (newsgroups that
log filtered spam, for example, which mostly has fake return addresses[1]). The easiest way to
encode flags into the address is with a prefix like approve-alt.flame@news and nobounce-
local.spamtrap@news. You can also encode the flags into the domain, like alt.flame@approve.news,
but I've found prefixes to be easier to use.

[1] If you create a local moderated newsgroup corresponding to a mailing list, set the moderator's address for
that newsgroup to the list's submission address, and route incoming mail from the list to the mail-to-news
gateway address with the approval option, you get a pretty good two-way gateway.

12.2.4.3 Per-message service gateways

Running the gateway program for each message is usually the easiest approach to implement. Create

http://lib.ommolketab.ir
http://lib.ommolketab.ir

a .qmail-default file that runs the program, and either pass the value of $DEFAULT as a program
argument or have the program pick it up from the environment.

To continue the uucp example, a simple gateway for a single system could be set up in
virtualdomains like this:

faraway.example.com:alias-faraway

In ~alias/.qmail-faraway-default, it would be:

| uux -p "faraway!rmail" "$DEFAULT"

To generalize this for multiple uucp hosts, route all the uucp domains to alias-uucp, and create
~alias/.qmail-uucp-default containing:

| uux -p "$HOST3!rmail" "$DEFAULT"

Now the hostname, which precedes .example.com in the domain name, is picked out and handed to
uucp. If you have a variety of mail gateways, you need to adjust only the lines in virtualdomains to
control which domains are sent through which gateways.

For a gateway to a different kind of service, such as net news or fax, you must write your own
gateway program in C or Perl to read through the message headers to pick up any lines the gateway
needs, such as Subject or Date (not To, that comes from $DEFAULT), and pass the body to the
program for the other service.

In the special but fairly common case that the gateway looks up an address in a database of some
sort and remails the message, your gateway program can run qmail's forward program to do the
remailing; there's no need to write your own if you don't want to.

If your gateway encodes options into the address (such as approve- in the previous section), you can
easily handle them with an extra .qmail file, such as .qmail-approve-default, that calls the gateway
program with whatever extra arguments it needs to implement the option.

12.2.4.4 Batched service gateways

Sometimes it's easier to run the gateway program periodically, either from cron or when some other
event happens, such as when a remote system connects via PPP. In that case, you can have all of
the mail for a virtual domain or group of virtual domains delivered into a Maildir, then have the
gateway program take the messages out of the Maildir and do whatever it does with them, looking at
the Delivered-To: line at the front of each message to tell what the message's recipient address is.

The serialmail package, discussed in Chapter 9, provides a general purpose framework for building
batched gateways. The maildirserial program looks through a Maildir for files with a Delivered-To:
line that matches a specified pattern (this lets several similar gateways share a Maildir), passes the
names of matching files to a gateway program, reads delivery reports from the gateway, and
optionally sends bounce reports for undeliverable messages.

When you run maildirserial, you give it the name of the Maildir, the address prefix, and the name of
the gateway program to run. When it runs the gateway program, it sends to the gateway the names
of files to process, and the gateway sends back delivery reports. The gateway program should
process all the files that maildirserial gives it, but if it doesn't, maildirserial reruns the gateway until it

http://lib.ommolketab.ir
http://lib.ommolketab.ir

either produces a delivery report for each file or makes no further progress.

The gateway program runs with the Maildir as its current directory, and pipes to and from
maildirserial. The names of files to process arrive on the standard input, separated by nulls. It sends
delivery reports to standard output. Each report consists of the filename and a null, as received from
stdin, followed by a one-letter status code, an optional line of descriptive text for the logs or bounce
message, and a newline. The status code is K if the message was delivered successfully, Z if the
delivery failed temporarily and should be tried later, and D if the delivery failed permanently and the
message should be bounced. If either the delivery succeeded or it failed permanently and a bounce
message was sent, mailderserial will delete the file; otherwise the file stays so the delivery can be
tried again.

As a concrete example, here's the framework of a Perl gateway program. It takes one command-line
argument, the target address prefix. It reads null-separated filenames, opens the files, picks up the
envelope sender and recipient addresses from the Return-Path: and Delivered-To: lines, does
something with the file, and sends back a delivery report:

$prefix = shift or die "need prefix";

while(!eof STDIN) {
 { local $/ = "\0"; # read null separated file names
 $fn = <STDIN>;
 chop $fn;
 }

 open(MSG, $fn) or die "cannot open 'fn\n";

 if(<MSG> =~ m{Return-Path: <(.*)>}) {
 $sender = $1;
 } else {
 close MSG;
 print "$fn\0Dno sender address\n";
 next;
 }
 if(<MSG> =~ m{Delivered-To: $prefix(.*)}) {
 $recip = $1;
 } else {
 close MSG;
 print "$fn\0Dno recipient address\n";
 next;
 }

 ### do something with the message here ###

 close MSG;
 print "$fn\0Kmessage delivered\n";
}

If this script were called ~/bin/gate, the local address is alias-myvirt, and the Maildir is called
myvirtmail, then invoke it as:

setlock myvirtmail.lock \

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 maildirserial -b -t604800 myvirtmail alias-myvirt- \
 ~/bin/gate alias-myvirt- 2>&1 | \
splogger serial

The call to setlock prevents two copies of maildirserial from running at once, and piping through
splogger sends the results to syslog. Note that alias-myvirt- occurs twice, once for maildirserial and
once for gate, and that it ends with a hyphen to prune off everything before the virtual domain
mailbox. The --b flag tells maildirserial to bounce mail in case of a permanent failure, and the --t

flag tells it to treat a temporary failure as permanent after a week. Other than for debugging, you
should always include them, perhaps adjusting the time limit for temporary failures. Run maildirserial
from cron if you want to push stuff through the gateway on a fixed schedule, or if the gateway
depends on a network or dialup connection that's not always available, start it from the script that
starts the connection, as described in Chapter 9.

When debugging your gateway program, rather than firing up maildirserial, mail a few test messages
to your gateway that will land in your Maildir files, then use a text editor to create a file containing
the names of those files, each followed by a null character (typed as Ctrl-V Ctrl-@ in vi, or Ctrl-Q
Ctrl-@ in emacs). Then run your gateway with input redirected from that file. You can rerun it as
often as you need to, because your gateway program doesn't delete its input files.

If your gateway program uses a TCP/IP connection to a remote system, place tcpclient between
maildirserial and your gateway program to open the connection, like this:

setlock maildir.lock \
 maildirserial -b -t 1209600 maildir prefix \
 tcpclient -RHl0 host port \
 gatewayprogram prefix

The gateway program reads and writes from and to the network on file descriptors 6 and 7, still using
0 (stdin) and 1 (stdout) for filenames and delivery reports. See Appendix A for a mail-to-news
gateway using maildirserial and tcpclient. To debug programs running under maildirserial and
tcpclient, I usually redirect the network connection to my tty so I can manually play the part of the
remote server and step through the sequence of commands. To do that, use some shell redirections
for the input file mentioned previously and the terminal:

gatewayprogram <listofinputfiles 6</dev/tty 7>/dev/tty

Internet services including SMTP and NNTP require a return character before the line feed at the end
of each line, while input from /dev/tty just has a newline. To work around that, I write my scripts so
they strip out the \r and work either way. Alternatively, if the server needs to send more input than
you can easily type, put a sequence of input messages in a file, edit in the \r at the end of each line,
and run the gateway program redirecting file descriptor 6 from that file.

The example code shown here handles the messages sequentially, one at a time in order, but
maildirserial doesn't require that you do so. Your gateway can process the files it passes in any
order, individually or all at once, so long as it sends back an appropriate status report for each file
that it's processed. The status reports do not need to be sent in the same order that the filenames
were received, and the program can receive as many filenames as it wants before sending back any
reports. (maildirserial runs as two independent processes: one reading the Maildir and sending the
filenames, and the other receiving the reports, deleting processed files, and sending bounces.)

If your gateway won't ever bounce back messages sent to invalid addresses or have a temporary
gateway failure, you don't need to use maildirserial. Just run your program as needed (from cron or

http://lib.ommolketab.ir
http://lib.ommolketab.ir

otherwise). It should read the Maildir's new subdirectory and process all the files it finds there,
deleting each one as it's done. You should still use setlock or the equivalent so that you don't get
multiple copies of the gateway running at once.

If you encode options into your gateway address or domain, your gateway program must decode the
address from the Delivered-To: line to pick out the options. I write most of my gateway programs in
Perl, so the decoding takes only a few lines of code.

12.2.5 Mapping Individual Addresses

A rarely used virtual domain option maps individual addresses in a virtual domain. It's primarily
useful to short-circuit mail to local users who also have addresses in other places. Let's say you're at
the two-person East Podunk office of your company, connected by a slow dialup line, with user
addresses fred@epodunk.example.com and ethel@epodunk.example.com, but the company uses a
standardized addressing scheme so to the outside world the addresses are fred@example.com and
ethel@example.com. If Fred sent a message to ethel@example.com, it has to go out over the dialup
link and be forwarded back, probably a lot later. To avoid that, you can special-case the two
addresses to be local:

fred@example.com:alias
ethel@example.com:alias

This routes these two addresses locally to alias-fred and alias-ethel, which you can handle with .qmail
files, while leaving the rest of the example.com domain to be routed normally.

It's not very useful to override individual entries in local virtual domains, because you receive almost
exactly the same effect by using .qmail files; that is, if the mail for fred is to be handled differently
from everyone else's and everyone else's mail is handled by ~myvirt/.qmail-default, you can put
Fred's special rules in ~myvirt/.qmail-fred.

12.2.6 POP Toasters

A POP toaster is a virtual domain in which all (or nearly all) of the mailboxes are routed to mailboxes
that users can retrieve via POP and other remote access services. POP toasters are covered in detail
in Chapter 13.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.3 Some Virtual Domain Details

Finally, here are a few virtual domain odds and ends.

12.3.1 qmail-foo Versus qmail-alias-foo

After qmail rewrites a virtual domain address into a local address, the local address is then handled
just like any other address. In particular, if there's no match for the rewritten address, it's handled by
~alias . This means that if there's no local user myvirt , these two lines are equivalent:

myvirt.com:myvirt
myvirt.com:alias-myvirt

Use the latter version, to make it explicit that you're not expecting the user to exist. That way if
someone later creates a user myvirt , mail to that virtual domain won't mysteriously start failing.[2]

[2] Guess how I learned about this trick.

12.3.2 Local-Only Domains

If you provide a service gateway, such as mail-to-fax or mail-to-news, you'll probably want to let users
on the local network use it, but not outsiders. To ensure that, create a subdomain for the gateway,
(e.g., fax.example.com), but don't put the domain in the DNS. (If you have split-horizon DNS, with
internal hosts seeing different data than external hosts, it's OK to put the gateway domain in the DNS
visible to local hosts.) Also be sure not to put the gateway domain in rcpthosts , so that the only people
who can send mail to the gateway domain are local users and authorized SMTP users who can send to
nonlocal domains. Finally, in the gateway delivery program, check that the mail was sent to the virtual
domain, not to the equivalent local address. If you do individual deliveries, that's easily handled in the
.qmail file:

| case "$HOST" in fax|fax.example.com) exit 0 ;; *) bouncesaying "Not authorized." ;;
esac
| gatewayprogram "$DEFAULT"

If you do batched delivery via a Maildir, this trick also works, because qmail treats a Maildir delivery as
a program delivery using an internal program:

| case "$HOST" in fax|fax.example.com) exit 0 ;; *) bouncesaying "Not authorized." ;;
esac ./faxmaildir/

In either case, the delivery program can check the domain itself, by checking $HOST in individual
deliveries or by checking the domain in the Delivered-To: line in batched gateways, but it's usually
easier to check in the .qmail file so the gateway doesn't have to be coded to know what domain it's
handling.

An alternate approach is to make all addresses virtual. That is, create a virtual domain for all the local

http://lib.ommolketab.ir
http://lib.ommolketab.ir

mailboxes, and put something like localdomain in locals but not rcpthosts for miscellaneous, locally
generated mail. If you have many local users, this approach is painful because you have to map all the
users' mail from the virtual domain into their mailboxes, but it's not a bad idea on systems that are
supposed to be POP toasters or gateways without local shell users.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 13. POP and IMAP Servers and
POP Toasters
If you want to access your mailbox across a network using mail user agents (MUAs) such as Eudora,
Microsoft Exchange, Pegasus, mutt and fetchmail, you must run the qmail POP server. The qmail POP
server allows these clients to read and delete mail from their mailbox, but doesn't include a method
for sending email; use qmail-smtpd or ofmipd for that.

Consistent with qmail's component design, the qmail POP server is actually three separate programs
that cooperate to create the POP service. (Traditional POP servers such as qpopper are typically
implemented as a single large program.)

The qmail POP server only handles Maildirs, not mbox mailboxes or anything else. If you are installing
qmail on an existing mail system, you must convert any existing mailboxes to Maildir if you want to
use the qmail POP service. (If you want to keep using mboxes, you can use the popular qpopper POP
server, which is not covered here.)

POP Mail Versus Local Mail Clients

If you want to be able to read your mail both with a local mail client running on your mail
host and with POP, you have a few options, described in Section 4.8 in Chapter 4. If you're
using Maildirs, your best bet is to use either the freeware mutt MUA or Courier IMAP,
described later in this chapter, and an IMAP client such as pine. Or you can deliver to
mboxes, using qpopper for POP and any of the many MUAs that handle mboxes.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.1 Each Program Does One Thing

The qmail POP server consists of a set of three cooperating programs (or four if you include the copy
of tcpserver that runs the rest of the server):

qmail-popup

Read the username and password from the network connection

checkpassword

Validate the username and password

qmail-pop3d

Handle requests to read and delete mail from the user's Maildir

13.1.1 The Flow of Control

In detail, a POP session proceeds as follows:

tcpserver listens for network connections on the POP3 port 110 and spawns qmail-popup.

qmail-popup inherits the environment variables and the socket created by tcpserver. (qmail-
popup actually has no idea that it is connected to a socket; it merely reads from stdin and
writes to stdout-knowing this comes in handy when we want to test the POP Server.) qmail-
popup performs one very simple function. It understands just enough of the POP protocol to
read the username and password sent across the network. Once this data is read, qmail-popup
spawns checkpassword, passing it the username and password. qmail-popup has now
completed its part in this session.

checkpassword checks the username and password against the password file. (It uses
getpwnam() which usually reads /etc/passwd, but this detail varies considerably from one
version of Unix to the next.) If the password is correct, checkpassword extracts information
about that user from the password file, does enough of a login process to permit qmail-pop3d to
do its work, and now spawns qmail-pop3d.

qmail-pop3d handles the rest of the POP3 session with the client. When qmail-pop3d exits, the
POP session is completed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.1.2 Functional Partitioning

Using four programs to establish each POP session might seem like a lot of needless work. But each
program is small and consequently easy to understand, easy to test, and creates very little load on a
Unix system.

Clean functional partitioning is not just a theoretical ideal. It has two very practical benefits: flexibility
and testability.

13.1.2.1 Flexibility

The clean functional boundary between the different parts makes it very easy to replace any part
with a program that meets your specific needs.

checkpassword is the most obvious and popular candidate for replacement, especially by large
installations that tend to use a network directory service such as LDAP or a proprietary database such
as Oracle for their repository of username and password information. (See POP Servers and POP-
before-SMTP later in this chapter.) Given that the core of checkpassword is less than 150 lines of C
code, writing a replacement program is not hard. Anything you might want to do on a per-user basis
is possible by replacing one small program, checkpassword.

13.1.2.2 Testability

The qmail POP server is very stable and very reliable. When installed correctly it does work and it
does work well. Almost invariably, a new installation doesn't work because the installation
instructions haven't been followed precisely.

The qmail POP server consists of four components rather than just one, so each component can be
tested individually to identify problems. For example, test checkpassword separately from the
network, test qmail-pop3d separately from checkpassword, and so on.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.2 Starting the Pop Server

Setting up the POP server is similar to setting up the qmail SMTP server.

13.2.1 Prerequisite Packages

The POP server depends on the daemontools and ucspi-tcp packages. If you've set up qmail as
described in Chapter 3, these tools are already installed and available. You also need a
checkpassword package. If you want to use the same passwords that you use for shell logins, the
standard checkpassword package at http://cr.yp.to/checkpwd.html will do the trick. The
checkpassword section of www.qmail.org has a long list of other versions to handle virtual domains,
retrieve passwords from databases, support multiple mailboxes per user, and other options. The
discussion here presumes that you're using the standard version, but the component design of the
POP server means that you can substitute your own version without changing the rest of the setup.

13.2.2 Directories

Two directories need to be created: one that contains the scripts and data files used to run the POP
server, and the directory that will contain the log files. (You can put these directories anywhere you
want, but the following names are chosen to match the names used in the widely used "Life With
Qmail" setup.)

As root, create the script and data file directories, and the log directory (see Example 13-1).

Example 13-1. Creating the POP server directories

mkdir /var/qmail/supervise/qmail/pop3d
mkdir /var/qmail/supervise/qmail/pop3d/log
chmod u=rwx,go= /var/qmail/supervise/qmail/pop3d

mkdir /var/qmail/supervise/qmail/pop3d/log
mkdir /var/qmail/supervise/qmail/pop3d/log/main
chown qmaill /var/qmail/supervise/qmail/pop3d/log/main
chmod u=rwx,go= /var/qmail/supervise/qmail/pop3d/log

13.2.3 The Listening Script

Example 13-2 has been purposely written to be as flexible as possible and will work for most
situations. It goes into /var/qmail/supervise/qmail-pop3d/run.

Example 13-2. The listening script

http://cr.yp.to/checkpwd.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 1. #!/bin/sh
 2. limit datasize 2m
 3. exec \
 4. tcpserver \
 5. -HRv -l pop.example.com \
 6. -x /var/qmail/supervise/qmail-pop3d/rules.cdb \
 7. 0 110 \
 8. /var/qmail/bin/qmail-popup pop.example.com \
 9. checkpassword \
10. /var/qmail/bin/qmail-pop3d Maildir 2>&1

Once created, the script needs to be made executable with:

chmod +x /var/qmail/supervise/qmail/pop3d/run

The beginning of this script should be familiar from the SMTP daemon setup, from the exec on line 3

to the rules file on line 6, and the IP address and port number on line 7. (If you want to run the new
POP server in parallel with an old copy of qpopper for a while, pick a specific IP address not used by
qpopper instead, or temporarily run the server on a port other than 110.) Line 8 runs qmail-popup
with a single command-line option of pop.example.com, the domain name used in the POP protocol

to get the username and password. Line 9 is the command that qmail-popup runs once it has the
username and password. In this case it is checkpassword. There are no command-line options for
checkpassword. Line 10 is the command that checkpassword runs once it has verified the username
and password. In this case it is qmail-pop3d. qmail-pop3d uses the supplied command-line option

as the path of the Maildir to access. checkpassword switches to the user's home directory, so this will
be the user's own Maildir.

There are variations possible with this script. Here are a few of the most likely ones:

The limit set on line 2 may need to be increased if the mailboxes have a very large number of
messages (more than 10,000) because the POP server uses a small amount of memory to keep
track of each message.

Removing the "HR" options from line 5 provides more information for logging at the expense of
increasing the time it takes to establish a connection. See the tcpserver manpage for details.

If you allow POP connections from anywhere on the Internet, then you can remove line 6. Note
that the username and password are sent over the POP connection in the clear, which makes
these connections vulnerable to snooping. So be careful when making the decision to allow POP
connections from networks outside of your control.

13.2.4 The Logging Script

The second script needed as part of the POP server is the script that runs multilog to log the
connection details (see Example 13-3). Put this script into /var/qmail/supervise/qmail-pop3d/log/run.

Example 13-3. POP log/run

 1. #!/bin/sh
 2. exec setuidgid qmaill \

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 3. multilog t s4000000 ./main

Once created, the script needs to be made executable with:

chmod +x /var/qmail/supervise/qmail-pop3d/run

This script is the same as the ones used for qmail-send and qmail-smtpd.

13.2.5 tcpserver Rules

The last step before putting this all together is to populate the rules.cdb file with the networks that
are allowed to access the POP server. The discussion of setting up SMTP servers in Chapter 7
explains, how to create rules files and run tcprules, so just populate the file with a rule that allows
access from everywhere, as shown in Example 13-4.

Example 13-4. Populating rules.cdb

cd /var/qmail/supervise/qmail-pop3d
echo :allow >rules.txt
tcprules rules.cdb rules.tmp <rules.txt

13.2.6 Putting It All Together

It is finally time to start the POP server.[1] With svscan running, link the newly created service
directory into /service:

[1] If you have another POP server running, you must stop that first of course, or else run the POP server on a
different IP address.

ln -s /var/qmail/supervise/qmail-pop3d /service

Within five seconds, svscan will notice the new entry in /server and start the POP server.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.3 Testing Your POP Server

The easiest way to test the POP server is to connect to it with your favorite MUA. Can you retrieve
mail? If so, congratulations.

If the POP server doesn't work, check the log file /service/qmail-pop3d/log/main/current if that file
exists. If it doesn't exist, multilog isn't running, probably due to a protection error or typo in the
log/run file, so do a ps and look for clues in the readproctitle line. If the log file exists, it may contain
a diagnostic message that identifies the problem. If this doesn't work, check each installation step to
diagnose the problem. There are two major categories of problems. Either you can connect to the
POP server and then "something" goes wrong or you cannot connect to the POP server at all.

13.3.1 You Cannot Connect to the POP Server

If you cannot connect to the POP server at all but the other parts of qmail are running, it is likely that
there's a typo or protection error in the run file.

As root run:

svstat /service/qmail-pop3d /service/qmail-pop3d/log

You should see something like this:

/service/qmail-pop3d: up (pid 37197) 5021 seconds
/service/qmail-pop3d/log: up (pid 37198) 5022 seconds

showing "up" as the status for both. If not, check the permissions and contents of the failing run file.

13.3.2 You Can Connect, but Then Something Fails

This is actually a good sign as it means that the supervise processes are running and the run scripts
are at least partially correct. There are two primary reasons for a connection starting and then
failing; a good way to find out the precise nature of the problem is to use telnet to manually step
through the POP session to see exactly what happens.

First connect to the POP server with telnet like this:

telnet localhost 110

(If the POP server is running on a particular IP address or different port, telnet to the appropriate
place.) After a few seconds you should see a banner from the POP server, something like this:

Connected to example.com.
Escape character is '^]'.
+OK <54559.982199402@example.com>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you don't get the "+OK" line, then check the run script for typos. Most likely the qmail-popup line is
wrong in some way. If that looks right check that the tcprules (/service/popd/rules.cdb) has been
created with the correct entries.

If you receive the +OK line, tcpserver has successfully started qmail-popup. The next step is to try
and log in by entering the login and password like this:

USER yourlogin

PASS yourpassword

(Substitute a valid login and password for "yourlogin" and "yourpassword.")

If the output is like this:

-ERR authorization failed
Connection closed by foreign host.

and you are sure you entered the login and password correctly, then the problem is likely to be that
checkpassword is unable to check the login and password.

For debugging purposes, run it directly from the shell:

perl -e 'printf "someuser\000topsecret\000123456\000"'>foo
./checkpassword sh 3<foo
$ id
uid=174(someuser) gid=84(somegroup) groups=84(somegroup)
$ pwd
/home/someuser
$

The input to checkpassword is on file descriptor 3, consisting of a username, password, and
timestamp, or other added info, each terminated by a null byte. (The standard version of
checkpassword ignores the contents of the timestamp, but the field has to be present.) In this
example, the Perl line puts the input into a file. Be sure to put double quotes inside single quotes.
Then, as superuser, so it can change to another user ID, run checkpassword opening the file on
descriptor 3, and tell it to run the shell as the next program. Then use id and pwd to verify that the

user, group, and home directory are correct. This test isn't very useful for the standard version of
checkpassword but can be a major timesaver when you're debugging a custom version for a POP
toaster, as I explain later in this chapter.

POP Servers and POP-before-SMTP

The POP-before-SMTP relay control scheme, discussed in Chapter 7, requires a few extra
items in the listening script in order to track the IP addresses from which users have
logged in for POP mail. The modified version of the listening script with the extra steps is
described in Chapter 7.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Qmail and LDAP

Lightweight Directory Access Protocol (LDAP) is the most common system used to handle
address book-style data shared over a network. It's far more complex than what qmail
needs to drive a POP toaster, but for organizations that already use LDAP to keep the
company directory, qmail-ldap at http://www.nrg4u.com/ (described in "Life with qmail-
ldap" at http://www.lifewithqmail.org/ldap/) does a good job of integrating qmail with
LDAP. The LDAP directory keeps all of the information for user accounts such as its email
addresses, the username, what host it's on in a clustered system, and a variety of qmail-
like delivery options such as deliver to a Maildir, forward to another address, or run a
program.

Installing and integrating qmail-ldap is considerably more work than any of the other
patches mentioned in this book, both because the LDAP directory has to be adjusted to
include the fields that qmail-ldap needs, and because the patch itself is very extensive and
has a lot of options that the system manager needs to understand and configure. The
patch does work, and it's reported to be in use in mail systems that support millions of
users, so for a really big system, it's definitely worth a look.

[Team LiB]

http://www.nrg4u.com/
http://www.lifewithqmail.org/ldap/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.4 Building POP Toasters

A POP toaster is a system that provides POP mail service for a potentially large set of mailboxes.
Rather than create each mailbox as a Unix user account, a POP toaster generally runs as a single
user, puts all of the mailboxes in virtual domains, keeps its own database of usernames, and
arranges for mail deliveries and POP/IMAP sessions to use that database for validation.

The widely used vpopmail package (previously called vchkpw) is available from
http://www.inter7.com/vpopmail.html. It provides all of the POP toaster functions, along with some
nice additions, such as POP-before-SMTP relay validation for roaming users, database interfaces so
the user information can be kept in a MySQL, Pgsql, or Oracle database, and a design that makes it
straightforward to create clustered mail servers for added performance or reliability. At the time of
this writing, the current version of vpopmail is 5.3.16.

13.4.1 Installing Vpopmail

Vpopmail uses the conventional autoconf configuration scheme. Download it from
http://www.inter7.com/vpopmail.html, and unpack it into a directory. Don't try to build it yet; you
must create the vpopmail user ID first. It depends on ucspi-tcp (the package that contains tcpserver)
so be sure you've installed that already, as described in Chapter 3.

All of vpopmail's mailboxes and control files belong to the same Unix user. The usual user and group
IDs are vpopmail and vcheckpw. If you can, create them with numeric user and group IDs of 89.
(Some versions of FreeBSD may already have them defined as 89.) If your vpopmail setup expands
to multiple machines, you want to have the same numeric IDs on all of them, and 89 is as good a
number as any. Be sure that the disk partition on which you create the vpopmail home directory has
sufficient space for all of the mail directories you plan to create. In some cases, you can move
directories around later and use symlinks to splice the subtrees together, but you might as well
allocate enough space in the first place and avoid the trouble.

If you plan to have many thousands of mailboxes, you should put them on a separate partition. Since
Maildirs put each message in a separate file, the average file size on a mail partition is smaller than
on general purpose partitions, so you must build the partition with extra inodes. You can estimate
that average messages are about 5K, so divide the size of the partition by 5K and allocate that many
inodes.

In the following examples, I use /var/vpopmail as the home directory for the mailboxes. It doesn't
matter for vpopmail's configuration whether it's a partition mount point or not.

Before you configure vpopmail, you have to make a few decisions:

Do you want to handle mailboxes not in virtual domains? If your system has shell users that get
their mail in Maildirs in their home directories, yes. Otherwise, if your system is just a POP
toaster or the shell users don't pick up their mail remotely, no.

http://www.inter7.com/vpopmail.html
http://www.inter7.com/vpopmail.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Do you want to allow roaming users to send mail through your SMTP server? Usually yes.

Do you want to enforce mailbox quotas at delivery time? Probably, unless you don't have many
mailboxes or use a different way to clean out mailboxes.

Do you want to allow mailbox extensions? If you do, mail to fred-foo will be delivered to fred if
fred-foo doesn't exist. If not, hyphens aren't treated specially. Extensions and subaddresses are
a useful feature to let users track places to which they've given their addresses, so unless you
have a strong reason to allow users to select mailbox names with hyphens, you should allow
extensions.

To configure vpopmail, become the super-user (it needs to look at password files to figure out your
mail setup), and in the vpopmail directory, run configure:

./configure --enable-passwd \
 --enable-roaming-users=y \
 --enable-defaultquota=50000000 \
 --enable-qmail-ext=y

Leave out the options you're not using. The number after defaultquota is the default mailbox quota to
use, in bytes. Quotas can also be written in the form 1000000S,400C to set limits on both the
mailbox total size in bytes and maximum message count. After configure runs, leave super-user and
type make (or gmake if your system's normal make program isn't GNU make) to build all the
programs. Then become user again and make (or gmake) install.

13.4.2 Setting Up Vpopmail

To get your mail going, create the virtual domain(s) the mailboxes will use, create user mailboxes in
those domains, and start up the POP server to let people pick up their mail.

13.4.2.1 Creating virtual domains

Use vadddomain to create a domain. As the super-user:

cd ~vpopmail
bin/vadddomain myvirt.com topsecret

The arguments are the name of the virtual domain, and the password to assign to the postmaster
mailbox in that domain. A few options are available for unusual situations:

-e address

Normally, mail to a nonexistent mailbox in a virtual domain bounces. The -e flag specifies an
address that delivers mail to nonexistent addresses.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

-q quota

The mailbox quota for the postmaster mailbox.

-d directory

Create the domain's files in this directory, rather than ~vpopmail/domain.

(See the manpages in ~vpopmail/doc.)

When you create a vpopmail virtual domain, it creates a directory for the domain under
~vpopmail/domains, and (somewhat disconcertingly) automatically updates the files in
/var/qmail/control and /var/qmail/users. It adds a line to /var/qmail/users/assign creating a qmail
user with the same name as the domain, adds a line to /var/qmail/control/virtualdomains routing
mail to the domain to the user it just created, and adds a line to rcpthosts or morercpthosts to accept
mail for the domain. It doesn't do is to create DNS MX records to tell the world to send mail for the
domain to your mail host. You have to do that yourself by editing zone files or your DNS server's
equivalent.

If you create a lot of domains at once, use the -O flag for all but the last vadddomain to speed up

creation. In practice, it's unlikely that you'll create enough domains to worry about it.

13.4.2.2 Creating mailboxes

You create individual mailboxes with vadduser, running as either vpopmail or root. The arguments
are the address of the mailbox to create and optionally the password. If you supply no password, it
prompts you to type one. You can optionally supply a password on the command line, or let it
generate a random one:

$ vadduser able@myvirt.com dontguess
$ vadduser -r baker@myvirt.com
Random password: LMd%tusw

Arguments include:

-r

Generates a random password.

-n

Uses no password.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

-c 'user info'

Sets the "gecos" field in the user file, which usually contains the user's real name.

-q quota

Set the user's quota, if different from the domain's default.

-s

Doesn't regenerate the password database. Use in all but the last of a series of vadduser
commands for speed.

If you have a file with usernames and password pairs, it's easy enough to use a script to add them
all:

(read lastuser lastpass
while read user pass
do
 vadduser -s $user $pass
done
do the last one without -s to force database rebuild
vadduser $lastuser $lastpass
) < userfile

Once the database is rebuilt by a command without -s, the mailbox exists and is ready to use. You

can change passwords or other mailbox parameters with vmoduser and delete mailboxes with
vdeluser. Run each with no arguments to see what the options are. (There's an online manual, but it
is way out of date.)

13.4.2.3 Starting the POP service

Starting the vpopmail POP server is a minor variation on starting the regular qmail POP server,
mostly involving replacing the standard password checker with the vpopmail version. If all of your
POP-able accounts are managed by vpopmail, you can make another small change to run the whole
POP server as the vpopmail user, which is somewhat more secure. Assuming you've already set up
the POP listening script as described earlier in this chapter, the changes for vpopmail are minimal
(see Example 13-5).

Example 13-5. The listening script

 1. #!/bin/sh
 2. limit datasize 2m
 3. exec \
 4. /usr/local/bin/tcpserver \
 5. -HRv -l pop.example.com \
 6. -x /var/vpopmail/rules.cdb \

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 7. 0 110 \
 8. /var/qmail/bin/qmail-popup pop.example.com \
 9. /var/vpopmail/bin/vchkpw \
10. /var/qmail/bin/qmail-pop3d Maildir 2>&1

On line 6, move the rules.cdb file into the vpopmail home directory, and on line 9, use the vpopmail
password checker rather than the standard one. If you've enabled roaming users,
~vpopmail/etc/tcp.smtp contains the fixed tcpserver relay rules, so put the info there to permit local
users to relay; for example:

allow from localhost
127.:allow,RELAYCLIENT=""
allow from local network
10.1.2.:allow,RELAYCLIENT=""

Then modify your SMTP listening script, which is in /var/qmail/supervise/qmail-smtp/run, so that it
uses the vpopmail rules, as in Example 13-6.

Example 13-6. Change the SMTP server rules

 5. -x/home/vpopmail/etc/tcp.smtp.cdb 0 25 \

Then start or restart your SMTP server, and you're all set.

The /etc/passwd users can log in with their usernames and system passwords, while vpopmail users
log in with their full email address, such as myname@myvirt.com and their vpopmail passwords. For
the benefit of people using mail clients that don't like to put at-signs in their configuration data,
vpopmail also accepts a percent or slash, for example, myname%myvirt.com or
myname/myvirt.com. If you are only picking up vpopmail mailboxes, run the POP server as the
vpopmail user, as shown in Example 13-7.

Example 13-7. Change the POP server rules

 4. /usr/local/bin/tcpserver -u89 -g89 \

Substitute in the actual user and group IDs, if they're not both 89. This makes it somewhat more
secure in the face of unexpected bugs.

13.4.2.4 Roaming users

Vpopmail includes support for POP-before-SMTP that is very easy to set up. Assuming you've set up
tcp.smtp as described in the previous section, vchkpw automatically adds each address that logs in
for POP to ~vpopmail/etc/open-smtp and rebuilds tcp.smtp.cdb to include those addresses, and if
you've modified your SMTP tcpserver commands as described previously, it lets POP-before-SMTP
users relay mail.

The only other thing you have to do is to run the clearopensmtp daemon that removes out of date
entries from the open-smtp list. Run it from cron once an hour, with an entry like this in
/etc/crontab:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

0 * * * * root /var/vpopmail/bin/clearopensmtp

If your POP server only picks up vpopmail mailboxes and runs as the vpopmail user, run
clearopensmtp as vpopmail. Otherwise you have to run it as root, because vchkpw writes the open-
smtp file as root.

13.4.3 Some Handy Vpopmail Tricks

Although vpopmail's normal setup delivers mail only to individual mailboxes, you can configure it to
do just about anything that qmail can do.

13.4.3.1 Handling unknown users

When mail arrives for a mailbox that doesn't exist, it can bounce the message, discard it, or deliver it
to a default mailbox either in the domain or elsewhere. When you create a domain with vadddomain,
the -e flag sets the default, but it's easy to change later. In the domain's directory, usually

~vpopmail/domains/domainname, the .qmail-default line controlling deliveries to the domain looks
like this:

| /var/vpopmail/bin/vdelivermail '' defaultinstruction

The second argument (the first, the two quotes, is just a placeholder) is the instruction to control the
default behavior. If the instruction is the string bounce-no-mailbox, mail to undefined addresses
bounces. If the instruction is the string delete, mail to undefined mailboxes is discarded. If the

instruction is anything else, it's taken to be the email address to forward the mail to. If you want to
deliver unknown mail to a default mailbox within the domain, you must write out the full address,
e.g., catchall@myvirt.com. An unqualified address is treated as a local qmail address, which is rarely
what you want. To change the default behavior, just edit .qmail-default as needed.

13.4.3.2 Forwarding a user's mail and other per-user special handling

For each mailbox, vpopmail creates a directory with the same name as the mailbox and, in that
directory, a Maildir. Usually the mailbox directory is in the domain's directory; in very large domains
the directory is split up using intermediate directories named with small numbers. When vdelivermail,
the vpopmail delivery program, delivers a message, it normally deposits it into the Maildir. But if the
mailbox directory contains a .qmail file, vdelivermail processes that .qmail file using a subset of the
qmail rules. Lines ending in /Maildir/ are taken to be Maildir names to which the message is
delivered. Lines starting with a vertical bar are commands run by the shell. Anything else is treated
as an email address, perhaps preceded by an ampersand. As a special case, if the mailbox's own
address appears in the .qmail file, it's ignored to prevent mail loops. (Use ./Maildir/ to deliver the
message.) Neither comment lines nor mbox deliveries are supported, but the features that are
supported are quite adequate to handle forwarding to other addresses, vacation programs, and other
common mailbox features.

13.4.3.3 Enforcing mail quotas

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Vpopmail allows you to set a per-mailbox disk quota. If mail arrives for a mailbox that's over quota,
it's bounced rather than delivered. You can customize the bounce message, and you can also arrange
to deliver a warning message to a recipient when a mailbox is about to be over quota.

When you build vpopmail, the --enable-defaultquota sets the quota for each mailbox. When you
create a domain, the -q flag to vadddomain can override the quota for the postmaster mailbox, and
when you create a mailbox, the -q flag to vadduser can override the quota for that user. You can

change the quota for an individual user or a whole domain with vsetuserquota:

$ vsetuserquota @myvirt.com 25M # 25 megs all user
$ vsetuserquota fred@myvirt.com 20M # 20 megs for fred

In each case, the quota can be a plain number that is the total size of messages in the mailbox;
10MS,999C, to set limits on the total size and count of messages; or the string NOQUOTA to turn off
quota checking. In the message size limit, the letters K and M have the usual meaning.[2]

[2] The binary meaning, 1024, and 1024*1024.

When a message arrives for a user who is over quota, it is bounced back to the sender. If a file
named .over-quota.msg exists in the domain's directory or in ~vpopmail/domains, the contents of
that file is used in the bounce message in place of user is over quota, permitting per-domain

customized bounce text. In addition, if a file named .quotawarn.msg exists in either of those two
places, its contents is delivered to the user. That file should be a complete mail message with
headers, saying something like "your mailbox is over quota and you won't get any more mail until
you delete some of it." The delivery program remembers when it's delivered the over-quota message
and won't deliver it to a user more than once a day.

13.4.3.4 Mail bulletins

A useful service originated by the qpopper POP server is bulletins, messages sent to all users in a
domain. Vpopmail provides vpopbull to deliver bulletins to all mailboxes in a domain or all mailboxes
in all domains, by copying or linking the bulletin message into everyone's Maildir. To use it, create the
bulletin in a file, formatted as an email message called something like bulletin1. (If you plan to copy
rather than make links to the file, omit the To: line, because it'll be added to each copy
automatically.)

From: support@myvirt.com (Support)
To: Myvirt Users :;
Subject: Mail server interruption

Due to a server upgrade, you won't be able to pick up your mail
between 3:00 and 5:00 PM on Saturday. But if you come by the
office, there'll be free beer.

The Management

Then distribute it. As vpopmail, run:

$ vpopbull -s -f bulletin1 myvirt.com

You can list one or more domains to distribute the bulletin to users in those domains, or no domain at
all to distribute the bulletin to all vpopmail users. A few useful options include:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

-f file

The message file to distribute

-n

Don't distribute a bulletin; either -f or -n is required

-e file

Exclude list, a file containing addresses that are not to get the bulletin

-c

Copy the message file into each Maildir

-h

Hard link message file into each Maildir

-s

Soft link the message file into each Maildir

-V

Verbose; list all the mailboxes affected

If you know that the total number of mailboxes is less than the per-file hard link limit on your system
(usually 32767), -h will run the fastest. If you have more mailboxes than that, use -s. Only copy the
file if you need to put each user's address on the To: line-for example, to defeat overenthusiastic
spam filters.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A Cheap Trick to List All Your Vpopmail Mailboxes

If you run vpopbull with -n and -V, to do nothing verbosely, it'll list all the mailboxes in

the domains you specify, or in the absence of any specific domains, all of the domains that
vpopmail manages.

13.4.3.5 Storing user data in a database

Normally, vpopmail stores the user info for each domain in a file called vpasswd in the domain's
directory, compiled into vpasswd.cdb for fast access. For large mail setups, the user info can instead
go into a SQL database. While this is slower than direct access to a CDB file, it's considerably more
flexible, and makes it easier to distribute mail and POP service across multiple hosts. There are
database interfaces for Pgsql, Oracle, Sybase, but by far, the most popular database used with
vpopmail is MySQL, so that's the one covered here.

Before building a MySQL version of vpopmail, you must define a MySQL database for vpopmail to
use, along with a MySQL user that has full access to that database and a password for that user. Edit
vmysql.h and put in the server name, username, and password into the definitions near the
beginning of the file. There are two sets of definitions, one for the server from which to read data and
the other for the server to which to send updates. Unless you turn on MySQL replication, the READ
versions are ignored, but you might as well make them the same:

/* Edit to match your set up */
#define MYSQL_UPDATE_SERVER "localhost"
#define MYSQL_UPDATE_USER "vpopmail"
#define MYSQL_UPDATE_PASSWD "verysecret"

#define MYSQL_READ_SERVER "localhost"
#define MYSQL_READ_USER "vpopmail"
#define MYSQL_READ_PASSWD "verysecret"
/* End of setup section*/

Vpopmail manages the database tables itself, but you must make one decision about how it should
do so, the so-called "many-domains" option. Normally, when many-domains is on, it puts all the user
information for all domains into a single table called vpopmail, with the key being the combination of
the pw_name field, the mailbox name, and pw_domain, the domain name. If many-domains is off,

vpopmail can make a table of the mailboxes in each domain, with the table having the same name as
the domain,[3] and the table key is just the mailbox name. If you have a small number of domains
each with a large number of mailboxes, turning off many-domains can save space because the
domain names don't need to be stored in the database tables. Unless you have many thousands of
mailboxes, accept the default that is to turn many-domains on.

[3] Actually, the table name replaces dots and hyphens with underscores for SQL compatibility, so myvirt.com
becomes myvirt_com.

Now become super-user and rerun the configuration script, adding --enable-mysql=y to the

arguments. If the MySQL include files and shared library aren't in the default places, you must
provide arguments to tell vpopmail where to look for them. Here's the configuration command for our
system:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

./configure --enable-qmail-ext=y --enable-roaming-users=y \
 --enable-defaultquota=50 --enable-passwd \
 --enable-mysql=y \
 --enable-incdir=/usr/local/mysql/include/mysql \
 --enable-libdir=/usr/local/mysql/lib/mysql

To turn off many-domains, add --enable-many-domains=n. Then rebuild and reinstall vpopmail as

previously described.

If you already have created virtual domains with mailboxes, the vconvert program can convert the
CDB database into MySQL. Run it, giving it the list of domains to convert:

$ vconvert -c -m myvirt.com ...

The --c and --m flags say to convert from CDB to MySQL. The various vpopmail programs work the

same as always.

13.4.3.6 Data replication and other MySQL tricks

The MySQL support in vpopmail is considerably more extensive than I have room to describe here.
Using MySQL's database replication features, you can build multi-host systems with the SMTP server
on one set of hosts and the POP servers on another set of hosts. See Chapter 17 for more details.

The MySQL module also supports mailbox aliases, a pseudo-mailbox that is delivered to one or more
real mailboxes. This is handy when a user changes his email address but wants to keep getting mail
to the old address.

You can use MySQL for logging, with an entry added for every POP login attempt, successful or not.

And finally, with modest programming effort, you can add your own fields to the database tables
(edit vmysql.h). Vpopmail won't use them, but your own programs can use them for other user
maintenance purposes.

vmailmgr

vmailmgr is another virtual domains package similar to vpopmail, written in C++. It runs
only on Linux and doesn't have any database support. Each domain can be controlled by a
different user, which can be handy on a shared system with domains managed by
different people. It also has a web console and supports Courier IMAP and SqWebMail.

If you're running Linux, it's a reasonable alternative to vpopmail if you want separately
managed virtual domains. It's available from http://www.vmailmgr.org.

[Team LiB]

http://www.vmailmgr.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.5 Picking Up Mail with IMAP and Web Mail

Although POP is by far the most common way for users to collect their mail, many mail servers also
offer IMAP and web mail. IMAP is conceptually similar to POP except that the client program has a full
set of tools to manipulate the mailbox on the server. The advantage of IMAP over POP is that the
mailbox remains on the server, so the user can use different mail programs from different locations,
seeing consistent mailbox contents at all times. While qmail provides no IMAP server of its own, the
IMAP server from the Courier mail package uses Maildirs as its mailbox format and works well with
qmail. I describe its setup below.

Web mail provides access to a mailbox using a web browser as the mail client. Many web mail
packages are available on the Net that use POP or IMAP to access the user mailboxes. They're not
specific to qmail, so I don't describe them here. The Courier package includes a web mail component
called SqWebMail that uses Maildirs as its mailbox format. I describe its installation later in this
chapter.

Maildirs don't have to be locked while a client reads or updates them, so the POP and IMAP servers
and SqWebMail can access the same mailbox simultaneously without trouble. Systems based on
mboxes can't do that. I routinely have my mailbox open in pine on a BSD system, Pegasus and
Opera 7 on a Windows laptop, and SqWebMail on a web browser, all at the same time without any
trouble. You can download the sources for Courier IMAP and SqWebMail by following the links from
http://www.courier-mta.org/download.php. As of the time this book was written, the current version
of Courier IMAP is 1.7.0 and of SqWebMail is 3.5.0.

Courier IMAP and SqWebMail share the same user validation scheme, an "auth" framework that calls
out to a variety of authorization modules to handle everything from passwd files to vpopmail to
MySQL (different from the vpopmail flavor) to LDAP. Once you have it set up for one, it's easy to
transfer to the other. Courier IMAP includes a POP server that provides no more function than the
qmail one but uses the Courier authentication scheme, letting your POP and IMAP login rules be
consistent.

Unpacking bz2 Files

The various parts of the Courier package are distributed as tar files compressed with the
bzip2 data compressor. While bzip2 is a fine compression package, it's probably not one
for which you have the decompressor installed, which is called bzcat.

Fortunately, bzip2 is easy to install. At http://sources.redhat.com/bzip2/, you can find
executable versions for Linux and a few other Unix variants, and the source code (in tar.gz
format.) Download it, compile it, and install it. By default it installs itself into /usr/bin, so if
you'd rather have it in /usr/local/bin, make PREFIX=/usr/local install does the trick.

13.5.1 Courier's Extended Maildir++

http://www.courier-mta.org/download.php
http://sources.redhat.com/bzip2/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

All of the pieces of the Courier package support an upwardly compatible extended version of Maildirs
known as Maildir++. The extensions allow subfolders within a Maildir and provide a convention for
folders that can be shared among multiple users (a feature used by the IMAP server).

A subfolder is merely a Maildir that exists within another Maildir. For example, a subfolder called
spam would be Maildir/.spam and spam.mmf would be Maildir/.spam.mmf. Even though folders can
be logically nested, all subfolder directories are directly located in the main Maildir. Each subfolder
has the usual tmp, cur, and new directories, as well as a zero-length file named maildirfolder that
tells programs that it's a subfolder and to look in the parent directory for quota files and the like.
From qmail's point of view, a subfolder is just a Maildir, and qmail can deliver messages to them the
same as to any other Maildir. This comes in handy for delivery-time mail sorting. If, say, you want
mail tagged by your spam filter to go into a separate subfolder, your .qmail or .procmailrc can deliver
the spam to Maildir/.spam/, and the rest of the mail to Maildir/.

A shared Maildir is one that's world-readable. By convention, the file shared-maildirs in a regular
Maildir contains a list of shared Maildirs, each on a line in the form:

nickname tab path-to-shared-Maildir

Courier IMAP and SqWebMail create symlinks as needed to make the messages in folders in the
shared Maildirs look like they're in folders in the user's own Maildir.

The Courier programs create a lot of other files in the Maildirs, such as the signature and address
book for SqWebMail. Qmail ignores everything but the three defined directories, so the extra files
cause no compatibility trouble.

13.5.2 Installing Courier IMAP

Once you've downloaded the Courier IMAP source, unpack it into a directory (see Unpacking bz2
Files). The configuration for Courier IMAP is intended to be almost entirely automatic, detecting
whether you have packages such as OpenSSL, MySQL, and vpopmail installed and, if so, compiling
optional subpackages for them. When the automated scheme works, it's great. When it doesn't quite
work, it's a pain in the neck.

Read the INSTALL file carefully before building and installing the package, because the installation
instructions may have changed from the ones here. First configure it by running configure. The
configuration process runs recursively in a long set of subdirectories, so it can take several minutes.
Then build it with make. (The instructions say to use GNU gmake on BSD systems, but I've found
that the configuration files are built for the BSD make.) Assuming that works, become super-user and
type make install to install the files, and then type make install-configure to configure the installed
files. This installs the package into /usr/lib/courier-imap.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Courier's Authorization Daemon

The usual configuration for the Courier package uses an authorization daemon to handle
login authorization. The idea is to keep a pool of daemons running and to call them to do
the authorization rather than running a separate program each time. For relatively slow
authorizers that need to connect to remote databases, this can speed the login process,
but the authorization daemon is notoriously hard to get working correctly. If your system
looks up authorization in /etc/passwd or another local file or database, the daemons offer
little speed advantage. You can turn off the daemon by configuring Courier-IMAP and
SqWebMail with --without-authdaemon to run each authorization program as needed. If

speed isn't a problem or you have trouble getting the daemon to work, reconfigure to turn
it off and get IMAP and SqWebMail working without it.

Once it's installed, you have some more setup to do before you start up the servers. There are
separate servers for POP and IMAP. If you have OpenSSL installed, there are two more servers for
POP-SSL and IMAP-SSL. To add to the confusion, some clients connect to the regular server on the
regular POP or IMAP port, and then use a "starttls" command to switch to secure mode, while other
clients connect to different ports (993 for IMAP, 995 for POP) and start the secure mode negotiation
immediately. Courier IMAP supports both modes, but you have to start them separately.

If you're using SSL, this is a good time to generate your SSL certificates. The certs that Courier
generates are self-signed, which makes most MUAs pop up warning messages, but they're adequate
for debugging. To get rid of the warnings, you must get your certificates signed by one of the signing
services that signs web server certs, at about $100 per signature. The files etc/imapd.cnf and
etc/pop3d.cnf contain the info needed to create the certificates. You must change the CN line from
the default localhost to the name of your mail server or some MUAs, including Eudora, won't talk to
you at all. While you're at it, you might as well update the C (Country), ST (State), L (Locality), O
(Organization), and emailAddress lines so that when users check the certificate, which they will when
their MUAs complain about it, the values look reasonable:

[req_dn]
C=US
ST=NY
L=Trumansburg
O=The Example Organization
OU=Automatically-generated IMAP SSL key
CN=mail.example.com
emailAddress=postmaster@example.com

Once you've fixed up the certificate data, run share/mkimapdcert and share/mkpop3dcert to create
the SSL certificates.

Now check the server configuration files etc/imapd, etc/imapd-ssl, etc/pop3d, and etc/pop3d-ssl
(each is a shell script that sets variables imported into the startup scripts), and make any needed
adjustments. The most likely variables to use are ADDRESS and SSLADDRESS if you want your
servers to run on a specific IP address, and use MAXDAEMONS to limit the number of simultaneous
sessions. Also check authdaemonrc, which controls the authorization daemon that validates logins, in
particular the authmodulelist line, which lists all of the authorization modules it'll use. You'll often

want to remove some of them. See man/man7/authlib.7, which describes all the modules. Now

http://lib.ommolketab.ir
http://lib.ommolketab.ir

you're ready to start up the daemons:

cd /usr/lib/courier-imap/libexec
./imapd.rc start # start imap on 143
./pop3d.rc start # start pop3 on 110
./imapd-ssl.rc start # start ssl imap on 993
./pop3d-ssl.rc start # start ssl pop3 on 995

Check that you can log into your new server. To test the POP server, telnet into it as described earlier
in this chapter in the discussion of the qmail POP server. IMAP is an extremely complex protocol, but
fortunately the commands to log in and check a mailbox are pretty simple. In this example, you
literally type c1, c2, and c3, which are transaction identifiers used to match up responses with
requests:

$ telnet yourserver imap
Trying 10.31.42.80...
Connected to yourserver.
Escape character is '^]'.
* OK Courier-IMAP ready. Copyright 1998-2003 Double Precision, Inc. See COPYING for
distribution information.
c1 login yourname yourpassword
c1 OK LOGIN Ok.
c2 select INBOX
* FLAGS (\Draft \Answered \Flagged \Deleted \Seen \Recent)
* OK [PERMANENTFLAGS (\Draft \Answered \Flagged \Deleted \Seen)] Limited
* 31 EXISTS
* 0 RECENT
* OK [UIDVALIDITY 1043726086] Ok
c2 OK [READ-WRITE] Ok
c3 logout
* BYE Courier-IMAP server shutting down
c3 OK LOGOUT completed

To check that SSL is working, log into the various servers from MUAs and check that it works. If your
MUA supports SSL, it will complain about the self-signed certificates before it lets you log in.
Assuming you're happy with the results, add the previous startup lines to one of the /etc/rc files on
BSD systems. On System V and Linux systems, see the courier-imap.sysvinit script created in the
build directory but not installed. Again, read the lengthy INSTALL for the most up to date installation
instructions.

13.5.3 Courier IMAP and Pop-Before-SMTP

Although Courier IMAP supports about 15,000 different features, a general purpose POP-before-SMTP
is not one of them unless you're using vpopmail. If you are, build Courier IMAP without authdaemon,
and add -DHAVE_OPEN_SMTP_RELAY to the DEFS line in the authlib Makefile to have it include the relay

code. The vpopmail FAQ at http://www.inter7.com/vpopmail/FAQ.txt has more details at question 34.

For other authorization schemes, this oversight is easily remedied. Each of the .rc files, when it starts
a server, runs couriertcpd, a TCP daemon similar to tcpserver. Like tcpserver, it takes as its
arguments a cascade of programs to run whenever an incoming connection arrives. Also like
tcpserver, salient facts about the connection are placed in the environment, including TCPREMOTEIP

http://www.inter7.com/vpopmail/FAQ.txt
http://lib.ommolketab.ir
http://lib.ommolketab.ir

for the remote host. In imapd.rc, for example, this rather complex command starts the server:

/usr/bin/env - /bin/bash -c " set -a ;
 prefix=/usr/lib/courier-imap ;
 exec_prefix=/usr/lib/courier-imap ;
 bindir=${exec_prefix}/bin ;
 libexecdir=/usr/lib/courier-imap/libexec ;
 . ${prefix}/etc/pop3d ; \
 . ${prefix}/etc/pop3d-ssl ; \
 TLS_PROTOCOL=$TLS_STARTTLS_PROTOCOL ; \
 export TLS_PROTOCOL ;
 /usr/lib/courier-imap/libexec/couriertcpd -address=$ADDRESS \
 -stderrlogger=/usr/lib/courier-imap/libexec/courierlogger \
 -stderrloggername=imapd \
 -maxprocs=$MAXDAEMONS -maxperip=$MAXPERIP \
 -pid=$PIDFILE $TCPDOPTS \
 $PORT ${exec_prefix}/sbin/imaplogin $LIBAUTHMODULES \
 ${exec_prefix}/bin/imapd Maildir"

This sets variables, reads two configuration scripts from etc, and runs couriertcpd. When a
connection arrives, it runs imaplogin, which after validating the login, runs imapd. If you're using
relay-ctrl, the instructions for integrating it with Courier IMAP are in the ANNOUNCEMENT file. First
you make a symlink in /usr/lib/courier-imap/libexec/authlib to /usr/sbin/relay-ctrl-allow. Then add
relay-ctrl-allow to the end of the list of AUTHMODULES in the file /usr/lib/courier-

imap/etc/imapd, which tells IMAP to run that program every time someone logs in. Finally, insert this
line in front of the couriertcpd line in the startup script:

 envdir /etc/relay-ctrl relay-ctrl-chdir \

and restart Courier IMAP. You must modify all four .rc scripts to do POP-before-SMTP, but you can
add the same line to each of them to use the same openrelay script.

Binc IMAP

Although Courier IMAP is the most widely used Maildir IMAP server, a worthy alternative is
Andreas Hanssen's Binc IMAP (Binc Is Not Courier), available at http://www.bincimap.org/
or http://www.bincimap.andreas.hanssen.name/. It is designed to be smaller and faster
than Courier IMAP, and more compatible with qmail's design and use the same tools as
the qmail POP server. It can run under tcpserver and uses checkpassword for its
authentication. It can use Maildir++ subfolders, the same as Courier does, and notes on
the web site tell how to use it with relay-ctrl and vmailmgr.

Binc isn't as mature as Courier, but if you're setting up an IMAP server, it's definitely
worth a look because it's a lot easier to set up.

13.5.4 Installing SqWebMail

Once you have Courier-IMAP installed, SqWebMail is a snap to install. Unpack the bzipped file,

http://www.bincimap.org/
http://www.bincimap.andreas.hanssen.name/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

configure, and install. SqWebMail runs from your web server, so the main program is installed in a
cgi-bin directory and run on demand from the web server. If you're planning to run it from a virtual
domain, create the web server directories for the domain's home page and cgi-bin if you haven't
already done so. The installation process creates a directory of icon files that must be the webmail
subdirectory of the domain and a directory tree of auxiliary files that shouldn't be visible via the web
server at all, usually in /usr/local/share/sqwebmail. If you're not using Courier-IMAP, and you're
using the authorization daemon, you must add a line to your system startup scripts to start the
daemon. If you are using Courier-IMAP, use the same daemon it uses. The configuration script has
an enormous set of options, but the ones you most likely need are the ones to set the location of the
cgi-bin and image directories. If you've installed Courier-IMAP with authdaemon, you also must tell
SqWebMail to use the same authdaemon directory:

./configure \
 --enable-cgibindir=/var/www/cgi-sqweb \
 --enable-imagedir=/var/www/sqwebmail/webmail \
 --with-authdaemonvar=/usr/lib/courier-imap/var/authdaemon \
 --disable-autorenamesent

The last option to the configure command turns off a feature that automatically creates monthly
subfolders of sent mail, which I don't find useful. Once the lengthy configuration process completes,
build and install the program following the INSTALL instructions:

$ make configure-check
$ make
$ make check
$ su # installation must be superuser
make install # or make install-strip to strip symbols
make install-configure

Start authdaemon if needed, following the hints displayed by the install program, and then try
sqwebmail with a URL like http://mail.myvirt.com/cgi-bin/sqwebmail.

The installation program lists many further possible customizations. One you should install is
/usr/local/share/sqwebmail/sendit.sh, the script that actually sends outgoing mail from SqWebMail.
The version I use is this, to send mail using qmail-inject:

$1 is the return address, $2 is the logged in sqwebmail user
{
 echo "Received: from [$REMOTE_ADDR] ($2); via SqWebMail 3.5.0"
 cat
} | /var/qmail/bin/qmail-inject -f "$1"

[Team LiB]

http://mail.myvirt.com/cgi-bin/sqwebmail
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 14. Mailing Lists
The original impetus for writing qmail was to send out list mail faster than existing MTAs, so it's not
surprising that qmail has excellent built-in support for mailing lists. The first part of this chapter looks
at its list handling support, which is quite adequate for small and medium-sized lists. Then it covers
ezmlm, the automated mailing list package designed to work with qmail, and other qmail-compatible
list management software.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

14.1 Sending Mail to Lists

The easiest and most common way to handle a small list is to put the list in a .qmail file. To reiterate an
example from Chapter 10 , assume a user's name is fred, and the list is about fishing. Then the list goes
into ~fred/.qmail-fishing , one address per line like any other .qmail file (see Example 14-1).

Example 14-1. Fred's fishing list

fred@example.com
jim@example.org
mary@myvirt.com
&/fn=hunt/ln=dash/@bigcorp.com

Note that the third address, an X.509 address that contains slashes, is preceded by an ampersand to keep it
from being interpreted as a filename. Also, Fred's address is in the list so he gets copies of messages sent
to it. To send mail to this list, one needs only to send a message to fred-fishing, and it's redistributed to all
of the list members.

14.1.1 Maintaining List Files

Qmail provides a small but useful set of functions to maintain list files. To edit a file safely, set the otherwise
unused "sticky" bit in the user's home directory, edit the file, then unset the sticky bit:

$ cd
$ chmod +t .
$ emacs .qmail-fishing
$ chmod -r .

Should any mail arrive for addresses handled by a .qmail file in the directory while the sticky bit is set,
qmail-local notices the sticky bit and exits with code 111 so the delivery is retried later.

This list file example highlights a possible security hole when an address looks like a filename.[1] There are
three ways to solve the problem. The simplest, but most error prone, is to put an ampersand in front of
each name, or at least in front of each name that might look like a filename or command. The second is to
set the owner execute bit on the file, which tells qmail-local that the file should only contain forwarding
addresses, so any file or program deliveries fail. The third (undocumented) is to put a line containing +list

in the file, which tells qmail-local that subsequent lines have to be forward addresses. This permits a few
setup lines at the beginning before the addresses. For example, to require that each message's subject line
has a keyword, see Example 14-2 .

[1] This isn't a new problem; in some ancient versions of Unix you could send mail to /etc/passwd and it'd add your

message to the end of the password file.

Example 14-2. Fred's fishing list with subject checking

| egrep -qi "^Subject:.*(largemouth|smallmouth|squid)" || bouncesaying "Not fishy enough."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

+list
fred@example.com
jim@example.org
mary@myvirt.com
&/fn=hunt/ln=dash/@bigcorp.com

In the examples so far, the list has an address that is a subaddress of a user address. List files can equally
well live in ~alias in which case they have regular addresses; the list file ~alias/.qmail-fishing has the
address fishing .

14.1.2 Bounce Handling and VERP

One of the most tedious and difficult parts of mailing list management is bounce handling, identifying and
removing addresses that are no longer valid. The most difficult aspect of bounce management turns out to
be identifying the address that's bouncing, and a secondary problem is getting the bounces sent to an
address that can do something useful with them.

When a message bounces, the host doing the bounce, which may be the one where the message was
injected or another one to which the message was relayed by SMTP, sends back a failure report to the
message envelope sender address. On qmail systems, all the bounces from the injecting system are sent
back in one message in QSBMF (qmail-send Bounce Message Format, described at
http://cr.yp.to/proto/qsbmf.txt). Bounces from remote systems arrive one per bouncing address, because
qmail sends remote mail to one address at a time. Remote bounces arrive in whatever format the remote
system chooses to use. Qmail systems use QSBMF; some MTAs use DSNs (delivery status notices), a
complex format originally described in RFCs 3461-3464; and a lot of systems use ad-hoc formats not
standardized or documented anywhere. Also, the envelope address on outgoing list mail needs to be the
address of the mailing list manager (human or software), not the address of the original sender-only the
list manager can update the list.

14.1.2.1 Manual bounce handling

The way to set up a qmail list for manual bounce handling is simply to create an owner mailbox. That is, if
the list's qmail file is .qmail-fishing , create .qmail-fishing-owner and set it up to deliver mail someplace that
the owner will see it, usually either forwarding to the owner's regular address or putting the mail in an mbox
or Maildir.

When qmail-local processes .qmail-fishing , it checks to see if .qmail-fishing-owner exists, and if so,
changes the envelope sender to fred-fishing-owner@example.com , or more generally to LOCAL-owner@
HOST where LOCAL and HOST are the local and host part of the original address. When bounces arrive, it's
up to the list owner to read them and update the list appropriately by removing addresses that consistently
bounce.

14.1.2.2 Automated bounce handling

For a list of any size or with a significant amount of traffic, manual bounce handling is an impossible amount
of work. Fortunately, software does as good a job of bounce handling as people can, particularly when it
uses qmail's VERP to identify the bouncing addresses.

Variable Envelope Return Path (VERP) encodes the recipient's address in the envelope sender of each
message sent out, so if a message bounces, the address that bounced can be recovered from the address

http://cr.yp.to/proto/qsbmf.txt
http://lib.ommolketab.ir
http://lib.ommolketab.ir

the bounce message is sent to. The recipient's address is placed at the end of the mailbox part with the @
sign changed to an = sign. For example, VERP would arrange that mail from Fred's fishing list to recipient
mary@myvirt.com has return address fred-fishing-owner-mary=myvirt.com@example.com . If her mail
bounces, the bad address is recovered from the bounce address by picking out the text at the end of the
local part and changing the = back to an @ sign.

To use automated bounce handling, along with a -owner file, create a -owner-default file, which delivers to
the bounce handling program. If qmail-local sees both of those files,[2] it rewrites the sender to LOCAL-
owner-@HOST-@[] . This peculiar sender address turns on VERP, by telling qmail-send to rewrite the
address again on each remote delivery to RUSER@RHOST so the envelope sender is LOCAL-owner-
RUSER=RHOST@HOST . The overall effect of this is that all bounce mail is delivered to the -owner-default
address, with local bounces delivered to LOCAL -owner- (note that trailing hyphen).

[2] Both files have to be present, even though nothing will be delivered to the plain -owner address. This is debatably a
buglet, although the owner address should exist anyway for humans to write to.

The bounce script can now easily determine the bouncing addresses, by parsing the QSBMF message in
local bounces and picking the return address out of the address in remote addresses. The code to do so isn't
very complex. It's wordy in C because of all of the string processing, so Example 14-3 shows it in Perl.

Example 14-3. Sample Perl code to handle bounces

$addr = $ENV{DEFAULT} # set by qmail-local
if ($addr) {
 $addr =~ s/=/\@/; # VERP bounce, pick up address
 while(<>) {
 # ignore bounces that aren't really bounces
 exit 99 if /THIS IS A WARNING MESSAGE ONLY/;
 exit 99 if /^Subject: WARNING: message delayed at/;
 exit 99 if /^Subject: Returned mail: Deferred/;
 }
 dobounce($addr);
} else {
 # locally generated bounce, must be QSBMF
 $/=""; # slurp up a paragraph at a time
 $_=<>; # get rid of the email header.
 $_=<>; # get the QSBMF
 /^Hi. This is the/ || die "This is not a qmail bounce message";
 while(<>) { # handle each address section
 last if /^-/;
 /^<(.*)>/ || die "No recipient address";
 dobounce($1);
 }
}

Once the bounce code has the address, it should remove addresses from the list that bounce too often, for
an appropriate definition of "too often" that has to depend on the nature of the traffic to the list.

This scheme won't handle 100% of all bounce mail, because some MTAs act in hostile ways, sending
bounces other than to the envelope sender, but this gets about 90% of the effect of more comprehensive
bounce handlers with about 5% of the work.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.1.2.3 Bounce handling for mail without .qmail file forwarding

Mailing list software that doesn't keep the list in a .qmail file can also take advantage of qmail's automated
bounce handling by setting the return address appropriately. No matter how mail is injected into qmail,
whether it's via qmail-inject , by SMTP, or by calling qmail-queue directly, any envelope return address that
ends with -@[] receives automatic VERP handling. (It's also possible for list software to generate 100
messages with 100 return addresses for 100 recipients, but that's pointless unless the messages differ in
more than the envelope address.) At the moment the only mailing list software that takes advantage of
qmail's automated VERP are ezmlm[3] and majordomo2 ,[4] but it wouldn't be hard to add it to other list
management software.

[3] Because it was written to work with qmail

[4] Because I wrote the qmail VERP code myself.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

14.2 Using Ezmlm with qmail

The most popular list manager used with qmail is ezmlm-idx, an extended version of Dan Bernstein's
ezmlm. The original ezmlm has a very solid core of mailing list functions: subscription and
unsubscription, message distribution and bounce management, and simple message archiving and
retrieval. Unlike most list managers, ezmlm lets individual users run automatically managed private
lists using subaddresses of their user addresses, as well as the more conventional arrangement
where the system manager sets up a list with an address of its own. Ezmlm-idx adds more complex
features such as digests, moderated lists, remote list management, and distributed lists with sublists.
Nearly all ezmlm users use ezmlm-idx, because the basic ezmlm lacks now-essential abilities such as
letting only list members post to a list. The following discussion all applies to ezmlm-index.

14.2.1 Installing Ezmlm-idx

Ezmlm-idx is a little bit tricky to install, because you have to combine the original ezmlm with the
additions and patches for ezmlm-idx yourself. The easiest place to find the ezmlm and ezmlm-idx
tarballs is http://www.ezmlm.org, where you can click the Download link near the top of the page to
find a nearby archive with ezmlm-0.53.tar.gz and ezmlm-idx-0.40.tar.gz (or a newer version if
available). While you're there, if you plan to run large lists (tens of thousands of addresses), you
might also want to patch qmail, as discussed in Chapter 16, to increase the number of parallel
deliveries above 255.

To install ezmlm-idx once you've installed the two archives:

Unzip and untar ezmlm-0.53.tar.gz into a directory in any convenient place, creating a
subdirectory ezmlm-0.53 containing the ezmlm files.

1.

Unzip and untar ezmlm-idx-0.40.tar.gz in the same directory, creating an adjacent subdirectory
ezmlm-idx-0.40.

2.

Move all of the ezmlm-idx files, which include both new files and patching instructions for
existing files, into the ezmlm directory:

3.

$ mv ezmlm-idx-0.40/* ezmlm-0.53

Go into the ezmlm directory and apply the patches. The patch program should report that all of
the patches succeeded. (If not, either you have an obsolete patch program and need to install
the current GNU version, or the files in the ezmlm-0.53 directory were already modified, so
delete the directory and recreate it from the .gz file.)

4.

$ cd ezmlm-0.53
$ patch <idx.patch
Hmm... Looks like a unified diff to me...
The text leading up to this was:

http://www.ezmlm.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

|--- ezmlm-warn.1 1998/02/17 00:32:45 1.1
+++ ezmlm-warn.1 1998/12/21 04:35:16 1.5
Patching file ezmlm-warn.1 using Plan A...
Hunk #1 succeeded at 3.
Hunk #2 succeeded at 21.
 ... more patch reports ...

|--- ezmlm-weed.1 1999/08/01 16:45:46 1.1
+++ ezmlm-weed.1 1999/12/19 16:53:18 1.3
Patching file ezmlm-weed.1 using Plan A...
Hunk #1 succeeded at 7.
Hunk #2 succeeded at 35.
Hunk #3 succeeded at 113.
done

Look at the conf-* files, and adjust them if needed for your local C compiler and qmail
installation. One file not present in other packages is conf-cron, the location of the crontab
program used to schedule commands for periodic execution. You may also want to change conf-
bin from the default /usr/local/bin/ezmlm to a directory that's in the standard search path, such
as /usr/local/bin, to make it easier to type the commands to your shell. For now you can ignore
conf-sqlcc and conf-sqlld, which are used to build a version of ezmlm-idx that stores its data in
SQL databases. Now type make to build ezmlm and make man to format the manpages.

5.

If you want to test ezmlm-index before installing it, INSTALL.idx has test instructions. Briefly, create
a user account called eztest (or if you already have a test account set up for other purposes, edit the
ezmlm-test script to set EZTEST to the account name), then su to the test account, and in the

ezmlm-index build directory, run ./ezmlm-test:

$./ezmlm-test

testing ezmlm-idx: ezmlm-idx-0.40
Using FQDN host name:

your host name
ezmlm-make (1/2): OK
Using RDBMS support: No.
testing for qmail: >=1.02
ezmlm-reject: OK
ezmlm-[un|is]sub[n]: OK
ezmlm-send (1/2): OK
ezmlm-tstdig: OK
ezmlm-weed: OK
ezmlm-make (2/2): OK
ezmlm-clean (1/2): removed mod queue entry 3 that wasn't due

Assuming it worked, become the super-user and make setup to install all the pieces you just built.

14.2.2 Ezmlm List Names

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Every ezmlm list has a list name, which is an email address. The list's address is the submission
address to which list mail is sent, with subaddresses used for subscription management, fetching
archived articles, and bounce management. If an individual user has set up the list, the list address is
a subaddress of the user's address, and all of the list's .qmail files and list-specific files are in a
subdirectory of the user's home directory. Or the list can have an address of its own in the local
domain, in which case its files are in ~alias because addresses that are neither user addresses nor
subaddresses are treated as subaddresses of alias. Or the list can have an address in a virtual
domain, using qmail's normal virtual domain features.

It's probably easiest overall to put public lists into a virtual domain, so the lists belong to the virtual
domain's owner rather than to ~alias.

14.2.3 Creating an Ezmlm List

The ezmlm-make command creates and manages ezmlm mailing lists. It's not hard to use, but it's
fussy about its arguments, particularly file and directory names that have to be specified as absolute
paths. The information for each ezmlm list is stored in a directory full of files and subdirectories. (The
ezmlm(5) manpage describes the directory's contents, nearly all of which is maintained
automatically.) The directory name need not have any relation to the list name, although it's hard to
think of a good reason to name the directory anything else. The directory is usually in the owning
user's home directory or a subdirectory, although it can be anywhere so long as the user has write
access.

Create a list with a user's subaddress; if the list were called joe-fishing@example.com:

$ # log in as joe
$ ezmlm-make -u ~/fishing ~/.qmail-fishing joe-fishing example.com

The arguments are flags, the full pathname of the directory (abbreviated here with ~ that the shell
expands), the full pathname of the list's .qmail file, the mailbox for the list, and the domain. The --u
flag only permits subscribers to post to the list, and is highly recommended. Other options include --
m to moderate the list and --d to create a digest version. See the ezmlm-make manpage for the

entire huge list of options.

Along with the directory, ezmlm-make creates .qmail-fishing, .qmail-fishing-default, .qmail-fishing-
owner, and .qmail-fishing-return-default, all linked to newly created files in the ~/fishing directory. If
the list is moderated or has a digest version, there will be two more .qmail files for each of those
options.

To create a list with a name in the local domain, become alias and run ezmlm-make:

$ # su to alias
$ ezmlm-make -u ~alias/fishing ~alias/.qmail-fishing fishing example.com

Whoever administers this list has to su to alias to run administrative commands, which can be a
security problem.

14.2.4 Ezmlm Lists in Virtual Domains

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Not surprisingly, ezmlm meshes easily with qmail's virtual domains. If individual users want to run
lists, each user who runs lists can have a virtual domain. Or a system that hosts a lot of lists can set
up a master list management account controlling many lists in multiple domains. (Or both, of
course.) To extend this example, assume that user joe wants to run a set of lists about fish. Create a
virtual subdomain, add appropriate MX records in the DNS, and route the subdomain's mail with an
entry in /var/qmail/control/virtualdomains:

ichthy.myvirt.com:joe

Now Joe can make as many lists as he wants:

$ # log in as joe
$ ezmlm-make -u ~/flounder ~/.qmail-flounder flounder ichthy.myvirt.com
$ ezmlm-make -u ~/tilapia ~/.qmail-tilapia tilapia ichthy.myvirt.com

This makes two lists, flounder@ichthy.myvirt.com and tilapia@ichthy.myvirt.com, both managed by
Joe.

A larger system with multiple lists in multiple domains isn't much harder to set up. Create a user
lists to be the list manager, and then map each virtual domain to a subaddress of the lists user:

fish.myvirt.com:lists-fish
fowl.myvirt.com:lists-fowl
fare.myvirt.com:lists-fare

To make it a little easier to keep track of all of the lists, each domain has a directory to hold its list
directories:

$ # log in or su to lists
$ mkdir fish fowl fare
$ ezmlm-make -u ~/fish/scrod ~/.qmail-fish-scrod scrod fish.myvirt.com
$ ezmlm-make -u ~/fowl/duck ~/.qmail-fowl-duck duck fowl.myvirt.com
$ ezmlm-make -u ~/fare/stew ~/.qmail-fare-stew stew fare.myvirt.com

This creates three lists, one in each domain: scrod@fish.myvirt.com, duck@fowl.myvirt.com, and
stew@fare.myvirt.com. This scheme scales up very well, easily handling a hundred domains each
with a hundred lists. (Whether one host could handle the traffic for 10,000 lists is another question,
although if the per-list traffic is modest and the computer is fast, the performance could be fine.)

One problem is that all of the .qmail files are in the home directory, and each list has four .qmail files,
so that's 40,000 files in one directory, which most Unix systems won't handle well. If the lists are
moderated or digested, it could be as many as 80,000 files. A small change to the virtual domain
setup solves the problem by putting each domain's .qmail files in a separate directory:

fish.myvirt.com:lists-fish/q
fowl.myvirt.com:lists-fowl/q
fare.myvirt.com:lists-fare/q

Now the .qmail file for scrod@fish.myvirt.com, rather than being .qmail-fish-scrod, is .qmail-fish/q-
scrod. Create directories .qmail-fish, .qmail-fowl, and .qmail-fare, each of which contains the .qmail
files for a single domain with names like q-scrod, q-scrod-default, q-scrod-return, and q-scrod-
return-default. Or if you want to put the .qmail files in the same directory as the list directories,
rather than creating separate directories, just symlink the names:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ln -s fish .qmail-fish
ln -s fowl .qmail-fowl
ln -s fare .qmail-fare

I prefer this last approach. With a hundred lists, the domain's directory has a hundred list directories
each with between 400 and 800 .qmail files, depending on list configuration, which is still a very
manageable number.

14.2.5 Sending Mail to and Testing an Ezmlm List

To send mail to an ezmlm list, just send a message to the list's address. If you've used --u and
haven't subscribed yourself, the message should bounce back with an error saying Sorry, only
subscribers may post. Now subscribe to your list by sending mail to the list's subscription address.

If the list is fishing@example.com, the subscription address is fishing-subscribe@example.com.
Ezmlm should respond to your request with a confirmation message including a return address with a
long random string to deter signup forgery. Respond to that message, and you should get a welcome
message confirming that you're on the list. Now send another message to the list itself, which should
show up shortly in your mailbox. You can check that it came through ezmlm by looking at the
message headers that should include headers such as Mailing-List: and List-Post:. Now the list is
ready to go, and anyone can subscribe and post to it. Unsubscribing works just like subscribing, so to
get off the list, write to fishing-unsubscribe@example.com and respond to the confirmation message.

If you created a digest version of the list, the digest acts like a separate list whose name is the list
name with -digest added, such as fishing-digest@example.com. Subscriptions work the same way,
fishing-digest-subscribe@example.com and fishing-digest-unsubscribe@example.com. Subscribers to
either version of the list post messages to fishing@example.com. The list of subscribers to the main
list and the digest are kept separately so it's possible and occasionally useful to subscribe to both the
regular list and the digest.

If you made the list moderated, you have to add the moderators' addresses using ezmlm-sub before
anyone can post to the list. (See the next section.) Whenever someone posts a message to the list,
the message is forwarded to all of the moderators in a message with instructions containing two
return addresses, one to accept the message and one to reject it.

14.2.6 Configuring and Maintaining an Ezmlm List

Ezmlm comes with a long list of programs, some intended to be run from qmail when mail arrives,
some to be run by list managers, and in a few cases, either way. To add addresses to a list, use
ezmlm-sub:

$ ezmlm-sub ~/fishing mary@example.com fred@myvirt.com

For lists that allow posts only by subscribers, the subdirectory allow contains additional addresses
that are allowed to post to the list, typically variant versions of subscriber addresses:

$ ezmlm-sub ~/fishing/allow mary.nade@example.com

If a list has a digest version, the digest subscribers are stored in the subdirectory digest:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

$ ezmlm-sub ~/fishing/digest edgar@example.org

If a list is moderated, the moderators are stored in the subdirectory mod:

$ ezmlm-sub ~/fishing/mod jane@myvirt.com

(The list of moderators is unrelated to the list of subscribers. If a moderator should be subscribed to
the list, add the address separately to the list and the moderator list.)

To take people off a list, use ezmlm-unsub:

$ ezmlm-unsub ~/fishing mary@example.com # leave the list
$ ezmlm-unsub ~/fishing/allow mary.nade@example.com # alternate address, too
$ ezmlm-unsub ~/fishing/digest edgar@example.org # leave the digest
$ ezmlm-unsub ~/fishing/mod jane@myvirt.com # stop moderating

The boilerplate messages used by ezmlm for subscription request responses, bounce probes, and so
forth are kept in files in the text subdirectory of the list directory. The standard messages aren't bad,
but to customize them for a particular list, just edit the text files. The files contain codes like <#l#>

for the list name that are expanded each time one of the boilerplate messages is sent.

Addresses that bounce are automatically tracked. If an address bounces consistently, ezmlm sends a
final probe message and, if the probe bounces, removes the address from the list. In most cases, the
bounce management works completely automatically. The only exception is for remote mail systems
that mangle the VERP envelope return address so that ezmlm cannot figure out what address is
bouncing.

14.2.7 Other Ezmlm Tricks and Features

Ezmlm has provisions for list administration by email for managers without shell access; for message
archives, including both mail-based and web-based indexes and retrieval; and a wide variety of other
list options, such as rejecting some or all MIME attachments and adding boilerplate text to messages
or digests. Ezmlm, like qmail, is built from a collection of small programs run from shell scripts, so
even if a particular feature isn't present, it's often possible to adapt the existing programs to do what
you want.

For further information, consult the included documentation, which includes manpages for all 30
ezmlm programs, as well as http://www.ezmlm.org where there is both a FAQ and a 30-page
printable manual.

[Team LiB]

http://www.ezmlm.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

14.3 Using Other List Managers with Qmail

Although ezmlm is the list manager most often used with qmail, any list manager that's written to
work with sendmail can easily be adapted to work with qmail. The most popular freeware packages
are GNU Mailman, which has qmail config advice in README.QMAIL, and the Majordomo2 list
manager, which has qmail support for lists in virtual domains built-in.[5]

[5] Majordomo1 is obsolete, and anyone thinking of using it should use majordomo2 instead. The commercial
packages such as LISTSERV and Lyris include their own SMTP engine so they can run in parallel with qmail on a
different virtual IP address, but they don't connect to qmail, or any other local MTA, directly.

14.3.1 Incoming Mail to List Managers

Mail sent to a list manager includes both the messages for the lists and the administrative mail to - -
request addresses and the like. Systems with a small number of lists usually put sendmail alias
entries for all of the entries into /etc/aliases. That also works with qmail, but can get unwieldy as the
number of lists grows and if there are collisions between list names and usernames. Systems with
lots of lists usually put the lists into virtual domains. Sendmail handles virtual domains differently
from qmail, so the setup for qmail has to be a little different. List manager software is usually set-uid
because it would difficult to control the UID for programs run from sendmail's /etc/aliases. With
qmail, the virtual domain(s) for the list manager should belong to the list manager user, removing
the need for set-uid except perhaps on CGI scripts for web interfaces. The individual list and
administrative addresses can each be a .qmail file, or it might be easier to put them all in one file and
use fastforward as described in Chapter 12.

14.3.2 Outgoing Mail from List Managers

List managers can hand mail to the MTA in two ways, by calling sendmail or SMTP. Using sendmail
makes sense for administrative mail sent to a single recipient. It's a problem for list mail because the
operating systems set a maximum total argument size in a call to sendmail or any other program,
typically 64 K characters, which would limit lists to under 4,000 names. To get around this limit, the
list manager can break the list up into sections and call sendmail multiple times or, more often, open
an SMTP session to localhost, which permits an unlimited number of RCPT TO recipients. Either of
these techniques works with qmail, although of course calling qmail-queue directly works better if a
list manager has code to support it.

Some list managers can sort recipient addresses by domain and pass all the addresses in a domain
together. This speeds up sendmail, which does domain or MX sorting internally, but doesn't help
qmail. In fact, it can lead to somewhat unfortunate behavior; if qmail processes a message with a
hundred recipients all in the same domain, it will open a large number of SMTP connections to that
domain's mail server, which system managers misinterpret as an attempt to overload their system. If
you can prevent your list manager from sorting its addresses by domain, do so.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

14.4 Sending Bulk Mail That's Not All the Same

Qmail does a magnificent job of sending identical copies of a single message to thousands of
recipients.[6] It does a considerably less magnificent job of sending thousands of messages all of
which are different each to a single recipient. The overhead of passing a message to qmail-queue,
storing it in the queue/todo directory, then moving it into the delivery queue, is substantial. When
large numbers of messages arrive quickly, qmail-send can fall behind to the point where it's so busy
dealing with injected mail it doesn't schedule deliveries as fast as it should, the so-called "silly qmail
syndrome." The big-todo patch discussed in Chapter 16 helps somewhat, but the fastest way to
deliver lots of unique messages is to avoid asking qmail to deal with them in the first place. To test
this theory out, I wrote a small Perl module Qspam, available as http://www.iecc.com/Qspam.pm, to
send lots of unique messages fast.

[6] Identical except for the VERP envelope, of course.

The program sending the mail starts by calling qspam_start(N, &donefunc), where N is the number

of deliveries to handle at once (analogous to concurrencyremote) followed by a callback routine that's
called each time a delivery attempt finishes. To send a message, the program calls
qspam_send("to", "from", mfile, code), where to and from are the envelope addresses, mfile is

the name of a file containing the entire message to send, headers and body, and code is an optional
code string that identifies the message. When the delivery is done, it calls the callback as
donefunc(mfile, code, resultflag, resultmsg) where mfile and code are from qspam_send,
and resultflag is "y" if the message was delivered, "n" if the delivery failed (in which case
resultmsg is the error message), or a null string if the delivery was deferred until later. At the end of

the program, qspam_flush() waits for all of the delivery attempts to complete.

How does this all work? Qspam_send forks and calls qmail-remote to deliver the message. The
module keeps a table of all of the deliveries in progress and won't start more than the delivery limit
at once. When an instance of qmail-remote completes, if it either delivered the mail or got a
permanent error, the delivery is done. If there was a temporary error, Qspam forks again to call
qmail-queue to use the standard qmail delivery scheme, which always succeeds (from Qspam's point
of view). Because qmail-remote can't deliver local mail, qspam_send checks the delivery address of
each message against locals and virtualdomains to see if an address is local, and if so calls qmail-
queue immediately. In practice, most remote delivery attempts succeed or fail on the first try, so
only a small fraction of the messages need to be queued. Some mail is accepted by the remote MTA
only to be bounced back later, and qmail returns its usual bounce messages if a queued delivery
eventually fails, so the application needs to use envelope return addresses that can be handled by a
companion bounce processor, just like list mail sent directly through qmail.

Although Qspam wasn't written for maximum efficiency (it opens and closes temporary files rather
than using pipes), it's pretty fast. On a modestly sized PC sending lightly customized mail to a list of
several thousand users selected from a MySQL database, it has no trouble keeping 100 simultaneous
deliveries going at once. The entire application is written in Perl, but it spends nearly all of its time
waiting for qmail-remote processes to finish so there's little reason to rewrite it to be faster. This
approach, try one delivery attempt before queueing, has proven to be a simple but effective way to
handle customized list mail.

http://www.iecc.com/Qspam.pm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 15. The Users Database
In Chapter 10, we saw that local deliveries all look up the mailbox in qmail's users database to
determine both where to deliver a message, and what user and group ID and home directory to use
when making the delivery. Although the most common setup of users is to deliver to the users in
/etc/passwd, the users database is considerably more flexible than a mere mirror of the password
file.

The users database maps each local address to a set of user data including:

Username

Numeric user ID

Numeric group ID

Home directory

Character to separate parts of a subaddress, usually a dash

Extension, used to find an appropriate qmail file

The qmail-lspawn program changes to the user and group ID and home directory before starting a
delivery, then uses the separator character and extension to locate a .qmail file to control the
delivery, as covered in Chapter 10.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

15.1 If There's No Users Database

If you don't create a users database, qmail calls qmail-getpw, which implements a default mapping
from login users to qmail users for each local delivery. It takes the local part, passed as its argument,
and looks that up using the standard getpwnam() routine. If the user exists and meets some safety
criteria (discussed in a moment), it returns user information for the user, uid, gid, and home
directory from the password file, and null dash and extension. If the name is of the form user-
extension and the username exists, it returns the user information with the dash being a literal dash
and the extension the part of the local part after the dash. If the user doesn't exist, it falls back to
the default user alias with the dash being a dash and the extension being the entire local part, so in
that case the delivery is controlled by ~alias/.qmail- localpart.[1]

[1] You can replace the dash with another character by adjusting the contents of conf-break at the time you build
qmail.

To avoid security problems, qmail-getpw only returns user information if a user account has a
nonzero uid (isn't the super-user), and the account's home directory exists, is readable, and belongs
to the user. It also ignores any account with capital letters in the name or with a name more than 32
characters long.

Do You Need a Users Database?

Experienced qmail users have widely varying opinions about whether to create a users
database. I've always used one, but my system has only a handful of shell users and
(mostly for historical reasons) many mail-only users with addresses in the same domain
as the shell users. A more typical system either has a lot of shell users, nearly all of whom
receive mail, or runs a system where all the addresses are in virtual domains controlled by
a few dedicated user IDs. If the list of users in your passwd file is nearly the same as the
list of addresses that should get mail, you may be happier with no users database so users
can get mail as soon as they're added to the passwd file.

A setup with a users database is somewhat faster, because a lookup in the users CDB is
faster than running qmail-getpw, and marginally more secure, because qmail-getpw
depends on the system getpwnam() library routine, which can be complex and fragile.
But unless you're trying to squeeze every bit of speed out of a mail server, the more
compelling argument is what you find more convenient.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

15.2 Making the Users File

The format of /var/qmail/users/assign is fairly simple. It's a sequence of lines with two slightly
different formats, one for an exact match and one for wildcards. An exact match line starts with an
equals sign:

=local:user:uid:gid:homedir:dash:ext:

This means that mail to address local is delivered to user with user and group IDs uid and gid and
home directory homedir, using a qmail file named .qmail dashext. (Usually dash and ext are null.)

A wildcard line starts with a plus sign:

+loc:user:uid:gid:homedir:dash:pre:

In this case, any address that starts with loc is handled by the given user, with pre inserted in front
of the rest of the address to determine the name of the qmail file. (In this case dash is usually a
dash, and pre is usually null.)

Here's a snippet from a real assign file:

+:alias:121:105:/var/qmail/alias:-::
=carol:carol:108:102:/usr/home/carol:::
+carol-:carol:108:102:/usr/home/carol:-::

In this case, mail to carol is handled by the second line, and delivered using /usr/home/carol/.qmail,
while mail to carol-ina is handled by the third line and delivered using /usr/home/carol/.qmail-ina.
Any address not starting with carol is handled by the first catchall line so that mail to, say, fred is
delivered using /var/qmail/alias/.qmail-fred. Note the hyphen in the third line in carol-, so that line
matches any of carol's subaddresses, but not plain carol.

Usually the list of users in assign is more or less the same as the list in /etc/passwd, so qmail
provides the qmail-pw2u utility to create your assign file. I use this Makefile to control the process:

cdb: assign
 ../bin/qmail-newu

assign: /etc/passwd append exclude
 cp assign assign.old
 ../bin/qmail-pw2u < /etc/passwd > assign

When creating assign, qmail-pw2u uses approximately the same rules as qmail-getpw, ignoring any
users that have a zero uid, don't own their home directory, or contain capital letters. For each user,
the output contains two lines, with the username, user and group IDs, and home directory from the
password file, as in the "carol" example.

Several command-line flags to qmail-pw2u modify the default behavior and are documented in the
manpage, but I've never found the flags very useful. The only ones I've ever used are -h, fail if a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

user's home directory doesn't exist, and -c, change the separator character from a hyphen to

something else, usually a plus sign for compatibility with the subaddressing in sendmail and postfix.
What is useful is a set of auxiliary files in /var/qmail/users that modify the generated assign file:

exclude

A list of users to omit, either because they shouldn't get mail or because their mail setup isn't
the default. It should include accounts such as bin, daemon, and uucp that don't have human
readers to read the mail. (You can and should create qmail files in ~alias to forward mail sent
to any of those addresses that are likely to get interesting mail, of course.)

include

A list of users to include. If this file exists, only users in the file have lines generated in the
output.

append

The contents of this file are literally appended to the output. This is usually a combination of
mail-only users not in the password file and modified info for specially handled users, e.g.,
users that don't use subaddresses.

mailnames

Mail aliases. A line of the form jim:jim:james:jimmy makes the second and subsequent fields
aliases for the first, and creates a pair of output lines for each alias. Note that if the username
doesn't appear as one of the aliases, there will be no entries for the user itself. Most system
managers prefer to use .qmail files in ~alias or entries in /etc/aliases instead.

subusers

Users implemented as subaddresses of other users. A line of the form jim:fred:jf: creates a
pair of lines so that mail to fred is treated as mail to jim-jf and mail to fred-ext as mail to jim-
jf-ext. Except for the simplest setups, again I prefer qmail files in ~alias or entries in
/etc/aliases.

Assuming you use the Makefile shown previously, you just need to run make in /var/qmail/users
every time to add or delete a user to or from the password file. Qmail rechecks cdb for every local
delivery so there's no need to restart qmail.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

15.3 How Qmail Uses the Users Database

Once you've created the users database, qmail checks it for each local delivery. First it checks for an
exact match of the mailbox as a nonwildcard address. If that doesn't work, it tries for the longest
match against a wildcard, starting with the full mailbox and shrinking a character at a time until
there's a match. (To speed up this process, qmail-newu makes a list of the final characters used by
all the wildcard entries and stores it in the CDB file. When looking up a mailbox, qmail-lspawn only
checks substrings where the last character of the substring is one of those final characters.) The
wildcard match always succeeds, either against one of the subuser entries, or else against the default
wildcard entry created by qmail-newu, which looks like this:

+:alias:uid:gid:/var/qmail/alias:-::

Once qmail-lspawn has the user data, either from the database or from qmail-getpw, it changes to
the user ID, group ID, and home directory, then runs qmail-local to read the .qmail file and perform
the delivery.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

15.4 Typical Users Setup

The simplest arrangement makes a qmail user for all of the live users in the passwd file. In that case,
in /var/qmail/users create an exclude file that lists all of the passwd entries that don't correspond to
people, such as root, bin, daemon, uucp, ftp, and lpd. Then create a Makefile as described earlier in
this chapter, and as the super-user type make. This creates a CDB with an entry for all of the un-
excluded users.

Having excluded root, bin, and so forth from your users file, be sure to arrange for mail sent to those
addresses to be delivered somewhere, because daemons tend to send reports to those addresses.
Either create individual qmail files like ~alias/.qmail-root or, if you use fastforward, put the
instructions in /etc/aliases.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

15.5 Adding Entries for Special Purposes

If your system acts as a mail server for more than the people with shell accounts, you'll probably
want to add some entries to the users database.

15.5.1 Adding a Few Mail-Only Accounts

In many cases, a host serves a mix of shell and mail-only accounts. If the number of mail-only
accounts is small, it's not worth installing an entire virtual domain POP system. To handle my mail-
only users, I created a user maildrop that owns all of the Maildirs for the mail-only users. Each user
has a Maildir, so that if fred is a mail-only user, his Maildir is ~maildrop/fred/ and his mail is delivered
via ~maildrop/.qmail-fred, which contains either just the name of the Maildir, ./fred/, or more likely a
call to procmail to filter out viruses and spam before delivery. Fred is a subuser of maildrop, so his
address would be maildrop-fred rather than fred. To make his plain address work, you can forward
his mail via a qmail file ~alias/.qmail-fred or an entry in /etc/aliases forwarding to maildrop-fred. Or
what I do is to use the subusers file, with entries like this:

fred:maildrop:fred:

(Also modify the Makefile to add subusers to the end of the line starting with assign:, so that it

rebuilds the users database if the subusers file changes.) This has exactly the desired result, to treat
mail to fred as though it were addressed to maildrop-fred. It also routes subaddressed mail, so if you
want Fred's subaddresses to work, you should create ~maildrop/.qmail-fred-default, which in a
simple case can be a link to .qmail-fred to deliver all of fred's subaddressed mail the same as his
regular mail.

You must also arrange for the POP server to know about the mail-only users. See Chapter 13 for
advice on doing so.

15.5.2 Preparing for the POP Toaster

If you have a more complicated mail setup, you may want to add a few custom lines to the users
database by putting them in append. If you run a POP toaster, a mail server for POP users with
mailboxes in virtual domains, and the user mailboxes belong to user pop, but you want to put the
mailboxes in /var/popmail rather than in ~pop, just add a line like this to append:

+popmail-:popmail:111:222:/var/popmail:-::

(Use the user and group IDs for pop rather than 111 and 222, of course.) Once you've rebuilt the
users database, any mail addressed to popmail-something will be delivered via /var/popmail/.qmail-
something or /var/popmail/.qmail-default, running as user pop. I find this a convenient way to work,
so I can put files of software and notes to myself in pop's home directory, and keep the mailboxes on
a separate large filesystem.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 16. Logging, Analysis, and Tuning
Although qmail performs well in its standard configuration, it's often possible to tune it to work
better, particularly for very large or very small installations.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

16.1 What Qmail Logs

Qmail logs quite a lot of information about what it's doing, although it can be daunting to collect it all
together. If you're using daemontools, each daemon has its own set of logs, kept in a rotating set of
log files maintained by multilog, usually with a TAI64N timestamp (see TAI64 Time Stamps). The
qmail-send process logs each message queued and each delivery attempt. The qmail-smtpd process
logs each incoming SMTP connection, although it won't describe what happened during the
connection. tcpserver logs every connection denied due to entries in the connection rules file, and
rblsmtpd logs every connection it blocked due to a DNSBL entry. If you use QMAILQUEUE to run
other programs at SMTP time, anything they send to stderr is logged, and if you've added other
patches to qmail-smtpd, anything they write to stderr is logged, too.

A system can be set up to do logs analysis on the fly, every time multilog switches to a new log file or
once a day in a batch. It often makes sense to combine the two, doing some work at switching time
and the rest daily. Although it's usually more convenient to keep the logs for each application
separate, it's not hard to create combined logs for analysis or just to keep around in case someone
needs to look at them later. If a set of logs from different programs all have TAI64N timestamps,
merge them using the standard sort program sort -m. TAI64N timestamps are fixed-length hex
strings, so merging them in alphanumeric order is the same as date order.[1] Once they're merged,
tai64local can make the timestamps readable by people. So to merge a set of log files, all of which
have the standard multilog TAI64N names that start with an at-sign:

[1] Well, unless your system uses EBCDIC rather than ASCII. Unless you're running an obscure mainframe Unix
version from the 1970s, it doesn't, so we won't worry about it.

sort -m \@* | tai64nlocal > merged-log

TAI64 Time Stamps

TAI stands for International Atomic Time, an extremely precise standard maintained by
the International Bureau of Weights and Measures (BIPM). The BIPM is in France, so the
acronyms are for Temps Atomique Inernational and Bureau International des Poids et
Measures. Dan Bernstein noted that Unix has no generally accepted way to store times at
a granularity of less than a second, and the standard 32-bit timestamps can't represent
times before 1970 or after 2038, so he devised a new set of TAI-based timestamp
conventions for his logs.

A TAI64 label is a 16-digit hex number that represents a 64-bit number of seconds.
4000000000000000 is the beginning of 1970, the same time as a zero Unix timestamp.
Smaller or larger numbers represent earlier or later times. A TAI64N label is a timestamp
in nanoseconds represented as a 12-digit hex number, which is a TAI64N label followed by
another four-digit hex number representing the number of nanoseconds within the
second. TAI64N labels are conventionally preceded by an @ sign, like
@400000003ff4ccf806d0f4fc. The multilog program can prefix TAI64N timestamps to each
line of the information that it logs, and tai64nlocal translates those timestamps to
readable dates and times.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See http://cr.yp.to/libtai/tai64.html for more detail.

[Team LiB]

http://cr.yp.to/libtai/tai64.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

16.2 Collecting and Analyzing Qmail Logs with
Qmailanalog

The qmailanalog package extracts statistics from the logs created by qmail-send. It consists of
matchup, which preprocesses the qmail logs; some scripts such as zoverall and zddist, which collect
and print statistics; a second set of scripts, such as xsender, for picking out subsets of messages to
analyze; and a few other auxiliary programs and scripts. The only C programs are matchup and
columnt, an auxiliary program that neatens up the columns in the reports. Everything else in the
package is short awk or shell scripts that are not hard to edit.

Using qmailanalog is more painful than it should be because it expects its input log files to use an
older decimal timestamp format used by the now obsolete splogger and accustamp rather than the
TAI64N format used by multilog. I have a patch to matchup to translate TAI64N to the older format
as the logs are read at http://www.iecc.com/qmailanalog-date-patch. The rest of the discussion here
assumes that matchup has that patch. To build the qmailanalog package, download the current
version (0.70 as of this writing) from http://cr.yp.to, download and apply the patch, do the usual
make, then become super-user and make setup check. Normally qmailanalog installs itself in
/usr/local/qmailanalog. To change the installation directory, edit conf-home. The setup instructions
advise against installing the programs in /usr/local/bin because some of the names may collide with
other unrelated programs.

To use qmailanalog, first you pass the raw logs through matchup to create a condensed file with one
line per message and one line per delivery. Then the analysis scripts read the condensed files and
produce reports. matchup writes both the condensed file and a second file listing messages that
haven't been completely processed. The next time matchup runs, it needs that second file to pick up
where it left off. The condensed file is written to standard output, and the second file to file descriptor
5.

16.2.1 Log Analysis at Rotation Time

The condensed files produced by matchup are about half the size of the raw qmail logs and matchup
is fairly fast, so it makes sense to call matchup from multilog to create the condensed logs each time
it switches log files, as shown in Example 16-1.

Example 16-1. Qmail log run with analysis

 1. #!/bin/sh
 2. exec setuidgid qmaill \
 3. multilog t s4000000 \
 4. !'cat /dev/fd/4 - | /usr/local/qmailanalog/bin/matchup' \
 5. ./main

Line 4 in this modified run file creates the condensed logs, using the short quoted shell script as the
log processor. Because matchup was written before multilog, their file descriptor conventions almost,

http://www.iecc.com/qmailanalog-date-patch
http://cr.yp.to
http://lib.ommolketab.ir
http://lib.ommolketab.ir

but not quite, agree with each other. When multilog runs the log processor, it opens the existing log
file as standard input and as a file of saved data from the previous run on file descriptor 4. The
standard output is saved as the old log file, named with the current TAI64N timestamp, and any
output on file descriptor 5 is stored away for the next time the processor runs. Although matchup
does write information about partially processed messages to file descriptor 5, the next run reads
that information from the previous run from the standard input along with the next log file. Hence
use cat /dev/fd/4 - to read from the two file decriptors and pipe it all to matchup. The result of all of
this is a set of condensed log files in /service/qmail-send/log/main.

16.2.2 Log Analysis Once a Day

It's equally possible to do the log analysis once a day from cron or /etc/daily. If the original logs have
to be saved, you should do all of the processing at once. In this case, be sure that the file rotation
options for multilog make the log files it creates large enough and that it saves enough of them to
keep a full day's log files. I use "s 4000000" so that each log file is up to four megabytes or a total of
40 MB before multilog starts overwriting them.

Example 16-2, to be run once a day, saves the logs as qmail-send.yyyymmdd and a preprocessed
version as qmail-summary.yyyymmdd.

Example 16-2. Daily log save and analyze

 1. #!/bin/sh
 2. cd /var/log # or wherever logs are archived
 3. a=$(date +'%Y%m%d') # yyyymmdd
 4. svc -a /service/qmail-send/log # force log rotation
 5. sleep 5 # give rotation a moment to happen
 6. cat /service/qmail-send/log/main/@* > qmail-send.$a
 7. cat qmail-send.yesterday qmail-send.$a | \
 8. /usr/local/qmailanalog/bin/matchup > qmail-summary.$a 5>qmail-send.tomorrow
 9. mv qmail-send.tomorrow qmail-send.yesterday
10. gzip qmail-send.$a qmail-summary.$a # log files are big, save space

The file of incompletely processed deliveries is saved to qmail-send.tomorrow, then it is renamed to
qmail-send.yesterday for the next run. This creates a new pair of log files every day, so you need
some provision for deleting old logs now, e.g., to delete logs over a month old:

$ find . \(-name qmail-send.[0-9]* -name qmail-summary.[0-9]* \) \
 -mtime +30 -exec rm { } \;

16.2.3 Getting Statistics with Qmailanalog

Once the summary files are created, you can run the various summary scripts, all of which have
names starting with z, to get mail system statistics. All of the scripts read the summary file from
their standard input:

Summaries created at rotation time log directory
$ cat /service/qmail-send/log/main/@* |
 /usr/local/qmailanalog/bin/zoverall

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Daily summaries in /var/log

$ gzcat /var/log/qmail-summary.yyyymmdd.gz |
 /usr/local/qmailanalog/bin/zoverall

The most useful report is zoverall, which as its name suggests produces overall statistics. Example
16-3 is from my main mail server, which hosts some mailing lists, a few dozen personal mailboxes,
and the abuse.net message forwarding service.

Example 16-3. A zoverall report

Basic statistics

qtime is the time spent by a message in the queue.

ddelay is the latency for a successful delivery to one recipient---the
end of successful delivery, minus the time when the message was queued.

xdelay is the latency for a delivery attempt---the time when the attempt
finished, minus the time when it started. The average concurrency is the
total xdelay for all deliveries divided by the time span; this is a good
measure of how busy the mailer is.

Completed messages: 56013
Recipients for completed messages: 65158
Total delivery attempts for completed messages: 66940
Average delivery attempts per completed message: 1.19508
Bytes in completed messages: 309400658
Bytes weighted by success: 349381796
Average message qtime (s): 31.3781

Total delivery attempts: 75035
 success: 66080
 failure: 974
 deferral: 7981
Total ddelay (s): 2353455.027418
Average ddelay per success (s): 35.615240
Total xdelay (s): 437123.420922
Average xdelay per delivery attempt (s): 5.825594
Time span (days): 0.631722
Average concurrency: 8.00874

In this case, the summary file covers about 15 hours (0.631 days), long enough to be interesting but
perhaps not typical of a full 24-hour period. The system is moderately busy with an average of eight
messages in transit at once, and the average message dealt with in 31 seconds and the average
delivery taking about 35 seconds. (This is unusually slow, probably because abuse.net sends
messages to very overloaded recipient hosts via long international links.) This system is configured to
permit 110 remote deliveries at a time, but the average concurrency is only 8, so increasing the
maximum probably wouldn't make much difference.

Another useful summary is zsuids, summary by numeric sender ID, as shown in Example 16-4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 16-4. Log summary by sender user IDs

One line per sender uid. Information on each line:
* mess is the number of messages sent by this uid.
* bytes is the number of bytes sent by this uid.
* sbytes is the number of bytes successfully received from this uid.
* rbytes is the number of bytes from this uid, weighted by recipient.
* recips is the number of recipients (success plus failure).
* tries is the number of delivery attempts (success, failure, deferral).
* xdelay is the total xdelay incurred by this uid.

 mess bytes sbytes rbytes recips tries xdelay uid
 21 27319 27319 27319 21 21 3.736360 0
 13 25340 25340 25340 13 13 9.240442 9
 1608 6597028 30396182 31342313 6143 7233 129119.309333 85
27052 156054190 167640496 168084828 30104 30392 53368.913426 120
 113 1552110 1552110 1552110 113 119 120.743584 121
 838 7325053 7256425 7325053 838 900 2406.317767 124
 4 18179 18179 18179 4 4 64.632176 130
 233 1113023 1208518 1210043 299 308 3266.386563 143
 1955 6336818 8803216 8968141 2714 2758 20493.535539 162
 1028 6983187 6985508 7248128 1120 1155 4744.157863 166
23060 123111117 125207318 129722143 23698 23945 87628.298410 170
 24 224755 224755 224755 24 24 11.962693 172
 64 32539 36430 36430 67 68 327.511405 32767

In this system, user 85 is majordomo, so most of its messages are to mailing lists. (Note that it sent
1608 messages to 6143 recipients, an average of almost four recipients per message, which is very
high.) User 120 is qmaild, which is considered responsible for all mail arriving via SMTP. User 162 is
the spam trap, sending out many semiautomatic abuse reports; user 166 is the POP toaster for the
individual mail users; and 170 is abuse.net, forwarding third-party messages. It's easy to see that
abuse.net accounts for the largest part of the mail traffic, followed by majordomo, the POP toaster,
and the spam trap with about equal traffic.

Another level of filters makes it possible to look at just mail to or from a particular address. Use
xsender to pick out just mail sent from a particular address:

assume /usr/local/qmailanalog/bin is in $PATH
$ cat qmail-summary | xsender fred@example.com | zoverall

Use xrecipient to pick out mail just to a particular address. The summary file prefixes each address
by local. or remote., depending on whether deliveries are local or remote, and virtual addresses are
expanded out to the full local address:

assume /usr/local/qmailanalog/bin is in $PATH
local user
$ cat qmail-summary | xrecipient local.fred@example.com | zoverall
virtual user
$ cat qmail-summary | xrecipient local.myvirt-fred@myvirt.com | zoverall
remote user
$ cat qmail-summary | xrecipient remote.fred@domain.com | zoverall

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There's also xqp to pick out particular message numbers, which I don't find very useful.

The full set of analysis programs includes:

zddist

Reports a percentage distribution showing how long mail deliveries take. If 90% of deliveries
aren't done within a few seconds, there's probably a network problem.

zdeferrals

Reports delivery deferrals with reasons and can be useful if there are particularly recalcitrant
remote hosts.

zfailures

Reports delivery failures with reasons, if you want to see all the bounce messages.

zoverall

Overall summary.

zrecipients

Summarizes all deliveries by recipient, with message counts and sizes.

zrhosts

Summarizes remote deliveries by recipient hosts, with counts and sizes.

zrxdelay

Summarizes deliveries by recipients, sorted by how fast mail to them is delivered.

zsenders

Summarizes messages by envelope sender, with counts and sizes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

zsendmail

A log report that is similar to sendmail's log report, for people who like that sort of thing.

zsuccesses

All successful deliveries, with the log messages and delivery delays.

zsuids

Summarize by numeric user ID.

It can be enlightening to run these programs from time to time to see if there are senders or
recipients with inexplicably large amounts of mail, remote hosts that consistently reject large
amounts of mail, or other anomalies.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

16.3 Analyzing Other Logs

There's nothing like qmailanalog for the qmail-smtpd logs, mostly because the useful information in
them varies so much depending on what auxiliary programs and what patches are in use. I've written
some Perl scripts that read through the logs and count the rejection messages for each DNSBL in
use, but they rarely reveal anything interesting beyond the dismayingly large amount of spam that's
showing up at my mail servers.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

16.4 Tuning Qmail

More often than not, qmail doesn't need any tuning. It's designed to work well on typical Unix
systems. For local deliveries, qmail is usually disk-bound, because it syncs files and directories to disk
to avoid losing mail if the system crashes. Although it's possible on some systems to set filesystem
parameters to subvert the syncs, that's usually a poor economy. If you want your local mail delivered
faster, get a faster disk.[2] If your system has a lot of unusually slow local delivery programs, or it
runs really slow spam filters (Spamassassin can fall into that category), it's possible that local
deliveries could be CPU-bound. The easiest way to find that out is with a utility like top that shows
what's running. Much of the slowness in slow spam filters is due to DNSBL lookups, which are in fact
network bound. Modern CPUs are so fast that it's a rare mail system that is even occasionally
compute-bound.

[2] If you haven't priced 15K RPM SCSI disks or 10K RPM ATA disks on eBay, you may be amazed how cheap
they are. Be sure to get a drive cooler, too.

Remote deliveries are invariably network-bound. If the goal is to deliver mail as fast as possible,
crank the concurrency up as high as possible. Looking at the zoverview results, it completed
deliveries of 309400658 to 65158 recipients, for an average of a little under 5 Kbps per message. The
average xdelay was 5.8 seconds, so each delivery was sending under 1 Kbps. This system happens to
be on a T1 line, which can transmit 192 Kbps (that's 1.5 megabits divided by 8 bits per byte). So if
each delivery sends 1 Kbps and the channel is 192 Kbps, it takes about 192 simultaneous deliveries
to fill up the T1. Note that the ddelay, the time from when a message enters the queue to when a
delivery finishes, is 35 seconds, while the average xdelay, the time from the beginning to end of a
delivery, is only 5 seconds, which means messages wait 30 seconds to get a delivery slot. The mail
traffic on this system is very bursty; a message comes in for a majordomo list and is queued for
delivery to the 900 members of the list. The remote concurrency is 110, so the 110 slots immediately
fill up and the other 790 deliveries have to wait for slots to be available as deliveries finish. Increasing
the concurrency speeds overall deliveries. (I don't do this, because there are web and other servers
on the network, and I don't want to squeeze them out every time there's a mailing list message.)

These numbers are fairly typical; if the channel ran at an Ethernet-like 10 megabits, the useful
concurrency would be over 1000. Of course, most networks aren't entirely dedicated to email, but
these sorts of estimates remain useful for setting up a system to use as much email bandwidth as the
system manager wants to use.

16.4.1 Tuning Small Servers

Usually the only tuning needed on a small server is to adjust concurrencylocal and
concurrencyremote. On very small systems with slow deliveries (Spamassassin run from procmail), it
may be useful to decrease concurrencylocal to limit the hit on system performance from a lot of
incoming mail, at the cost of slower deliveries. Set concurrencyremote using 1 K per second per
delivery so that, for example, a DSL connection with 256 Kbits/sec of outbound bandwidth is 64
Kbytes/sec, so it would make sense to set concurrencyremote to 64 to use all of the bandwidth or to
32 to use up to half of it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

16.4.2 Tuning Large Servers

Large servers can be tuned and patched to increase the concurrency past what's normally possible.
All of the necessary patches are at www.qmail.org in the section "Patches for high-volume servers."

For systems with a very large number of injected messages, the big-todo patch improves
performance. In qmail's mail queue, most of the queues are divided into 23 subdirectories, with the
files distributed pseudo-randomly into the 23 directories, but incoming mail goes into a single todo
directory. If mail is injected at a high enough rate, the todo directory becomes inefficiently large and
qmail-send falls behind. The big-todo patch by Russ Nelson and Charles Cazabon splits todo and the
parallel intd directory into 23 subdirectories. The patch changes the format of todo but not the rest of
the queue, so to install it without losing mail, you must ensure that nothing's queued in todo. After
applying big-todo and rebuilding, use svc -td to stop qmail-smtpd and stop any local daemons likely
to inject mail, then use svc -td to stop qmail-send, then make setup check to install the patched
qmail, and use svc -u to restart qmail-send and qmail-smtpd.

An alternative, more complex, big-todo patch by André Oppermann is available at
http://www.nrg4u.com/. (Look for the "silly qmail syndrome" patch.) It was written for use with
qmail-ldap, described in Chapter 13, but it works equally well with regular qmail. It splits the qmail-
send daemon into two separate processes, qmail-todo, which processes newly queued messages, and
qmail-send, which schedules local and remote deliveries. This patch doesn't change the queue file
format, so it can be installed merely by building the patched version, stopping qmail, make setup
check to install the new version, and restart qmail. Normally I prefer simpler patches to more
complex ones, but in this case, the Oppermann patch does a better job of dealing with a lot of
incoming mail, so it's a better choice for systems busy enough that todo is an issue.

Normally qmail is built with a maximum delivery concurrency of 120 local deliveries and 120 remote
deliveries. For large servers on fast networks, that's nowhere near enough remote deliveries. To raise
the concurrency limit to 255, edit conf-spawn and change the 120 to 255, and recompile. This doesn't
change the queue format, so to install it, stop qmail-send, install, and restart qmail-send. You don't
need to stop qmail-smtpd.

If you need concurrency of more than 255, another patch found at www.qmail.org increases the
maximum concurrency to 65,000. As distributed, the components of qmail pass delivery numbers to
each other as single bytes. This patch changes them to pass the components as two-byte numbers.
It doesn't change the queue format, so to install it, apply the patch, rebuild qmail, stop qmail-send,
install the patched version, and restart qmail-send. The patch sets the concurrency limit to 1,000,
which should be enough for most systems. As the patch file notes, if the concurrency limit is 1,000
and a message has 1,000 recipients in the same domain, qmail might try to open 1,000 simultaneous
connections to the same server, which managers of some recipient systems might misinterpret as a
denial-of-service attack. It's not likely in practice unless you happen to have a mailing list with all of
the recipients in the same domain. (Recall that deliveries are made in random order, so a list with
1000 recipients in each of 10 domains does about 100 deliveries at time to each of the 10 domains.)

The final patch for large systems makes the queue bigger. If your system sends a lot of mail that
takes a long time to deliver, you may need to enlarge the queue directories. Most Unix filesystems
perform poorly with more than 1,000 files in a directory, so the default 23-way split will have trouble
with more than 23,000 queued files. If you find yourself in this condition, the code change is easy;
just edit conf-split to a larger prime number (at least as great as 1/1000 of the number of queued
files you expect) and rebuild. But this changes the queue format, so the new version won't work with
the existing queued files. Qmail.org tells how to make a smooth transition: before changing the split,

http://www.nrg4u.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

stop qmail, move the existing set of qmail files from /var/qmail to /var/qmail2, edit conf-qmail to
refer to /var/qmail2, and build and install a new temporary copy of qmail with make setup. Run
/var/qmail2/rc to start up the temporary version, which will continue delivering mail out of the old

queue. Now change conf-qmail back to /var/qmail, edit conf-split to increase the split, build and
install it with make setup, and restart qmail. All future mail will be handled by the new copy of qmail.
After a week or so all the mail in the old copy of qmail will be delivered, at which point you can kill off
the qmail-send started from /var/qmail2/rc and delete /var/qmail2.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

16.5 Tuning to Deal with Spam

The vast amount of spam sent from forged return addresses to nonexistent recipients causes
correspondingly vast numbers of bounces and doublebounces when qmail bounces the spam and
finds that it can't deliver the bounce to the nonexistent return address. Because nearly all
doublebounces are now due to spam, there's little point in doing anything with them. To throw them
away, change the configuration file doublebounceto to nobody, and if you haven't already done so,
create ~alias/.qmail-nobody containing a single comment line to throw the mail away. (The file can't
be empty, because that's treated as a default delivery, but just # will do.)

This still queues and delivers doublebounces. To throw them away without queueing them, apply the
small patch at http://www.qmail.org/doublebounce-trim.patch, which adds a special case to qmail-
send so that if doublebounceto contains a blank line, doublebounces are just discarded.

[Team LiB]

http://www.qmail.org/doublebounce-trim.patch
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

16.6 Looking at the Mail Queue with qmail-qread

It's not a bad idea to look at the contents of your mail queue every week or two just to see if there's
anything strange. The two utility programs to do that are qmail-qstat and qmail-qread.

For a two-line summary of your queue, run qmail-qstat as the super-user:

messages in queue: 21
messages in queue but not yet preprocessed: 0

The first line is the number of messages that have been queued but not delivered yet. On most
systems the number should be small, less than a hundred. If your system hosts mailing lists, the
number of messages can reasonably be larger because each list message stays in the queue until
every recipient address is either delivered or bounces, and on any list of significant size, there will be
a few addresses that have gone bad but take a long time to bounce.

The number of messages not preprocessed should always be zero or close to it. If you have many
messages waiting to be preprocessed, it means that qmail can't deliver the mail as fast as it's
arriving. If you have a very large mail system you may need to install one of the big-todo patches
discussed earlier in this chapter. If not, you should look at the queue in more detail and see what's
clogging it up. There's no convenient tool to look at the waiting messages, but if you simply look at
the files in queue/todo with more, you can easily make out the envelope information for each
message. The text of the message is stored in a file in a subdirectory of mess with the same filename
as the todo file. To find the message that goes with todo/123456, the easiest approach is more
mess/*/123456. Don't change or delete files in any of the queue directories while qmail is running,
because qmail-send does not expect to have files changed or deleted while it's running.

To look at the messages in the queue, run qmail-qread, also as super-user. If you don't use mailing
lists, its report will probably be quite short, while if you do use lists, it can be enormous. On the host
I use for individual user mail, its output is about 50 lines, while on the mailing list host, its output is
over 29,000 lines, because the qread output contains a line for every recipient of every message
including the ones that have already been delivered, which with mailing lists can add up fast.

30 Dec 2003 20:49:34 GMT #1222959 2113 <mary@example.com>
 done remote aaron@myvirt.com
 remote zelda@somewhere.aq
4 Jan 2004 04:18:44 GMT #1223051 11419 <>
 remote user1@bogus.com

In this qread output, the first message from mary@example.com has been delivered to
aaron@myvirt.com, but not yet to zelda@somewhere.aq. The second message, which is a bounce
because it has a null sender, has not yet been delivered to user1@bogus.com. Deliveries to local
recipients say local rather than remote. If some of the deliveries have failed, the report will say
bouncing. The number after the # sign in each report is the message number in the queue, so you

can find the file for the second message with more mess/*/1223051. The number after the message
number is the size of the message in bytes.

When looking at the queue content for hosts with mailing lists, it is useful to leave out the addresses

http://lib.ommolketab.ir
http://lib.ommolketab.ir

that are done:

/var/qmail/bin/qmail-qread | grep -v 'done'

On my list host, that gets the report down from 29,000 lines to 1500.

The results of qread are rarely very interesting, but when they are, if say you see a whole lot of large
messages queued to addresses that you don't recognize, they can be the key to tracking down
otherwise hard to detect problems.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 17. Many Qmails Make Light Work
Qmail is well-suited for environments with multiple computers working together, as well as multiple
copies of qmail dividing up work in various ways. This chapter starts by looking at the aspects of
qmail useful for multiple operation and then explains some common applications.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

17.1 Tools for Multiple Computers and Qmail

Here's a quick rundown of the tools in our multisystem toolbox.

17.1.1 Multiple Copies of Qmail

Normally, all of qmail is installed in /var/qmail. That directory is specified at build time in conf-qmail.
If you change the contents of conf-qmail to, say, /var/qmail2 and rebuild and install qmail, you'll
create a complete second copy of qmail along with its queue directories. You can send mail into it
using /var/qmail2/bin/qmail-queue or any of the programs that call it, such as
/var/qmail2/bin/forward, or by using tcpserver to run a SMTP service with /var/qmail2/bin/qmail-
smtpd. Outbound mail works normally, although you can control it using the standard mechanisms
such as concurrencyremote and smtproutes.

Remember that qmail's queue cannot be on a shared or remote disk; a single local copy of qmail-
send has to manage each queue.

To pass mail for particular domains from one copy of qmail to the other, you can use either SMTP or
virtualdomains. To use SMTP, set up a SMTP daemon for the second copy of qmail on localhost
(127.0.0.1), but listening on port 26 or any other unused port. Then in the control/smtproutes/ in the
first copy, route the mail for each domain to that SMTP daemon:

bad.example.com:localhost:26

To route using virtual domains, add virtualdomain entries to assign all the domains to a pseudo-user
called qmail2:

example.com:qmail2
myvirt.com:qmail2

Then in ~alias/.qmail-other-default, forward the mail to the other copy of qmail:

| /var/qmail2/bin/forward "$DEFAULT@HOST"

The qmail2 version of forward will use the qmail2 version of qmail-queue to queue the mail in the
second copy of qmail. If you've applied the QMAILQUEUE patch, you can set QMAILQUEUE to
/var/qmail2/bin/qmail-queue in any command that queues mail to force the mail into the second
copy of qmail.

17.1.2 mini-qmail

mini-qmail is a stripped-down qmail package. It uses QMQP, a faster and simpler scheme than SMTP,
to send all mail to another host running regular qmail. Because mini-qmail makes neither local nor
remote mail deliveries, and has no mail queue (all mail is sent to the QMQP server immediately), it's

http://lib.ommolketab.ir
http://lib.ommolketab.ir

useful on client hosts in a mail cluster. The details of setting up mini-qmail are discussed later in this
chapter.

17.1.3 Shared Mail Folders

Maildir format mailboxes can safely be shared read/write using NFS. Each message is written as a
separate file, so the hosts creating the files use their hostnames as part of the files they create to
avoid name collisions, and NFS does a reasonably good job of making file rename operations atomic;
delivery to and retrieval from remote Maildirs works well. This means that one host can deliver the
mail into a mailbox and another can pick it up, such as when one is the SMTP server and the other is
the POP server. Or several hosts can use a shared Maildir as a gateway to a single host or service.

Sharing mboxes is much less reliable, because it depends on the NFS lock daemon to keep multiple
writers in sync. People who share mboxes via NFS usually regret having done so.

17.1.4 Multi-Host POP Toasters

If you use vpopmail, described in Chapter 13, it's straightforward to expand to multiple mail servers
for both incoming and outgoing mail. The mail system uses three conceptual parts: the SMTP
server(s), the POP server(s), and the mail store. In the simplest case, all three parts reside on a
single computer, but it's equally workable to put them on separate computers. The mail store resides
on one or more computers running NFS servers, and the SMTP and POP servers mount the NFS
partition. The SMTP servers receive the mail and deliver it to the mail store, and the POP servers
retrieve user mail from the mailstore. Because Maildirs don't require file locking to work correctly,
NFS with all its faults is quite adequate for a reliable system. If there's a single POP server, the CDB
user database can reside on the POP server (where it can be updated as needed) with the SMTP
servers having read-only access. Or better, build vpopmail using MySQL to keep the user database.
All of the hosts can access a single MySQL database to track users, mail quotas, and POP-before-
SMTP data. If that becomes a bottleneck, MySQL has built-in database mirroring so that there can be
a local copy of MySQL on each server that needs it, mirroring the master database, with all updates
fed back to the master. This is a very flexible design that should scale to a huge number of mailboxes
and servers.

Another alternative for a multi-host system is qmail-ldap. Either it can use NFS for deliveries from
multiple SMTP servers to user mailboxes, or the servers can be configured as a cluster in which each
user entry in the LDAP database assigns the user's mailbox to a single server. The SMTP servers use
QMQP to pass mail that arrives on the wrong server to the right one. Normally, users' MUAs are
configured to log into their home server to pick up mail, but if a user logs into the wrong server for
POP or IMAP, the session is transparently forwarded to the right one. It's all pretty slick.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

17.2 Setting Up mini-qmail

Installing mini-qmail requires two steps: installing a QMQP server or two, and then installing the
mini-qmail QMQP client.

17.2.1 Setting Up a QMQP Server

If you already have an SMTP server running, setting up QMQP is easy, because its configuration is
much simpler. The only pitfall is that QMQP has no relay protection at all, so you have to make sure
that only your own QMQP clients connect to the servers. QMQP doesn't queue, which means that
clients discard mail if they can't deliver it to a server immediately, so you should set up at least two
QMQP servers if possible.

First, create the rules file to permit connections only from your network. Create
/var/qmail/rules/qmqprules.txt:

only allow connections from our network
:deny
172.16.42.:allow

Replace the 172.16.42. line with your own network range(s), of course. If you created a Makefile for

your SMTP rules file, add the QMQP rules file to it, too, and then run make to create qmqprules.cdb:

default: smtprules.cdb qmqprules.cdb

smtprules.cdb: smtprules.txt
 cat $> | /usr/local/bin/tcprules $@ smtprules.tmp

qmqprules.cdb: qmqprules.txt
 cat $> | /usr/local/bin/tcprules $@ qmqprules.tmp

Now it's time to create the directories for the QMQP service:

mkdir /var/qmail/supervise/qmail-qmqpd
mkdir /var/qmail/supervise/qmail-qmqpd/log

mkdir /var/qmail/supervise/qmail-qmqpd/log/main
chown qmaill /var/qmail/supervise/qmail-qmqpd/log/main

And create /var/qmail/supervise/qmail-qmqpd/run:

1. #!/bin/sh
2. limit datasize 3m
3. exec tcpserver \

4. -u000 -g000 -v -p -R \
5. -x/var/qmail/rules/qmqprules.cdb 0 628 \

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6. /var/qmail/bin/qmail-qmqpd 2>&1

In line 4, use the values on your system for qmaild. Note on line 5 that the service is running on port
628. Finally, create /var/qmail/supervise/qmail-qmqpd/log/run. It's identical to its smtpservice
equivalent:

#!/bin/sh
exec setuidgid qmaill \
 multilog t s4000000 ./main

Once you have all the files created, symlink the supervise/qmail-qmqpd directory so svscan starts it
up:

ln -s /var/qmail/supervise/qmail-qmqpd /service

If you look at log/current you should see the initial tcpserver status line:

tcpserver: status: 0/40

If you're using more than one QMQP server, repeat this exercise on the other server(s). If you use
the same directory structure on each server, you might be able to use cp -Rp to copy the whole thing
over rather than recreating each file and directory by hand.

17.2.2 Setting Up QMQP Clients

Once you have the server set up, the QMQP client is easy. mini-qmail does no queueing and no local
delivery, so what little it does do all runs as whatever user calls it. As a result, you don't need to
define any user or group IDs, nor do you need to create the queue or ~alias directories. Usually the
easiest thing to do is to build qmail on the server, then copy the pieces to the QMQP client machines.

All of the QMQP files are read-only, so if you have multiple client systems, all of these files can be
shared except for idhost, which must have different contents for each host.

What you should install includes:

In /var/qmail/bin, include qmail-qmqpc and qmail-inject (or new-inject, linked to qmail-inject).
You should also install the sendmail program, and if you plan to use them, other programs
including forward, predate, datemail, mailsubj, qmail-showctl, maildirmake, maildir2mbox,
maildirwatch, qail, elq, and pinq. If you want, install all of the usual programs in /var/qmail/bin
and delete qmail-queue, the one program that's not used.

Symlink qmail-qmqpc to qmail-queue, so that all injected mail is sent out using QMQP. Also, as
on full qmail systems, install qmail's version of sendmail as described in Section 5.1.1 in
Chapter 5.

In /var/qmail/control, copy the files me, defaultdomain, and plusdomain from the QMQP server.
Create idhost with the name of the QMQP client to be used in message IDs. Create qmqpservers
with the numeric IP addresses of the QMQP servers, one per line. (Use IP addresses, not
domain names.)

Once these files are installed, and assuming you've started your QMQP servers, you should be able to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

send mail using Mail or any other mail application. Send yourself a message, make sure it's
delivered, and check that it includes a header like this one:

Received: from client.example.com (172.16.42.201)
 by server.example.com with QMQP; 13 Feb 2003 01:37:41 -0500

The QMQP client produces no logs at all, but you can check the logs on the QMQP server to see what
incoming connections have occurred.

17.2.3 Using QMQP

QMQP has three common uses: on a cluster of machines with a mail smarthost, on a network
firewall, and for load-sharing with mailing lists.

17.2.3.1 Using a smarthost

On a network with multiple machines, it usually makes sense to use one or two of them as the mail
hosts. That makes the mail system easier to administer, because you only have to manage the
configuration on the mail hosts. The rest of the hosts, even if they're doing only one thing, such as
running a database or serving web pages, usually send out a little bit of mail with status reports, logs
of daily cleanup jobs, and the like. On the machines that aren't mail servers, install mini-qmail, being
sure to install qmail's version of sendmail to catch all the mail sent by daemons and cron jobs. Be
sure to disable any startup scripts that attempt to run sendmail as a daemon, because the mini-qmail
version of sendmail doesn't do that.

17.2.3.2 Setting up a mail firewall

If you have a firewall or bastion host separating your internal network from the outside world, good
security design mandates that you run as few services on the bastion host as possible. If that host is
the only one visible to the outside world, it has to run an SMTP daemon, but you can use mini-qmail
to pass incoming mail directly to the smarthost, minimizing the processing on the bastion host.

On that host, install mini-qmail and ucspi-tcp. Set up tcpserver and qmail-smtpd in the usual way
described in Chapter 3 and Chapter 4. In /var/qmail/control, create the files me with the name of the
host, rcpthosts with the domain names for which the host receives mail, and qmqpservers with the
address of the internal mail host. You can also create databytes if you want to limit the size of
incoming messages.

Even though this setup provides no queueing on the bastion host, if the internal mail host doesn't
respond to QMQP when an incoming message arrives, qmail-qmqpc (masquerading as qmail-queue)
will fail, and that will make qmail-smtpd fail with a 451 temporary error, which should make the
sending host hold on to the message and try it again later.

In most cases, you'll want to do some spam filtering at the gateway using DNSBLs and perhaps
qmail-filter. See Chapter 9 for details.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

17.2.3.3 Mailing list load sharing

Mailing list software needs a specialized kind of load sharing. A typical mailing list message is
delivered to the list manager program, which validates it in various ways, and then remails it to the
potentially very large set of addresses on the list. Most list managers also have management
interfaces that accept commands via email or a web page to add and remove list members, create
and reconfigure lists, and otherwise maintain the lists. It makes sense to run the list management
software on one host or set of hosts, and the mail deliveries on another. Fortunately, this is really
easy to arrange.

For list managers that interface directly to qmail (ezmlm/ezmlm-index and majordomo2 at this
point), outgoing list mail is sent by running qmail-queue. To move the delivery work to another
computer, it needs only to run qmail-qmqpc rather than qmail-queue. Ezmlm supports this directly; if
the list's directory contains the file qmqpservers, outgoing mail uses QMQP. If qmail-qmqpc is
patched appropriately (the patch comes with ezmlm-idx), it can read the list of QMQP servers from
that file rather than the default in /var/qmail/control/qmqpservers. Majordomo2 has no direct
support for QMQP, but because it's written in Perl, it takes about 10 seconds to find the place in the
file QQEnvelope.pm that refers to qmail-queue and change it to qmail-qmqpc. I use a two-host
majordomo2 setup, and it works very well for me.

Other list managers that aren't aware of qmail either inject mail with sendmail or via SMTP. For mail
sent by SMTP, merely configure the package so that the SMTP connection is to the other computer
rather than to localhost. Most packages don't send list mail via sendmail due to the argument size
limits, using it only to send administrative messages to single users that don't put a lot of load on the
mail system. If you do want to reroute the mail injected by sendmail, and you've installed the
QMAILQUEUE patch, you only need to ensure that the QMAILQUEUE environment variable is set to
/var/qmail/bin/qmail-qmqpc whenever the list package runs, something like this:

#!/bin/sh
export QMAILQUEUE=/var/qmail/bin/qmail-qmqpc
exec /usr/lib/listmanager "$@"

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 18. A Compendium of Tips and
Tricks
The good thing about qmail is that there are simple ways to perform a wide variety of mail handling
tasks, even though qmail doesn't have as many task-specific features as other MTAs. The bad thing
is that the simple ways are often a less than obvious combination of more basic qmail features. Here
is a list some common problems, and some of those tasks and combinations.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

18.1 Qmail Won't Compile

You have unpacked the qmail sources and typed make, but it won't compile. If you're receiving error
messages about errno, you've run into a compatibility problem between qmail and recent versions of
the GNU C library. The fix is very simple. See Building with Recent GLIBC and Fixing the errno
Problem in Chapter 3.

(This is the number one question on the qmail mailing list, so frequent that there's an autoresponder
that mails back the answer to any message that contains the word "errno".)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

18.2 Why Qmail Is Delivering Mail Very Slowly

If qmail seems to wait about half a minute to do anything when you inject mail, the problem is
almost certainly that the lock/trigger file used to communicate between qmail-queue and qmail-send
is messed up. That file should be a named pipe:

ls -l /var/qmail/queue/lock/trigger
prw--w--w- 1 qmails qmail 0 Nov 7 03:02 /var/qmail/queue/lock/trigger

If it's a regular file or anything other than a pipe, you have a problem. Fortunately, it's a problem
that's easy to fix:

svc -td /service/qmail-send # shut qmail down for a minute
tail -f /service/qmail-send/log/main/current
wait until the log says that it's exited
rm /var/qmail/queue/lock/trigger # remove bogus trigger

cd wherever you built qmail from source
make setup check # recreates all the crucial files including trigger
svc -u /service/qmail-send # restart qmail

This is the second most frequently asked question on the qmail mailing list, and tends to get
aggrieved responses pointing out that the answer is in the archives about a hundred times. So don't
ask it, because now you know the answer.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

18.3 Stuck Daemons and Deliveries

Some of the most frustrating problems are due to background daemons that don't do what they're
supposed to do. Fortunately the daemontools package makes daemon debugging relatively
straightforward.

18.3.1 Daemons Won't Start, or They Start and Crash Every Few Seconds

Starting a daemon under svscan and supervise is simple in concept, although the details can bite
you. The super-daemon is started at system boot time by running /command/svscanboot. It runs
svscan to control daemons and the useful but obscure readproctitle, which takes any error messages
from svscan and puts them into its command area so that ps will show it.[1]

[1] This odd way of displaying error messages is intended to work even in the presence of serious configuration
screwups like disks that should be mounted but aren't and directories that are supposed to be writable but
aren't.

Every five seconds svscan looks at all of the subdirectories of /service and starts up a supervise
process on any that don't have one running. In the usual case that the subdirectory in turn has a
subdirectory called log, it starts a second supervise process in the subdirectory and pipes the output
from the first process to the second.

When supervise starts up a daemon, it runs the file run in the daemon's directory. That file has to be
a runnable program that either is or, more commonly, exec's the daemon itself. That means that run
has to have its execute bits set and, if it's a shell script, start with #!/bin/sh so that it's runnable. If

either of those isn't the case, there is a failed attempt to start the daemon every five seconds. A ps l
that shows readproctitle should reveal the error messages and give hints about what needs to be
fixed.

The run script generally sets up the program environment and then exec's the actual daemon. If you
become super-user and type ./run, the daemon should start. If that works, the daemon still doesn't

start, and you don't use full program paths in the run file, the problem is most likely that the search
path that supervise uses isn't the same as the one you're using. Look at /command/svscanboot to
see the search patch that it uses. Most notably, it does not include /var/qmail/bin unless you edit the
file yourself to include it.

18.3.2 Nothing Gets Logged

Sometimes the daemon runs but nothing's going into the log files. This generally is due to either file
protection problems or an incorrect set of multilog options. The usual way to run multilog is to create
a subdirectory called main in which it rotates log files. It's safer to run daemons as a user other than
root, so when possible, use qmaill, the qmail log user. A common error is to forget to change the
ownership of the log file directory to qmaill (or whatever the log user is). When multilog starts
successfully, it creates a current log file in the directory, so if there's no main/current, the most likely
problem is directory ownership or protection.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If multilog is running but there's nothing logged, the most likely problems are that the daemon isn't
sending anything to log, or that multilog's options are telling it to discard everything. Because the
daemon and the logger are connected with a regular Unix pipe, only messages sent to the daemon's
standard output go to the logger. In particular, anything sent to standard error shows up in
readproctitle, not the log. If, as is usually the case, you want to log the errors a daemon reports, just
redirect the error output to the standard output in the run script with the standard shell redirect
2>&1. (That redirect is at the end of just about every run script example in this book.)

If the daemon is a program originally intended to run as a standalone daemon rather than under
daemontools, it probably sends its reports to syslog, not to standard output or standard error. In
most cases, there is an option to send messages to stdout or stderr.

If you are using multilog options to select what to log, be sure that you're selecting what you think
you are. In particular, its pattern language resembles shell wildcards but is in fact considerably
weaker because it doesn't move ahead or back up on a failed match. (Patterns do resemble shell
wildcards closely enough that they should always be quoted to keep the shell from messing with
them.) The pattern must match the whole line, and stars stop matching the moment they see the
following character in the pattern. If a pattern is, say, +'+*: status: *', it will match one: status:
two, but it will not match one: two: status: three, because the star will stop at the first colon and

won't look for the second one. If the pattern didn't have the star at the end, it wouldn't match
anything useful because it wouldn't match any lines with anything after the status:. In practice,

most log file messages have a pretty simple syntax, and it's not hard to come up with adequate
patterns if you keep in mind the limitations of the pattern-matching language. For debugging, start
with no patterns to be sure that the stream of messages going into the log files contains what you
expect, then add one or two patterns at a time and restart multilog with svc -t and see what's going
into main/current each time until it looks right.

18.3.3 Daemons Are Running but Making No Progress

One of the most baffling problems occurs when the daemon seems OK, the logger seems OK, but the
daemon's not doing anything. What's wrong? Usually the problem is that the disk to which the log
files are written has filled up or is mounted read-only. Because multilog is designed not to lose any
log data, if it can't write to the disk, it just waits and retries until it can. This means that the pipe
between the daemon and multilog fills up and the daemon stalls waiting to be able to write to the
pipe. The solution is to delete some files and fix whatever it was that filled up the disk so it doesn't
happen again. If the disk is full of files written by various multilog loggers, adding or adjusting s and
n options to set the maximum size and number of log files can help.

18.3.4 Mail Rejected with Stray Newline Reports

The SMTP spec says that the way that each line of text in an SMTP session ends is with a carriage
return/line feed pair (0d 0a in hex or \r\n in C.) Some buggy MUAs and MTAs only try to send mail
that contains linefeeds with no preceding carriage return. Qmail's SMTP daemon normally rejects
such mail with a log message like Stray newline from 10.2.3.4 because there's no way to tell

whether the bare linefeed is just missing a carriage return or it's some kind of malformed binary
data.

If you're seeing stray newline entries in your logs and you're reasonably sure that they're being sent

http://lib.ommolketab.ir
http://lib.ommolketab.ir

by MTAs or MUAs that intend them to be handled as an end-of-line, use the fixcrio program from the
ucspi-tcp package to placate the SMTP daemon. Modify the run script for qmail-smtpd so that it pipes
mail through fixcrio, as shown in Example 18-1:

Example 18-1. SMTP daemon that forgives stray newlines

 1. #!/bin/sh
 2. limit datasize 3m
 3. exec tcpserver \

 4. -u000 -g000 -v -p -R \
 5. 0 25 \
 6. /usr/local/bin/fixcrio | /var/qmail/bin/qmail-smtpd" 2>&1

Line 6 is the modified one, starting up fixcrio and qmail-smtpd. When fixcrio runs, it passes the input
and output of qmail-smtpd through pipes so it can add missing carriage returns in front of newlines
as needed. In the longer run, see if you can persuade your correspondents to upgrade their SMTP
clients to newer, less buggy versions.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

18.4 Mail to Valid Users Is Bouncing or Disappearing

If you use users/assign as described in Chapter 15, a common mistake is to add a user to the system
without updating the users file. Fortunately, this oversight is easily remedied:

cd /var/qmail/users; make

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

18.5 Mail Routing

Qmail lets you build very complex routing strategies on top of its three basic delivery paths: local,
virtual, and remote.

18.5.1 Sending All Mail to a Smarthost

If your qmail system has a full-time Internet connection, route all mail to a smarthost with a default
entry in smtproutes, e.g., :mail.myisp.com. If you have a dialup or other intermittent connection,

use a default virtual domain to route all outgoing mail into a Maildir, then when you connect to your
ISP, use maildirsmtp to take the mail out of the directory and send it to the smarthost. See Chapter
11.

If you have a few locally connected systems to which you can send mail directly, you can also put
specific entries for them in smtproutes, overriding the smarthost default. If you use virtualdomain
delivery, you also need not-virtual entries for each of them in virtualdomains, e.g., nearby.com:. See

Chapter 12.

18.5.2 Treating a Few Remote Addresses as Local

If you have local users who use addresses at another system as their return address on mail, you
can "short circuit" mail to them and handle mail to them as local, by creating individual address
virtualdomains entries for them. See Chapter 12.

18.5.3 Slowing Mail Delivery to Certain Domains

Some mail servers have an unfortunate habit of accepting more incoming SMTP connections than
they can handle, and then collapsing. The simplest way to limit the number of connections to a server
is to route all the mail destined to it into a Maildir using lines in virtualdomains, then run maildirserial
from cron to deliver the mail one at a time. Another approach is to install two copies of qmail, the
main one with the usual high concurrencyremote level, and a second one with a very low
concurrencyremote level of 5 or so. Then in the main system, for any domains that need to be fed
mail slowly, use either virtual domains or smtproutes to hand mail for those domains to the
secondary copy of qmail. See Chapter 17.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

18.6 Local Mail Delivery Tricks

Even though qmail's local mail delivery design is pretty simple, it still has the flexibility to handle all
sorts of situations.

18.6.1 Using a Subaddress Separator Character Other than Hyphen

Some people prefer to use a plus sign rather than a hyphen in subaddresses, so they like
carol+prunes rather than carol-prunes. If you can't persuade them that their life will be easier if they
use a hyphen like everyone else, it's not hard to arrange if you use users for local mail delivery.
Create /var/qmail/users/assign if it doesn't exist yet, and then in the user's wildcard entry, change
the first hyphen to a plus:

+carol-:carol:108:108:/home/carol:-::

+carol+:carol:108:108:/home/carol:-::

Then run qmail-newu to rebuild the users database. That's all it takes. The plus sign only affects the
separator between the name and extension, not the name of .qmail files, which will still be .qmail-
prunes in this case, nor the character that separates subextensions.

In the usual case that the users file changes from time to time as the password file is updated, put
the user's name in exclude and put the two lines for that user (the modified line that starts with a
plus and the unmodified line that starts with an equals sign) in append so they'll be included
automatically each time qmail-pw2u runs.

18.6.2 Customized Bounce Messages for Virtual Domains

Often a virtual domain belongs (logically at least) to a different organization than the main domain on
the mail server. When mail to a bad address at the virtual domain bounces, it is nice to give an error
specific to that domain. Say the domain myvirt.com is routed to the myvirt user. If addresses in that
domain are handled by individual .qmail files, anything that lands in .qmail-default is a bad address,
easily handled by bouncesaying:

| bouncesaying "Not a valid user at myvirt.com. Call 617-637-VIRT for information."

If addresses are handled by an alias file created by setforward, set -p to tell fastforward not to fail on

an unknown address so you can handle it yourself. Put these two lines in .qmail-default:

| fastforward -p myvirt.cdb
| bouncesaying "Not a valid user at myvirt.com. Call 617-637-VIRT for information."

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

18.7 Delivering Mail on Intermittent Connections

If your qmail system is a hub host for remote systems that connect intermittently by dialup, it is
straightforward but messy to deliver the mail while the remote systems are connected.

One approach is to create a flag file in a known directory when a host connects and delete the file
when the host disconnects. Then run a script periodically from cron that loops over all of the flag files
to push out mail to currently connected hosts.

To flesh out this example, assume there are three dialup hosts called red.example.com,
blue.example.com, and green.example.com. Create virtualdomains that give them different virtual
domain prefixes:

red.example.com:alias-dial-red
blue.example.com:alias-dial-blue
green.example.com:alias-dial-green

You can put all of the alias-dial mail into one Maildir since the Delivered-To: prefixes keep them
separate. To put all the mail for the three hosts into ~alias/dialmail/, create ~alias/.qmail-dial-
default containing the line ./dialmail/.

To track the currently connected hosts, put the flag files into ~alias/dialflags and have the dialup
connection script create a file with the host's simple name (red, blue, or green) in that directory
containing the host's current IP address. Then run this script from cron to push out the mail to
whichever hosts are currently connected:

#!/bin/sh
run this every 15 minutes from cron to push out the mail

cd /var/qmail/alias/dialflags

for hn in *
do
 ip=$(cat $hn) # IP address in the flag file

 setlock ../$hn.lock \ # lock deliveries to this host
 maildirsmtp /var/qmail/alias/dialmail \
 alias-dial-$hn- $ip my.example.com 2>&1 |
 splogger serial
done

If you also want to push out any waiting mail as soon as a host connects, also put a call to
maildirsmtp into the host's connection script. Be sure to use the same lock file to avoid confusion if
the cron job happens to run at the same time. If you add another host called purple, you only need to
add another line to virtualdomains:

purple.example.com:alias-dial-purple

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The remote hosts can use a similar setup to forward their mail to the main host, using a single
smarthost entry in virtualdomains. See the discussion of serialmail in Chapter 11.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

18.8 Limiting Users' Mail Access

Some organizations grant different amounts of access to email to different users. In particular, some
are allowed to send mail outside the organization and some can't. There are a lot of different ways to
set this up, but one of the simplest to set up is to create two parallel copies of qmail on the same
host, one for restricted users and one for general users. Following the instructions in Chapter 17,
create two instances of qmail; the regular one for unrestricted users and incoming mail in /var/qmail,
and the restricted one in /var/rqmail. Create accounts for all of the users so that every user has a
mailbox, and set up a POP (and IMAP if you want it) server.

Set up SMTP daemons for both instances on separate IP addresses, and set up the users' PCs so that
the restricted users send their outgoing mail to the restricted server and the unrestricted users to the
general server. To keep the restricted users from sending any mail through the general server, add
their addresses to /var/qmail/control/badmailfrom. To keep them from sending external mail from
the restricted server, put this line to fail all remote deliveries into /var/rqmail/control/smtproutes:

:[127.0.0.0]

(This is a deliberately bad address that will refuse all connections.)

Another approach that's a little harder to set up but easier to administer is to use a single copy of
qmail but to check the mail as users send it. If you use the old-fashioned fixup scheme described at
the beginning of Chapter 7 to handle injected mail, you can check whether a user is allowed to send
external mail in the fixup script. Modify ~alias/.qmail-fixup-default to something like this:

| bouncesaying 'Permission denied' ["@$HOST" != "@fixme"]
| ./checkrestrict
| qmail-inject -f "$SENDER" -- "$DEFAULT"

Example 18-2 checks whether the sender is in a list of authorized users.

Example 18-2. checkrestrict script for .qmail-fixme

#!/bin/sh
inherit $SENDER and $DEFAULT from the .qmail file

 case "$DEFAULT" in
 *@example.com) # our domain, always permitted
 exit 0 ;;
 @) # external address
 if egrep -q "^($SENDER)$" authorized-users
 then
 exit 0
 else
 bouncesaying "You cannot send external mail."
 fi ;;
 *) # local mail, always permitted

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 exit 0 ;;
 esac

This script needs to be ruggedized a little, because mail from user fred might have a sender of fred or
fred@example.com depending on how his mail program is set up, and a local recipient address might
be mary@EXAMPLE.COM in uppercase, but the checking remains quite simple.

If you use ofmipd, you can't easily use the fixup trick, but assuming you've applied the QMAILQUEUE
patch, you can run qmail-qfilter and use a similar script that checks $QMAILUSER and $QMAILRCPTS
and returns an exit code of 31 to reject the mail or 0 to permit it. (Remember that if you accept the
mail, you have to copy the message from stdin to stdout, too, or the message you accept will always
be empty.) Call the checking program, which can most easily be write in Perl or Python,
/var/qmail/bin/checkauth, then create this script called /var/qmail/bin/authfilter to run it. See
Example 18-3.

Example 18-3. Run injected mail through authorization checker

#!/bin/sh
check incoming mail

exec /var/qmail/bin/qmail-qfilter \
 /var/qmail/bin/checkauth

Then set QMAILQUEUE to /var/qmail/bin/authfilter. If you provide web mail for your users, be sure to
set QMAILQUEUE when running the web mail application so it also calls the filtering script to check
whether a user is allowed to send mail.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

18.9 Adding a Tag to Each Outgoing Message

Some organizations want to add a footer to every message with text that identifies the company,
includes disclaimers, or makes implausible claims about the legal status of messages. This is another
problem that's easily solved with qmail-qfilter, in this case so easily that it doesn't even need a
program of its own, just a two-line script I'll call addtag, as shown in Example 18-4.

Example 18-4. addtag script to add a tag to messages

#!/bin/sh
exec /var/qmail/bin/qmail-qfilter \
 cat - /etc/mailtag

Put the tag in /etc/mailtag, and set QMAILQUEUE to run the tagging script in ofmipd and anywhere
else that mail is injected. If local programs inject mail with sendmail, you might want to rename
/var/qmail/bin/sendmail to realsendmail and put this in its place:

#!/bin/sh
QMAILQUEUE=/var/qmail/bin/addtag exec /var/qmail/bin/realsendmail "$@"

If you use the older fixup approach to inject mail, you can add the tag in .qmail-fixup-default, as
shown in Example 18-5.

Example 18-5. .qmail-fixup that adds a tag

| bouncesaying 'Permission denied' ["@$HOST" != "@fixme"]
| cat - /etc/mailtag | qmail-inject -f "$SENDER" -- "$DEFAULT"

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

18.10 Logging All Mail

Some organizations need to log all email passing in or out of their system. An obscure feature called
QUEUE_EXTRA makes this quite straightforward. Every time qmail-queue enqueues a message, it
adds the string QUEUE_EXTRA to the recipient addresses. Normally that string is empty, but you can
edit extra.h in the qmail source code to be whatever you want. The usual change (recommended in
the qmail FAQ) is to make it add a recipient called log to each message. Change QUEUE_EXTRA to be
the exact string to add to the recipient string including the leading T and trailing null, and set
QUEUE_EXTRALEN to be the length of the string. Then rebuild and reinstall qmail. See Example 18-6.

Example 18-6. Code in extra.h to copy everything to log

#define QUEUE_EXTRA "Tlog\0"
#define QUEUE_EXTRALEN 5

Now every message will be copied to the address log, so you can create ~alias/.qmail-log to save the
mail:

./logmaildir/

The .qmail file must save the mail but cannot forward it. Why not? Because forwarding mail invokes
qmail-queue again, which will redeliver the mail to log, creating a nasty mail loop.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

18.11 Setting Mail Quotas and Deleting Stale Mail

Because qmail's mailboxes are normally in each user's home directory, any quota scheme that
applies to the user's files automatically includes the file(s) in the mailbox. For many purposes, this is
all the mail quota that's needed. You may want to apply Jeff Hayward's quota exceeded patch to
qmail-local that recognizes an over quota error and treats it as a hard error so mail is bounced back
to the sender, rather than a soft error so mail stays in the queue.

For POP toasters, the vpopmail package discussed in Chapter 13 includes code to enforce mail
quotas. If you build your own simpler POP-only system, use the mailquotacheck script in .qmail files
to check quotas as mail is delivered. (All these have links at www.qmail.org.)

You may also want to set a policy for stale mail, so that mail is deleted from the server after some
period of time. If you use Maildirs, this is very easy to implement, because each message is in a
separate file with a timestamp. In each Maildir, messages in the new subdirectory haven't been read,
and messages in cur have been read and left on the server. My policy is to delete unread mail after a
month, on the theory that if you don't look at your mail once a month, you'll probably never look at it
at all, and to delete read mail after three months. This is easily arranged with a couple of shell
commands to run every day or every week. While you're at it, you might as well delete mail that's
been marked deleted (the T flag in the filename) or moved into the Trash subfolder. If all the user
directories are under /home:

cd /home
{
 # unread mail over a month old
 find /home/*/Maildir/new -type f -mtime +30 -p
 # read mail over three months
 find /home/*/Maildir/cur -type f -mtime +90 -p
 # any mail marked deleted
 find */Maildir -type f -name "*:2,*T*" -print
 # any mail in Trash/new or cur
 find */Maildir/.Trash/??? -type f -print
} | xargs -t rm

If your Maildirs are somewhere else, modify the find commands appropriately to look where they

are. By adding a few more commands, you can add policies like deleting mail from a spam subfolder
after a week and other subfolders after some other amount of time. With slightly fancier
programming, probably in Perl, it's also straightforward to delete the oldest files from a Maildir until
the user is under quota. The elegance of the Maildir design makes this all much easier than with
mboxes because nothing has to be locked or rewritten, and the cleanup can proceed safely while mail
deliveries are going on.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

18.12 Backing Up and Restoring Your Mail Queue

The bad news about backing up and restoring your mail queue in /var/qmail/queue is that it's nearly
impossible. The good news is that it's rarely necessary.

The filenames in qmail's queue directory are numbers that depend on the inode number of the file
containing the text of the message. Backup and restore programs don't restore files using the same
inodes that the files used when they were backed up, which means that if you back up the queue and
then restore it, it won't work.

If you're moving your qmail queue from one disk to another, there are two general strategies. If you
can run your system with both disks for a while, rename the old queue to something like /var/old-
qmail, build two copies of qmail as described in Chapter 17 (one for the old queue and one for the
new one) start up both copies so that new mail goes into the new queue while mail in the old queue
is eventually delivered or bounces, and then delete the old queue and its copy of qmail. The other is
just to bite the bullet and move the queue. To do that, first shut down both qmail-send and anything
that might put mail into the queue, preferably by shutting down the system to single user. Then copy
the queue to /var/qmail/queue.old on the new disk, and use Harald Hanche-Olsen's script at
http://www.qmail.org/queue-rename to rename the files to their correct names based on their
current inode numbers. You can also use the more complex queue-fix program for www.qmail.org,
but for this purpose you don't need anything that fancy.

If your disk fails and you restore from backups, it's usually more trouble than it's worth to restore the
queue. If your backup is more than a few minutes old, nearly all of the messages in the queue when
it was dumped will have been delivered, and the only ones not delivered are likely to bogus addresses
that will never be delivered. To clean out the queue, shut down qmail and anything that might try to
queue mail, then delete any queued mail with rm -rf /var/qmail/queue/* (be sure to type that
correctly), go to the directory where you built qmail and make setup check to recreate an empty
queue, and then restart qmail.

[Team LiB]

http://www.qmail.org/queue-rename
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Appendix A. A Sample Script

Section A.1. A Mail-to-News Gateway
[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

A.1 A Mail-to-News Gateway

This is my batch news gateway, run every five minutes from cron. The incoming messages to the
gateway are stored in a Maildir ~alias/newsdir, using a virtual domain setup that sends mail to the
pseudo-domains news and news.example.com to alias-news, which is delivered by ~alias/.qmail-
news-default.

My news gateway handles news from multiple hosts on my network by the simple trick of symlinking
newsdir, which is exported over the LAN by NFS, into ~alias on each host, so that all the hosts store
messages into the same directory. I find this easier and faster than running a copy of the gateway on
each host.

The script run from cron uses maildirserial to select mail messages, and tcpclient to open an NNTP
connection to the local news server, as shown in Example A-1.

Example A-1. Script called from cron to push out news

#!/bin/sh

exec setlock newsdir.lock \
 maildirserial -b -t 345600 newsdir alias-news- \
 tcpclient localhost 119 \
 /var/qmail/alias/newsgate alias-news-

The actual mail to news script is fairly long, but nearly all of it is devoted to cleaning up headers, as
shown in Example A-2.

Example A-2. Mail to news gateway script

#!/usr/bin/perl
-*- perl -*-
process batched messages from maildirserial into news

use Getopt::Std;
use FileHandle;

options
-d debug, use tty for I/O
-s don't use date from incoming messages
to avoid complaints about stale news

getopts('ds');

$linelimit = 2000; # truncate long msgs after this many lines

$| = 1;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

get prefix to strip off Delivered-To:
$prefix = shift or die "need prefix";

read null terminated input for file names
msgloop:
while(!eof STDIN) {
 my ($from, $sender, $replyto);
 {
 local $/ = "\0";
 $fn = <STDIN>;
 chop $fn;
 }

 open(MSG, $fn) or die "cannot open '$fn'\n";

 if(<MSG> =~ m{Return-Path: <(.*)>}) {
 $sender = $1;
 } else {
 close MSG;
 print "$fn\0Dno sender address\n";
 next;
 }

 # invent fake sender since news forbids null return addrs
 $sender = "MAILER-DAEMON\@somewhere.local" if $sender eq "";

 if(<MSG> =~ m{Delivered-To: $prefix(.*)}) {
 $recip = $1;
 } else {
 close MSG;
 print "$fn\0Dno recipient address\n";
 next;
 }
 my $approve = 0;
 my $nobounce = 0;
 my ($newrecip, $domain) = ($recip =~ m{(.*)\@(.*)}); # dump domain

 # make sure sent to something@news to prevent
 # outside mail from sneaking in
 if($domain =~ /^news/) {
 $recip = $newrecip;
 } else {
 print "$fn\0DYou cannot send mail to this address.\n";
 close MSG;
 next;
 }
 $newsgroups = lc $recip;

 # pick off approve- and nobounce- prefixes
 while(1) {
 if($newsgroups =~ /^approve-(.*)/) {
 $newsgroups = $1;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 $approve = 1;
 } elsif($newsgroups =~ /^nobounce-(.*)/) {
 $newsgroups = $1;
 $nobounce = 1;
 } else {
 last;
 }
 }

slurp up the header and regularize some of the lines
 my @headers = ();
 $from = "";
 while(<MSG>) {
 last if /^$/;

 chomp;

 # skip blank subject
 next if /^Subject:\s*$/;

 if(/^From:/io) {
 s/ MAILER-DAEMON / MAILER-DAEMON\@somewhere.local /;
 s/<MAILER-DAEMON>/<MAILER-DAEMON\@somewhere.local>/;
 s/<>/<MAILER-DAEMON\@somewhere.local>/;
 s/:\s*\(\)/: <MAILER-DAEMON\@somewhere.local>/;
 s/<postmaster>/<postmaster\@somewhere.local>/;
 }
 if(/^\s/) {
 s/^\s+//;
 $_ = pop(@headers) . " " . $_;
 push @headers, $_;
 } else {
 s/:(\S)/: $1/; # force a space after the colon
 push @headers, $_;
 }
 $subject = $1 if /^Subject: *(.*)/ois;
 print STDERR "found subject $subject\n" if /^Subject: *(.*)/ois;
 $from = $1 if /^From: +(.*)/ois;
 $replyto = $1 if /^Reply-To: +(.*)/ois;
 $sender = $1 if /^Sender: +(.*)/ois;
 }

figure out who it's from
 $from = $replyto if $replyto;
 $from = $sender unless $from;

 $from =~ s/\s+$//;
 $subject =~ s/\s+$//;

now strip out the crud
 if($from =~ /<(.*)>/s) {
 $from = $1;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 } else {
 $from =~ s'\s*\([^)]*\)\s*''sg; # strip comments
 }

check for bogus addresses
 unless ($from =~ m/.*\@.*\.[a-z]{2,8}$/io) {
 print "$fn\0ZInvalid return address '$from', discarded\n";
 close MSG;
 next msgloop;
 }

 # start up an NNRP session on open tcp socket
 startnews();

tell news server we're going to post something
 print NOUT "post\r\n";
 $l = <NIN>;
 $l =~ s/\r?\n$//;
 unless($l =~ /^340 /) {
 print "$fn\0ZCannot post $l\n";
 close MSG;
 next;
 }

now send the nessage headers, cleaning up as we go
 print NOUT "Newsgroups: $newsgroups\r\n";
 print NOUT "Approved: news-to-mail\r\n" if $approve;
 unless($subject) {
 print NOUT "Subject: (no subject)\r\n";
 }

 $didmsgid = 0;
 $diddate = 0;
 $didcte = 0;
 $didmv = 0;
 $diddate = 0;
 $didsubject = 0;
 $didreply = 0;
 $didfrom = 0;
 $didref = 0;
 $didcc = 0;
 $didto = 0;

 foreach $_ (@headers) {

 next if /^(Newsgroups|Sender|Status|Received|Approved|nntp\S+):/io;
 next if /^(Via|X-Mailer|Path|Return-Path|Distribution|X-Status|Xref):/io;
 next if /^(Apparently-To|X-Trace|X-Complaints-To):/io;

 # inews freaks on long headers
 $_ = substr($_, 0, 500) if length($_) > 500;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 # really freaks on long references

 # lose blank subject
 next if m/^Subject:\s*$/io;

 # some headers can only appear once
 next if m/^date:/io && $diddate++;
 next if m/^Content-Transfer-Encoding:/io && $didcte++;
 next if m/^Mime-Version:/io && $didmv++;
 next if m/^Date:/io && $diddate++;
 next if m/^Subject:/io && $didsubject++;
 next if m/^From:/io && $didfrom++;
 next if m/^Reply-To:/io && $didreply++;
 next if m/^References:/io && $didref++;
 if(m/^Cc:/io) {
 print NOUT "X-" if $didcc++;
 }
 if(m/^To:/io) {
 print NOUT "X-" if $didto++;
 }

 # turn Date: into X-Date: if -s
 print NOUT "X-" if $opt_s and /^(Date):/io ;
 print NOUT "X-Old-" if /^(Sender|x-complaints):/io ;

 # only one message ID, and it has to be a good one
 if(/^Message-ID:/io) {
 # if bad msgid, let it gen a new one
 next unless /^Message-ID: +<(.*@[^@]+)>$/io;
 next if $didmsgid;
 $didmsgid = 1;
 }
 print NOUT "$_\r\n";
 }
 print NOUT "From: $sender\r\n" unless $didfrom;
 print NOUT "Subject: [probably spam, from $sender]\r\n" unless $didsubject;

end of header
 print NOUT "\r\n";

 my $didbody = 0;
copy the body, split overlong lines
 my $linecount = 0;
 while(<MSG>) {
 if(++$linecount > $linelimit) {
 print NOUT "\r\n[message too long, truncated]\r\n";
 last;
 }
 chomp;
 s/^\./../;
 while(m/^(.{500})(.+)$/) {
 print NOUT "$1\r\n";

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 $_ = "+ $2";
 }
 print NOUT "$_\r\n";
 $didbody++;
 }
 print NOUT "[empty message]\r\n" unless $didbody;
 close MSG;

end of message, see if the server liked it and report back
 print NOUT ".\r\n";
 $l = <NIN>;
 $l =~ s/\r?\n$//;
 if($l =~ /^240 /) {
 print "$fn\0Kposted to $newsgroups\n";
 } elsif($nobounce) {
 print "$fn\0Kfailed to $newsgroups (ignored) $l\n";
 } elsif($l =~ /^441 435 /) {
 print "$fn\0D$l\n"; # perm fail, duplicate
 } else {
 print "$fn\0Z$l\n"; # temp fail, anything else
 }
done with this message
}

end news session
stopnews();

exit 0;

##

sub startnews {
 my ($fn) = $_;
 my $l;

 return if $newsstarted;

 if($opt_d) {
 open(NIN, "</dev/tty");
 open(NOUT, ">/dev/tty");
 } else {
 open(NIN, "<&=6");
 open(NOUT, ">&=7");
 }
 autoflush NOUT 1;

 # wait for prompt
 $l = <NIN>;
 $l =~ s/\r?\n$//;
 unless($l =~ /^200 /) {
 print "$fn\0Z$l\n";
 exit;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 print NOUT "mode reader\r\n";
 $l = <NIN>;
 $l =~ s/\r?\n$//;
 unless($l =~ /^200 /) {
 print "$fn\0Z$l\n";
 exit;
 }

 $newsstarted = 1;
}

sub stopnews {
 return unless $newsstarted;

 print NOUT "quit\r\n";
}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Appendix B. Online Qmail Resources
Qmail is well supported by its online community of users. Here are some places to look.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

B.1 Web Sites

There are several excellent sources of qmail information online.

http://cr.yp.to

Dan Bernstein's web site, the official source for qmail and all of his ad-on packages.

http://www.qmail.org

Russ Nelson's qmail resource site, intended to have links to all of the other resources on the
Web.

http://qmail.gurus.com

The author's companion site for this book, containing scripts, updates and corrections, links to
other resources, and ordering info for more copies.

http://www.lifewithqmail.org

Dave Sill's Life with qmail, an online guide to setting up and using qmail. It offers specific
advice about where to install qmail, and where to put all of the files and directories that qmail
needs. This is by far the most widely used setup and the one that qmail experts are the most
familiar with, so it's the one you should use. The file and directory locations used in this book
are consistent with these.

http://www.lifewithqmail.org/ldap/

Henning Brauer's Life with qmail-ldap, a guide to setting up qmail-ldap. Indispensable for
qmail-ldap users.

http://www.ezmlm.org

The home page for the ezmlm-idx mailing list manager, with software and documentation.

http://cr.yp.to
http://www.qmail.org
http://qmail.gurus.com
http://www.lifewithqmail.org
http://www.lifewithqmail.org/ldap/
http://www.ezmlm.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://tinydns.org

Russ Nelson's site for Dan Bernstein's djbdns, a DNS package that relates to BIND roughly as
qmail relates to sendmail. Not required for qmail, but if you're setting up a DNS server along
with your mail server, it's probably the software you want to use.

[Team LiB]

http://tinydns.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

B.2 Mailing Lists

The qmail community has a variety of mailing lists. While it's possible to get excellent advice on
them, the givers of advice can be rather impatient with questions from people who appear not to
have checked the list archive to see if their question has been asked and answered a dozen times
before, or who ask questions without giving enough detail to provide a useful answer. So be sure to
read a list's archives both to look for your question and to get the tone of the list before asking.

Needless to say, all the lists about qmail are maintained in ezmlm or ezmlm-idx so that you subscribe
to any of them by writing to the list address with -subscribe appended and then respond to the
challenge. For anti-spam purposes, Dan Bernstein's lists at list.cr.yp.to also use a program called
qsecretary that sends a confirmation challenge each time you send something to the list.

The qmail list qmail@list.cr.yp.to

A discussion list about qmail is maintained. Archives are available at
http://www.ornl.gov/lists/mailing-lists/qmail.

The qmail announcement list qmailannounce@list.cr.yp.to

Announcements about new versions of qmail. Very low volume.

The ezmlm list ezmlm@list.cr.yp.to

Discussions about ezmlm and ezmlm-idx. Partial archive at
http://madhaus.utcs.utoronto.ca/ezmlm/archive/maillist.html.

[Team LiB]

http://www.ornl.gov/lists/mailing-lists/qmail
http://madhaus.utcs.utoronto.ca/ezmlm/archive/maillist.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animal on the cover of qmail is a tawny owl. Generally, it's dark brown and streaked with black
and buff, but occasionally, it is grey. The tawny owl is the most common owl in Britain, and its
distribution extends from Europe to North Africa and eastward to Iran and western Siberia. It is also
found in India, southern China, Korea, and Taiwan.

The tawny owl does not built its own nest, rather it nests in natural holes and in the abandoned nests
of crows, magpies, and even the nests of buzzards. It remains within its nesting territory all year
round and pairbonds last for life. The female tawny owl will stay with her nestlings while the male
gathers food. While the male hunts for rabbits, moles, mice, shrews, and other rodents, the female
defends her territory passionately with threatening behavior and erratic flying. Occasionally, a human
is attacked; in Britain, at least two people are known to have lost an eye, including Eric Hosking, the
famous bird photographer.

The tawny owl is best known for its distinctive song. The normal song of the male owl announces
territory, courtship, and food. The song begins with a drawn out hooo and then is followed by a pause
before the male owl abruptly sings out ha, followed immediately by huhuhuhooo. Occasionally, the
female tawny owl makes a similar hooting sound in response to the male's call. However, unlike the
clear, resonant sound of the male song, the female's song possesses a wailing quality of wowowhooo.
The duet that is performed between the two has led to a myriad of names for the tawny owl,
including Billy hooter and Jenny howlet.

Sarah Sherman was the production editor and the copyeditor for qmail. Genevieve d'Entremont was
the proofreader. Reg Aubry and Mary Anne Weeks Mayo provided quality control. Tom Dinse wrote
the index.

Emma Colby designed the cover of this book, based on a series design by Edie Freedman. The cover
image is a 19th-century engraving from the Dover Pictorial Archive. Emma Colby produced the cover
layout with QuarkXPress 4.1 using Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted by Joe Wizda to FrameMaker
5.5.6 with a format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra
that uses Perl and XML technologies. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont's TheSans Mono Condensed. The illustrations that appear
in the book were produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and
Adobe Photoshop 6. This colophon was written by Sarah Sherman.

The online edition of this book was created by the Safari production group (John Chodacki, Becki
Maisch, and Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written and
maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

access, limiting

accessory packages

 building

 installing

accessory software

addresses

 aliases

 creating

 virtual domains

 components

 envelopes, cleaning up

 forwarding, converting sendmail aliases file

 handling large numbers of

 local mail

 user identification

 mapping

 users database

 without users database

 mapping individual (virtual domains)

 message headers 2nd

 rewriting, new-inject and

 service gateways, virtual domains

adduser script, user and group id creation

alias mailbox, configuring

aliases

 addresses, creating

 ~alias mailbox

 virtual domains

aliases file

 converting from sendmail

 address forwarding

 mailing lists

 program deliveries

 format

allow directory, deleting expired files

allow rules, spam and virus filtering

analyzing logs

 at rotation time

 daily

Aparently-To header (rewriting)

append file (users database)

assign file, users database, creating

AUTH command

authentication roaming users, POP-before-SMTP

authorization SMTP, TLS security and

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

backup MXes

backup/restore, mail queue

badmailfrom control file

badmailfrom, spam and virus filtering

badrcptto patch, spam and virus filtering

Bcc header (rewriting)

Binc IMAP

binm1 startup file

binm1+df startup file

binm2 startup file

binm2+df startup file

binm3 startup file

binm3+df startup file

bounce handling

 double bounces

 mailing lists

 automatic

 manual

 without forwarding

 single bounces

 triple bounces

bounce messages, customizing for virtual domains

bouncefrom control file

bouncehost control file

bouncesaying program (delivery utility)

BSD Unix, multiple mail system handling

building qmail

 accessory packages

 failure of 2nd

bulk mail handling

bulletins (vpopmail)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

Cc header (rewriting)

CDB file

 local filtering rules

 users database

certificates

 SSL, Courier IMAP

 TLS security 2nd

 creating self-signed

.cf configuration file sendmail, usefulness of

checkpassword 2nd

client hosts, authenticating, TLS security and

command lines (.qmail file)

comment lines (.qmail file)

compatibility, Maildirs with mail clients

compiling, troubleshooting

Composite Block List

concurrencylocal control file

concurrencyremote control file

condredirect program (delivery utility)

conf-break option

conf-cc option

conf-groups option

conf-Id option

conf-patrn configuration file

conf-qmail configuration file

conf-spawn configuration file

conf-split configuration file

conf-users configuration file

configuration

 ~alias mailbox

 control files

 delivery options

 ezmlm lists

 mailbox formats

 options

 per-user subdomains

 POP server

 directories

 listening scrpt

 logging script

 prerequisite packages

 tcpserver

 procmail, as default delivery agent

 sendmail local delivery

 SMTP authorization

 SMTP daemon

 startup files

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 syslog compared to multilog

 testing

 vpopmail

 bulletins

 enforcing quotas

 forwarding mail

 mailboxes

 MySQL replication

 SQL databases

 unknown users

 virtual domains

configuration files

 creating

 SMTP daemon

connection-time filtering tools

 DNSBL and DNSWL

 local rules

connections

 POP server, troubleshooting failures

 refusing, spam and virus filtering

Content-Length header (rewriting)

continuation lines (.qmail files)

control files, configuring

copyright

Courier

 IMAP

 installing

 Pop-before-SMTP and

 relay authorization

 SqWebMail, installing

 Maildir++

customization, program wrapping

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

daemons

 defined

 SMTP

 configuring

 principles of operation

 supervise

 svscan, running

 troubleshooting

 empty logs

 no progress

 no start/crash conditions

databases

 SQL, vpopmail and

 users

 address mapping

 advisability of using

 changing subaddress separator character

 creating

 creating mail-only accounts

 POP toaster and

 principles of operation

databytes control file

Date header (rewriting)

debugging gateway program

DEFAULT environment variable

defaultdomain control file 2nd

 masquerading hostnames

defaulthost control file 2nd

 masquerading hostnames

delivery

 ~alias mailbox

 avoiding remote server crashes

 bulk mail handling

 dialup connections, advice about

 to ezmlm

 local mail

 addresses

 bounce handling 2nd

 bounce handling, double bounces

 bounce handling, triple bounces

 mailboxes and

 problem prevention techniques

 qmail file selection

 user identification

 location options

 mailing list handling

 to mailing lists

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 parallel, limit command and

 procmail, configuring as delivery agent

 remote

 failure error messages

 secondary MX servers

 TCP failure handling

 sendmail local mail, configuration

 testing

 troubleshooting slow delivery

 user database

 utilities

 vpopmail bulletins

delivery time filtering tools

denial-of-service attacks, preventing with limit command

deny rules, spam and virus filtering

dialup connections

 delivery advice

 serialmail

 implementing

directories

 log

 POP server, configuration

 supervise, creating

discussion lists, mail sorting considerations

DNS (Domain Name System)

 virtual domains

DNS Domain Name System

 black lists spam and virus filtering

 purpose of

DNSBL

DNSWL

domains

 addresses

 domain-wide bulletin delivery (vpopmail)

 qmail compared to sendmail

 remote

 routing, uucp hosts

 virtual

 address aliases

 configuring vpopmail

 creating batched gateways

 customized bounce messages

 defined

 ezmlm lists

 management

 mapping addresses with fastforward

 mapping addresses with .qmail files

 mapping individual addresses

 peruser subdomains

 POP toasters

 principles of operation

 service gateway addressing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 service gateways 2nd

 service gateways, per message implementation

 setup

DoS denial-of-service attacks, preventing with limit command

dot-forward

doublebouncehost control file

doublebounceto control file

DSNs (Delivery Status Notices)

DTLINE environment variable

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

elm mail client, Maildir compatibility

email

 principles of operation

envelope addresses, cleaning up

envelopes

 addresses

environment variables, POP-before-SMTP

environment, exec env command

envnoathost control file

 masquerading hostnames

errno problem GLIBC, fixing

error messages, remote delivery failures

etc/password files, adding user and group ids

except program (delivery utility)

exclude file (users database)

exec env command, launching qmail

exiting qmail

expired files, deleting from allow directory

EXT environment variable

EXT2 environment variable

EXT3 environment variable

EXT4 environment variable

ezmlm

 configuring lists

 installing

 list names

 lists, creating

 testing

 virtual domains

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

failure, testing logging of

fastforward package

 installing

 mapping addresses (virtual domains)

 running

file descriptors, qmail-queue

filtering

 connection-time tools

 DNSBL and DNSWL

 local rules

 delivery time tools

 DNSBLs and

 filtering programs, calling

 pop toaster domains

 SMTP-time tools, SMTP daemon

 spam

 spam and virus, criteria

 spam filtering compared to virus filtering

 when in process to apply

firewalls, QMQP setup

flow control, POP server

format

 alias file

 mailboxes

 users database

.forward files

forward lines (.qmail files)

forward program (delivery utility)

forwarding

 mailing lists

 sendmail aliases file, converting

From header (rewriting)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

GLIBC, fixing errno problem

goodrcptto patch

group id, creating

 adduser script

 manually

groups, nofile group

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

Habeas Users List

hang-up signal, virtual domains, refreshing

headers

 addresses

 rewriting for cleanup

helohost control file

HOME environment variable

home startup file

home+df startup file

HOST environment variable

HOST2 environment variable

HOST3 environment variable

HOST4 environment variable

hostnames, masquerading, reason to

hosts

 authenticating, TLS security and

 refusing connections, spam and virus filtering

 remote host identification

 smarthosts

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

IDENT servers, spam and virus filtering

idhost control file

IMAP 2nd

 Binc

 Courier

 installing

 installing SqWebMail

 Pop-before-SMTP and

 Courier Maildir++

include file (users database)

inittab file, svscan, running

injected mail [See received mail]

input pipes, qmail-queue considerations 2nd

installation

 Courier IMAP

 ezmlm

 fastforward package

 mini-qmail

 QMQP clients setup

 QMQP server setup

 multiple copies of qmail

 other packages

 procmail

 qmail

 SMTP authorization and TLS security

 SqWebMail

 vpopmail

Internet mail see email

IP tunneling, remote users 2nd

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

launching qmail

LDAP (Lightweight Directory Access Protocol), integration

licensing see copyright

limit commands

 denial-of-service attacks, preventing

 parallel deliveries

lines in messages, format

Linux

 Maildir compatibility

 multiple mail system handling

list managers

 ezmlm

 configuring lists

 creating lists

 installing

 list names

 testing

 virtual domains

 incoming mail handling

 load sharing

 outgoing mail handling

listening script (POP server), configuration

local clients, compared to POP server

LOCAL environment variable

local mail

 accepting from other hosts

 addresses

 user identification

 bounce handling

 double bounces

 single bounces

 triple bounces

 distinguishing from remote

 mailboxes

 problem prevention

 user database

local part of addresses

local users

 mailbox

 format

 specifying

 relaying mail

localiphost control file

locals control file 2nd

 masquerading hostnames

log directory

logging

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 received mail

 remotely injected mail

 starting

 syslog compared to multilog

logging script (POP server), configuration

login, SMTP authorization

login/password checking program, SMTP authorization

logs

 collection and analysis

 at rotation time

 daily

 logging all mail

 makup of

 summary scripts

 timestamps, TIA (International Atomic Time)

 troubleshooting empty logs

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

mail clients, Maildir compatibility

mail see email

mail sorting

 creating functionality for

 maildrop

 procmail

 subaddresses

 Windows compared to Unix methods

Mail Transfer Agent see MTA

Mail User Agent [See MUA]

MAIL variable

Mail-Followup-To header (rewriting)

Mail-Reply-To header (rewriting)

mail-to-news gateway script

mailbox formats

mailbox lines (.qmail file)

mailboxes

 ~alias

 configuring vpopmail

 deleting old mail

 identifying location to mail programs

 local delivery to

 local users, specifying

 location issues

 sharing

Maildir++ (Courier)

Maildirs

 creating

 local users, delivery rules

 mail sorting, procmail

 message storage compared to mbox

 sharing

maildirserial program

 batched service gateways

maildirsmtp

maildrop, mail sorting

mailer-daemon alias, creating

mailing lists

 bounce handling

 automatic

 manual

 without forwarding

 converting sendmail aliases file

 ezmlm

 configuring lists

 creating lists

 installing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 list names

 testing

 virtual domains

 forwarding

 incoming mail handling

 list file maintenance

 list of

 load sharing

 outgoing mail handling

 sending to

mailnames file (users database)

mailstores

 Maildirs

 mbox

 MH mail system

 opaque types

 transparent types

mailwrapper, sendmail and

maintenance

 expired files, deleting from allow directory

 mailing lists

make qmail

management, virtual domains

masquerading

 hostnames, reason to

 sendmail and

mbox

 local users, delivery rules

 mail sorting, procmail

 message storage compared to Maildir

me control file 2nd

 masquerading hostnames

mess822

message headers, addresses

Message-ID header (rewriting)

messages

 adding to outgoing mail

 delivery location options

 envelopes

 format

 headers

 line format

 MAIL variable

 mailstore

 storage, Maildir compared to mbox

MH mail system, mailstore

mini-qmail

 installing

 QMQP clients setup

 QMQP server setup

modification, program wrapping

morercpthosts control file

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MTA Mail Transfer Agent

 functionality of

MUA Mail User Agent 2nd

 functionality of

multilog, compared to syslog

multiple mailboxes, mail sorting procmail 2nd

mutt client, Maildir compatibility

MX servers

 MX data, overriding

 secondary servers

 virtual domains

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

netqmail

new-inject

 address rewriting

 cleaning injected mail

 envelope addresses

 header rewriting

NEWSENDER environment variable

nofile group

Notice-Requested-Upon-Delivery-To header (rewriting)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

ofmipd

 cleaning remotely injected mail

 log files

 POP-before-SMTP

 running with qmail-smtp

 SUBMIT port

 testing

online resources

opaque mailstores

Open Proxy Monitor

open relays list web site

optimization [See performance optimization]

output, qmail-queue

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

packages

 accessory, building

 fastforward

 installing

 running

 POP server, configuration

parallel deliveries, limit command and

passwords, SMTP authorization

patches

 badrcptto

 ezmlm

 goodrcptto

 qmailqueue

 SMTP authorization and TLS security

percenthack control file

performance optimization

 large servers

 small servers

 spam handling

Perl, gateway program

permissions see copyright

pine client, Maildir compatibility

plusdomain control file

POP server

 compared to local clients

 component programs

 configuring

 listening script

 logging script

 packages

 prerequisite packages

 tcpserver

 design advantages

 flow control

 launching

 POP-before-SMTP, adding

 testing

 Courier IMAP

 troubleshooting

 connection failure

 failure

POP toaster domains, spam and virus filtering

POP toasters

 configuring

 vpopmail

 vpopmail bulletins

 vpopmail mailboxes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 vpopmail virtual domains

 vpopmail, enforcing quotas

 vpopmail, forwarding mail

 vpopmail, SQL databases

 vpopmail, unknown users

 creating vpopmail

 launching vpopmail mailboxes

 multi-host

 MySQL replication and vpopmail

 roaming users, vpopmail mailboxes

 users database and

 virtual domains

POP-before-SMTP

 Courier IMAP and

 roaming user authentication

POP3

port redirection, security and

postmaster alias, creating

preline wrapper

principle of least privilege

proc startup file

proc+df startup file

procmail

 installing

 mail sorting

 preline wrapper

procmail command

program deliveries

 environment variables

 sendmail aliases file, converting

program wrapping

programming language, qmail goals and

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

qmail

 compared to sendmail

 components 2nd

 domains, compared to sendmail

 exiting

 functionality

 installing

 launching

 multiple copies, tools for running

 obtaining

 patches

 running with sendmail

 size of

 testing

 upgrading, advisability of

.qmail files

 local delivery

 locating

 processing

 mapping addresses (virtual domains)

qmail-getpw, address mapping

qmail-local, mail problems, prevention

qmail-newbrt, spam and virus filtering

qmail-pop3d

qmail-popup

qmail-qfilter, spam and virus filtering

qmail-qmqpc, implementation considerations

qmail-qread

qmail-qstat

qmail-queue

 input pipe considerations 2nd

 principles of operation

 replacement options

qmail-remote

 remote host identification

 TLS security

qmail-scanner, spam and virus filtering

qmail-send

 logs

qmail-showctl, testing qmail configuration

qmail-smtp, running with ofmipd

qmail-smtpd, logs

qmailanalog package, log collection and analysis

qmailanalog package, log collection and anaylsis

 at rotation time

 daily

qmailanalog, collecting statistics

http://lib.ommolketab.ir
http://lib.ommolketab.ir

QMQP (Quick Mail Queueing Protocol)

 firewall setup

 smarthost and

QMQP clients, mini-qmail installation

QMQP server, mini-qmail installation

qmqpservers control file

QMTP (Quick Mail Transfer Protocol)

QSBMF (qmail-send Bounce Message Format)

queue

 backup/restore

 examining

queuelifetime control file

qumailqueue patch 2nd

quotas

 enforcing (vpopmail)

 setting

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

rblsmtpd

 logs

 spam and virus filtering

RBLSMTPD variable, spam and virus filtering

rc file, svscan, running

rcphosts control file

rcpthosts (control file)

 virtual domains

rcpthosts control file

received mail

 address rewriting

 cleaning

 new-inject

 new-inject, envelope addresses

 new-inject, header rewriting

 remote hosts

 distinguishing from relayed

 local from other hosts

 logging

 mailing list handling

 qmail-queue, principles of operation

 roaming users

 run file

 SMTP daemon configuration

RECIPIENT environment variable

RELAYCLIENT variable

 remote host mail

relayed mail, distinguishing from injected

relaying mail

 local users

 rules file, updating automatically

remote delivery

 failure error messages

 MX data, overriding

 secondary MX servers

 TCP failure handling

 testing

remote domains

remote mail

 distinguishing from local

 qmail-remote

 remote host identification

 smtproutes, overriding MX data

remote users, IP tunneling

Reply-To header (rewriting)

Request for Comments RFC

Resent-headers (rewriting)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

resources, web sites

RFC Request For Comments, mail system definitions

roaming users

 authentication, POP-before-SMTP

 recognizing

 vpopmail

routing

 remote addresses, treating as local

 sending all to smarthost

 uucp hosts

RPLINE environment variable

RPMs, building qmail and

rules file

 relaying mail, updating rules file automatically

 spam and virus filtering

run files

 creating

 receiving mail, logging

run scripts

 receiving messages

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

security

 access, limiting

 environment variables

 port redirection

 TLS, SMTP authorization and

self-signed certificates, creating

SENDER environment variable

sendmail

 aliases file

 address forwarding

 converting

 mailing lists

 program deliveries

 cf configuration file, usefulness of

 domains, compared to qmail

 features compared to qmail

 local mail delivery configuration

 masquerading

 multiple mail system switching

 running with qmail

 trusted users

serialmail

serialmail package

 batched service gateways

 implementing

serialmail,

serialsmtp

service gateways

 local-only

 mail-to-news script

 virtual domains 2nd

 addressing

 creating batched gateways

 per-message implementation

setlock

setuidguid command, logging and

sharing Maildirs

Simple Mail Transfer Protocol. See SMTP

smarthost

 QMQP and

 routing all mail to

smarthosts

SMTP daemon

 configuration

 principles of operation

 stray newline errors

SMTP servers, adding POP-before-SMTP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SMTP Simple Mail Transfer Protocol

 authorization, TLS security and

 RFC

 spam and virus filtering

SMTP-time filtering tools, SMTP daemon

smtpgreeting control file 2nd

smtproutes (control file)

 MX data, overriding

smtproutes control file

software, accessory to qmail

spam filtering

 compared to virus filtering

 connection-time tools

 DNSBL and DNSWL

 local rules

 criteria

 delivery time tools

 DNSBLs

 performance optimization

 pop toaster domains

 remotely injected mail

 SMTP-time tools, SMTP daemon

 when in process to apply

Spamassassin

Spamhaus Block List

SQL databases, vpopmail and

SqWebMail, installing

SSL certificates, Courier IMAP

startup files

statistics (log files), collecting

stray newline errors (SMTP daemon)

subaddresses

 mail sorting

 outgoing mail

 separator character, changing

subdomains, per-user setup

SUBMIT port, ofmipd, creating

subusers file (users database)

summary scripts (log analysis)

supervise daemon

supervise directories, creating

svscan daemon, running

syntax

 address forwarding, converting sendmail aliases file

 hang-up signal (refreshing virtual domains)

 launching qmail

 mailing lists, converting sendmail aliases list

 POP server, launching

 preline wrapper

 program deliveries, converting sendmail aliases file

 program wrapping

 run file, procmail as delivery agent 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 svscan, launching

syslog compared to multilog

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

TAI (International Atomic Time), log file timestamps and

TCP, failure handling

tcprules, updating automatically

tcpserver

 local filtering rules

 logs

 ofmipd and

 POP flow control and

 POP server, configuration

 receiving messages

 relaying mail

 running qmail-smtp with ofmipd

testing

 configuration

 ezmlm

 gateway program

 mail deliverytesting

 mail delivery

 ofmipd

 POP server

 Courier IMAP

 qmail

timeoutconnect control file

timeoutremote control file

timeoutsmtpd control file

timestamps (log files), TIA (International Atomic Time)

TLS security

 self-signed certificates, creating

 SMTP authorization and

To header (rewriting)

transparent mailstores

transport-level security see TLS security

troubleshooting

 bounces to valid users

 compiling

 daemons

 empty logs

 no progress

 no start/crash conditions

 GLIBC errno problem

 POP server

 connection failure

 failure

 slow delivery

trusted users, sendmail

tuning [See performance optimization]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

ucpsi-tcp

UFLINE environment variable

Unix

 mail sorting

 Maildir compatibility

upgrading, advisability of

user database

USER environment variable

user id

 creating

 adduser script

 manually

 local mail delivery

users

 ~alias mailbox

 local, mailbox format

 mailboxes, creating Maildirs

 remote, IP tunneling

 roaming

 authenticating with POP-before-SMTP

 recognizing

 vpopmail

users database

 address mapping

 advisability of

 creating

 mail-only accounts, creating

 POP toaster and

 principles of operation

 subaddress separator character, changing

uucp hosts, routing

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

vadddomain, configuring virtual domains (vpopmail)

VERP (Variable Envelope Return Path)

 mailing list bounce handling

virtual domain management

virtual domains

 address aliases

 address mapping

 fastforward

 .qmail files

 customized bounce messages

 defined

 ezmlm lists

 mapping individual addresses

 per-user subdomains

 POP toasters

 principles of operation

 service gateways 2nd

 addressing

 creating batched gateways

 pre-message implementation

 setup

 vpopmail, configuring

virtualdomains control file

virus filtering

 compared to spam filtering

 connection-time tools

 DNSBL and DNSWL

 local rules

 criteria

 delivery time tools

 DNSBLs

 pop toaster domains

 SMTP-time tools, SMTP daemon

 when in process to apply

vpopmail

 bulletins

 configuring

 vpopmail

 enforcing quotas

 forwarding mail

 installing

 launching

 multi-host POP toasters

 MySQL replication and

 roaming users

 SQL databases

 unknown user handling

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

web mail

web sites

 block lists

 RFCs

web siteslist of qmail resources

webmaster alias, creating

Windows, mail sorting

wrappers, program wrapping functionality

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

zoverall log summary report

zsuids log summary report

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	Main Page
	Table of content
	Copyright
	Preface
	What's Inside?
	Style Conventions
	Examples and Patches
	Comments and Questions
	Acknowledgments

	Part I: Introduction to Qmail
	Chapter 1. Internet Email
	1.1 Mail Basics
	1.2 Mailstore
	1.3 The Structure of Internet Mail

	Chapter 2. How Qmail Works
	2.1 Small Programs Work Together
	2.2 What Does a Mail Transfer Agent (MTA) Do?
	2.3 The Pieces of Qmail

	Chapter 3. Installing Qmail
	3.1 Where to Find Qmail
	3.2 Creating the Users and Groups
	3.3 Configuring and Making the Software
	3.4 Patching Qmail

	Chapter 4. Getting Comfortable with Qmail
	4.1 Mailboxes, Local Delivery, and Logging
	4.2 An Excursion into Daemon Management
	4.3 Setting Up the Qmail Configuration Files
	4.4 Starting and Stopping Qmail
	4.5 Incoming Mail
	4.6 Procmail and Qmail
	4.7 Creating Addresses and Mailboxes
	4.8 Reading Your Mail
	4.9 Configuring Qmail's Control Files
	4.10 Using ~alias
	4.11 fastforward and /etc/aliases

	Chapter 5. Moving from Sendmail to Qmail
	5.1 Running Sendmail and Qmail in Parallel
	5.2 User Issues
	5.3 System Issues
	5.4 Converting Your Aliases File
	5.5 Trusted Users

	Chapter 6. Handling Locally Generated Mail
	6.1 qmail-queue
	6.2 Cleaning Up Injected Mail
	6.3 Accepting Local Mail from Other Hosts
	6.4 Distinguishing Injected from Relayed Mail

	Chapter 7. Accepting Mail from Other Hosts
	7.1 Accepting Incoming SMTP Mail
	7.2 Accepting and Cleaning Up Local Mail Using the Regular SMTP Daemon
	7.3 Dealing with Roaming Users
	7.4 SMTP Authorization and TLS Security
	7.5 POP-before-SMTP

	Chapter 8. Delivering and Routing Local Mail
	8.1 Mail to Local Login Users
	8.2 Mail Sorting

	Chapter 9. Filtering and Rejecting Spam and Viruses
	9.1 Filtering Criteria
	9.2 Places to Filter
	9.3 Spam Filtering and Virus Filtering
	9.4 Connection-Time Filtering Tools
	9.5 SMTP-Time Filtering Tools
	9.6 Delivery Time Filtering Rules
	9.7 Combination Filtering Schemes

	Part II: Advanced Qmail
	Chapter 10. Local Mail Delivery
	10.1 How Qmail Delivers Local Mail
	10.2 Mailbox Deliveries
	10.3 Program Deliveries
	10.4 Subaddresses
	10.5 Special Forwarding Features for Mailing Lists
	10.6 The Users Database
	10.7 Bounce Handling

	Chapter 11. Remote Mail Delivery
	11.1 Telling Local from Remote Mail
	11.2 qmail-remote
	11.3 Locating the Remote Mail Host
	11.4 Remote Mail Failures
	11.5 Serialmail

	Chapter 12. Virtual Domains
	12.1 How Virtual Domains Work
	12.2 Some Common Virtual Domain Setups
	12.3 Some Virtual Domain Details

	Chapter 13. POP and IMAP Servers and POP Toasters
	13.1 Each Program Does One Thing
	13.2 Starting the Pop Server
	13.3 Testing Your POP Server
	13.4 Building POP Toasters
	13.5 Picking Up Mail with IMAP and Web Mail

	Chapter 14. Mailing Lists
	14.1 Sending Mail to Lists
	14.2 Using Ezmlm with qmail
	14.3 Using Other List Managers with Qmail
	14.4 Sending Bulk Mail That's Not All the Same

	Chapter 15. The Users Database
	15.1 If There's No Users Database
	15.2 Making the Users File
	15.3 How Qmail Uses the Users Database
	15.4 Typical Users Setup
	15.5 Adding Entries for Special Purposes

	Chapter 16. Logging, Analysis, and Tuning
	16.1 What Qmail Logs
	16.2 Collecting and Analyzing Qmail Logs with Qmailanalog
	16.3 Analyzing Other Logs
	16.4 Tuning Qmail
	16.5 Tuning to Deal with Spam
	16.6 Looking at the Mail Queue with qmail-qread

	Chapter 17. Many Qmails Make Light Work
	17.1 Tools for Multiple Computers and Qmail
	17.2 Setting Up mini-qmail

	Chapter 18. A Compendium of Tips and Tricks
	18.1 Qmail Won't Compile
	18.2 Why Qmail Is Delivering Mail Very Slowly
	18.3 Stuck Daemons and Deliveries
	18.4 Mail to Valid Users Is Bouncing or Disappearing
	18.5 Mail Routing
	18.6 Local Mail Delivery Tricks
	18.7 Delivering Mail on Intermittent Connections
	18.8 Limiting Users' Mail Access
	18.9 Adding a Tag to Each Outgoing Message
	18.10 Logging All Mail
	18.11 Setting Mail Quotas and Deleting Stale Mail
	18.12 Backing Up and Restoring Your Mail Queue

	Appendix A. A Sample Script
	A.1 A Mail-to-News Gateway

	Appendix B. Online Qmail Resources
	B.1 Web Sites
	B.2 Mailing Lists

	Colophon
	Index
	Index A
	Index B
	Index C
	Index D
	Index E
	Index F
	Index G
	Index H
	Index I
	Index L
	Index M
	Index N
	Index O
	Index P
	Index Q
	Index R
	Index S
	Index T
	Index U
	Index V
	Index W
	Index Z

