
 < Day Day Up >

• Table of Contents

• Index

• Reviews

• Reader Reviews

• Errata

• Academic

• Hacking Word

Word Hacks

By Andrew Savikas

Publisher: O'Reilly

Pub Date: November 2004

ISBN: 0-596-00493-1

Pages: 396

Become a power user with Word Hacks! Insider tips, tools, tricks, and hacks help you accomplish
your pressing tasks, address your frequent annoyances, and solve even your most complex
problems. The book examines Word's advanced (and often hidden) features and delivers clever,
time-saving hacks on taming document bloat, customization, complex search and replace, tables and
comments, XML, and even using Google without leaving Word!

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

• Table of Contents

• Index

• Reviews

• Reader Reviews

• Errata

• Academic

• Hacking Word

Word Hacks

By Andrew Savikas

Publisher: O'Reilly

Pub Date: November 2004

ISBN: 0-596-00493-1

Pages: 396

 Copyright

 Credits

 About the Author

 Contributors

 Dedication

 Preface

 Why Word Hacks?

 How to Use This Book

 How This Book Is Organized

 Conventions Used in This Book

 Using Code Examples

 How to Contact Us

 Got a Hack?

 Acknowledgments

 Chapter 1. Word Under the Hood

 Introduction: Hacks #1-2

 Hack 1. Tweak the Interface

 Hack 2. Macros 101: A Crash Course

 Chapter 2. The Word Workspace

 Introduction: Hacks #3-13

http://lib.ommolketab.ir

 Hack 3. Hack Your Shortcut Menus

 Hack 4. Create Custom Views

 Hack 5. Revert to Saved

 Section 2.5. Quickly Change Your File Open Path

 Hack 7. Report and Review Your Options

 Hack 8. Force Internet Explorer to Hand Off Word Documents

 Hack 9. Tweak the New Document Task Pane

 Hack 10. Browse All Button Images

 Hack 11. Create a Custom Button Image

 Hack 12. Hack the Office Assistant

 Hack 13. Build a Better MRU

 Chapter 3. Formatting, Printing, and Table Hacks

 Introduction: Hacks #14-26

 Hack 14. Insert Placeholder Text

 Hack 15. Sample Your System Fonts

 Hack 16. Tab Me to Your Leader

 Hack 17. Make Styles More Manageable with Aliases

 Hack 18. Make a Simple Bar Graph

 Hack 19. Put Footnotes in Tables

 Hack 20. Repeat a Section Heading Across Pages

 Hack 21. Simplify Borders Around Imported Images

 Hack 22. Make More Flexible Captions

 Hack 23. Make PDFs Without Acrobat

 Hack 24. Create a Custom Text Watermark

 Hack 25. Include Only Part of a Heading in a TOC

 Hack 26. Put Crop Marks on a Page

 Chapter 4. Editing Power Tools

 Introduction: Hacks #27-44

 Hack 27. Crunch Numbers Quickly in Word

 Hack 28. Unlink Every Hyperlink

 Hack 29. Exclude Text from Find and Replace

 Hack 30. Use Character Codes to Find or Insert Special Characters

 Hack 31. Find/Replace in Multiple Files

 Hack 32. Find and Replace Without Find and Replace

 Hack 33. Quickly Create a Custom Dictionary

 Hack 34. Create a Dictionary Exclusion List

 Hack 35. Disable Overtype Permanently

 Hack 36. Delete All Comments in a Document

 Hack 37. Delete All Bookmarks in a Document

 Hack 38. Turn Comments into Regular Text

 Hack 39. Apply Context-Sensitive Formatting

 Hack 40. Send a Document as a Plain-Text Outlook Email

 Hack 41. Swap Revision Authors

 Hack 42. Corral Basic Bullets and Numbering

 Hack 43. Cross-Reference Automatically

 Hack 44. Hack More Flexible Cross-Referencing

http://lib.ommolketab.ir

 Chapter 5. Templates and Outlines

 Introduction: Hacks #45-50

 Hack 45. Create an Outline-Only Copy of a Document

 Hack 46. Build a Better Outline

 Hack 47. Use an Outline to Build an Org Chart

 Hack 48. Attach the Same Template to Multiple Files

 Hack 49. Quickly Attach a Workgroup Template

 Hack 50. Manage Macros with Templates

 Chapter 6. Housekeeping

 Introduction: Hacks #51-56

 Hack 51. Troubleshoot Common Word Problems

 Hack 52. Control Word Startup

 Hack 53. Sidestep Formatting Restrictions

 Hack 54. Rename Built-in Styles

 Hack 55. Clean Out Linked "Char" Styles

 Hack 56. Reduce Document Bloat by Deleting Old List Templates

 Chapter 7. Macro Hacks

 Introduction: Hacks #57-69

 Hack 57. Get Simple User Input for a Macro

 Hack 58. Keep the Macros Dialog Box Tidy

 Hack 59. Do Something to Every File in a Directory

 Hack 60. Run Macros Automatically

 Hack 61. Intercept Word Commands

 Hack 62. Keep Custom Menus Under Control

 Hack 63. Use Word Dialogs in a Macro

 Hack 64. Optimize Your VBA Code

 Hack 65. Show Progress from VBA

 Hack 66. Hack Documents with For Each Loops

 Hack 67. Store Settings and Data in .ini Files

 Hack 68. Generate Random Numbers

 Hack 69. Hack with Application Events

 Chapter 8. Forms and Fields

 Introduction: Hacks #70-79

 Hack 70. Fake (and Easy) Fill-in Forms

 Hack 71. Hack DATE Fields

 Hack 72. Perform Calculations with Formula Fields

 Hack 73. Format Numeric Field Results

 Hack 74. Use Fields for Heavy-Duty Calculations

 Hack 75. Include an Interactive Calendar in Your Forms

 Hack 76. Use Custom Shortcut Menus to Make Frequent Selections

 Hack 77. Number Documents Sequentially

 Hack 78. Cross-Reference Among Documents

 Hack 79. Convert Field Codes to Text and Back Again

 Chapter 9. Advanced Word Hacks

 Introduction: Hacks #80-89

 Hack 80. Emulate Emacs with VBacs

http://lib.ommolketab.ir

 Hack 81. Use Word as a Windows Backup Utility

 Hack 82. Perform Power Text Searches with Regular Expressions

 Hack 83. Show a Directory Structure as a Word Outline

 Hack 84. Automate Word from Other Applications

 Hack 85. Hack Word from Python

 Hack 86. Hack Word from Perl

 Hack 87. Hack Word from Ruby

 Hack 88. Use Python from Word

 Hack 89. Use Perl from Word

 Chapter 10. Word 2003 XML Hacks

 Introduction: Hacks #90-100

 Hack 90. Get a Command-Line XML Processor

 Hack 91. Create a Word Document in Notepad

 Hack 92. Get the XML Toolbox

 Hack 93. Use IE to Inspect WordprocessingML Documents

 Hack 94. Transforming XML into a Word Document

 Hack 95. Batch-Process Word Documents with XSLT

 Hack 96. Standardize Documents with XSLT

 Hack 97. Remove Direct Formatting with XSLT

 Hack 98. Remove Linked "Char" Styles with XSLT

 Hack 99. Use Google from Your Macros

 Hack 100. Google Without Leaving Word

 Colophon

 Index

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Copyright © 2005 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. The Hacks series designations, Word Hacks, the image of a handheld mixer, and
related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

Small print: The technologies discussed in this publication, the limitations on these technologies that
technology and content owners seek to impose, and the laws actually limiting the use of these
technologies are constantly changing. Thus, some of the hacks described in this publication may not
work, may cause unintended harm to systems on which they are used, or may not be consistent with
applicable user agreements. Your use of these hacks is at your own risk, and O'Reilly Media, Inc.
disclaims responsibility for any damage or expense resulting from their use. In any event, you should
take care that your use of these hacks does not violate any applicable laws, including copyright laws.

 < Day Day Up >

http://safari.oreilly.com
http://lib.ommolketab.ir

 < Day Day Up >

Credits
About the Author

Contributors

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

About the Author

Andrew Savikas works in the O'Reilly Tools Group, where he helps the Production department turn
manuscripts into O'Reilly books. He developed and maintains the custom Word template and VBA
macros used by all the O'Reilly authors who don't insist on writing in POD. Except for the ones who
insist on writing in XML. Or troff.

Andrew also works with FrameMaker, FrameScript, InDesign, DocBook XML, Perl, Python, Ruby, and
whatever else he finds lying around the office. He has a degree in Communications from the
University of Illinois at Urbana-Champaign and lives in Boston with his wife Audrey, who loves to see
her name in print.

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Contributors

The following people contributed their hacks, writing, and inspiration to this book:

Andrew Bruno (http://qnot.org) received his B.S. degree in Computer Science from the
University of Buffalo. After enduring many long winters in Western New York, he now resides in
Northern California, where the sun shines for more than two months out of the year. He
currently works as a Software Engineer for O'Reilly Media, Inc., hacking on various internal
software projects. He also enjoys programming in Perl, Java, and C++.

Sean M. Burke is the author of O'Reilly's RTF Pocket Guide, Perl and LWP, and many of the
articles in the Best of the Perl Journal volumes. An active member in the Perl open source
community, he is one of CPAN's most prolific module authors and is an authority on markup
languages. Trained as a linguist, he also develops tools for software internationalization and
native-language preservation. He lives in Ketchikan, Alaska, with his feline overlord, Fang
Dynasty.

Ian Burrel

Greg Chapman is a former mechanic who, after years of study from afar, discovered that he has
exactly one trait in common with a good programmer: he's lazy enough to work hard at not
repeating the same task over and over again. A former Microsoft MVP with more interests than
time, he looks at Microsoft Word as a good place to learn development and manage systems so
that he can spend more time flying and less time working. These activities keep him engaged in
Chicago, Illinois, and it's easy to keep track of him through Dian Chapman's eZine, TechTrax, at
its web site, http://www.mousetrax.com.

Paul Edstein has been using personal computers since the late 1980s, mostly with a variety of
word processors and spreadsheets. Along the way, he dabbled with PC-based assembly
language programming and Windows-based VB and VBA coding. He has also designed some
highly specialized mainframe and midrange applications. Drawing on his experience with
Microsoft Office applications, Paul began contributing to various newsgroups in 2002. In the
course of solving problems, he "taught" Word how to calculate logarithms and trigonometry
values; add or subtract a number of days, weeks, months or years to/from a date; and perform
various other document automation functions using field codes instead of macros.

Mark Hammond is an independent Microsoft Windows consultant working out of Melbourne,
Australia. He studied computer science at the South Australian Institute of Technology (now the
University of South Australia) and then worked with several large financial institutions. He
started his consulting operation in 1995. Mark has produced many of the Windows extensions
for Python, including PythonWin, Active Scripting, and Active Debugging support, and
coauthored the COM framework and extensions. He is also a leading authority on Active
Scripting and related technologies and has spoken at Microsoft's three most recent Professional
Developers conferences. Apart from being a father to his teenage daughter, having an interest
in live music, and providing way too many free Python extensions, Mark has no life!

http://qnot.org
http://www.mousetrax.com
http://lib.ommolketab.ir

Guy Hart-Davis has been working with Microsoft Word since before it learned to run on
Windows. He writes macros and computer books for fun and (occasionally) profit. Guy's most
recent books include Windows XP and Office 2003 Keyboard Shortcuts, Mac OS X and Office v.X
Keyboard Shortcuts, and Adobe Creative Suite Keyboard Shortcuts.

Evan Lenz is an application developer whose primary expertise is in XSLT. As a member of the
W3C XSL Working Group, he has been contributing to the development of XPath 2.0, XSLT 2.0,
and XQuery 1.0. He has spoken at various XML conferences and helped author Wrox's
Professional XML, Second Edition, and Early Adopter XQuery (foreword). Evan holds a Bachelor
of Music degree from Wheaton College, with majors in Piano Performance and Philosophy. He
currently lives in Seattle, Washington, with his wife Lisa and son Samuel. Web site:
http://www.xmlportfolio.com.

Jack M. Lyon is a book editor who got tired of working the hard way and started creating
programs to automate editing tasks in Microsoft Word. In 1996, he founded the Editorium
(www.editorium.com) to make these programs available to other publishing professionals. Jack
also publishes Editorium Update, a free newsletter about editing in Microsoft Word. The
managing editor of a publishing house in Salt Lake City, he is the coauthor of Managing the
Obvious.

Dan Mueller is a software developer. Although he earned a computer engineering degree from
the University of Illinois, he would have preferred to major in simple algebra (if there were such
a major). Dan is the owner of several O'Reilly books and is ecstatic to have the opportunity to
contribute to one.

Gus Perez (http://gusperez.com and http://blogs.msdn.com/gusperez) is the QA Lead for the
C# Compiler team at Microsoft, where he has worked for almost six years. He started with the
Visual J++ and the Visual C++ teams before joining the Visual C# group, which he has been
with since its inception. In his spare time, Gus hacks away on side programming projects; plays
guitar in a small, local rock band (http://opus80.com); and plays golf whenever the rain isn't
too bad in Seattle.

Shyam Pillai (http://www.mvps.org/skp/)

Phil Rabichow is a retired prosecutor who started tinkering with computers and Microsoft Word
about 10 years ago. He was part of the old WOPR Lounge, and became a WMVP (Woody Most
Valuable Professional) in January 2001. He spends his spare time coaching his daughter's soccer
team, shooting pool, playing tennis, and climbing.

Christopher Rath has been a computing enthusiast since first purchasing a programmable
calculator in 1977. His first serious computer hobbying was focused on the HP-41c calculator,
and he landed his first job in the industry because of his experience programming CPU
microcode on the HP-41c processor. Besides VBacs, his other notable contribution to the Net
community is his Songbook LaTeX style, which-along with other tools, tips, and opinion-is
available from his vanity web site (http://rath.ca). Christopher works as a business consultant,
leveraging his 20+ years of Information Technology experience to improve the value businesses
gain from their IT investments.

Omar Shahine (http://www.shahine.com/omar) is a Lead Program Manager at Microsoft
Corporation working on the Hotmail "Front Door" team. Before that, Omar spent five years
working on various products in the Macintosh Business Unit at Microsoft, where he helped ship
numerous versions of Outlook Express, Entourage, and Virtual PC.

http://www.xmlportfolio.com
http://gusperez.com
http://blogs.msdn.com/gusperez
http://opus80.com
http://www.mvps.org/skp/
http://rath.ca
http://www.shahine.com/omar
http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Dedication
For Stan

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Preface
Few software applications are as ubiquitous as Microsoft Word, which has been around for more than
20 years-practically an eternity in computer time. Even as competitors, such as OpenOffice.org,
emerge from the open source community, their success relies heavily on how much they look and act
like Word. When most people think of word processing, they think of Microsoft Word.

Word is a powerful word processor, but it offers a lot more. It is almost infinitely customizable, which
means you don't have to settle for the features and interface that come "out of the box." But more
importantly, it is also almost infinitely programmable. Using Visual Basic for Applications (VBA), you
can do from a program almost anything you can do from the Word interface, and you can usually do
it much, much faster.

People often refer to programs written to control Word using VBA as macros. The term "macro,"
short for "macro command," typically means a sequence of commands (usually keystrokes) recorded
from within an application and played back as a single command. While you can indeed record
macros like that in Word using VBA, VBA is much more than a macro language: it's a powerful, full-
featured programming language. But old habits die hard, so this book will often refer to VBA
programs as macros.

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Why Word Hacks?

Hacking has a bad reputation in the press. They use the term hackers to refer to people who break
into systems or wreak havoc with computers as their weapons. Among people who write code,
though, the term hack refers to a "quick-and-dirty" solution to a problem, or a clever way to get
something done. And the term hacker is meant very much as a compliment, referring to someone as
being creative, or having the technical chops to get things done. The Hacks series is an attempt to
reclaim the word, document the good ways people are hacking, and pass the hacker ethic of creative
participation on to the uninitiated. Seeing how others approach systems and problems is often the
quickest way to learn about a new technology.

Word Hacks is about solving problems. That may mean automating repetitive tasks, adding sorely
needed features, rearranging menus and toolbars, and even controlling Word from another program.
Word is used by millions of people every day, and 100 hacks can't possibly cover all the problems
those users will face. So this book is also about giving you the tools and the inspiration to hack
solutions for your own unique Word problems. While you'll find beginning, intermediate, and
advanced hacks between the covers, this book is not an exhaustive treatment of everything you can
do with Microsoft Word.

You can use most of the hacks in this book even if you know nothing about VBA. But truly hacking
Word means using VBA, and the dozens of macros in this book, ranging from simple to very complex,
may even help you learn a bit of VBA.

When creating VBA macros for this book, I chose to use readable rather than more robust code. If
you plan to use these macros in a business or production environment, you should include sufficient
error handling and data validation. In many cases, I also sacrificed performance for readability. For
most Word users, and most Word documents, the difference is negligible. However, if you work with
long documents, you might find more efficient-but more complex-ways to perform many of these
hacks. For tips on improving the performance of your VBA code, see [Hack #64] in Chapter 7.

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

How to Use This Book

You can read this book from cover to cover if you like, but each hack stands on its own, so feel free
to browse and jump to the different sections that interest you most. If there's a prerequisite you
need to know about, a cross-reference will guide you to the right hack.

The hacks in this book are meant for a broad audience, from those who've just started to grasp the
customization potential of Word to macro mavens looking for new perspectives on thorny problems.
There's even a chapter on what is potentially the most significant addition to Word in years: support
for XML (Extensible Markup Language), a data format that promises to make your documents
compatible with the non-Word world.

A Note About Word Versions

There are substantial differences among the versions of Word still commonly used, which include
Word 2000, Word 2002 (also known as Word XP), and Word 2003. Though most of the hacks in this
book will work with any of these versions, there are some that use features not available in Word
2000 or Word 2002. This is noted in the text. And even though some folks are still banging away at
Word 97, and many of these hacks will work with Word 97, this book explicitly covers only Word
2000, 2002, and 2003.

Chapter 10 is applicable only to Word 2003, and there are even some differences among versions of
that version, which are noted in the text. However, in deference to the large group of users still
hacking away with Word 2000, several of the hacks in this book show how to replicate some of the
best features found in later versions, which just might save you the upgrade fee this time around.

Unfortunately, Word for Macintosh is, from a hacker's perspective, a completely different program
than Word for Windows, as anyone who's tried to write macros on a Mac can attest. Though many of
the hacks in this book could be adapted for use on a Macintosh, this book covers only Word for
Windows.

Where to Learn More

Many of the hacks in this book, particularly the advanced ones, assume that you're familiar with
certain Word features. If you're looking for more of a tutorial or reference on Word or Word macros,
check out the following books also published by O'Reilly Media:

Word Pocket Guide

Writing Word Macros

VB and VBA in a Nutshell

http://lib.ommolketab.ir

There are also a number of web sites devoted to Microsoft Word, along with a large online community
of folks who've come together to help each other manage Microsoft Word. The following sites are
particularly helpful:

Microsoft's official Office Site (http://office.microsoft.com/)

Official news and articles, plus tips and tricks.

Office Update (http://office.microsoft.com/officeupdate/)

Microsoft's update site for Office, which includes service packs, security patches, program
updates, and new add-ins.

Microsoft Help and Support (http://support.microsoft.com/)

Valuable technical resources for all of Microsoft's products, including a searchable Knowledge
Base with thousands of how-to and tech support articles on Word.

Woody's Watch (http://www.woodyswatch.com/)

Woody Leonhard's advice, news, and newsletters on all Microsoft Office products, including
Word.

Word's Most Valued Professional (MVP) Site (http://word.mvps.org/)

Home to the members of Microsoft's Most Valuable Professional (MVP) group for Word, this site
contains FAQs, tutorials, downloads, and other useful information.

Word newsgroups

Microsoft runs a news server that hosts a number of Word-related newsgroups. You can read
the newsgroups using Outlook Express, or Internet Explorer 5.0 or later. The news server is
news://msnews.microsoft.com (or just msnews.microsoft.com if you are configuring it in your
newsreader); the Word newsgroups all start with microsoft.public.word.

Microsoft Template Gallery (http://office.microsoft.com/templates/)

Microsoft offers templates for all of the Office products, including Word.

 < Day Day Up >

http://office.microsoft.com/
http://office.microsoft.com/officeupdate/
http://support.microsoft.com/
http://www.woodyswatch.com/
http://word.mvps.org/
http://office.microsoft.com/templates/
http://lib.ommolketab.ir

 < Day Day Up >

How This Book Is Organized

The book is divided into several chapters, organized by subject:

Chapter 1

This chapter offers a couple of introductory hacks to bring you up to speed on several of the
topics and techniques used throughout the rest of the book, such as modifying menus and
toolbars and creating and editing VBA macros.

Chapter 2

This chapter includes hacks for improving the way you interact with Word. Among other things,
it shows you how to gain more control over view and options settings, as well as how to add
custom images to toolbar buttons.

Chapter 3

This chapter explores Word's formatting features, including hacks on creating better image
borders and custom watermarks. It also shows you how to create footnotes for tables.

Chapter 4

From advanced wildcard searching to automatic cross-referencing, the hacks in this chapter are
all about editing efficiently. Several hacks in this chapter show you how to add features not
built into Word, such as the ability to remove all hyperlinks or bookmarks in a document at
once.

Chapter 5

This chapter includes hacks that show you how to take advantage of two of Word's most
powerful features, and even how to use Word outlines to automatically generate attractive
organizational charts.

Chapter 6

http://lib.ommolketab.ir

This chapter tackles some of Word's most aggravating annoyances, such as document bloat
and corrupt registry data, and also shows you a few ways to hack your way around some of
Word's built-in limitations.

Chapter 7

The hacks in this chapter offer some intermediate and advanced techniques for improving
macro performance. In addition, there are hacks on moving beyond VBA basics and on doing
things such as adding a progress bar to a macro and creating macros that automatically
respond to application events.

Chapter 8

The hacks in this chapter show you how to take full advantage of Word's fields, which can be
intimidating but offer powerful control over document content. Among other things, this
chapter shows you how to easily add an interactive calendar to a form, perform advanced date
calculations automatically, and sequentially number documents.

Chapter 9

In true hacking spirit, this chapter explores how to cajole and contort Word into doing things no
word processor was meant to do, such as performing full system backups (with reporting) and
emulating the popular Unix text editor Emacs. In addition, there are hacks on controlling Word
from other Office applications and from three of the most popular scripting languages (Perl,
Python, and Ruby), along with a hack on how to use VBScript's powerful regular expression
functions from within Word.

Chapter 10, Word 2003 XML Hacks

This chapter shows you how important XML support is to Word 2003. There are several hacks
on using XSLT (Extensible Stylesheet Language Transformations) to create, process, and edit
Word documents, and even a hack on how to add a Google search feature to the Word 2003
Task Pane.

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Conventions Used in This Book

The following is a list of the typographical conventions used in this book:

Italics

Used for emphasis, new terms where they are defined, and URLs.

Constant width

Used to show code examples, the contents of files, console output, and the names of variables,
commands, and other code excerpts. Also used for VBA macro and module names.

Constant width bold

Used to highlight portions of code (typically new additions to old code) and to indicate text that
should be typed literally by the user.

Constant width italic

Used in code examples and tables to show sample text that should be replaced with user-
supplied values.

_

Underscores are the line-continuation characters in the VBA language. An underscore at the
end of a line of VBA code indicates that the statement continues to the next line. These line
breaks have been added to fit the text to the width of a page, as well as to aid in readability.
They are optional, but if used, must be the final character on a line and must be preceded by a
space. Word treats two (or more) lines of code separated by such an underscore as a single
line of code.

Used to indicate an optional line break inserted within a field code. To insert a line break within

http://lib.ommolketab.ir

Word, type Shift-Enter. The character doesn't display on screen unless you've checked the box
marked Paragraph Marks under Tools Options View.

You should pay special attention to notes set apart from the text with the following icons:

This is a tip, suggestion, or general note. It contains useful supplementary
information about the topic at hand.

This is a warning or note of caution, often indicating that your money or your
privacy might be at risk.

The thermometer icons, found next to each hack, indicate the relative complexity of the hack:

 beginner moderate expert

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Using Code Examples

This book will help you get your job done. In general, you may use the code in this book in your
programs and documentation. You do not need to contact us for permission unless you're
reproducing a significant portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "Word Hacks by Andrew Savikas. Copyright 2004 O'Reilly Media,
Inc., 0-596-00493-1."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to
contact us at permissions@oreilly.com.

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

How to Contact Us

We have tested and verified the information in this book to the best of our ability, but you may find
that features have changed (or even that we have made mistakes!). As a reader of this book, you
can help us to improve future editions by sending us your feedback. Please let us know about any
errors, inaccuracies, bugs, misleading or confusing statements, and typos that you find anywhere in
this book.

Please also let us know what we can do to make this book more useful to you. We take your
comments seriously and will try to incorporate reasonable suggestions into future editions. You can
write to us at:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

To ask technical questions or to comment on the book, send email to:

bookquestions@oreilly.com

The web site for Word Hacks lists examples, errata, and plans for future editions. You can find this
page at:

http://www.oreilly.com/catalog/wordhks

For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com

 < Day Day Up >

http://www.oreilly.com/catalog/wordhks
http://www.oreilly.com
http://lib.ommolketab.ir

 < Day Day Up >

Got a Hack?

To explore Hacks books online or to contribute a hack for future titles, visit:

http://hacks.oreilly.com

 < Day Day Up >

http://hacks.oreilly.com
http://lib.ommolketab.ir

 < Day Day Up >

Acknowledgments

Thanks first to all of my colleagues at O'Reilly, who have provided the most enriching and exciting
workplace anyone could ask for. Thanks especially to Rael Dornfest, Simon St. Laurent, and Robert
Luhn, for giving me the amazing opportunity to write this book. Thanks also to Brett Johnson, a
capable and cordial editor, for steering me through my first book, and to Steve Saunders for a
thorough technical review and more than a few helpful comments and suggestions. Thanks to Rachel
Wheeler, for a copyediting job very well done, and to Mary Anne Weeks Mayo. Thanks also to Claire
Cloutier, for giving me the freedom and encouragement to experiment with many of the things that
later became hacks in this book.

I'd also like to thank all of the contributors-Andrew Bruno, Sean M. Burke, Ian Burrell, Greg
Chapman, Paul Edstein, Guy Hart-Davis, Evan Lenz, Jack M. Lyon, Gus Perez, Shyam Pillai, Phil
Rabichow, Christopher Rath, Omar Shahine, Mark Hammond, and Dan Mueller-for their clever and
creative solutions, and especially for their willingness to share their work with the rest of the Word
world, in true hacker's spirit. Thanks also to the denizens of the WOPR Lounge
(http://www.wopr.com), an extraordinary community of folks who truly enjoy helping others
understand Word. I'd especially like to thank Jefferson Scher, for helping pin down a particularly
perplexing line of code, and Gary Frieder, for invaluable feedback and helpful suggestions.

Thanks also to my friends and family, who didn't forget about me despite several months spent
hiding away in front of a computer, writing this book. Finally, I'd like to thank my wife, Audrey, for
her patience, support, and love, and for believing I could do this when even I wasn't so sure.

 < Day Day Up >

http://www.wopr.com
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 1. Word Under the Hood
Introduction: Hacks #1-2

Hack 1. Tweak the Interface

Hack 2. Macros 101: A Crash Course

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Introduction: Hacks #1-2

Few consumer software packages are as malleable as Microsoft Word-it has to be malleable, to meet
the unique needs of millions of users around the globe. However, many (perhaps most) Word users
spend months, or even years, using Word "out of the box," without taking advantage of a single one
of its limitless customization tools.

There's a palpable reluctance among long-time Word users to peek behind the curtain. They may
curse the wretched Bullets and Numbering buttons 20 times a day or take 2 hours to manually
change the font size of every heading in a lengthy report, but they will still not tear off the cover and
start tinkering. For too long, they've been seduced by Word's supposed simplicity ("There must be a
menu to fix this somewhere...").

If you're one of those users, this chapter will help you find your inner hacker. It asks you to choose
the Red Pill and take a trip into Word's inner workings. You will also learn the very basics needed to
start really hacking. For everyone else, consider it calisthenics for the rest of the book.

For a more detailed view of Word, check out Word Pocket Guide (O'Reilly). It is
an essential reference guide for any Word hacker.

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 1 Tweak the Interface

Take charge of toolbars, menus, and screen real estate with a few trips to the Tools menu.

Simple adjustments to the Word environment can save you lots of time. The gateway to tweaking
your toolbars and menus is the Tools Customize command, which brings up the dialog shown in
Figure 1-1. Whenever this dialog is active, your menus and toolbars no longer perform their regular
duties-they become adjustable elements of the interface that can be moved, modified, renamed, or
even deleted.

Figure 1-1. The Customize dialog lets you quickly customize your
workspace

The big kahuna of the Customize dialog is the Commands tab, which we'll explore in the following two
sections. But the other two tabs, Options and Toolbars, are also important for understanding-and
hacking-Word.

Some of Word's more elusive options live on the Options tab, shown in Figure 1-2. For example, you
can uncheck the "Always show full menus" box to turn off that unholy "Adaptive Menus" feature that
displays only some commands on each menu. You can also tell Word to stop displaying font names in

http://lib.ommolketab.ir

the fonts themselves, which can speed up the display on a slow machine. And the "Show shortcut
keys in ScreenTips" setting can help you learn the shortcuts for toolbar buttons you use regularly.

Figure 1-2. The Options tab of the Customize dialog

Use the Toolbars tab to manage your toolbars, reset their default arrangements, or delete custom
arrangements you've created but no longer need. You can also create new toolbars and make the
Shortcut Menu toolbar [Hack #3] visible for modifying.

Use the Keyboard button (available on all three tabs in the Customize dialog) to add, remove, or
modify keyboard assignments.

To print a list of active keyboard assignments in the current template, select
File Print and choose "Key assignments" from the "Print what" drop-down
list.

Now, here are a few simple hacks to get your feet wet.

1.2.1 Replacing a Toolbar Button

The Standard toolbar includes a button for creating multiple text columns, which is illogically located
next to the buttons for inserting tables and Excel worksheets. A more sensible neighbor for those
buttons would be the Sort command, which usually requires a trip to the Table menu.

http://lib.ommolketab.ir

The Sort command also works on text not included in a table, such as a list of
names you want to alphabetize.

Here's how to replace the Columns button with a Sort button.

First, select Tools Customize. With the Customize dialog open, drag the Columns button off the
Standard toolbar. (Don't worry; you can always restore it in a snap.)

Next, click the Commands tab in the Customize dialog and choose Normal.dot from the "Save in"
drop-down list at the bottom of the dialog. If you select this setting, any customizations you make
will affect all of your documents (whenever you're working in Word, even if you're working on a
document based on another template, the Normal template is still present).

To save changes you make to the Normal template, you must close Word.

In the Categories column (on the left), select All Commands. In the Commands column (on the
right), scroll down and select TableSort, as shown in Figure 1-3. Drag it to the Standard toolbar, next
to the Insert Excel Worksheet button.

Figure 1-3. Find the TableSort command

By default, a command you drag to a toolbar appears with its name, not its icon, displayed. To

http://lib.ommolketab.ir

change this, with the Customize dialog still open, right-click your new Table Sort button and select
Default Style, as shown in Figure 1-4. The new button will be active after you close the Customize
dialog.

Figure 1-4. Change the Table Sort button to display an icon without text

1.2.2 Modifying a Menu Item

Many Word users frequently insert footnotes. But as of Word 2002, the Footnote command was
moved to a new submenu on the Insert menu, called Reference (see Figure 1-5).

Figure 1-5. Finding the Footnote command on the Insert menu

http://lib.ommolketab.ir

Here's how to move the Footnote command to the top of the Insert menu and make it more
accessible.

First, select Tools Customize, click the Commands tab, and make sure you save the changes in
Normal.dot (see the previous section "Replacing a Toolbar Button").

Next, select Insert from the Categories list and then select the Footnote command from the list on
the right (Word 2002 and 2003 users will find it on a submenu). Drag it to the top of the Insert
menu, as shown in Figure 1-6.

Figure 1-6. Relocating a menu item

http://lib.ommolketab.ir

The Footnote command will work from its new home as soon as you close the Customize dialog.

1.2.3 Activating Important Viewing Options

To reliably control (or even understand) Word's features and formatting, you need to set a few
important options.

A Word document offers more than just words (even if it lacks fancy pictures or tables). For example,
a multitude of special nonprinting characters control how the words in a document are formatted.

To view some of these characters, select Tools Options, click the View tab, and check the following
items:

Paragraph marks

Tab characters

Bookmarks

Also, set field shading to "Always."

None of the characters that you can now see will print, and you can always select File Print
Preview to view your document without them.

The value of these characters will become more apparent as you work with the other hacks in this
book, but here's one quick example.

Say your boss asks you to add some project background to her report and to format it with centered

http://lib.ommolketab.ir

headings. The document contains only plain text, as shown in Figure 1-7.

Figure 1-7. Some standard text in need of formatting

You want to center the first line as a heading, then add bullets to the next two items. With the
heading selected, you press the Center button on the Formatting toolbar-but the paragraph below
the heading moves too, as shown in Figure 1-8.

Figure 1-8. Unexpected formatting can be an unwelcome surprise

Yikes! After you press the Undo button, you decide to switch tactics. You select the second and third
paragraphs and press the Bullets button on the Formatting toolbar. You start to sweat profusely
when Word applies the Bullets style to the heading and not the second paragraph, as shown in Figure
1-9.

Figure 1-9. Bizarre bullet results

http://lib.ommolketab.ir

What's going on here? With paragraph marks showing, as in Figure 1-10, the problem becomes clear.
The first and second lines are actually part of the same paragraph. Your boss inserted a "soft" return
after the heading (by pressing Shift-Enter) to force a line break without starting a new paragraph. So
even though they appear as two separate paragraphs, they act as one. You can avoid similar
headaches if you get into the habit of working with formatting marks showing.

Figure 1-10. With paragraph marks visible, you can quickly identify the
problem

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 2 Macros 101: A Crash Course

This hack offers a whirlwind tour of macros, which can help you automate tedious and
time-consuming tasks.

Word 6 or later lets you write, record, and play macros, or short programs that automate tasks in
Word. The term macro comes from macrocommand, which originally referred to a bunch of
commands strung together and executed all at once. Typically, you would record a sequence of
commands, give the sequence a name, and then play it back as needed. You can certainly use Word
macros for this purpose, but it represents only the tip of the iceberg.

You create Word macros using Visual Basic for Applications, usually abbreviated as VBA. Even
recorded macros get translated into VBA, which you can then examine or edit.

VBA belongs to the BASIC family of computer languages. Compared to other computer languages,
such as C or Java, you may find it easier to master. But like any language, you'll need to use it in
order to learn it.

A true VBA tutorial falls outside the scope of this book. This hack simply shows you how to create and
run a macro like the ones used in this book.

For a thorough guide to Word macros, check out Writing Word Macros
(O'Reilly).

1.3.1 Nuts and Bolts

Most of the macros in this book, as well as any you record within Word, use the subroutine (Sub)

procedure. Each one begins with the following line:

Sub MacroName

where MacroName is the name of the macro. Each ends with this line:

End Sub

The instructions you give Word fit between these two lines. Cooking offers a useful analogy. In fact,
you can think of a macro as a recipe. You begin with the list of ingredients at the top and then add a
sequence of actions to transform those ingredients into something edible. You can even split some

http://lib.ommolketab.ir

recipes into several shorter recipes-i.e., one for the sauce, one for the meat-to make them easier
to follow. The same goes for macros. In the example below, note the list of "ingredients" at the top,
followed by the rest of the code to work those ingredients into the main course:

Sub CountCommentsByBob()

Dim oComment As Comment

Dim iCommentCount As Integer

Dim doc As Document

iCommentCount = 0

Set doc = ActiveDocument

For Each oComment In doc.Comments

 If oComment.Author = "Bob" Then

 iCommentCount = iCommentCount + 1

 End If

Next oComment

MsgBox "Bob made: " & iCommentCount & " comments"

End Sub

The next section shows you how to put macros to work in your documents.

1.3.2 Hello, World

A tradition in computer books is to present the first example as a simple program that announces its
existence to the world. In Word VBA, that would go something like this:

Sub HelloWorld

MsgBox "Hello, World"

End Sub

http://lib.ommolketab.ir

To create this macro, select Tools Macro Macros to display the Macros dialog. A listbox at the
bottom, labeled "Macros in," lists all the open templates and documents where you can store your
macro, as shown in Figure 1-11. For example, choose the "All active templates and documents"
option to create your macro in the Normal.dot template.

Figure 1-11. Choosing where to store a macro

Next, type HelloWorld in the "Macro name" field and press the Create button, as shown in Figure 1-

12.

Figure 1-12. Creating a new macro from the Macros dialog box

http://lib.ommolketab.ir

When you press this button, Word does three things:

Within your Normal template, Word creates a new module to hold your macro code, named
NewMacros.

1.

Word launches the Visual Basic Editor.2.

Word fills in the first and last lines of the macro for you and inserts some comments about the
macro. (The comments help the people who read the programs. In VBA, comments always start
with a single quotation mark or apostrophe.)

3.

You will see the shell of your new macro in the Visual Basic Editor, as shown in Figure 1-13. The
Project Explorer, in the top left, lists all open documents and templates, including any add-ins (such
as the MSWordXML ToolBox [Hack #92]). Notice that the NewMacros module is highlighted in the

Modules section of the Normal template.

Figure 1-13. The Visual Basic Editor

http://lib.ommolketab.ir

To finish the macro, just put your cursor in the blank line above End Sub and type the following:

MsgBox "Hello, World!"

Now press the Play button (the green wedge) on the toolbar to run the macro. You'll see the dialog
shown in Figure 1-14.

Figure 1-14. Greetings from your first macro

To create another macro in the same module within the Normal template, just start a new line after
End Sub and type in the first line for another macro. You can also paste code from other macros

directly into the Visual Basic Editor.

1.3.3 Organizing and Debugging Your Macros

If you want to create a new module to help organize your macros, select the template or document
where the new module will go from within the Project Explorer, then select Insert Module. New
modules created like this are always named Module1, Module2, and so on, as shown in Figure 1-15.

In the Properties window, located just under the Project Explorer (see Figure 1-13), you can rename
the modules.

http://lib.ommolketab.ir

Figure 1-15. A new module inserted into the Normal template

To help you cut down (or at least easily pinpoint) the number-one source of program bugs-typing
errors-you should always include the following as the very first line of code in any module:

Option Explicit

This tells Word to make sure you've declared every variable you use in the macro. To continue with
the cooking analogy, it's like checking the recipe to make sure you listed every ingredient at the top.
If you try to run a macro with a misspelled variable name, Word will warn you and highlight the
undeclared variable, as shown in Figure 1-16.

Figure 1-16. Word can help find mistakes in your macros

Once you finish editing your macro, select File Close and Return to Microsoft Word.

http://lib.ommolketab.ir

1.3.4 Running Macros

To run a macro from within Word, select Tools Macro Macros, select it from the list, and press
the Run button, as shown in Figure 1-17.

Figure 1-17. Running a Macro from within Word

If you frequently use the same macro, you can assign it a toolbar button or keyboard shortcut. Select
Tools Customize, click the Commands tab, and select Macros from the Categories column, as
shown in Figure 1-18. In the Commands column, find the macro and drag it to a toolbar or menu.
After you place the macro, you can right-click it to change its name or add an image to its button, as
shown in Figure 1-19.

Figure 1-18. Selecting the Macros category from the Customize dialog

http://lib.ommolketab.ir

Figure 1-19. Changing the name of the button used to activate a macro
placed on a toolbar or menu

If you use or create a set of macros that become an integral part of your workflow, consider
separating those into a separate Macros template [Hack #50] that will load automatically whenever
Word starts.

1.3.5 Getting Help from the Editor

The Visual Basic Editor is a full-featured development environment that includes several features
designed to help you write VBA code.

http://lib.ommolketab.ir

1.3.5.1 IntelliSense

As you type VBA code, the editor will attempt to complete the statement for you, as shown in Figure
1-20.

Figure 1-20. The Visual Basic Editor can help you write code faster

Though the lists will generally appear automatically as you type, you can explicitly request a list of
items that match the text you've already typed by pressing Ctrl-spacebar.

1.3.5.2 The Immediate window

In the Immediate window, you can enter individual statements that are executed immediately. When
a statement is prefaced with a question mark, the return value is printed to the Immediate window,
as shown in Figure 1-21.

Figure 1-21. Using the Immediate window

The Immediate window is a helpful tool for testing out a macro. Type the following line of code in a
macro:

Debug.Print StringToPrint

http://lib.ommolketab.ir

Replace StringToPrint with a text string or a string variable you want to keep an eye on, which will

be printed to the Immediate window. This technique is shown in Figure 1-22.

1.3.5.3 Stepping through code

As you test out a macro, it can help to "step" through it as it runs. Word will execute one line of the
macro, then wait for you to tell it to run the next line. In this way, you can slow down a macro and
better understand it. If you hover your mouse over a variable while stepping through the code, Word
displays the current contents of the variable as a ToolTip.

To step through a macro, put your cursor anywhere inside it and press F8. Each time you press F8,
you execute another line of code. The line that will be executed the next time you press F8 will be
highlighted in yellow, and an arrow will appear at the left, as shown in Figure 1-22.

Figure 1-22. Using the Visual Basic Editor to step through a macro line by
line

1.3.6 Exploring the Word Object Model

In Word VBA, all of Word's parts are represented as objects. A document is an object, a paragraph is
an object, and even a font name is an object. All of these objects are interrelated, and evaluating and
manipulating them is the basis of programming Word with VBA.

To browse the Word object model, select View Object Browser from within the Visual Basic Editor.
Using the Object Browser can be an overwhelming experience for beginners, but it can be a great

http://lib.ommolketab.ir

help in figuring out how to automate a particular component or task within Word. The Object Browser
is shown in Figure 1-23.

Figure 1-23. Using the VBA Object Browser

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Chapter 2. The Word Workspace
Introduction: Hacks #3-13

Hack 3. Hack Your Shortcut Menus

Hack 4. Create Custom Views

Hack 5. Revert to Saved

Section 2.5. Quickly Change Your File Open Path

Hack 7. Report and Review Your Options

Hack 8. Force Internet Explorer to Hand Off Word Documents

Hack 9. Tweak the New Document Task Pane

Hack 10. Browse All Button Images

Hack 11. Create a Custom Button Image

Hack 12. Hack the Office Assistant

Hack 13. Build a Better MRU

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Introduction: Hacks #3-13

Word offers an exceptionally hackable environment. Most any menu, toolbar, or viewing option is
adjustable. The hacks in this chapter show a few ways to fine-tune your workspace to help you work
smarter. In addition, you'll learn a few ways to manage your documents better and how to finally and
firmly take control of the much maligned Office Assistant.

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 3 Hack Your Shortcut Menus

To find relevant commands quickly, most Word users head straight for the shortcut
menus. But like any Word menu, a shortcut menu is yours for the hacking.

In most applications, you're stuck with whatever the software company decides to put on its shortcut
menus (the set of context-sensitive commands that appear when you right-click your mouse). For
example, Microsoft must consider hyperlinks [Hack #28] extremely relevant; in Word 2003, you can
insert a hyperlink from 26 of the 62 shortcut menus!

The shortcut menu you'll probably use most is the Text shortcut menu, which appears when you
right-click within the text of a document. This menu is shown in its native form in Figure 2-1.

Figure 2-1. The default Text shortcut menu

Fortunately, you can rearrange any of the 62 shortcut menus in Word according to your priorities. For
example, if you insert a lot of comments, the mouse mileage needed to repeatedly select the text
and then go up and choose Insert Comment can really add up. This hack will show you how to
give your wrist a rest by moving the Insert Comment command closer to where you're working-onto
the shortcut menu.

http://lib.ommolketab.ir

2.2.1 Accessing the Shortcut Menu Toolbar

All of the menus in Word reside on toolbars. Even the main menu bar (with File, Edit, View, etc.) is
actually a toolbar-appropriately named Menu Bar. Shortcut menus are no different, but the toolbar
they live on is a bit harder to find. In fact, except for when you're customizing it, you'll never get to
see the Shortcut Menu toolbar; notice it's not one of the choices offered when you select View
Toolbars.

To see the elusive Shortcut Menu toolbar, select Tools Customize to display the Customize dialog.
You can also right-click on the title bar of any toolbar or an unoccupied area of the main menu bar
and choose Customize.

Select the Commands tab. If you want the shortcut menu changes to be available in every document
you use, choose Normal.dot from the "Save in" drop-down list in the Customize dialog, as shown in
Figure 2-2.

Figure 2-2. The Customize dialog

Next, click the Toolbars tab and check the "Shortcut Menus" box, as shown in Figure 2-3.

Figure 2-3. Getting to the shortcut menus

http://lib.ommolketab.ir

As soon as you check the box, a toolbar like the one in Figure 2-4 will appear on your screen,
probably near the top left. Don't press the Close button on the Customize dialog. You can access the
Shortcut Menu toolbar only with the Customize dialog open.

Figure 2-4. The elusive Shortcut Menu toolbar

2.2.2 Modifying a Shortcut Menu

Word divides shortcut menus into three categories: Text, Table, and Draw. This can help you narrow
your search for a particular shortcut menu among the five dozen or so choices. To add the Insert
Comment command to the shortcut menu that appears from within regular text, choose the Text
menu on the Shortcut Menu toolbar, then scroll down and select Text, as shown in Figure 2-5.

Figure 2-5. Accessing the Text shortcut menu for customization

http://lib.ommolketab.ir

Now click the Commands tab in the Customize dialog and choose Insert from the list of Categories on
the left. Then, in the list of Commands on the right, scroll down until you get to Comment. Drag it
from the Customize dialog to the Text shortcut menu. Once you release the mouse button, the
Comment command will appear on the shortcut menu, as shown in Figure 2-6.

Figure 2-6. Adding a command to a shortcut menu

http://lib.ommolketab.ir

After you press Close on the Customize dialog, you'll be able to insert comments via the Text
shortcut menu, without moving your mouse from the page.

To save your changes to Normal.dot, you must exit Word.

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 4 Create Custom Views

You can easily get a bit disoriented as you change views, toolbars, and zoom levels within
Word. This hack shows how to create predefined views and return to them instantly.

Word offers a multitude of viewing options. With the addition of Reading Layout view in Word 2003,
you can now choose from six different views: Normal, Web Layout, Print Layout, Reading Layout,
Outline, and Print Preview. Plus, you can turn on and off features such as paragraph marks, tabs,
hidden text, field codes, and bookmarks, just to name a few. And as Word has more toolbars than
you can fit on most screens, depending on the work you're doing you may want to change your view
a few dozen times each day.

Even if you only occasionally zoom in or out, or use Reading Layout or an extra toolbar here and
there, you've probably found that there are a handful of viewing combinations that you prefer.
Unfortunately, reorienting Word the way you want is no small feat. While it may not eat up a whole
morning, a few seconds here and there to change a few settings can really add up.

To get the layout just the way you like it in a snap, you can create named sets of viewing options
using some VBA code and add them to the View menu for quick toggling.

2.3.1 The Code

Say you like to do your editing in Word under the following conditions:

Normal view

Zoom to 120%

Only Standard, Formatting, and Reviewing toolbars visible

Field shading, paragraph marks, and hidden text visible

Revision tracking turned on

To make this configuration instantly available, put the following macro, named SetEditingView, in

the template of your choice [Hack #50] . It sets all the viewing options listed above.

Sub SetEditingView()

On Error Resume Next

Dim win As Window

http://lib.ommolketab.ir

Dim cbar As CommandBar

Dim sToolbarsToShow As String

' List toolbars to display

' All others will be hidden

sToolbarsToShow = "/Menu Bar/Standard/Formatting/Reviewing/"

' Hide any toolbars that aren't in the list

For Each cbar In Application.CommandBars

 If InStr(sToolbarsToShow, "/" & cbar.Name & "/") Then

 cbar.visible = True

 Else

 cbar.visible = False

 End If

Next cbar

' Change the View settings

Set win = Application.ActiveWindow

With win

 .View.Type = wdNormalView

 .View.Zoom = 120

 .View.FieldShading = wdFieldShadingAlways

 .View.ShowParagraphs = True

 .View.ShowHiddenText = False

End With

http://lib.ommolketab.ir

' Turn on revision tracking

ActiveDocument.TrackRevisions = True

End Sub

2.3.2 Putting the New View on the View Menu

Now you can create a new submenu on the View menu and add the new Editing view to it.

Select Tools Customize and click the Commands tab. In the Categories column, scroll down to
New Menu and then select New Menu again from the Commands column, as shown in Figure 2-7.

Figure 2-7. Selecting a new menu to drag to the View menu

Next, drag the New Menu item to the View menu (when you drag the item over View on the main
menu bar, the View menu will open) and drop it just under Outline view, as shown in Figure 2-8.

Figure 2-8. Placing the new menu on the View menu

http://lib.ommolketab.ir

After you place the new menu, right-click it, rename it "My Views," and select the option "Begin a
new group."

Go back to the Customize dialog, click the Commands tab, and select Macros from the Categories
column. From the Commands column, drag the SetEditingView macro to the new My Views menu.

Then right-click it and rename it "Editing." Close the Customize dialog.

To run the macro, which will set the desired view options, just select it from the new My Views menu,
as shown in Figure 2-9.

Figure 2-9. Selecting from the new My Views menu

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 5 Revert to Saved

Most other word processors and layout programs put a Revert to Saved command right on
the File menu. This allows for a quick return to the last saved version of a file. This hack
shows you how to add this feature in Word.

While editing a document, you make a mistake. A big mistake. You try the Undo command a few
times, but you can't quite retrace your steps. In frustration, you close the document without saving
your changes, then reopen it. This is a minor annoyance, but it may be something you have to do a
lot. Fortunately, there's an easier way.

2.4.1 The Code

To put a Revert to Saved option on your File menu, add this macro to Normal.dot:

Sub FileRevertToSaved()

Dim sDocPath As String

Dim sDocFullName As String

sDocFullName = ActiveDocument.FullName

sDocPath = ActiveDocument.Path

If Len(sDocPath) = 0 Then

 MsgBox "Can't revert a document that's never been saved."

 Exit Sub

End If

If MsgBox("Really revert to last saved version? " & _

 "(Can't be undone)", _

http://lib.ommolketab.ir

 vbYesNo) = vbNo Then

 Exit Sub

End If

Documents.Open FileName:=sDocFullName, Revert:=True

End Sub

2.4.2 Putting the Macro in Your File Menu

Select Tools Customize and click the Commands tab. Choose Normal.dot from the "Save in" drop-
down list. In the Categories list, select Macros, and in the Commands list, select the new
FileRevertToSaved macro, as shown in Figure 2-10.

Figure 2-10. Selecting a macro from the Customize dialog

Next, drag the macro to the File menu, as shown in Figure 2-11. After you place it in the menu, you
can right-click it and shorten its name to "Revert to Saved." Since you stored this customization in
Normal.dot, close and restart Word to prevent losing the change in case of a crash.

Figure 2-11. Adding the Revert to Saved macro to the File menu

http://lib.ommolketab.ir

The macro will notify you if you try to revert a document that hasn't yet been saved (and, of course,
won't revert anything). It also asks for confirmation before reverting, as shown in Figure 2-12.

Figure 2-12. The Revert to Saved macro asks for confirmation before
running

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

2.5 Quickly Change Your File Open Path

Instead of always using My Documents, this hack shows you how to make Word open to
the folder where your documents really are.

Few Word workers keep all their files in the My Documents folder. Much of the time they're on your
desktop or in a different project folder deep on your hard drive. Sometimes they're not even "your"
documents; they may live on a server across the office, or across the country. But when you want to
get to one of those files, choosing File Open always sends you to the same place: the My
Documents folder.

Though you can change this default setting-Word will open to the folder of your choosing-it involves
a long trip through Tools Options File Locations Modify. You must then do some more mouse
work as you browse for the folder you want to use. Many users give up and resign themselves to
starting each workday with a trip through My Documents, but a short macro provides an easier way.

2.5.1 The Code

This macro provides an interactive way to change the File Open folder to the folder in which the
current document resides. Create the following macro, named ReAssignFileOpen, in the template of

your choice [Hack #50] :

Sub ReAssignFileOpen()

Dim sNewPath As String

Dim sCurrentPath As String

Dim sDefaultPath As String

Dim lResponse As Long

sNewPath = ActiveDocument.Path

' Current document must have been saved

' at least once to be in a folder

If Len(sNewPath) = 0 Then

 MsgBox "Please save this document first.", vbExclamation

http://lib.ommolketab.ir

 Exit Sub

End If

' Capture the default path by temporarily resetting the current one

sCurrentPath = Options.DefaultFilePath(wdDocumentsPath)

Options.DefaultFilePath(wdDocumentsPath) = ""

sDefaultPath = Options.DefaultFilePath(wdDocumentsPath)

' Restore to the current path

Options.DefaultFilePath(wdDocumentsPath) = sCurrentPath

' Prompt user to confirm change to current document's folder

lResponse = MsgBox("Really Change File...Open path to:" & _

 vbCr & vbCr & _

 sNewPath & "?" & _

 vbCr & vbCr & _

 "Press Cancel to reset to Default (" & sDefaultPath & ").", _

 vbYesNoCancel)

' Process response

Select Case lResponse

 Case Is = vbYes

 Options.DefaultFilePath(wdDocumentsPath) = sNewPath

 Case Is = vbNo

 Exit Sub

 Case Is = vbCancel

http://lib.ommolketab.ir

 Options.DefaultFilePath(wdDocumentsPath) = sDefaultPath

End Select

End Sub

2.5.2 Running the Hack

When you run this macro, you'll be prompted with the dialog shown in Figure 2-13, asking you to
confirm the change. If you select Yes, the next time you choose File Open, Word will place you in
the chosen folder.

If you point this setting to a folder on a network drive and select File Open
while no longer connected to the network, Word will return to its default File

Open folder (usually My Documents).

Figure 2-13. Changing File Open to default to the current document's
folder

For quick access to this timesaver, put a button for it on the Standard toolbar [Hack #1] or add it to
the File menu [Hack #3].

2.5.3 See Also

[Hack #57]

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 7 Report and Review Your Options

A freeware template from MouseTrax displays all of your Word Options settings in a
convenient report format.

There are more than 200 settings that qualify as Options in Word 2003 (slightly fewer in earlier
versions), and they're often the key to understanding Word's behavior. Sure, you can check most of
them by scrounging around the Options dialog (Tools Options), but having them all presented for
you in a report makes a lot more sense.

A freeware template available from MouseTrax (http://www.MouseTrax.com) generates an easy-to-
read Word document listing your current Options settings. Part of the first page of a sample report is
shown in Figure 2-14.

Figure 2-14. Review your Options settings in report form

After you download the template for your version of Word, just double-click it to create the report.

http://www.MouseTrax.com
http://lib.ommolketab.ir

If you've set your Macro Security Settings (Tools Macro Security) to
High, you'll need to download the template into your templates folder before it
will run.

Included with each setting and its current value is a brief description, which can acquaint you with
some of Word's more esoteric options (e.g., AllowAccentedUppercase, which has to do with how

Word treats accents over capital letters in French).

- Greg Chapman

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 8 Force Internet Explorer to Hand Off Word
Documents

Trying to edit a Word document from a browser window is like typing with mittens on.
This hack shows you how to stop Word documents from opening in Internet Explorer.

When you follow a hyperlink in Internet Explorer that leads to a Word document, the file opens right
within the browser window. The resulting combination of toolbars and menus, as shown in Figure 2-
15, can make editing a challenge. Some of the Word menus are there, but where are the toolbars? A
better way is to leave Internet Explorer out of the equation and force Word documents to open
in...well, Word.

Figure 2-15. Editing a Word document from Internet Explorer is no easy
feat

Select Start My Computer. Next, select Tools Folder Options and click the File Types tab.

Scroll down the list of "Registered file types" and select "DOC Microsoft Word Document," as shown in
Figure 2-16.

Figure 2-16. Find the DOC file extension in your list of known file types

http://lib.ommolketab.ir

Now click the Advanced button at the bottom of the dialog and uncheck the "Browse in same window"
box in the resulting Edit File Type dialog, as shown in Figure 2-17.

Figure 2-17. With this setting turned off, Word files opened from Internet
Explorer will open in Word

http://lib.ommolketab.ir

Click the OK button to accept the new setting and close the Folder Options dialog. Now whenever you
click on a link that leads to a Word document, the document will open in Word-a simple solution
obfuscated by a hard-to-find setting.

You can apply this same technique to other Office files, such as PowerPoint
(PPT) or Excel (XLS) documents.

2.7.1 Hacking the Hack

If you need to apply this fix to multiple computers, you can set up a .reg file to automate the change.
A .reg file is a text file executed by Windows to modify the registry; you can use it to make multiple
changes to the Windows registry without going into the registry itself. The following example code
also makes the change for Excel and PowerPoint files, but you can leave out those files if you prefer.

The registry stores vital system information. You should set a system restore
point before you make any changes to the registry. To do so, select Start
Control Panel Performance and Maintenance System Restore (the
location of System Restore may vary, depending on how you've configured
Windows).

Enter the following code into a text editor (such as Notepad):

Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\Word.Document.8]

@="Microsoft Word Document"

"EditFlags"=dword:00010000

"BrowserFlags"=dword:00000008

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\Excel.Sheet.8]

@="Microsoft Excel Worksheet"

"EditFlags"=dword:00010000

"BrowserFlags"=dword:00000008

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\PowerPoint.Show.8]

http://lib.ommolketab.ir

@="Microsoft PowerPoint Presentation"

"EditFlags"=dword:00010000

"BrowserFlags"=dword:00000008

Save the file with a descriptive name, like OpenOfficeDocsInOffice.reg, and close the text editor. To
run the .reg file, just double-click it.

- Gus Perez and Omar Shahine

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 9 Tweak the New Document Task Pane

The jury's still out on the Task Pane introduced in Word 2002, and poor documentation
along with bad behavior has only hurt its case. This hack offers some tips on taming the
worst offender: the New Document pane.

Many users find the New Document pane a welcome relief from the clutter of the Templates dialog,
which is packed with obscure tabs (as shown in Figure 2-18). Others-particularly those who use
many different templates-abhor the extra step needed to get to the Templates dialog, now that the
Task Pane comes first. But like it or not, you expect the Task Pane to behave as advertised. Yeah,
right.

Figure 2-18. The Templates dialog grows more crowded with each
release

2.8.1 Disabling the Task Pane When Word Starts

In a perfect world, you could select Tools Options, click the View tab, and uncheck the "Startup
Task Pane" box to disable the Task Pane. But for many Word users, this setting has absolutely no
effect.

http://lib.ommolketab.ir

The fix is a registry hack that will put the Task Pane back in its place.

Make sure you set a system restore point before you make any changes to the
registry: select Start Control Panel Performance and Maintenance
System Restore (the location of System Restore may vary, depending on how
you've configured Windows).

Close Word, select Start Run, and enter regedit to open the registry editor. Navigate to the

following key:

HKEY_CURRENT_USER\Software\Microsoft\Office\11.0\Common\General\

Locate the subkey named DoNotDismissFileNewTaskPane and either delete it or set its value to 0.

Close the registry editor and restart Word. The Task Pane will now dutifully obey the checkbox on the
View tab.

2.8.2 Add Documents and Templates to the Task Pane

The New Document Task Pane includes several default options for creating new documents, including
access to templates on the Microsoft web site, as shown in Figure 2-19.

Figure 2-19. The New Document Task Pane

In addition to the two sections shown in Figure 2-19, there are two additional sections that will
become visible only after you've done certain things in Word (such as creating a document based on
a template other than Normal.dot). The four sections are the following:

http://lib.ommolketab.ir

New

Templates

Recently used templates

Other files

In addition to templates, the "Recently used templates" section contains any documents on which
you've recently based a new document.

In VBA, you can add items to and remove items from each of the four sections using the
NewDocument property. In Figure 2-20, new documents (with rather silly names) have been added to

each section.

Figure 2-20. The four sections of the New Document Task Pane

2.8.3 The Code

The NewDocument property has two methods: Add and Remove. The syntax for the two methods is
identical. The syntax for Add follows:

Application.NewDocument.Add(FileName, [Section], _

 [DisplayName], [Action]) as Boolean

http://lib.ommolketab.ir

The brackets imply that you need only the FileName argument, but if you omit the DisplayName

argument, you will not actually add anything to the Task Pane. You will, however, gunk up your
registry with a useless entry.

You can use the arguments for Add to specify the following information:

FileName

The actual name of the file, including the path, or a URL.

Section

The section of the New Document Task Pane where the link will appear. You can use the
following four Office VBA constants (their actual values are shown in parentheses):

msoNew(1)

The "New" section

msoNewfromExistingFile(2)

The "Recently used templates" section

msoNewfromTemplate(3)

The "Templates" section

msoBottomSection(4)

The "Other files" section (default)

DisplayName

The name of the file or URL as it will appear on the Task Pane.

Action

http://lib.ommolketab.ir

What happens when you follow the link to the file. You can use the following three Office VBA
constants (their actual values are shown in parentheses):

msoEditFile(0)

Opens the file or template for editing (default).

msoCreateNewFile(1)

Creates a new document based on the document or template.

msoOpenFile(2)

Opens the file as if it were an external hyperlink (you'll get the File Download dialog box, even
for files on your hard drive). Use this option when creating hyperlinks on the Task Pane.

The following macro adds the template MyTemplate.dot to the "Templates" section:

Sub AddTemplateToTaskBar()

 Application.NewDocument.Add "c:\MyTemplate.dot", _

 msoNewfromTemplate, "My Template", msoCreateNewFile

End Sub

Because the syntax for the Remove method is identical to the syntax for Add, the following macro

removes the same MyTemplate.dot file from the Task Pane:

Sub RemoveTemplateFromTaskBar()

 Application.NewDocument.Remove "c:\MyTemplate.dot", _

 msoNewfromTemplate, "My Template", msoCreateNewFile

End Sub

Again, note that you must include the DisplayName argument to actually remove the file from the

Task Pane.

2.8.4 Hacking the Hack

http://lib.ommolketab.ir

If you hack with the above functions for any amount of time, you'll likely end up with a few items on
your Task Pane that you just can't shake. And there's no way, using VBA, to get a list of the items
currently placed there.

To do some housecleaning, you'll need to hack the registry. Choose Start Run and enter regedit.

Navigate to the following key, which lists any entries you've added to the New Document pane:

HKEY_CURRENT_USER\Software\Microsoft\Office\11.0\Word\New Document

Regardless of the FileName or DisplayName used in VBA to create the Task Pane entries, in the
registry, the entries are always named Custom1, Custom2, and so on. After you delete them from the

registry, they won't reappear the next time you open the New Document pane. To delete one of the
entries, select it (as shown in Figure 2-21) and choose Edit Delete.

Figure 2-21. Cleaning out items from the New Documents Task Pane

If you want to clean out the list of recently used templates as well, just clear the
entries from the following key:

HKEY_CURRENT_USER\Software\Microsoft\Office\11.0\Word\Recent Templates

Because the registry stores Task Pane entries, you can add new ones using a .reg file. The following
.reg file creates a new entry in the "Other files" section of the New Document Task Pane with a link to
the O'Reilly web site, as shown in Figure 2-22:

Windows Registry Editor Version 5.00

http://lib.ommolketab.ir

[HKEY_CURRENT_USER\Software\Microsoft\Office\11.0\Word\New Document\Custom9]

"Action"=dword:00000002

"DisplayName"="Visit oreilly.com"

"Filename"="http://www.oreilly.com"

"Section"=dword:00000004

Notice that the values for Action and Section correspond to the values described earlier in the
syntax for the Add method (well, except for all the leading zeros).

Because you can easily distribute registry files across an office, this way you can add an intranet link
or other useful shortcut to a user's Word workspace.

Figure 2-22. Putting an Internet hyperlink on the Task Pane

To run the .reg file, just double-click its icon.

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 10 Browse All Button Images

When you start adding buttons or menus to a document or template, it would be nice to
have more than a few button images to choose from. This hack shows you how to browse
all the button images available on your system.

Customized toolbars and menus can be easier to work with when they're labeled with meaningful
images. You can modify most toolbar buttons (both custom and built-in) when you open the
Customize dialog (select Tools Customize). But when you right-click a button and choose Change
Button Image, you're presented with a pretty limited selection, as shown in Figure 2-23.

Figure 2-23. The selection of available button images seems quite limited

In addition to this modest assortment, Microsoft Office includes more than 4,000 button images, or
faces, that you can use or adapt as needed. Unfortunately, these poorly documented buttons can be
difficult to access without using VBA code (and even then, it helps if you know the face ID number of
the image).

If you want access to all the options, you can download a freeware add-in from
http://www.mvps.org/skp/fidcode.htm that lets you browse all the Office faces, 100 at a time. The
FaceID browser, shown in Figure 2-24, displays as a separate toolbar. When you hover your mouse
over one of the buttons, the program displays its face ID number as a ToolTip.

Figure 2-24. Browsing available button images with the FaceID browser

http://www.mvps.org/skp/fidcode.htm
http://lib.ommolketab.ir

Once you find an image you like, you can transfer it from the FaceID browser to a button on your
toolbar. For example, let's say you want to put a button for the macro to unlink every hyperlink in a
document [Hack #28] right next to the Hyperlink button on the Standard toolbar.

First, put a button for the macro on your toolbar [Hack #1]. Next, select an appropriate image from
the FaceID browser, such as the one selected in Figure 2-24. Open the Customize dialog (select Tools

Customize), right-click the button with the image you want to copy, and choose Copy Button
Image, as shown in Figure 2-25.

Figure 2-25. Copying the image from one button to another

Next, with the Customize dialog still open, right-click the macro button you placed on the Standard

http://lib.ommolketab.ir

toolbar and choose Paste Button Image, as shown in Figure 2-26. Select Default Style so that only
the image appears on your button, as shown in Figure 2-27.

Figure 2-26. Pasting a button image onto a toolbar control

Figure 2-27. The new Unlink Hyperlinks button on the Standard toolbar

2.9.1 Hacking the Hack

When you create a toolbar or menu item from VBA code, you can specify which image to include by
referencing its face ID. The face ID numbers have little organization, but they do tend to group
together some related items. For example, the following macro creates an attractive (but
nonfunctional) toolbar using the standard four card suits, as shown in Figure 2-28.

Figure 2-28. A new (nonfunctional) toolbar

In addition to setting the image, you can also specify what text will appear when the mouse hovers
over the button, using the TooltipText property:

http://lib.ommolketab.ir

Sub MakeNewToolbar()

Dim cbar As CommandBar

Dim cbarctrl As CommandBarControl

Set cbar = CommandBars.Add(Name:="Pick a Card", Position:=msoBarFloating)

Set cbarctrl = cbar.Controls.Add(Type:=msoControlButton)

cbarctrl.FaceId = 481

cbarctrl.TooltipText = "Hearts"

Set cbarctrl = cbar.Controls.Add(Type:=msoControlButton)

cbarctrl.FaceId = 482

cbarctrl.TooltipText = "Diamonds"

Set cbarctrl = cbar.Controls.Add(Type:=msoControlButton)

cbarctrl.FaceId = 483

cbarctrl.TooltipText = "Spades"

Set cbarctrl = cbar.Controls.Add(Type:=msoControlButton)

cbarctrl.FaceId = 484

cbarctrl.TooltipText = "Clubs"

cbar.Visible = True

End Sub

- Shyam Pillai

http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 11 Create a Custom Button Image

Customize your controls with any image you can bitmap-even a favorite photo .

Putting a company logo or even a picture onto a toolbar button can give your Word workspace a truly
custom look. Turning any graphic into a toolbar button is easier than it sounds.

The image must be a .bmp, .jpg, or .gif file. The optimal dimensions follow:

16 16 pixels

24-bit color depth

Word will scale oversized or not perfectly square images, but you'll be more satisfied with the results
if you scale and crop the image yourself.

If you want your image to appear cut out, like most of the Word button images, you'll also need a
mask for your image. The mask is a second image that defines the boundaries of the first. To create
the mask, blacken the area of the 16 16 square occupied by your image and leave the rest white.
The white area of your mask will be filled in by the toolbar color. You can use an image-processing
program such as PhotoShop to do this, but many other programs, including SnagIt from TechSmith
(http://www.techsmith.com), offer inexpensive image-editing tools.

For example, to create a button image using the animal shown in Figure 2-29, first scale it down to
16 16 pixels and then create a mask, as shown (and magnified considerably) in Figure 2-30.

Figure 2-29. The base image for a new toolbar button

http://www.techsmith.com
http://lib.ommolketab.ir

Figure 2-30. The "mask" image for a toolbar button

2.10.1 The Code

The following macro creates a new floating toolbar with just one button, containing our sample
image. From there, you can use the Copy Button Image and Paste Button Image commands to place
the image as needed.

Sub DisplayNewImage()

Dim cbar As CommandBar

Dim cbarctrl As CommandBarControl

Dim pImage As IPictureDisp

Dim pMask As IPictureDisp

Dim sImageFile as String

Dim sMaskFile as String

sImageFile = "C:\Documents and Settings\My Documents\tarsier.bmp"

sMaskFile = "C:\Documents and Settings\My Documents\mask.bmp"

Set cbar = CommandBars.Add(Name:="My Picture", Position:=msoBarFloating)

Set cbarctrl = cbar.Controls.Add(Type:=msoControlButton)

Set pImage = stdole.StdFunctions.LoadPicture(sImageFile)

Set pMask = stdole.StdFunctions.LoadPicture(sMaskFile)

http://lib.ommolketab.ir

cbarctrl.Picture = pImage

cbarctrl.Mask = pMask

cbar.visible = True

End Sub

Running the macro produces the toolbar shown in Figure 2-31.

Figure 2-31. A button image created from a bitmapped image

2.10.2 Hacking the Hack

If you'd rather hack on the existing buttons, you can capture and save the button images to file.

The following macro goes through every button on all the toolbars and saves the images and their
masks to a folder called C:\Buttons, which you should create before running the macro. Each file is
named using the control's ID and saved as a .bmp file.

Sub GetButtonImageAndMask()

Dim cbar As CommandBar

Dim cbarctrl As CommandBarControl

For Each cbar In Application.CommandBars

 For Each cbarctrl In cbar.Controls

 If cbarctrl.Type = msoControlButton Then

 stdole.SavePicture cbarctrl.Picture, _

http://lib.ommolketab.ir

 "c:\buttons\" & cbarctrl.ID & "_img.bmp"

 stdole.SavePicture cbarctrl.Mask, _

 "c:\buttons\" & cbarctrl.ID & "_mask.bmp"

 End If

 Next cbarctrl

Next cbar

End Sub

Once you've got the bitmap files, you can open and edit them as shown in Figure 2-32 (a screen shot
from the SnagIt program mentioned earlier).

Figure 2-32. After saving the button images as files, you can edit them
with an image-editing software program

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 12 Hack the Office Assistant

Keep Clippit-Microsoft's annoying computer help character-on a short leash with the
techniques shown in this hack.

Ironically, the Office Assistant can be one of the more difficult features to manage in Word. But the
Assistant can also be a powerful way to deliver a message to the user of a macro. The following
examples take sort of an aikido approach: turning the power of its irritation to a positive end.

2.11.1 Banishing the Assistant

Among the more common reactions to the Assistant are requests to get rid of the wretched thing,
immediately and permanently. So for many users, including the following line of code in an AutoExec
macro [Hack #60] is the quickest way to a Clippit-free life:

Assistant.On = False

2.11.2 Finding a Sympathetic Character

You can switch from one Office Assistant character to another even more easily via VBA than via the
Office Assistant's interface. To change characters, use the Filename property of the Assistant

object:

Assistant.Filename = "OffCat.acs"

The quickest way to run this one-liner is from the Immediate window of the Visual Basic Editor [Hack
#2], as shown in Figure 2-33.

Figure 2-33. Changing the Assistant character from the Immediate
window

http://lib.ommolketab.ir

The available Office Assistant characters depend on your version of Office and the characters
installed. Check the C:\Program Files\Microsoft Office\<Version> folder for .acs files (Microsoft Agent
Character files). The name of the last folder, <Version>, depends on the version of Office
involved-for example, OFFICE11 is typical for Office 2003.

Your selection may vary, but a list of the usual suspects for a typical installation follows:

F1.acs

CLIPPIT.acs

DOT.acs

ROCKY.acs

OFFCAT.acs

MNATURE.acs

LOGO.acs

2.11.3 Invoking Invisibility

The Office Assistant just lurks in the background until you make a mistake that triggers its
appearance. You can toggle the Office Assistant's visibility by setting its Visible property to True or
False:

Assistant.Visible = True

You'll need to make sure the Assistant is turned on (Assistant.On = True) before you make it

visible. Making the Assistant visible doesn't automatically turn it on. Again, you can quickly make this
change from the Immediate window, as described above.

2.11.4 Getting the User's Attention

The Office Assistant usually appears (if currently hidden) or plays an animation (if displayed, but
ignored) to get your attention. To play an animation, use Assistant.Animation. You can select
animations-msoAnimationAppear, msoAnimationEmptyTrash, msoAnimationRestPose, and

http://lib.ommolketab.ir

msoAnimationSearching-from the auto-complete list provided by the Visual Basic Editor.

The following code summons the Assistant for delivering an urgent message:

Assistant.Animation = msoAnimationGetAttentionMajor

2.11.5 Displaying Information and Presenting Choices

To display information and present choices to the user, you use a balloon from the Office Assistant.

The following code displays the Assistant as shown in Figure 2-34. By checking the state of the
Assistant before displaying the message, the macro can decide whether or not to turn off the
Assistant after it finishes.

Figure 2-34. Use the Office Assistant to present information and
straightforward choices from within a macro

Sub OA_CheckForMktngTemplate()

Dim sMarketingTemplate As String

Dim blnAssistantWasOn As Boolean

sMarketingTemplate = "Marketing.dot"

If ActiveDocument.AttachedTemplate = sMarketingTemplate Then Exit Sub

http://lib.ommolketab.ir

With Assistant

 blnAssistantWasOn = .On

 .On = True

 .Visible = True

 .Animation = msoAnimationGetAttentionMajor

 With .NewBalloon

 .Heading = "Attach Correct Template"

 .Text = "This document doesn't use the new Marketing template."

 .BalloonType = msoBalloonTypeBullets

 .Labels(1).Text = "You must use the Marketing template"

 .Labels(2).Text = "Press OK to attach now"

 .Icon = msoIconAlertQuery

 .Button = msoButtonSetOkCancel

 If .Show = msoBalloonButtonOK Then

 ActiveDocument.AttachedTemplate = sMarketingTemplate

 End If

 End With

 .On = blnAssistantWasOn

End With

End Sub

You can display your message using a variety of balloons, icons, and buttons, as detailed in the
following tables.

Table 2-1 lists the types of balloons you can display.

Table 2-1. The three types of Assistant balloons

http://lib.ommolketab.ir

Balloon type Constant Value

Balloon with buttons (default)
msoBalloonTypeButtons 0

Balloon with bullets
msoBalloonTypeBullets 1

Balloon with numbered list
msoBalloonTypeNumbers 2

To control the text that appears in the balloon, use the following properties:

Heading

Displays a heading at the top of the balloon. You can use only one heading.

Text

Displays a single paragraph of text.

Labels(n).Text

Displays a bulleted or numbered paragraph, depending on the balloon type.

Table 2-2 lists the six icons you can display with the balloon (you can also display no icon).

Table 2-2. The icon choices for the Assistant dialogs

Icon Constant Value

No icon (default)
msoIconNone 0

Alert
msoIconAlert 2

Tip
msoIconTip 3

Information
msoIconAlertInfo 4

http://lib.ommolketab.ir

Icon Constant Value

Warning
msoIconAlertWarning 5

Question mark
msoIconAlertQuery 6

Critical problem
msoIconAlertCritical 7

Table 2-3 lists the various button options for dismissing the dialog.

Table 2-3. The button options for the Assistant dialogs

Buttons Constant Value

No buttons
msoButtonSetNone 0

OK
msoButtonSetOK 1

Cancel
msoButtonSetCancel 2

OK, Cancel
msoButtonSetOkCancel 3

Yes, No, Cancel
msoButtonSetYesNoCancel 4

Yes, No
msoButtonSetYesNo 5

Back, Close
msoButtonSetBackClose 6

Next, Close
msoButtonSetNextClose 7

Back, Next, Close
msoButtonSetBackNextClose 8

Retry, Cancel
msoButtonSetRetryCancel 9

Abort, Retry, Ignore
msoButtonSetAbortRetryIgnore 10

Warning
msoIconAlertWarning 5

Question mark
msoIconAlertQuery 6

Critical problem
msoIconAlertCritical 7

Table 2-3 lists the various button options for dismissing the dialog.

Table 2-3. The button options for the Assistant dialogs

Buttons Constant Value

No buttons
msoButtonSetNone 0

OK
msoButtonSetOK 1

Cancel
msoButtonSetCancel 2

OK, Cancel
msoButtonSetOkCancel 3

Yes, No, Cancel
msoButtonSetYesNoCancel 4

Yes, No
msoButtonSetYesNo 5

Back, Close
msoButtonSetBackClose 6

Next, Close
msoButtonSetNextClose 7

Back, Next, Close
msoButtonSetBackNextClose 8

Retry, Cancel
msoButtonSetRetryCancel 9

http://lib.ommolketab.ir

Buttons Constant Value

Abort, Retry, Ignore
msoButtonSetAbortRetryIgnore 10

Search, Close
msoButtonSetSearchClose 11

Back, Next, Snooze
msoButtonSetBackNextSnooze 12

- Guy Hart-Davis

 < Day Day Up >

Abort, Retry, Ignore
msoButtonSetAbortRetryIgnore 10

Search, Close
msoButtonSetSearchClose 11

Back, Next, Snooze
msoButtonSetBackNextSnooze 12

- Guy Hart-Davis

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 13 Build a Better MRU

Summon more than your nine most recently used files at the touch of a button with this hack .

When you work in Word, you often need to access files you were using earlier. To help you, Word provides
a list of the most recently used files: the MRU , which appears by default at the bottom of the File menu.

2.12.1 How Word's MRU Works

Barring any action on your part, Word automatically adds files to the MRU when you do the following:

Open an existing document.

Save a file for the first name.

Use the Save As command to save a file under a different name.

When you open a file from a macro, you can use the AddToRecentFiles property to

prevent Word from adding it to the MRU:

Documents.Open FileName:="Foo.doc",_

 AddToRecentFiles:=False

Generally, the MRU works well for light users of Word. To change the number of entries on the MRU, select
Tools Options, click the General tab, and adjust the "Recently used file list" setting, as shown in Figure
2-35 . Word can remember up to nine of your most recently used files, or you can choose zero to disable
the MRU.

Figure 2-35. Changing your MRU settings

http://lib.ommolketab.ir

If you want to wipe the MRU clean, clear the checkbox, close the Options dialog box, reopen it, and specify
how many entries you want for your fresh start. (Remember that other lists, such as the My Recent
Documents list in Windows XP and Windows 2000, can still betray your indiscretions.)

You'll confuse the MRU if you delete, move, or rename any of the files it currently
lists. Word will suggest you check the file's permissions, make sure you have
enough free memory and disk space to open the document, or open the file with the
Text Recovery converter. But it will not remove the file from the MRU, as you
probably expect (and want).

The MRU is handy, but for a power user it doesn't go nearly far enough. If you open 90 documents each
day, a list of 9 is a waste of time. Here's how to pump up the MRU to power-user proportions, creating a
MegaMRU.

2.12.2 Getting Started

You will implement this MegaMRU as a user form (see Figure 2-36) that displays the names of the last 25
documents you used in Word. To open a document, select it from the list and click the Open button.

Figure 2-36. A custom MRU lets you access far more of your recent
documents

http://lib.ommolketab.ir

The key to this hack is the PrivateProfileString command [Hack #67] , which lets you store data in a
plain-text .ini settings file on your system. For this hack, create the following .ini file:

[MRU_Files]

MRU01=C:\Dox\Doc 1.doc

MRU02=C:\Dox\Doc 2.doc

2.12.3 The Code

The MegaMRU uses an event handler [Hack #69] with the DocumentBeforeClose event to get its

information:

Open the Visual Basic Editor and make sure you display the Project Explorer and the Properties
window.

1.

In the Project Explorer, right-click Normal and select Insert Class to create a new class in
Normal.dot . Press F4, type the name for the class (MRUClass), and press Enter.

2.

Press F7 to activate the Code window for the class module and insert the following code, which will
ignore unsaved documents. It will, however, alert you to save previously saved documents.

3.

http://lib.ommolketab.ir

Public WithEvents MyMRU As Word.Application

Private Sub MyMRU_DocumentBeforeClose(ByVal Doc As Document, _

 Cancel As Boolean)

With ActiveDocument

 If .Path <> "" Then

 Add_to_MRU

 Else

 If .Saved = False Then

 Select Case MsgBox("Do you want to save the changes " & _

 "to " & .Name & "?", _

 vbYesNoCancel + vbExclamation, _

 "Microsoft Office Word")

 Case vbYes

 Dialogs(wdDialogFileSaveAs).Show

 If .Saved = True Then Add_to_MRU

 Case vbNo

 .Close SaveChanges:=wdDoNotSaveChanges

 Case vbCancel

 End

 End Select

 End If

 End If

 End With

End Sub

3.

Click the Close button to close the MRUClass window.4.

http://lib.ommolketab.ir

4.

2.12.3.1 Creating the MRU module

Next, create a code module in Normal.dot with the macro for initializing the class module, the macro for
displaying the user form, and the macro for adding items to the MRU. To create a new module, select
Normal in the Project Explorer and choose Insert Module. Select the module and change its name in the
Properties window to MegaMRU . You should place the rest of the code in this section in the MegaMRU

module.

2.12.3.2 Initializing the class module

The code for initializing the class module consists of a declaration of MyMRU as a new member of the MRU
class and a short macro that assigns the Word.Application object to the MyMRU property of the MyMRU

object:

Dim MyMRU As New MRUClass

Sub Initialize_MyMRU()

 Set MyMRU.MyMRU = Word.Application

End Sub

Each time you start Word, you must run the Initialize_MyMRU macro to start your event handler.
Usually, you put a call to the macro in your AutoExec macro [Hack #60] . If you don't have an AutoExec
macro already, you can simply name the Initialize_MyMRU macro above AutoExec instead.

2.12.3.3 Displaying the user form

To display the user form, use its Show method:

Sub Open_MyMRU()

 frmMRU.Show

End Sub

Because you'll use this macro to open one of the documents on your MRU, create a menu item, a toolbar
button, or a keyboard shortcut [Hack #1] for the macro-or even all three.

2.12.3.4 Adding a document's information to the MRU

The macro for adding a document's information to the MRU moves all the existing entries in the MRU list
(except the last entry) one place down the list: item 25 drops off the list, item 24 moves to item 25, item
23 moves to item 24, and so forth. (You use a For... Next loop with a negative increment to make this

change, because working positively propagates the same item through the list: item 1 becomes 2 becomes

http://lib.ommolketab.ir

3 becomes 4, and so on.) The new document then enters at the top of the chart.

Sub Add_to_MRU()

 Dim i As Integer

 For i = 24 To 1 Step -1

 System.PrivateProfileString(FileName:="c:\windows\mru.ini", _

 Section:="MRU_Files", Key:="MRU" & Format(i + 1, "00")) = _

 System.PrivateProfileString(FileName:="c:\windows\mru.ini", _

 Section:="MRU_Files", Key:="MRU" & Format(i, "00"))

 Next i

 System.PrivateProfileString(FileName:="c:\windows\mru.ini", _

 Section:="MRU_Files", Key:="MRU01") = ActiveDocument.FullName

End Sub

2.12.4 Creating the User Form

Here's how to create the user form used to display the MegaMRU, as shown in Figure 2-36 :

Right-click Normal in the Project Explorer and select Insert UserForm.1.

Press F4 to activate the Properties window, type frmMRU as the name, and press Enter.2.

Use the down arrow key to move to the Caption property, type Most Recently Used Word
Documents as its value, and press Enter.

3.

Increase the user form's height to about 350 pixels and its width to about 400 pixels. (Either drag the
sizing handle or type the measurements in the Properties window.)

4.

Add a label with the caption Most Recently Used Documents , with AutoSize set to True and
WordWrap set to False . Position the label at the upper-left corner of the user form.

5.

Add a listbox, name it lstMRU , and make it about 250 pixels high and 360 pixels wide. To make sure
the user can select only one item in the list at a time, set the MultiSelect property to 0 -

fmMultiSelectSingle . Center the listbox horizontally in the user form (Select Format Center In

Form Horizontally).

6.

Create a command button named cmdOpen , set Accelerator to O , set Caption to Open , set
Default to True , and set Enabled to False . You may want to reduce the button's height and width

a little from the (rather big) default measurements.

7.

8.

http://lib.ommolketab.ir

7.

Create a second command button. Name this one cmdCancel , set its Accelerator to C , set Cancel
to True , set Caption to Cancel , set Default to False , and make sure Enabled is True . If you
changed the height or width of cmdOpen , make this button the same size.

8.

Select and group the buttons (Format Group), position the group at the bottom of the user form,
and center it horizontally.

9.

2.12.5 Adding the Code to the User Form

After laying out the user form, select the user form and press F7 to display its code sheet in a window.
Then create the following four macros.

2.12.5.1 Creating the UserForm_Initialize macro

The UserForm_Initialize macro adds the items in the MRU file to the listbox in the user form. This

macro runs when you call the user form.

Private Sub UserForm_Initialize()

Dim i As Integer

For i = 1 To 25

 lstMRU.AddItem System.PrivateProfileString(,_

 FileName:="d:\windows\mru.ini", _

 Section:="MRU_Files", Key:="MRU" & Format(i, "00"))

 Next i

End Sub

2.12.5.2 Creating the lstMRU_Click macro

The lstMRU_Click macro enables the cmdOpen button on the user form as soon as the user clicks an

entry. This macro prevents the user from clicking the Open button with no entry selected.

Private Sub lstMRU_Click()

 cmdOpen.Enabled = True

End Sub

2.12.5.3 Creating the cmdCancel_Click macro

The cmdCancel_Click macro hides the user form and then unloads it from memory after the user clicks

http://lib.ommolketab.ir

the Cancel button:

Private Sub cmdCancel_Click()

 frmMRU.Hide

 Unload frmMRU

End Sub

2.12.5.4 Creating the cmdOpen_Click macro

The cmdOpen_Click macro hides the user form, opens the document corresponding to the item chosen in

the listbox, and then unloads the user form from memory. This macro also contains a short error handler,
but it reports an error only if Word can't find the file.

Private Sub cmdOpen_Click()

 On Error GoTo Trap

 frmMRU.Hide

 Documents.Open lstMRU.Value

 Unload frmMRU

 End

Trap:

 If Err.Number = 5174 Then MsgBox "Word cannot find the file " _

 & lstMRU.Value & "." _

 & vbCr & vbCr &_

 "The file may have been renamed, moved, or deleted.", vbOKOnly + vbCritical,

"MRU - File Not Found"

End Sub

After you make your changes, click the Save Normal button in the Visual Basic Editor to save Normal.dot .

2.12.6 Using the MRU

With all these items in place, you're ready to use the user form. Run the Initialize_MyMRU macro to

initialize your event handler, which will start monitoring Word's document closures. Each document you
close will be added in turn to your MRU. To open a document on your MRU, use the menu, toolbar, or

http://lib.ommolketab.ir

keyboard customization you created to display the user form. Next, click the document in the listbox and
click the Open button.

2.12.7 Hacking the Hack

You can modify the MegaMRU in several ways:

Increase the number of documents involved. You can track as many documents as you want, but you
will likely reach the point of diminishing returns somewhere between 100 and 200 documents. If you
add too many entries to the list, rewriting the .ini file can slow down an aging PC, but today's brawny
processors sneer at such trivial tasks. To increase the number of files to, for example, 100, change
the 25 in the UserForm_Initialize procedure to 100 and the 24 in the Add_to_MRU procedure to

99.

To present the documents on the MRU list by date, file size, or another useful attribute, create a
separate section for each document within the .ini file: MRUFile01 for the first document, MRUFile02
for the second document, and so on. You can then use the keys to create further subdivisions of
data:

[MRUFile01]

Name=c:\dox\Example 1.doc

Size=144048

Creator=Adam Schmidt

[MRUFile02]

Name=Z:\Public\Memo 1443.doc

Size=256074

Creator=Stelios Jones

To exclude certain documents, folders, or templates from the MRU, add one line to the
MyMRU_DocumentBeforeClose procedure. For example, to exclude documents based on a template
named Secret.dot , make the following the first line of the Add_to_MRU macro:

If ActiveDocument.AttachedTemplate = "Secret.dot" Then Exit Sub

- Guy Hart-Davis

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Chapter 3. Formatting, Printing, and Table
Hacks

Introduction: Hacks #14-26

Hack 14. Insert Placeholder Text

Hack 15. Sample Your System Fonts

Hack 16. Tab Me to Your Leader

Hack 17. Make Styles More Manageable with Aliases

Hack 18. Make a Simple Bar Graph

Hack 19. Put Footnotes in Tables

Hack 20. Repeat a Section Heading Across Pages

Hack 21. Simplify Borders Around Imported Images

Hack 22. Make More Flexible Captions

Hack 23. Make PDFs Without Acrobat

Hack 24. Create a Custom Text Watermark

Hack 25. Include Only Part of a Heading in a TOC

Hack 26. Put Crop Marks on a Page

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Introduction: Hacks #14-26

Word is increasingly being pressed into service as a desktop publishing program, for everything from
simple forms and newsletters to custom pieces destined for a professional printing shop. The hacks in
this chapter show how to go beyond the basics of several formatting features to make Word a more
useful tool for creating high-quality documents.

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 14 Insert Placeholder Text

When designing a template or experimenting with formatting, sometimes you just need
text-any text-to play around with .

To quickly and easily fill a paragraph, a page, or an entire document with text, just type the following
on a blank line in any open document and press Enter:

=rand()

By default, you get three paragraphs with four sentences each, as shown in Figure 3-1. The sentence
used depends on the language of your version of Word. The English version uses "The quick brown
fox jumps over the lazy dog," which happens to use every letter in the alphabet.

Figure 3-1. Word's placeholder text

If you need more or less than the default amount of text, provide numerical values to the rand()

function:

=rand(paragraphs, sentences)

Both arguments are optional, but if you want to specify the number of sentences, you must also

specify the number of paragraphs.

http://lib.ommolketab.ir

This little trick works only if you select Tools AutoCorrect Options, click the
AutoCorrect tab, and check the "Replace text as you type" box.

3.2.1 Make Your Own Placeholder Text with AutoCorrect

If foxes and dogs aren't for you, you can create your own placeholder text as an AutoText entry.

The template on which you based the current document stores all new
AutoText entries. If you did not explicitly choose a template, the Normal
template will store the new entry, and it will then be available in all your
documents.

Type your placeholder text, select it, and choose Insert AutoText New. Choose a name for the
placeholder text, as shown in Figure 3-2. You should choose a name that you won't likely type for any
other reason.

Figure 3-2. Choose a name for your placeholder AutoText entry that
won't likely come up elsewhere in a document

Now whenever you type the name of the AutoText entry, Word will offer to insert your placeholder
text, as shown in Figure 3-3.

Figure 3-3. As you type the name of your AutoText entry, Word will offer
to replace it with the predefined text

http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 15 Sample Your System Fonts

Your system probably offers more than 100 fonts. How do you choose the right one? If
you rely on simple trial and error, you'll quickly find yourself frustrated. Instead, use this
hack to get a sample of every available font.

They say there's no accounting for taste, and that's certainly true about fonts. With hundreds of fonts
coming preinstalled on most computers, and thousands more available for purchase online, there's
something for everybody.

The tried-and-true method of choosing a font in Word is to select some text and then scroll through
the Font pull-down menu on the Formatting toolbar until something strikes your fancy. But when you
can see only about a dozen fonts at a time, as in Figure 3-4, it's hard to compare all your options.

Figure 3-4. It's difficult to compare over 100 fonts when you can see only
12 at a time

http://lib.ommolketab.ir

You can stop Word from displaying your most recently used fonts at the top of
the font list. Open up the Windows registry and find the following registry key:

HKEY_CURRENT_USER\Software\Microsoft\Office\Version\Word\Options

Add a new String value (Edit New) named NoFontMRUList and give it a
value of 1.

Word includes a built-in Font menu, but it's not part of the main menu bar by default. To view it,
select Tools Customize, click the Commands tab, and select "Built-in Menus" from the Categories
list. In the Commands section, select the Font menu and drag it to your main menu bar.

You can scroll through the font menu as described above, but a more efficient, more organized, and
more fruitful method of comparing your fonts would be to generate a table of some sample text,
formatted in each of the available fonts on your system.

This hack creates a new document containing a two-column table with a row for each available font.
The first column lists the font's name, and the second column provides some sample formatted text.
The macro sorts the font names alphabetically. A portion of the results is shown in Figure 3-5.

Figure 3-5. Font sampler output

If you have a large number of fonts installed, this macro could take a few moments to run.

3.3.1 The Code

The new document this macro creates will be based on the Normal template, and the font names will
be displayed in Times, a standard font nearly guaranteed to be on any computer.

Put the following code in the template of your choice [Hack #50] :

Sub FontSampleTable()

http://lib.ommolketab.ir

Dim vFontName As Variant

Dim iFontCount As Integer

Dim i As Integer

Dim tbl As Table

Dim sSampleText As String

Dim doc As Document

Dim rng As Range

sSampleText = "abcdefghijklmnopqrstuvwxyz"

sSampleText = sSampleText & Chr$(32) & UCase(sSampleText)

sSampleText = sSampleText & Chr$(32) & "0123456789"

sSampleText = sSampleText & Chr$(32) & ",.:;!@#$%^&*()"

Application.ScreenUpdating = False

Set doc = Documents.Add

iFontCount = Application.FontNames.Count

Set rng = doc.Range

rng.Font.Name = "Times"

rng.InsertAfter ("Font Name" & vbTab & "Sample" & vbCr)

i = 1

For Each vFontName In Application.FontNames

 StatusBar = "Preparing Sample " & i & " of " & _

 iFontCount & " available fonts: " & vFontName

 rng.Collapse wdCollapseEnd

 rng.InsertAfter (vFontName & vbTab & sSampleText & vbCr)

http://lib.ommolketab.ir

 rng.Font.Name = vFontName

 i = i + 1

Next vFontName

StatusBar = "Formatting Sample Table ... Please Wait"

doc.Content.ConvertToTable Format:=wdTableFormatWeb1

Set tbl = doc.Tables(1)

tbl.Rows.First.Range.Font.Bold = True

tbl.Rows.First.HeadingFormat = True

tbl.Columns.First.Select

Selection.Font.Name = "Times"

Selection.Rows.AllowBreakAcrossPages = False

Selection.Collapse wdCollapseStart

tbl.SortAscending

StatusBar = "Done"

Application.ScreenUpdating = True

End Sub

To help speed things along, this macro takes advantage of Word's ScreenUpdating property. If you
set it to False at the start of the macro, Word will not waste valuable CPU resources constantly

redrawing the display. While screen updating will automatically resume once the macro finishes, it's
considered good form to explicitly restore it at the end of your code.

Because this macro may take a few minutes to run on a computer with a lot of fonts installed, you
can use the StatusBar property to report on the code's progress [Hack #65] . The status bar

http://lib.ommolketab.ir

provides meaningful user feedback, particularly if the macro takes time to run. Setting the
ScreenUpdating property to False will not affect the status bar.

3.3.2 Hacking the Hack

With a few modifications, the generated table can use selected text instead of arbitrary sample
characters. This trick is especially useful if your text contains symbols or special characters that may
not be defined in certain typefaces, as in the case of the Harrington font, shown in Figure 3-6.

Figure 3-6. Seeing samples of special characters can help you narrow the
choices among fonts on your system

The following code is a variation of the FontSampleTable macro shown above. With this version, the

macro uses the currently selected text as the sample text for each font. If you select more than one
paragraph, it uses only the text in the first paragraph.

Sub FontSamplesUsingSelection()

Dim sel As Selection

Dim vFontName As Variant

Dim iFontCount As Integer

Dim i As Integer

Dim tbl As Table

Dim sSampleText As String

Dim doc As Document

Dim rng As Range

http://lib.ommolketab.ir

Set sel = Selection

If sel.Characters.Count >= sel.Paragraphs.First.Range.Characters.Count Then

 sSampleText = sel.Paragraphs.First.Range.Text

 ' Need to strip off the trailing Paragraph mark

 ' for the table to generate properly

 sSampleText = Left$(sSampleText, Len(sSampleText) - 1)

Else

 sSampleText = sel.Text

End If

Application.ScreenUpdating = False

Set doc = Documents.Add

iFontCount = Application.FontNames.Count

Set rng = doc.Range

rng.Font.Name = "Times"

rng.InsertAfter "Font Name" & vbTab & "Sample" & vbCr

i = 1

For Each vFontName In Application.FontNames

 StatusBar = "Preparing Sample " & i & " of " & iFontCount & _

 " available fonts: " & vFontName

 rng.Collapse wdCollapseEnd

 rng.InsertAfter vFontName & vbTab & sSampleText & vbCr

 rng.Font.Name = vFontName

 i = i + 1

http://lib.ommolketab.ir

Next vFontName

StatusBar = "Formatting Sample Table ... Please Wait"

doc.Content.ConvertToTable Format:=wdTableFormatWeb1

Set tbl = doc.Tables(1)

tbl.Rows.First.Range.Font.Bold = True

tbl.Rows.First.HeadingFormat = True

tbl.Columns.First.Select

Selection.Font.Name = "Times"

Selection.Rows.AllowBreakAcrossPages = False

Selection.Collapse wdCollapseStart

tbl.SortAscending

StatusBar = "Done"

Application.ScreenUpdating = True

End Sub

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 16 Tab Me to Your Leader

Tables have superseded tab stops, which have largely gone the way of the IBM Selectric
typewriter. However, tabs are still the best tool for the job when working with leaders.
This hack offers some tips for taming those tabs.

People often use tab leaders to fill the spaces between entry spots on forms filled out by hand, such
as job applications or fundraising pledge forms (see Figure 3-7).

Figure 3-7. Underscore leaders used to underline fill-in spots

Many of these forms are created in what can only be called The Hard Way: you type the first entry,
then type a series of underscores to the next item, and then fill the rest of the line with underscores.
This method will cause trouble for the person responsible for maintaining the form for two reasons:

If any text changes, the underscores from one line will either spill over to the next or not match
up at the end of the line.

Unless you use a constant-width font such as Courier, in which every character is the same
width, the ends of each line will rarely line up vertically or extend all the way to the right
margin.

But with some planning and the use of one of Word's Drawing features, creating and maintaining
forms like this is a breeze.

Because you want each line in the form to use different tab stops, create a separate paragraph in
your document for each line. Next, select View Toolbars Drawing (the Drawing toolbar may first
appear docked to the bottom of your Word window). On the Drawing toolbar, select Draw Grid to
display the dialog shown in Figure 3-8. Input 6 pt for horizontal and vertical spacing and then check

the "Display gridlines on screen" box.

Figure 3-8. Turning on the drawing grid

http://lib.ommolketab.ir

The drawing grid can help you line up items in a lengthy form. The grid will appear on your screen as
shown in Figure 3-9.

Figure 3-9. Using the grid when setting tab stops can help ensure correct
and consistent alignment

Next, double-click the square box at the left edge of the ruler, shown in Figure 3-10, until you get a
Left Tab (looks like a capital "L"). If you click your cursor in the ruler, you will insert the tab type
(Right, Left, Centered, Decimal) selected in the box.

Figure 3-10. You can use the box at the far left of the ruler to choose a
type of tab stop

Put your cursor in the first line of your form. Hold down the Alt key, click in the ruler, and drag the
tab stop to the desired position, as shown in Figure 3-9. Holding down the Alt key displays the exact
position of the cursor, measured from each margin. The location of the tab stop will be where the
next word begins. After you've placed a tab stop for each entry in the first line of the form, put one
more tab stop at the right edge of the ruler, at the location of the right margin.

Repeat this procedure for each line in the form, setting one tab stop for each entry, then a final tab
stop at the right margin.

http://lib.ommolketab.ir

Next, put your cursor in the first line of the form to create the lines, or leaders, that will fill in the
spaces between entries. Double-click any of the tabs in the ruler to display the Tabs dialog shown in
Figure 3-11.

Figure 3-11. Adding the leader to the tab stops

Select the first tab stop listed, then select the radio button next to the underscore leader and click
the Set button. Repeat these steps for each of the tab stops in the paragraph, then click the OK
button. Follow this procedure for each line in the form.

Though it takes a bit more work up front to set tab stops and leaders, your effort will be repaid many
times over.

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 17 Make Styles More Manageable with Aliases

Assigning short nicknames to styles can really speed up your formatting time.

To quickly apply a style to selected text, put your cursor in the Styles pull-down menu on the
Formatting toolbar, type in the style name, and press Enter.

To instantly move your cursor into the Styles pull-down menu, press Ctrl-Shift-
S.

In fact, Word will even attempt to complete the style name as you type, as shown in Figure 3-12.
This feature helps if you're applying, say, the Heading 1 style, but it's not much of a shortcut for any
of the other heading styles.

Figure 3-12. Word attempts to automatically complete the style's name
as you type

http://lib.ommolketab.ir

You can't rename any of Word's built-in styles, but if you create an alias to a style (such as "h6" for
the Heading 6 style), you can type the alias instead of the style's "real" name into the Styles pull-
down menu.

To create an alias for a style, select Format Styles and Formatting, click the desired style, and
choose Modify. Put a comma at the end of the style's name, and then put the alias after the comma
(don't include a space after the comma, or it will be interpreted as the first character of your alias's
name). Figure 3-13 shows you how to create an alias for the Heading 6 style.

Figure 3-13. To create an alias for a style, just put the alias after a
comma at the end of the style's name

http://lib.ommolketab.ir

Now, to apply the Heading 6 style, just enter "h6" in the Styles pull-down menu and press Enter.

Styles can have multiple aliases, but no two styles can have the same alias.

In addition to creating shortcut names for styles, aliases can provide alternate descriptions of a style.
For example, if you set up your document to use the Heading 1 style for chapter titles, you might
consider adding an alias so the style's called "Heading 1,Chapter."

Strings of aliases after each style can look a bit strange in the Styles pull-down menu (see Figure 3-
14). But if you use the aliases, you'll rarely see the menu anyway.

Figure 3-14. A list of styles with multiple aliases

http://lib.ommolketab.ir

3.5.1 Using Aliases in VBA

When you apply a style from a macro, you can use its "real" name, any of its aliases, or its full name,
including all of its aliases. For example, if the Heading 6 style had an alias of "h6," as described
above, any of the following would apply it to the paragraph referenced by the variable para:

para.Style = "Heading 6"

para.Style = "Heading 6,h6"

para.Style = "h6"

para.Style = "h" & CStr(6)

Because Heading 6 is one of Word's built-in styles, the following also works:

para.Style = wdStyleHeading6

You can quickly remove all aliases in a document with a simple macro if, for example, you added
aliases to someone else's document while you edited it:

Sub RemoveAllStyleAliases

Dim sty As Style

For Each sty In ActiveDocument.Styles

 sty.NameLocal = Split(sty.NameLocal, ",")(0)

Next sty

End Sub

The Split function used in this manner just removes everything after, and including, the first comma

in the style name. If the style doesn't have any aliases, it leaves the name as is.

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 18 Make a Simple Bar Graph

Simple graphics can really spice up a document. This hack shows you how to create a bar
graph by fiddling with some table formatting.

Word can't really match a true layout or graphics program like Quark or Freehand for complex
layouts and graphics, but you can use more than text and clip art to create visually appealing
documents in Word.

For example, say that each month you dutifully put together the company newsletter in Word. Last
month, you asked everyone to cast their votes for the name of the company's new softball team
(Lions, Tigers, or Bears). You want to publish the results in the newsletter using a simple bar graph
like the one shown in Figure 3-15.

Figure 3-15. A simple bar graph, created with a Word table

To create a simple bar graph, you can just hack a well-planned table. Of course, you'll need to do
your own math when measuring the individual bars.

To create the bar graph shown in Figure 3-15, first select Tools Options, click the General tab, and
change your default measurement unit to points. Next, select Table Insert Table and insert a table
with two columns and four rows.

With your cursor inside the table, right-click and choose Table Properties. On the Table tab, click the
Options button, and change the cell margins to 0 points on all sides.

Now insert the text for the first three rows, putting the percentage in the first column and the team
name in the second column. Select the entire last row, right-click, and choose Merge Cells, as shown
in Figure 3-16.

Figure 3-16. Merging the cells in the last row

http://lib.ommolketab.ir

To make the graph accurate, set the widths of each bar proportionate to the percentage of the total
that each represents. If you look at the ruler at the top of the page, the right margin just passes the
432-point mark. You can round this number to 400 points and use it as your maximum. In this case,
just multiply by four to translate the percentages into point widths. For 10, 30, and 60 percent, you
get 40, 120, and 240 points, respectively.

Next, select the first cell of the first column in the table. Hold down the Alt key and select the divider
between the first and second columns. As you move the divider to the left, notice that the ruler
displays the exact width of the cell, as shown in Figure 3-17.

Figure 3-17. With the Alt key depressed, moving a cell divider displays
exact measurements in the ruler

You won't likely get an exact match, so set the cell width for just under 40 points. Repeat the steps
for the other two percentage cells. Now select the first cell in the table again, right-click, and choose
Table Properties. Click the Cell tab and enter 40 pt in the "Preferred width" box. Repeat this step for

the other two percentage cells, specifying the exact size in points.

Next, type the text for the graph's caption in the fourth row of the table.

Now select all three percentages and click the Right Align button on the Formatting toolbar. With your
cursor in the first cell, right-click and choose Borders and Shading. Go to the Shading tab and select
30% gray shading. Repeat this for the third row, but apply black to the second, as shown in Figure 3-
18.

http://lib.ommolketab.ir

Figure 3-18. Apply shading to the bars in the graph

Now change the table's border setting so that only the outermost edges are set with a border. With
your cursor in the table, right-click and choose Borders and Shading. Click the Borders tab, choose
the Box setting, and select Table from the "Apply to" drop-down list, as shown in Figure 3-19.

Figure 3-19. Applying the table border

Finally, right-click from within the table and choose Table Properties. Click the Table tab, click the
Options button, check the "Allow spacing between cells" box, and put 6 pt as the spacing, as shown

in Figure 3-20.

Figure 3-20. Setting the spacing between the cells

http://lib.ommolketab.ir

Your bar graph should now look like the one shown in Figure 3-15.

To use the bar graph again, store it as an AutoText entry. Select the entire table and press Alt-F3.
Word will prompt you to name the entry; you should select something you won't likely type
otherwise, such as "_bargraph4x3." Whenever you want to insert a similar bar graph, just type the
AutoText entry's name.

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 19 Put Footnotes in Tables

This hack shows you how to implement this sorely needed feature in a table.

There's no simple way to create a separate set of footnotes just for a table, but with a few well-
placed section breaks, it's at least possible.

Here's how to create a footnote that appears right below the table, as shown in Figure 3-21.

Figure 3-21. A table with a dedicated footnote

First, while in Normal view (View Normal), select Insert Break and insert continuous section
breaks directly above and below the table, as shown in Figure 3-22.

Figure 3-22. The table in Normal view, showing the section breaks

Next, put your cursor where the first footnote reference should appear and select Insert Reference

http://lib.ommolketab.ir

Footnote to display the Footnote and Endnote dialog, shown in Figure 3-23. Select the Endnotes
radio button and choose "End of section" for the location. Choose "A, B, C, ..." as the number format,
select "Restart each section" from the Numbering drop-down list, and click the Apply button.

Figure 3-23. Inserting a table footnote as a section endnote

By default, Word includes a horizontal ruler as a separator between the text and the footnotes. To
remove this unattractive separator from within Normal view, select View Footnotes and choose
Endnote Separator from the pull-down menu at the top of the Footnotes pane, as shown in Figure 3-
24. Just delete the endnote separator and click the OK button to close the Footnotes pane.

Figure 3-24. Removing the endnote separator

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 20 Repeat a Section Heading Across Pages

Instructions or examples in a document can span multiple pages. This hack shows you
how to help your readers follow along by repeating the heading on each page.

If you've got a lengthy example, such as a procedure or a sample computer program, you may want
the title of the example to repeat on each page. If you were absolutely, positively sure your page
breaks wouldn't change, you could duplicate the heading with a REF field at the top of each page.

But what if your page breaks change? Here's a way to get your heading to repeat on multiple pages.

First, select all of the text in the section, including the heading (you can always add or remove text
later).

Next, select Table Convert Text to Table and press the OK button, as shown in Figure 3-25.

Figure 3-25. To get your section heading to repeat if the section spans
pages, turn it into a table

Next, select Table Table Properties and choose "None" for the border. Now select just the section
heading and again select Table Table Properties. Click the Row tab and check the "Repeat as
header row at the top of each page" box, as shown in Figure 3-26.

Figure 3-26. Tell Word to repeat the heading on each page

http://lib.ommolketab.ir

Now if your section spans multiple pages, the heading will repeat at the top of each page, as shown
in Figure 3-27.

Figure 3-27. Repeating heading rows in action

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 21 Simplify Borders Around Imported Images

For a clean, professional look, the borders around imported images in a document should
be attractive and consistent. If you create a paragraph style especially for "holding" your
images, your image borders will look better and be easier to adjust if needed.

With a "figure holder" paragraph style, you can create consistency for your imported graphics. You
can also change the width and spacing of the borders around all your figures at once.

First, open the New Style dialog. In Word 2002 and 2003, you get there from the Styles and
Formatting Task Pane, as shown in Figure 3-28. For users with earlier versions of Word, select
Format Styles and click the New Style button.

Figure 3-28. Creating a new style

In the New Style dialog, create a paragraph style named "FigureHolder." If you plan to use captions
with your figures, you might want to change the "Style for following paragraph" setting to Caption (or
whatever style you use for your captions), as shown in Figure 3-29.

Figure 3-29. Setting the properties for a FigureHolder style

http://lib.ommolketab.ir

Next, select Format Borders and choose the Box setting, as shown in Figure 3-30. Click the
Options button, change the spacing to six points on all sides, and click the OK button, as shown in
Figure 3-31.

Figure 3-30. Adding the border for your figures

Figure 3-31. This setting adjusts how much space there will be between
the border and the graphic

Click the OK button again to return to the New Style dialog. Now select Format Paragraph, click
the Indents and Spacing tab, and change the alignment to Centered, the left and right indentation to
0.1 inches, and the spacing before and after to six points, as shown in Figure 3-32. You may also
want to click the Line and Page Breaks tab and check the "Keep with next" box to prevent page
breaks between figures and captions.

http://lib.ommolketab.ir

Figure 3-32. Setting the right spacing for the FigureHolder style

Click the OK button to return to the New Paragraph dialog. Next, select Format Font and change
the font color to red (or another bright color). The red will serve as a visual warning in case you
accidentally place text inside one of your figure boxes. Click the OK button to return to the Modify
Paragraph dialog, and click the OK button.

To insert a figure in line with your text, create a blank paragraph where you want the figure inserted
and apply the new FigureHolder style. All the images in your document will have the same style
border, as shown in Figure 3-33. With a figure holder paragraph style, you can even leave the figures
out while you work, since the empty boxes will serve as placeholders.

Figure 3-33. The FigureHolder style in action

If you want to change the width or spacing of the borders on all figures in your document, you can
now just modify the FigureHolder paragraph style.

3.9.1 Hacking the Hack

When you apply a border to a paragraph style, as with the FigureHolder style described above, the
border extends to each margin. If you want the border just around the image itself, you can use the

http://lib.ommolketab.ir

same technique we used for the FigureHolder paragraph style, but this time with a character style.

Because the FigureHolder paragraph style helps maintain consistent spacing before and after figures,
you should continue to use it, but remove the border. Right-click it on the Styles and Formatting Task
Pane (Word 2002/2003) and choose Modify Style. In the Modify Style dialog, go to Format Border
and select None.

Next, you'll create a new character style named FigureBorder. Follow the steps described above for
creating a new style, except this time choose Character as the style type, as shown in Figure 3-34.

Figure 3-34. This time, create a character style

Choose Format Border and select the Box setting, as shown in Figure 3-35.

Figure 3-35. The border will appear only around the image, instead of
extending to the margins

After you import a figure into a paragraph styled as FigureHolder, you can select the figure and apply
the FigureBorder character style. If you ever want to change the width of the borders on all the
figures in your document, you can just change the width of the border in the FigureBorder character
style.

http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 22 Make More Flexible Captions

Word offers a built-in captions feature, but it allows you to use a heading style only for
the chapter number. This hack shows you how to expand your options.

If you ask Word to include the chapter number in a caption, you must specify the heading level. But
what if you use a style other than one of the built-in heading styles to number your chapters? By
using two kinds of fields, you can have your captions use any style you like as the base for the
chapter number. The following example shows you how to create a figure caption that gets its
chapter number from a custom paragraph style named "ChapterLabel."

Put your cursor where you want to place the caption. Next, type the word "Figure," followed by a
space. Select Insert Field and insert a STYLEREF field pointing to the ChapterLabel paragraph

style, as shown in Figure 3-36.

The ChapterLabel paragraph style (or any other style you specify) must exist
within the document for this hack to work, and it must also actually be in use
within the document.

Figure 3-36. Creating a caption using a STYLEREF field

Click the OK button to insert the field in your document. If you've turned on the option to make field
codes always visible (Tools Options View), the field will look like Figure 3-37. If you don't see
the field code, select the text you just inserted, then right-click and choose Toggle Field Codes.

Figure 3-37. A STYLEREF field, one of the building blocks for a caption

http://lib.ommolketab.ir

Immediately after the field, put in a hyphen. Then select Insert Field and insert a SEQ field. Use

"Figure" as the identifier, as shown in Figure 3-38.

Figure 3-38. Adding a SEQ field to a caption to increment the numbering

With these fields in the document, your caption should now look like Figure 3-39. The figure shows
two captions: the first shows the field results and the second shows the field codes.

Figure 3-39. The field results (top) and the field codes used to produce
the results (bottom)

Finish the caption label with a period, and you can now type the caption text.

In the next section, you will learn how to create captions like this with a macro,
but in a pinch you can always copy and paste to create additional captions.

Though the syntax used is slightly different, Word's built-in captions feature also uses a combination
of STYLEREF and SEQ fields, as shown in Figure 3-40. In this case, the captions are set to get the

chapter number from the Heading 1 style.

Figure 3-40. Word's caption feature also uses a combination of STYLEREF
and SEQ fields

http://lib.ommolketab.ir

3.10.1 Automating the Captions

Obviously, a macro would help you insert captions much faster. The following example comes from
the macros used to insert the captions for this book:

Sub InsertFigureCaption()

Dim bIsParagraphEmpty As Boolean

With Selection

 .Expand wdParagraph

 If .Characters.Count = 1 Then bIsParagraphEmpty = True

 .Collapse wdCollapseStart

 .Style = "Caption"

 .InsertBefore "Figure "

 .Collapse wdCollapseEnd

 .Fields.Add _

 Range:=Selection.Range, _

 Type:=wdFieldStyleRef, _

 Text:="ChapterLabel", _

 PreserveFormatting:=True

 .Collapse wdCollapseEnd

 .InsertAfter "-"

 .Collapse wdCollapseEnd

 .Fields.Add _

 Range:=Selection.Range, _

 Type:=wdFieldSequence, _

 Text:="Figure", _

http://lib.ommolketab.ir

 PreserveFormatting:=True

 .InsertAfter ". "

 .Collapse wdCollapseEnd

 If bIsParagraphEmpty = True Then

 .InsertAfter "Caption Text Goes Here"

 Else

 .Expand wdParagraph

 End If

End With

End Sub

If the paragraph already contains text when you run this macro, it prefaces the text with a caption
label. If no text exists, it inserts some dummy text for you to replace later.

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 23 Make PDFs Without Acrobat

PDF has become a nearly universal file format for displaying documents. But while you
can download Adobe Reader for free, you must shell out nearly $300 for the full version if
you want to create PDFs. Fortunately, you can use the free Ghostscript and GhostWord
programs to create PDFs instead.

By taking advantage of some free utilities, you can easily create full-featured PDFs from Word files
without purchasing the full version of Adobe Acrobat. The Ghostscript utility, a freeware program
available for any platform, can create PDFs from PostScript files. PostScript is a page-description
language understood by most printers, and it is usually the format your files are converted to behind
the scenes when you send them to your printer.

From Word, you can print your document to a file instead of to a printer; the file that's created will
likely be a PostScript file if the printer driver you use is for a PostScript-compatible printer. That
means you can use Ghostscript to create a PDF from the file.

To see whether your printer is a PostScript printer, print a small document to file (select File Print
and check the "Print to file" box), then open the file in a text editor such as Notepad. Though Word
will give the file a .prn extension, the file will still likely be a PostScript file. PostScript files will have a
line beginning with the text %!PS near the top of the file, as shown in Figure 3-41.

Figure 3-41. A PostScript file viewed in a text editor

http://lib.ommolketab.ir

If you don't have a PostScript printer, don't worry; printer drivers are available from many printer
manufacturers. For example, one such printer driver is available from Hewlett-Packard at
ftp://ftp.hp.com/pub/printers/software/lj485en.exe.

Since you're using the driver only to print to files, you don't need the actual printer.

Once you've located or installed a PostScript printer or printer driver, you can use Ghostscript,
Ghostview, and GhostWord together to create PDFs from Word files.

For more information on using PDFs, both with Word and in general, check out
PDF Hacks (O'Reilly).

3.11.1 Getting Ghostscript and GSview

You can download Ghostscript free from the University of Wisconsin's web site
(http://www.cs.wisc.edu/~ghost/). Ghostscript itself is a complicated command-line program that
can be hard for novices to use. Fortunately, the site also has information on where to obtain a viewer
to accompany Ghostscript, such as the free GSview viewer, available from
http://www.cs.wisc.edu/~ghost/gsview/index.htm.

GSview provides a graphical interface to Ghostscript and can be used to view PostScript, PDF, and
other file types. GSview is free to use, but you're asked to register the software for $25. If you
choose not to register, you'll have to dismiss a reminder dialog each time you launch the program.

You won't need GSview to run this hack, but it's a handy tool to have for viewing PostScript files.

3.11.2 Getting GhostWord

GhostWord is a Ghostscript interface that integrates with Word. It adds a toolbar button to Word that
launches the GhostWord GUI, shown in Figure 3-42. Use the GUI to convert the currently active Word
document to a full-featured PDF. You can also run the GUI from outside of Word. GhostWord even
has a command-line interface.

Figure 3-42. The GhostWord interface

http://www.cs.wisc.edu/~ghost/
http://www.cs.wisc.edu/~ghost/gsview/index.htm
http://lib.ommolketab.ir

GhostWord can add bookmarks, links, metadata, and display settings to a PDF. It also manages your
Ghostscript settings. Select a hardcoded Ghostscript profile from the "Optimize PDF for" drop-down
box or tweak Ghostscript settings individually under the Converter Settings tab. You can save these
settings to a configuration file [Hack #67] for later retrieval.

GhostWord is distributed free of charge from http://www.et.dtu.dk/software/ghostword.

 < Day Day Up >

http://www.et.dtu.dk/software/ghostword
http://lib.ommolketab.ir

 < Day Day Up >

Hack 24 Create a Custom Text Watermark

Instead of using Word's predefined options, you can create your own watermark text with
a few lines of PostScript slipped inside your document.

Word includes a neat feature for inserting a watermark behind a document. You can either choose a
picture to use as the watermark, or choose from among a list of text options.

To see the available options for text watermarks, select Format Background Printed Watermark
to display the dialog shown in Figure 3-43.

Figure 3-43. You must choose from a predefined list of text watermarks

But what if the text you'd like to use for a watermark isn't on that list? Or how about including the
date or document author as part of the watermark?

Fortunately, you can use a PRINT field and a few lines of PostScript to create your own custom

watermark.

You can also use the PRINT field to put crop marks on a document [Hack #26]

.

The PRINT field embeds PostScript instructions within a document. PostScript is a computer language

that tells a printer how to draw a page. Most modern printers have a built-in PostScript interpreter
that can translate PostScript instructions into a printed page.

http://lib.ommolketab.ir

If you go to File Print and choose "Print to file" instead of sending the file to a printer, the file may
have a .prn extension, but it's really a PostScript file.

A PRINT field works only if you print to a PostScript-compatible printer. See

[Hack #23] for one method of determining if your printer is a PostScript
printer.

To print crop marks, you need to include the PostScript instructions for drawing the marks on a page
within the PRINT field.

There are some important things to note about PostScript before diving in:

The comment character in PostScipt is %. The interpreter ignores any line that begins with a %.

PostScript uses standard (X,Y) coordinates to refer to each page, with 0,0 at the bottom left and
612,792 at the top right on a standard letter page. The numbers represent points measuring
1/72 of an inch.

Unlike most computer languages, the arguments to a PostScript function come before the
function itself. For example, to move to the point 10,10 on a page, you would type 10 10
moveto, not moveto 10 10.

For a detailed reference on PostScript, see the PostScript Language Tutorial &
Cookbook located at http://www-
cdf.fnal.gov/offline/PostScript/BLUEBOOK.PDF.

3.12.1 The Field Code

To insert a watermark with the text "Super Secret," press Ctrl-F9 to create a new, blank field in your
document and enter the following text between the field braces, as shown in Figure 3-44:

PRINT \p page "% Watermark

/Helvetica findfont

54 scalefont

setfont

200 350 moveto

45 rotate

.75 setgray

(SUPER SECRET) show

http://www-
http://lib.ommolketab.ir

"

Figure 3-44. A PRINT field including PostScript code to create a
watermark

The field produces the watermark shown in Figure 3-45.

Figure 3-45. A watermark created with a PRINT field

http://lib.ommolketab.ir

To create a watermark that appears on every page in a document, place the PRINT field within the

document's header.

To include dynamic content in the watermark, you can nest another field, such as a DATE field, within
the PRINT field, as shown in Figure 3-46.

Figure 3-46. Nesting fields inside the PRINT fields is a way to include
dynamic content in a text watermark

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 25 Include Only Part of a Heading in a TOC

Give your headings more flexibility while keeping the table of contents (TOC) under
control.

Tables of content can provide useful roadmaps for navigating long documents. Typically, a TOC
displays a document's headings alongside the page numbers on which they appear. Sometimes,
however, you may want only part of a heading to appear in the TOC.

For example, consider the document shown in Figure 3-47. The title is included on the same line as
the chapter number, but in the TOC only the chapter number should appear, as shown in Figure 3-
48.

Figure 3-47. Chapter numbers and titles appear on the same line

Figure 3-48. Only the chapter number should be included in the TOC

Accomplishing this task became much easier in Word 2002, but it's still a bit tricky. How you
implement these "run-in headings" depends on which version of Word you're using.

3.13.1 Word 2002 and Higher

Microsoft included a feature in Word 2002 to make it easier to include only part of a heading in the
TOC. A new type of formatting mark, called a StyleSeparator, creates a hidden barricade between

http://lib.ommolketab.ir

portions of text in a paragraph. As the name implies, this mark lets you use two different paragraph
styles within the same paragraph (and you avoid the Char Char problem [Hack #55] typically
encountered with multiple paragraph styles applied within the same paragraph).

Immediately following a heading, you can insert one of these new StyleSeparators to create, in
effect, a new paragraph that starts on the same line as the heading, as shown in Figure 3-49. Thus,
you can apply a paragraph style independent of the heading, which means it won't appear in the
TOC.

By default, you can access the StyleSeparator only from the Commands tab of the Customize dialog.
Select Tools Customize, then select All Commands in the Categories column, as shown in Figure 3-
49. Once you've located the InsertStyleSeparator command in the Commands list, you can place it
on the menu or toolbar of your choice [Hack #1] while you've got the Customize dialog open.

Figure 3-49. Locating the InsertStyleSeparator command

To create a run-in heading (such as those shown in Figure 3-47) using a StyleSeparator, put your
cursor anywhere in the heading paragraph, then select the InsertStyleSeparator command you just
placed on a menu or toolbar. If you've got paragraph marks turned on [Hack #1], you'll notice that
the one at the end of the heading paragraph is no longer visible.

Documents that include StyleSeparators will still open and function correctly if
you send them to someone using Word 2000. Word 2000 interprets the
separators as hidden paragraph marks. When you get the document back,
however, Word leaves the StyleSeparators as hidden paragraph marks (which
they suspiciously resemble anyway).

3.13.2 Word 2000

To get the run-in-heading effect in Word 2000, you need to do a bit more legwork.

First, select Tools Options, click the View tab, and check the "Paragraph marks" box. Next, make
sure you uncheck the "Hidden text" box, then click the OK button.

http://lib.ommolketab.ir

Select the trailing paragraph mark for the first heading you'd like to run in. Then select Format
Font, check the Hidden box, and press the OK button (or press Ctrl-Shift-H). Now you've got two
paragraphs on the same line, as shown in Figure 3-47. You can style the second paragraph with its
own paragraph style, independent of the heading, which means it won't appear in the TOC.

It would be tedious work to apply this hack to every heading in a document, but you can simplify it
with a Find and Replace.

In the "Find what" box, put ̂ p.1.

Click the More button if the Format button isn't visible.2.

With your cursor in the "Find what" box, click the Format button, select Style, and select
Heading 1 (or the heading style that you'd like to run in).

3.

In the "Replace with" box, put ̂ &.4.

With your cursor in the "Replace with" box, click the Format button, choose Font, and check the
Hidden box.

5.

Click the Replace All button.6.

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 26 Put Crop Marks on a Page

Commercial print shops usually require crop marks for custom-sized print pieces. This
hack shows you how to include these important guides in a Word document.

With its improved graphics and typography features, many individuals and small businesses rely on
Word as a standalone desktop publishing program, especially as the price of full-featured programs
such as InDesign remains high.

Word does a fair job of handling layout tasks, but it still operates primarily as a word processor. It
also lacks a few features essential for preparing printer-ready documents, such as the ability to insert
crop marks.

Printers (the trade, not the device) use crop marks when trimming paper to a particular size. Figure
3-50 shows a document with crop marks. These are most often used when the final printed piece will
have smaller dimensions than a standard paper size, such as letter. It's much easier and cheaper to
print a document using a standard paper size and trim it afterward than to print directly on paper
that's unusually sized.

Figure 3-50. A PDF of a document that includes crop marks

To create crop marks in a Word document, you can use the seldom-used PRINT field, discussed in

[Hack #24] .

3.14.1 The Field Code

To see how a PRINT field can put crop marks on a page, open or create a single-page document.

Next, put your cursor anywhere on the page and press Ctrl-F9 to insert an empty field at the
insertion point.

With your cursor still between the field braces, type the following:

http://lib.ommolketab.ir

PRINT \p page "

% Crop Marks

.5 setlinewidth

% bottom left

72 88 moveto

72 52 lineto

70 90 moveto

34 90 lineto

% top left

70 720 moveto

34 720 lineto

72 722 moveto

72 758 lineto

% top right

522 722 moveto

522 758 lineto

524 720 moveto

560 720 lineto

% bottom right

522 88 moveto

522 52 lineto

524 90 moveto

560 90 lineto

http://lib.ommolketab.ir

stroke

"

The PostScript instructions are divided into four main parts, one for each of the four corners of the
document where crop marks will be inserted. Each moveto, lineto pair corresponds to one of the

eight lines needed for a full set of crop marks (two perpendicular lines in each corner of the
document).

After you've created the PRINT field, print your document to file [Hack #23] to save it as a

PostScript file. If you have a PostScript printer, when you print the document, it will have crop marks
like the ones shown in Figure 3-50.

If you print to a non-PostScript printer, the PostScript instructions will appear
as text within the document.

These crop marks correspond to a 1-inch top and bottom margin and a 1.25-inch left and right
margin. To accommodate different margins, adjust the PostScript instructions accordingly.

To print crop marks on every page in a document, put the PRINT field in the

document header.

3.14.2 Hacking the Hack

The PostScript code shown in the previous section works if you're working with Word's default
margins, but if you want crop marks on a page with different margins, you need to work out the new
coordinates. As much fun as a flashback to high-school geometry might be, it's better to work out the
details once and then use a macro to adjust the coordinates for different margins.

The following code creates a PRINT field with the correct coordinates based on a document's margins.

The field is placed in the header of the section where the cursor is currently located. In most cases,
that puts crop marks on every page of the document, though if you've explicitly defined multiple
sections with different headers, you may need to adjust the macro to get the desired results.

Place these five procedures in the template of your choice [Hack #50] and run the main
PlaceCropmarks procedure from the Tools Macro Macros dialog or by putting a button for it on

a menu or toolbar [Hack #1] :

Sub PlaceCropmarks()

Dim sngLeft As Single

Dim sngRight As Single

Dim sngTop As Single

http://lib.ommolketab.ir

Dim sngBottom As Single

Dim sPrintField As String

Dim rng As Range

With ActiveDocument.PageSetup

 sngLeft = .LeftMargin

 sngRight = .RightMargin

 sngTop = .TopMargin

 sngBottom = .BottomMargin

End With

' Include initial field switches and PostScript instructions

sPrintField = " \p page " & Chr$(34) & " .5 setlinewidth "

' Get correct coordinates using the four functions

sPrintField = sPrintField & BottomLeft(sngLeft, sngBottom)

sPrintField = sPrintField & TopLeft(sngLeft, sngTop)

sPrintField = sPrintField & TopRight(sngRight, sngTop)

sPrintField = sPrintField & BottomRight(sngRight, sngBottom)

' Add final PostScript instruction and close the field instruction

sPrintField = sPrintField & "stroke" & Chr$(34)

Set rng = Selection.Sections.First.Headers(wdHeaderFooterPrimary).Range

rng.Collapse wdCollapseStart

rng.Fields.Add Range:=rng, _

 Type:=wdFieldPrint, _

 Text:=sPrintField, _

 PreserveFormatting:=False

http://lib.ommolketab.ir

End Sub

Function BottomLeft(sngLeft As Single, sngBottom As Single) As String

Dim sReturn As String

sReturn = sngLeft & " " & sngBottom - 2 & " moveto "

sReturn = sReturn & sngLeft & " " & (sngBottom - 2) - 36 & " lineto "

sReturn = sReturn & sngLeft - 2 & " " & sngBottom & " moveto "

sReturn = sReturn & (sngLeft - 2) - 36 & " " & sngBottom & " lineto "

BottomLeft = sReturn

End Function

Function TopLeft(sngLeft As Single, sngTop As Single) As String

Dim sReturn As String

sReturn = sngLeft & " " & (792 - sngTop) + 2 & " moveto "

sReturn = sReturn & sngLeft & " " & (792 - (sngTop + 2)) + 36 & " lineto "

sReturn = sReturn & sngLeft - 2 & " " & 792 - sngTop & " moveto "

sReturn = sReturn & (sngLeft - 2) - 36 & " " & 792 - sngTop & " lineto "

TopLeft = sReturn

End Function

Function TopRight(sngRight As Single, sngTop As Single) As String

Dim sReturn As String

sReturn = 612 - sngRight & " " & (792 - sngTop) + 2 & " moveto "

sReturn = sReturn & 612 - sngRight & " " & (792 - (sngTop + 2)) + 36 & " lineto "

sReturn = sReturn & (612 - sngRight) + 2 & " " & 792 - sngTop & " moveto "

sReturn = sReturn & ((612 - sngRight) + 2) + 36 & " " & 792 - sngTop & " lineto "

http://lib.ommolketab.ir

TopRight = sReturn

End Function

Function BottomRight(sngRight As Single, sngBottom As Single) As String

Dim sReturn As String

sReturn = 612 - sngRight & " " & sngBottom - 2 & " moveto "

sReturn = sReturn & 612 - sngRight & " " & (sngBottom - 2) - 36 & " lineto "

sReturn = sReturn & (612 - sngRight) + 2 & " " & sngBottom & " moveto "

sReturn = sReturn & ((612 - sngRight) + 2) + 36 & " " & sngBottom & " lineto "

BottomRight = sReturn

End Function

PRINT fields aren't visible in a document unless you've chosen to view field codes. To quickly see all

the field codes in a document, press Alt-F9.

- Dan Mueller and Andrew Savikas

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Chapter 4. Editing Power Tools
Introduction: Hacks #27-44

Hack 27. Crunch Numbers Quickly in Word

Hack 28. Unlink Every Hyperlink

Hack 29. Exclude Text from Find and Replace

Hack 30. Use Character Codes to Find or Insert Special Characters

Hack 31. Find/Replace in Multiple Files

Hack 32. Find and Replace Without Find and Replace

Hack 33. Quickly Create a Custom Dictionary

Hack 34. Create a Dictionary Exclusion List

Hack 35. Disable Overtype Permanently

Hack 36. Delete All Comments in a Document

Hack 37. Delete All Bookmarks in a Document

Hack 38. Turn Comments into Regular Text

Hack 39. Apply Context-Sensitive Formatting

Hack 40. Send a Document as a Plain-Text Outlook Email

Hack 41. Swap Revision Authors

Hack 42. Corral Basic Bullets and Numbering

Hack 43. Cross-Reference Automatically

Hack 44. Hack More Flexible Cross-Referencing

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Introduction: Hacks #27-44

Word is probably used more for editing existing text than writing new documents. Revising,
reviewing, and reformatting likely make up most of your work in Word. The hacks in this chapter
show how to automate some of the more mundane editing chores and speed up some common
formatting commands.

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 27 Crunch Numbers Quickly in Word

Sometimes a spreadsheet is overkill. For quick and dirty math, dust off one of Word's
oldest commands: Calculate.

If you used Word when the first President Bush was in office, you might remember a handy feature
from the Tools menu: the Calculate command. With the standard four functions, plus exponents and
percentages, Calculate could handle a lot of the math needed for simple sales reports or budget
proposals.

Though Microsoft removed the command from the Tools menu in Word 6.0, you can still find it if you
know where to look.

This hack shows you how to put the Calculate command back on the Tools
menu, but you can also put it on any of the toolbars or shortcut menus [Hack
#3].

4.2.1 Resurrecting Calculate

First, select Tools Customize and click the Commands tab. In the Categories column, choose All
Commands. Scroll down until you find ToolsCalculate, as shown in Figure 4-1.

Figure 4-1. Locating the Calculate command buried deep in Word

Drag the command to the Tools menu and place it right under the Speech option (or anywhere else

http://lib.ommolketab.ir

on the menu). Right-click the new menu item and rename it "Calculate," as shown in Figure 4-2.

Figure 4-2. Returning Calculate to the Tools menu

When you first place the command on a menu or toolbar, it may appear grayed-out. Calculate is
available only when you've selected some text.

4.2.2 Using Calculate

By default, the Calculate command will add any set of selected numbers separated by whitespace.
Word temporarily displays the result in the status bar, as shown in Figure 4-3, and also places it on
the clipboard.

Figure 4-3. The sum of the selected numbers is temporarily displayed in
the status bar

http://lib.ommolketab.ir

Calculate ignores any text that isn't a number, except for currency symbols, periods, and commas,
which it recognizes when these are part of a number.

For operations other than addition, you must include the mathematical operator. Table 4-1 lists the
operations in reverse order of precedence. To force a calculation out of precedence order, enclose the
expression in parentheses. Addition and subtraction are of equal precedence and are evaluated left to
right. Multiplication and division also are of equal precedence and are evaluated left to right.

Table 4-1. Syntax for the Calculate command, in reverse order of
precedence

Operation Operator Example Result

Addition + or space 220 + 419 982 1621

Subtraction - or () 1440 (312) - 96 1032

Multiplication * 24 * $199 $4776.00

Division / $20,000/36 $555.56

Exponential (power or root) ^ (32^(1/5))^8 256

Percentage % $89 * 15% $13.35

Though Calculate is most often used in tables, it works on any selected text. For example, you can
use this command to quickly add all the numbers in a paragraph of text, as shown in Figure 4-4.

Figure 4-4. Calculate works with selected text and displays the results in
the status bar

http://lib.ommolketab.ir

4.2.3 Hacking the Hack

The calculation results are displayed in the status bar for only a few seconds. After that, if you want
to see the results, you must either paste them from the clipboard or redo the calculation, paying
closer attention to the status bar. If you prefer to display the calculation results more directly, you
can intercept the command [Hack #61] and have Word display the results in a message box.

Place the following macro in the template of your choice [Hack #50] . It will run in place of the
Calculate command when you select Tools Calculate.

Sub ToolsCalculate()

MsgBox Selection.Range.Calculate

End Sub

However, when you intercept the command, Word neither displays the calculation results in the
status bar nor copies them to the clipboard. To also put the results in the status bar, use the
following code instead:

Sub ToolsCalculate()

Dim sResult as String

sResult = Selection.Range.Calculate

StatusBar = "The result of the calculation is: " & sResult

Msgbox sResult

End Sub

http://lib.ommolketab.ir

It takes a bit more work to get the results copied to the clipboard. There's no direct way to access
the clipboard from VBA, so you need to use Windows API calls. You can find sample code for
accessing text on the clipboard at http://support.microsoft.com/default.aspx?scid=kb;en-us;138909.

With the code from that site included in the same module, use the site's example
Clipboard_SetData subroutine to put the results on the clipboard:

Sub ToolsCalculate()

Dim sResult As String

sResult = Selection.Range.Calculate

StatusBar = "The result of the calculation is: " & sResult

MsgBox sResult

ClipBoard_SetData (sResult)

End Sub

 < Day Day Up >

http://support.microsoft.com/default.aspx?scid=kb;en-us;138909
http://lib.ommolketab.ir

 < Day Day Up >

Hack 28 Unlink Every Hyperlink

Sometimes uninvited, often distracting, and always hard to wrangle, hyperlinks tend to
stick around your documents like unwelcome guests at a party. Here's how to show them
the door.

Maybe it's because they're so difficult to edit; maybe it's the tacky combination of blue and underline;
or maybe it's having to continually dismiss that web browser or email editor you didn't mean to open.
Whatever the reason, many users have just one thing to say about hyperlinks in Word: "How do I get
rid of them!?"

To stop Word from creating hyperlinks, select Tools AutoCorrect Options
(Tools AutoCorrect in Word 97 and 2000), click the "AutoFormat As You
Type" tab, and uncheck the "Internet and network paths with hyperlinks" box.

To unlink a single hyperlink, select it, then right-click and choose Remove Hyperlink from the shortcut
menu, as shown in Figure 4-5.

Figure 4-5. Removing a hyperlink with the Hyperlink shortcut menu

You can also unlink a hyperlink by selecting it and then pressing Ctrl-Shift-F9. However, this key
command unlinks all the fields in the current selection. So selecting all the text in your document and
then pressing Ctrl-Shift-F9 would remove all the hyperlinks and unlink every other field in your

http://lib.ommolketab.ir

document, making it a poor choice for the task at hand.

Word offers no built-in way to unlink just every hyperlink in a document all at once. However, you
can use a macro to get the job done.

4.3.1 The Code

Place this macro in the template of your choice [Hack #50] and either run it from the Tools
Macro Macros dialog or put a button for it on a menu or toolbar [Hack #1].

Running the following macro achieves the same result as selecting each hyperlink and choosing
Remove Hyperlink from the shortcut menu:

Sub RemoveAllHyperlinks()

Dim i As Integer

For i = ActiveDocument.Hyperlinks.Count To 1 Step -1

 ActiveDocument.Hyperlinks(i).Delete

Next i

End Sub

Notice that while the shortcut menu uses the term "remove," in this macro, each hyperlink is
"deleted." Though the terminology is inconsistent, the result is the same: the text remains in your
document, but it is no longer an active hyperlink and no longer appears as blue and underlined.

You may want to add this macro to the Hyperlink shortcut menu [Hack #3].

4.3.2 Hacking the Hack

When a hyperlink is inserted into your document (either manually or automatically), the Hyperlink
character style is applied to its text. The Hyperlink character style is just like any other character
style in Word. You can see it displayed in the Styles pull-down menu on the Formatting toolbar, as
shown in Figure 4-6.

Figure 4-6. Hyperlink is just another built-in character style

http://lib.ommolketab.ir

If you like having the links but can't stand the blue underlining, you can change it. Select Format
Styles and Formatting (Format Style in Word 2000), choose the Hyperlink style, and click the
Modify button. Next, click the Format button and choose Font. The Font dialog, shown in Figure 4-7,
lets you change the style to suit your tastes.

Figure 4-7. Choosing a more mellow format for Word hyperlinks

http://lib.ommolketab.ir

If you remove a hyperlink, the Hyperlink character style goes with it. The reverse, however, is not
true-that is, if you select a hyperlink and alter its styling (e.g., remove the underlining), you will still
be left with a fully "clickable" hyperlink.

You can apply any style or formatting you like to a hyperlink, and it will remain
active. But if you apply the Hyperlink style to regular text, it won't create a
hyperlink (though its appearance will certainly confuse you).

If you want to remove all the hyperlinks in a document but keep the Hyperlink character style applied
to the text, modify the macro as follows:

Sub RemoveHyperlinksKeepStyle()

Dim oHyperlink As Hyperlink

Dim i As Integer

Dim rng As Range

For i = ActiveDocument.Hyperlinks.Count To 1 Step -1

 Set oHyperlink = ActiveDocument.Hyperlinks(i)

 Set rng = oHyperlink.Range

http://lib.ommolketab.ir

 oHyperlink.Delete

 rng.Style = wdStyleHyperlink

Next i

End Sub

To completely remove all the hyperlinks in a document, including their text, change the
RemoveAllHyperlinks macro to the following:

Sub ReallyRemoveAllHyperlinks()

Dim i As Integer

For i = ActiveDocument.Hyperlinks.Count To 1 Step -1

 ActiveDocument.Hyperlinks(i).Range.Delete

Next i

End Sub

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 29 Exclude Text from Find and Replace

This hack turns "Find what" into "Find not what."

Say you're editing a scholarly book that contains dozens of block quotations from old journals. The
author has consistently misspelled several geographical and personal names, so you get ready to fire
up Find and Replace.

But wait-although you want to replace the author's misspellings, you don't want to replace the
original misspellings in the block quotations. Those should be reproduced verbatim. And you certainly
don't want to OK every replacement by hand in this long, long book.

Though you can't explicitly tell Word what text not to search in, this hack takes advantage of the fact
that Word automatically ignores any hidden text in its searches.

Let's say all of your block quotations use Word's built-in Block Text style. If you set the text in that
style as hidden, Word will skip over it during your Find/Replace.

Select Format Styles and Formatting (Format Styles in Word 2000). Choose the Block Text
style and click the Modify button.

In the next dialog, click the Format button and choose Font to display the dialog shown in Figure 4-8.

Figure 4-8. Find and Replace will skip over any hidden text

http://lib.ommolketab.ir

Check the Hidden box, click the OK button, and then click the OK button again to exit the Modify
Style dialog. Finally, click the Close button on the Styles dialog to return to your document.

All of the block quotations will have disappeared-as long as you're not displaying hidden text. If you
still see the block quotes, select Tools Options, click the View tab, and check the "Hidden text"
box.

Now, with your block quotations hidden, you can find and replace the misspellings in the rest of your
text.

Once you finish, just repeat the above procedure (this time unchecking the Hidden box) to make your
block quotations visible again. All of your block quotations will reappear, with their misspellings intact.

- Jack Lyon

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 30 Use Character Codes to Find or Insert Special
Characters

It's easy to find common characters on the keyboard. But when you need to find or create
an uncommon character, using character codes can make things much easier.

Word uses Unicode characters to internally store all the text you type, including special characters
and symbols. Unicode is, to paraphrase the official Unicode web site (http://www.unicode.org), a
universal character-encoding standard, designed to ensure that any text can be represented on any
platform, and in any language.

Prior to the introduction of the Unicode standard, many software programs used (and many still do
use) other character encodings, such as the original ASCII character set, or similar encodings that
include the ASCII characters and some additional ones. ASCII and other older character-encoding
standards do not have the capacity to represent all the characters possible in multiple languages, and
they often create problems when transferring text among applications used in different countries or
regions.

Though Word uses Unicode internally, its ASCII roots poke through when you insert characters into
documents and search for characters using Find and Replace.

In this hack, the term "ASCII" refers to the characters represented in Word by the
codes 0-255. ASCII is a bit less of a mouthful than "Windows Code Page 1052," the real
name of the encoding set-see
http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP1252.TXT.

4.5.1 Inserting Special Characters

You can use both ASCII character codes and Unicode character codes to insert special characters into
text in Word.

4.5.1.1 Using ASCII codes

There are 256 characters in the ASCII set, numbered from 0 to 255. Not all of the codes represent
printable characters, and not all are used in Windows, but if you're familiar with the code for a
particular symbol, entering it from the keypad can be quicker than going through Insert Symbol.

For example, the ASCII code for a micro sign () is 181. To insert a micro sign at the insertion point,

http://www.unicode.org
http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP1252.TXT
http://lib.ommolketab.ir

do the following:

Turn on Num Lock for the numeric keypad.1.

Hold down the Alt key.2.

On the numeric keypad, type 0181.3.

Release the Alt key.4.

The micro symbol will be inserted into your document.

4.5.1.2 Using Unicode codes

Unicode supports many more than 256 characters. It has enough "space" to represent every
character in every language, with plenty to spare. Unicode codes are usually represented as
hexadecimal values, so they're a mix of digits and the letters A-F.

Not all fonts support Unicode, but many of the common ones, such as Times and Arial, do.

The Unicode code for a musical eighth-note character is 266A. To insert one at the insertion point, do
the following:

Type 266A.1.

Press Alt-X.2.

The code you typed will be converted to the eighth-note symbol.

Though you can search for characters by their Unicode numbers in Word 2000
(as described in the next section), you can't insert them directly using this
method in Word 2000.

You may find that it's easier to search for codes using the links available at the Unicode web site
(http://www.unicode.org) and insert characters using this method than it is to search among the
thousands of characters in the Insert Symbol dialog.

4.5.2 Searching for Special Characters

You can use these same character codes when searching for special characters in text. The ASCII
codes are particularly useful when you're performing a wildcard search.

4.5.2.1 Searching with ASCII codes

http://www.unicode.org
http://lib.ommolketab.ir

Independent of the ASCII and Unicode codes, Word includes several special character codes that
you've likely seen before, such as ̂ p to search for a paragraph mark or ̂ t to search for a tab. The

Word help files cover these codes extensively, but three deserve special attention because they can
match more than one character:

^# matches any digit.

^$ matches any letter.

^w matches any whitespace.

The special character codes will help you with simple searches, but if you check the "Use wildcards"
box in the Find and Replace dialog, you'll get the error message shown in Figure 4-9.

Figure 4-9. Some of Word's special codes can't be used with wildcard
searching active

So how do you match a paragraph mark when wildcard searching is active? By using the ASCII code.
To search for a character by its ASCII code, type ̂ 0 in the "Find what" box, followed by the character

code.

The ASCII code for a paragraph mark (technically, it's a carriage return) is 13. So, to search for
paragraph marks while wildcard searching is activated, you'd type ̂ 013 in the "Find what" box.

Be aware that some fonts assign different characters to the ASCII codes.

With wildcard searching active, you can also search for ranges of characters. For example, type
[^0100-^0104] in the "Find what" box to search for characters between d and f.

4.5.2.2 Searching with Unicode codes

You can also search for a character using its Unicode code by prefacing it with ̂ u. However, you can't

directly search using the hexadecimal code; you must enter its decimal equivalent.

For example, the decimal equivalent of 266A, the musical eighth-note character, is 9834. So, to
search for that character, enter ̂ u9834 in the "Find what" box.

http://lib.ommolketab.ir

Unlike ASCII codes, Unicode codes won't work with wildcard searching active.

So how do you convert a hexadecimal number to a decimal number? Fortunately, VBA includes a
function that will do it for you. To convert a "hex" number to its decimal equivalent, select Tools
Macro Visual Basic Editor to display the Visual Basic Editor in a separate window.

In the small window titled "Immediate" near the bottom of the screen, type the following and press
Enter:

?CDec(&H

code

)

code is the Unicode code, as shown in Figure 4-10.

Figure 4-10. Converting a hexadecimal value to its decimal equivalent

4.5.3 What's That Character?

What if you need to replace some obscure character in an unusual font? For example, say you open a
giant document from a client and find the same odd character at the beginning of every paragraph. If
Word won't let you paste the character into its Find and Replace dialog, it seems you're stuck
repairing it by hand.

If you knew the character's numeric code, you could search for it, but this character falls way off the
usual list. How can you find its numeric code? Put the following macro in the template of your choice
[Hack #50], select Tools Macro Macros, choose WhatCharacterCode from the list, and click

the Run button:

Sub WhatCharacterCode()

MsgBox Asc(Selection.Text)

End Sub

http://lib.ommolketab.ir

This macro will display the ASCII character code for the first character in the current selection; you
can then search for it using the ̂ 0 syntax.

If the macro reports a value of 63 and fails to match the character, you may be facing a Unicode
character. The following macro will report the Unicode code of a character, which you can search for
using the ̂ u syntax:

Sub WhatUnicodeCharacterCode()

MsgBox AscW(Selection.Text)

End Sub

The result displayed will be the decimal version of the Unicode character code,
not the hexadecimal version used when inserting Unicode characters.

- Jack Lyon and Andrew Savikas

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 31 Find/Replace in Multiple Files

Make the same substitution on several files at once using the code in this hack.

Find and Replace is a real time-saver, but when you have to perform the same substitution on
multiple files, it can seem like more of a hindrance than a help.

If you regularly perform the same types of substitutions on multiple documents, developing a set of
macros to do the work for you can represent a real improvement in efficiency.

4.6.1 The Code

For example, say your law firm, Dewey & Cheatham, just added a partner, and now you're Dewey,
Cheatham & Howe. The following macro searches all the Word documents in the folder C:\My
Documents and replaces the old name with the new name wherever it occurs:

Sub FindReplaceAllDocsInFolder()

Dim i As Integer

Dim doc As Document

Dim rng As Range

With Application.FileSearch

 .NewSearch

 .LookIn = "C:\My Documents"

 .SearchSubFolders = False

 .FileType = msoFileTypeWordDocuments

 If Not .Execute() = 0 Then

 For i = 1 To .FoundFiles.Count

 Set doc = Documents.Open(.FoundFiles(i))

http://lib.ommolketab.ir

 Set rng = doc.Range

 With rng.Find

 .ClearFormatting

 .Replacement.ClearFormatting

 .Text = "Dewey & Cheatem"

 .Replacement.Text = "Dewey, Cheatham & Howe"

 .Forward = True

 .Wrap = wdFindContinue

 .Format = False

 .MatchCase = False

 .MatchWholeWord = False

 .MatchWildcards = False

 .MatchSoundsLike = False

 .MatchAllWordForms = False

 .Execute Replace:=wdReplaceAll

 End With

 doc.Save

 doc.Close

 Set rng = Nothing

 Set doc = Nothing

 Next i

 Else

 MsgBox "No files matched " & .FileName

 End If

http://lib.ommolketab.ir

End With

End Sub

The macro uses the FileSearch object to examine each file in the folder. If it finds a Word

document, it opens the file, changes the name wherever it occurs, and then saves and closes the file.
If the macro finds no Word files in the folder, it displays a message on the screen.

Place this macro in the template of your choice [Hack #50] and either run it from the Tools
Macro Macros dialog or assign it a button on a menu or toolbar [Hack #1].

4.6.2 Hacking the Hack

The code in the first section has a subtle problem related to the Find object. When you perform a

substitution from VBA, it includes only the main part of the document in the substitution. It leaves
the headers, footers, comments, footnotes, text boxes, and so forth out of the search.

To modify the macro above to search every nook and cranny in a document, wrap the replacement
inside a For Each loop [Hack #66] that cycles through each part of the document. The modified

sections are highlighted in bold:

Sub FindReplaceAllDocsInFolder()

Dim i As Integer

Dim doc As Document

Dim rng As Range

With Application.FileSearch

 .NewSearch

 .LookIn = "C:\My Documents"

 .SearchSubFolders = False

 .FileType = msoFileTypeWordDocuments

 If Not .Execute() = 0 Then

 For i = 1 To .FoundFiles.Count

 Set doc = Documents.Open(.FoundFiles(i))

 For Each rng In doc.StoryRanges

 With rng.Find

http://lib.ommolketab.ir

 .ClearFormatting

 .Replacement.ClearFormatting

 .Text = "Dewey & Cheatem"

 .Replacement.Text = "Dewey, Cheatem & Howe"

 .Forward = True

 .Wrap = wdFindContinue

 .Format = False

 .MatchCase = False

 .MatchWholeWord = False

 .MatchWildcards = False

 .MatchSoundsLike = False

 .MatchAllWordForms = False

 .Execute Replace:=wdReplaceAll

 End With

 Next rng

 doc.Save

 doc.Close

 Set rng = Nothing

 Set doc = Nothing

 Next i

 Else

 MsgBox "No files matched " & .FileName

 End If

End With

End Sub

http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 32 Find and Replace Without Find and Replace

This brute-force hack lets you power through simple substitutions without complicated
code.

VBA newbies (and even veterans) find it frustrating to use the Find and Replace command from
within a macro.

Why the difficulty? Most people think of Find and Replace as an action, which would translate to a
procedure in VBA. Word, however, uses a Find object to handle searching and replacing.

Scripting languages such as Python and Ruby implement their substitution capabilities as objects,
too. If you implement Find as an object, you can assign and retain properties in memory for the next
time you use the object. The same phenomenon occurs when you do a search and the text you last
searched for remains in the "Find what" box.

While the Find object is a powerful tool for working with Word from VBA, its complexity can really
bog you down when all you need is a quick fix. Find has more than two dozen properties, and while it
does execute very quickly, you will probably spend any time you save using the Find object figuring
out how to use it. This hack shows you how to replace it (pun intended) with a simple For Each loop

[Hack #66] .

For example, say your document uses four different highlighting colors in each paragraph: red, blue,
yellow, and green. Just as you finally finish applying the highlighting, your boss decides she prefers
teal instead of blue and asks you to make the change. The clock reads 10 minutes to noon, and you
want this project wrapped up before your lunch date.

First, you try Edit Replace, but you quickly discover that although you can search for highlighting,
you cannot specify a color.

You decide to try a macro instead, but 30 minutes later you still need to figure out how to coerce the
Find object into doing your bidding. Hungry and frustrated, you finally give up and start making the

change by hand. There must be a better way!

4.7.1 The Code

It would probably take you five minutes to write these five lines of code with the help of VBA's
IntelliSense [Hack #1], and maybe another five minutes to test and debug it on a snippet of your
document. And five lines of brute-force VBA is all it takes:

Sub FixHighlightColor()

http://lib.ommolketab.ir

Dim char As Range

For Each char In ActiveDocument.Characters

 If char.HighlightColorIndex = wdBlue Then

 char.HighlightColorIndex = wdTeal

 End If

Next char

End Sub

Notice that the macro iterates through each character in the active document (including spaces).

4.7.2 Running the Hack

Place this macro in the template of your choice [Hack #50] and either run it from the Tools
Macro Macros dialog or put a button for it on a menu or toolbar [Hack #1].

Obviously, it takes some time to run such a resource-intensive procedure. But on a sample 27-page
document, with 83,000 characters (including spaces), this macro took a grand total of four minutes.
You might have made that lunch date after all.

Of course, if your document is hundreds of pages long, or if you have dozens of documents to fix, it
might make sense to develop more efficient code. But even if your document was 10 times longer
than our sample (or you had nine more of them), this macro would have solved your problem before
you even finished lunch.

4.7.3 Hacking the Hack

Although "each character in the active document" sounds all-encompassing, it leaves out a few
important things. Each document is actually made of several story ranges: one for the main text,
another for the footnotes, another for the headers and footers, and so on. The macro, however,
searches only the main text story range, so if a header contained highlighting, the
FixHighlightColor macro would fail to catch it.

To solve this problem, nest your code inside another For Each loop:

Sub FixHighlightColorInAllStories()

Dim char As Range

Dim stry as Range

For Each stry In ActiveDocument.StoryRanges

http://lib.ommolketab.ir

 For Each char In stry.Characters

 If char.HighlightColorIndex = wdBlue Then

 char.HighlightColorIndex = wdTeal

 End If

 Next char

Next stry

End Sub

To see how much simpler a For Each loop can be, take a look at the following macro, which performs
the same substitution as the five-line FixHighlightColor macro shown above.

The Find object works a lot faster (about 70% faster on that same test document), but it's a lot

trickier to code:

Sub FixHighlightUsingFind()

Dim rngToSearch As Range

Dim rngResult As Range

Set rngToSearch = ActiveDocument.Range

Set rngResult = rngToSearch.Duplicate

Do

 With rngResult.Find

 .ClearFormatting

 .Text = ""

 .Forward = True

 .Wrap = wdFindStop

 .Highlight = True

 .Execute

 End With

http://lib.ommolketab.ir

 If rngResult.Find.Found = False Then

 Exit Do

 End If

 If rngResult.HighlightColorIndex = wdBlue Then

 rngResult.HighlightColorIndex = wdTeal

 End If

 rngResult.MoveStart wdWord

 rngResult.End = rngToSearch.End

Loop Until rngResult.Find.Found = False

End Sub

As the bolded lines show, the part of the macro that does the actual substitution is nearly identical to
the FixHighlightColor macro above. Everything else is excess baggage.

Just like the For Each loop in the FixHighlightColor macro, the Find object in this macro misses

items not in a document's main story range. To find everything, including headers, footers, footnotes,
and text boxes, you need to wrap the Find and Replace inside of a For Each loop, as the following

code shows:

Sub FindInEveryStory()

Dim rngStory As Range

Dim rngToSearch As Range

Dim rngResult As Range

For Each rngStory In ActiveDocument.StoryRanges

 Set rngToSearch = rngStory

 Set rngResult = rngToSearch.Duplicate

 Do

http://lib.ommolketab.ir

 With rngResult.Find

 .ClearFormatting

 .Text = ""

 .Forward = True

 .Wrap = wdFindStop

 .Highlight = True

 .Execute

 End With

 If rngResult.Find.Found = False Then

 Exit Do

 End If

 If rngResult.HighlightColorIndex = wdBlue Then

 rngResult.HighlightColorIndex = wdTeal

 End If

 rngResult.MoveStart wdWord

 rngResult.End = rngToSearch.End

 Loop Until rngResult.Find.Found = False

 Next rngStory

End Sub

If you do a Find and Replace from the Word interface, it will catch text in the
headers, footers, footnotes, and so on, as long as you search All rather than Up
or Down. If, however, you play back a recorded macro of the same Find and
Replace, it will leave those items untouched.

http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 33 Quickly Create a Custom Dictionary

Adding items to a custom dictionary one by one is a tedious exercise. Here's how to add
an entire list of words to your existing custom dictionary, or as a separate, new custom
dictionary.

When Word performs a Spelling and Grammar check on your document, it uses whichever dictionary
is available for your language. You can select Tools Language Set Language to change the
dictionary, as shown in Figure 4-11. Any language listed with a checkmark next to it has a dictionary
installed on your computer.

Figure 4-11. Word uses the dictionary for the language specified here

For example, if you're working on a document for a client from the United Kingdom, and you change
the language to "English (U.K.)," Word marks words such as "color" as misspellings and prompts you
to change them to their English counterparts, as shown in Figure 4-12.

Figure 4-12. When using the U.K. English dictionary, "color" is a
misspelling

http://lib.ommolketab.ir

But often a document or set of documents uses a very specialized set of terms not included in any of
the installed dictionaries. Although you can add words to the dictionary-or, rather, to the default
custom dictionary file (in most cases, CUSTOM.DIC)-if the project exists for only a short time, you
may not want those new entries for future documents. Rather than temporarily adding the terms to
your standard custom dictionary, which you may prefer to reserve for items you use all the time,
you're better off adding a new custom dictionary for your project or client, which you can later
remove when the project's finished.

The method for creating and populating a custom dictionary from within Word involves the use of a
lot of dialogs, and it can become a real pain if you want to enter a long list of words at once.

Fortunately, there's an easier way. A custom dictionary is nothing more than a text file with a .dic
extension, saved in a special folder. In Word 2000, 2002, and 2003, the folder is typically
C:\Documents and Settings\<username>\Application Data\Microsoft\Proof.

4.8.1 Creating the Custom Dictionary

To create your new custom dictionary, create a list of the words you want to add using your favorite
text editor, such as Notepad, and save the file with a .dic extension in the Proof folder.

Though you can create plain-text files using Word, you can avoid the possibility
of extraneous formatting characters being included by using a standard text
editor, such as Notepad.

As an example, let's say that while writing a book about Word macros, you want the Spelling and
Grammar check to ignore certain terms, such as "AutoExec" and "DocumentBeforeClose." After you
enter the list of terms in a text editor, save the file in the Proof directory described above, as shown
in Figure 4-13.

http://lib.ommolketab.ir

Figure 4-13. Saving a list of words as a custom dictionary file

4.8.2 Activating the Custom Dictionary

To tell Word to start checking your new custom dictionary during the Spelling and Grammar check,
you must first activate it.

Select Tools Options and click the Spelling and Grammar tab. Click the Custom Dictionaries button
to display the Custom Dictionaries dialog shown in Figure 4-14.

Figure 4-14. Loading a new custom dictionary

Any .dic files in the Proof directory will be included in the dictionary list. To activate your new custom

http://lib.ommolketab.ir

dictionary, just check the box next to its name and click the OK button. When you're finished with the
project, use the same dialog to deactivate the custom dictionary.

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 34 Create a Dictionary Exclusion List

You can't remove words from any of Word's built-in dictionaries, but you can create a list
of words that the Spelling and Grammar check will always flag.

An exclusion list contains words you want the Spelling and Grammar check to find, regardless of their
spelling or usage, as if they'd been excluded from the Dictionary. For example, say you decide to
write a book on Microsoft Word and add "word" to your exclusion list. After you complete each
chapter, you can then run the Spelling and Grammar check to make sure you didn't mix up "Word"
and "word" somewhere along the way.

To create an exclusion list, make a list of words to exclude (in the sense that they will be flagged,
rather than passed over as correct) using a standard text editor such as Notepad and save the file in
your Proof directory (C:\Documents and Settings\<username>\Application Data\Microsoft\Proof).
The exclusion list must use the same name as the dictionary you use. For example, Word uses the
dictionary named Mssp3en.lex for U.S. English. If you're using this dictionary, you must name the
exclusion list Mssp3en.exc. (Note that the file uses the .exc extension.) The list will take effect the
next time you start Word.

To add an exclusion list for a different dictionary, you need to know its name. Windows-based
systems store the dictionaries in C:\Program Files\Common Files\Microsoft Shared\Proof, as shown in
Figure 4-15.

Figure 4-15. Create an exclusion list for any installed dictionary (files
ending in .lex)

As the name of the folder implies, the Office programs share all the
dictionaries. If you create an exclusion list in Word, you will also exclude those
words from the Spelling and Grammar checks of all the other Office
applications.

http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 35 Disable Overtype Permanently

Inspiration strikes, and you begin a flurry of typing with nary a glance at the screen. A
few minutes later, you look up and discover with horror that you've accidentally entered
Overtype mode, that zero-sum game of editing by attrition. This hack shows you how to
disable Overtype mode once and for all.

Do you know anyone who uses Overtype mode? Didn't think so. In fact, many people simply reassign
the Insert key to some other function-typically Paste, though any command will do. Word even
includes an option to use the Insert key for pasting: simply select Tools Options, click the Edit tab,
and check the "Use the INS key for paste" box.

But if you've been burned before, even this may not be enough to assuage your fears. With this
hack, Overtype can never hurt you again. It also offers a great example of intercepting built-in
commands [Hack #61], one of the most powerful customization features available in Word.

Select Tools Macro Macros, choose Word Commands from the "Macros in" drop-down list, and
select Overtype from the "Macro name" list, as shown in Figure 4-16.

Figure 4-16. Select Overtype from the list of Word macros

Next, choose Normal.dot (or the template of your choice [Hack #50]) from the "Macros in" drop-

http://lib.ommolketab.ir

down list and click the Create button, as shown in Figure 4-17.

Figure 4-17. Preparing to create a new Overtype macro in Normal.dot

The Visual Basic Editor will open, and you'll see a brand new macro named Overtype, already filled in
with the VBA code equivalent to toggling the Insert button, as shown in Figure 4-18.

Figure 4-18. When you create a macro based on one of Word's
commands, the VBA code to perform the command is inserted

automatically

http://lib.ommolketab.ir

Select the line of code that says:

Overtype = Not Overtype

and replace it with the following:

Selection.Paste

Now select File Save, and then go to File Close and Return to Microsoft Word.

If you prefer to completely disable Overtype, just delete the following line of
code:

Overtype = Not Overtype

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 36 Delete All Comments in a Document

Word 2002 and 2003 include a command on the Reviewing toolbar that deletes all the
comments in a document. For users of earlier versions of Word, this hack does the same
thing.

Comments let one or more reviewers comment on the text of a document without interfering with the
content of the document. But once you finish editing or reviewing a document, getting rid of those
comments can be a hassle.

To quickly delete a single comment, right-click its reference and choose Delete Comment from the
shortcut menu [Hack #3]. But if you're facing dozens or hundreds of comments, deleting each one
in turn will take you quite a while.

Another method for deleting comments is to use Find and Replace. Select Edit Replace and do the
following:

Leave the Find What box empty.1.

Click the Format button, choose Style, and select the Comment Reference style. (Don't see the
Format button? Click the More button to make it visible.)

2.

Leave the Replace With box empty.3.

Click the Replace All button.4.

But occasionally some comments just won't go quietly, so a VBA macro is your best bet for quickly
getting rid of them.

4.11.1 The Code

Place this macro in the template of your choice [Hack #50] and either run it from the Tools
Macro Macros dialog or put a button for it on a menu or toolbar [Hack #1] :

Sub DeleteAllComments

Dim i As Integer

For i = ActiveDocument.Comments.Count To 1 Step -1

 ActiveDocument.Comments(i).Delete

http://lib.ommolketab.ir

Next i

End Sub

If you're concerned about running the macro unintentionally, perhaps because you've placed it on a
toolbar near another command you use frequently, the following version includes a prompt asking
you to confirm that you do indeed want all the comments deleted, as shown in Figure 4-19. It also
pops up a message when it finishes, notifying you how many comments were removed.

Sub DeleteAllCommentsAndConfirm()

Dim i As Integer

Dim iNumberOfComments As Integer

If MsgBox(_

 "Are you sure you want to delete ALL comments in this document?", _

 vbYesNo) = vbYes Then

 iNumberOfComments = ActiveDocument.Comments.Count

 For i = iNumberOfComments To 1 Step -1

 ActiveDocument.Comments(i).Delete

 Next i

MsgBox iNumberOfComments & " Comment(s) Deleted", vbInformation

End If

End Sub

Figure 4-19. Confirming that you want to delete all comments in a
document

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 37 Delete All Bookmarks in a Document

Word offers no built-in way to delete all of a document's bookmarks at once. This hack
shows you how to do it with some VBA.

Bookmarks let you quickly navigate through a document. But if you will eventually import your
document into another program, such as Quark or FrameMaker, those bookmarks can cause
trouble-for example, FrameMaker attempts to convert some bookmarks into its own similar
"marker" feature, but it often creates unresolved cross-references that you must delete. Conversely,
when exporting to Word format from another program, the program may create bookmarks of
questionable value in the Word document.

You can select Insert Bookmark and delete bookmarks one at a time, but if a document has
dozens or more, you'll be clicking for a while. The macro in this hack will delete them all at once.

4.12.1 The Code

Place this macro in the template of your choice [Hack #50] and either run it from the Tools
Macro Macros dialog or put a button for it on a menu or toolbar [Hack #1].

The following macro deletes every bookmark in a document:

Sub DeleteAllBookmarks()

Dim i As Integer

For i = ActiveDocument.Bookmarks.Count To 1 Step -1

 ActiveDocument.Bookmarks(i).Delete

Next i

End Sub

4.12.2 Hacking the Hack

Word hides some of the bookmarks it creates, such as the ones for cross-references, by default. A
hidden bookmark isn't included when iterating through each bookmark in a document, unless the

http://lib.ommolketab.ir

"Hidden bookmarks" box in the Insert Bookmark dialog is checked. To be sure you get all of them,
this version of the macro turns on that setting before running:

Sub DeleteAllBookmarksIncludingHidden()

Dim i As Integer

Activedocument.Bookmarks.ShowHidden = True

For i = ActiveDocument.Bookmarks.Count To 1 Step -1

 ActiveDocument.Bookmarks(i).Delete

Next i

End Sub

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 38 Turn Comments into Regular Text

This hack shows you how to replace a comment's reference with its text and author.

Comments let reviewers annotate the text without interfering with the text. But if you later import
the document into another program, such as Quark or FrameMaker, those comments can cause
trouble. Also, when you save a file as a plain-text (.txt) file, you lose any comment references, and
the comments end up tacked on at the end, out of context.

In many cases, you can just delete all the comments [Hack #36], but if those comments contain
important instructions for a compositor, or other useful information, you may prefer to incorporate
the comments into the text and set them off with a bit of markup. A macro can quickly convert those
comments into regular text, while retaining their positions in the document.

Select Tools Options and click the User Information tab to view the author
name assigned to comments you create.

4.13.1 The Code

This macro replaces each comment reference in a document with the text of the comment itself and
adds the name of the comment's author at the end. The entire entry is surrounded in brackets and
styled with the built-in Emphasis character style, as shown in Figure 4-20.

Figure 4-20. A Word comment converted to text

Place this macro in the template of your choice [Hack #50] and either run it from the Tools
Macro Macros dialog or put a button for it on a menu or toolbar [Hack #1]. Be sure your cursor
is currently in the main text of the document when you run this macro.

Sub ConvertCommentsToInlineText()

Dim c As Comment

http://lib.ommolketab.ir

Dim i As Integer

For i = ActiveDocument.Comments.Count To 1 Step -1

 Set c = ActiveDocument.Comments(i)

 c.Reference.Style = wdStyleEmphasis

 c.Reference.Text = " [" & c.Range.Text & " -- " & c.Author & "] "

Next i

End Sub

Though the code never explicitly deletes the comments, Word removes them when the macro
replaces their references with text.

4.13.2 Hacking the Hack

Rather than retaining the comments within the text, you can create a separate document containing
just the comments.

The following macro creates a table listing each comment in a document, along with the comment's
author. The table is created in a new, blank document.

Sub CreateTableOfComments

Dim c As Comment

Dim i As Integer

Dim docForComments As Document

Dim docActive As Document

Set docActive = ActiveDocument

Set docForComments = Documents.Add

docForComments.Range.InsertAfter _

 "Comment" & vbTab & "Author" & vbCr

For Each c In docActive.Comments

http://lib.ommolketab.ir

docForComments.Range.InsertAfter _

 c.Author & vbTab & c.Range.text & vbCr

Next c

docForComments.Range.ConvertToTable _

 Separator:=vbTab, _

 Format:=wdTableFormatList1

End Sub

4.13.3 See Also

[Hack #95]

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 39 Apply Context-Sensitive Formatting

Which character style you apply to a selection of text may depend on its context. This
hack makes it easy to apply the correct one of several similar styles by using a macro to
examine the selection's surroundings.

A complex document template may have several similar character styles, each fulfilling a different
semantic purpose in the document's structure. The template used for this manuscript, for example,
has two styles used to emphasize portions of text: one called emphasis (used to emphasize normal
body text) and the other replaceable (used to emphasize text presented in a constant-width font).

Which style is used depends on the context of the text to be emphasized.

One way to ensure the correct application of several different, but similar, character styles is to
provide users with a detailed set of instructions about which style to use in any particular situation
(and when not to use a particular style, such as in a heading). But many people will simply do what
they've always done in Word to emphasize text: press the I button on the Formatting toolbar.

Unfortunately, this action only applies direct formatting on top of the paragraph style already in use.
You can try just telling people not to reach for the I button, or you can opt to intercept the Italic
command [Hack #61] and apply the correct character style based on the current paragraph style.

For example, assume that there are two character styles, emphasis and replaceable, governed by

the following four rules:

Do not apply character styles with multiple paragraphs selected.

Do not use character styles in headings.

If the paragraph style's name includes the word "Code," use the replaceable character style.

In all other situations, use the emphasis character style.

4.14.1 The Code

The following macro examines the context of the selected text when you press the I button and then,
based on the rules described above, performs one of three possible actions:

Ignores the command

Warns the user that the attempted action is not permitted

http://lib.ommolketab.ir

Applies one of the two character styles

After you place this macro in the template of your choice [Hack #50], it will run whenever you press
the I button on the toolbar or the key command associated with italic (typically Ctrl-I):

Sub Italic()

Dim sel As Selection

Dim sParagraphStyleName As String

Set sel = Selection

' Quietly exit if selection spans multiple paragraphs

If sel.Range.Paragraphs.Count <> 1 Then Exit Sub

' Warn then exit if selection is in a heading

sParagraphStyleName = sel.Range.Paragraphs.First.Style

If InStr(sParagraphStyleName, "Heading") Then

 MsgBox "Sorry, Character Styles aren't allowed in headings"

 Exit Sub

End If

' Apply appropriate character style

If InStr(sParagraphStyleName, "Code") Then

 sel.Style = "replaceable"

Else

 sel.Style = "emphasis"

End If

End Sub

http://lib.ommolketab.ir

For another example of intercepting toolbar buttons, check out [Hack #42] .

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 40 Send a Document as a Plain-Text Outlook Email

Use a macro to turn the text of a Word document into the body of an Outlook email.

Sometimes sending a document as an email attachment is overkill, especially if you just want the
recipient to review the text of a simple document. And if the recipient is under a particularly
restrictive mail server, he may not be able to receive Word document attachments, for fear of a
virus.

Now, you can always try to cut and paste the text into the body of an email, but that rarely produces
anything better than a giant block of continuous text that can be difficult to read from an email
window.

Another option is to save the document as a plain-text .txt file, open up that file in a text editor such
as Notepad, add some extra line breaks for readability, then cut and paste that into an email. Yuck.

Here's an easier option: after changing a few settings from within the Visual Basic Editor, you can
write macros that directly access Outlook from within Word, let you get the text-only contents of a
document, add some extra line breaks for readability, quickly create a new email message, and insert
the text as the message body.

4.15.1 Setting the Reference to Outlook

First, make sure you can access the Outlook object model from within Word. Select Tools Macro
Visual Basic Editor, then choose Tools References. Scroll down and check the "Microsoft

Outlook 11.0 Object Library" box, as shown in Figure 4-21.

If you're using an earlier version of Outlook, select the reference to that
version. The code in this hack will still work.

Figure 4-21. Setting a reference to the Outlook object model

http://lib.ommolketab.ir

Once you've established that reference, you can access the Outlook object model from your Word
macros.

4.15.2 The Code

Place this macro in the template of your choice [Hack #50] and either run it from the Tools
Macro Macros dialog or put a button for it on a menu or toolbar [Hack #1].

Since there's a good chance Outlook may already be open when running a macro that accesses it,
the code first tries to reference the currently open instance of Outlook. If it can't find one, the code
creates and uses a new instance of Outlook.

Sub doc2outlookemail()

Dim sDocText As String

Dim oOutlook As Outlook.Application

Dim oMailItem As Outlook.MailItem

' Get currently running Outlook, or create new instance

On Error Resume Next

Set oOutlook = GetObject(Class:="Outlook.Application")

If Err.Number = 429 Then

http://lib.ommolketab.ir

 Set oOutlook = CreateObject(Class:="Outlook.Application")

ElseIf Err.Number <> 0 Then

 MsgBox "Error: " & Err.Number & vbCr & Err.Description

 Exit Sub

End If

sDocText = ActiveDocument.Content.Text

' Replace each paragraph break with two paragraph breaks

sDocText = Replace(sDocText, Chr(13), String(2, Chr(13))

Set oMailItem = oOutlook.CreateItem(olMailItem)

oMailItem.Body = sDocText

oMailItem.Display

' Clean up references to Outlook objects

Set oMailItem = Nothing

Set oOutlook = Nothing

End Sub

The code leaves the email open and unaddressed. Just fill in the recipient's address and click the
Send button.

4.15.3 Hacking the Hack

Rather than sending the entire contents of a Word document, you may want to send just the outline
as a plain-text email. To do so, first switch to Outline view in your document and select the outline
level you want included in the email. Only the text visible from Outline view will be included in the
email.

Now make a minor adjustment to the earlier macro, as shown in bold:

Sub SendOutlineOnly()

http://lib.ommolketab.ir

Dim sDocText As String

Dim oOutlook As Outlook.Application

Dim oMailItem As Outlook.MailItem

' Get currently running Outlook, or create new instance

On Error Resume Next

Set oOutlook = GetObject(Class:="Outlook.Application")

If Err.Number = 429 Then

 Set oOutlook = CreateObject(Class:="Outlook.Application")

ElseIf Err.Number <> 0 Then

 MsgBox "Error: " & Err.Number & vbCr & Err.Description

 Exit Sub

End If

' Just want the outline

ActiveDocument.Content.TextRetrievalMode.ViewType = wdOutlineView

sDocText = ActiveDocument.Content.Text

' Replace each paragraph break with two paragraph breaks

sDocText = Replace(sDocText, Chr(13), String(2, Chr(13)))

Set oMailItem = oOutlook.CreateItem(olMailItem)

oMailItem.Body = sDocText

oMailItem.Display

' Clean up references to Outlook objects

Set oMailItem = Nothing

Set oOutlook = Nothing

http://lib.ommolketab.ir

End Sub

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 41 Swap Revision Authors

This hack shows you how to edit the information Word stores when you edit a document
using the Track Changes feature.

In addition to marking revisions in a document, Word's Track Changes feature remembers who made
the revisions. It lets you view up to eight different revision authors in a single document, each of
whose changes are displayed in a different color.

Select Tools Options and click the Track Changes tab to modify how Word
displays revisions.

But what if you want to modify the name of the author of a particular set of revisions? For example,
say you took some work home for the weekend and accidentally did your editing while logged into
your computer as one of your kids. Now all your revisions appear as though your teenage son made
the changes. Many coworkers would be forgiving, but a client would hardly look kindly on this error.

Unfortunately, you can't modify a revision author from VBA. It does have a Revision object with an
Author property, but the property is read-only, meaning you can't give it a different value.

To make the change, you'll need to get the document into a format that takes it out of Word's
control, such as RTF (Rich Text Format). When you save a document as an RTF file, you retain the
revision information. You can then edit the RTF file with any standard text editor, such as Notepad.

Here's how to change the author of a set of revisions in a Word file.

First, select File Save As and choose Rich Text Format in the "Save as type" field to save the file
as an .rtf file. Next, open the file with a text editor such as Notepad.

You can find many free text editors available on the Internet with a lot more to
offer than Notepad. Check out http://www.crimsoneditor.com for one such free
editor.

To locate the part of the file that contains the names of the revision authors, do a search in the file
for the following:

{*\revtbl

http://www.crimsoneditor.com
http://lib.ommolketab.ir

You will see a list of revision authors following the string characters, as shown in Figure 4-22. The
first entry in the list is always Unknown, which you should leave as is. If you edit any of the other
names in the list, all revisions attributed to that name will show the change when you open the
document in Word.

Figure 4-22. The list of revision authors inside an RTF file

After you make the change to the RTF file, save it, and then open it in Word. You can now select File
Save As and return it to the native .doc format.

Be careful when you edit the RTF file. Word (and any other program that reads
RTF files) is very sensitive to the correct positioning of those braces. Make sure
you don't accidentally delete one of the braces when you edit the name. If you
do, Word may not be able to open the file.

4.16.1 Hacking the Hack

Editing RTF files by hand is tricky business. If you regularly swap revision authors in a document, a
Perl script can take over the dirty work.

You can download Perl for a Windows machine for free from
http://www.activestate.com.

The following script requires the RTF::Tokenizer module. If you use the ActiveState distribution of

Perl, you can use the Perl Package Manager, available from the ActivePerl entry on your Start menu,
to install RTF::Tokenizer.

#!/usr/bin/perl

use strict;

use Getopt::Long;

use RTF::Tokenizer;

http://www.activestate.com
http://lib.ommolketab.ir

my %opts = ();

GetOptions (\%opts, 'from=s', 'to=s');

my $filename = shift;

die "Please provide an rtf file to parse.\n" unless $filename;

my $tokenizer = RTF::Tokenizer->new(file => $filename);

while(my ($type, $arg, $param) = $tokenizer->get_token()){

 last if $type eq 'eof';

 if($type eq 'control' and $arg eq 'revtbl') {

 my $match = 0;

 put($type, $arg, $param) if $opts{from} and $opts{to};

 my $brace = 1;

 while($brace > 0){

 my @attr = $tokenizer->get_token();

 $brace++ if $attr[0] eq 'group' and $attr[1] == 1;

 $brace-- if $attr[0] eq 'group' and $attr[1] == 0;

 if($attr[0] eq 'text') {

http://lib.ommolketab.ir

 $attr[1] =~ s/;$//;

 if($opts{from} and $opts{to}){

 if($opts{from} eq $attr[1]) {

 $attr[1] = $opts{to};

 $match = 1;

 }

 $attr[1] .= ';';

 put(@attr);

 } else {

 print $attr[1], "\n" unless $attr[1] eq 'Unknown';

 }

 } else {

 put(@attr) if $opts{from} and $opts{to};

 }

 }

 if($opts{from} and $opts{to} and !$match) {

 print STDERR "The author $opts{from} was not found

 in the document!\n";

 }

 } else {

 put($type, $arg, $param) if $opts{from} and $opts{to};

 }

}

http://lib.ommolketab.ir

sub put {

 my ($type, $arg, $param) = @_;

 if($type eq 'group') {

 print $arg == 1 ? '{' : '}';

 } elsif($type eq 'control') {

 print "\\argparam";

 } elsif($type eq 'text') {

 print "\n$arg";

 }

}

Save the script as "authorswap.pl" and put it in the same folder as the RTF file. Run it at a DOS
prompt without any arguments to get a list of the revision authors in the document, as shown below:

> perl authorswap.pl MyDoc.rtf

> Brett Johnson

 Rael Dornfest

To replace one revision author with another, use the to and from options, as shown below. Place the

names inside quotation marks.

> perl authorswap.pl -from "Brett Johnson" -to "Bob Smith" MyDoc.rtf > NewFile.rtf

The file NewFile.rtf will reflect the changes.

- Andrew Savikas and Andy Bruno

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 42 Corral Basic Bullets and Numbering

Word offers 10 reliable, customizable, and, best of all, predictable built-in styles for
making bulleted and numbered lists. So how come they've got nothing to do with those
decidedly unpredictable list buttons on the toolbar? Here's how to hack some more
helpful buttons.

Admit it: the first time you ever clicked one of those little list buttons, you were impressed. Bullets!
Numbers! Indented and aligned! How do they do that? Not very well, as it turns out.

What happens when you press one of those buttons depends not on the document you're using, nor
on the template on which the document is based. It doesn't even necessarily depend on what
happened the last time you clicked the button. It depends on which one of the seven different
available list formats you last chose from the Format Bullets and Numbering dialog, as shown in
Figure 4-23.

Figure 4-23. When you click the Bullets button on the Formatting toolbar,
it will apply the formatting selected here

And those seven formats? They aren't necessarily the same seven each time. Which of the seven you
last chose is stored in the Windows registry, a massive internal database Windows uses to store

http://lib.ommolketab.ir

information. If you click the same button, in the same document, on two different computers, it can
yield different results. Still impressed? It gets worse. Once you've gone through the trouble of
populating a long document with lists by using the Bullets or Numbering toolbar buttons, there's no
easy way to globally change how those lists are formatted.

Most Word pros avoid these two buttons like the Plague. They prefer to use a paragraph style to
include lists in a document. If you use paragraph styles, you can modify every paragraph that uses a
particular style at the same time. For the same reason, many power users eschew the Bold and Italic
buttons in favor of the Strong and Emphasis character styles (see [Hack #39]).

Word provides a boatload of built-in list styles for you. In addition to the 10 bullet and numbering
styles, Word has 10 more for nonnumbered lists and list-continuation paragraphs. The list styles all
come factory-set with some basic formatting (the "List Bullet 2" style is indented more than the "List
Bullet" style, for example). You can see a few of these styles in Figure 4-24. The five List Bullet
styles, as they're formatted by default, are shown in Figure 4-25.

Figure 4-24. Word includes several dozen built-in list styles

Figure 4-25. The built-in list styles are already indented proportionally

http://lib.ommolketab.ir

But even users who know all about built-in list styles rarely go so far as to actually remove the list
buttons from the Formatting toolbar. So the buttons get used anyway, especially for short documents
and, unfortunately, for long documents you thought were going to be short.

By intercepting some built-in commands [Hack #61], you can reeducate those buttons (along with
the Increase Indent and Decrease Indent buttons) to apply Word's predictable and reliable built-in list
styles, which you can easily modify as needed in your documents or templates.

4.17.1 Mapping the Styles to the Buttons

In addition to the Bullets and Numbering buttons, this hack also intercepts the Decrease Indent and
Increase Indent buttons. These four buttons, shown in Figure 4-26, sit adjacent to each other on the
formatting toolbar.

Figure 4-26. The Four Buttons of the Apocalypse

This hack will use those four buttons to selectively apply the 10 built-in bullet and numbering list
styles (List Bullet, List Bullet 2, List Bullet 3, List Bullet 4, List Bullet 5, List Number, List Number 2,
List Number 3, List Number 4, and List Number 5).

When you implement this hack, the action taken when you click each of the four buttons will depend
on the style currently applied to the selected text. For example, if you select text styled as "List Bullet
2," the following will happen when you click each of the four buttons:

Bullets

Change back to Normal

Numbering

Change to "List Number"

Increase Indent

Change to "List Bullet 3"

Decrease Indent

http://lib.ommolketab.ir

Change to "List Bullet"

To implement this hack, you must create a fairly lengthy description of which style gets applied for
which button. Fortunately (for you, not the author), that's already been done, so the code below will
work straight out of the box, so to speak.

4.17.2 The Code

This hack is a combination of five separate macros: one that makes the decisions and applies the
formatting, and four others that intercept the commands used by the four toolbar buttons. Each of
the macros used to intercept the buttons "calls" the fifth macro, the one that does the formatting,
and "tells" it which button was clicked.

The selected text will always be in one of 11 possible states: either one of the 10 list styles, or some
other style altogether. For each scenario, you can take four possible actions-one for each button.

These are the four macros that intercept the buttons. Put these, along with the
BetterBulletsAndNumbering macro that follows, in the template of your choice [Hack #50] .

Sub FormatBulletDefault()

Call BetterBulletsAndNumbering(Selection, "Bullets")

End Sub

Sub FormatNumberDefault()

Call BetterBulletsAndNumbering(Selection, "Numbering")

End Sub

Sub IncreaseIndent()

Call BetterBulletsAndNumbering(Selection, "IncreaseIndent")

End Sub

Sub DecreaseIndent()

Call BetterBulletsAndNumbering(Selection, "DecreaseIndent")

End Sub

http://lib.ommolketab.ir

These four macros must be named exactly as shown, or Word won't use them
in place of the commands they're named after.

The next macro does the real work of deciding which style to use and applying it to the selected text.
To efficiently handle such a large number of options, this code uses VBA's Select Case statements, a
much neater alternative to a massive set of complex If... Then... Else statements.

Function BetterBulletsAndNumbering(ByRef sel As Selection, _

 ByVal sButton As String)

' We'll convert the passed sButton string

' to a constant for more efficient code

Const cBULLETS = 1

Const cNUMBERING = 2

Const cINCREASE_INDENT = 3

Const cDECREASE_INDENT = 4

Dim DocStyles As Styles

Dim styBullet1 As Style

Dim styBullet2 As Style

Dim styBullet3 As Style

Dim styBullet4 As Style

Dim styBullet5 As Style

Dim styNumber1 As Style

Dim styNumber2 As Style

Dim styNumber3 As Style

Dim styNumber4 As Style

Dim styNumber5 As Style

Dim styBodyText As Style

http://lib.ommolketab.ir

Dim iButtonPressed As Integer

' A variable for looping through

' each paragraph in the selection

Dim para As Paragraph

Set DocStyles = sel.Document.Styles

Set styBullet1 = DocStyles(wdStyleListBullet)

Set styBullet2 = DocStyles(wdStyleListBullet2)

Set styBullet3 = DocStyles(wdStyleListBullet3)

Set styBullet4 = DocStyles(wdStyleListBullet4)

Set styBullet5 = DocStyles(wdStyleListBullet5)

Set styNumber1 = DocStyles(wdStyleListNumber)

Set styNumber2 = DocStyles(wdStyleListNumber2)

Set styNumber3 = DocStyles(wdStyleListNumber3)

Set styNumber4 = DocStyles(wdStyleListNumber4)

Set styNumber5 = DocStyles(wdStyleListNumber5)

' Assumes you want the "default" body text to be

' Normal style.

Set styBodyText = DocStyles(wdStyleNormal)

Select Case sButton

 Case Is = "Bullets"

 iButtonPressed = cBULLETS

http://lib.ommolketab.ir

 Case Is = "Numbering"

 iButtonPressed = cNUMBERING

 Case Is = "IncreaseIndent"

 iButtonPressed = cINCREASE_INDENT

 Case Is = "DecreaseIndent"

 iButtonPressed = cDECREASE_INDENT

End Select

For Each para In sel.Paragraphs

 Select Case para.Style

 ' Paragraph is List Bullet

 Case Is = styBullet1

 Select Case iButtonPressed

 Case Is = cBULLETS

 para.Style = styBodyText

 Case Is = cNUMBERING

 para.Style = styNumber1

 Case Is = cINCREASE_INDENT

 para.Style = styBullet2

 Case Is = cDECREASE_INDENT

 para.Style = styBodyText

 End Select

 ' Paragraph is List Bullet 2

http://lib.ommolketab.ir

 Case Is = styBullet2

 Select Case iButtonPressed

 Case Is = cBULLETS

 para.Style = styBodyText

 Case Is = cNUMBERING

 para.Style = styNumber2

 Case Is = cINCREASE_INDENT

 para.Style = styBullet3

 Case Is = cDECREASE_INDENT

 para.Style = styBullet1

 End Select

 ' Paragraph is List Bullet 3

 Case Is = styBullet3

 Select Case iButtonPressed

 Case Is = cBULLETS

 para.Style = styBodyText

 Case Is = cNUMBERING

 para.Style = styNumber3

 Case Is = cINCREASE_INDENT

 para.Style = styBullet4

 Case Is = cDECREASE_INDENT

 para.Style = styBullet2

 End Select

 ' Paragraph is List Bullet 4

http://lib.ommolketab.ir

 Case Is = styBullet4

 Select Case iButtonPressed

 Case Is = cBULLETS

 para.Style = styBodyText

 Case Is = cNUMBERING

 para.Style = styNumber4

 Case Is = cINCREASE_INDENT

 para.Style = styBullet5

 Case Is = cDECREASE_INDENT

 para.Style = styBullet3

 End Select

 ' Paragraph is List Bullet 5

 Case Is = styBullet5

 Select Case iButtonPressed

 Case Is = cBULLETS

 para.Style = styBodyText

 Case Is = cNUMBERING

 para.Style = styNumber5

 Case Is = cINCREASE_INDENT

 ' Do Nothing

 Case Is = cDECREASE_INDENT

 para.Style = styBullet4

 End Select

 ' Paragraph is List Number

http://lib.ommolketab.ir

 Case Is = styNumber1

 Select Case iButtonPressed

 Case Is = cBULLETS

 para.Style = styBullet1

 Case Is = cNUMBERING

 para.Style = styBodyText

 Case Is = cINCREASE_INDENT

 para.Style = styNumber2

 Case Is = cDECREASE_INDENT

 para.Style = styBodyText

 End Select

 ' Paragraph is List Number 2

 Case Is = styNumber2

 Select Case iButtonPressed

 Case Is = cBULLETS

 para.Style = styBullet2

 Case Is = cNUMBERING

 para.Style = styBodyText

 Case Is = cINCREASE_INDENT

 para.Style = styNumber3

 Case Is = cDECREASE_INDENT

 para.Style = styNumber1

 End Select

 ' Paragraph is List Number 3

http://lib.ommolketab.ir

 Case Is = styNumber3

 Select Case iButtonPressed

 Case Is = cBULLETS

 para.Style = styBullet3

 Case Is = cNUMBERING

 para.Style = styBodyText

 Case Is = cINCREASE_INDENT

 para.Style = styNumber4

 Case Is = cDECREASE_INDENT

 para.Style = styNumber2

 End Select

 ' Paragraph is List Number 4

 Case Is = styNumber4

 Select Case iButtonPressed

 Case Is = cBULLETS

 para.Style = styBullet4

 Case Is = cNUMBERING

 para.Style = styBodyText

 Case Is = cINCREASE_INDENT

 para.Style = styNumber5

 Case Is = cDECREASE_INDENT

 para.Style = styNumber3

 End Select

 ' Paragraph is List Number 5

http://lib.ommolketab.ir

 Case Is = styNumber5

 Select Case iButtonPressed

 Case Is = cBULLETS

 para.Style = styBullet5

 Case Is = cNUMBERING

 para.Style = styBodyText

 Case Is = cINCREASE_INDENT

 ' Do Nothing

 Case Is = cDECREASE_INDENT

 para.Style = styNumber4

 End Select

 Case Else

 Select Case iButtonPressed

 Case Is = cBULLETS

 para.Style = styBullet1

 Case Is = cNUMBERING

 para.Style = styNumber1

 Case Is = cINCREASE_INDENT

 WordBasic.IncreaseIndent

 Case Is = cDECREASE_INDENT

 WordBasic.DecreaseIndent

 End Select

 End Select

http://lib.ommolketab.ir

Next para

End Function

This code has two important features:

Sometimes you might click one of the indent buttons when you've selected text that isn't part of
a list. In that case, the macro just "passes" the command on to Word, which will indent as it
would if the button had never been intercepted.

If you select multiple paragraphs with different styles applied, the code loops through and
formats each paragraph in the selection separately, using a For Each loop [Hack #66] .

4.17.3 Running the Hack

Once you've placed these macros in an active template, they'll spring into action when you click any
of the four toolbar buttons shown in Figure 4-26.

If you want to change the formatting of the bullets or numbering, modify the corresponding built-in
list style.

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 43 Cross-Reference Automatically

Using the Cross-reference dialog to insert references, particularly in a lengthy document,
can be frustrating because it shows you only a few headings at a time. This hack shows
you how to create references automatically, without a visit to the dialog.

Whoever decided that the Cross-reference dialog in Word (Insert Reference Cross-reference or
Insert Cross-reference, depending on your version of Word) should display only nine items at a
time clearly didn't have your best interests in mind. Most lengthy documents include more than nine
headings, captions, or other items to reference.

In many cases, creating a cross-reference means converting static text into a dynamic reference by
selecting it, then replacing it with the corresponding item from the Cross-reference dialog (as shown
in Figure 4-27). But since there's that nine-item limit, you're in for some serious scrolling if you need
to make many references. In a Sisyphean spiral, the longer your document is, the more references
you likely need, and the longer it will take to find each item in that teeny, tiny list.

Figure 4-27. Only nine items at a time are visible in the Cross-reference
dialog

This hack shows you two ways to use VBA to automatically create cross-references to headings. In
each case, the selected text is compared to the headings in a document, trying to find a match and
create a cross-reference.

http://lib.ommolketab.ir

4.18.1 Referencing the Way Word Does

The procedure shown in this section uses Word VBA's GetCrossReferenceItems method, which

returns a list of potential reference targets in a document. Because Word continually updates and
indexes this list, accessing it is very fast. This code runs significantly faster than the code in the next
section, but that speed comes at a price: you're limited to creating cross-references to items that
Word considers potential targets, such as headings that use one of the built-in heading styles. If
you've also got a different kind of heading style in your document, such as SidebarTitle, those
headings don't "count" as possible reference targets.

Place this macro in the template of your choice [Hack #50] and either run it from the Tools
Macro Macros dialog or put a button for it on a menu or toolbar [Hack #1].

If your current selection includes more than one paragraph, the macro exits without taking any
action.

Sub InsertAutoXRef()

Dim sel As Selection

Dim doc As Document

Dim vHeadings As Variant

Dim v As Variant

Dim i As Integer

Set sel = Selection

Set doc = Selection.Document

' Exit if selection includes multiple paragraphs

If sel.Range.Paragraphs.Count <> 1 Then Exit Sub

' Collapse selection if there are spaces or paragraph

' marks on either end

sel.MoveStartWhile cset:=(Chr$(32) & Chr$(13)), Count:=sel.Characters.Count

http://lib.ommolketab.ir

sel.MoveEndWhile cset:=(Chr$(32) & Chr$(13)), Count:=-sel.Characters.Count

vHeadings = doc.GetCrossReferenceItems(wdRefTypeHeading)

i = 1

For Each v In vHeadings

 If Trim (sel.Range.Text) = Trim (v) Then

 sel.InsertCrossReference _

 referencetype:=wdRefTypeHeading, _

 referencekind:=wdContentText, _

 referenceitem:=i

 Exit Sub

 End If

i = i + 1

Next v

MsgBox "Couldn't match: " & sel.Range.Text

End Sub

There are two important limitations to note about this code. First, if multiple headings match the
selected text, the code creates a reference to the first match and ignores subsequent matches. This
limitation is a problem if you have multiple headings with the same text, such as "The Code," used
throughout this book.

Second, the code offers no protection against creating a self-reference. If the match found by the
code is the text you've selected, the reference that's created will replace the text it's supposed to
reference, resulting in a broken reference, as shown in Figure 4-28.

Figure 4-28. Self-referencing creates a broken reference

http://lib.ommolketab.ir

This kind of inadvertent text deletion is also possible when creating references from the Word Cross-
reference dialog. When you create a self-reference, Word displays a message telling you the
reference is empty-but only after the text has been deleted.

4.18.2 A Better Way to Reference

This method won't match the speed offered by the code shown above, but its flexibility makes it a
better starting point for hacking your own solutions.

Rather than looking only at paragraphs that use one of Word's built-in heading styles, this code
examines every paragraph in the document, looking for a match to the selected text. That means
you can easily create a reference to a heading that uses a custom paragraph style, such as
SidebarTitle.

Unlike the code in the previous section, this procedure also checks to be sure the match it's found
isn't the selected text, avoiding the possibility of a self-reference.

This code is divided into five separate procedures: the MakeAutoXRef procedure and four supporting

procedures, each of which performs an operation needed to create the reference. Place all five
procedures in the template of your choice [Hack #50] and run the one named MakeAutoXRef to

create a reference in place of the selected text.

The first procedure, named MakeAutoXRef, is shown first. In conjunction with the supporting

procedures shown afterward, it examines each paragraph in the document. If it finds one that
matches the selected text, it creates a bookmark around the match and then replaces the selected
text with a reference pointing to the bookmark. If the matched paragraph has already been
referenced elsewhere, the existing bookmark is used.

Sub MakeAutoXRef()

Dim sel As Selection

Dim rng As Range

Dim para As Paragraph

Dim doc As Document

Dim sBookmarkName As String

Dim sSelectionText As String

Dim lSelectedParaIndex As Long

Set sel = Selection

Set doc = sel.Document

http://lib.ommolketab.ir

If sel.Range.Paragraphs.Count <> 1 Then Exit Sub

lSelectedParaIndex = GetParaIndex(sel.Range.Paragraphs.First)

sel.MoveStartWhile cset:=(Chr$(32) & Chr$(13)), Count:=sel.Characters.Count

sel.MoveEndWhile cset:=(Chr$(32) & Chr$(13)), Count:=-sel.Characters.Count

sSelectionText = sel.Text

For Each para In doc.Paragraphs

 Set rng = para.Range

 rng.MoveStartWhile cset:=(Chr$(32) & Chr$(13)), _

 Count:=rng.Characters.Count

 rng.MoveEndWhile cset:=(Chr$(32) & Chr$(13)), _

 Count:=-rng.Characters.Count

 If rng.Text = sSelectionText Then

 If Not GetParaIndex(para) = lSelectedParaIndex Then

 sBookmarkName = GetOrSetXRefBookmark(para)

 If Len(sBookmarkName) = 0 Then

 MsgBox "Couldn't get or set bookmark"

 Exit Sub

 End If

 sel.InsertCrossReference _

 referencekind:=wdContentText, _

 referenceitem:=doc.Bookmarks(sBookmarkName), _

http://lib.ommolketab.ir

 referencetype:=wdRefTypeBookmark, _

 insertashyperlink:=True

 Exit Sub

 Else

 MsgBox "Can't self reference!"

 End If

 End If

Next para

End Sub

The code shown in bold is the part of the procedure that actually creates the reference. Note that it's
very similar to part of the code shown in the previous section.

4.18.2.1 The supporting procedures

The following function removes from a string characters that Word won't allow in bookmark names
(except for spaces, which are replaced by underscores in a different procedure):

Function RemoveInvalidBookmarkCharsFromString(ByVal str As String) As String

Dim i As Integer

For i = 33 To 255

 Select Case i

 Case 33 To 47, 58 To 64, 91 To 96, 123 To 255

 str = Replace(str, Chr (i), vbNullString)

 End Select

Next i

RemoveInvalidBookmarkCharsFromString = str

End Function

http://lib.ommolketab.ir

The next function takes a string and turns it into a valid bookmark name, including prefacing it with
"XREF" for easier identification and adding in a five-digit random number [Hack #68] to ensure that
it's unique.

In addition, the function replaces underscores with spaces. So, for example, the heading "Foo the
bar" would be converted into something like "XREF56774_Foo_the_bar"-a bit easier to work with
than the "_Ref45762234"-style names that Word assigns to its own cross-reference bookmarks.

Function ConvertStringRefBookmarkName(ByVal str As String) As String

str = RemoveInvalidBookmarkCharsFromString(str)

str = Replace(str, Chr$(32), "_")

str = "_" & str

str = "XREF" & CStr(Int(90000 * Rnd + 10000)) & str

ConvertStringRefBookmarkName = str

End Function

This next function just determines a paragraph's index in the document (e.g., the second paragraph
in the document has an index of 2):

Function GetParagraphIndex(para As Paragraph) As Long

GetParagraphIndex = _

 para.Range.Document.Range(0, para.Range.End).Paragraphs.Count

End Function

The final function creates cross-reference bookmarks in paragraphs that do not contain bookmarks
and returns the bookmark name for use in the cross-reference. If the paragraph already has a cross-
reference bookmark, it simply returns the existing bookmark name for use in the cross-reference.

Function GetOrSetXRefBookmark(para As Paragraph) As String

Dim i As Integer

Dim rng As Range

Dim sBookmarkName As String

If para.Range.Bookmarks.Count <> 0 Then

http://lib.ommolketab.ir

 For i = 1 To para.Range.Bookmarks.Count

 If InStr(1, para.Range.Bookmarks(i).Name, "XREF") Then

 GetOrSetXRefBookmark = para.Range.Bookmarks(i).Name

 Exit Function

 End If

 Next i

End If

Set rng = para.Range

rng.MoveEnd unit:=wdCharacter, Count:=-1

sBookmarkName = ConvertStringRefBookmarkName(rng.Text)

para.Range.Document.Bookmarks.Add _

 Name:=sBookmarkName, _

 Range:=rng

GetOrSetXRefBookmark = sBookmarkName

End Function

4.18.2.2 Running the hack

This hack wouldn't be much of a time-saver if you had to go through a menu to run it. This code is
most helpful when assigned to a keyboard shortcut.

To assign a macro to a keyboard shortcut, select Tools Customize and click the Keyboard button.
Save your changes in the same template in which you installed the code. In the Categories column,
select Macros, and in the Commands column, select MakeAutoXRef. Choose and assign a keyboard

shortcut using the dialog.

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 44 Hack More Flexible Cross-Referencing

Word's cross-referencing feature locks you into a box of predetermined possibilities. This
hack shows you how to build a better box.

Word's Cross-referencing dialog offers only a few choices for the types of items you can create cross-
references to, as shown in Figure 4-29.

Figure 4-29. Choosing one of Word's predefined cross-reference types

But what if the items you want to reference aren't in that list? If you're working in a template that
has several different types of headings, including some that aren't styled using one of Word's built-in
styles, creating cross-references to those headings is no simple task.

This hack shows you how to build your own cross-reference dialog, like the one shown in Figure 4-30.
The left column lists every paragraph style in the document, and the right column lists each
paragraph that uses the selected style.

Figure 4-30. A better cross-reference dialog

http://lib.ommolketab.ir

In addition to offering more choices of items to cross-reference, the dialog lists many more at once
than does Word's dialog, which means less scrolling to find what you're looking for.

If you want to create cross-references from one Word document to another, be
sure to check out [Hack #78] .

4.19.1 Making the Dialog

Here's how to create the user form shown in Figure 4-30. To keep this example simple, extras such
as titles for the listboxes have been left off. Feel free to modify the dialog's design to suit your needs.

First, select Tools Macro Visual Basic Editor. Then, with the template of your choice [Hack
#50] selected in the Project Explorer, choose Insert UserForm.

In the Properties window, change the user form's name to "ufXRefs" and change its caption to "Cross
Reference."

Resize the user form to about 380 pixels wide by 260 pixels deep by grabbing and dragging the
resizing handle in the form's bottom-right corner.

Next, from the Toolbox, insert two listboxes, as shown in Figure 4-31. From the Properties window,
name the one on the left "lbStyles" and the one on the right "lbParas."

Figure 4-31. Drawing the listboxes in the ufXRefs user form

http://lib.ommolketab.ir

Now insert two CommandButtons underneath the first listbox. Name them "cmbInsert" and
"cmbCancel," and change their captions accordingly.

4.19.2 The Code

The code for this hack relies on a few utility functions introduced in [Hack #43] :

GetOrSetXRefBookmark

ConvertStringToXRefBookmarkName

GetParagraphIndex

Be sure these three procedures are located in the same template as the user form before trying out
this hack.

With the user form still open, select View Code to access the form's code module and insert the
following code:

Option Explicit

Private colParagraphData As Collection

Private Sub cmbCancel_Click()

 Unload Me

End Sub

http://lib.ommolketab.ir

Private Sub UserForm_Initialize()

Dim v As Variant

Dim sty As Style

For Each sty In ActiveDocument.Styles

 If sty.Type = wdStyleTypeParagraph Then

 lbStyles.AddItem sty.NameLocal

 End If

Next sty

lbStyles.Selected(0) = True

End Sub

Private Sub lbStyles_Change()

Dim col As Collection

Dim para As Paragraph

Dim k As Integer

Set colParagraphData = New Collection

lbParas.Clear

k = 1

For Each para In ActiveDocument.Paragraphs

 If para.Style = lbStyles.Value Then

 Set col = New Collection

 col.Add Key:="Index", Item:=k

 col.Add Key:="Text", Item:=Left(para.Range.Text, _

 para.Range.Characters.Count - 1)

 colParagraphData.Add Item:=col

http://lib.ommolketab.ir

 lbParas.AddItem (col("Text"))

 Set col = Nothing

 End If

k = k + 1

Next para

End Sub

Private Sub cmbInsert_Click()

Dim lSelectedParaIndex As Long

Dim sBookmarkName As String

Dim para As Paragraph

lSelectedParaIndex = colParagraphData(lbParas.ListIndex + 1)("Index")

Set para = ActiveDocument.Paragraphs(lSelectedParaIndex)

sBookmarkName = GetOrSetXRefBookmark(para)

 If Len(sBookmarkName) = 0 Then

 MsgBox "Couldn't get or set bookmark"

 Unload Me

 End If

Selection.InsertCrossReference _

 referencekind:=wdContentText, _

 referenceitem:=ActiveDocument.Bookmarks(sBookmarkName), _

 referencetype:=wdRefTypeBookmark, _

 insertashyperlink:=True

Unload Me

http://lib.ommolketab.ir

End Sub

Each time a different style is selected in the lbStyles listbox, the colParagraphData collection is reset

and then populated with information about all the paragraphs in the document that have the selected
style applied. In this example, that information is each paragraph's position in the document (its
index) and its text.

4.19.3 Running the Hack

In the same template that contains the user form, insert the following into one of the code modules:

Sub ShowBetterCrossReferenceDialog

 ufXRefs.Show

End Sub

To display the dialog, run the ShowBetterCrossReferenceDialog macro, either from Tools Macro

Macros or by assigning it to a menu or toolbar [Hack #1].

When you select a paragraph and click Insert, it creates a bookmark around the target paragraph
and replaces the current selection with a cross-reference pointing to that bookmark. The bookmark
and the reference are shown in Figure 4-32. The reference field codes are also shown at the bottom
of the figure.

Figure 4-32. A bookmark and cross-reference created with the code in
this hack

If the paragraph you want to reference has been referenced before, the existing bookmark is used,
and no new bookmark is created.

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Chapter 5. Templates and Outlines
Introduction: Hacks #45-50

Hack 45. Create an Outline-Only Copy of a Document

Hack 46. Build a Better Outline

Hack 47. Use an Outline to Build an Org Chart

Hack 48. Attach the Same Template to Multiple Files

Hack 49. Quickly Attach a Workgroup Template

Hack 50. Manage Macros with Templates

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Introduction: Hacks #45-50

Outlines are an excellent way to organize and edit complex documents, and templates offer the best
way to ensure standardized documents and to store customizations. The hacks in this chapter show a
few ways to maximize your use of these two key Word features.

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 45 Create an Outline-Only Copy of a Document

This hack shows you how to quickly extract just the outline from a document.

While working on a long document, you may want to pass along a copy to someone else to review.
But what if you just want a copy of the document's outline? With the macro in this hack, you'll be
able to create a copy of a document that includes only the text at or above the specified outline level.

There are nine outline levels, corresponding to each of Word's nine built-in heading styles. The lower
the number, the higher the outline level: Level 1 is the highest, Level 9 the lowest. The rest of the
text in a document has no outline level; Word calls it "body text."

While in Outline view, you can select File Print to print just the outline of a
document. The Print Preview feature, however, will not correctly display the
document.

5.2.1 The Code

Place this macro in the template of your choice [Hack #50] and either run it from the Tools
Macro Macros dialog or put a button for it on a menu or toolbar [Hack #1].

Running this macro brings up the dialog shown in Figure 5-1. The macro first asks the user what the
lowest outline level to include should be (1 being the highest). Once the user has chosen a valid
outline level, the macro creates a new, blank document. It then copies every paragraph in your
document at or above the specified outline level into the new document.

Figure 5-1. Select which outline levels to include from your document

The default outline level is the initial value assigned to lngMaxLevel, which in this case is 4.

http://lib.ommolketab.ir

Sub MakeOutlineOnlyCopyOfCurrentDoc()

Dim docFull As Document

Dim docOutline As Document

Dim lngMaxLevel As Integer

Dim strUserInput As String

Dim para As Paragraph

lngMaxLevel = 4

Set docFull = ActiveDocument

Application.ScreenUpdating = False

Do

 strUserInput = _

 InputBox("Create an outline-only copy of this document " & _

 "to what level (1-9)?", _

 "Outline Maker", _

 lngMaxLevel)

 If Len(strUserInput) = 0 Then Exit Sub

 If Not strUserInput Like "[1-9]" Then

 MsgBox Chr(34) & strUserInput & Chr(34) & _

 " is not a valid Outline Level.", _

 vbInformation

 End If

Loop Until strUserInput Like "[1-9]"

http://lib.ommolketab.ir

lngMaxLevel = CLng(strUserInput)

Set docOutline = Documents.Add

StatusBar = "Collecting outline information. Please wait ..."

For Each para In docFull.Paragraphs

 If para.OutlineLevel <= lngMaxLevel Then

 para.Range.Copy

 docOutline.Range(docOutline.Range.End - 1).Paste

 End If

Next para

StatusBar = ""

docOutline.Activate

Application.ScreenUpdating = True

End Sub

Most of the code here deals with the user interface. The actual copying is done by a simple For Each

loop [Hack #66], which checks each paragraph in the document and decides whether or not to copy
it into the new document.

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 46 Build a Better Outline

Many Word users are at least aware of Outline view, and many use it to help structure
lengthy documents. But when the outline is the document, few take advantage of the
features Outline view has to offer.

Outlining is a common Word task. In its simplest form, you use Word's built-in heading styles to
sketch out a document's structure, promoting, demoting, and rearranging headings as you work.

Though you can create an actual outline, complete with numbering and indenting, using Word's
Outline Numbering feature (go to Format Bullets and Numbering and choose the Outline
Numbered tab), why bother duplicating the effort when Word's heading styles are already set up for
it?

There is a bit of work involved in setting up your outline template, but the time you'll save in the long
run makes it well worth the effort.

First, select File New and create a new template. Save your new template as Outline.dot.

Next, select Format Styles and Formatting (Format Style in Word 2000), choose the Heading 1
style, and click the Modify button to display the Modify Style dialog shown in Figure 5-2. Choose "(no
style)" from the "Style based on" drop-down list, and choose "Heading 2" from the "Style for
following paragraph" drop-down list. For the formatting, choose Times New Roman, 12 points, with
no Bold applied.

Figure 5-2. Modifying the heading styles for the Outline template

http://lib.ommolketab.ir

Click the Format button and choose Paragraph, and change the Space Before and After settings to 6
and 3 points, respectively, as shown in Figure 5-3.

Figure 5-3. Changing the Space Before and After settings makes text look
better on the page

Next, modify the Heading 2 style. Make the same changes as for Heading 1, except instead of "(no
style)," choose "Heading 1."

Repeat these steps for each of the remaining seven headings. Change the font to Times New Roman,
change the point size to 12, turn off Bold and Italic, and change the Space Before and After settings.
Select the previous heading level from the "Style based on" drop-down list, and choose the next

http://lib.ommolketab.ir

heading level from the "Style for following paragraph" drop-down list.

When you're finished, save your template (you don't want to have to do that all over again).

Now, go back and modify the Heading 1 style, but this time click the Format button and choose
Numbering to display the dialog shown in Figure 5-4. One of the choices should look like an outline
with a heading style name listed at each level. Select it, and click the Reset button.

Figure 5-4. Choose the one that looks like an outline, with the heading
style names included

Click the OK button, and then click the OK button again in the Modify Style dialog. Save and close
your new Outline template.

To create a new document with your Outline template, select File New and choose Outline.dot as
the basis for the new document.

Outlines created with Outline.dot will have a consistent appearance, behave reliably, and be easy to
edit using Outline view. A sample outline is shown in Figure 5-5.

Figure 5-5. The Outline.dot template in action

To promote or demote a paragraph, use the Promote and Demote keyboard shortcuts: Shift-Alt-Left
Arrow and Shift-Alt-Right Arrow.

http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 47 Use an Outline to Build an Org Chart

Word's outlining feature excels at managing hierarchical information. This hack shows
you how to use an outline to create an organizational chart on the fly.

Maintaining a company's organizational charts can be a time-consuming task. Word does include a
Diagram feature that makes it easy to create an organizational chart (select Insert Diagram), but
editing charts can be a real challenge, particularly after any substantial reorganization.

Unfortunately, the macro recorder ignores diagrams, which removes a valuable tool for deciphering
unfamiliar Word objects. But you can still automate diagrams-you just need to decipher the Diagram

object on your own. The code in this hack should give you a good starting point.

Rather than manipulating an existing diagram, you can store the organizational information in an
outline and create the diagram from scratch after any changes. With your organizational information
stored in an outline, like the one shown in Figure 5-6, you can quickly add, remove, or rearrange
entries.

Figure 5-6. Edit your organization information in Outline view

http://lib.ommolketab.ir

Once you complete your outline, the code will use it to produce a diagram like the one shown in
Figure 5-7.

Figure 5-7. An organizational chart created from an outline

The next time you need to change the chart, just edit the outline and make a new one.

5.4.1 The Code

Place this macro in the template of your choice [Hack #50] and either run it from the Tools
Macro Macros dialog or put a button for it on a menu or toolbar [Hack #1].

The text for the top-level entry (or root node) is culled from the CompanyName property in the outline

document. To enter a company name, select File Properties and go to the Summary tab. If you
don't fill in the property, Word inserts some dummy text.

Though your chart could go 10 levels deep (9 for each of Word's outline levels, plus one more for the
body-text level), this code goes only 4 levels deep. Adding more levels would require substantially
more code, most of which would be nearly identical to that for the first four levels. You'll need to add
your own additional code to handle an outline more than four levels deep.

Sub MakeOrgChartFromOutline()

http://lib.ommolketab.ir

Dim doc As Document

Dim para As Paragraph

Dim sCompanyName As String

Dim sParaText As String

Dim nodeRoot As DiagramNode

Dim shShape As Shape

Dim node1 As DiagramNode

Dim node2 As DiagramNode

Dim node3 As DiagramNode

Dim node4 As DiagramNode

Set doc = ActiveDocument

sCompanyName = doc.BuiltInDocumentProperties("Company")

If Len(sCompanyName) <= 1 Then

 sCompanyName = "Type Company Name Here"

End If

Set shShape = _

 Documents.Add.Shapes.AddDiagram(msoDiagramOrgChart, 0, 0, 500, 500)

Set nodeRoot = shShape.DiagramNode.Children.AddNode

nodeRoot.TextShape.TextFrame.TextRange.text = sCompanyName

For Each para In doc.Paragraphs

 Select Case para.OutlineLevel

 Case wdOutlineLevel1

http://lib.ommolketab.ir

 sParaText = Left(para.Range.text, _

 para.Range.Characters.Count - 1)

 Set node1 = nodeRoot.Children.Ad dNode

 node1.TextShape.TextFrame.TextRange.text = sParaText

 Set node2 = Nothing

 Set node3 = Nothing

 Set node4 = Nothing

 Case wdOutlineLevel2

 sParaText = Left(para.Range.text, _

 para.Range.Characters.Count - 1)

 Set node2 = node1.Children.AddNode

 node2.TextShape.TextFrame.TextRange.text = sParaText

 Set node3 = Nothing

 Set node4 = Nothing

 Case wdOutlineLevel3

 sParaText = Left(para.Range.text, _

 para.Range.Characters.Count - 1)

 Set node3 = node2.Children.AddNode

 node3.TextShape.TextFrame.TextRange.text = sParaText

 Set node4 = Nothing

 Case wdOutlineLevel4

 sParaText = Left(para.Range.text, _

 para.Range.Characters.Count - 1)

 Set node4 = node3.Children.AddNode

 node4.TextShape.TextFrame.TextRange.text = sParaText

 End Select

http://lib.ommolketab.ir

Next para

End Sub

Rather than attempting to position elements in the diagram, the macro just relies on Word's default
automatic behavior to align and position the entries.

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 48 Attach the Same Template to Multiple Files

Use a macro to update or change the template for all the files in a folder.

When documents are passed around among reviewers or contributors, you'll often want to reattach
the correct template when you get the files back. Doing that for more than a few files can be a real
chore, though. This hack shows how to attach the template used by the current document to all the
documents in the same folder as the current document.

5.5.1 The Code

Place this macro in the template of your choice [Hack #50] and either run it from the Tools
Macro Macros dialog or put a button for it on a menu or toolbar [Hack #1] :

Sub DocTemplateToAllFilesInFolder()

Dim i As Integer

Dim doc As Document

Dim sFolder As String

Dim oTemplate As Template

Dim sFileFullName As String

Dim sFileName As String

sFolder = ActiveDocument.Path

If Len(sFolder) = 0 Then

 MsgBox "Please save this document first"

 Exit Sub

End If

Set oTemplate = ActiveDocument.AttachedTemplate

http://lib.ommolketab.ir

With Application.FileSearch

 .NewSearch

 .LookIn = sFolder

 .SearchSubFolders = False

 .FileType = msoFileTypeWordDocuments

 If Not .Execute() = 0 Then

 For i = 1 To .FoundFiles.Count

 sFileFullName = .FoundFiles(i)

 sFileName = Right(sFileFullName, _

 (Len(sFileFullName) - _

 (InStrRev(sFileFullName, "\"))))

 If sFileName Like "[!~]*" Then

 If Not sFileName = ActiveDocument.Name Then

 Set doc = Documents.Open(sFileFullName)

 doc.AttachedTemplate = oTemplate

 doc.UpdateStyles

 doc.Save

 doc.Close

 Set doc = Nothing

 End If

 End If

 Next i

 Else

 MsgBox "No files found"

 End If

End With

http://lib.ommolketab.ir

End Sub

This macro is just a modified version of the code demonstrated in [Hack #59] .

5.5.2 Hacking the Hack

Another common scenario is needing to attach the same template to several open files, which may
not be in the same folder. The following macro attaches the template used by the current document
to all the other open documents.

Place this macro in the template of your choice [Hack #50] and either run it from the Tools
Macro Macros dialog or put a button for it on a menu or toolbar [Hack #1] :

Sub ThisTemplateToAllOpenDocs()

Dim i As Integer

Dim oTemplate As Template

Set oTemplate = ActiveDocument.AttachedTemplate

For i = 1 To Documents.Count

 If Not Documents(i).FullName = ActiveDocument.FullName Then

 Documents(i).AttachedTemplate = oTemplate

 Documents(i).UpdateStyles

 End If

Next i

End Sub

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 49 Quickly Attach a Workgroup Template

It's a rare corporate Word user who knows offhand the location of her Workgroup
templates on the network. Word knows where they are, but try attaching one to an
existing document, and you get a pop quiz on the subject! Reeducate Word with this hack.

In addition to templates stored locally, Word allows you to specify a location for document templates
on a network, called the Workgroup templates folder. This feature is especially useful in a corporate
environment, where multiple users may share the same set of templates.

When you specify a Workgroup templates location (select Tools Options and click the File
Locations tab), Word kindly adds any appropriate tabs to the Templates dialog the next time you
choose File New. But Workgroup templates aren't as easily integrated into your routine when it
comes to attaching them to existing documents.

The Templates and Add-Ins dialog (Tools Templates and Add-Ins), shown in Figure 5-8, defaults
to your local templates folder when you click the Attach button (actually, it goes to the folder you
specified for User templates under Tools Options File Locations). So if you regularly attach
both local and Workgroup templates, you're in for a lot of folder browsing.

Figure 5-8. If you click the Attach button, Word takes you to the User
templates folder

http://lib.ommolketab.ir

5.6.1 The Code

Word's Options object has a DefaultFilePath property that represents the value assigned to the

User templates folder. If you temporarily set this to the Workgroup templates folder, you also change
where you end up when you click the Attach button in the Templates and Add-Ins dialog.

This hack uses the techniques described in [Hack #63] .

Sub AttachWorkGroupTemplate()

Dim sWorkgroupTemplateFolder As String

Dim sUserTemplatesFolder As String

Dim dial As Dialog

Set dial = Dialogs(wdDialogToolsTemplates)

sUserTemplatesFolder = Options.DefaultFilePath(wdUserTemplatesPath)

sWorkgroupTemplateFolder = Options.DefaultFilePath(wdWorkgroupTemplatesPath)

If Len(sWorkgroupTemplateFolder) = 0 Then

 MsgBox "No workgroup templates location has been specified." & vbCr & _

 "To specify one, go to Tools -> Options -> File Locations.", _

 vbExclamation

 Exit Sub

End If

Options.DefaultFilePath(wdUserTemplatesPath) = sWorkgroupTemplateFolder

 If dial.Display = -1 Then

 dial.Linkstyles = True

 dial.Execute

 End If

http://lib.ommolketab.ir

Options.DefaultFilePath(wdUserTemplatesPath) = sUserTemplatesFolder

End Sub

The macro ignores the "Automatically update document styles" box in the Templates and Add-ins
dialog and updates the styles regardless of the value set in the box. Most corporate users are
instructed to update their documents to reflect any changes to the template, but if you'd rather
decide manually, remove or comment out the following line:

dial.Linkstyles = True

When you run this macro, clicking the OK button on any of the tabs in the
Templates and Add-Ins dialog is the same as clicking the OK button on the
Templates tab. For more information, see [Hack #63] .

5.6.2 Running the Hack

Put this macro into the template of your choice [Hack #50] and put a button for it on the Tools
menu, right below the Templates and Add-Ins button. Rename the button "Attach Workgroup
Templates," or something similarly descriptive.

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 50 Manage Macros with Templates

By default, Word stores macros in the ubiquitous Normal template. This works fine in the
short term, but macros you plan to keep and reuse should go in a separate template.

When you first start working with macros, those macros will be stored (with many of your other
customizations) as part of Word's default template, Normal.dot. Normal.dot is such an integral part
of Word that if you delete or rename it, Word will create a new version of the template using default
settings stored in the program itself.

Whenever you're working in Word, you're working with Normal.dot. Even if a particular document is
based on another template, Normal.dot is still there, including any macros stored in it.

Normal.dot's secret is that it's a chameleon of a template. When you create a new, blank document,
Normal.dot functions as that document's template, like any other document template. But
Normal.dot also behaves like a global template, also referred to as an add-in. A document can be
associated with only one document template, but many global templates may be open and running at
any given time.

Global templates are primarily used to store macros and toolbar customizations. For example,
GhostWord [Hack #23] is a global template that adds a toolbar and provides certain macro features
used to interact with Ghostscript from within Word. Many third-party applications are supplied as
add-ins, allowing them to add features and customizations to Word.

But why bother keeping macros anywhere except Normal.dot? In its dual role as document template
and global template, as well as general repository for myriad customizations, Normal.dot can log a lot
of miles in a short amount of time. The more macros that are stored in it, the larger and slower to
load it can become, which can potentially contribute to corruption over time.

If you suspect a corrupt Normal template, try the techniques in [Hack #51] .

Many regular macro users prefer to keep their macros in their own global template. This template can
be set to load automatically, just like third-party add-ins such as GhostWord.

5.7.1 Creating the Global Template

There are just two simple steps to creating a global template that will load whenever Word starts up
[Hack #52] :

1.

http://lib.ommolketab.ir

Create a new, blank document.1.

Select File Save As and choose "Document template" in the "Save as type" field to save the
document as a template. When you choose to save as a template, Word automatically places
you in the templates folder, which is usually C:\Documents and
Settings\<username>\Application Data\Microsoft\Templates.

2.

Navigate up one directory, then back down to C:\Documents and
Settings\<username>\Application Data\Microsoft\Word\STARTUP. Save your template in that
folder, naming it MacrosTemplate.dot or something similarly descriptive.

3.

The next time you start Word, the template you just created will be listed as a loaded add-in from the
Templates and Add-ins dialog (select Tools Templates and Add-ins), as shown in Figure 5-9. Any
other add-ins you've installed, such as the FaceID browser Section 2.9[Hack #10]], will also be
listed.

Figure 5-9. Viewing currently loaded global templates

Even though it's not listed, Normal.dot also acts like a global template whenever you work in Word. If
you work on a document based on Normal.dot, then it also acts like a document template.

5.7.2 Adding Macros to the Global Template

When a global template is loaded, you can't edit it. To make changes to a global template, such as
adding macros or creating a toolbar, you must first unload it (using the Templates and Add-ins dialog
shown in Figure 5-9) and then select File Open and choose the template file.

http://lib.ommolketab.ir

Because it takes a bit of work to open the global template for editing, you may find it easier to create
your macros in Normal.dot and then periodically move any new macros you plan to keep over to the
global template. This is a great habit to get into, because it also gives you an opportunity to delete
any old, unused macros.

There are two ways to transfer macros from one template to another. First, you can select Tools
Macro Macros, click the Organizer button, and copy the macros (along with styles, custom
toolbars, and AutoText entries) from one template to another.

The second way is to copy the macros directly from within the Visual Basic Editor [Hack #2]. Since
you'll be regularly moving your macros from Normal to your MacrosTemplate global template, the
only module in Normal.dot should be the NewMacros module Word inserts when you create a macro

from the Word interface. After deleting any macros you don't want to keep (just select the code and
delete it), you can drag and drop a copy of the NewMacros module into the MacrosTemplate template,

as shown in Figure 5-10.

Figure 5-10. Copying a code module from one template to another by
dragging it in the Visual Basic Editor

After copying the module, rename it using the Properties window just below the Project Explorer.
Then either delete the NewMacros module from Normal.dot (right-click it and choose Remove) or

clear out its contents from within the Code window.

Save and close the global template, and the next time you start Word, your macros will be waiting.

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Chapter 6. Housekeeping
Introduction: Hacks #51-56

Hack 51. Troubleshoot Common Word Problems

Hack 52. Control Word Startup

Hack 53. Sidestep Formatting Restrictions

Hack 54. Rename Built-in Styles

Hack 55. Clean Out Linked "Char" Styles

Hack 56. Reduce Document Bloat by Deleting Old List Templates

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Introduction: Hacks #51-56

Word is a big, complicated piece of software that tends to produce (with some help from us, of
course) some big, complicated files. That's a recipe for trouble, and if you've worked with Word for
any length of time, you know the heartache of a corrupt document or a sudden crash that can wipe
out a lot of work.

The hacks in this chapter show a few ways to tackle the most common Word problems, as well as
how to hack some of the parts of a Word document that are next to impossible to get at from Word
itself.

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 51 Troubleshoot Common Word Problems

This hack offers a systematic approach to fixing common frustrations.

You can solve a number of common Word problems using the same systematic approach. Typical
symptoms include:

Missing toolbars

Word crashes repeatedly

Word freezes right after opening

Any strange Word behavior unrelated to a particular document

There are three likely culprits: your Normal template, an add-in, or a corrupt data key in your
registry. Additionally, extraneous temporary files can contribute to the problems.

If you run Word 2002 or 2003, Microsoft offers troubleshooting templates for
automating most of this process. You can find these templates at:

http://support.microsoft.com/default.aspx?scid=kb;en-us;319299&Product=wd2002

http://support.microsoft.com/default.aspx?scid=kb;en-us;319299&Product=wd2003

6.2.1 Delete Any Temporary Files

Whenever you open a document, Word creates a temporary file to store various information about
the file. Word usually deletes these temporary files when you close the document, but they can
overstay their welcome and occasionally cause real trouble when Word or Windows crashes.

The easiest way to delete your temporary files is from Windows Explorer:

Close any open Windows applications.1.

Click an empty spot on the taskbar and press F3 to open the Search feature in Windows2.

3.

http://support.microsoft.com/default.aspx?scid=kb;en-us;319299&Product=wd2002
http://support.microsoft.com/default.aspx?scid=kb;en-us;319299&Product=wd2003
http://lib.ommolketab.ir

1.

Explorer.
2.

Make sure you look in your primary hard drive and check "include subfolders."3.

Type the following in the "named" box, as shown in Figure 6-1:

.tmp;~.do?;~*.wbk

4.

Click the Search button.5.

Delete the files listed in the search results.6.

Figure 6-1. Searching for obsolete temporary files

Sometimes people (or programs) include a tilde (~) in filenames, usually to
force a file to the top of the folder list. Before you delete all of the files returned
by the search, first make sure they're really temporary files.

If the problem persists, you need to check the templates Word loads when it starts.

http://lib.ommolketab.ir

6.2.2 Start Word with a Clean Slate

Every time you start Word, your Normal template loads, along with any add-ins in your Startup
folder. You can also tell Word to start up without loading any templates [Hack #52] :

Start Word from the Start Run menu by typing:

winword.exe /a

1.

Now press Enter. Note the space before the /a. This starts Word without any add-ins, global

templates, or Normal.dot. If that fixed the problem, continue to Step 2. Otherwise, you can skip
ahead to the next section.

2.

Close Word.3.

Use the Windows Find feature to locate Normal.dot:4.

Click an empty spot on the taskbar and press F3 to display the Search window again.5.

Make sure you're searching your primary hard drive and check "include subfolders."6.

Type Normal.dot in the "named" box and click the Search button.

Depending on your version of Windows, Normal.dot may be a hidden
system folder. In Windows Explorer, select Tools Folder options, click
the View tab, and check the "Show hidden files and folders" box.

7.

Right-click Normal.dot in the search results and rename it Normal.old.8.

Restart Word.9.

When you delete or rename your Normal.dot file, Word creates a new one based on default settings.
If the problem goes away, you had a corrupt Normal template. If not, check any other templates
loaded when you start Word.

6.2.3 Disable Other Global Templates and COM Add-ins

If your Normal template wasn't at fault, try your other global templates and add-ins next:

Find out what, if any, global templates and add-ins Word loads when it starts. To do so, locate
your STARTUP folder (usually C:\Documents and Settings\<username>\Application
Data\Microsoft\Word\STARTUP).

1.

Move each of these out of the STARTUP folder.2.

3.

http://lib.ommolketab.ir

2.

Close Word and drag each add-in back into the STARTUP folder, one at a time. Open, test, and
then close Word after each one. When and if the problem reappears, you will have located the
add-in causing the problem.

3.

If the problem persists, you may have a corrupt data key in your registry.

6.2.4 Delete the Word Data Key

When you delete the data key, Word rebuilds it using default settings. The data key stores many of
the customizations you've made to Word, so to avoid losing those, first make a quick backup:

Go to Tools Macro Record New Macro (or double-click REC in the status bar) to begin
recording a new macro. Name the macro RestoreOptions and save it in Normal.dot.

1.

Go to Tools Options. Visit each tab in the Options dialog, and then press OK.2.

Stop recording.3.

The macro you've just recorded includes the current settings for many of the items stored in the data
key and most of the items in the Options dialog. After you've recorded this macro, you're ready to
delete the data key:

Back up the registry.1.

In Windows XP, create a system restore point by going to your Start menu and choosing
Accessories System Tools System Restore. To restore the registry later, go to the same
place and follow the instructions under "Restore my computer to an earlier time."

2.

In earlier versions of Windows, select Start Run and type scanregw. (Windows also

automatically makes backups of the registry every time you boot up your PC; it keeps the last
five backups and overwrites previous copies.) When you back up using scanregw, the file will be

replaced in five days. As an alternative, you can use the "Export Registry File" option in the
registry editor.

3.

If you need to restore your registry later, follow these steps:4.

Select Start Shut Down and click "Restart in MS-DOS mode." When in DOS, type scanreg

and hit Enter. Windows will probably tell you there is nothing wrong and you don't need to
restore, but you can override that.

5.

Click View Backups and highlight the backup you wish to restore (by the time/date stamp).
Then click the Restore button.

6.

After restoring your registry, Windows will reboot into MS-DOS mode again. This time, type
exit and hit Enter to return to the normal Windows mode.

7.

Close Word. Select Start Run and type regedit to launch the registry editor. Navigate to the

following key:

8.

http://lib.ommolketab.ir

HKEY_CURRENT_USER\Software\Microsoft\Office\version\Word\Data

8.

Use the following list to find your version, and then either rename or delete the Data key:

Word 97: 8.0

Word 2000: 9.0

Word 2002: 10.0

Word 2003: 11.0

9.

Restart Word to rebuild the key using the default settings.10.

6.2.4.1 After you've rebuilt the data key

Restore your default options by running the RestoreOptions macro you created. Five other changes

that may require your attention will also take place when you delete the data key:

Your Standard and Formatting toolbars will share one line. To correct this, select Tools
Customize and check the "Show Standard and Formatting toolbars on two rows" box. (In Word
2000, uncheck the "Standard and Formatting toolbars share one row" box.)

1.

The dreaded Office Assistant may reappear. To banish the Office Assistant [Hack #12], right-
click it, choose Options, and uncheck the "Use the Office Assistant" box.

2.

You will lose the list of your most recently used files on the File menu.3.

You will lose all the files on the Work menu.4.

You will need to reattach any global templates or add-ins not in your STARTUP folder.5.

Once you restore Word to its former state, you may want to export the data key from the registry (it
shouldn't be corrupt again just yet) to a safe location on your hard drive. Then if you need to delete
the data key again, you can restore it from this backup and save yourself the trouble of those last
five steps.

- Phil Rabichow

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 52 Control Word Startup

This hack lets you start Word with your favorite template or macro. It also shows you how
to open Word with a recent or specific document, suppress the Word splash screen, and
do away with the wretched default blank document.

Every day, in hundreds of millions of homes and offices around the world, Word starts the same way:
a tired click of the Word item on the Start menu, the brief irritation of the well-worn Word splash
screen (see Figure 6-2), and then the new blank document based on Normal.dot that almost
everyone closes immediately because they need to either create a document based on another
template or work with an existing document.

Figure 6-2. "Will no one rid me of this turbulent splash screen?" Startup
switch /q to the rescue!

Standardization can be wonderful, but even Microsoft realizes it's not always efficient (let alone
entertaining). To make things better, you can control the Word startup via startup switches. You can
also augment this control over startup by using AutoMacros [Hack #60] .

6.3.1 Startup Switches

Startup switches are special commands you can provide when you launch a program. For example,
select Start Run and enter the following to start Word normally:

winword

http://lib.ommolketab.ir

Word opens as if you launched it the usual way. But if you enter some extra commands on the line,
you can tell Word to start differently. For example, select Start Run and enter the following:

winword /n

Word launches, but this time without the familiar blank document. Some switches include additional
information. If you enter the following, Word will launch and create a new document based on the
"Contemporary Memo" template:

winword /t"Contemporary Memo"

Note that if the template or filename used with a switch contains spaces, you need to enclose it in
quotes.

Table 6-1 lists the startup switches you can use with Word, in alphabetical order.

Table 6-1. Word startup switches

Startup switch What it does What to use it for

/a
Prevents the loading of all global templates
(including Normal.dot) and any add-ins.
Prevents Word from writing data to or reading
data from the registry.

Troubleshooting problems
with Word startup or
instability; running Word
consistently in a student or
lab environment.

/laddinpath
Loads the specified add-in or global template.

Loading an add-in or global
template needed for a
particular task but not for
normal running of Word.

/c Launches a new Word session and then starts
NetMeeting.

Seldom if ever useful.

/m Prevents the AutoExec macro (if one exists)

from running.

Suppressing the running of
your standard AutoExec

macro.

/mmacro Runs the specified macro instead of running the
AutoExec macro (if one exists).

Setting up a Word session
in a different way than
usual (for example, to
perform a specific task) or
running a VBA application
hosted on Word.

/mfilen Opens the file specified by the number on the
most recently used list.

Opening the last document
or documents saved in the
previous session;
occasionally useful.

http://lib.ommolketab.ir

Startup switch What it does What to use it for

/n Launches a new Word session but does not
create a new document based on Normal.dot.

Suppressing the creation of
a useless document;
launching a second or
subsequent Word session.

pathname\filename Opens the specified file or files after launching
Word.

Consistently opening one or
more files to work with.

/q Suppresses the Word splash screen. Works
only in some versions of Word, including Word
2000 SR-1 and Word 2003.

Preventing the splash
screen from appearing,
which can be good for VBA
applications hosted on Word
and for removing a
widespread irritant.

/r Starts Word in the background, reregisters its
registry settings, and then closes Word.

Fixing registry problems. Be
warned that although Word
stays in the background,
the Windows installer
appears in the foreground
for most versions of Word.
Warn users before you use
this switch.

/safe

Like /a, prevents the loading of all global

templates (includingNormal.dot) and any add-
ins, and prevents Word from writing data to or
reading data from the registry. In addition,
does not create a new document; suppresses
the recovery of damaged documents and
prevents the loading of smart tags, toolbar
customizations, and the AutoCorrect list. Works
interactively in Word XP and Word 2003.

Troubleshooting problems
with Word startup or
instability, especially those
caused by attempting to
recover damaged
documents.

/ttemplate Creates a document from the specified
template instead of creating a document based
on Normal.dot.

Starting Word and creating
the type of document you
need to use.

/w Launches a new Word session and creates a
new document based on Normal.dot.

Creating multiple sessions
of Word.

/x Launches a new Word session from the
operating shell, limited to responding to one
DDE request.

Seldom, if ever, useful. Use
/w instead when you need a

new Word session.

You can use any of the startup switches from the Start Run dialog. However, if you want to
include a switch every time Word starts, create a desktop shortcut. Every time you double-click the
shortcut, Word launches with the startup switch.

To create the new shortcut, right-click your desktop and choose New Shortcut to launch the
Shortcut Wizard. Click the Browse button, navigate to WINWORD.EXE (for Office 2003, that's in

/n Launches a new Word session but does not
create a new document based on Normal.dot.

Suppressing the creation of
a useless document;
launching a second or
subsequent Word session.

pathname\filename Opens the specified file or files after launching
Word.

Consistently opening one or
more files to work with.

/q Suppresses the Word splash screen. Works
only in some versions of Word, including Word
2000 SR-1 and Word 2003.

Preventing the splash
screen from appearing,
which can be good for VBA
applications hosted on Word
and for removing a
widespread irritant.

/r Starts Word in the background, reregisters its
registry settings, and then closes Word.

Fixing registry problems. Be
warned that although Word
stays in the background,
the Windows installer
appears in the foreground
for most versions of Word.
Warn users before you use
this switch.

/safe

Like /a, prevents the loading of all global

templates (includingNormal.dot) and any add-
ins, and prevents Word from writing data to or
reading data from the registry. In addition,
does not create a new document; suppresses
the recovery of damaged documents and
prevents the loading of smart tags, toolbar
customizations, and the AutoCorrect list. Works
interactively in Word XP and Word 2003.

Troubleshooting problems
with Word startup or
instability, especially those
caused by attempting to
recover damaged
documents.

/ttemplate Creates a document from the specified
template instead of creating a document based
on Normal.dot.

Starting Word and creating
the type of document you
need to use.

/w Launches a new Word session and creates a
new document based on Normal.dot.

Creating multiple sessions
of Word.

/x Launches a new Word session from the
operating shell, limited to responding to one
DDE request.

Seldom, if ever, useful. Use
/w instead when you need a

new Word session.

You can use any of the startup switches from the Start Run dialog. However, if you want to
include a switch every time Word starts, create a desktop shortcut. Every time you double-click the
shortcut, Word launches with the startup switch.

To create the new shortcut, right-click your desktop and choose New Shortcut to launch the
Shortcut Wizard. Click the Browse button, navigate to WINWORD.EXE (for Office 2003, that's in

http://lib.ommolketab.ir

C:\Program Files\Microsoft Office\OFFICE11), and click the OK button. The Shortcut Wizard fills in the
full path. At the end of the path, include the switch /n, as shown in Figure 6-3, and then click the

Next button.

Figure 6-3. Creating a customized Word startup shortcut

The wizard asks you to name your new shortcut. Name it "Word No Blank," or something similar. The
shortcut is placed on your desktop. Now whenever you want to launch Word without creating a blank
document, just double-click this shortcut. You can create additional shortcuts using other switches,
making it easy to launch Word in a variety of ways, depending on the task at hand.

From the descriptions in Table 6-1, you can see that there are three main themes to startup
switches: troubleshooting startup problems, launching further Word sessions, and opening the files
you need. Let's take a closer look at how to use the more useful switches.

6.3.1.1 Troubleshooting problems

If you have Word 2002 or Word 2003, use the /safe switch to recover from Word crashing on

startup. If Word still will not run with several of the leading potential sources of instability [Hack
#51] eliminated, use the /r switch to register Word. If even this does no good, you may need to

reinstall Word.

6.3.1.2 Running further sessions of Word

One Word session at a time is enough for most mortals. After all, you can open dozens of documents,
each in its own window, in one session. But sometimes you need another Word session for testing or
for performing special tasks.

http://lib.ommolketab.ir

The switches /n and /w will start a new instance of Word, but remember that Normal.dot acts as a

choke point for saving any modifications you might make in a second or subsequent session of Word.
If you save changes to Normal.dot in one session, it will overwrite any changes saved to Normal.dot
from previous sessions.

Usually, this problem emerges when you exit each session in turn, and the second or subsequent
session warns you that Normal.dot already exists and asks if you want to replace it (see Figure 6-4).
Click the Yes button to replace Normal.dot, click the Cancel button to return to the Word session, or
click the No button to save this version of Normal.dot under a different name or in a different folder
(you can then manually integrate the changes to this version of Normal.dot with the changes to the
other versions later-if you can remember the changes you made).

Figure 6-4. When you run multiple Word sessions, you may get into
situations where you've changed two or more copies of Normal.dot and
cannot easily save changes without overwriting the current Normal.dot

6.3.1.3 Opening one or more files

Perhaps the most popular use of startup switches is to quickly open the documents you need. You
can use the /mfilen switch to open one of the files on the most recently used (MRU) list [Hack

#13] . The pathname\filename switch is even more useful because it lets you specify any files you

want. To open multiple files, put a space between the names:

winword "z:\public\Strategic Plan.doc" c:\private\my_subversive_novel.doc

Again, note that if the filename or pathname includes a space, you'll need to put quotes around the
entire name.

6.3.2 Hacking the Hack

You can use the startup switch /m to run a macro and gain full control over a Word session you

launch. You can use this switch to do anything from running a custom application (for example, one
that gathers user input through user forms, executes a task, and then quits) to simply setting up the
Word window for quick work.

http://lib.ommolketab.ir

In theory, you can use the /t switch together with the /m switch to run a

macro in a new document based on a specific template. However, it works
much better if you store the macro in Normal.dot and then use the /m switch to

run the macro on startup.

The following short macro automatically opens a document in two windows: one window for editing in
full-screen Print Preview, and the other window showing an outline at Level 3. It also minimizes the
second window to keep it out of the way until you need it.

Sub Set_Up_Word_Window()

 ' Opens another window, applies Outline view, and minimizes it

 ' Applies Print Preview and editing view to the main window

 With ActiveWindow

 .NewWindow

 Windows(1).Activate

 .WindowState = wdWindowStateNormal

 .Left = 0

 .View = wdOutlineView

 .View.ShowHeading 3

 .Caption = "Outline View"

 Windows(2).Activate

 Windows(1).WindowState = wdWindowStateMinimize

 End With

 ActiveDocument.PrintPreview

 CommandBars("Print Preview").Visible = False

 With ActiveWindow

 .View.Magnifier = False

http://lib.ommolketab.ir

 .DisplayHorizontalScrollBar = False

 .WindowState = wdWindowStateMaximize

 .Caption = "Editing View"

 End With

End Sub

To run the macro, specify the document to open and then use the /m switch with the macro name:

winword "D:\Projects\Pergelisol Tragedy.doc" /mSet_Up_Word_Window

This method has one big advantage: it lets you run the macro selectively. If you used an AutoMacro
[Hack #60] instead, the macro would run every time you started Word.

- Guy Hart-Davis

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 53 Sidestep Formatting Restrictions

Formatting protection can help keep documents rigidly consistent, but sometimes you
gotta break the rules.

Word 2003 introduced formatting restrictions as a way to restrict the kinds of formatting users can
apply to a document. To activate formatting protection, select Tools Protect Document. In the
Protect Document Task Pane, shown in Figure 6-5, you can specify which types of editing and
formatting restrictions to enforce.

Figure 6-5. Setting editing and formatting restrictions in a document

When you click the "Yes, Start Enforcing Protection" button, you can optionally supply a password. As
you're about to see, including a password is fairly useless, but it may keep some users from futzing
with the formatting.

http://lib.ommolketab.ir

In general, consider the formatting restrictions about as secure as a lock on
your backyard fence-you might keep out those looking for a convenient
shortcut, but anyone who really wants in can just climb over.

When the formatting restrictions are in effect, none of the direct formatting commands, such as the
Bold and Italic buttons on the toolbar, can be used. If you try, you get the message shown in Figure
6-6.

Figure 6-6. What you see when you try to format a protected document

However, you can get around this obstacle fairly easily. For example, create a new, blank document
and fill in some placeholder text [Hack #14] . From the Protect Document Task Pane, turn on
formatting protection. Many of the buttons on the Formatting toolbar will appear grayed out.

Select some text in the document and click the Bold button. You'll get the dialog shown in Figure 6-6.
Now select Tools Macro Visual Basic Editor, enter the following in the Immediate window [Hack
#2], and then press Enter:

Selection.Font.Bold = True

Go back to the document and view your formatting changes. From VBA, you can apply any of the
"restricted" formatting in the document.

6.4.1 Hacking the Hack

Applying some formatting with VBA is fine as a quick fix for an unexpectedly protected document, but
if you want to remove all the formatting and editing protection from a document, you'll need to hack
the document as an RTF file.

With your "protected" document open, go back to the Protect Document Task Pane and set the
Editing Protection to Read Only. Now select File Save and save the file as Rich Text Format.

Close the file from Word, and then open it in a standard text editor, such as Notepad. Find the
following two statements and remove them from the file.

\lsdlockeddef1{\lsdlockedexcept Normal;Default Paragraph Font;HTML Top of Form;

HTML Bottom of Form;Normal Table;No List;}

http://lib.ommolketab.ir

\annotprot

Save and close the RTF file, and then reopen it in Word. You'll see that the protection is no longer
active. The moral of the story? Restriction settings can help you cut down on undesired formatting
and editing, but don't rely on them for more than superficial protection.

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 54 Rename Built-in Styles

Word is often merely the input phase in a production line that ends with a more
formidable layout package, such as Adobe InDesign or QuarkXPress. This hack shows you
how to make Word documents more palatable to other programs.

When Word is part of a production workflow, to work with it optimally would impose some restrictions
on other parts of the workflow. For example, your company's designers probably prefer their own
styles to Word's. Those styles may have identical names to Word's built-in styles, but chances are
they don't.

Many choose (or are forced) to create custom styles in Word that correspond to those used by the
layout software. But that means missing out on some of the advantages of using Word's built-in
styles, such as being able to use Outline view. The other (equally inconvenient) choice is to stick with
Word's styles and then perform a bunch of Find and Replace operations on the files after you import
them into the layout software. Either option is a drag on your workflow.

Let's look at an example. Say you turn over some Word files for layout to a design staff that uses
InDesign. They've got an extensive set of templates, and in those templates the styles for the first
four heading levels are named HeadA, HeadB, HeadC, and HeadD. Typically, they import Word files
directly into InDesign, then take the time to replace Heading 1 with HeadA, Heading 2 with HeadB,
and so forth. Then they delete the imported Word heading styles from the InDesign document. It
would certainly be easier if you named your heading styles the same as theirs, but again, that means
losing out on the benefits of using Word's built-in heading styles.

While you can't change Word's built-in style names, you can change anything you want about an RTF
file, which, after all, is just plain text. And whatever layout program you use (Quark, InDesign, or
FrameMaker) can definitely import an RTF file.

The trick is to save the files as RTF, then modify Word's style names to match those of the layout
software. Then, when you open the documents in the other program, the text will assume the
formatting defined by the styles with those names in that program.

After you modify the RTF files, import them into the layout software- don't
reopen them in Word. If you reopen them in Word, any built-in styles will be
recreated, which may cause undesired results (at the very least, Word will
recreate all the built-in styles you just renamed).

Continuing with the example above, to change the Heading 1 style to HeadA, the Heading 2 style to
HeadB, and so on, you'll first need to get your file into RTF format by selecting File Save As and
choosing "Rich Text Format" from the "Save as type" field. Next, open the file in a standard text
editor such as Notepad.

http://lib.ommolketab.ir

RTF stores information about each of the styles in a document in a place called the style table.
Everything about a style is listed there, from its name to its indent amount. Each style is also
assigned a number, such as \s2. Whenever text in the document uses a style, the number notes

which style should be applied. That means you only need to change the style's name in the style
table; everywhere else in the document, the style is referenced by number, not by name. A sample
style table entry for the Heading 1 style in a Word document is shown in Figure 6-7.

Figure 6-7. The Heading 1 style defined in an RTF file

If you change "Heading 1" in the RTF file to "HeadA," when you open the file in InDesign, any text
that used the Heading 1 style in Word will be formatted with the HeadA style defined in InDesign.

6.5.1 Hacking the Hack

While editing RTF files by hand can be quite educational, it's also a bit tedious. It's better to relegate
the dirty work to a script, such as the following Perl script, which changes Word's built-in Heading 1,
Heading 2, Heading 3, and Heading 4 styles to HeadA, HeadB, HeadC, and HeadD in an RTF file.

This section assumes that your have Perl installed on your system and that you
can run Perl scripts from the DOS command line. To download a free version of
Perl for Windows, go to the ActiveState web site at ttp://www.activestate.com.

This script uses the RTF::Parser module. If you're running the ActivePerl distribution for Windows,
you can install RTF::Parser from the Perl Package Manager. You can also download RTF::Parser

from http://www.cpan.org. Save this script in the same folder as the file you're modifying and name
it changestyles.pl.

#!/usr/bin/perl

use RTF::Tokenizer;

my $filename = shift;

my $tokenizer = RTF::Tokenizer->new(file => $filename);

http://www.cpan.org
http://lib.ommolketab.ir

while(my ($type, $arg, $param) = $tokenizer->get_token()){

 last if $type eq 'eof';

 if($type eq 'control' and $arg eq 'stylesheet') {

 put($type, $arg, $param);

 while(my @args = $tokenizer->get_token()) {

 for (@args) {

 $_ =~ s/Heading 1/HeadA/i;

 $_ =~ s/Heading 2/HeadB/i;

 $_ =~ s/Heading 3/HeadC/i;

 $_ =~ s/Heading 4/HeadD/i;

 }

 put(@args);

 last if $args[0] eq 'control' and $args[1] eq 'generator';

 }

 } else {

 put($type, $arg, $param);

 }

}

sub put {

 my ($type, $arg, $param) = @_;

http://lib.ommolketab.ir

 if($type eq 'group') {

 print $arg == 1 ? '{' : '}';

 } elsif($type eq 'control') {

 print "\\argparam";

 } elsif($type eq 'text') {

 print "\n$arg";

 }

}

On Windows, you'd run the script from a DOS prompt:

> perl changestyles.pl MyFile.rtf

For more on hacking Word from Perl, check out [Hack #86] .

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 55 Clean Out Linked "Char" Styles

Documents created or edited in Word 2002 or 2003 have a nasty habit of sprouting
hidden character styles that are hard to see, let alone eliminate. This hack shows you how
to lead a "Char-free" life with Word.

In most programs that offer style-based formatting (such as InDesign, FrameMaker, or
QuarkXPress), if you try to apply a paragraph style to just part of a paragraph, the entire paragraph
is modified to reflect the new style. But in Word, things aren't so simple. In older versions of Word,
when you apply a paragraph style to only part of a paragraph, the paragraph retains its original style,
but the selected text takes on the character formatting of the paragraph style you tried to apply.
That introduces a lot of direct formatting into documents, which can make them difficult to modify
and maintain.

Apply paragraph styles only with all or none-never some-of the paragraph
selected to avoid this "feature."

Starting in Word 2002, rather than just applying the character formatting of the paragraph style,
Word creates a new, hidden character style based on the paragraph style and tacks the word "Char"
on the end, such as "Heading 1 Char."

Ostensibly, this is an improvement of the behavior of earlier versions of Word. Rather than changing
Word to behave like other programs (and thus encouraging the conscientious use of character
styles), Microsoft changed Word to behave in a strange, new, and-surprise!-poorly documented
way. Because the Char styles are linked to the paragraph styles on which they're based, if you later
change the paragraph style, the character style also changes.

6.6.1 Spotting Char Styles

To see these bizarre styles in action (assuming you are using a newer version of Word), open a new
document and drop in a few paragraphs of placeholder text [Hack #14] .

Now select a word or two within one of the paragraphs and apply the "Heading 1" style to the
selection. Check your styles, either using the Task Pane or the Styles pull-down menu on the
Formatting toolbar. See anything amiss? Well, that's a trick question. There are two things amiss, but
you won't see them right away on the Styles pull-down menu or the Task Pane:

Word created a new character style based on the formatting properties of the "Heading 1" style.

http://lib.ommolketab.ir

Word has not told you about this new style, which, as you've discovered, doesn't appear with
the other styles in the usual places.

Now, hold down the Shift key and click on the Styles pull-down menu on the Formatting toolbar.
Scroll down to the "H" section, as shown in Figure 6-8, and you'll see the new style. You can also
view the linked style from the Reveal Formatting Task Pane.

Figure 6-8. The elusive Char style

You can work in a document for weeks and never notice these styles. However, if you send your
document to someone using an older version of Word that doesn't support these "linked styles,"
they'll appear right away in the Styles pull-down menu and the Styles and Formatting dialog.

Once you cut and paste the styles around your document, among different documents, and back and
forth across different versions of Word, something even stranger happens. They evolve. Mutate.
Fester. Until your document is rife with monstrosities like the following:

Body Text Char Char, Body Text Char1 Char Char, Body Text Char Char

Sometimes the "Char" extension even gets added to some of your paragraph styles. Does the fun
ever stop?

Unfortunately, you can't prevent Word from creating these styles. And even if you still use Word
2000, these styles will show up in documents worked on by Word 2002 and 2003 users.

http://lib.ommolketab.ir

The situation gets even stranger when you try to delete these styles. In Word 2000, you at least
stand a chance. Since 2000 doesn't have linked styles, you can rename or delete them as needed,
just like any other style. But in Word 2002 and 2003-the source of these bizarre styles-you aren't
so lucky. When you try to delete "Heading 1 Char," the silence is deafening. Nothing. Not even a
dialog admonishing your efforts.

So maybe you should try a little VBA? Running the following code in the Immediate window [Hack
#2] would seem to be a solution:

ActiveDocument.Styles("Heading 1 Char").Delete

When you run the code, the dialog shown in Figure 6-9 greets you. But take a look at your document
again-the style's gone.

Figure 6-9. Deleting the linked style generates a runtime error

What's going on here? For a clue, try the following code in the Immediate window:

ActiveDocument.Styles("Heading 1").Delete

You get your old friend, Runtime Error 4198.

Remember, the styles are linked. If you change one, you change both-and that goes for deletion as
well. However, you can't delete a built-in style, which is why you're greeted with Runtime Error 4198

(and why nothing happened when you tried to delete it from within Word).

So what if you repeat this with a Char style not based on one of Word's built-ins? Then there's
nothing stopping Word from deleting both styles and removing all of the formatting from any text
that used them. Yikes! Fortunately, there's a fix. With the code in this hack, you can quickly clear out
any linked Char styles in your document, without losing any other styles.

6.6.2 The Code

This code will delete any character style with the word "Char" in it and remove the word "Char" from
the name of any paragraph style. Since deleting a linked style also deletes any style it's linked to, the
link must first be broken (which is accomplished by linking it to, ironically, the Normal style).

http://lib.ommolketab.ir

This macro deletes character styles from your document. You will lose any
formatting applied to text using the deleted character styles. If you want to
keep the character formatting, see the upcoming section Section 6.6.4.

Because Word 2000 (and Word 97) doesn't have a LinkStyle property for styles, if you're using that

version of Word, this code will not run unless you comment out one line, as noted within the code.
Note that there are two procedures here: the main DeleteCharCharStyles macro and a supporting
function named SwapStyles. Both are needed for this hack to work.

Sub DeleteCharCharStyles()

Dim sty As Style

Dim i As Integer

Dim doc As Document

Dim sStyleName As String

Dim sStyleReName As String

Dim bCharCharFound As Boolean

Set doc = ActiveDocument

Do

 bCharCharFound = False

 For i = doc.Styles.Count To 1 Step -1

 Set sty = doc.Styles(i)

 sStyleName = sty.NameLocal

 If sStyleName Like "* Char*" Then

 bCharCharFound = True

 If sty.Type = wdStyleTypeCharacter Then

 On Error Resume Next

 '###

 ' COMMENT OUT THE NEXT LINE IN WORD 2000 OR 97

 sty.LinkStyle = wdStyleNormal

http://lib.ommolketab.ir

 sty.Delete

 Err.Clear

 Else

 sStyleReName = Replace(sStyleName, " Char", "")

 On Error Resume Next

 sty.NameLocal = sStyleReName

 If Err.Number = 5173 Then

 Call SwapStyles(sty, doc.Styles(sStyleReName), doc)

 sty.Delete

 Err.Clear

 Else

 On Error GoTo ERR_HANDLER

 End If

 End If

 Exit For

 End If

 Set sty = Nothing

 Next i

Loop While bCharCharFound = True

Exit Sub

ERR_HANDLER:

MsgBox "An Error has occurred" & vbCr & _

 Err.Number & Chr(58) & Chr(32) & Err.Description, _

 vbExclamation

End Sub

http://lib.ommolketab.ir

Function SwapStyles(ByRef styFind As Style, _

 ByRef styReplace As Style, _

 ByRef doc As Document)

With doc.Range.Find

 .ClearFormatting

 .Text = ""

 .Wrap = wdFindContinue

 .MatchCase = False

 .MatchWholeWord = False

 .MatchWildcards = False

 .MatchSoundsLike = False

 .MatchAllWordForms = False

 .Style = styFind

 .Replacement.ClearFormatting

 .Replacement.Style = styReplace

 .Replacement.Text = "^&"

 .Execute Replace:=wdReplaceAll

End With

End Function

The second procedure, SwapStyles, is there because of a scenario that often occurs when documents

that have these linked styles go back and forth between different versions of Word. Often, what
started as one paragraph style-for example, Sidebar-may have mutated into two paragraph styles,
such as:

Sidebar

Sidebar Char Char

In that situation, if the code just tries to remove the "Char" strings from the second Sidebar style, an
error will be raised because the name Sidebar is already taken. With the SwapStyles procedure, all

the text formatted with the second style is modified and formatted with the first, and then the second

http://lib.ommolketab.ir

style is simply deleted.

6.6.3 Running the Hack

After you put both procedures in the template of your choice [Hack #50], and either run it from the
Tools Macro Macros dialog or put a button for it on a menu or toolbar [Hack #1].

This code affects only styles with the string " Char", including the leading space. If you plan to use
this macro to clean your documents, you should avoid deliberately using the string " Char" in any of
your styles. However, feel free to begin a style name with Char, as in "CharacterStyleNumberOne."

6.6.4 Hacking the Hack

If you want to delete the linked Char styles but retain the character formatting on the text, use this
version of the code. It includes an additional procedure, StripStyleKeepFormatting, that removes

the character style applied to the text but retains the formatting defined by that style. Again, if you
use an earlier version of Word, you'll need to comment out the line that unlinks the character style,
as noted in the code.

Sub DeleteCharCharStylesKeepFormatting()

Dim sty As Style

Dim i As Integer

Dim doc As Document

Dim sStyleName As String

Dim sStyleReName As String

Dim bCharCharFound As Boolean

Set doc = ActiveDocument

Do

 bCharCharFound = False

 For i = doc.Styles.Count To 1 Step -1

 Set sty = doc.Styles(i)

 sStyleName = sty.NameLocal

 If sStyleName Like "* Char*" Then

http://lib.ommolketab.ir

 bCharCharFound = True

 If sty.Type = wdStyleTypeCharacter Then

 Call StripStyleKeepFormatting(sty, doc)

 On Error Resume Next

 '###

 ' COMMENT OUT THE NEXT LINE IN WORD 2000 OR 97

 sty.LinkStyle = wdStyleNormal

 sty.Delete

 Err.Clear

 Else

 sStyleReName = Replace(sStyleName, " Char", "")

 On Error Resume Next

 sty.NameLocal = sStyleReName

 If Err.Number = 5173 Then

 Call SwapStyles(sty, doc.Styles(sStyleReName), doc)

 sty.Delete

 Err.Clear

 Else

 On Error GoTo ERR_HANDLER

 End If

 End If

 Exit For

 End If

 Set sty = Nothing

 Next i

Loop While bCharCharFound = True

http://lib.ommolketab.ir

Exit Sub

ERR_HANDLER:

MsgBox "An Error has occurred" & vbCr & _

 Err.Number & Chr(58) & Chr(32) & Err.Description, _

 vbExclamation

End Sub

Function SwapStyles(ByRef styFind As Style, _

 ByRef styReplace As Style, _

 ByRef doc As Document)

With doc.Range.Find

 .ClearFormatting

 .Text = ""

 .Wrap = wdFindContinue

 .MatchCase = False

 .MatchWholeWord = False

 .MatchWildcards = False

 .MatchSoundsLike = False

 .MatchAllWordForms = False

 .Style = styFind

 .Replacement.ClearFormatting

 .Replacement.Style = styReplace

 .Replacement.Text = "^&"

 .Execute Replace:=wdReplaceAll

End With

End Function

http://lib.ommolketab.ir

Function StripStyleKeepFormatting(ByRef sty As Style, _

 ByRef doc As Document)

Dim rngToSearch As Range

Dim rngResult As Range

Dim f As Font

Set rngToSearch = doc.Range

Set rngResult = rngToSearch.Duplicate

Do

 With rngResult.Find

 .ClearFormatting

 .Style = sty

 .Text = ""

 .Forward = True

 .Wrap = wdFindStop

 .Execute

 End With

 If Not rngResult.Find.Found Then Exit Do

 Set f = rngResult.Font.Duplicate

 With rngResult

 .Font.Reset

 .Font = f

http://lib.ommolketab.ir

 .MoveStart wdWord

 .End = rngToSearch.End

 End With

 Set f = Nothing

Loop Until Not rngResult.Find.Found

End Function

For an alternative method, check out [Hack #98] .

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 56 Reduce Document Bloat by Deleting Old List
Templates

Long documents and documents that have been heavily edited can become needlessly
bloated by the remnants of lists long since deleted from the text. This hack shows how to
clean out this cruft.

Every list you create in Word is based on an internally defined list template. These templates function
like paragraph styles, allowing the properties of a list to be defined once, then referenced many times
later on.

But once it's been created, you can't remove a list template. Over time, a large document may
accumulate hundreds, or even thousands, of these list templates. As you might imagine, that can
have a negative impact on both the file's size and its stability.

With Word 2003, the situation is greatly improved: Word caps the number of inactive list templates in
a document at 50, automatically removing any old, unused templates once that threshold is met.
However, many individuals and offices still use older versions of Word, which makes their documents
susceptible to serious bloating issues from extraneous list templates.

To see how quickly these list templates can accumulate, try the following:

Open a new, blank Word document.1.

With your cursor in the document, alternately click the Bullets button and the Numbering button
a dozen or so times.

2.

Select Tools Macro Visual Basic Editor (or press Alt-F11), type the following in the
Immediate window [Hack #2], and press Enter:

?ActiveDocument.ListTemplates.Count

3.

VBA will report the number of list templates you created (see Figure 6-10). Notice that the number
matches the number of times you clicked the Bullets and Numbering buttons. That's a lot of list
templates for a blank document!

Figure 6-10. Counting the number of list templates in a document

http://lib.ommolketab.ir

Remember, you can't delete list templates, and only Word 2003 removes old lists when the number
gets above 50. If you use an older version of Word, however, you can create a hack to help you clean
out your list templates.

As with [Hack #41], you can convert your document into a format such as RTF and delete anything
you please. The RTF files put all the list templates in one place, and then use numbers to reference
them in the document text. You can remove any list templates not referenced in the document
without affecting the existing text.

The gory details of RTF are beyond the scope of this book. For an excellent
introduction and reference to RTF, check out O'Reilly's RTF Pocket Guide.

6.7.1 The Code

The following Perl script will clean out unused list templates from an RTF file. It uses the RTF::Parser
module. If you're running the ActivePerl distribution for Windows, you can install RTF::Parser from
the Perl Package Manager. You can also download the RTF::Parser from http://www.cpan.org.

#!/usr/bin/perl

use strict;

use RTF::Parser;

my $file = shift;

die "Please provide an rtf file to parse.\n" unless $file;

open(RTFIN, "< $file") or die "Failed to open $file for reading: $!\n";

my $tokenizer = RTF::Tokenizer->new(file => *RTFIN);

http://www.cpan.org
http://lib.ommolketab.ir

my @listoverride;

while(my ($type, $arg, $param) = $tokenizer->get_token()) {

 last if $type eq 'eof';

 if($type eq 'control' and $arg eq 'listoverridetable') {

 my $brace = 1;

 while($brace > 0) {

 my @attr = $tokenizer->get_token();

 $brace++ if $attr[0] eq 'group' and $attr[1] == 1;

 $brace-- if $attr[0] eq 'group' and $attr[1] == 0;

 if($attr[0] eq 'control'

 and ($attr[1] eq 'listid' or $attr[1] eq 'ls')) {

 push(@listoverride, $attr[2]);

 }

 }

 }

}

seek(RTFIN, 0, 0);

my %list_map = @listoverride;

for my $key (keys %list_map) {

http://lib.ommolketab.ir

 my $matches = 0;

 while(<RTFIN>) {

 my @ls = $_ =~ m/\\(ls$list_map{$key})(?:\s|\\|\n|\})/g;

 $matches += scalar(@ls);

 }

 seek(RTFIN, 0, 0);

 if ($matches > 1) {

 delete $list_map{$key};

 }

}

seek(RTFIN, 0, 0);

$tokenizer->read_file(*RTFIN);

while(my ($type, $arg, $param) = $tokenizer->get_token()) {

 last if $type eq 'eof';

 if($type eq 'control'

 and ($arg eq 'listoverridetable' or $arg eq 'listtable')) {

 put($type, $arg, $param);

 my $brace = 1;

 my @listkeep;

http://lib.ommolketab.ir

 while($brace > 0) {

 my @attr = $tokenizer->get_token();

 $brace++ if $attr[0] eq 'group' and $attr[1] == 1;

 $brace-- if $attr[0] eq 'group' and $attr[1] == 0;

 my @listitem;

 my $delete = 0;

 push(@listitem, \@attr);

 while($brace > 1) {

 my @attr = $tokenizer->get_token();

 $brace++ if $attr[0] eq 'group' and $attr[1] == 1;

 $brace-- if $attr[0] eq 'group' and $attr[1] == 0;

 if($attr[0] eq 'control' and $attr[1] eq 'listid') {

 $delete = 1 if(exists $list_map{$attr[2]});

 }

 push(@listitem, \@attr);

 }

 unless($delete) {

 push(@listkeep, \@listitem);

 }

http://lib.ommolketab.ir

 }

 for (@listkeep) {

 for (@$_) {

 put(@$_);

 }

 }

 } else {

 put($type, $arg, $param);

 }

}

close(RTFIN);

sub put {

 my ($type, $arg, $param) = @_;

 if($type eq 'group') {

 print $arg == 1 ? '{' : '}';

 } elsif($type eq 'control') {

 print "\\argparam";

 } elsif($type eq 'text') {

 print "\n$arg";

 }

}

Save the script as cleanlists.pl.

http://lib.ommolketab.ir

6.7.2 Running the Hack

As described earlier, create a new, blank document and alternately click the Bullets and Numbering
buttons a few dozen times. Use VBA to make sure that you soiled the file with extra list templates, as
shown in Figure 6-10. Now save the file as RTF and name it DirtyFile.rtf.

With the script in the same directory as the DirtyFile.rtf file, enter the following at a DOS command
prompt:

> perl cleanlists.pl DirtyFile.rtf > CleanFile.rtf

Open the new file, CleanFile.rtf, from Word. Once you're satisfied the script hasn't altered any
existing formatting, you can save it in .doc format.

Parsing RTF is a complicated task, and RTF files (particularly those with
embedded graphics) can be quite large, so this script may take a few minutes
to run on a lengthy file.

- Andy Bruno and Andrew Savikas

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Chapter 7. Macro Hacks
Introduction: Hacks #57-69

Hack 57. Get Simple User Input for a Macro

Hack 58. Keep the Macros Dialog Box Tidy

Hack 59. Do Something to Every File in a Directory

Hack 60. Run Macros Automatically

Hack 61. Intercept Word Commands

Hack 62. Keep Custom Menus Under Control

Hack 63. Use Word Dialogs in a Macro

Hack 64. Optimize Your VBA Code

Hack 65. Show Progress from VBA

Hack 66. Hack Documents with For Each Loops

Hack 67. Store Settings and Data in .ini Files

Hack 68. Generate Random Numbers

Hack 69. Hack with Application Events

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Introduction: Hacks #57-69

When it comes to hacking Word, VBA macros are often the answer. From automating routine tasks to
redefining Word's behavior, macros are a potent weapon in your Word arsenal. The hacks in this
chapter show several ways to move beyond basic automation, as well as how to make your macros
faster, friendlier, and more flexible.

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 57 Get Simple User Input for a Macro

Macros that interact with the user can be very useful. This hack shows you how to get
feedback from a user without the overhead or complexity of a VBA UserForm.

When you get input from a user (often yourself), you may want to present the person with several
choices. You can use a UserForm with radio buttons or checkboxes, but it might add unnecessary
overhead and complexity. Instead, use the dialogs already built into VBA, such as the MsgBox and
InputBox.

For example, if you just need the user to select between two choices-say, "Red" or "Blue"-you
could display a standard MsgBox with its included "Yes" and "No" buttons. The following macro

displays the dialog shown in Figure 7-1:

Sub PickRedOrBluePlease()

Dim lResponse As Long

lResponse = MsgBox(Prompt:="Press Yes for Red, Press No for Blue", _

 Buttons:=vbYesNo, _

 Title:="Pick a color")

If lResponse = vbYes Then

 MsgBox "You picked Red"

Else

 MsgBox "You picked Blue"

End If

End Sub

Figure 7-1. Hack VBA's built-in dialogs to get simple user input

http://lib.ommolketab.ir

Note the disabled Close button on the dialog's titlebar. To offer the choice of canceling the dialog, use
the vbYesNoCancel value for the Buttons parameter.

But what if you need more than two or three choices? How about choosing a number between 1 and
7? Try an InputBox and validate the response:

Sub ChooseAmongSeven()

Dim sResponse As String

sResponse = InputBox(prompt:="Please choose a number from 1 to 7", _

 Title:="Pick a Number", _

 Default:=CStr(5))

' Dialog was canceled

If Len(sResponse) = 0 Then Exit Sub

If Not sResponse Like "[1-7]" Then

 MsgBox Chr(34) & sResponse & Chr(34) & _

 " is not a number between 1 and 7", _

 vbInformation

Else

 MsgBox "You picked: " & sResponse

End If

End Sub

If the user fails to enter a whole number between 1 and 7, the macro displays the dialog in Figure 7-
2.

http://lib.ommolketab.ir

Figure 7-2. Using VBA's built-in dialogs to provide interaction from a
macro

7.2.1 Hacking the Hack

If the user does not enter a valid choice, you can continue to offer the dialog instead of exiting the
macro. The following code uses a Do loop to repeatedly prompt the user for a valid choice:

Sub PromptUntilValid()

Dim sResponse As String

Do

 sResponse = InputBox(prompt:="Please choose a number from 1 to 7", _

 Title:="Pick a Number", _

 Default:=CStr(5))

 If Len(sResponse) = 0 Then Exit Sub

 If Not sResponse Like "[1-7]" Then

 MsgBox Chr(34) & sResponse & Chr(34) & _

 " is not a number between 1 and 7", _

 vbInformation

 Else

 MsgBox "You picked: " & sResponse

http://lib.ommolketab.ir

 End If

Loop Until sResponse Like "[1-7]"

End Sub

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 58 Keep the Macros Dialog Box Tidy

Reduce clutter in your Macros dialog box by preventing it from displaying some of your
macros.

When developing a macro, it's often best to split the macro into several small parts, each responsible
for performing some part of the overall action. This makes the macro easier to write, easier to debug,
and-best of all-easier to reuse.

The downside to this strategy is that the number of macros in the Macros dialog box (Tools Macro
Macros) quickly balloons, making it hard to find the one you need amid the clutter. True, you can

assign macros to toolbars or menu buttons [Hack #1], but if you use the macros only occasionally,
you may not want to clutter up your toolbars or menus with them either.

Here are two things you can do to keep that dialog neat.

7.3.1 Name Macros Clearly and Consistently

If your Macros dialog box is full of macros with names like test, fixer, and mymacro, you'll have a

much more difficult time finding what you need than if you use descriptive names like
DeleteAllHyperlinks or SetLandscapeMargins. Practically speaking, your macro names can be as

long as you want, so use the space.

Plus, if you use the above naming convention (starting each word in the name with a capital letter)
and assign the macro to a toolbar button, Word will separate the words in the ToolTip that appears
when you hover the mouse over the button. For example, Figure 7-3 shows one of the macros used
to write the manuscript for this book.

Figure 7-3. When you use capital letters to start new words in a macro
name, Word automatically inserts spaces between them in the ToolTip

text

7.3.2 Hide Macros from the Macros Dialog Box

http://lib.ommolketab.ir

If you write a procedure that either requires an input value to run or returns an output value when it
finishes (or both), the procedure will not appear in the Macros dialog box. From the Word interface
alone, there is no way for the macro to get the input it needs or handle the output it provides. For
that, you need additional macro code.

For example, the following two procedures will not appear in the Macros dialog box:

Sub ComplimentMe(sName as String)

 MsgBox sName & " is a lovely name."

End Sub

Function OppositeDay(bInput as Boolean) As Boolean

 OppositeDay = Not bInput

End Function

Thus, to keep a macro out of the Macros dialog box, you can trick it into thinking it needs a value to
run by using an Optional argument:

Sub SuperSecretMacro(Optional bFakeInput As Boolean)

 MsgBox "Curses, foiled again"

End Sub

Now the only way to run this macro is from another macro, as with the following code:

Sub ShowSecretMacro()

 Call SuperSecretMacro

End Sub

Microsoft uses this particular technique extensively in the Office Wizards to keep the code from
appearing in the Macros dialog.

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 59 Do Something to Every File in a Directory

Even the simplest Word task becomes arduous when it must be repeated more than a
handful of times. Give your mouse a rest, and let Word do the work with this hack.

Opening a document, accepting all the revisions, then saving, printing, and closing it sounds simple
enough. But what if you need to do that for each of the 50 Word files in a folder? Even if you put an
"Accept All Revisions" button on your toolbar, you're still looking at about 250 different mouse clicks.
And amid all that clicking, chances are you'll miss a step (or a document) somewhere.

7.4.1 The Code

Place this macro in the template of your choice [Hack #50] and either run it from the Tools
Macro Macros dialog or put a button for it on a menu or toolbar [Hack #1].

You can adapt this macro to perform a variety of batch-processing tasks, but in this example, it
accepts all revisions and then prints the document:

Sub RunOnAllFilesInFolder()

Dim i As Integer

Dim doc As Document

With Application.FileSearch

 .NewSearch

 .LookIn = "C:\My Documents"

 .SearchSubFolders = False

 .FileType = msoFileTypeWordDocuments

 If Not .Execute() = 0 Then

 For i = 1 To .FoundFiles.Count

 Set doc = Documents.Open(.FoundFiles(i))

http://lib.ommolketab.ir

 ' #### Do stuff to document here ####

 doc.AcceptAllRevisions

 doc.PrintOut

 doc.Save

 doc.Close

 ' ###################################

 Set doc = Nothing

 Next i

 Else

 MsgBox "No files matched " & .FileName

 End If

End With

End Sub

This macro uses the Visual Basic FileSearch object's FileType property to make sure it opens only
Word documents, not other types of files that might be in the same folder. The FileType property

can be set to any of the 24 constants listed in Table 7-1.

Table 7-1. Available values for the FileType property

http://lib.ommolketab.ir

msoFileTypeAllFiles msoFileTypeBinders

msoFileTypeCalendarItem msoFileTypeContactItem

msoFileTypeCustom msoFileTypeDatabases

msoFileTypeDataConnectionFiles msoFileTypeDesignerFiles

msoFileTypeDocumentImagingFiles msoFileTypeExcelWorkbooks

msoFileTypeJournalItem msoFileTypeMailItem

msoFileTypeNoteItem msoFileTypeOfficeFiles

msoFileTypeOutlookItems msoFileTypePhotoDrawFiles

msoFileTypePowerPointPresentations msoFileTypeProjectFiles

msoFileTypePublisherFiles msoFileTypeTaskItem

msoFileTypeTemplates msoFileTypeVisioFiles

msoFileTypeWebPages msoFileTypeWordDocuments

It also uses a .FileName property, which supports standard Windows file globbing (meaning you can
use * and ? as wildcards, so .FileName="*.doc" will match any file ending with the .doc extension).

7.4.2 Hacking the Hack

When you open a document, Word creates one or more temporary files in the document's folder. If
you're working on a document named Foobar.doc, you might see the following files in Foobar.doc's
folder when you look in Windows Explorer:

~$obar.doc

~WRL2402.tmp

~WRL1748.tmp

http://lib.ommolketab.ir

If you don't see files like this in the folder of an open Word document, you need
to tell Windows Explorer to show hidden files. Select Tools Folder Options,
click the View tab, and check the "Show hidden files and folders" box.

Here's where it gets interesting: the first file, despite its .doc extension, isn't a Word file at all. The
other files are Word files, despite their .tmp extensions. A new .tmp file is created every time you
save your document, and they're deleted when you close the document.

The ~$obar.doc file is also normally deleted when you close the document, but if it's not properly
disposed of (e.g., when Word or Windows crashes), the file can remain even if no documents are
open. If it's left floating around in a folder, this file can cause problems when you try running a macro
on all the Word files in that folder.

This version of the RunOnAllFilesInFolder macro tests all the files in a folder and ignores any

whose names begin with a ~:

Sub RunOnAllRealFilesInFolder()

Dim i As Integer

Dim doc As Document

Dim sFileFullName As String

Dim sFileName As String

With Application.FileSearch

 .NewSearch

 .LookIn = "C:\My Documents"

 .SearchSubFolders = False

 .FileType = msoFileTypeWordDocuments

 If Not .Execute() = 0 Then

 For i = 1 To .FoundFiles.Count

 sFileFullName = .FoundFiles(i)

 sFileName = Right$(sFileFullName, _

 (Len(sFileFullName) - _

 (InStrRev(sFileFullName, "\"))))

 If sFileName Like "[!~]*" Then

http://lib.ommolketab.ir

 Set doc = Documents.Open(sFileFullName)

 ' #### Do stuff to document here ####

 doc.AcceptAllRevisions

 doc.PrintOut

 doc.Save

 ' ###################################

 doc.Close

 Set doc = Nothing

 End If

 Next i

 Else

 MsgBox "No files matched " & .FileName

 End If

End With

End Sub

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 60 Run Macros Automatically

Macros are all about automation, but to run they typically require you to click a toolbar
button or select a menu item. This hack shows you how to create macros with minds of
their own that run whenever you create, open, or close certain templates or documents.

If you often do the same thing when you first open a document, such as checking one of the
document properties or turning on field-code shading, why not have Word do it for you?

There are five special names you can give your macros that cause them to run when certain things
happen in the Word world. These are known as AutoMacros, and how they behave depends both on
their names and on where they're stored.

These are the five AutoMacros available in Word:

AutoOpen

This macro runs (or "fires") when you open a file where the macro is stored. However, if you
create a macro named AutoOpen in a template, the macro won't fire when you create a new
document based on the template (for that you'd use an AutoNew macro, described below).

AutoNew

This macro fires when you base a new document on the document or template where you
stored the macro.

AutoClose

This macro fires when you close the document or template where you stored the macro.

AutoExec

This special AutoMacro runs only when stored in a global template. It fires when the global
template is loaded. If you a put a macro named AutoExec in your Normal template, it will run

every time you start Word.

http://lib.ommolketab.ir

AutoExit

This special AutoMacro runs only when stored in a global template. It fires when you unload the
global template. If you put a macro named AutoExit in your Normal template, it will run every

time you exit Word.

You might find it easier to organize and keep track of your AutoMacros if you create separate code
modules for them. For example, if you rename a code module in a template as AutoNew, whenever
you create a document based on that template, Word will execute the macro named Main within that

module.

To change the name of a code module, open the Visual Basic Editor [Hack #2], select the module,
and then rename it using the Properties window.

7.5.1 Disabling AutoMacros

In addition to using the Word startup switches [Hack #52], you can open documents from within
VBA to control which, if any, AutoMacros run.

The following macro opens a document named foo.doc, but first disables any AutoMacros:

Sub OpenFooDoc()

WordBasic.DisableAutoMacros

Documents.Open("C:\foo.doc")

End Sub

The Word documentation mentions the DisableAutoMacros command but provides no information
on the corresponding command to reenable the macros (it's not EnableAutoMacros, as you might
expect). You just need to supply an optional argument to the DisableAutoMacros command:

Sub ReactivateAutoMacros()

WordBasic.DisableAutoMacros False

End Sub

For another way of making VBA code run when certain events occur in Word,
check out [Hack #69] .

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 61 Intercept Word Commands

This hack shows you how to change the way Word works with the ominous-sounding
technique of command interception.

What happens when you choose Save from the File menu? Obviously, Word saves the current file.
But that's not the whole story. You've executed the FileSave command, which tells Word to do the

actual work of writing the file to disk on your computer. Likewise, when someone dials your phone
number, a computer somewhere inside the phone company directs the call to the phone line in your
house. If you move, you can just ask the phone company to send calls to your new house instead.
You can even temporarily forward your calls just about anywhere, and the people dialing your
number will be none the wiser.

Word lets you do the same sort of thing with its built-in commands (such as FileSave). The concept

of intercepting commands has been around for a long time, but Word has made it very easy to
do-and, perhaps more importantly, very easy to undo.

You can intercept only commands executed from the Word interface.

To run the sample macros in this section, place them in the template of your choice [Hack #50] .
They will run when you execute the commands after which they're named.

To continue with the telephone analogy, this example shows you how to forward calls made to
FileSave:

Sub FileSave()

MsgBox "You have executed the FileSave command!"

End Sub

Go ahead, try and save the file. You'll get the dialog shown in Figure 7-4.

Figure 7-4. A simple example of an intercepted command

http://lib.ommolketab.ir

In this example, the intercepted command does not save the file, nor will it unless you include some
additional code in your macro. To actually save the file, change the macro as follows:

Sub FileSave()

ActiveDocument.Save

MsgBox "You've saved the file."

End Sub

This may seem like a trivial example, but it shows how easily you can change Word's behavior.

7.6.1 Finding the Command's Name

To intercept a command, you need to know its name. For some commands, like Bold, it's pretty
easy. Others, like MailMergeAskToConvertChevrons, aren't so straightforward. Fortunately, you can

figure out the exact name of a command in several ways.

If you have a general idea of the command name, or if you just want to browse the available
commands, select Tools Macro Macros and choose Word Commands from the "Macros in" pull-
down menu, as shown in Figure 7-5.

Figure 7-5. A description of each command is also provided (even if it is
grayed out)

http://lib.ommolketab.ir

Select the command you want to intercept, choose the template or document where you want to
create the macro from the "Macros in" drop-down menu, and click the Create button to display the
Visual Basic equivalent of the command you selected, as shown in Figure 7-6. You can then replace
the VBA code with your own code.

Figure 7-6. Word launches the Visual Basic Editor and fills in the VBA
version of the command you selected

If you can find the command within the Word interface, press Ctrl-Alt and the "+" key on the number
pad. Your cursor will turn into a cloverleaf (just like the Command symbol on a Macintosh). If you
click any button or menu item, it will bring up the Customize Keyboard dialog shown in Figure 7-7,
which will also tell you the name of the particular command.

Figure 7-7. This dialog will tell you the name of a command

http://lib.ommolketab.ir

To get a list of all available commands, choose the ListCommands macro from the list of Word

commands shown in Figure 7-5 and click the Run button to create a new document with a table
listing each Word command. You can also find a more useful and detailed list of commands at
http://www.word.mvps.org/faqs/general/CommandsList.htm.

7.6.2 Command Precedence

What happens if an intercept macro in a document shares the same name as one in the Normal
template? When you execute a command, Word first searches the document for any macros with the
same name as the command, then it searches the document template, then it searches the installed
global templates. If it finds a macro with the same name as the command, Word runs the macro
instead of the command, and then stops looking.

7.6.3 See Also

[Hack #35]

[Hack #39]

[Hack #42]

 < Day Day Up >

http://www.word.mvps.org/faqs/general/CommandsList.htm
http://lib.ommolketab.ir

 < Day Day Up >

Hack 62 Keep Custom Menus Under Control

This hack reveals how to make sure macros that create custom menu items clean up after
themselves.

This hack shows you how to automatically add a menu item for the RevertToSaved macro [Hack
#5] in a global template named MacrosTemplate.dot. It adds the menu item underneath the Save As
command on the File menu. The hack also shows how to use VBA to remove the menu item.

7.7.1 The Code

The code uses two procedures: AddMenuItem and RemoveMenuItem. The AddMenuItem macro first
calls the RemoveMenuItem procedure to delete the custom menu item if it already exists. It then

creates a new menu item just below the Save As command on the File menu. If, for some reason, the
macro can't find the Save As command on the File menu, it places the custom item at the bottom of
the menu.

Sub AddMenuItem()

Dim lPos As Long

Dim oFileMenu As CommandBar

Dim oSaveAsMenuItem As CommandBarControl

Dim oCustomMenuItem As CommandBarControl

Dim sMenuItemTag As String

' Define a tag for the custom menu item

' so you can find it later to delete

sMenuItemTag = "Custom_RevertToSaved"

CustomizationContext = NormalTemplate

http://lib.ommolketab.ir

' Delete the custom menu item if it already exists

Call RemoveMenuItem

Set oFileMenu = Application.CommandBars("File")

Set oSaveAsMenuItem = oFileMenu.Controls("Save As...")

If oSaveAsMenuItem Is Nothing Then

 lPos = oFileMenu.Controls.Count

Else

 lPos = oSaveAsMenuItem.Index

End If

Set oCustomMenuItem = oFileMenu.Controls.Add(msoControlButton, _

 1, , lPos + 1, True)

oCustomMenuItem.Caption = "Revert To Saved"

oCustomMenuItem.Tag = sMenuItemTag

oCustomMenuItem.OnAction = "MacrosTemplate.RevertToSaved"

End Sub

As stated above, the RemoveMenuItem macro checks for the custom item on the File menu. If the

macro finds the item, it deletes it. To make sure the custom menu item won't be left behind when the
macro it runs isn't available, run this procedure when the global template exits:

Sub RemoveMenuItem()

Dim lPos As Long

Dim oFileMenu As CommandBar

http://lib.ommolketab.ir

Dim oCustomMenuItem As CommandBarControl

Dim sMenuItemTag As String

' Define a tag for the custom menu item

' so you can find it later to delete

sMenuItemTag = "Custom_RevertToSaved"

CustomizationContext = NormalTemplate

Set oFileMenu = Application.CommandBars("File")

Set oCustomMenuItem = oFileMenu.FindControl(Tag:=sMenuItemTag)

If Not oCustomMenuItem Is Nothing Then

 oCustomMenuItem.Delete

End If

End Sub

To ensure that these procedures run when the global template is loaded and unloaded, you should
call them from AutoMacros [Hack #60] . Put the following code in the same MacrosTemplate.dot
template:

Sub AutoExec()

Call AddMenuItem

End Sub

Sub AutoExit()

Call RemoveMenuItem

End Sub

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 63 Use Word Dialogs in a Macro

Using Word's own dialogs in your macros allows the person using the macros to work
with a familiar interface, which can make even complicated macros seem easy to use.

Macros that must interact with the person using them are generally harder to write than those that
just run from start to finish without needing any user input. In many cases, however, Microsoft has
already done the work of designing a useful interface for modifying the same sorts of things your
macro probably does (i.e., parts of a Word document).

For example, if you've got a macro that inserts a particular kind of table into your document, you
might want to let the user choose the number of rows and columns to put in the table each time the
macro is run. Rather than create your own user form in the Visual Basic Editor, you can use Word's
InsertTable dialog-just show the dialog and capture the row and column numbers selected, and

your macro can insert the right-sized table.

This hack shows you two different ways of exploiting Word dialogs from within a macro.

Put the macros in this hack into the template of your choice [Hack #50] and run them from the
Tools Macro Macros dialog.

7.8.1 Use Dialogs to Execute Commands Interactively

Say you've created a macro to open a new file and fill it with useful information, such as a table of
available system fonts [Hack #15] . But before the macro finishes, you want it to prompt the user
to save the new document. The following code creates a new, blank document, and then displays
Word's own FileSaveAs dialog (the same one that appears whenever you save a new document for

the first time):

Sub ShowFileSaveAsDialog()

Dim dial As Dialog

Dim doc As Document

Set dial = dialogs(wdDialogFileSaveAs)

Set doc = Documents.Add

dial.Show

MsgBox "Thanks! You either saved the document or canceled the dialog."

http://lib.ommolketab.ir

End Sub

When the FileSave dialog appears, the user can click either the Save button or the Cancel button,

but this version of the macro has no way of knowing which one the user clicked. If you want your
macro to behave differently depending on which button the user clicks, you can evaluate the dialog's
return value, which is like the answer to a question. As an example of using a return value, the
following macro displays the number of currently open documents, which it finds by getting the
return value from the Count property:

Sub HowManyDocumentsAreOpen()

Dim iNumberOfDocuments As Integer

iNumberOfDocuments = Documents.Count ' Getting a return value

MsgBox iNumberOfDocuments ' Displaying that return value

End Sub

A dialog used in a macro returns a value that indicates which button in the dialog the user clicked to
exit the dialog. If the user clicked the Cancel button, or the Close button in the top corner of the
dialog, the return value is 0. You can use this information to modify the ShowFileSaveAsDialog

macro so that it "knows" whether the user clicked the Save or Cancel button and reacts accordingly:

Sub ShowFileSaveAsDialog

Dim dial As Dialog

Dim doc As Document

Set dial = dialogs(wdDialogFileSaveAs)

Set doc = Documents.Add

If dial.Show <> 0 Then

 ' Didn't press Cancel

 MsgBox "Thanks for saving the document."

Else

 ' Pressed Cancel

 MsgBox "Afraid of commitment?"

End If

End Sub

http://lib.ommolketab.ir

In this version, if the user clicks the Save button, the macro displays its gratitude. If the user clicks
the Cancel button, it displays a sarcastic message.

If you also want to suggest a specific name for the new document created by the macro, you can
supply values for certain dialog components. For the FileSaveAs dialog, you can suggest a name by
assigning a value to the Name property before showing the dialog:

Sub ShowFileSaveAsDialogAndSuggestName

Dim dial As Dialog

Dim doc As Document

Set dial = dialogs(wdDialogFileSaveAs)

Set doc = Documents.Add

dial.Name = "YourNewDocument.doc"

If dial.Show <> 0 Then

 MsgBox "Thanks for saving the document."

Else

 MsgBox "Still afraid of commitment?"

End If

End Sub

To find the names of the properties available in each dialog, do a search in the VBA help files for
"built-in dialog arguments," as shown in Figure 7-8.

Figure 7-8. Getting a list of arguments for the built-in dialogs

http://lib.ommolketab.ir

7.8.2 Use Dialogs Just to Get Input

Sometimes a Word dialog is the best way to get certain types of information from the person running
your macro, even if you don't want the dialog to "do" its usual duty.

For example, the following macro displays the FileSaveAs dialog from the previous section. But after

you click the Save button, a message box appears showing the filename you chose instead of saving
the document. The difference is that instead of using the Show method, as in the previous section,
this macro uses the Display method, as indicated in bold.

Sub ShowFileSaveAsDialog()

Dim dial As Dialog

Set dial = dialogs(wdDialogFileSaveAs)

dial.Display

MsgBox "You asked to save the file as: " & dial.Name & ". Too bad."

End Sub

http://lib.ommolketab.ir

With Show, the dialog does what you expect; in the case of FileSaveAs, clicking the Save button
saves the current document with the name you provide. But with Display, the dialog captures the

name you entered but doesn't actually do the save.

To return to the scenario of inserting a table described at the beginning of this hack, the following
macro inserts a two-row, three-column table at the insertion point. The first row is styled as "Heading
1," and the rest of the table is styled as "Heading 2":

Sub TableWithSpecialHeadings()

Dim tbl As Table

Set tbl = Selection.Tables.Add(Range:=Selection.Range, _

 NumRows:=2, NumColumns:= 3)

tbl.Range.Style = wdStyleHeading3

tbl.Rows(1).Range.Style = wdStyleHeading2

End Sub

This macro becomes more versatile if you can choose the number of rows and columns each time you
run it. The following macro prompts the user with the InsertTable dialog, captures the column and

row numbers chosen, and then inserts the special table:

Sub TableWithSpecialHeadings()

Dim tbl As Table

Dim dial As Dialog

Set dial = Dialogs(wdDialogTableInsertTable)

If dial.Display = 0 Then

 ' User pressed Cancel, so quit now

 Exit Sub

End If

Set tbl = Selection.Tables.Add(Range:=Selection.Range, _

 NumRows:=dial.NumRows, _

http://lib.ommolketab.ir

 NumColumns:=dial.NumColumns)

tbl.Range.Style = wdStyleHeading3

tbl.Rows(1).Range.Style = wdStyleHeading2

End Sub

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 64 Optimize Your VBA Code

As you create more complex macros, minor delays caused by poor coding can really add
up. This hack will help your VBA code run faster.

This hack demonstrates six specific programmatic techniques you can apply to accelerate your code.
The improvement can range from modest increases to increases of several orders of magnitude in
performance.

7.9.1 Use Integer Division

Your application probably performs a majority of its division operations on integer values. Many
developers use the slash (/) operator to divide two numbers, but this operator is optimized for
floating-point division. If you divide integers, you should use the backslash (\) operator instead. With
\, Word works at the integer level instead of the floating-point level, so computation happens faster.

(Of course, this is useful only if you assign the results of the division operation to an integer. If you
care about the fractional portion of the division, you need to use floating-point math and the /

operator.) For example, instead of:

intX = intY / intZ

use:

intX = intY \ intZ

7.9.2 When Possible, Avoid Variants

Variants offer convenience at the expense of performance. When you use variants, Word often needs
to perform type conversion to ensure the data is in the correct format. If you match the data type to
your variable, you eliminate the need for type conversion, and your code runs faster. In addition, a
variant variable is twice as large as an integer (on a 32-bit operating system), and thus takes longer
to manipulate.

7.9.3 Test for Blank Strings with Len

You probably have code that tests for empty strings by comparing them to another empty string ("").
However, because Word stores the length of the string as the first byte in the string, testing for a

http://lib.ommolketab.ir

length of zero using the Len function is always faster. Instead of:

If strTemp = "" Then

 MsgBox "The string is blank"

End If

you can use this:

If Len(strTemp) = 0 Then

 MsgBox "The string is blank"

End If

Don't use a literal value ("") when you initialize a string. Instead, use the built-in vbNullString

constant.

7.9.4 Assign Objects to Variables

If you refer to an object more than once in a section of code, assign it to an object variable. Every
time you reference an object, Word has to perform some work to figure out which object you are
referring to. This adds overhead to your code each time you reference the object. But if you assign
the object to an object variable, Word "finds" the object once and caches the reference in memory.
After the first reference, you can refer to the object through the object variable, and your code will
run faster. For example, instead of this code:

Sub ReferencingTestSlowWay()

Dim k As Long

Dim str As String

For k = 1 To 100000

 str = ActiveDocument.Paragraphs(1).Range.Characters(1).Text

Next k

End Sub

you can use this:

Sub ReferencingTestFastWay()

Dim k As Long

http://lib.ommolketab.ir

Dim str As String

Dim rng As Range

Set rng = ActiveDocument.Paragraphs(1).Range.Characters(1)

For k = 1 To 100000

 str = rng.Text

Next k

End Sub

The difference between the two versions is dramatic: with a 2.6-GHz Celeron processor, the first
macro took 62.16 seconds; the second took just 0.26 seconds.

7.9.5 Don't Skimp on Comments

Don't worry about comments. In VBA, the use of comments exacts no measurable performance
penalty, but they will help you (and others who might use the code) understand how your code
works.

7.9.6 Avoid IIf

Replace the IIf function with If... Then... Else to make your code run faster. For example,

instead of:

MsgBox IIf(intX = 1, "One", "Not One")

you can use this:

If intX = 1 Then

 MsgBox "One"

Else

 MsgBox "Not One"

End If

- Adapted from Access Cookbook (O'Reilly)

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 65 Show Progress from VBA

When macros take a long time to run, people get nervous. Did it crash? How much longer
will it take? Do I have time to run to the bathroom? Relax. This hack shows you two ways
to create a macro progress bar using VBA.

Before adding a full-fledged progress bar to your macro, consider whether something more subtle
might be effective enough to keep the macro user informed. Within a macro, you can use the
StatusBar property to display text in Word's status bar-the little area at the bottom of the window

that displays the current page, line count, and so forth.

The following macro displays a personalized message in the status bar. Put the macro in the template
of your choice [Hack #50] and run it from Tools Macro Macros:

Sub SayHello()

StatusBar = "Hello, " & Application.UserName & _

 ". My that's a nice shirt you're wearing."

End Sub

You can take a tip from Word, which often displays messages in the status bar (e.g., when you save
a document), and use the status bar as a means of communication from within a macro.

For example, the following macro uses a For Each loop [Hack #66] to highlight any paragraph set

to outline Level 2 that contains more than 10 words. As it completes this task, it prints the text of the
paragraph to the status bar:

Sub HighlightLongHeadings()

Dim para As Paragraph

For Each para In ActiveDocument.Paragraphs

 StatusBar = "Checking: " & para.Range.Text

 If para.OutlineLevel = wdOutlineLevel2 Then

 If para.Range.Words.Count > 10 Then

 para.Range.HighlightColorIndex = wdBrightGreen

http://lib.ommolketab.ir

 End If

 End If

Next para

StatusBar = ""

End Sub

This solution usually provides enough visual feedback to keep users assured that the macro's still
hard at work and that Word hasn't crashed.

If you want a more specific, or just less subtle, feedback method, you can create a custom progress
bar that appears in its own dialog box while your macro runs. The following sections describe two
ways to create your own progress bar using VBA. Both adapt the HighlightLongHeadings macro

shown above.

7.10.1 Continuous Progress

The first technique combines the code for the progress bar with the code for the macro.

To keep the example simple, you should put this code in your Normal template. Select Tools
Macro Visual Basic Editor, choose Normal in the Project Explorer (near the top left of the window),
and then select Insert UserForm. Next, choose View Toolbox to display the Toolbox (it may
already be showing). Select the Label control (the one with the "A" on it). Now move your cursor to
the UserForm and drag the cursor to create a new label, like the one shown in Figure 7-9. Try to
position the top-left corner of the label near the top left of the UserForm.

Figure 7-9. Creating a simple progress bar with a UserForm

http://lib.ommolketab.ir

Next, select View Code and insert the following code:

Private Sub UserForm_Activate()

Dim lParaCount As Long

Dim i As Integer

Dim para As Paragraph

Dim lMaxProgressBarWidth As Long

Dim sIncrement As Single

' Resize the UserForm

Me.Width = 240

Me.Height = 120

' Resize the label

Me.Label1.Height = 50

Me.Label1.Caption = ""

Me.Label1.Width = 0

http://lib.ommolketab.ir

Me.Label1.BackColor = wdColorBlue

lMaxProgressBarWidth = 200

lParaCount = ActiveDocument.Paragraphs.Count

sIncrement = lMaxProgressBarWidth / lParaCount

i = 1

For Each para In ActiveDocument.Paragraphs

 Me.Label1.Width = Format(Me.Label1.Width + sIncrement, "#.##")

 Me.Caption = "Checking " & CStr(i) & " of " & CStr(lParaCount)

 Me.Repaint

 If para.OutlineLevel = wdOutlineLevel2 Then

 If para.Range.Words.Count > 10 Then

 para.Range.HighlightColorIndex = wdBrightGreen

 End If

 End If

i = i + 1

Next para

Unload Me

End Sub

From the Project Explorer, select one of the code modules in Normal, as shown in Figure 7-10. If you
don't have any code modules in Normal, select Insert Module to create one.

Figure 7-10. Select one of the code modules in your Normal template

http://lib.ommolketab.ir

In the code module you've selected, insert the following code:

Sub HighlightLongHeadings()

 UserForm1.Show

End Sub

Now select File Close and Return to Microsoft Word. To run the macro, select Tools Macro
Macros and choose HighlightLongHeadings. When you run the macro, you'll see a progress bar like

the one shown in Figure 7-11.

Figure 7-11. A simple progress bar in action

If the document is very short, you probably won't see the progress bar-it'll
finish filling in too fast. Test this out on a long document to really see it in
action.

One of the lines in the UserForm code deserves a closer look:

Format(Me.Label1.Width + sIncrement, "#.##")

The variable sIncrement is the final width of the progress bar divided by the total number of

paragraphs in the document. As the macro visits each paragraph in the document, the width of the
bar increases by the value of sIncrement. Since the maximum width of the bar in this example is 200
pixels (as defined in the variable lMaxProgressBarWidth), if there are 10 paragraphs in the

http://lib.ommolketab.ir

document, the width of the bar will increase by 20 pixels as each paragraph is examined.

If there are hundreds or thousands of paragraphs in a document, the value of sIncrement can
become quite small-smaller than the measurements UserForms are designed to handle. When that

happens, VBA will round the number according to its own internal rounding rules, which can cause
the width of the progress bar to eventually exceed the width of the UserForm. However, if you use
the Format function, the increment amount will be rounded more precisely, keeping it confined to the
boundaries of the UserForm.

7.10.2 Incremental Progress

One drawback to the technique described in the previous section is that the code for the progress bar
is mixed with the code used to modify the document. To create another macro that displays a similar
progress bar, you'd need to create another, similar UserForm. But by separating the code for the

progress bar from the code that works on the document, you can reuse your progress bar in a
variety of situations.

This section shows you how to create a dialog that reports the progress of a macro as a percentage,
in increments of 10%, as shown in Figure 7-12. You can use this same progress bar from within any
macro whose progress can be translated into a percentage.

Figure 7-12. A progress bar that displays percentage increments

To keep the example simple, you should put this code in your Normal template. Select Tools
Macro Visual Basic Editor, choose Normal in the Project Explorer (near the top left of the window),
and then select Insert UserForm. Next, choose View Toolbox to display the Toolbox (it may
already be showing).

On the Toolbox, select the Frame control (the box with "xyz" at the top), and then draw a single
frame on your blank UserForm. With the frame selected, go to the Properties window. Change the
frame's height to 30 and its width to 18 and set its Visible property to False. Then delete the

frame's caption and change its background color to blue, as shown in Figure 7-13.

Figure 7-13. Change the frame's caption and background color from the
Properties window

http://lib.ommolketab.ir

In the listbox at the top of the Properties window, select UserForm1 instead of Frame1, and then
change the ShowModal property to False. While in the Properties window, change the name of the
UserForm to IncrementalProgress.

Now go back to the UserForm itself and select the frame. Choose Edit Copy, and then paste the

frame nine times. Align the 10 frames as best you can in a single row. While holding down the Ctrl
key, select all of the frames. Then select Format Align and align the centers and tops of all the
frames.

Next, select the Label control from the Toolbox (the one with the "A" on it) and draw a label
underneath the frames, as shown in Figure 7-14. From the Properties window, delete the label's
caption.

Figure 7-14. Creating an incremental progress bar

http://lib.ommolketab.ir

With this method, you display the dialog when your macro starts, then periodically increment its
progress as a percentage. It involves more code, but it's more versatile than the first method.

Now select View Code and insert the following:

Private Sub UserForm_Initialize()

Me.Caption = "0% Complete"

End Sub

Public Function Increment(sPercentComplete As Single, _

 sDescription As String)

On Error Resume Next

Me.Label1.Caption = sDescription

Me.Repaint

Dim iPercentIncrement As Integer

iPercentIncrement = Format(sPercentComplete, "#")

Select Case iPercentIncrement

 Case 10

 Me.Frame1.visible = True

 Me.Caption = "10% Complete"

 Me.Repaint

 Case 20

 Me.Frame2.visible = True

 Me.Caption = "20% Complete"

 Me.Repaint

 Case 30

 Me.Frame3.visible = True

 Me.Caption = "30% Complete"

http://lib.ommolketab.ir

 Me.Repaint

 Case 40

 Me.Frame4.visible = True

 Me.Caption = "40% Complete"

 Me.Repaint

 Case 50

 Me.Frame5.visible = True

 Me.Caption = "50% Complete"

 Me.Repaint

 Case 60

 Me.Frame6.visible = True

 Me.Caption = "60% Complete"

 Me.Repaint

 Case 70

 Me.Frame7.visible = True

 Me.Caption = "70% Complete"

 Me.Repaint

 Case 80

 Me.Frame8.visible = True

 Me.Caption = "80% Complete"

 Me.Repaint

 Case 90

 Me.Frame9.visible = True

 Me.Caption = "90% Complete"

 Me.Repaint

 Case 100

http://lib.ommolketab.ir

 Me.Frame10.visible = True

 Me.Caption = "100% Complete"

 Me.Repaint

 End Select

End Function

You can now use the progress bar from within your macros. All you need to do is provide the
percentage and any text you'd like displayed underneath the progress bars.

The following is the HighlightLongHeadings macro, revised to use this progress bar. The lines

shown in bold are the ones that interact with the progress bar.

Sub HighlightLongHeadings()

Dim lParaCount As Long

Dim sPercentage As Single

Dim i As Integer

Dim para As Paragraph

Dim sStatus As String

IncrementalProgress.Show

lParaCount = ActiveDocument.Paragraphs.Count

i = 1

For Each para In ActiveDocument.Paragraphs

 sPercentage = (i / lParaCount) * 100

 sStatus = "Checking " & i & " of " & lParaCount & " paragraphs"

 IncrementalProgress.Increment sPercentage, sStatus

http://lib.ommolketab.ir

 If para.OutlineLevel = wdOutlineLevel2 Then

 If para.Range.Words.Count > 10 Then

 para.Range.HighlightColorIndex = wdBrightGreen

 End If

 End If

i = i + 1

Next para

Unload IncrementalProgress

End Sub

Running this macro will display the progress bar shown in Figure 7-12.

Your macros will take longer to run, because the progress bar adds overhead. You should test
versions of your macros with and without the progress bar to determine whether you find the
performance hit acceptable.

The above code assumes you will hit each percentage stop along the way. If
you expect to skip increments, modify the code to make sure you "turn on" all
the increment frames lower than the current one. For example:

...

Case 40

 With Me

 .Frame1.Visible = True

 .Frame2.Visible = True

 .Frame3.Visible = True

 .Frame4.Visible = True

 .Caption = "40% Complete"

 .Repaint

 End With

http://lib.ommolketab.ir

...

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 66 Hack Documents with For Each Loops

When you need a quick and dirty solution, you don't always have time to find the best tool
for the job. This hack introduces you to the Swiss Army Knife of VBA programming.

In the Unix world, a handy utility program called sed has been doing the dirty work of editing text
files for more than 30 years. Other programs and languages have come along that can do the same
thing sed does (and more), but thousands of users still fire up sed every single day. Why? Because
sed reads and edits text files the same way people do: line by line; so it's easy for people to "tell" sed
what to do. It's not the fastest, and it's not the prettiest, but it's hard to beat for automating rote
tasks. A technique for writing macros in VBA shares that same trait of "thinking" the way people do,
but about Word documents. It's a For Each loop, and you should consider it your tool of first resort

for quick and dirty solutions to everyday problems.

A lot of the simple but tedious tasks you do in Word come about when you need to modify
something. For example, say you've got a document peppered with dozens of tables of varying size.
Some of the tables have a heading row with bold applied to all the text in the row. Since some of
those tables might span multiple pages, you want the heading row to repeat [Hack #20] on each
page.

One option is to use Word's "Browse by Object" feature to scan the text for each table, as shown in
Figure 7-15. To browse a document table by table, click the blue circle between the two double
arrows, just below your vertical scrollbar. After you choose "Browse by Table," click one of the double
arrows to jump to the next or previous table in the document. If the table has a bold heading row,
select it, and then select Table Heading Rows Repeat. This procedure is just complicated enough
to require your full attention but simple and repetitive enough to make it a real chore.

Figure 7-15. Browsing a document, one object at a time

When the instructions are simple-look at each table in the document, and if the first row is in bold,
then select the option to repeat that row across pages- it's often easy to translate them into terms a
macro can understand. A big hint that a For Each loop might be useful here is the presence of the

http://lib.ommolketab.ir

word "each" in the instructions.

If you want to run the sample macros in this hack, place them in the template of your choice [Hack
#50] and run them either from the Tools Macro Macros dialog or from within the Visual Basic
Editor.

Excluding comments and the required Sub and End Sub parts, you can take care of the tables with

just six lines of fairly understandable VBA code:

Sub CheckTableHeadings()

' Declare a variable of type "Table"

Dim tbl As Table

' Look at each table in the document

For Each tbl In ActiveDocument.Tables

 ' If the first row is bold

 If tbl.Rows(1).Range.Font.Bold = True Then

 ' Select the option to repeat that row across pages

 tbl.Rows.HeadingFormat = True

 End If

Next tbl

End Sub

A generalized version of that macro would be the following:

Sub DoForEach()

Dim variablename As Thing

For Each variablename in ActiveDocument.Things

 ' Do stuff to the current "Thing"

Next variablename

End Sub

The Thing in this code could be tables, comments, bookmarks, fields, paragraphs, revisions, and so

forth. For example, the following macro changes the author of any comment written by Marlowe to
Shakespeare:

http://lib.ommolketab.ir

Sub ChangeComments

Dim oComment as Comment

For Each oComment In ActiveDocument.Comments

 If oComment.Author = "Marlowe" Then

 oComment.Author = "Shakespeare"

 End If

Next oComment

End Sub

For Each loops are ideal for single-use macros because you can code them fast without investing a

lot of development time.

The Word object model does include Characters and Words collections, but
there's no corresponding singular Character or Word object. If you want to
visit each character or word in a document, as in [Hack #32], declare a Range

variable for use in your loop:

Sub BoldLongWords()

Dim oWord as RangeFor Each oWord In ActiveDocument.Words

 If oWord.Characters.Count > 10 Then

 oWord.Bold = True

 End If

Next oWord

End Sub

7.11.1 When to Avoid For Each Loops

A For Each loop is a poor choice if your macro needs to delete any of the "things" mentioned in the
previous section. In these cases, you'd want to use another, more traditional type of loop: a For...
Next loop. For... Next loops use a counter variable to keep track of their place, as the following

macro, which counts from 1 to 5, shows:

Sub CountUp()

http://lib.ommolketab.ir

Dim i As Integer ' This is the counter variable

For i = 1 to 5

 MsgBox i & " Mississippi"

Next i

End Sub

For... Next loops can also count backward, when you use the optional Step statement, as the

following macro shows:

Sub CountDown()

Dim i As Integer ' This is the counter variable

For i = 3 to 1 Step -1 ' Going backward from 3 to 1

 MsgBox i

Next i

MsgBox "Contact!"

End Sub

So why are there two different kinds of loops? Well, the For Each loops described in the previous
section are really just modified For... Next loops, designed to iterate through objects in a collection

using a simpler syntax-and, more importantly, to execute much faster.

To show the difference in the syntax, here's the CheckTableHeadings macro from the previous
section rewritten using a regular For... Next loop:

Sub SlowerCheckTableHeadings()

Dim tbl As Table

Dim i as Integer

For i = 1 To ActiveDocument.Tables.Count

 Set tbl = ActiveDocument.Tables(i)

 If tbl.Rows(1).Range.Style = "TableHeading" Then

 tbl.Rows.HeadingFormat = True

 End If

http://lib.ommolketab.ir

 Set tbl = Nothing

Next i

End Sub

With the For Each version, that Set statement is implicit, and the loop automatically goes one at a

time from the first to the last item. But that speed comes at a price: if you delete any of the "things"
that a For Each loop is visiting, the loop can lose its place and may skip over items.

Instead, to delete some (or all) of the objects in a collection, as in [Hack #28], use a For... Next

loop and run it backward from the end of the document:

Sub DeleteFootnotes

Dim i as Integer

For i = ActiveDocument.Footnotes.Count to 1 Step -1

 ActiveDocument.Footnotes(i).Delete

Next i

End Sub

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 67 Store Settings and Data in .ini Files

VBA includes a way to store and retrieve information using plain-text files that are easy to
create, easy to edit, and easy to remove.

Before Windows 95 came along with the Windows registry for storing system information, Windows
used .ini files-text files used to store program-specific data. Many programs, and even Windows, still
use these files to store certain information. A search on your hard drive for *.ini files will likely turn
up dozens or even hundreds of entries.

These files are very useful for storing data after a macro finishes running in VBA, or for things like
numbering documents sequentially [Hack #77] and creating an improved MRU [Hack #13] after
Word closes.

The .ini, or Config, files have a simple structure. Each file is divided into one or more sections, and
each section contains sets of key/value pairs. The contents of a Config file look like the following:

[MRU_Files]

MRU01=C:\Dox\Doc 1.doc

MRU02=C:\Dox\Doc 2.doc

Each section name is on its own line and surrounded by brackets. Each line within the section
contains a key/value pair separated by an equals sign (=).

VBA includes a feature called the PrivateProfileString property, which you can use from any

macro, to read and write these files. When you read from or write to a Config file, you need three
values: the filename, the section name, and the key name. If you're writing to the file, you also need
the value to assign to the key.

To store the name of the current document in a Config file under the key CurrDoc in the section
WordInfo in a file named WordSettings.ini, you'd use the following syntax:

System.PrivateProfileString("WordSettings.ini", "WordInfo", "CurrDoc") = _

 ActiveDocument.Name

If no file named WordSettings.ini exists, the macro creates one. If the file does exist, it replaces any
value already associated with the key CurrDoc in the section WordInfo.

To retrieve this same information from the Config file, use the following syntax:

http://lib.ommolketab.ir

strSetting = System.PrivateProfileString("WordSettings.ini", _

 "WordInfo", "CurrDoc")

If the file, section, or key doesn't exist, it returns an empty string.

The following example shows you how to use a Config file from within a macro. These two
AutoMacros [Hack #60], when placed in your Normal template, will record the name of the active
document when you quit Word and then open that document the next time you start Word:

Sub AutoExec

Dim sDocName as String

sDocName = System.PrivateProfileString("WordSettings.ini", _

 "WordInfo", "CurrDoc")

If Len(sDocName) <> 0 Then

 Documents.Open(sDocName)

End If

End Sub

Sub AutoExit

System.PrivateProfileString("WordSettings.ini", "WordInfo", "CurrDoc") = _

 ActiveDocument.FullName

End Sub

Because Config files are just plain-text files, they can be viewed and edited using any standard text
editor, such as Notepad.

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 68 Generate Random Numbers

Randomization is an esoteric area of most programming languages, and VBA's no
exception. This hack gives you easy access to two of its most common forms.

Random numbers are a helpful way to ensure that a particular value, such as a bookmark name for a
cross-reference [Hack #44], is unique. Word even uses random numbers in its own cross-reference
bookmarks. But getting a random number from VBA in the form you need can be a challenge.

The first time you need a random number from VBA, you'll look up the syntax in the help files, and
then you'll have to figure out a way to get the kind of number you need. The second time you need a
random number-probably months later-chances are you'll have long since forgotten the syntax,
and you'll spend needless time looking it up again and trying to figure out how to coax the kind of
number you need from it. The functions in this hack can help you save yourself the aggravation.

VBA includes the Rnd function to generate a random number, but it always returns a value between 0
and 1. By putting Rnd to work alongside two other built-in functions, Int and Randomize, you can get

back numbers more suitable for things like creating your own cross-references [Hack #44] .

7.13.1 Bounded Random Numbers

This function generates a random number between two ranges:

Function GenerateBoundedRandomNumber(_

 lLowerBound As Long, _

 lUpperBound As Long) As Long

Randomize

GenerateBoundedRandomNumber = Int(_

 (lUpperBound - lLowerBound + 1) _

 * Rnd + lLowerBound)

End Function

The lLowerBound and lUpperBound values are inclusive and can be any signed numbers between -
999,999,999 and 999,999,999. If lLowerBound is greater than lUpperBound, the function will still

http://lib.ommolketab.ir

work, but the results will exclude both boundary numbers.

7.13.2 n-Digit Random Numbers

This function generates a random number of the specified length:

Function GenerateFixedLengthRandomNumber(_

 iLength As Integer) As Long

Randomize

GenerateFixedLengthRandomNumber = Int((((10 ^ iLength) - 1) _

 - (10 ^ (iLength - 1)) + 1) _

 * Rnd + (10 ^ (iLength - 1)))

End Function

iLength can be any positive number between 1 and 9. A number greater than 9 will generate an

"Overflow" error. However, you can get around the nine-digit limit by converting the return value to a
string using the Cstr() function and concatenating it with another converted return value from the
same function. So in the following statement, the variable sMyString would get a string containing a

15-digit number:

sMyString = CStr(GenerateFixedLengthRandomNumber(8)) & _

 CStr(GenerateFixedLengthRandomNumber(7))

7.13.3 Running the Hack

Put these functions in a code module in your Macros template [Hack #50] . The Public keyword

before the function name means you can use these functions from other code modules in the same
template.

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 69 Hack with Application Events

Application events offer a powerful way to run VBA code when certain things happen
within Word.

Windows is an events-based operating system. Most everything you do, from typing at the keyboard
to scrolling within a window, triggers an event, which is then acted on by the program or the
operating system.

Word exposes several events to you for use within your macros. For example, you can run a specific
macro whenever the Word window is resized, or whenever the user right-clicks within a Word
window.

If you have two Word documents open and you toggle between the two from the Window menu,
three different events happen (in this order):

The WindowDeactivate event1.

The WindowActivate event2.

The DocumentChange event3.

At any of those stages (or all of them), you can specify VBA code to run every time that particular
event "fires."

Application events fire when they occur anywhere within Word, not just within the document or
template that contains the event-handling code. If your document (or the template on which your
document is based) contains no macros, you can still work with events related to the document if you
have defined event-handling code in your Normal template or in a currently loaded add-in.

A handy feature in Word 2002 and 2003 can help you remember to accept revisions or remove
comments before you print or save a document. This hack will show you how to replicate this feature
in earlier versions of Word.

7.14.1 Setting Up the Event Handler

For this hack, create a new template and name it Event Handlers.dot. Next, select Tools Macro
Visual Basic Editor, choose the Event Handlers.dot template in the Project Explorer, and then select
Insert Class Module. The default name for a new class is Class1. Rename your class module
EventHandler, as shown in Figure 7-16.

http://lib.ommolketab.ir

Figure 7-16. Renaming an inserted class module

Double-click the new EventHandler class to open it and insert this code:

Public WithEvents oThisWordApp As Application

Private Sub oThisWordApp_DocumentBeforePrint(ByVal Doc As Document, _

 Cancel As Boolean)

 Dim lResponse As Long

 If Doc.Comments.Count <> 0 Or Doc.Revisions.Count <> 0 Then

 lResponse = MsgBox(Chr(34) & Doc.Name & Chr(34) _

 & " contains comments or tracked changes." & vbCr _

 & "Continue with printing?", vbYesNo)

 If lResponse = vbNo Then Cancel = True

 End If

End Sub

http://lib.ommolketab.ir

Private Sub oThisWordApp_DocumentBeforeSave(ByVal Doc As Document, _

 SaveAsUI As Boolean, Cancel As Boolean)

 Dim lResponse As Long

 If Doc.Comments.Count <> 0 Or Doc.Revisions.Count <> 0 Then

 lResponse = MsgBox(Chr(34) & Doc.Name & Chr(34) _

 & " contains comments or tracked changes." & vbCr _

 & "Continue with save?", vbYesNo)

 If lResponse = vbNo Then Cancel = True

 End If

End Sub

Notice that the two events that are handled, DocumentBeforePrint and DocumentBeforeSave, each

take several arguments. Word will include these arguments as needed when you select an event that
requires them. In the lefthand pull-down menu just above your code, select oWordApp. In the pull-

down menu on the right, you can choose among the available application events. When you choose
one, the appropriate shell code (sometimes called a "stub") is inserted, including any arguments, as
shown in Figure 7-17.

Figure 7-17. Choosing from available application events

http://lib.ommolketab.ir

Now that you've created the class module that will handle the Word events, you need to create an
instance of the class within a standard code module. To ensure that the event handler is activated as
soon as the Event Handlers template is loaded, place the necessary code in an AutoMacro [Hack
#60] .

Select the Event Handlers template in the Project Explorer and choose Insert Code Module. Insert
the following code in the new module's declarations section. The declarations section is at the top of
the code module, before any procedures.

Dim oEventHandler As New EventHandler

Below that declaration, insert the following code, which creates an instance of the EventHandler:

Sub AutoExec()

Set oEventHandler.oThisWordApp = Word.Application

End Sub

7.14.2 Running the Hack

Save and close your Event Handlers.dot template. Next, select Tools Templates and Add-Ins and
click the Add button to load it as a global template. As soon as Event Handlers.dot is loaded,
whenever you save or print a document that contains comments or unaccepted revisions, you'll be
prompted to confirm, as shown in Figure 7-18.

Figure 7-18. Using the DocumentBeforeSave event to warn if a document

http://lib.ommolketab.ir

contains revisions or comments

Though similar to intercepting built-in commands [Hack #61], this event handler has two important
differences.

First, the DocumentBeforeSave event fires when you choose either the Save or Save As commands.

The other method forces you to intercept each separate command.

Second-and this is the biggie-the event handler will run even if you save the document from within
a macro, making it an even more powerful and flexible technique than the command intercept.

If a macro tries to save a document and your event handler cancels the save,
VBA may return an error. If you use event handlers, you need to include extra
error handling in your macros.

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Chapter 8. Forms and Fields
Introduction: Hacks #70-79

Hack 70. Fake (and Easy) Fill-in Forms

Hack 71. Hack DATE Fields

Hack 72. Perform Calculations with Formula Fields

Hack 73. Format Numeric Field Results

Hack 74. Use Fields for Heavy-Duty Calculations

Hack 75. Include an Interactive Calendar in Your Forms

Hack 76. Use Custom Shortcut Menus to Make Frequent Selections

Hack 77. Number Documents Sequentially

Hack 78. Cross-Reference Among Documents

Hack 79. Convert Field Codes to Text and Back Again

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Introduction: Hacks #70-79

Many of Word's most useful features, such as page numbering and cross-referencing, are
implemented with fields. Most of Word's fields act as placeholders, gathering, updating, and
displaying content that may change throughout a document's lifetime.

For example, when you insert a DATE field, rather than just inserting today's date as plain text, Word

inserts a special code that says "Whenever this field is updated, go and find out what the current date
is and display that." (Of course, Word says it a bit more tersely.) To see a DATE field in action, press

Ctrl-F9 to insert a pair of field braces-special characters that can't be typed in using the standard
keys-and type the word Date in between the braces. Select the field you just created and press F9

to update its contents. Word will gladly report today's date.

The hacks in this chapter show a few ways to take fields beyond the basics-in some cases, way
beyond the basics. Working with fields isn't for the easily frustrated, and the learning curve is on the
steep side. But once you've seen what they can do, you'll find that fields are a very useful addition to
your Word toolbox.

Many of the fields in this chapter are quite complex, and Word is unforgiving of incorrect syntax.
Many of the fields in this chapter are also quite long. Optional line breaks have been inserted, as
indicated with the "" character, so that the fields can fit the width of a printed page. A line break is
inserted in Word by pressing Shift-Enter. To save yourself some trouble, download all the fields
shown in this chapter from this book's web site, at http://www.oreilly.com/catalog/wordhks.

When working with fields, go to Tools Options View and make sure "Field
shading" is set to Always. Don't worry, the shading won't appear when you
print the document.

 < Day Day Up >

http://www.oreilly.com/catalog/wordhks
http://lib.ommolketab.ir

 < Day Day Up >

Hack 70 Fake (and Easy) Fill-in Forms

This hack shows you how to quickly create "click-to-replace" text in any document.

People use Word templates to store boilerplate text for letters and contracts. However, they often
create novel approaches to mark the replaceable text in the template or document, as shown in
Figure 8-1.

Figure 8-1. A document with text to be filled in

To remove all the brackets and keep the correct spacing in the sample agreement above requires
some serious cursor gymnastics. It would be better if the person filling out the agreement could just
click and type at each of the places that needed new text. You can do that with a MACROBUTTON field

that runs a nonexistent macro.

Wherever you want to note an area in the text that should be filled in, do the following:

Press Ctrl-F9 to insert an empty pair of field braces.1.

In between the field braces, type the following:

MACROBUTTON FakeMacroName

Text to Display

You can replace Text to Display with whatever text should appear on the page.

2.

Press F9 to update the field.3.

To create field braces, you must press Ctrl-F9 or select Insert Field.

http://lib.ommolketab.ir

Lather, rinse, and repeat for other parts of your document, which will now look more like the one
shown in Figure 8-2. (Make sure you select Tools Options, click the View tab, and turn on field
shading.)

Figure 8-2. The same document, reworked with replaceable fields

Since there is no macro called FakeMacroName, when you click the field, the entire field is selected, as

shown in Figure 8-2. Just start typing to replace the field with your text.

If the text used in the field spans more than one line, Word will complain, as shown in Figure 8-3.
You'll need to shorten the text in order for the field to work properly.

Figure 8-3. Word complains when the display text in a MACROBUTTON
field is too long

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 71 Hack DATE Fields

Perform advanced date calculations with this grab bag of field hacks .

Dates are an important part of many Word documents, especially leases and contracts. When these
dates involve calculations (such as "What date is 6 months from today?" or "How old is someone born
on September 12, 1978?"), you can let Word do the grunt work for you.

When following the examples in this hack, press Ctrl-F9 or select Insert Field for each set of braces
in the field (most of the fields in this hack use several nested fields), taking care to put them in the
correct order-some are nested, and some are adjacent-and then fill in the field codes as shown. In
some cases, you'll need to format parts of the field code, which will be described in the text. Select the
entire field and press F9 to display its results. Line breaks, indicated with the "" character, are included
to aid in readability, but they are not required for the fields to work properly.

8.3.1 Display Long Forms of Dates

To include the day of week with today's date, use the following field:

{DATE \@ "dddd 'the {DATE \@ d *Ordinal} of' MMMM, yyyy"}

The field displays today's date in the form below:

Monday the 5th of July, 2004

Word fields ordinarily can't display date ordinals with superscripting. The following example shows you
how to overcome this limitation. Select the characters shown in bold, choose Format Font, and
check the Superscript box:

{DATE \@ "dddd 'the' d'{IF{=(mod({DATE \@ d},10)<4)*

(mod({DATE \@ d},10)<>0)*({DATE \@ d}<>11)*

({DATE \@ d}<>12)*({DATE \@ d}<>13)}= 1

http://lib.ommolketab.ir

{=mod({DATE \@ d},10)-2 \# rd;st;nd} th} of' MMMM, yyyy"}

The field displays the same result shown above, but with the ordinal superscripted:

Monday the 5th of July, 2004

8.3.2 Determine a Date's Place in the Year

The following field shows you what number day of the year today's date is. Again, you should
superscript the characters shown in bold.

{QUOTE

"Today's date ({DATE \@ "MMMM d yyyy"}) falls on the "

{SET yd{={DATE \@ d}+INT(({DATE \@ M}-0.986)*30.575)-

IF({DATE \@ M}>2,2-(MOD({DATE \@ yy},4)=0)-

(MOD({DATE \@ yyyy},400)=0)+(MOD({DATE \@ yy},100)=0),0)}}

{=yd \# 0}

{IF{=(mod(yd,10)<4)*(mod(yd,10)<>0)*(mod(yd,100)<>11)*(mod(yd,100)<>12)*

(mod(yd,100)<>13)}= 1 {=mod(yd,10)-2 \# rd;st;nd} th}" day of the year."}

The field displays today's date in the form below:

Today's date (July 24 2004) falls on the 206 th day of the year.

8.3.3 Automatically Insert a Past or Future Date

http://lib.ommolketab.ir

The following fields calculate any past or future date from today's date, based on the Gregorian
calendar. Setting the Delay parameter in the fields allows for the required date to be many days,
months, and/or years ahead or behind (to achieve the latter, express the Delay parameter as a

negative number).

You can change the DATE parameters in the fields to CREATEDATE , SAVEDATE , or PRINTDATE to modify

the date from which you calculate, if needed.

If you change the DATE parameter to SAVEDATE or PRINTDATE , you must save or

print the document to get a valid output.

8.3.3.1 Calculate a month using n months delay

The following will display the name of the month 10 months from today's date:

{QUOTE{Set Delay 10}{=MOD({DATE \@ M}+Delay-1,12)+1}/00 \@ MMMM}

8.3.3.2 Calculate a month and year using n months delay

The following displays the month and year 10 months from today's date:

{QUOTE{SET Delay 10}

{SET m"{=MOD({DATE \@ MM}+Delay-1,12)+1}/0"}

{SET y{={DATE \@ yyyy}+INT((Delay+{DATE \@ M}-1)/12)}}

{m \@ MMMM}160{y}}

The above field uses an undocumented switch, "{ FieldResult }/0 ", to store the result of the month

calculation in a form that Word recognizes as a month. Note also the use of ASCII character 160 to
create a nonbreaking space.

8.3.3.3 Calculate a month and year using n years delay

The following field displays the month and year one year from today:

{QUOTE{SET Delay 1}{DATE \@ MMMM}160{={DATE \@ yyyy}+Delay}}

http://lib.ommolketab.ir

8.3.3.4 Calculate a day, date, month, and year using n years delay

The following field displays the full date exactly one year from today, and is considerably more
complicated than the previous example, because it accounts for leap years:

{QUOTE

{SET Delay 1}

{SET yy{={DATE \@ yyyy}+Delay}}

{SET dd{={DATE \@ d}-({DATE \@ d}>28)*({DATE \@ M}=2)*

((MOD(yy,4)>0)+(MOD(yy,400)>0)-(MOD(yy,100)>0))}}

{=dd*10^6+{DATE \@ M}*10^4+yy \# "00'-'00'-'0000"} \@ "dddd, MMMM d yyyy"}

8.3.3.5 Calculate a day, date, month, and year using n months delay

This field displays the full date exactly 10 months from today, taking into account leap years and
differences in the length of months:

{QUOTE

{SET Delay 10}

{SET mm{=MOD({DATE \@ M}+Delay-1,12)+1}}

{SET yy{={DATE \@ yyyy}+INT((Delay+{DATE \@ M}-1)/12)}}

{SET dd{=IF(({DATE \@ d}>28)*(mm=2)*((MOD(yy,4)=0)+

http://lib.ommolketab.ir

(MOD(yy,400)=0)-(MOD(yy,100)=0))=1,28,IF((mm=4)+(mm=6)+(mm=9)+(mm=11)+

({DATE \@ d}>30)=1,30,{DATE \@ d}))}}

{=mm*10^6+dd*10^4+yy \# "00'-'00'-'0000"} \@ "dddd, MMMM d yyyy"}

8.3.3.6 Calculate a day, date, month, and year using n days delay

The following field displays the full date exactly 301 days from today. This field, and the next one, work
by converting the date to a Julian day number, adding or subtracting the delay, then converting the
new Julian day number back to a date.

{QUOTE

{SET Delay 301}

{SET a{=INT((14-{DATE \@ M})/12)}}

{SET b{={DATE \@ yyyy}+4800-a}}

{SET c{={DATE \@ M}+12*a-3}}

{SET d{DATE \@ d}}

{SET jd{=d+INT((153*c+2)/5)+365*b+INT(b/4)-

INT(b/100)+INT(b/400)-32045+Delay}}

http://lib.ommolketab.ir

{SET e{=INT((4*(jd+32044)+3)/146097)}}

{SET f{=jd+32044-INT(146097*e/4)}}

{SET g{=INT((4*f+3)/1461)}}

{SET h{=f-INT(1461*g/4)}}

{SET i{=INT((5*h+2)/153)}}

{SET dd{=h-INT((153*i+2)/5)+1}}

{SET mm{=i+3-12*INT(i/10)}}

{SET yy{=100*e+g-4800+INT(i/10)}}

{=mm*10^6+dd*10^4+yy \# "00'-'00'-'0000"} \@ "dddd, MMMM d yyyy"}

8.3.3.7 Calculate a day, date, month, and year using n weeks delay

The following field displays the full date exactly 43 weeks from today:

{QUOTE

{SET Delay 43}

{SET a{=INT((14-{DATE \@ M})/12)}}

http://lib.ommolketab.ir

{SET b{={DATE \@ yyyy}+4800-a}}

{SET c{={DATE \@ M}+12*a-3}}

{SET d{DATE \@ d}}

{SET jd{=d+INT((153*c+2)/5)+365*b+INT(b/4)-

INT(b/100)+INT(b/400)-32045+INT(Delay*7)}}

{SET e{=INT((4*(jd+32044)+3)/146097)}}

{SET f{=jd+32044-INT(146097*e/4)}}

{SET g{=INT((4*f+3)/1461)}}

{SET h{=f-INT(1461*g/4)}}

{SET i{=INT((5*h+2)/153)}}

{SET dd{=h-INT((153*i+2)/5)+1}}

{SET mm{=i+3-12*INT(i/10)}}

{SET yy{=100*e+g-4800+INT(i/10)}}

http://lib.ommolketab.ir

{=mm*10^6+dd*10^4+yy \# "00'-'00'-'0000"} \@ "dddd, MMMM d yyyy"}

8.3.3.8 Internationalizing dates

To use the above four examples with a "Day, Month, Year" format instead of the "Month Day, Year"
format shown, you can change the date switches to suit your needs. For example, change each last
line of the field codes in the previous four examples from:

{QUOTE{=mm*10^6+dd*10^4+yy \# "00'-'00'-'0000"} \@ "MMMM d yyyy"}."}

to this (changes are indicated in bold):

{QUOTE{=dd*10^6+mm*10^4+yy \# "00'-'00'-'0000"} \@ "d MMMM yyyy"}."}

8.3.4 Express a Date in Fiscal-Year Terms

The following field expresses today's date in fiscal-year terms, showing the year, month number, and
week number within the month, assuming a July 1 to June 30 fiscal year:

{QUOTE

"Fiscal Year {date \@ yy}/{={DATE \@ yy}+1 \# 00}, Month: {=MOD(

{DATE \@ M}+5,12)+1}, Week: {=INT(({date \@ dd}-1)/7)+1}"}}

The field displays results like the following:

Fiscal Year 04/05, Month: 1, Week: 4

8.3.5 Calculate a Person's Age

The following field uses an ASK field for date of birth to perform an age calculation:

{QUOTE

{ASK BirthDate "What is the Birthdate?"}

http://lib.ommolketab.ir

{SET by {BirthDate \@ yyyy}}

{SET bm {BirthDate \@ M}}

{SET bd {BirthDate \@ d}}

{SET yy {DATE \@ yyyy}}

{SET mm {DATE \@ M}}

{SET dd {DATE \@ d}}

{SET md{=IF((mm=2),28+(mm=2)*((MOD(yy,4)=0)+(MOD

(yy,400)=0)-(MOD(yy,100)=0)),31-((mm=4)+(mm=6)+(mm=9)+(mm=11)))}}

{Set Years{=yy-by-(mm<bm)-(mm=bm)*(dd<bd)}}

{Set Months{=MOD(12+mm-bm-(dd<bd),12)}}

{Set Days{=MOD(md+dd-bd,md) \# 0}}

"If your Date of Birth was {

Birthdate \@ "MMMM d yyyy"}, then your age is {

http://lib.ommolketab.ir

Years} Year{IF{Years}= 1 "" s}, {Months} Month{

IF{Months}= 1 "" s} and {Days} Day{IF{Days}= 1 "" s}."}

The field displays results like the following:

If your Date of Birth was September 12 1978, then your age is 25 Years, 10 Months and

12 Days.

8.3.6 Use Print and Save Information in a Field

The following field reports whether or not a document has been saved since it was last printed:

{IF{PRINTDATE \@ yyyyMMddHHmm}>{SAVEDATE \@ yyyyMMddHHmm}

" Not Saved Since Last Print" "Not Printed Since Last Save"}

If you haven't saved your document since you last printed it, the field displays the following:

Not Saved Since Last Print

- Paul Edstein

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 72 Perform Calculations with Formula Fields

You can do a surprising amount of number crunching without resorting to an Excel
spreadsheet. This hack introduces you to Word's formula fields.

Formula fields let you calculate and compare numbers, but not text. This hack shows you one way
around this limitation.

The syntax for a formula field follows:

{=Formula [Bookmark] [\# Numeric Picture]}

For example, the following set of fields asks you to enter a number, assigns the number to a
bookmark named MyNum, and then uses a formula field to calculate the square of the number:

{ QUOTE { ASK "Enter a Number" MyNum } { =MyNum^2 } }

To get the square of a different number, select the field and press F9.

To create this field, or any of the fields shown in this hack, press Ctrl-F9 or select Insert Field for
each set of braces in the field (most of the fields in this hack use several nested fields), and then fill
in the field codes as shown. Line breaks are included to aid in readability, but they are not required
for the fields to work properly.

The Numeric Picture includes formatting instructions that tell Word how to display the results of a

calculation. These are discussed in [Hack #73] .

A formula can use any combination of numbers, bookmarked numbers, or fields that output numbers,
along with any of Word's numeric operators and functions (shown in the following sections).

8.4.1 Formula Field Arithmetic Operators

To perform basic arithmetic operations such as addition, subtraction, or multiplication; combine
numbers; and produce numeric results, you can use any combination of the arithmetic operators
listed in Table 8-1 with numeric values.

Table 8-1. Arithmetic operators for formula fields

http://lib.ommolketab.ir

Operation Operator

Addition
+

Subtraction
-

Multiplication
*

Division
/

Percentage
%

Powers and roots
^

For example, to add one value to another, use a field like the following:

{=2+2}

You can also combine operations. For example, to calculate a square root, use a field like the
following:

{=3^(1/2)}

8.4.2 Formula Field Comparison Operators

You can compare two numeric values with any of the operators listed in Table 8-2. The result of such
a comparison is a logical value, either TRUE (1) or FALSE (0)

Table 8-2. Comparison operators for formula fields

Operation Operator

Equal to
=

Not equal to
<>

Less than
<

http://lib.ommolketab.ir

Operation Operator

Less than or equal to
<=

Greater than
>

Greater than or equal to
>=

For example, to test whether two values are equal, use a field coded like the following:

{=3=2+1} or {=NOT(3<>2+1)}

8.4.3 Formula Field Functions

A formula field can use values returned by any of the functions listed in Table 8-3.

Table 8-3. Functions for formula fields

Function Returns

ABS(x) The positive value of a number or formula, regardless of its actual positive or
negative value. For example, {=ABS(-5)} and {=ABS(5)} both return 5.

AVERAGE()
The average of a list of values; e .g., {=AVERAGE(1,2,3)} returns 2.

COUNT()
The number of items in a list. For example, {=COUNT(1,2,3)} returns 3.

DEFINED(x) The value 1 (true) if the expression x is valid, or the value 0 (false) if the expression
can't be computed; e.g., {=DEFINED(1/0)} returns 0.

FALSE
The value 0. For example, {=FALSE} returns 0.

INT(x) The numbers to the left of the decimal place in the value or formula x. For example,
{=INT(5.15)} returns 5.

MIN()
The smallest value in a list. For example, {=MIN(1,2,3)} returns 1.

MAX()
The largest value in a list. For example, {=MAX(1,2,3)} returns 3.

Less than or equal to
<=

Greater than
>

Greater than or equal to
>=

For example, to test whether two values are equal, use a field coded like the following:

{=3=2+1} or {=NOT(3<>2+1)}

8.4.3 Formula Field Functions

A formula field can use values returned by any of the functions listed in Table 8-3.

Table 8-3. Functions for formula fields

Function Returns

ABS(x) The positive value of a number or formula, regardless of its actual positive or
negative value. For example, {=ABS(-5)} and {=ABS(5)} both return 5.

AVERAGE()
The average of a list of values; e .g., {=AVERAGE(1,2,3)} returns 2.

COUNT()
The number of items in a list. For example, {=COUNT(1,2,3)} returns 3.

DEFINED(x) The value 1 (true) if the expression x is valid, or the value 0 (false) if the expression
can't be computed; e.g., {=DEFINED(1/0)} returns 0.

FALSE
The value 0. For example, {=FALSE} returns 0.

INT(x) The numbers to the left of the decimal place in the value or formula x. For example,
{=INT(5.15)} returns 5.

MIN()
The smallest value in a list. For example, {=MIN(1,2,3)} returns 1.

http://lib.ommolketab.ir

Function Returns

MAX()
The largest value in a list. For example, {=MAX(1,2,3)} returns 3.

MOD(x,y) The remainder that results from dividing the value x by the value y a whole number
of times. For example, {=MOD(5.15,2)} returns 1.15.

PRODUCT() The result of multiplying a list of values. For example, {=PRODUCT(2,4,6,8)} returns
384.

ROUND(x,y)
The value of x rounded to the specified number of decimal places x,y can be either a
number or the result of a formula. For example, {=ROUND(123.456,2)} returns
123.46, {=ROUND(123.456,1)} returns 123.5, {=ROUND(123.456,0)} returns 123,
and {=ROUND(123.456,-1)} returns 120.

SIGN(x) The value 1 if x is a positive value, or the value -1 if x is a negative value. For
example, {=SIGN(-123)} returns -1, and {=SIGN(123)} returns 1.

SUM()
The sum of a list of values or formulas. For example, {=SUM(1,2,3)} returns 6.

TRUE
The value 1. For example, {=TRUE} returns 1.

Functions shown with empty parentheses can accept any number of arguments
separated by commas (,) or semicolons (;). Arguments can be numbers, other

formulas, or bookmark names.

8.4.4 Formula Field Logical Functions

The logical functions that formula fields can use are listed in Table 8-4.

Table 8-4. Logical functions for formula fields

Function Returns

AND(x,y)
The value 1 (true) if the logical expressions x and y are both true, and the value 0
(zero, false) if either expression is false. For example, {=AND(5=2+3,3=5-2)} returns
1.

OR(x,y)
The value 1 (true) if either or both of the logical expressions x and y are true, and the
value 0 (zero, false) if both expressions are false. For example, {=OR(5=2+3,3=5-2)}
returns 1.

MAX()
The largest value in a list. For example, {=MAX(1,2,3)} returns 3.

MOD(x,y) The remainder that results from dividing the value x by the value y a whole number
of times. For example, {=MOD(5.15,2)} returns 1.15.

PRODUCT() The result of multiplying a list of values. For example, {=PRODUCT(2,4,6,8)} returns
384.

ROUND(x,y)
The value of x rounded to the specified number of decimal places x,y can be either a
number or the result of a formula. For example, {=ROUND(123.456,2)} returns
123.46, {=ROUND(123.456,1)} returns 123.5, {=ROUND(123.456,0)} returns 123,
and {=ROUND(123.456,-1)} returns 120.

SIGN(x) The value 1 if x is a positive value, or the value -1 if x is a negative value. For
example, {=SIGN(-123)} returns -1, and {=SIGN(123)} returns 1.

SUM()
The sum of a list of values or formulas. For example, {=SUM(1,2,3)} returns 6.

TRUE
The value 1. For example, {=TRUE} returns 1.

Functions shown with empty parentheses can accept any number of arguments
separated by commas (,) or semicolons (;). Arguments can be numbers, other

formulas, or bookmark names.

8.4.4 Formula Field Logical Functions

The logical functions that formula fields can use are listed in Table 8-4.

Table 8-4. Logical functions for formula fields

Function Returns

AND(x,y)
The value 1 (true) if the logical expressions x and y are both true, and the value 0
(zero, false) if either expression is false. For example, {=AND(5=2+3,3=5-2)} returns
1.

http://lib.ommolketab.ir

Function Returns

OR(x,y)
The value 1 (true) if either or both of the logical expressions x and y are true, and the
value 0 (zero, false) if both expressions are false. For example, {=OR(5=2+3,3=5-2)}
returns 1.

NOT(x)
Reverses the logic of its argument. Returns the value 0 (false) if the logical expression

x is true, or the value 1 (true) otherwise. For example, to test whether two values are
equal, you could use {=NOT(3<>2+1)}, which is equivalent to {=(3=2+1)} and returns
1.

IF(x,y,z)
Specifies a logical test to perform, where x is any value or expression that can be

evaluated to TRUE or FALSE, y is the value that is returned if x evaluates to TRUE, and

z is the value that is returned if x evaluates to FALSE. For example,
{IF(5=2+3,2*3,2/3)} returns 6 and {IF(5<>2+3,2*3,2/3)} returns 0.667.

8.4.4.1 AND and OR: Testing multiple logical numeric expressions

Word's AND and OR functions can test only two logical numeric expressions at a time, and they can't

directly test text strings at all. For testing more than two logical numeric expressions, you can nest
multiple AND or OR functions, but there is a better way:

The logical function {=AND(AND(5=2+3,3=5-2),2=5-3)}, which returns 1, can just as readily be
expressed as {=(5=2+3)*(3=5-2)*(2=5-3)}, which also returns 1 and avoids the AND function's

limitations.

The logical function {=OR(OR(5=2+3,3=5-2),2=5-3)}, which returns 1, can just as readily be
expressed as {=((5=2+3)+(3=5-2)+(2=5-3)>0)}, which also returns 1 and likewise avoids the
OR function's limitations. Alternatively, to test whether only one of a range of possibilities is true
(an "exclusive OR"), you can use {=((5=2+3)+(3=5-2)+(2=5-3)=1)}, replacing the final 1 with
the required number of true results. The formula returns 0 here, because more than one test

condition is true.

8.4.4.2 Testing or returning text strings with logical functions in bookmarks

Though you can't use formula fields directly to compare text values, you can fake it with IF fields. For

example, the following set of fields asks you to enter your name. If the name you enter is Bob, the
field displays "Hello, Bob." If the name you enter isn't Bob, the field displays "What have you done
with Bob?"

{ QUOTE { ASK Name "What's your name?"}

{IF{ Name }= "Bob" "Hello, Bob"

"What have you done with Bob?"}}

To enter a different name, just select the field and press F9.

OR(x,y)
The value 1 (true) if either or both of the logical expressions x and y are true, and the
value 0 (zero, false) if both expressions are false. For example, {=OR(5=2+3,3=5-2)}
returns 1.

NOT(x)
Reverses the logic of its argument. Returns the value 0 (false) if the logical expression

x is true, or the value 1 (true) otherwise. For example, to test whether two values are
equal, you could use {=NOT(3<>2+1)}, which is equivalent to {=(3=2+1)} and returns
1.

IF(x,y,z)
Specifies a logical test to perform, where x is any value or expression that can be

evaluated to TRUE or FALSE, y is the value that is returned if x evaluates to TRUE, and

z is the value that is returned if x evaluates to FALSE. For example,
{IF(5=2+3,2*3,2/3)} returns 6 and {IF(5<>2+3,2*3,2/3)} returns 0.667.

8.4.4.1 AND and OR: Testing multiple logical numeric expressions

Word's AND and OR functions can test only two logical numeric expressions at a time, and they can't

directly test text strings at all. For testing more than two logical numeric expressions, you can nest
multiple AND or OR functions, but there is a better way:

The logical function {=AND(AND(5=2+3,3=5-2),2=5-3)}, which returns 1, can just as readily be
expressed as {=(5=2+3)*(3=5-2)*(2=5-3)}, which also returns 1 and avoids the AND function's

limitations.

The logical function {=OR(OR(5=2+3,3=5-2),2=5-3)}, which returns 1, can just as readily be
expressed as {=((5=2+3)+(3=5-2)+(2=5-3)>0)}, which also returns 1 and likewise avoids the
OR function's limitations. Alternatively, to test whether only one of a range of possibilities is true
(an "exclusive OR"), you can use {=((5=2+3)+(3=5-2)+(2=5-3)=1)}, replacing the final 1 with
the required number of true results. The formula returns 0 here, because more than one test

condition is true.

8.4.4.2 Testing or returning text strings with logical functions in bookmarks

Though you can't use formula fields directly to compare text values, you can fake it with IF fields. For

example, the following set of fields asks you to enter your name. If the name you enter is Bob, the
field displays "Hello, Bob." If the name you enter isn't Bob, the field displays "What have you done
with Bob?"

{ QUOTE { ASK Name "What's your name?"}

{IF{ Name }= "Bob" "Hello, Bob"

"What have you done with Bob?"}}

To enter a different name, just select the field and press F9.

http://lib.ommolketab.ir

8.4.5 Referencing Data in a Table

As in Excel, in Word you can reference table cells for use in a formula.

8.4.5.1 Referencing cells containing numbers

When you use cell references in a table, you reference table cells using an alphanumeric column/row
format (A1, A2, B1, B2, and so on).

For example, select Table Insert Table, choose two rows and two columns, click the OK
button, and enter the values shown in Table 8-5. Remember, to create the field braces, press Ctrl-F9
(or select Insert Field) and then enter the text.

Table 8-5. Put the following table in a document to see cell referencing in
action

12 23

The value of the cell above is
{=A1}.

The sum of the values in the first two cells in the first row is
{=A1+B1}.

When you select the fields and press F9, the correct results will display in the bottom row. If you
change the values in the first row, just update the fields again (select the fields and press F9) to see
the new results.

Cell references in Word, unlike those in Excel, are always absolute and are not
shown with dollar signs. For example, referring to a cell as A1 in Word is the
same as referring to a cell as A1 in Excel.

8.4.5.2 Reference operators

You can combine ranges of cells in a table or across tables for calculations with either one or both of
the reference operators listed in Table 8-6.

Table 8-6. Table reference operators

http://lib.ommolketab.ir

Operator Description Example

: (colon)
Range operator. Returns all cells between and including
the two reference cells.

=SUM(A1:A5)

,
(comma)

Union operator. Combines multiple discontinuous cell
ranges in one reference.

=SUM(A1:A5,A10:A15,A20)

8.4.5.3 Referencing an entire row or column

You can also reference an entire row or column in a calculation:

Use a row or column range that includes only the row letter or column number. For example,
use 1:1 to reference the first row in the table or A:A to reference the first column in the table.

This form of referencing includes all the cells in the row or column, even if you add or delete
rows or columns later.

If you use this form of referencing within the row or column being referenced,
your formula will include a circular reference to itself in the evaluation, which
will cause arithmetic errors that will increase every time the field updates.

Use a range that identifies specific cells or ranges of cells. For example, for a four-row table,
D1:D4 refers to the cells on rows one to four in column D. This form of referencing restricts the

calculation to include only specific cells. If you add or delete cells later, you may need to edit the
calculation.

8.4.5.4 Referencing table cells from outside the table

Only the following functions can accept references to table cells as arguments from outside that
table:

AVERAGE()

COUNT()

MAX()

MIN()

PRODUCT()

SUM()

Before you can reference a cell value from outside a table, you need to create a bookmark in the
table to identify it. With your cursor in the table, select Insert Bookmark and give the table a

http://lib.ommolketab.ir

name, such as Table1. You can now refer to the contents of this table in calculations elsewhere in
your document.

To refer to the contents of a cell from outside a table, you always need to use one of the six functions
shown above, even to get a single value. For example, if you put a bookmark named Table1 in the
table you created earlier in this hack, you can reference the value in the first cell with the following
field (remember, use Ctrl-F9 or Insert Field to insert the field braces):

{=SUM {Table1 A1}}

This technique can be useful when you need to refer to one or more table values in the document's
text, do math with them, or even refer to them in another table.

If you use a number as the last character in a bookmark's name, make sure
the name includes at least three text characters before the number. Otherwise,
Word might interpret the bookmark name as a cell reference.

8.4.5.5 Referencing row and column totals from outside a table

A common use for referencing cells outside their tables is to report totals from specific columns in a
table, where the last row in the table contains the totals of each column. If the number of rows might
change, but the last row always contains the total, you can reference that total without needing to
know the row number. Since the last row contains the total of all previous rows, if you sum the entire
contents of the column and divide by two, you'll get the desired sum. For example, if you had a table
bookmarked as Table1, you could use the following field to reference the total of the fourth (D)
column in the table:

{=SUM{Table1 D:D)/2}

- Paul Edstein

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 73 Format Numeric Field Results

How you display the result of a calculation can be almost as important as the result itself.
This hack shows you how to get field results into the format you need.

If you use fields to calculate numbers, such as the sum of the values in a table column [Hack #72],
you'll usually want some control over how those results are formatted. For example, you might want
the number rounded to two decimal points with a currency symbol. To control how numbers appear
in fields, you use numeric picture switches.

A numeric picture switch is indicated in a field's code with \# and can include a variety of instructions

to Word on how to format the numeric results of a particular field.

For example, insert the following field in a document (to create field braces, you must press Ctrl-F9
or select Insert Field):

{=2+2 \# 00.0000}

Select the field and press F9. The numeric picture switch tells Word to display the results of this sum
in the form 04.0000.

If you use the switch \# 0, Word rounds the result to the nearest integer. The following field would
display the value 3 in a document:

{=3.1415 \# 0}

If you omit the numeric picture switch, Word makes its own decisions as to whether to display a
calculation's result as an integer or round the number to one or two decimal places.

You can also include a currency symbol in a numeric picture switch. The following field displays
$82.37 in your document:

{=50 + 32.37 \# $00.00}

8.5.1 Compound Picture Switches

Numeric picture switches actually take three arguments, separated by semicolons: positive value
format, negative value format, and zero value format. If you omit these arguments, as in the
previous examples, the switch uses the positive value format to format the results. If you want to
format negative values differently, you can add a second parameter to the switch. For example, the

http://lib.ommolketab.ir

switch \# #;(#) used in a field would tell

If no value is given for one of the three arguments (positive, negative, and zero), Word won't display
those results. For example, the switch \# #;; displays the results only if they're greater than zero.

You could also use a switch like \# #;-#;Ø to display Ø for zero values (hold down the Alt key and

type 0216 on the number pad to get the Ø character). You can also display different text outputs for
positive and negative values. For example, the following switch:

\# Profit\ $,0.00;Loss\ $,0.00;Break\ Even

prefaces positive values with the word Profit and negative values with the word Loss. If the value is
zero, it displays only the term Break Even, with no number. Notice that a backslash is placed in front

of a space to tell Word to display the space in the field results. A significant benefit of adding text
and/or suppressing zeros this way (instead of using IF tests to output nulls or spaces) is that the

field will continue to evaluate as a number in other formulas.

In addition, the field results reflect any font formatting applied to the numeric picture switch. For
example, in the above switch, you could color the Profit portion of the switch blue, the Loss portion
red, and the Break Even portion green.

- Paul Edstein

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 74 Use Fields for Heavy-Duty Calculations

By combining several types of Word fields, you can perform some surprisingly complex
calculations.

The built-in formula fields [Hack #72] give you most of the math power needed for typical Word
work. But what if you need something more sophisticated? With some old-fashioned algebra, you can
use those formula fields as building blocks for more complicated calculations. This hack shows you
two such field combinations for calculating logarithms and a few trigonometry functions.

To create field braces, you must press Ctrl-F9 or select Insert Field.

The line breaks shown in the field codes for this hack have been added for readability. While not
necessary, they make these mammoth fields much easier to read and modify.

8.6.1 Logarithms

When you update the following field, you're prompted to enter a number. The field then calculates
the log of the number you entered. Because Word does not include a built-in log function, this hack
uses a Taylor Series Approximation to calculate the results.

{QUOTE

{SET l2l 0.301029995663981}

{SET l3l 0.477121254719662}

{SET l5l 0.698970004336019}

{SET l7l 0.845098040014257}

http://lib.ommolketab.ir

{SET l11l 0.0413926851582251}

{SET l13l 0.113943352306837}

{SET l17l 0.230448921378274}

{SET l19l 0.278753600952829}

{ASK z "What positive number do you want the log of?"}

{SET a{=abs(z)}}

{SET b{=9-(a<10^9)-(a<10^8)-(a<10^7)-(a<10^6)-

(a<10^5)-(a<10^4)-(a<10^3)-(a<10^2)-(a<10^1)-

(a<10^0)-(a<10^-1)-(a<10^-2)-(a<10^-3)-(a<10^-4)-

(a<10^-5)-(a<10^-6)-(a<10^-7)-(a<10^-8)}}

{SET c{=int(a/10^b)+mod(a,10^b)/10^b}}

{SET d{=(c<1.05)*0+(c>=1.05)*(c<1.2)*l11l+(c>=1.2)*(c<1.5)*l13l+

(c>=1.5)*(c<1.8)*l17l+(c>=1.8)*(c<1.95)*l19l+(c>=1.95)*(c<2.5)

http://lib.ommolketab.ir

l2l+(c>=2.5)(c<3.5)*l3l+(c>=3.5)*(c<4.5)*l2l*2+(c>=4.5)

*(c<5.5)*l50l+(c>=5.5)*(c<6.5)*(l2l+l31)+(c>=6.5)*(c<7.5)

l7l+(c>=7.5)(c<8.5)*l2l*3+(c>=8.5)*l3l*2}}

{SET e{=a-10^(b+d)}}

{SET f{=b+d+0.434294481903251*((e/10^(b+d))

-(e/10^(b+d))^2/2+(e/10^(b+d))^3/3-(e/10^(b+d)

)^4/4+(e/10^(b+d))^5/5-(e/10^(b+d))^6/6+(e/10^(b+d)

)^7/7-(e/10^(b+d))^8/8+(e/10^(b+d))^9/9-(e/10^(b+d)

)^10/10)}}

"The logarithm of {a} is {IF{=10^b}= a "" "approximately "}{f}."}

As coded, the field gives results to 13 decimal places, which should be enough for most purposes. If
you need to calculate the logs of larger or smaller values, increase the values in parameter b (the

exponent) accordingly.

References to constants in tables or bookmarks (as in the SET fields used here

to define certain logarithmic values) need only be established once for the
whole document.

http://lib.ommolketab.ir

8.6.2 Trigonometry

Word's formula fields also lack trigonometric functions, such as sine, cosine, and tangent. Again, you
can use Taylor Series Approximations to generate quite accurate results (to 13 decimal places).
Here's how to create a table that will give you the sine, cosine, and tangent values for a given angle,
as shown in Figure 8-4.

Figure 8-4. Viewing the trig values calculated for an angle

First, create a new table in a Word document with four columns and two rows. Title the first column
Angle, the second Sine, the third Cosine, and the fourth Tangent. In the second row, enter the field
codes for each value, shown in the next four sections.

To create the "Ø" character, hold down the Alt key and type 0216 on the numeric keypad [Hack
#30] .

8.6.2.1 Angle

Enter the following field code in the second row of the first column:

{QUOTE{ASK Ø "What angle do you want the trig values for?"}{Ø}}

8.6.2.2 Sine

Enter the following field code in the second row of the second column:

{QUOTE

{SET x{=0.0174532925199433*(1+MOD(Ø-1,90))}}

{SET SinØ{

http://lib.ommolketab.ir

=x-x^3/6+x^5/120-x^7/5040+x^9/362880-x^11/39916800+x^13/6227020800}}

{=SinØ*(1-MOD(INT(Ø/180),2)*2) \# 0.000000}}

8.6.2.3 Cosine

Enter the following field code in the second row of the third column:

{QUOTE

{SET x{=0.0174532925199433*(1+MOD(Ø-1,90))}}

{SET CosØ{=1-x^2/2+x^4/24-x^6/720+x^8/40320-x^10/3628800+

x^12/479001600-x^14/87178291200}}

{=CosØ*(1-MOD(INT((Ø+90)/180),2)*2) \# 0.000000}}

8.6.2.4 Tangent

Enter the following field code in the second row of the fourth column:

{QUOTE

{SET x{=0.0174532925199433*(1+MOD(Ø-1,90))}}

{SET TanØ{=(x-x^3/6+x^5/120-x^7/5040+x^9/362880-

x^11/39916800+x^13/6227020800)/(1-x^2/2+x^4/24-x^6/720

+x^8/40320-x^10/3628800+x^12/479001600-x^14/87178291200)}}

http://lib.ommolketab.ir

{IF{=(1+MOD(Ø-1,90))=90}= 1 "Infinite" {=TanØ*((1+MOD(Ø-1,90))

<>90)*(1-MOD(INT(Ø/180),2)*2)*(1-MOD(INT((Ø+90)/180),2)

*2) \# 0.000000}}}

To enter a new angle, select the entire table and press F9.

- Paul Edstein

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 75 Include an Interactive Calendar in Your Forms

This hack shows you how to implement an easy-to-use calendar for choosing dates from
within a form or other document.

If you use Word's Forms feature, many of your forms probably include DATE fields. Word provides

some dates for you, such as today's date and the date a document was created. However, if you
want the form's user to fill in a date, you can prompt the user to select the date from an interactive
calendar, such as the one shown in Figure 8-5.

Figure 8-5. An interactive calendar placed in a form

The calendar used in Figure 8-5 is an ActiveX control included with Office. With some simple steps in

http://lib.ommolketab.ir

the Visual Basic Editor, along with a few lines of code, you can easily add this calendar to any form.
With your form template open, select Tools Macro Visual Basic Editor.

In the Project Explorer, select your template and choose Insert UserForm. Next, select View
Toolbox to make the Toolbox visible. Right-click the Toolbox and choose Additional Controls to display
the dialog shown in Figure 8-6. Scroll down and check the "Calendar Control 11.0" box (the version
number may be slightly different on your system).

Figure 8-6. Activating the Calendar control

Click the OK button to add the Calendar control to your Toolbox. Click it and draw a new calendar on
your blank UserForm, as shown in Figure 8-7. In the Properties window, change the UserForm's

caption to "Calendar."

Figure 8-7. Add the Calendar control to a UserForm in the Visual Basic
Editor

http://lib.ommolketab.ir

Next, select View Code and insert the following code:

Private Sub UserForm_Activate()

 Me.Calendar1.Value = Date

End Sub

Private Sub Calendar1_Click()

 Selection.Text = Calendar1.Value

End Sub

Now, in a code module in your template (if none exists, select Insert Module), add the following
code:

Sub ChooseDate()

 UserForm1.Show

End Sub

Then select File Close and Return to Microsoft Word.

Right-click the DATE field within the form in which you want the calendar to appear and choose
Properties to display the dialog shown in Figure 8-8. Select the ChooseDate macro to run when the

http://lib.ommolketab.ir

field is entered.

Figure 8-8. Select the macro to display the Calendar control

After choosing the date, close the calendar by clicking the Close button on its titlebar.

8.7.1 Hacking the Hack

Though it's ideally suited for fill-in forms, you may find the Calendar control useful in other
documents too. To insert the Calendar control into any document, use a MACROBUTTON field, as shown
in Figure 8-9. These fields assume you're using the same ChooseDate macro described above for

activating the Calendar control. The field code is shown in the first field, and the field result is shown
in the second field.

Figure 8-9. The first field shows the field code; the second shows the
field result

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 76 Use Custom Shortcut Menus to Make Frequent
Selections

Use an AUTOTEXTLIST field to create a drop-down list you can right-click at any spot in a
document.

If you regularly choose from a list of words, such as the names of staff members, you can use an
AUTOTEXTLIST field to insert a drop-down list into your document, as shown in Figure 8-10.

Figure 8-10. Choosing among entries in an AUTOTEXTLIST field

The following example shows you how to create the list shown in Figure 8-10.

First, create a new, blank document. You'll need a new paragraph style for grouping your entries.
Select Format Styles and Formatting (or Format Style, depending on your version of Word),
click the New Style button, and make a new style named Staff, as shown in Figure 8-11. To make
this list available in all your documents, check the "Add to template" box.

Figure 8-11. Creating a new style for your list

http://lib.ommolketab.ir

Next, create three blank paragraphs in your document (you should also select Tools Options, click
the View tab, and check the "Paragraph marks" box). Select all three paragraphs and apply the Staff
style.

Now put one name in each paragraph. Select the first name (but not the paragraph mark just after
the name) and press Alt-F3 to create a new AutoText entry for the selected text, as shown in Figure
8-12. Click the OK button and repeat for the other names in the list.

Figure 8-12. Creating the list of entries

Now delete the names from the document. Select a blank paragraph and apply the Normal style.
Next, select Insert Field, select AutoTextList from the list of fields, and click the Field Codes

button. In the "Field codes" box in the Field dialog, enter the following text, as shown in Figure 8-13
(Word inserts the first word for you):

AUTOTEXTLIST "Right-click to choose" \s "Staff"

Figure 8-13. Creating an AUTOTEXTLIST field

http://lib.ommolketab.ir

Notice that "Staff" is the name of the custom paragraph style you created. Click the OK button to
insert the field in your document.

Select the field (but not any paragraph mark that might come right after it) and press Alt-F3 again to
create a new AutoText entry. Enter staff as the name of the entry and click the OK button. Now
whenever you want the list in a document, type the word staff, and Word will prompt you with an

offer to insert the AutoText entry. After inserting the AutoText entry, you can right-click the entry to
choose a name, as shown in Figure 8-10.

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 77 Number Documents Sequentially

Many businesses use numbers to track forms such as invoices and purchase orders. Those
numbers usually must go in order and can't repeat. This hack shows you how to use Word
to keep track of the numbering for you.

If you need to generate invoices for a business, you might save time using a premade invoice
template, such as the ones available from the Microsoft web site. One such template is pictured in
Figure 8-14.

Figure 8-14. You can download an assortment of premade templates
from Microsoft.com

The template uses MACROBUTTON fields [Hack #70] to mark the items you replace when filling out
the template-for example, the invoice number field, which you replace with the correct number
manually.

But how do you remember the last number you used? What if multiple users create invoices from the
same template? A quick change to the invoice field and an AutoMacro [Hack #60] will give you a
self-sequencing invoice template.

Create your own new template, either by downloading the Invoice template from Microsoft's web site
(you can get there quickly in Word 2003 from the New Document Task Pane [Hack #9]) or by

http://lib.ommolketab.ir

saving a new, blank document as a template.

Put your cursor at the spot in your template where you want the invoice number to appear. Select
Insert Field, choose DocVariable, and click the Field Codes button to display the dialog box shown
in Figure 8-15. Enter InvoiceNumber in the "Field codes" box, as shown in Figure 8-15.

Figure 8-15. Inserting a DOCVARIABLE field

The next section describes the macro code used to increment the number.

8.9.1 The Code

Select Tools Macro Visual Basic Editor and insert the following macro in your template:

Sub AutoNew()

Dim sINIFile As String

Dim sCurrentNumber As String

sINIFile = "C:\InvoiceTemplate.ini"

sCurrentNumber = System.PrivateProfileString(sINIFile, _

 "CurrentInvoice", "Number")

If Len(sCurrentNumber) = 0 Then

http://lib.ommolketab.ir

 sCurrentNumber = CStr(1)

End If

ActiveDocument.Variables("InvoiceNumber") = sCurrentNumber

ActiveDocument.Fields.Update

sCurrentNumber = CStr(CInt(sCurrentNumber) + 1)

System.PrivateProfileString(sINIFile, "CurrentInvoice", _

 "Number") = sCurrentNumber

End Sub

This macro uses a Config file [Hack #67] named C:\InvoiceTemplate.ini to track the invoice
number. If the file doesn't exist yet, the macro creates one and starts the numbering at 1. The macro
then puts the number from the file into a document variable named InvoiceNumber, which is

referenced by the field you inserted in the template. Document variables are similar to document
properties (which you view by choosing File Properties), but document variables can be created,
modified, and deleted only from a macro.

Save the changes and close your template. Now select File New to create a new document based
on the template. Each new document created from this template will have an invoice number one
higher than the previous document.

If you need to modify the numbering, open the InvoiceTemplate.ini file with any text editor, as shown
in Figure 8-16.

Figure 8-16. Editing the invoice number

If you want your numbering to start at 100, create a new document from the template to run the
AutoNew macro and generate the InvoiceTemplate.ini file. Next, open InvoiceTemplate.ini in a text
editor and change it to read Number=100. The next invoice based on the template will be numbered

100.

http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 78 Cross-Reference Among Documents

This hack shows you how to create cross-references among different Word documents.

When you create a cross-reference in Word, no option exists for referencing content in another
document. But sometimes you need to split your work into multiple files, like the chapters in a book.
(Word once actually encouraged this practice; the Word 2.0 manual says, "If your document is longer
than 20 pages, consider creating several smaller documents.") If you use fields and bookmarks, you
can create your own dynamic cross-references among separate Word documents.

A cross-reference has two parts: the reference and the target. A target is sort of like an Internet URL,
and a reference is like a link to that URL. Each target can have multiple references pointing to it, but
each reference can point to only one target. Just like URLs, each target must have a unique identifier.

8.10.1 Understanding Word's Native Cross-Referencing

When you make a cross-reference in Word (Insert References Cross-reference or Insert
Cross-reference, depending on your version of Word), it displays the dialog shown in Figure 8-17. You
can choose between several different reference types, but notice that there's no option for text in
another document.

Figure 8-17. Word's Cross-reference dialog

When you create a cross-reference this way, Word inserts a bookmark around the target text. Word
hides the bookmark it creates to mark your reference target, but you can see its name if you look in
the Insert Bookmark dialog and check the "Hidden bookmarks" box, as shown in Figure 8-18. If
your hidden bookmarks don't show up in the dialog, uncheck and then recheck the box.

http://lib.ommolketab.ir

Figure 8-18. You can view your cross-reference bookmarks in the
Bookmark dialog

Word assigns the bookmark's name, something like "_Ref46516798," to make the bookmark unique.
The leading underscore denotes a hidden bookmark.

While the bookmark's name may be unique, it's not very useful. If you need to determine which
bookmark belongs to which reference target, the list shown in Figure 8-19 offers little comfort.

Figure 8-19. Word's decidedly unhelpful bookmark-naming convention
for cross-references

Identifying specific bookmarks is an important part of troubleshooting cross-references, because
bookmarks behave very, very strangely when you edit the text they enclose. For example, if you add
text to the end of a heading that you cross-referenced and update the reference, the new text isn't
included in the reference. Figure 8-20 shows this phenomenon using a manually created bookmark
(so the ends are visible), but the same thing happens with Word's cross-reference bookmarks.

Figure 8-20. When you add text at the end of a bookmarked paragraph,

http://lib.ommolketab.ir

the bookmark doesn't expand

The solution? If you need to add text to a reference paragraph, you must put the new text before the
last character and then delete the last character. But wait, it gets worse. Inserting text at the
beginning of the paragraph works just fine, but if you hit Enter with your cursor at the beginning of
the paragraph, the bookmark's beginning gets left behind, as shown in Figure 8-21.

Figure 8-21. A wayward bookmark

Now that you've gotten a peek into the way Word cross-references work, you're ready to create your
own cross-references between two different documents.

8.10.2 Create Cross-References with INCLUDETEXT Fields

To reference text in a different document, you can use the same general method Word does: mark
the target with a unique bookmark and then reference the contents of the bookmark with a field.

When you use this technique, put all the related documents in the same folder
so they can be moved around together without breaking any references.

For example, say you have a book with six chapters named "Chapter One," "Chapter Two," and so
on. Chapter Two contains a section you want to reference in Chapter Three.

First, open the document containing the target (Chapter Two in this example) and go to the heading
you want to reference. Select the entire heading, except for the trailing paragraph mark. Select
Insert Bookmark and give the bookmark a descriptive name, as shown in Figure 8-22. Word will

http://lib.ommolketab.ir

warn you if you try to use any illegal characters, such as a space, in the name.

Figure 8-22. Choose a descriptive and unique name for your bookmark

Click the Add button to insert the bookmark. If you've chosen to show bookmarks (select Tools
Options and click the View tab), the bookmark's ends will appear as grey or black brackets,
depending on your version of Word. Don't worry; the bookmarks will not appear when you print the
document.

To avoid accidentally deleting or moving one end of a bookmark, you should
work with bookmarks visible. You can always use Print Preview to see how your
text will look without them.

Next, go to the document and find the location where you want the reference to appear. Press Ctrl-
F9 (or select Insert Field) to insert a blank set of field braces and type the following between
them:

INCLUDETEXT "Chapter Two.doc"

BookmarkName

Note that you enclose the filename in quotes, but not the bookmark name.

Select the field and press F9. The reference will now display the bookmarked text. With "Field
shading" set to Always (select Tools Options and click the View tab), you can easily spot your
cross-references, as shown in Figure 8-23.

Figure 8-23. A cross-reference to an external Word document

http://lib.ommolketab.ir

If Word displays a "Source File Not Found" error in your INCLUDETEXT field, go

to File Open, navigate to the folder containing the source document, and
press Cancel. Then select the field and press F9.

With an INCLUDETEXT field, you insert more than just the bookmark's contents. The bookmark itself

now appears in the reference document's list of bookmarks.

Any fields in the target text, such as a caption's SEQ field, also get mingled with

the reference document's fields, which can throw off caption numbering.

For more hacks about cross-referencing in Word, check out [Hack #43] and [Hack #44] .

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 79 Convert Field Codes to Text and Back Again

When experimenting with fields, or using example fields culled from the Internet, it's
often helpful to have an easy way to convert field codes to plain text, and vice versa.

As the other hacks in this chapter show, it can be difficult to represent field codes outside of Word
(such as in a printed book) because of those special field braces unique to Word. For example, what if
you want to post a particularly troublesome field to a newsgroup in the hopes of finding some help?
(For a list of web sites with Word-related information and discussion groups, see Where to Learn
More in the Preface.) While it's relatively simple to convert a field's result to plain text-just select the
field and press Ctrl-Shift-F9-converting the field code to text is a trickier proposition.

A field's result is the text it displays after performing its work, such as the
current page number or today's date. The field code is the special set of
instructions a field uses to get that result. For example, one of the simplest
field codes is simply DATE, which gets the current date. To see a field code in
action, press Ctrl-F9 to insert a pair of empty field braces in a document. Then
with your cursor between those braces, type the word DATE (you don't need to

use all caps, but it's how field codes are typically shown). Select the field you
just created and press F9 to update it, displaying today's date.

The macros in this hack use some heavy-duty VBA to quickly and accurately convert even a complex
set of nested fields to plain text or convert some plain text (with the location of those special field
braces indicated by regular braces) into fields.

8.11.1 Converting Field Codes into Plain Text

Conceptually, you need to replace each field with just its code, surrounded by a set of regular text
braces ({}). This is trickier than it sounds, because if a field has any other fields nested inside it, you

need to convert those to text first.

The code used in this hack to convert the fields to text is fairly simple, though it uses recursion-one
of VBA's more advanced features. Recursion means that a function can call itself, and it's a common
feature among programming languages (see the sidebar A Recursion Primer for more information).

A Recursion Primer

http://lib.ommolketab.ir

If you're not interested in how the guts of the macros in this hack work, or if you're
already familiar with recursion, feel free to skip this sidebar. However, if you've never
encountered recursion before or just aren't sure you understand it, read on.

Recursion lets you use very simple code to perform complicated tasks. This is
accomplished by breaking the task down into bite-sized pieces and then writing code that
tackles the task, one small bite at a time until it's all gone.

For example, say you need a macro to add all the digits from 1 to 4. At face value, it
takes just one line:

Sub SumDigits()

 MsgBox 1+2+3+4

End Sub

But how do you write a macro that can sum all the digits from 1 to 1000 as easily as 1 to
10?

Let's say you want your program to add all the digits from 1 to k, where k is any whole

number. Here's one possible algorithm for the problem:

If k is 1, then the answer is just k.1.

If k is greater than 1, the answer is k plus the sum of all the digits from 1 to k - 1.2.

So how do you calculate the sum of all the digits from 1 to k -1 in Step 2? Use your

macro of course! Sound like a bit of circular logic? Well, in a way it is, which is the whole
point of recursion. Here's that algorithm as a VBA procedure, followed by a macro to
demonstrate it. Put both in the template of your choice and step through the code as it
runs in Visual Basic Editor

Function SumDigits(k As Long) As Long

 If k = 1 Then

 SumDigits = k

 Else

 SumDigits = k + SumDigits(k - 1)

 End If

End Function

Sub SumDigitsDemo()

 Dim sInput As String

http://lib.ommolketab.ir

 sInput = InputBox("Add all digits from 1 to ?")

 If Len(sInput) = 0 Then Exit Sub

 MsgBox SumDigits(CLng(sInput))

End Sub

The following macro converts the field codes of any selected fields to plain text, and surrounds the
code for each field with standard brace characters, ({}). The code use the FieldCodeToText function

to recursively examine all the fields in a range (in this case the range of the current selection). Place
both macros in the template of your choice.

Sub ConvertSelectedFieldsToText()

Call FieldCodeToText(Selection.Range)

End Sub

Function FieldCodeToText(rngOrig As Range)

Dim rng As Range

Do

 If rngOrig.Fields.Count <= 1 Then

 ' Not more than one field in selection,

 ' so replace first field in selection

 ' with its code surrounded by braces

 rngOrig.Text = "{" & _

 rngOrig.Fields(1).Code.Text & "}"

 Else

 ' More than one field in selection,

 ' move to next field and check again,

 ' until there's only one field left

http://lib.ommolketab.ir

 Set rng = rngOrig.Duplicate

 rngOrig.Fields(2).Select

 Call FieldCodeToText(Selection.Range)

 rng.Select

 End If

Loop Until rngOrig.Fields.Count = 0

End Function

8.11.2 Converting Plain Text into Fields

For this conversion, the macro needs to do the reverse of what happened in the last section. This
time around, any set of standard text braces ({}) and the text between them, should be replaced

with a Word field. The field code is the text between the braces. The braces should be discarded.

The following macro converts any plain text surrounded with standard brace characters ({}) into
"live" Word fields. The code uses the TextToFieldCode function to ensure that all fields are created

in the correct order, which can be tricky business when there are several nested fields. Place both
macros in the template of your choice.

Sub ConvertSelectedTextToFields()

Call TextToFieldCodes(Selection.Range)

End Sub

Function TextToFieldCodes(rngOrig As Range)

Dim rng As Range

Dim fld As Field

Dim str As String

Do

 Set rng = rngOrig.Duplicate

 str = rng.Text

http://lib.ommolketab.ir

 ' If there are any braces remaining in the range, except

 ' for the first and last characters, then there's still

 ' some pseuodo-fields to process, so collapse range to

 ' next set of braces and check again

 If InStr(Mid(str, 2, Len(str) - 2), "}") <> 0 Or _

 InStr(Mid(str, 2, Len(str) - 2), "{") <> 0 Then

 ' Move the beginning of the range forward

 ' until it's at a left brace

 Do While InStr(Right(str, Len(str) - 1), "{") > 0

 rng.MoveStart unit:=wdCharacter, Count:=1

 rng.MoveStartUntil cset:="{"

 str = rng.Text

 Loop

 ' Move the end of the range backward until it's at a right brace

 Do While InStr(Left(str, Len(str) - 1), "}") > 0

 rng.MoveEnd unit:=wdCharacter, Count:=-1

 rng.MoveEndUntil cset:="}", Count:=-Len(str)

 str = rng.Text

 Loop

 ' If either end of the range isn't a brace character,

 ' there's been an error.

 If Left(str, 1) <> "{" Or Right(str, 1) <> "}" Then

http://lib.ommolketab.ir

 GoTo ERR_HANDLER

 End If

 ' Continue searching for brace characters in this range

 ' with a recursive call to this function

 Call TextToFieldCodes(rng)

 Else

 ' No brace characters were found between

 ' the first and last characters

 ' If either end of the range isn't a brace character,

 ' there's been an error.

 If Left(str, 1) <> "{" Or Right(str, 1) <> "}" Then

 GoTo ERR_HANDLER

 End If

 ' Delete the braces on the ends of the range

 rng.Characters(1).Delete

 rng.Characters(rng.Characters.Count).Delete

 ' Cut the range and paste it in as the code

 ' of a new empty field, which preserves any

 ' codes in the range, as well as formatting

 rng.Cut

 Set fld = rng.Fields.Add(Range:=rng, _

 Type:=wdFieldEmpty, _

http://lib.ommolketab.ir

 Text:="", _

 PreserveFormatting:=False)

 fld.Code.Paste

 End If

' As long as there are braces left in the original range,

' keep trying to turn them into fields

Loop While InStr(rngOrig.Text, "}") <> 0 Or _

 InStrRev(rngOrig.Text, "{") <> 0

Exit Function

ERR_HANDLER:

rng.Select

If Left(rng.Text, 1) <> "{" Then

 MsgBox "Missing an expected left brace ({)", vbCritical

ElseIf Right(rng.Text, 1) <> "}" Then

 MsgBox "Missing an expected right brace (})", vbCritical

Else

 MsgBox "An unknown error occurred", vbCritical

End If

End Function

8.11.3 Running the Hack

To see these macros in action, first make sure the template you've stored them in is open. Then, in a
blank document based on the template in which you've stored the macros, type Ctrl-F9 twice to
insert two sets of field braces, one nested inside the other (you'll see actual field braces, not standard
text braces):

{ { } }

http://lib.ommolketab.ir

Type the text QUOTE and DATE between the field braces as follows:

{ QUOTE { DATE } }

Next, select the fields and press F9. You should see today's date displayed. Select the fields again,
then right-click and select Toggle Field Codes. Now you'll see the field codes again. With both fields
selected, run the ConvertSelectedFieldsToText macro shown earlier, which replaces the fields with

their field codes as plain text, surrounded by standard text braces.

Now select the text from the first brace to the last and run the ConvertSelectedTextToFields

macro shown earlier, which replaces the plain text with actual fields, bringing you back to where you
started.

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Chapter 9. Advanced Word Hacks
Introduction: Hacks #80-89

Hack 80. Emulate Emacs with VBacs

Hack 81. Use Word as a Windows Backup Utility

Hack 82. Perform Power Text Searches with Regular Expressions

Hack 83. Show a Directory Structure as a Word Outline

Hack 84. Automate Word from Other Applications

Hack 85. Hack Word from Python

Hack 86. Hack Word from Perl

Hack 87. Hack Word from Ruby

Hack 88. Use Python from Word

Hack 89. Use Perl from Word

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Introduction: Hacks #80-89

Word is at its best as a word processor-creating, editing, and formatting documents. And with VBA,
much of what Word does so well can be automated. But that easy programmability also makes Word
capable of much more. The hacks in this chapter show several ways to go above and beyond vanilla
VBA, hacking Word into an Emacs clone, a Windows backup utility, and even a fully scriptable tool for
generating documents from HTML files.

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 80 Emulate Emacs with VBacs

You've already learned all those Emacs commands, so you might as well use them. This
set of freeware macros replicates many common Emacs keyboard shortcuts within Word.

Emacs, a text editor usually associated with the Unix operating system (though it's available on most
any platform), is in most ways the polar opposite of Word. No one just sits down with Emacs,
expecting to hunt around a few menus to find the commands they need. While you can learn simple
commands quickly, true Emacs mastery is a lifelong love affair for hackers around the world.

Emacs was born at a time when a window still meant something you opened to let in fresh air. You
had to use the keyboard to issue every command, and often they required complex key
combinations, such as Ctrl-X, Ctrl-S (the command to save the current file).

Though versions of Emacs have since been developed that include menus and even toolbars, most
Emacs users rarely take their hands off the keyboard. So when someone who's mastered all those
Emacs commands switches to Word, it can be a frustrating experience.

Fortunately, the free VBacs template, available for download at http://rath.ca/Misc/VBacs, modifies
Word's key bindings to more closely match the native ones in Emacs and can make Word feel a little
more like home.

Word does support two-stage key bindings (such as Alt-L, S), but you can use
the Ctrl key only in the first stage. This makes it impossible to recreate many
Emacs commands, such as Ctrl-X, Ctrl-S. In these cases, VBacs gets as close
as Word will permit; for example, Ctrl-X, S lets you save.

9.2.1 Installing VBacs

VBacs is offered as a standard .dot template file, released under the GNU Lesser Public License.
Here's how to install the VBacs template as a global template that will automatically load every time
you start Word.

First, download the VBacs template to your computer. Make sure you close Word and any other
applications that may access Word, such as Outlook.

Next, locate your Word Startup folder, which is usually the following:

C:\Documents and Settings\username\Application Data\Microsoft\Word\STARTUP

http://rath.ca/Misc/VBacs
http://lib.ommolketab.ir

If you're not sure where your STARTUP folder is located, you can open Word and select Tools
Options, click the File Locations tab, and make a note of the folder listed under STARTUP.

After you put VBacs.dot into your STARTUP folder, its key bindings will take effect the next time you
start Word.

9.2.2 Using VBacs

Table 9-1 summarizes the VBacs commands and their key bindings. Some aren't actually Emacs
commands or differ slightly from their Emacs counterparts.

Table 9-1. VBacs commands and key bindings

VBacs action Key binding

Line up Ctrl-P

Line down Ctrl-N

End of line Ctrl-E

Start of line Ctrl-A

Start of buffer Shift-Alt-<

End of buffer Shift-Alt->

Character forward Ctrl-F

Character backward Ctrl-B

Word forward Alt-F

Word backward Alt-B

Page down Ctrl-V

Page up Alt-V

Go to previous page Ctrl-X, [

Go to next page Ctrl-X,]

Search Ctrl-S, Ctrl-R

Replace Alt-%

Cut selection Ctrl-W

Paste selection Ctrl-Y

Copy selection Alt-W

Select whole buffer Ctrl-X, H

http://lib.ommolketab.ir

VBacs action Key binding

Delete word Alt-D

Word delete Alt-Backspace

Delete Ctrl-D

Delete to end of line Ctrl-K

Edit undo Shift-Ctrl-

Cancel Ctrl-G

Tab Ctrl-I

Save file Ctrl-X, S

Close file Ctrl-X, K

Exit MS Word Ctrl-X, C

Open file Ctrl-X, F

Undo Ctrl-X, U

Open line above Ctrl-O

Capitalize word Alt-C

Upshift word Alt-U

Downshift word Alt-L

Delete window Ctrl-X, 0

Close other windows Ctrl-X, 1

Split window vertically Ctrl-X, 2

Other window Ctrl-X, O

Switch to buffer Ctrl-X, B

Iconify MS Word Ctrl-Z

Center paragraph Alt-S

Transpose characters Ctrl-T

Transpose words Alt-T

Paste plain (unformatted text) Ctrl-Shift-Y

Select all Ctrl-Q, A

Bold Ctrl-Q, B

Italic Ctrl-Q, I

Print Ctrl-Q, P

Hanging indent Ctrl-Q, T

Delete word Alt-D

Word delete Alt-Backspace

Delete Ctrl-D

Delete to end of line Ctrl-K

Edit undo Shift-Ctrl-

Cancel Ctrl-G

Tab Ctrl-I

Save file Ctrl-X, S

Close file Ctrl-X, K

Exit MS Word Ctrl-X, C

Open file Ctrl-X, F

Undo Ctrl-X, U

Open line above Ctrl-O

Capitalize word Alt-C

Upshift word Alt-U

Downshift word Alt-L

Delete window Ctrl-X, 0

Close other windows Ctrl-X, 1

Split window vertically Ctrl-X, 2

Other window Ctrl-X, O

Switch to buffer Ctrl-X, B

Iconify MS Word Ctrl-Z

Center paragraph Alt-S

Transpose characters Ctrl-T

Transpose words Alt-T

Paste plain (unformatted text) Ctrl-Shift-Y

Select all Ctrl-Q, A

Bold Ctrl-Q, B

Italic Ctrl-Q, I

Print Ctrl-Q, P

Hanging indent Ctrl-Q, T

http://lib.ommolketab.ir

VBacs action Key binding

Tab (in a table) Ctrl-Q, Tab

With VBacs installed, several editing and navigation tasks become immediately easier. For example,
Ctrl-X, 2 splits the active window vertically, as shown in Figure 9-1.

Figure 9-1. Quickly split a window with Ctrl-X, 2 in VBacs

The shortcut Ctrl-O (open line above) creates a new line above the cursor and then moves the cursor
to the beginning of the new line. One more notable gem: Ctrl-K deletes from the cursor to the end of
a line. In Word, navigating and editing by line-as opposed to by paragraph-can be tricky. With
VBacs, it becomes a lot more manageable.

If you want to temporarily remove the VBacs key bindings, select Tools Templates and Add-ins
and uncheck VBacs.dot in the list of installed add-ins. When you click the OK button, Word will unload
the template, and your key bindings will return to Word's default settings. VBacs will return the next
time you start Word. To uninstall VBacs, just remove it from Word's STARTUP folder.

For more information on Emacs, check out
http://www.gnu.org/software/emacs/emacs.html and Learning GNU Emacs
(O'Reilly).

Tab (in a table) Ctrl-Q, Tab

With VBacs installed, several editing and navigation tasks become immediately easier. For example,
Ctrl-X, 2 splits the active window vertically, as shown in Figure 9-1.

Figure 9-1. Quickly split a window with Ctrl-X, 2 in VBacs

The shortcut Ctrl-O (open line above) creates a new line above the cursor and then moves the cursor
to the beginning of the new line. One more notable gem: Ctrl-K deletes from the cursor to the end of
a line. In Word, navigating and editing by line-as opposed to by paragraph-can be tricky. With
VBacs, it becomes a lot more manageable.

If you want to temporarily remove the VBacs key bindings, select Tools Templates and Add-ins
and uncheck VBacs.dot in the list of installed add-ins. When you click the OK button, Word will unload
the template, and your key bindings will return to Word's default settings. VBacs will return the next
time you start Word. To uninstall VBacs, just remove it from Word's STARTUP folder.

For more information on Emacs, check out
http://www.gnu.org/software/emacs/emacs.html and Learning GNU Emacs
(O'Reilly).

http://www.gnu.org/software/emacs/emacs.html
http://www.gnu.org/software/emacs/emacs.html
http://lib.ommolketab.ir

- Christopher Rath

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 81 Use Word as a Windows Backup Utility

This hack introduces a freeware, hackable Word template for building system backups.

Backups usually end up on tomorrow's to-do list, but now you can create quick and easy backups
with a freeware template, a great example of how you can hack Word into a serious system
administration tool.

You can download the template used in this hack from
http://www.mousetrax.com/Downloads.html#backup. The download includes two files:

WordBackup.dot

ConfigWordBackup.cfg

To test-drive the template, create a folder on your system called C:\Backup. Put both files in the new
folder.

By default, the template creates a backup of each of the following system folders:

Currently logged-on user's My Documents folder

Currently logged-on user's Templates folder

Currently logged-on user's Internet Explorer Favorites folder

Windows Fonts folder

Currently logged-on user's Desktop folder

The backups are created in the folder in which the WordBackup.dot template is located; here, it's
C:\Backup.

9.3.1 Running the Hack

To begin the backup, just double-click the WordBackup.dot file icon. A new, blank Word document
opens, and the backup begins.

The status bar notes the backup's progress. When the backup finishes, it launches Notepad and
opens the LogWordBackup.log file created by the template, as shown in Figure 9-2.

http://www.mousetrax.com/Downloads.html#backup
http://lib.ommolketab.ir

Figure 9-2. The log file created by the WordBackup.dot template

Depending on the size of your hard drive and the speed of your processor, the backup may take
several minutes or more. Once it finishes, the C:\Backup folder will contain backup copies of all those
important system folders.

The next time you need a backup, just double-click the template icon again. Subsequent backups are
much faster, since the template backs up only files that have changed since the last backup (known
as an incremental backup).

9.3.2 Hacking the Hack

If you've got important files in folders besides the standard system ones, or files on a network drive
that should also be backed up, you can change how the WordBackup.dot template works by adjusting
the settings in the ConfigWordBackup.cfg file, which is just a plain-text configuration file [Hack #67]
.

To edit the ConfigWordBackup.cfg file, open it in a standard text editor, such as Notepad. The file
contains two sections: Parameters and Folders.

9.3.2.1 The Parameters section

Here you can use the debug key to specify how verbose of a log file you're looking for. A value of 0
records only the start and stop time, and a value of 4 gives you full reporting. The

ConfigWordBackup.cfg file includes details on each level.

If you want the backup in a different folder, use the altpath key. For example, to put the backup
files in a folder named C:\Foo\Backup, change the altpath line to read as follows:

altpath=C:\Foo\Backup

9.3.2.2 The Folders section

http://lib.ommolketab.ir

In this section, you can have the template ignore one or more of the system folders that it backs up
by default. The settings are already in the file but are commented out. To activate any of them,
remove the semicolon at the start of the line. For example, if you want the template to ignore the
Fonts folder, remove the semicolon from the ;NoFonts line, so it reads as follows:

NoFonts

Again, the ConfigWordBackup.cfg file includes further details.

If you want to back up folders besides the system folders, include each folder on its own line in the
Folders section, as follows:

C:\Evil\Master Plans\World Domination

The template can also back up files on a network drive using standard Universal Naming Convention
(UNC) notation, as in the following:

\\hal9000\flightplans\archive

Make sure the folders you specify in the ConfigWordBackup.cfg file actually
exist on your system, or you'll encounter errors during the backup.

- Greg Chapman

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 82 Perform Power Text Searches with Regular
Expressions

When wildcards just aren't enough, tap VBScript for powerful string searching in Word.

Although Word's wildcard searching is much better than most users realize, if you've previously used
a language like Perl, Python, or JavaScript, you might prefer sticking with the special characters you
already know for your searches. Besides, sometimes wildcards just aren't up to the job.

To borrow an example from O'Reilly's Learning Python, suppose you need to replace any occurrence
of "red pepper" or "green pepper" with "bell pepper" if and only if they occur together in a paragraph
before the word "salad," but not if they are followed (with no space) by the string "corn." That's
definitely way out of Word's wildcards' league. (The pattern is \b(red|green)(\s+pepper(?
!corn)(?=.*salad)), for those of you too impatient to wait until the full example at the end of this

hack.)

Though VBA doesn't have built-in support for regular expressions, Microsoft does include a RegExp

object with VBScript. With a slight change to your settings in the Visual Basic Editor, you can use the
RegExp object in your macros.

First, select Tools Macro Visual Basic Editor, and then choose Tools References. In the next
dialog, shown in Figure 9-3, check the "Microsoft VBScript Regular Expressions 5.5" box and click the
OK button.

Figure 9-3. Setting a reference to VBScript regular expressions from the
Visual Basic Editor

http://lib.ommolketab.ir

Now you can include instances of the RegExp object in your macros. The following section describes
the RegExp object.

9.4.1 RegExp's Propeties and Methods

The RegExp object has four properties, described in the following list:

Pattern

The pattern string to search for.

Global

Whether search is for all occurrences that match Pattern, or just the first. This is a Boolean
value, and the default is False.

IgnoreCase

Whether search is case-sensitive. This is a Boolean value, and the default is False.

MultiLine

http://lib.ommolketab.ir

Whether Pattern is matched across line breaks. This is a Boolean value, and the default is
False.

The RegExp object has three methods, described in the following list:

Execute

Returns a Matches collection containing the matched substrings and information about those

substrings.

Replace

Replaces all the substrings in a searched string that match a pattern with a replacement string.
The syntax for this method is:

RegExpobject.Replace("string to search", "replacement pattern")

Test

Whether a search has successfully matched a pattern. Returns a Boolean value. Since this
method always returns True if there were one or more successful matches, there's no need to
set the Global property when using this method.

The Matches collection returned by the Execute method contains one or more Match objects, which

have three properties, shown in the following list:

FirstIndex

The position of the Match's first character within the search string

Length

The number of characters in the Match

Value

The matched string

9.4.2 Using the RegExp Object in a Macro

http://lib.ommolketab.ir

The following macro interactively tests search patterns against the selected text.

Place this macro in the template of your choice [Hack #50] and either run it from the Tools
Macro Macros dialog or put a button for it on a menu or toolbar [Hack #1].

Sub RegExpTest()

Dim re As RegExp

Dim strToSearch As String

Dim strPattern As String

Dim strResults As String

Dim oMatches As MatchCollection

Dim oMatch As Match

strToSearch = Selection.Text

Set re = New RegExp

re.Global = True

re.IgnoreCase = True

Do While (1)

 strPattern = InputBox("Enter search pattern string:", _

 "RegExp Search", "")

 If Len(strPattern) = 0 Then Exit Do

 re.Pattern = strPattern

 Set oMatches = re.Execute(strToSearch)

 If oMatches.Count <> 0 Then

http://lib.ommolketab.ir

 strResults = Chr(34) & strPattern & Chr(34) & _

 " matched " & oMatches.Count & " times:" _

 & vbCr & vbCr

 For Each oMatch In oMatches

 strResults = strResults & _

 oMatch.Value & _

 ": at position " & _

 oMatch.FirstIndex & vbCr

 Next oMatch

 Else

 strResults = Chr(34) & strPattern & Chr(34) & _

 " didn't match anything. Try again."

 End If

 MsgBox strResults

Loop

End Sub

When you run this macro, you'll be prompted with the dialog shown in Figure 9-4.

Figure 9-4. Enter your search pattern here, including any special
characters

http://lib.ommolketab.ir

The dialog shown in Figure 9-5 displays the search results.

Figure 9-5. Fine-tune your search patterns interactively

The RegExp object supports the same metacharacters you might have seen in Perl:

\ | () [{ ^ $ * + ? .

You also get all the classic Perl character-class shortcuts:

\d \D \s \S \w \W

For a full listing of special characters for using the RegExp object, see

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/script56/html/vspropattern.asp.

9.4.3 Performing Replacements

When using the Replace method, you can group and reuse parts of the matched pattern. Known as

backreferencing, this is a powerful technique. The following code snippet demonstrates how to
change the format of some dates in a string:

re.Replace("(September) (\d\d?), (\d{4})", "$2 $1, $3")

This code will change a date like "September 12, 1978" into "12 September, 1978." Modifying the
code to replace September with a different month won't require making any change to the
replacement string, thanks to backreferencing.

Bringing all of this together, the following macro shows you how to use the "bell pepper" pattern
discussed at the beginning of this hack to get the results shown in Figure 9-6.

Figure 9-6. Performing complex replacements with regular expressions

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/script56/html/vspropattern.asp
http://lib.ommolketab.ir

Place this macro in the template of your choice [Hack #50] and either run it from the Tools
Macro Macros dialog or put a button for it on a menu or toolbar [Hack #1] :

Sub FixPeppers()

Dim re As RegExp

Dim para As Paragraph

Dim rng As Range

Set re = New RegExp

re.Pattern = "\b(red|green)(\s+pepper(?!corn)(?=.*salad))"

re.IgnoreCase = True

re.Global = True

For Each para In ActiveDocument.Paragraphs

 Set rng = para.Range

 rng.MoveEnd unit:=wdCharacter, Count:=-1

 rng.Text = re.Replace(rng.Text, "bell$2")

Next para

End Sub

http://lib.ommolketab.ir

For more on regular expressions, check out [Hack #85], [Hack #86], and
Mastering Regular Expressions (O'Reilly).

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 83 Show a Directory Structure as a Word Outline

Use Outline view to quickly scan a directory for errant files or space hogs with this RTF
hack.

When directory structures were small, you could figure out where all the space on your hard drive
went by just using a bit of DOS at the command line:

> dir /os/n c:\somedir > summary.txt

But these days, a typical hard drive just has too many incidental subdirectories, and finding the large
files (or a directory full of a million small files) in that summary.txt file would be like finding a needle
in a haystack.

This hack assumes that you have Perl installed on your system and that you
can run Perl scripts from the DOS command line. To download a free version of
Perl for Windows, go to the ActiveState web site at
http://www.activestate.com.

But by massaging the data a bit and turning it into a Word outline, you can use the collapsible levels
feature in Outline view to quickly sift through the data and find the unexpected space hogs.

9.5.1 The Code

This small Perl program surveys a directory that you specify and saves it to an RTF file, using a
filename that you specify. Save this script as directoryoutline.pl.

use strict;

use File::Find;

my @items;

my $min_depth = 999;

my($dir, $out) = @ARGV;

http://www.activestate.com
http://lib.ommolketab.ir

die "Usage:\n $0 drive:/dir/to/scan output.rtf"

 unless @ARGV == 2 and -d $dir and $out =~ m/\.rtf$/is;

Scan_dirs($dir);

open R, ">", $out or die "Can't write-open $out: $!";

RTF_tree();

close R;

print "Surveyed $dir to $out\n";

exit;

sub Scan_dirs {

 my $count;

 my %dirsize;

 finddepth({ follow => 0, wanted => sub {

 if(-f $File::Find::name) {

 $dirsize{ $File::Find::dir } += -s _;

 } elsif(-d _) {

 $dirsize{ $File::Find::dir } += $dirsize{ $File::Find::name };

 my $depth = $File::Find::name =~ tr{/\\}{};

 $min_depth = $depth if $depth < $min_depth;

 unshift @items, [$depth, $dirsize{ $File::Find::name },

 ($_ eq '.') ? $File::Find::name : $_];

 }

 } }, $_[0]);

 return;

}

http://lib.ommolketab.ir

sub RTF_tree {

 die "Nothing to report?!" unless @items;

 print R q[{\rtf1\ansi\deff0

{\fonttbl {\f0 \froman Times New Roman;}}

\viewkind2 \fs24

];

 foreach my $item (@items) {

 my($depth, $size, $name) = @$item;

 $depth -= $min_depth;

 next if $depth > 8;

 printf R "\\outlinelevel%s {\\i %s \\scaps kb} : %s\\par\n",

 $depth, with_commas(int(.5 + $size/1024)),

 rtf_escape_broadly($name);

 }

 print R "}\n";

 return;

}

sub with_commas {

 my $x = $_[0];

 1 while $x =~ s/^(\d+)(\d{3})/$1,$2/;

 return $x;

}

sub rtf_escape_broadly {

http://lib.ommolketab.ir

 my $s = $_[0];

 $s =~ s/(\W)/"\\'".(unpack("H2",$1))/eg;

 return $s;

}

9.5.2 Running the Hack

To see the structure of the Perl directory on your system, open up a DOS prompt and navigate to
your top-level C:\ directory. Enter the following at the DOS prompt:

> perl directoryoutline.pl "C:\Perl" "C:\PerlDirOutline.rtf"

Figure 9-7 shows the output PerlDirOutline.rtf file in Word's Outline view. You can collapse and
expand your view of each folder, as with any Word outline.

Figure 9-7. The Perl directory, shown in Word's Outline view

http://lib.ommolketab.ir

This view shows that roughly a quarter of the disk space used by the Perl directory is actually just
(expendable) HTML versions of the standard Perl documentation (html/lib and html/site)-something
that would have been much harder to discern using any other method.

- Sean M. Burke

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 84 Automate Word from Other Applications

Many of the same things VBA makes possible from within Word can be done from another
application by using COM automation.

Word, like the rest of the Office suite, supports COM automation. COM (Component Object Model) is
a technology developed by Microsoft that allows one application to control another without any regard
to the differences in the programming languages used by either application. As long as both
applications "speak" COM, they'll get along just fine.

Think about using an ATM. Each machine might be a different size, and sometimes the buttons are in
different places, but you don't really care what the machine looks like, or how it works inside, as long
as you can put in your card and get money. A COM server is like the ATM machine: as long as you
(the application, or client) make a valid request for money (the service), the machine clicks and
whirrs and spits out the cash. The client requesting the service cares only that the server respond in
terms that it can use and understand.

Other applications that understand COM, such as Excel, or application development tools/languages
such as C++, Visual Studio.NET, or even a scripting language like Perl, can use Word as a COM
server and access its object model and control its behavior. And, conversely, if you create your own
COM server application, you can use VBA to access it from within Word.

When controlling Word from another application, you can access familiar Word objects, such as
paragraphs, comments, documents, and fields. These objects will, for the most part, behave the
same way as they do in your Word macros. If you use another Office application to control Word, you
will hardly notice a difference because the applications use the same objects and the same language
(VBA) to control those objects. If you use a different language, you will need to determine how to
best interact with Word's objects using that language. The following sections touch on each scenario.

9.6.1 Controlling Word from Another Office Application

The different parts of Microsoft Office play very well together. Controlling Word from within Excel, for
example, isn't much different from working within Word. There's only one big difference: when you
write a macro within Word, the parent Word.Application object is implicit. To display a dialog with

the name of the active document from Word VBA, you can just use the following in your code (you
can also type these statements directly into the Immediate window [Hack #2]):

MsgBox ActiveDocument.Name

You could also explicitly specify that you want Word's ActiveDocument object, as in the following:

http://lib.ommolketab.ir

MsgBox Word.Application.ActiveDocument.Name

But that's unnecessary; because you're working in VBA within Word, it's assumed that unless you say
otherwise, you're talking about Word's objects. And as long as Word is open, the parent Word object

exists and is implicitly used in all your macros.

When you want to control Word from another Office application, such as Excel, you need to explicitly
refer to the Word.Application object used from your Excel macro.

To incorporate Word into an Excel macro, first set a reference to Word from the Visual Basic Editor in
Excel. Select Tools References and choose the Microsoft Word Object Library, as shown in Figure
9-8.

Figure 9-8. Setting a reference to the Word object model from Excel's
Visual Basic Editor

By setting this reference, you provide Excel with access to all the parts of Word you'd get from within
Word itself, including object names and built-in Word constants.

The following Excel macro starts a new instance of Word and then inserts a single line of text.

Sub HelloFromExcel()

Dim wd As Word.Application

Dim doc As Document

http://lib.ommolketab.ir

Set wd = New Word.Application

wd.Visible = True

Set doc = wd.Documents.Add

doc.Range.InsertAfter "Hello, Word"

doc.Range.Style = wdHeading1

End Sub

Since COM is designed as a means for two applications to communicate without an actual person
involved, you need to use the Visible property to explicitly make Word visible on your screen.

Otherwise, Word will still start and the macro will execute without your knowledge because it won't
appear on your screen.

While experimenting with and developing macros that use Word as a COM
server, you should always set the Visible property to True. Otherwise, you

may end up with multiple instances of Word running in the background, which
can really slow down a system. If you do choose to run Word invisibly, make
sure you use the Quit method to close it. In the previous example, the

penultimate line of code would read:

wd.Quit

You should also set the object references to Nothing. Just before the End Sub,

add the following line:

Set wd = Nothing

The previous code created a new instance of Word, even if you already had the application open. To
use the current instance of Word (or to open the application if no current instance is running), use
the following version:

Sub HelloAlreadyOpenWordFromExcel()

Dim wd As Word.Application

Dim doc As Document

On Error Resume Next

Set wd = Word.Application

http://lib.ommolketab.ir

If Err.Number = 429 Then

 Set wd = New Word.Application

 Err.Clear

ElseIf Err.Number <> 0 Then

 MsgBox Err.Number & vbCr & Err.Description

 Exit Sub

End If

wd.Visible = True

Set doc = wd.Documents.Add

doc.Range.InsertAfter "Hello, Word"

doc.Range.Style = wdStyleHeading1

End Sub

This version uses the knowledge that error number 429 occurs when a COM (also known as ActiveX)
component can't be created, as shown in Figure 9-9. To determine an error number, you often need
to let the error occur and then make a note of its number.

Figure 9-9. The same error is generated when VBA can't create a COM
object

Setting a reference from within the Visual Basic Editor provides the best performance possible for
automating Word from another application, because it takes advantage of early binding. In other
words, much of the work that needs to be done for the two applications to communicate is done long
before the macro runs. This preparation is similar to a cooking show where the host premeasures all
the ingredients in little bowls before he "starts" cooking. Early binding is always preferable if possible.

http://lib.ommolketab.ir

If your macro needs to run on systems that might not have that reference to Word already set, you'll
need to use late binding. With late binding, you use the generic Object variable type.

The following version of the HelloFromExcel macro can run even if no reference to Word has been

set:

Sub HelloFromExcelLateBinding()

Dim wd As Object

Dim doc As Object

On Error Resume Next

Set wd = GetObject(Class:="Word.Application")

If Err.Number = 429 Then

 Set wd = CreateObject(Class:="Word.Application")

 Err.Clear

ElseIf Err.Number <> 0 Then

 MsgBox Err.Number & vbCr & Err.Description

End If

wd.Visible = True

Set doc = wd.Documents.Add

doc.Range.InsertAfter "Hello, Word"

doc.Range.Style = doc.Styles("Heading 1")

End Sub

Notice that the code uses generic Object variables. Another important, but more subtle, difference is

that without the reference set by early binding, you can't use Word's constants, like
wdStyleHeading1, because those constants aren't defined in Excel. Instead, you must use the actual

style names.

Without the reference set, you must do all of the prep work needed to get the two applications
talking every time you run the macro. A macro that uses late binding will thus run more slowly than
one using early binding.

http://lib.ommolketab.ir

9.6.2 Controlling Word from a Scripting Language

Upcoming hacks in this chapter cover the specifics for controlling Word from three popular scripting
languages: Perl [Hack #86], Python [Hack #85], and Ruby [Hack #87] . This section covers the
similarities between the three.

Translating what you already know about automating Word with VBA for use in another language can
present some challenges. The biggest challenge is extricating your knowledge of the Word object
model from that of the VBA language. A Word object is a Word object whether you control it from
VBA or Perl, but the way you control it may be very different.

For example, here's the HelloFromExcelLateBinding macro from the previous section, but this time

the parts that are just Word objects, and not part of the VBA language, are shown in bold:

Sub HelloFromExcelLateBinding()

Dim wd As Object

Dim doc As Object

On Error Resume Next

Set wd = GetObject(class:="Word.Application")

If Err.Number = 429 Then

 Set wd = CreateObject(class:="Word.Application")

 Err.Clear

ElseIf Err.Number <> 0 Then

 MsgBox Err.Number & vbCr & Err.Description

End If

wd.Visible = True

Set doc = wd.Documents.Add

doc.Range.InsertAfter "Hello, Word"

End Sub

You will be reusing the parts in bold when controlling Word from a scripting language with COM. The
rest is specific to VBA and may not be the same in another language. Even the "dot" syntax (where
properties and methods of an object are noted with a ".", as in Documents.Add) can't be taken for

granted. The following Perl script does the same thing as the Excel macro shown above. Again, the
Word-specific parts are shown in bold.

http://lib.ommolketab.ir

#!/usr/bin/perl

use Win32::OLE qw(in with);

use Win32::OLE::Variant;

my $word;

eval {$word = Win32::OLE->GetActiveObject('Word.Application')};

die "Word not installed" if $@;

unless (defined $word) {

 $word = Win32::OLE->new('Word.Application', sub { $_[0]->Quit; })

 or die "Cannot start Word";

}

Win32::OLE->Option(Warn => 3);

$word->{'Visible'} = 1;

my $doc = $word->{'Documents'}->Add;

$doc->{'Range'}->InsertAfter('Hello, Word');

To run this script, save it as HelloWord.pl and run it from a DOS command line as follows:

> perl HelloWord.pl

While you may see some similarities, especially if you've worked with Perl before, these two scripts
use very different syntax.

Using Perl is an admittedly extreme example. The other two scripting languages discussed in this
chapter, Python and Ruby, share the "dot" syntax, and those scripts often more closely resemble
their VBA counterparts.

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 85 Hack Word from Python

Use Word from Python to create attractive printouts of HTML documents on the fly.

Python is a powerful scripting language, and its use on Windows systems as both a development and
an administration tool has increased. This hack shows you how to use Python to import an HTML
document into Word, tweak the formatting, save the document in native Word format, and print it to
the default printer. This hack assumes you have a file named C:\resume.html on your system. It also
assumes you have Python installed on your system and that you can run Python scripts from the
DOS command line.

To download Python (for free), go to http://www.python.org. For detailed
information on using Python on Windows systems, check out Python
Programming on Win32 (O'Reilly).

Because Python supports COM automation [Hack #84], you can access Word from within a Python
script. First, you'll need the pywin32 module, which you can download from the SourceForge web site

(http://sourceforge.net/project/showfiles.php?group_id=78018).

9.7.1 Hello, Word

Once you've installed the pywin32 module, you can use Word objects from within a Python script.

The following script creates a new document, inserts some text, and applies the Heading 1 style to
the text:

from win32com.client import Dispatch

def main():

 wrd = Dispatch('Word.Application')

 wrd.Visible = 1

 doc = wrd.Documents.Add()

 rng = doc.Range(0,0)

http://www.python.org
http://sourceforge.net/project/showfiles.php?group_id=78018
http://lib.ommolketab.ir

 rng.InsertAfter('Hello, Word!')

 rng.Style = 'Heading 1'

if __name__=='__main_ _':

 main()

Save this script as C:\HelloFromPython.py and run it from the DOS command line as follows:

> python HelloFromPython.py

As discussed in [Hack #84], Word objects created as COM servers aren't visible by default. You
must explicitly set the Visible property to 1 if you want Word to appear onscreen.

9.7.2 Controlling Word Interactively

Python also includes an interactive command-line interpreter, which you launch by typing python at

a DOS prompt:

> python

After some informational text is displayed, the prompt changes to indicate that you're in the Python
interpreter.

Python 2.3.4 (#53, May 25 2004, 21:17:02) [MSC v.1200 32 bit (Intel)] on win32

Type "help", "copyright", "credits" or "license" for more information.

>>>

You can now execute Python commands interactively, which is a useful way to experiment with
controlling Word because you can see the results in real time. Enter the following sequence of
commands after you launch the Python interpreter:

>>> from win32com.client import Dispatch

>>> w = Dispatch('Word.Application')

>>> w.Visible = 1

At this point, a new Word window opens, although Word doesn't create a new, blank document
(considering that this instance of Word runs invisibly by default, that kind of makes sense). Though

http://lib.ommolketab.ir

no blank document is created, all the global templates in the Startup folder [Hack #50] are loaded.

With the Python interpreter running and a Word window open, you can actually go back and forth
between the two as you fiddle with Word. However, if you modify or remove objects currently
referenced from Python within Word (for example, delete a paragraph or close a document), the
Python objects may generate errors or become unstable and behave unexpectedly.

Now, create a new, blank Word document and insert a few lines of text with the following code:

>>> doc = w.Documents.Add()

>>> rng = doc.Range()

>>> rng.InsertAfter('To be or not to be - Shakespeare\n')

>>> rng.InsertAfter('Do be do be do be do - Sinatra')

By using the interactive interpreter, you can position the DOS window next to or on top of the Word
window and watch your Python commands control Word, as shown in Figure 9-10.

Figure 9-10. Controlling Word from the Python command-line interpreter

To close the document and quit Word, enter the following:

>>> doc.Close()

http://lib.ommolketab.ir

>>> wrd.Quit()

Word won't close the document until you choose whether or not to save it. If you run Word invisibly
and try the same thing, Word will stay hidden, but its Save As dialog will appear. If you write scripts
that run Word invisibly, take care to avoid situations that might launch an unexpected dialog (and
probably cause an error in your script). To avoid this particular one, you must either save the
document or make Word think you've saved it. The following code shows both scenarios:

>>> doc.SaveAs('C:\Documents\Quotes.doc') # Save the file

>>> doc.Saved = 1 # Or fool Word into thinking it's been saved

9.7.3 Running the Hack

Word does an excellent job of importing HTML files-especially ones that use simple, standard HTML
tags mapped to Word's built-in styles. You can easily translate existing HTML files into a useful
printed format by importing them into Word. This process can be automated with Python and COM.

As an example, this hack will show you this process using an HTML file you might already have, and
which is probably more up-to-date than any print version: your resume.

Again, this hack assumes you have a file named C:\resume.html on your system. The code presented
below opens Word, opens the file, changes the appearance of the Heading 2 and Hyperlink styles,
saves the document, and prints it out to your default printer:

from win32com.client import Dispatch

MYDIR = 'c:\\'

def main():

 wrd = Dispatch('Word.Application')

 confirm = wrd.Options.ConfirmConversions

 wrd.Options.ConfirmConversions = 0

 wrd.Visible = 0

 doc = wrd.Documents.Open(MYDIR + 'resume.html')

 sty = doc.Styles('Heading 2')

 sty.Font.Size = 18

http://lib.ommolketab.ir

 sty.Font.Italic = 0

 sty = doc.Styles('Hyperlink')

 sty.Font.Underline = 0

 sty.Font.Color = -16777216

 sty.Font.Italic = 1

 doc.SaveAs(FileName=MYDIR + 'resume.doc', FileFormat=0)

 doc.PrintOut

 doc.Close()

 wrd.Options.ConfirmConversions = confirm

 wrd.Quit()

if __name__=='__main_ _':

 main()

Save this script as resumeprinter.py and run it from a DOS command line:

> python resumeprinter.py

A few parts of this script deserve closer attention.

9.7.3.1 Confirming conversions

Select Tools Options, click the General tab, and check the "Confirm conversion at open" box. With
this option checked, Word will prompt you before opening a file not in the .doc format. If this setting
is enabled when the script opens the file, one of those unexpected dialogs will appear, even though
the script runs Word invisibly. To make sure the resume.html file opens without confirming the
conversion, this script explicitly sets the ConfirmConversions option to False. Before doing so, the
script stores the current state in a variable named confirm; it then resets the option before it exits.

9.7.3.2 Word constants

http://lib.ommolketab.ir

This Python script doesn't have access to Word's constants (such as wdUnderlineNone and
wdColorAutomatic) via COM. You must use their actual values, as this script does for the Underline
and Color properties of the Hyperlink style. To get the value of a constant, query its value in the

Immediate window [Hack #2] in the Visual Basic Editor, as shown in Figure 9-11.

Figure 9-11. Getting a constant's value by using the Immediate window
in the Visual Basic Editor

9.7.3.3 Named arguments

When using Word from Python, as with VBA, you can use named arguments, which means you can
specify the values for a function or method by keyword. When you don't use named arguments, each
value passed as an argument must be in a particular order. For example, the syntax for the MsgBox

function in VBA is:

MsgBox(prompt[, buttons] [, title] [, helpfile, context])

If you call this function in VBA without using named arguments, the function expects and interprets
the values in the order specified by its syntax. To tell the function to display the prompt "Hello,
World" with "Message in a Box" as the dialog's title, but without specifying a button type, insert the
following:

Msgbox "Hello, World", ,"Message in a Box"

Notice the empty value in between the two commas. It tells Word to use its default value for the
buttons argument. If you left out that empty value, Word would try to use "Message in a Box" as the

buttons value, which would cause an error. When you use the named-argument syntax in VBA, you

can do the same thing in a more readable way, and in any order you choose:

MsgBox Title:="Message in a Box", Prompt:="Hello, World"

Word uses its default settings for any of the arguments not specified. When using Word objects and
methods from Python, you can use a similar syntax, as shown in the following line taken from the
resumeprinter.py script shown above:

doc.SaveAs(FileName=MYDIR + 'resume.doc', FileFormat=0)

Note that in Python, you don't place a colon before the =, as you would in VBA.

http://lib.ommolketab.ir

For information on creating Python objects that you can run from within Word
using VBA, check out [Hack #88] .

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 86 Hack Word from Perl

Use Word from Perl to create attractive printouts of HTML documents on the fly.

This hack shows you how to use Perl to import an HTML document into Word, tweak the formatting,
save the document in native Word format, and print it out to the default printer. This hack assumes
you have a file named C:\resume.html on your system. It also assumes you have Perl installed on
your system and can run Perl scripts from the DOS command line.

To download a free version of Perl for Windows, go to the ActiveState web site
at http://www.activestate.com.

Because Perl supports COM automation [Hack #84], you can access Word from within a Perl script
using the Win32::OLE module, which the ActiveState Perl distribution includes.

9.8.1 Hello, Word

The following Perl script creates a new document, inserts some text, and applies the Heading 1 style
to the text:

use Win32::OLE qw(in with);

use Win32::OLE::Variant;

my $word;

eval {$word = Win32::OLE->GetActiveObject('Word.Application')};

die "Word not installed" if $@;

unless (defined $word) {

 $word = Win32::OLE->new('Word.Application', sub { $_[0]->Quit; })

 or die "Could not start Word";

}

http://www.activestate.com
http://lib.ommolketab.ir

$word->{'Visible'} = 1;

my $doc = $word->{'Documents'}->Add;

$doc->{'Range'}->InsertAfter('Hello, Word');

my $rng = $doc->{'Range'};

$rng->{'Style'} = 'Heading 1';

Save this script as C:\HelloFromPerl.pl and run it from the DOS command line as follows:

> perl HelloFromPerl.pl

As discussed in [Hack #84], Word objects created as COM servers aren't visible by default. You
must explicitly set the Visible property to 1 if you want Word to appear onscreen.

9.8.2 Running the Hack

Word does an excellent job of importing HTML files-especially ones that use simple, standard HTML
tags mapped to Word's built-in styles. You can easily translate existing HTML files into a useful
printed format by importing them into Word. This process can be automated with Perl and COM.

As an example, this hack will show you this process using an HTML file you might already have, and
which is probably more up-to-date than any print version: your resume.

Again, this hack assumes you have a file named C:\resume.html on your system. The code presented
below starts Word, opens the file, changes the appearance of the Heading 2 and Hyperlink styles,
saves the document, and prints it out to your default printer:

use Win32::OLE qw(in with);

use Win32::OLE::Variant;

use Win32::OLE::Const 'Microsoft Word';

my $word;

eval {$word = Win32::OLE->GetActiveObject('Word.Application')};

die "Word not installed" if $@;

unless (defined $word) {

http://lib.ommolketab.ir

 $word = Win32::OLE->new('Word.Application', sub { $_[0]->Quit; })

 or die "Could not start Word";

}

$word->{'Visible'} = 1;

my $confirm = $word->{'Options'}->{'ConfirmConversions'};

$word->{'Options'}->{'ConfirmConversions'} = 0;

my $doc = $word->{'Documents'}->Open("C:/resume.html");

my $style = $doc->Styles('Heading 2');

$style->{'Font'}->{'Size'} = 16;

$style->{'Font'}->{'Italic'} = 0;

$style = $doc->Styles('Hyperlink');

$style->{'Font'}->{'Color'} = wdColorAutomatic;

$style->{'Font'}->{'Underline'} = wdUnderlineNone;

undef $style;

$doc->SaveAs("C:/resume.doc", {

 'FileFormat' => wdFormatDocument

 });

$doc->PrintOut();

$doc->Close();

$word->{'Options'}->{'ConfirmConversions'} = $confirm;

undef $doc;

http://lib.ommolketab.ir

undef $word;

Save this script as resumeprinter.pl and run it from a DOS command line:

> perl resumeprinter.pl

Note that Perl uses different and more cumbersome syntax for handling objects than VBA. For
information on working with objects in Perl, check out O'Reilly's Learning Perl Objects, References,
and Modules.

A few parts of this script deserve closer attention.

9.8.2.1 Confirming conversions

Select Tools Options, click the General tab, and check the "Confirm conversion at open" box. With
this option checked, Word will prompt you before opening a file not in the .doc format. If this setting
is enabled when the script opens the file, a dialog will appear, even though the script runs Word
invisibly. To make sure the resume.html file opens without confirming the conversion, this script
explicitly sets the ConfirmConversions option to False. Before doing so, the script stores the
current state in a variable named $confirm; it then resets the option before it exits.

9.8.2.2 Word constants

By using the Win32::OLE::Const module, as shown in this script, you can work with Word's
constants (such as wdUnderlineNone and wdColorAutomatic) from within a Perl script.

9.8.2.3 Named arguments

When using Word from Perl, as with VBA, you can use named arguments, which means you can
specify the values for a function or method by keyword. When you don't use named arguments, each
value passed as an argument must be in a particular order. For example, the syntax for the MsgBox

function in VBA is:

MsgBox(prompt[, buttons] [, title] [, helpfile, context])

If you call this function in VBA without using named arguments, the function expects and interprets
the values in the order specified by its syntax. To tell the function to display the prompt "Hello,
World" with "Message in a Box" as the dialog's title, but without specifying a button type, insert the
following:

Msgbox "Hello, World", ,"Message in a Box"

Notice the empty value in between the two commas. It tells Word to use its default value for the
buttons argument. If you leave out that empty value, Word tries to use "Message in a Box" as the

http://lib.ommolketab.ir

buttons value, which causes an error. When you use the named-argument syntax in VBA, you can

do the same thing in a more readable way, and in any order you choose:

MsgBox Title:="Message in a Box", Prompt:="Hello, World"

Word uses its default settings for any of the arguments not specified. When using Word objects and
methods from Perl, you can use a similar syntax, as shown in the following lines taken from the
resumeprinter.pl script shown earlier:

$doc->SaveAs("C:/resume.doc", {

 'FileFormat' => wdFormatDocument

 });

For information on accessing Perl code from Word macros, check out [Hack
#89] .

- Ian Burrell and Andrew Savikas

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 87 Hack Word from Ruby

Use Word from Ruby to create attractive printouts of HTML documents on the fly.

Ruby is a newer language than Perl or Python, and it works very well as a tool to automate Word.
This hack shows you how to use Ruby to import an HTML document into Word, tweak the formatting,
save the document in native Word format, and print it out to the default printer. This hack assumes
you have a file named C:\resume.html on your system. It also assumes that you have Ruby installed
on your system and that you can run Ruby scripts from the DOS command line.

To download a free version of Ruby for Windows, go to http://rubyforge.org.

Because Ruby supports COM automation [Hack #84], you can access Word from within a Ruby
script using the win32ole module, which the standard Windows Ruby distribution includes.

9.9.1 Hello, Word

The following Ruby script creates a new document, inserts some text, and applies the Heading 1 style
to the text:

require 'win32ole'

wd = WIN32OLE.new('Word.Application')

wd.Visible = 1

doc = wd.Documents.Add()

doc.Range.InsertAfter("Hello, Word")

doc.Range.Style = "Heading 1"

Save this script as C:\HelloFromRuby.pl and run it from the DOS command line as follows:

> Ruby HelloFromRuby.pl

http://rubyforge.org
http://lib.ommolketab.ir

As discussed in [Hack #84], Word objects created as COM servers aren't visible by default. You
must explicitly set the Visible property to 1 if you want Word to appear onscreen.

9.9.2 Controlling Word Interactively

Ruby includes an interactive command-line interpreter, which you launch by typing irb at a DOS

prompt:

> irb

The interactive Ruby shell launches, and the prompt changes as follows:

irb(main):001:0>

You can now execute Ruby commands interactively, which is a useful way to experiment with Word
because you can see the results in real time. Enter the following sequence of commands after you
launch the Ruby shell (the commands you type are shown in bold, with the shell's response in plain
text):

irb(main):001:0> require 'win32ole'

=> true

irb(main):002:0> w = WIN32OLE.new('Word.Application')

=> #<WIN32OLE:0x28cc070>

irb(main):003:0> w.Visible = 1

=> 1

At this point, a new Word window opens, although Word doesn't create a new, blank document
(which makes sense considering that this instance of Word runs invisibly by default). Though no
blank document is created, all the global templates in the STARTUP folder [Hack #50] are loaded.

With the Ruby shell running and a Word window open, you can actually go back and forth between
the two as you fiddle with Word. However, if from within Word you modify or remove objects
currently referenced from Ruby, those Ruby objects may become unstable and behave unexpectedly.

Now, create a new, blank document and insert a few lines of text (this time, only the commands you
type are shown; the shell's response is omitted for the rest of this section):

irb(main):004:0> doc = w.Documents.Add()

irb(main):005:0> rng = doc.Range()

irb(main):006:0> rng.InsertAfter("To be or not to be - Shakespeare\n")

http://lib.ommolketab.ir

irb(main):007:0>rng.InsertAfter("Do be do be do be do - Sinatra")

Using the interactive interpreter, you can position the DOS window next to or on top of the Word
window and watch your Ruby commands control Word, as shown in Figure 9-12.

Figure 9-12. Controlling Word interactively from Ruby

To close the document and quit Word, enter the following:

irb(main):008:0> doc.Close()

irb(main):009:0> wd.Quit()

Word will not close the document until you choose whether or not to save it. If you run Word invisibly
and try the same thing, Word will stay hidden but its Save As dialog will appear. If you write scripts
that run Word invisibly, take care to avoid situations that might launch an unexpected dialog (and
probably cause an error in your script). To avoid this particular one, you must either save the
document or make Word think you've saved it. The following code shows both scenarios:

irb(main):009:0> doc.SaveAs('C:\Documents\Quotes.doc') # Save the file

irb(main):010:0> doc.Saved = 1 # Or fool Word into thinking it's been saved

9.9.3 Running the Hack

Word does an excellent job of importing HTML files-especially ones that use simple, standard HTML
tags mapped to Word's built-in styles. You can easily translate existing HTML files into a useful

http://lib.ommolketab.ir

printed format by importing them into Word. This process can be automated with Ruby and COM.

As an example, this hack will show you this process using an HTML file you might already have, and
which is probably more up-to-date than any print version: your resume.

Again, this hack assumes you have a file named C:\resume.html on your system. The code presented
below starts Word, opens the file, changes the appearance of the Heading 2 and Hyperlink styles,
saves the document, and prints it out to your default printer:

require 'win32ole'

wrd = WIN32OLE.new('Word.Application')

confirm = wrd.Options.ConfirmConversions

wrd.Options.ConfirmConversions = 0

wrd.Visible = 1

doc = wrd.Documents.Open("C:/resume.html")

sty = doc.Styles("Heading 2")

sty.Font.Size = 18

sty.Font.Italic = 0

sty = doc.Styles('Hyperlink')

sty.Font.Underline = 0

sty.Font.Color = -16777216

sty.Font.Italic = 1

doc.SaveAs('FileName' => "C:/resume.doc", 'FileFormat' => 0)

doc.PrintOut

doc.Close()

wrd.Options.ConfirmConversions = confirm

wrd.Quit()

http://lib.ommolketab.ir

Save this script as resumeprinter.rb and run it from a DOS command line:

> ruby resumeprinter.rb

A few parts of this script deserve closer attention.

9.9.3.1 Confirming conversions

Select Tools Options, click the General tab, and check the "Confirm conversion at open" box. With
this option checked, Word will prompt you before opening a file not in the .doc format. If this setting
is enabled when the script opens the file, a dialog will appear, even though the script runs Word
invisibly. To make sure the resume.html file opens without confirming the conversion, this script
explicitly sets the ConfirmConversions option to False. Before doing so, the script stores the
current state in a variable named confirm; it then resets the option before it exits.

9.9.3.2 Word constants

The Ruby script doesn't have access to Word's constants (such as wdUnderlineNone and
wdColorAutomatic) via COM. You must use their actual values, as this script does for the Underline
and Color properties of the Hyperlink style. To get the value of a constant, query its value in the

Immediate window [Hack #2] of the Visual Basic Editor, as shown in Figure 9-11.

9.9.3.3 Named arguments

When using Word from Ruby, as with VBA, you can use named arguments, which means you can
specify the values for a function or method by keyword. When you don't use named arguments, each
value passed as an argument must be in a particular order. For example, the syntax for the MsgBox

function in VBA is:

MsgBox(prompt[, buttons] [, title] [, helpfile, context])

If you call this function in VBA without using named arguments, the function expects and interprets
the values in the order specified by its syntax. To tell the function to display the prompt "Hello,
World" with "Message in a Box" as the dialog's title, but without specifying a button type, insert the
following:

Msgbox "Hello, World", ,"Message in a Box"

Notice the empty value in between the two commas. It tells Word to use its default value for the
buttons argument. If you left out that empty value, Word would try to use "Message in a Box" as the

buttons value, which would cause an error. When you use the named argument syntax in VBA, you

can do the same thing in a more readable way, and in any order you choose:

http://lib.ommolketab.ir

MsgBox Title:="Message in a Box", Prompt:="Hello, World"

Word uses its default settings for any of the arguments not specified. When using Word objects and
methods from Ruby, you can use a similar syntax, as shown in the following line taken from the
earlier resumeprinter.rb script:

doc.SaveAs('FileName' => "C:/resume.doc", 'FileFormat' => 0)

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 88 Use Python from Word

This hack shows you how to create standalone Python objects that you can run from
within Word using VBA.

[Hack #85] showed you how to control Word from Python using COM automation [Hack #84] .
Python also includes a way to create your own COM objects, which you can then use from within a
Word macro.

This hack assumes that you have Python installed on your system and that you
can run Python scripts from the DOS command line. To download Python (for
free), go to http://www.python.org. For detailed information on using Python
on Windows systems, see O'Reilly's Python Programming on Win32.

This sample shows you how to create a COM object with a single method, SplitString. This method
has semantics identical to the standard Python function string.split: the first argument is the

string to split, and the second (optional) argument is the delimiter string.

There are two steps to implement COM objects in Python:

Define a Python class with the methods and properties you wish to expose.1.

Annotate the Python class with special attributes required by the PythonCOM framework to
expose the Python class as a COM object.

2.

Both of these steps are accomplished by the code in the following section.

9.10.1 The Code

The following Python code shows a small COM server:

#SimpleCOMServer.py - A sample COM server - almost as small as they come!

#

We expose a single method in a Python COM object

class PythonUtilities:

http://www.python.org
http://lib.ommolketab.ir

 _public_methods_ = ['SplitString']

 _reg_progid_ = "PythonDemo.Utilities"

 # NEVER copy the following ID!

 # Use "print pythoncom.CreateGuid()" to make a new one

 _reg_clsid_ = "{40CEA5F8-4D4C-4655-BD8B-0E7B6A26B556}"

 def SplitString(self, val, item=None):

 import string

 if item != None: item = str(item)

 return string.split(str(val), item)

Add code so that when this script is run by

Python.exe, it self-registers

if __name__=='__main_ _':

 print "Registering COM server..."

 import win32com.server.register

 win32com.server.register.UseCommandLine(PythonUtilities)

Save this code as SimpleCOMServer.py.

Note the following line from the script:

_reg_clsid_ = "{40CEA5F8-4D4C-4655-BD8B-0E7B6A26B556}"

In this line, you assign a unique identifier to your COM object. Windows uses these identifiers to keep
track of the components installed on the system. Do not just copy the one from this sample into your
own code. You need to create your own, which you can do easily with Python right from the DOS
command line:

> python

>>> import pythoncom

http://lib.ommolketab.ir

>>> print pythoncom.CreateGuid()

This prints a new, unique identifier to the command line. Use the number created on your system in
place of the sample in the code above.

9.10.2 Running the Hack

Now you'll need to register the object with COM. You can do this by executing the code as a normal
Python script. From the DOS command line, type:

> python SimpleCOMServer.py

After running the script, you'll see the following messages:

Registering COM server...

Registered: PythonDemo.Utilities

Now, to test the COM object from Word, put the following macro in the template of your choice
[Hack #50] and run it from Tools Macro Macros:

Sub PythonObj()

Dim py As Object

Dim vResponse As Variant

Dim v As Variant

Set py = CreateObject("PythonDemo.Utilities")

vResponse = py.SplitString("Hello from Python!")

For Each v In vResponse

 MsgBox v

Next v

http://lib.ommolketab.ir

End Sub

Running this code displays three message boxes, each showing one of the words in the phrase "Hello
from Python!"

The default delimiter is a space, but you can also provide a delimiter string:

vResponse = py.SplitString("Hello, Word", ",")

To keep things tidy and help keep your registry clean, run your script again from the command line
to unregister the sample COM server, but this time use the --unregister argument:

> python SimpleCOMServer.py --unregister

- Mark Hammond

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 89 Use Perl from Word

This hack shows you two very different ways of getting at Perl from within a Word macro.

Perl's hard to beat for heavy-duty text processing, and if you've already got some Perl scripts lying
around for performing certain tasks, you may want to use those from a Word macro rather than
starting from scratch in VBA-a decidedly lighter-weight contender when it comes to text processing.

This hack assumes that you have Perl installed on your system and that you
can run Perl scripts from the DOS command line. To download a free version of
Perl for Windows, go to the ActiveState web site at
http://www.activestate.com.

This hack demonstrates two ways to get at Perl code from a Word macro. The first is the more
polished method and requires some special software from ActiveState, which lets you create
standalone Windows .dll (dynamic link library) files. These files contain libraries of functions used to
perform specific tasks. The second method is about as quick and dirty as they come and does not
require any special software.

9.11.1 Creating COM Objects with the Perl Dev Kit

In addition to the free ActivePerl distribution, ActiveState sells software to help Perl developers create
Windows applications. The Perl Dev Kit (PDK) lets you create standalone Windows executables,
Microsoft installation files, and even .NET applications. You can try it free for 21 days, though any
applications you build will expire at the same time as the evaluation period. You can, however, renew
your trial period for an additional 21 days. The standard license costs $195. You can get the free trial
version from http://www.activestate.com/Products/Perl_Dev_Kit/.

You need to download and install the PDK to do the rest of the stuff in this
section. The method described in the next section, Section 9.11.2, doesn't
require the PDK.

One part of the PDK is PerlCTRL, which builds Windows .dll files from a Perl script. It involves a bit of

setup work, but once you create the .dll, using it as a COM object [Hack #84] from VBA is a breeze.

This example is similar to [Hack #88] ; it shows you how to build a standalone interface to Perl's
split function. A detailed explanation of PerlCTRL is beyond the scope of this hack, which

demonstrates only a simple example.

http://www.activestate.com
http://www.activestate.com/Products/Perl_Dev_Kit/
http://lib.ommolketab.ir

Although VBA also includes a split function, with Perl's you can use a regular

expression pattern as the delimiter rather than just a string, making it a much
more powerful function.

The following is the base Perl code used to build the COM object. It's a simple wrapper around Perl's
built-in split function:

package PerlSample;

sub Split {

 my $pattern = shift;

 my $string = shift;

 my @list = split(/$pattern/, $string);

 return \@list;

}

There are three main steps to turning this Perl code into a COM object:

Create a template file using the PDK. The template file contains boilerplate code and examples
of the information that PerlCTRL needs to generate the .dll.

1.

Modify the template file.2.

Generate the .dll from the template.3.

First, create a new folder on your system and name it C:\PerlCOMSample\. Open a DOS command
prompt and navigate to the folder you created. At the DOS prompt, type the following:

> PerlCtrl -t > template.pl

Now open the template.pl file in a text editor, such as Notepad. The file will look like the one shown in
Figure 9-13.

http://lib.ommolketab.ir

Figure 9-13. The template file generated by PerlCTRL

The template file also includes three unique identifiers that Windows will use to keep track of your
.dll. PerlCtrl creates these identifiers when you generate the template file. As the comments in the

template file indicate, do not edit those lines. Otherwise, modify the template file as follows:

package PerlSample;

sub Split {

 my $pattern = shift;

 my $string = shift;

 my @list = split(/$pattern/, $string);

 return \@list;

}

=pod

=begin PerlCtrl

%TypeLib = (

PackageName => 'PerlSample',

http://lib.ommolketab.ir

TypeLibGUID => '{26798342-6F54-4271-9668-B4C0D31EB5C8}', # do NOT edit this line

ControlGUID => '{BD48D84F-C5C9-4E3B-8E36-24E019E4F48D}', # do NOT edit this line

DispInterfaceIID=> '{FF546B71-4492-4E07-BD44-1EDE507CB5A4}', # or this one

ControlName => 'PerlSample',

ControlVer => 1, # increment if new object with same ProgID

 # create new GUIDs as well

ProgID => 'PerlSample.Split',

DefaultMethod => '',

Methods => {

 'Split' => {

 RetType => VT_ARRAY|VT_VARIANT,

 TotalParams => 2,

 NumOptionalParams => 0,

 ParamList =>['pattern' => VT_BSTR,

 'string' => VT_BSTR]

 },

}, # end of 'Methods'

Properties => {

}, # end of 'Properties'

); # end of %TypeLib

=end PerlCtrl

=cut

Again, use the three lines generated in your template file, not the ones shown in bold in this example.

http://lib.ommolketab.ir

Next, save this file as PerlCOMObject.ctrl in the same directory, and then run the following command
at a DOS prompt:

> PerlCtrl PerlCOMObject.ctrl

You'll see the following output:

Created 'PerlCOMObject.dll'

Now you need to register the new .dll with Windows. At the DOS prompt, enter the following:

> regsvr32 PerlCOMObject.dll

In a few seconds, you'll see the dialog shown in Figure 9-14, indicating that the .dll file was
successfully registered.

Figure 9-14. Windows notifies you when your .dll file is registered
successfully

Now you can call the .dll as a COM object from within a Word macro. Open Word and create the
following macro in the template of your choice [Hack #50] :

Sub TestPerlObject()

Dim pl As Object

Set pl = CreateObject("PerlSample.Split")

Dim str As String

Dim var() As Variant

Dim v As Variant

str = "Hello from Perl!"

var = pl.Split(" ", str)

http://lib.ommolketab.ir

For Each v In var

 MsgBox v

Next v

End Sub

When you run the macro, you'll see three dialog boxes displayed in sequence, each showing one of
the words in the string "Hello from Perl!"

If you'd like to remove the .dll from your system, enter the following at a DOS command prompt:

> regsvr32 /u PerlCOMObject.dll

9.11.2 Call Perl Directly with the VBA Shell Function

VBA includes a function you can use to launch other Windows applications. At its simplest, the Shell

function is roughly equivalent to entering a command at a DOS prompt. For example, enter the
following in the Visual Basic Editor's Immediate window [Hack #2] to launch the Notepad text
editor:

Shell("notepad.exe")

Because Perl is an executable file, you can use Shell to run Perl scripts. For example, if you had a

Perl script called C:\foo.pl, you could enter the following in the Immediate window to run the script:

Shell("C:\perl\bin\wperl.exe C:\foo.pl")

After the Shell function executes and the executable program starts, the VBA code continues.

wperl.exe is the "windowless" Perl. When run, it won't launch a new DOS
window, unlike the regular perl.exe.

You can use the clipboard to pass and return values between VBA and Perl. For example, you can
copy selected text to the clipboard and then call a Perl script that reads the clipboard, processes the
text, and puts the result back on the clipboard to paste into your document.

However, the VBA macro might try to paste from the clipboard before the Perl script finishes. Thus,
you also need a way to have VBA "wait" for the Perl script to finish. One solution is to use a
semaphore; that is, have the macro create a temporary folder on your computer, and then have the
Perl script delete it once it puts the script result on the clipboard. All you need is a few lines of VBA to
check to see if the folder still exists and, if so, instruct the macro to wait a few seconds until the Perl
script finishes.

http://lib.ommolketab.ir

For a more thorough discussion of semaphores, see
http://interglacial.com/~sburke/tpj/as_html/tpj23.html and
http://interglacial.com/~sburke/tpj/as_html/tpj24.html.

Since it's likely you'd want to access a variety of Perl scripts from within a Word macro, it's
worthwhile to create a reusable function to act as a wrapper around the Shell function call to Perl.
The following function takes three arguments: the name of the Perl script to run, the name of the
semaphore folder the Perl script should delete when it finishes, and finally the maximum time to wait
for the Perl script to run before giving up. The function returns a value of True if the Perl script
deleted the semaphore folder, or False if the folder still exists when the time limit is reached. Put this

code into the template of your choice [Hack #50] :

Function RunPerl(sPerlScriptToRun As String, _

 sSemFolderName As String, _

 sngWaitMax As Single) As Boolean

Dim sPerlPath As String

Dim sFullShellCommand As String

Dim sSemDir As String

Dim sSemDirFullName As String

Dim sngStartTime As Single

' Full path of "Windowless" Perl executable

sPerlPath = "C:\perl\bin\wperl.exe"

' Get the full path from the environment variable

sSemDirFullName = Environ("TEMP") & "\" & sSemFolderName

' Put quotes around full script path.

' This allows for spaces in script path names, common on Windows systems.

sFullShellCommand = sPerlPath & " " & _

http://interglacial.com/~sburke/tpj/as_html/tpj23.html
http://interglacial.com/~sburke/tpj/as_html/tpj24.html
http://lib.ommolketab.ir

 Chr(34) & sPerlScriptToRun & Chr(34)

' Create semaphore directory, unless it already exists

If Not LCase(Dir(sSemDirFullName, vbDirectory)) = LCase(sSemFolderName) Then

 MkDir (sSemDirFullName)

End If

' Start the countdown to timeout

sngStartTime = Timer

' Run Perl script

Shell (sFullShellCommand)

' The script will stay in this loop until either

' the semaphore directory is deleted, or until the

' time limit set by sngMaxWaitTime has passed

Do While LCase$(Dir$(sSemDirFullName, vbDirectory)) = _

 sSemFolderName And _

 ((Timer - sngStartTime) < sngWaitMax)

 ' Display a countdown in status bar

 StatusBar = "Waiting " & _

 Int((sngWaitMax - (Timer - sngStartTime))) & _

 " more seconds for Perl ..."

Loop

http://lib.ommolketab.ir

If LCase$(Dir$(sSemDirFullName, vbDirectory)) = sSemFolderName Then

 ' Gave up waiting.

 RmDir (sSemDirFullName)

 StatusBar = "Gave up waiting for Perl"

 RunPerl = False

Else

 ' Perl script successfully deleted semaphore folder

 StatusBar = ""

 RunPerl = True

End If

End Function

To see an example of this function in action, and to borrow Tim Meadowcroft's example from
Computer Science and Perl Programming (O'Reilly), the following code will demonstrate how to use
Perl to standardize phone numbers that are in a variety of formats. (Note: This example uses U.K.
phone numbers.)

For starters, the following Perl script called FixPhoneNumbers.pl pulls the text off the Windows
clipboard, checks it using a series of regular expressions, then either puts the modified number on
the clipboard, or the original, if it couldn't fix it. The standard ActiveState Windows Perl distribution
includes the Win32::Clipboard module. Save this script as C:\ FixPhoneNumbers.pl:

use Win32::Clipboard;

my $TEMP = $ENV{"TMP"};

my $clipcontents = Win32::Clipboard();

my $cliptext = $clipcontents->Get();

my $num = PerlFixPhone($cliptext);

if ($num != '') {

 $cliptext = $num

http://lib.ommolketab.ir

}

$clipcontents->Set($cliptext);

rmdir("$TEMP/vba_sem") || die "cannot rmdir $TEMP\\vba_sem: $!";

sub PerlFixPhone {

 # Tests:

 # 020 xxxx xxxx : fine as is

 # xxx xxxx : assume 020 7xxx xxxx

 # 2xxx : Building 1 extension, assume 020 7457 2xxx

 # 8xxx : Building 2 extension, assume 020 7220 8xxx

 # 0171 xxx xxxx : convert to 020 7xxx xxxx

 # 0181 xxx xxxx : convert to 020 8xxx xxxx

 # Anything else is an error and should be ignored...

 #

 local $_ = shift;

 return $_ if /^020 \d{4} \d{4}$/;

 return $_ if s/^\s*(\d{3})[-\s]+(\d{4})\s*$/020 7$1 $2/;

 return $_ if s/^\s*(\d{3})[-\s]+(\d{4})[-\s]+(\d{4})\s*$/$1 $2 $3/;

 return $_ if s/^\s*(2\d{3})\s*$/020 7457 $1/;

 return $_ if s/^\s*(8\d{3})\s*$/020 7220 $1/;

 return $_ if s/^\s*0171[-\s]+(\d{3})[-\s]+(\d{4})\s*$/020 7$1 $2/;

 return $_ if s/^\s*0181[-\s]+(\d{3})[-\s]+(\d{4})\s*$/020 8$1 $2/;

 return '';

}

http://lib.ommolketab.ir

The following macro uses the RunPerl function shown above to run the FixPhoneNumbers.pl script.
Put this code in the same template as the RunPerl function:

Sub UsePerlToFixSelectedPhoneNumber()

' Pass selected text to a Perl program

' to format/normalize phone numbers

Dim sel As Selection

Set sel = Selection

' Exit if selection doesn't include some text

If sel.Type = wdSelectionIP Then

 MsgBox "Please select some text first"

 Exit Sub

End If

' Copy selected text to clipboard for Perl

sel.Copy

' Run Perl script. If successful,

' paste in changed text from Perl

If (RunPerl(sPerlScriptToRun:="C:\FixPhoneNumbers.pl", _

 sSemFolderName:="vba_sem", _

 sngWaitMax:=5)) = True Then

 sel.Paste

Else

 MsgBox "Gave up waiting for Perl"

End If

http://lib.ommolketab.ir

End Sub

To see this macro in action, type the following four (U.K.) phone numbers into a Word document:

0171 123 6554

8000

220-8537

220 8537

Select each in turn and run the UsePerlToFixSelectedPhoneNumber macro from Tools Macro
Macros. The macro will convert them to the following format, according to the rules laid out in the
FixPhoneNumbers.pl script:

020 7123 6554

020 7220 8000

020 7220 8537

020 7220 8537

If your Perl program takes a long time to run, you may need to adjust the value passed in the
sngWaitMax argument to the RunPerl function. This example sets it to five seconds, more than

enough time for Perl to finish this little bit of text crunching.

- Sean M. Burke, Andy Bruno, and Andrew Savikas

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Chapter 10. Word 2003 XML Hacks
Introduction: Hacks #90-100

Hack 90. Get a Command-Line XML Processor

Hack 91. Create a Word Document in Notepad

Hack 92. Get the XML Toolbox

Hack 93. Use IE to Inspect WordprocessingML Documents

Hack 94. Transforming XML into a Word Document

Hack 95. Batch-Process Word Documents with XSLT

Hack 96. Standardize Documents with XSLT

Hack 97. Remove Direct Formatting with XSLT

Hack 98. Remove Linked "Char" Styles with XSLT

Hack 99. Use Google from Your Macros

Hack 100. Google Without Leaving Word

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Introduction: Hacks #90-100

Starting with Word 2003, you have a whole new way to access and process the information in Word
documents. If you select File Save As, you'll see a new entry under "Save as type" called "XML
Document." XML (Extensible Markup Language) provides a standard way to encode
information-data, documents, and everything in between-in a readable text format. It is an
interoperable, OS-independent format, which means you can now process and generate Word
documents using applications other than Microsoft Word.

All of the hacks in this chapter require either the standard or professional
version of Word 2003 for Windows.

XML lets you define your own "document type" or "vocabulary" suited to your particular application or
industry. For example, DocBook is an XML vocabulary used extensively for technical publishing.
WordprocessingML is Microsoft's XML format for Word documents. It is a lossless format, which
means it contains the same information that's stored in the .doc format, but in a plain-text XML
format rather than a binary format that only a computer can understand. Most of the hacks in this
chapter show you how you can use XML to gain powerful control over your Word documents.

Beyond some suggestive examples, this chapter will not spend a lot of time explaining
WordprocessingML or how it works (or XML in general). Instead, it focuses on the kinds of things you
can do with it, using XSLT (Extensible Stylesheet Language Transformations), a special programming
language designed for processing XML. For more complete coverage of WordprocessingML and the
other XML features of Office 2003, check out the following books, all published by O'Reilly Media:

Office 2003 XML

Learning XSLT

Learning XML

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 90 Get a Command-Line XML Processor

Here's a rundown of the tools you'll need to work with the Word XML shown throughout
this chapter.

When running these hacks, you'll need a command-line processor, an XSLT processor that runs from
a DOS command prompt.

You can read about and download Microsoft's own command-line XSLT processor, msxsl.exe, at this
URL:

http://www.microsoft.com/downloads/details.aspx?FamilyId=2FB55371-C94E-4373-B0E9-
DB4816552E41&displaylang=en

After you download msxsl.exe, move it to the C:\Windows folder so you can
run it from a DOS command prompt within any folder on your system.

The libxml project (hosted at http://www.xmlsoft.org) houses some quite useful command-line
utilities for XML processing. Native Windows binaries for each of the libxml tools are available at
http://www.zlatkovic.com/libxml.en.html. One particularly convenient tool in the libxml suite is the
xmllint command. Its --format option, which inputs an XML document and outputs a printed

version of it (adding line breaks and indentation), is an excellent tool for learning WordprocessingML
and for helping to author stylesheets that create Word documents.

Figure 10-1 shows how a WordprocessingML document looks when opened in Notepad after just
saving it from Word. The entire document is jammed onto four extremely long lines of text, making it
a tad difficult to inspect.

Figure 10-1. Word's "raw" XML output

Figure 10-2 shows a portion of the same document, after using the command xmllint --format.

http://www.microsoft.com/downloads/details.aspx?FamilyId=2FB55371-C94E-4373-B0E9-
http://www.xmlsoft.org
http://www.zlatkovic.com/libxml.en.html
http://lib.ommolketab.ir

The indenting and line breaks make for a much more readable XML file.

Figure 10-2. An easier-to-read version, created with xmllint

The libxml project also contains its own XSLT processor, with a command-line tool called xsltproc.

Other freely available XSLT processors you may want to try out include Saxon
(http://saxon.sourceforge.net) and Xalan (http://xml.apache.org/xalan-j/), both of which are Java-
based processors.

 < Day Day Up >

http://saxon.sourceforge.net
http://xml.apache.org/xalan-j/
http://lib.ommolketab.ir

 < Day Day Up >

Hack 91 Create a Word Document in Notepad

This hack demonstrates how you can use simple XML files to create Word documents.

If you save one of your Word documents-even a very simple one with just a line or two of text-in
XML format, then open it in a standard text editor such as Notepad, you'll see that the file contains
much more than just the text you typed.

Fortunately, Word can fill in most of that information if it's missing, so you don't need to be quite so
verbose when creating XML documents meant to be opened in Word.

For example, open Notepad or another standard text editor and type the following:

<?xml version="1.0"?>

<?mso-application prog?>

<w:wordDocument

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml">

 <w:body>

 <w:p>

 <w:r>

 <w:t>Hello, World!</w:t>

 </w:r>

 </w:p>

 </w:body>

</w:wordDocument>

The w:body element contains the body of the document; the w:p element stands for "paragraph," the
w:r element stands for "run," and the w:t element contains text in the document.

Now save the file as Hello.xml. If you look at the file in Windows Explorer (or from Notepad's Save As
dialog box), you'll see that it has a special icon-a combination of the icon used for XML files and the
icon used for Word documents, as shown in Figure 10-3.

http://lib.ommolketab.ir

Figure 10-3. Windows recognizes the file as an XML file meant for Word

If you then double-click the file in Windows Explorer, Word launches rather than your default XML
viewer (usually Internet Explorer). Figure 10-4 shows the Hello.xml document after Word has opened
it. If you save the file from within Word, then open it in Notepad, you'll see that Word has added
quite a bit of additional information (check out Figure 10-6 in [Hack #92] to see the information
Word inserts).

Figure 10-4. Your XML document opens in Word

The reason the file opened in Word, and not in Internet Explorer (or whatever program usually opens
XML files on your system), is the following line included in the file:

<?mso-application prog?>

http://lib.ommolketab.ir

This processing instruction (PI) associates the XML document with Word. It is also used for other
applications in Microsoft Office: the progid pseudoattribute can have Excel.Sheet and
InfoPath.Document as values, for example.

As you can see, there's nothing fancy here; Word used the Normal paragraph style to provide all the
formatting information. However, this simple example shows how you can use plain text to create
fully functional Word documents. See [Hack #94] for a more detailed example of using XML to
create Word documents.

- Evan Lenz

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 92 Get the XML Toolbox

This free add-in from Microsoft lets you inspect the XML in a Word document while the
document remains open, making it an essential tool for working with XML in Word.

The XML Toolbox is a Word plug-in that acts much like a web browser's View Source function. You
can view an entire document's WordprocessingML representation without having to save and close it
first, or you can view the underlying WordprocessingML for only a partial selection of a document.
The Toolbox also has some other handy features for streamlining custom XML solution development
in Word.

You can download and read an article about it from the following URL:

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnofftalk/html/odc_office01012004.asp

After you install the XML Toolbox, it appears as one of the choices when you select View Toolbars.
Figure 10-5 shows the toolbar open while viewing the Hello.xml file from [Hack #91] .

Figure 10-5. The XML Toolbox toolbar

http://msdn.microsoft.com/library/default.asp?url=/library/en-
http://lib.ommolketab.ir

Next, select XML Toolbox View XML Entire Document (WordML) to open a new XML Viewer
window, as shown in Figure 10-6. You can then save the XML as a separate file or copy it to the
clipboard using the button at the bottom of the Viewer window.

Figure 10-6. The XML Viewer window

http://lib.ommolketab.ir

Figure 10-6 shows the XML generated by Word from the Hello.xml file in [Hack
#91] . When you open a simple XML document, Word automatically inserts all
the other information usually stored in a Word file.

When you choose to view just the current selection, Word adds enough additional XML to make the
XML shown in the Viewer a standalone XML document. For example, if you select just a single word in
a Word document, choose XML Toolbox View XML Current Selection, and then click the "Save
to File" button in the XML Viewer, the file created will be its own, fully functional Word document.

The XML Toolbox add-in requires .NET Programmability support. If you did not
install the .NET Framework 1.1 prior to your Office 2003 installation, you may
need to reinstall Office. The Toolbox download page offers more information,
including instructions on determining if .NET support is installed on your
system.

While the XML Toolbox is an indispensable learning aid, it leaves out some things from the XML, such
as document metadata and spelling errors. When learning the ropes of WordprocessingML, you
should also spend some time viewing Word documents saved as XML from other applications, such as
a text editor or Internet Explorer.

- Evan Lenz

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 93 Use IE to Inspect WordprocessingML Documents

Internet Explorer is a great tool for reading WordprocessingML files, but without a little
hacking, it's hard to keep Word's hands off those files.

Internet Explorer's default tree-view stylesheet for XML documents provides a handy, readable way
to investigate the structure of WordprocessingML documents, as shown in Figure 10-7Figure 10-7.
However, if you try opening a WordprocessingML document in Internet Explorer (i.e., right-click the
file and select Open With Internet Explorer), IE turns right around and launches Word. Why? IE
recognizes WordprocessingML files as Word documents because of the single-line processing
instruction [Hack #91] :

Figure 10-7. A WordprocessingML file viewed in Internet Explorer

http://lib.ommolketab.ir

<?mso-application prog?>

You can use two techniques to get around this little annoyance.

The first technique simply removes the mso-application line before it opens the WordprocessingML

document in IE:

Save the Word document as XML and then close it.1.

Open the newly saved WordprocessingML document in Notepad.2.

Delete the line with the mso-application processing instruction and resave the file.3.

Internet Explorer will now display the document using its pretty XML tree view, even if Word
subsequently updates the document to include the mso-application PI. Once it's been opened in IE,

you can refresh IE to see how changes to the document from within Word affect the underlying
WordprocessingML.

The second technique involves making a temporary change in your Windows registry, obviating the
need to remove the mso-application line from each and every document you want to inspect:

Select Start Run and type regedit to open the registry editor.1.

Find the subkey named
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Office\11.0\Common\Filter\text/xml.

2.

Right-click the Word.Document string value entry and select Rename.3.

Change the name to something like Word.DocumentDISABLED.4.

The Windows registry stores important system information. Before making any
changes to the registry, set a system restore point by choosing Start All
Programs Accessories System Tools System Restore (the exact
location may be different on your system).

To restore the setting later, simply rename it again, removing the "DISABLED" part. Figure 10-8
shows the registry editor and the applicable entry being renamed.

Figure 10-8. Getting around IE's refusal to render the XML source of
WordprocessingML documents

http://lib.ommolketab.ir

With the WordprocessingML filter effectively disabled, IE will now open WordprocessingML documents
using its default XML tree-view stylesheet. Windows Explorer, however, will still continue to associate
WordprocessingML documents with Word (if you double-click a WordprocessingML file, you will always
launch Word), which is probably what you want anyway.

- Evan Lenz

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 94 Transforming XML into a Word Document

With the right XSLT stylesheet, you can quickly transform an XML document into a Word
document.

A potential killer app for WordprocessingML is the ability to publish Word documents from dynamic
XML content. In this hack, we'll look at a simple XML document that vaguely resembles HTML. The
code for this hack will transform the document into a full-fledged WordprocessingML document you
can open in Word. Type the following in a standard text editor such as Notepad and save it as
simpleDocument.xml:

<doc>

 <h1>Hello, this is my document heading</h1>

 <para>This is <emphasis>italic</emphasis>.</para>

 <h2>This is a sub-heading</h2>

 <para>This text is bold.</para>

 <para>This text is <emphasis>bold and italic</emphasis>

 .</para>

 <para><emphasis>And so is this.</emphasis>.</para>

 <para>And <emphasis>this is italic and this is both

 </emphasis>.</para>

 <para>Finally, this is bold and <emphasis>this is both

 </emphasis> and back to just bold.</para>

</doc>

The file has a fairly flat structure, including a sequence of para, h1, and h2 elements inside the root
doc element.

The code in this hack will show you how to transform the simpleDocument.xml file into a formatted
Word document. Figure 10-9 shows the automatically generated WordprocessingML document after

http://lib.ommolketab.ir

opening it in (any edition of) Word 2003. As you can see, the content of each of the different
elements is formatted differently: the text from the h1 elements is rendered in a large font and is
bold, the text from the emphasis elements is rendered in italic type, the text from the strong

elements is rendered bold, and so on.

Figure 10-9. What the result of this transformation looks like when
opened in any edition of Word 2003

10.6.1 The Code

The following code is the entire XSLT stylesheet used to render the document shown in Figure 10-9.
Each xsl:template element represents a different template rule, which applies to particular kinds of

nodes in the source document. The stylesheet matches the text of the document according to its
context, then outputs the desired paragraphs (w:p elements), runs (w:r elements), and formatting

properties.

Enter the following code in a standard text editor such as Notepad, save the file in the same folder as
simpleDoc.xml, and name it createWordDocument.xsl:

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml">

 <xsl:output indent="yes"/>

http://lib.ommolketab.ir

 <xsl:template match="/">

 <xsl:processing-instruction name="mso-application">

 <xsl:text>prog</xsl:text>

 </xsl:processing-instruction>

 <w:wordDocument>

 <xsl:attribute name="xml:space">preserve</xsl:attribute>

 <w:body>

 <xsl:apply-templates select="/doc/*"/>

 </w:body>

 </w:wordDocument>

 </xsl:template>

 <xsl:template match="h1 | h2 | para">

 <w:p>

 <xsl:apply-templates/>

 </w:p>

 </xsl:template>

 <xsl:template match="h1/text()">

 <w:r>

 <w:rPr>

 <w:sz w:val="32"/>

 <w:b/>

 </w:rPr>

 <w:t>

 <xsl:copy/>

http://lib.ommolketab.ir

 </w:t>

 </w:r>

 </xsl:template>

 <xsl:template match="h2/text()">

 <w:r>

 <w:rPr>

 <w:sz w:val="28"/>

 <w:b/>

 <w:i/>

 </w:rPr>

 <w:t>

 <xsl:copy/>

 </w:t>

 </w:r>

 </xsl:template>

 <xsl:template match="para/text()">

 <w:r>

 <w:t>

 <xsl:copy/>

 </w:t>

 </w:r>

 </xsl:template>

 <xsl:template match="emphasis/text()">

http://lib.ommolketab.ir

 <w:r>

 <w:rPr>

 <w:i/>

 </w:rPr>

 <w:t>

 <xsl:copy/>

 </w:t>

 </w:r>

 </xsl:template>

 <xsl:template match="strong/text()">

 <w:r>

 <w:rPr>

 <w:b/>

 </w:rPr>

 <w:t>

 <xsl:copy/>

 </w:t>

 </w:r>

 </xsl:template>

 <xsl:template match="emphasis/strong/text() | strong/emphasis/text()"

 priority="1">

 <w:r>

 <w:rPr>

 <w:i/>

http://lib.ommolketab.ir

 <w:b/>

 </w:rPr>

 <w:t>

 <xsl:copy/>

 </w:t>

 </w:r>

 </xsl:template>

</xsl:stylesheet>

Let's pick out a couple of template rules, and I'll show what's going on in the code. The second
template rule of the stylesheet matches three different kinds of elements: h1, h2, and para. When
any of these elements are encountered (in the context of XSLT's automatic recursive descent), a w:p

element is created, effectively turning each of these elements into a vanilla Word paragraph:

<xsl:template match="h1 | h2 | para">

 <w:p>

 <xsl:apply-templates/>

 </w:p>

</xsl:template>

The xsl:apply-templates instruction causes the recursive descent of the source document to

continue, allowing other template rules to fire when they match an input node. For example, this
template rule matches text inside an emphasis element:

<xsl:template match="emphasis/text()">

 <w:r>

 <w:rPr>

 <w:i/>

 </w:rPr>

 <w:t>

 <xsl:copy/>

http://lib.ommolketab.ir

 </w:t>

 </w:r>

</xsl:template>

The most important element in this template rule is w:i. It causes this particular run of text to be
rendered in italics. The w:t element, which stands for "text," functions as a container for the text in
this run. The xsl:copy instruction copies the text node that's a child of the emphasis element in our

source document straight to the result tree without modification.

10.6.2 Running the Hack

To run this hack, enter the following at a DOS command prompt within the folder that holds the
simpleDocument.xml and createWordDocument.xsl files:

> msxsl simpleDocument.xml createWordDocument.xsl -o output.xml

A new file, output.xml, is created. Double-click the new file from Windows Explorer, and voila! You'll
see the document shown in Figure 10-9.

10.6.3 Hacking the Hack

The stylesheet listed above creates a Word document with paragraphs that contain runs with direct
formatting applied (bold and italic). The stylesheet listed below produces an identical-looking
document to the one above, but it uses Word's styles instead. You must define the styles up front
within your document, inside the w:styles element (naturally). The new parts of the stylesheet are

shown in bold.

Enter the following into a standard text editor such as Notepad and save it in the same folder as the
other files from this hack. Name it createStyledWordDoc.xsl.

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml">

 <xsl:output indent="yes"/>

 <xsl:template match="/">

http://lib.ommolketab.ir

 <xsl:processing-instruction name="mso-application">

 <xsl:text>prog</xsl:text>

 </xsl:processing-instruction>

 <w:wordDocument>

 <xsl:attribute name="xml:space">preserve</xsl:attribute>

 <w:styles>

 <w:style w:style w:type="paragraph">

 <w:name w:val="Heading 1"/>

 <w:rPr>

 <w:sz w:val="32"/>

 <w:b/>

 </w:rPr>

 </w:style>

 <w:style w:style w:type="paragraph">

 <w:name w:val="Heading 2"/>

 <w:rPr>

 <w:sz w:val="28"/>

 <w:b/>

 <w:i/>

 </w:rPr>

 </w:style>

 <w:style w:style w:type="character">

 <w:name w:val="Italic"/>

 <w:rPr>

 <w:i/>

 </w:rPr>

http://lib.ommolketab.ir

 </w:style>

 <w:style w:style w:type="character">

 <w:name w:val="Bold"/>

 <w:rPr>

 <w:b/>

 </w:rPr>

 </w:style>

 <w:style w:style w:type="character">

 <w:name w:val="Bold and Italic"/>

 <w:rPr>

 <w:b/>

 <w:i/>

 </w:rPr>

 </w:style>

 </w:styles>

 <w:body>

 <xsl:apply-templates select="/doc/*"/>

 </w:body>

 </w:wordDocument>

 </xsl:template>

 <xsl:template match="h1">

 <w:p>

 <w:pPr>

 <w:pStyle w:val="h1"/>

 </w:pPr>

http://lib.ommolketab.ir

 <xsl:apply-templates/>

 </w:p>

 </xsl:template>

 <xsl:template match="h2">

 <w:p>

 <w:pPr>

 <w:pStyle w:val="h2"/>

 </w:pPr>

 <xsl:apply-templates/>

 </w:p>

 </xsl:template>

 <xsl:template match="para">

 <w:p>

 <xsl:apply-templates/>

 </w:p>

 </xsl:template>

 <xsl:template match="h1/text() | h2/text() | para/text()">

 <w:r>

 <w:t>

 <xsl:copy/>

 </w:t>

 </w:r>

 </xsl:template>

http://lib.ommolketab.ir

 <xsl:template match="emphasis/text()">

 <w:r>

 <w:rPr>

 <w:rStyle w:val="emphasis"/>

 </w:rPr>

 <w:t>

 <xsl:copy/>

 </w:t>

 </w:r>

 </xsl:template>

 <xsl:template match="strong/text()">

 <w:r>

 <w:rPr>

 <w:rStyle w:val="strong"/>

 </w:rPr>

 <w:t>

 <xsl:copy/>

 </w:t>

 </w:r>

 </xsl:template>

 <xsl:template match="emphasis/strong/text() | strong/emphasis/text()"

 priority="1">

 <w:r>

http://lib.ommolketab.ir

 <w:rPr>

 <w:rStyle w:val="emphasisAndStrong"/>

 </w:rPr>

 <w:t>

 <xsl:copy/>

 </w:t>

 </w:r>

 </xsl:template>

</xsl:stylesheet>

An explanation of the full details of this stylesheet is beyond the scope of this book, but in the context
of this hack the important thing to know is that the w:rPr ("run properties") element now contains a

reference to a style:

<xsl:template match="emphasis/text()">

 <w:r>

 <w:rPr>

 <w:rStyle w:val="emphasis"/>

 </w:rPr>

 <w:t>

 <xsl:copy/>

 </w:t>

 </w:r>

</xsl:template>

In this case, the referenced style ID is "emphasis," which we declared earlier in the document:

<w:style w:style w:type="character">

 <w:name w:val="Italic"/>

http://lib.ommolketab.ir

 <w:rPr>

 <w:i/>

 </w:rPr>

</w:style>

The formatting effect is the same: text inside emphasis elements shows up as italic in the result. The

difference is that now it is by way of a character style named Italic, rather than via direct formatting.

- Evan Lenz

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 95 Batch-Process Word Documents with XSLT

This hack shows you how to use XSLT to compile a report containing information from
several different WordprocessingML documents.

Thanks to WordprocessingML and the powers of XSLT, it is now straightforward to perform bulk
processing on multiple Word documents. This particular hack is less about modifying the documents
themselves (that's covered in [Hack #96]) than about generating a report that aggregates
information from multiple Word documents. In this case, you want to extract and total all of the Word
comments from a variable number of input documents. The resulting report format is just another
Word document.

Say you have five Word documents in WordprocessingML format in a folder called C:\Word
Documents. The files are named as follows:

word1.xml

word2.xml

word3.xml

word4.xml

word5.xml

Each file contains multiple comments from multiple reviewers, and you'd like a list of all the
comments from all the files (see Figure 10-10).

Figure 10-10. Aggregating comments from multiple Word documents via
XSLT

http://lib.ommolketab.ir

To get started, enter the following code in a standard text editor such as Notepad, save it in the
same folder as the files with the comments, and name it file-list.xml:

<input-files>

 <file>word1.xml</file>

 <file>word2.xml</file>

 <file>word3.xml</file>

 <file>word4.xml</file>

 <file>word5.xml</file>

</input-files>

To change the names of the files to be processed, just add to, modify, or delete the file elements.

10.7.1 The Code

To create the report, enter this code in a standard text editor such as Notepad, save it in the same
folder as the other files, and name it bulk-report.xsl:

http://lib.ommolketab.ir

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"

 xmlns:aml="http://schemas.microsoft.com/aml/2001/core">

 <xsl:variable name="input-docs" select="document(/input-files/file)"/>

 <xsl:variable name="all-comments"

 select="$input-docs//aml:annotation[@w:type='Word.Comment']"/>

 <xsl:template match="/">

 <xsl:processing-instruction name="mso-application">

 <xsl:text>prog</xsl:text>

 </xsl:processing-instruction>

 <w:wordDocument>

 <xsl:attribute name="xml:space">preserve</xsl:attribute>

 <w:body>

 <w:p>

 <w:r>

 <w:rPr>

 <w:sz w:val="32"/>

 </w:rPr>

 <w:t>Total # of files processed: </w:t>

 <w:t>

 <xsl:value-of select="count(input-files/file)"/>

 </w:t>

http://lib.ommolketab.ir

 <w:br/>

 <w:t>Total # of comments: </w:t>

 <w:t>

 <xsl:value-of select="count($all-comments)"/>

 </w:t>

 </w:r>

 </w:p>

 <w:p/>

 <xsl:for-each select="input-files/file">

 <w:p>

 <w:r>

 <w:rPr>

 <w:sz w:val="28"/>

 </w:rPr>

 <w:t>File: <xsl:value-of select="."/></w:t>

 </w:r>

 </w:p>

 <xsl:apply-templates select="document(.)//aml:annotation

 [@w:type='Word.Comment']"/>

 </xsl:for-each>

 </w:body>

 </w:wordDocument>

 </xsl:template>

 <xsl:template match="aml:annotation">

 <w:p>

http://lib.ommolketab.ir

 <w:r>

 <w:t>From <xsl:value-of select="@aml:author"/>:</w:t>

 </w:r>

 </w:p>

 <xsl:copy-of select="aml:content/*"/>

 <w:p/>

 </xsl:template>

</xsl:stylesheet>

First, you create a few lines that look like headers, containing the total number of files processed and
the total number of comments found:

<w:t>Total # of files processed: </w:t>

<w:t>

 <xsl:value-of select="count(input-files/file)"/>

</w:t>

<w:br/>

<w:t>Total # of comments: </w:t>

<w:t>

 <xsl:value-of select="count($all-comments)"/>

</w:t>

Next, you iterate through each of the file elements in the source document, outputting a

pseudoheading to group the results by filename:

<xsl:for-each select="input-files/file">

 <w:p>

 <w:r>

 <w:rPr>

http://lib.ommolketab.ir

 <w:sz w:val="28"/>

 </w:rPr>

 <w:t>File: <xsl:value-of select="."/></w:t>

 </w:r>

 </w:p>

 ...

</xsl:for-each>

The w:sz (size) element and its w:val attribute measure font size in half points
rather than full points-hence, <w:sz w:val="28"/> for a font size of 14

points.

With the help of XSLT's document function, you then grab all the aml:annotation elements of the
type Word.Comment from each input document:

<xsl:apply-templates select="document(.)//aml:annotation

 [@w:type='Word.Comment']"/>

And for each comment, you display who authored the comment, followed by the text of the comment
itself in a subsequent paragraph:

<xsl:template match="aml:annotation">

 <w:p>

 <w:r>

 <w:t>From <xsl:value-of select="@aml:author"/>:</w:t>

 </w:r>

 </w:p>

 xsl:copy-of select="aml:content/*"/>

 <w:p/>

</xsl:template>

http://lib.ommolketab.ir

10.7.2 Running the Hack

To run this hack, enter the following at a DOS command prompt within the same folder as the files:

> msxsl file-list.xml bulk-report.xsl -o comment-report.xml

If you double-click the newly created file, comment-report.xml, you'll see a document like the one
shown in Figure 10-10.

- Evan Lenz

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 96 Standardize Documents with XSLT

Before you print or distribute a document, you'll often want to put it into a consistent
format without any extraneous items, such as comments left over from editing. This hack
shows you how to use XSLT to scrub a document clean.

The previous examples showed you how to generate Word documents [Hack #94] and extract
information from Word documents [Hack #95] . This hack shows you how to use XSLT to modify
Word documents. Actually, in reality, XSLT never modifies anything; it only creates new documents.
But if a new document varies only slightly from the original-and if you overwrite the original with the
new one-then for all practical purposes, you've effectively modified the document, right? That is the
approach taken here with XSLT.

The XSLT stylesheet in this hack strips out a number of different pieces of information: Author and
Title document properties, custom document properties, comments, spelling and grammatical errors,
deletions, formatting changes, and insertion marks. It even resets the document's view and zoom
percentage (to Normal at 100%).

10.8.1 The Code

Enter the following code in a standard text editor such as Notepad and save it as cleanup.xsl:

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"

 xmlns:o="urn:schemas-microsoft-com:office:office"

 xmlns:aml="http://schemas.microsoft.com/aml/2001/core">

 <!-- By default, recursively copy everything through -->

 <xsl:template match="@*|node()">

 <xsl:copy>

 <xsl:apply-templates select="@*|node()"/>

http://lib.ommolketab.ir

 </xsl:copy>

 </xsl:template>

 <!-- Normalize document's view and zoom percentage (Normal at 100%) -->

 <xsl:template match="w:docPr">

 <xsl:copy>

 <w:view w:val="normal"/>

 <w:zoom w:percent="100"/>

 <xsl:apply-templates select="*[not(self::w:view or self::w:zoom)]"/>

 </xsl:copy>

 </xsl:template>

 <!-- Remove all but the Author and Title document properties -->

 <xsl:template match="o:DocumentProperties">

 <xsl:copy>

 <xsl:copy-of select="o:Author|o:Title"/>

 </xsl:copy>

 </xsl:template>

 <!-- Remove all custom document properties -->

 <xsl:template match="o:CustomDocumentProperties"/>

 <!-- Remove all comments and comment references -->

 <xsl:template match="aml:annotation[starts-with(@w:type,

 'Word.Comment')]"/>

http://lib.ommolketab.ir

 <!-- Remove all spelling and grammatical errors -->

 <xsl:template match="w:proofErr"/>

 <!-- Remove all deletions -->

 <xsl:template match="aml:annotation[@w:type='Word.Deletion']"/>

 <!-- Remove all formatting changes -->

 <xsl:template match="aml:annotation[@w:type='Word.Formatting']"/>

 <!-- Remove all insertion marks -->

 <xsl:template match="aml:annotation[@w:type='Word.Insertion']">

 <!-- Process content, but do not copy -->

 <xsl:apply-templates select="aml:content/*"/>

 </xsl:template>

</xsl:stylesheet>

The stylesheet uses a process known as identity transformation. The very first template rule in the
stylesheet is the most important one:

 <xsl:template match="@*|node()">

 <xsl:copy>

 <xsl:apply-templates select="@*|node()"/>

 </xsl:copy>

 </xsl:template>

It may seem cryptic, but it is powerful. An identity transformation recursively copies all nodes
through to the output, unchanged. At least, that is the default behavior. If you didn't include any
other template rules in the document, the resulting document would be identical to the source
document. However, because they have higher priority (a technical term in XSLT), the other template
rules override the default copying behavior for certain nodes in the source document. If such a

http://lib.ommolketab.ir

template rule is empty, the node that triggers that template rule effectively gets stripped out from
the result. (Technically, it is merely excluded from being copied to the result, but since everything
else gets copied through, it has the appearance of being stripped.) For example, the following
template rule matches an o:CustomDocumentProperties element:

 <!-- Remove all custom document properties -->

 <xsl:template match="o:CustomDocumentProperties"/>

Rather than copying the element to the result, this template rule does nothing, thereby effectively
stripping the element from the document (if it was there in the first place).

10.8.2 Running the Hack

To run this hack, create a simple Word document that contains some comments and spelling or
grammatical errors in Web Layout view (see Figure 10-11). Save the file as dirty.xml in the same
folder as the cleanup.xsl file. Then type the following at a DOS command prompt in the same folder:

> msxsl dirty.xml cleanup.xsl -o clean.xml

Figure 10-11. Document with lots of editing cruft (dirty.xml)

After you apply the stylesheet, you'll easily be able to see the changes in the new file, clean.xml
(shown in Figure 10-12).

Figure 10-12. The same document with all the cruft removed (clean.xml)

http://lib.ommolketab.ir

All of the tracked changes and comments have been removed, and the document view has been set
to Normal view at 100% zoom. The file still contains a misspelled word, but it is no longer annotated
as such. Likewise, the squiggly line for the grammar error has been stripped out.

10.8.3 Hacking the Hack

Using XSLT to modify Word documents is not just a hare-brained idea we thought up. If you have
Office 2003 Professional or the standalone version of Word 2003, you can invoke this cleanup process
right from within Word when you save your document.

Open dirty.xml in Word, select File Save As, and choose XML Document from the "Save as type"
drop-down menu. Next, check the "Apply transform" box, click the Transform button, and then select
cleanup.xsl (see Figure 10-13). Word applies the XSLT transformation, which always creates a new
document, and then immediately overwrites the original file (dirty.xml, in this case) with the new
document.

Figure 10-13. The "Apply transform" option for invoking an XSLT
stylesheet on save

http://lib.ommolketab.ir

If you run a different edition of Word 2003, such as the version included with
Office 2003 Basic, you won't see the extra checkbox options in the "Save As"
dialog, as shown earlier.

- Evan Lenz

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 97 Remove Direct Formatting with XSLT

Strip out non-style-based formatting from Word documents.

A common "cleanup" task in Word is to remove any formatting from a document that hasn't been
applied with a style. It's a bit of a chore within Word, but it turns out to be remarkably concise in
XSLT.

10.9.1 The Code

Enter the following code in a standard text editor such as Notepad and save it as
removeDirectFormatting.xsl:

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml">

 <!-- By default, recursively copy everything through -->

 <xsl:template match="@*|node()">

 <xsl:copy>

 <xsl:apply-templates select="@*|node()"/>

 </xsl:copy>

 </xsl:template>

 <!-- Remove all direct paragraph formatting -->

 <xsl:template match="w:p/w:pPr/*[not(self::w:pStyle)]"/>

 <!-- Remove all direct run formatting -->

http://lib.ommolketab.ir

 <xsl:template match="w:r/w:rPr/*[not(self::w:rStyle)]"/>

</xsl:stylesheet>

As in [Hack #96], this hacks uses an XSLT identity transformation. The first template rule copies all
nodes that don't trigger the other two template rules. The other two are both empty, which means
that nodes that match them will effectively be stripped from the document. In this case, there are
two particular contexts in which you want to exclude elements: inside the w:pPr and w:rPr
elements-particularly where they occur as children of w:p and w:r elements, respectively.

Child elements of w:pPr and w:rPr set various formatting properties. There is one special child of
each, however: the w:pStyle and w:rStyle elements are used not to apply direct formatting, but

rather to associate the current paragraph or run with a paragraph or character style, respectively.
Thus, these template rules are careful to avoid stripping out the w:pStyle and w:rStyle elements.

10.9.2 Running the Hack

To run this hack on a document named formatted.xml located in the same folder as the
removeDirectFormatting.xsl stylesheet, type the following at a DOS command prompt in the same
folder:

>msxsl formatted.xml removeDirectFormatting.xsl -o no-direct-formatting.xml

- Evan Lenz

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 98 Remove Linked "Char" Styles with XSLT

This hack shows you how to clean out the hidden, linked character styles Word likes to
spontaneously create with a dose of XSLT.

[Hack #55] showed how to use VBA to remove unwanted linked character styles from your Word
documents. Word 2003 gives you another option: XSLT.

To see how this works, create a new document and deliberately create a linked style, as described in
[Hack #55] . Save the file as linkedCharStyle.xml.

10.10.1 The Code

Enter the following code in a standard text editor such as Notepad, save it as
removeLinkedCharStyles.xsl, and then put it in the same folder as linkedCharStyle.xml:

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml">

 <!-- By default, recursively copy everything through -->

 <xsl:template match="@*|node()">

 <xsl:copy>

 <xsl:apply-templates select="@*|node()"/>

 </xsl:copy>

 </xsl:template>

 <!-- Remove all linked character styles -->

 <xsl:template match="w:style[@w:type='character' and w:link]"/>

http://lib.ommolketab.ir

 <!-- Remove the w:link element from linked paragraph styles -->

 <xsl:template match="w:link"/>

 <!-- Remove w:rStyle elements that refer to linked character styles -->

 <xsl:template match="w:rStyle[@w:val = /w:wordDocument/w:styles/w:style

 [@w:type='character' and w:link]/@w:styleId]"/>

</xsl:stylesheet>

The first template rule is the identity transformation, discussed in [Hack #97] . The rest of the
template rules override the default copying behavior of the first template rule. The first of these rules
strips out all linked character styles. A character-style definition is easily identified as a w:style
element that has a w:type attribute whose value is character and that contains a w:link element:

 <xsl:template match="w:style[@w:type='character' and w:link]"/>

In addition to stripping out all the linked character styles, you need to strip out otherwise dangling
references to them. These occur in two places. First, you strip out the remaining w:link elements

(inside linked paragraph-style definitions):

 <xsl:template match="w:link"/>

Then, you strip out all the document's w:rStyle elements that refer to linked character styles:

 <xsl:template match="w:rStyle[@w:val = /w:wordDocument/w:styles/w:style

 [@w:type='character' and w:link]/@w:styleId]"/>

This pattern is a little more complex, but it is pretty straightforward when you break it down into its
respective parts. If you translated this pattern into English, it would read something like this:

Match all w:rStyle elements whose w:val attribute is equal to the w:styleId attribute of any
w:style element that has both a w:link element and a w:type attribute equal to character.

You could replace the last part of this translation (beginning with the word "any") with "any linked
character style," thereby reducing the translation to:

Match all w:rStyle elements whose w:val attribute is equal to the w:styleId attribute of any

linked character style.

http://lib.ommolketab.ir

And since the w:styleId attribute is precisely what the w:rStyle element refers to in order to

associate a run with a particular character style, you can further reduce the translation to our top-
level intent: "Match all references to linked character styles." When a matching w:rStyle element

triggers the rule, nothing happens, thereby excluding the linked character-style reference from the
result.

10.10.2 Running the Hack

To run this hack, type the following at a DOS command prompt in the same folder as the files you
created. Though shown as two lines, you should enter the following on a single line:

>msxsl linkedCharStyle.xml removeLinkedCharStyles.xsl

-o noLinkedCharStyle.xml

Figure 10-14 shows a Word document with a linked character style ("Heading 1 Char").

Figure 10-14. A document with a linked Char style

Figure 10-15 shows you what the document looks like after you apply the
removeLinkedCharStyles.xsl stylesheet. It removes the Heading 1 Char style and associates the
second paragraph of the document (including the heading) with the default paragraph font (i.e., no
particular character style).

Figure 10-15. The same document, sans linked Char style

http://lib.ommolketab.ir

10.10.3 Hacking the Hack

The first example in this hack showed how to remove all linked character styles and style references.
Now you'll supplement the stylesheet with a few more rules to delete the zombie "Char" styles that
used to be linked styles.

This modification will also remove any character styles (and corresponding usages) whose names
contain the string " Char" (including the leading space), much like the VBA shown in [Hack #55] .
Just a couple of extra template rules are necessary:

<xsl:template match="w:style[contains(w:name,' Char')]"/>

<xsl:template match="w:rStyle[@w:styleId =

 /w:wordDocument/w:styles/w:style[

 contains(w:name,' Char')]/@w:styleId"/>

Again, we effectively strip out the styles and their corresponding references by doing nothing when
these template rules are invoked. This example removes any style that has the string " Char" in the
style name.

- Evan Lenz

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 99 Use Google from Your Macros

This hack shows you how to access Google from your Word macros.

With a bit of hacking, you can use the ubiquitous Google search engine without ever leaving Word.
This hack shows you a simple macro that lets you input a new search query, then displays the first 10
sites that Google says match your query.

10.11.1 Setting Up the Google Web Service

While Google's web site is a model of simplicity, it takes a bit of work to get to Google from your
Word macros. Here are the steps you'll need to take.

First, install the free Microsoft Office 2003 Web Services Toolkit 2.01. Search for it on the
Microsoft web site (http://www.microsoft.com/downloads/) or Google it.

1.

Next, create a new template to hold your Google-related macros. The Web Services Toolkit will
create some code so you can work with Google. A separate template will help you keep track of
the code. Create a new, blank document and save it as a document template named
GoogleTools.dot.

2.

From your new GoogleTools.dot template, select Tools Macro Visual Basic Editor. The Web
Services Toolkit will have added a new item called Web Service References on the Tools menu,
as shown in Figure 10-16.

Figure 10-16. Creating a new reference for accessing Google

3.

4.

http://www.microsoft.com/downloads/
http://lib.ommolketab.ir

Select Tools Web Service References to display the dialog shown in Figure 10-17. Enter
"google" in the Keywords field and click the Search button. When the web service is found,
check the box next to it and click the Add button.

Figure 10-17. Locating the Google search web service

When you click the Add button, you'll notice a flurry of activity on your screen as the Web
Services Toolkit installs several new class modules into your template project, as shown in
Figure 10-18.

4.

Figure 10-18. The code created by the Web Services Toolkit

http://lib.ommolketab.ir

The Web Services Toolkit creates the code, but it actually comes from Google
using WSDL (Web Services Description Language). The Toolkit interprets this
information and generates the VBA code needed to access the web service (in
this case, Google).

10.11.2 Getting a Google API Key

To access Google's Application Programming Interface (API) from within your macros (or from any
program or script), you first need a developer's key-a unique string assigned by Google to identify
you when you make queries from within a program. You can get more information, along with a free
developer's key, from http://www.google.com/apis/.

For full-on coverage of the Google API, check out Google Hacks (O'Reilly).

Once you've signed up for a developer's account, Google emails you a lengthy string of characters
like the following:

12BuCK13mY5h0E/34KN0cK@ttH3Do0R

In the macro code shown in this hack, replace your_key_here with the actual key you got from

Google.

10.11.3 The Code

With your GoogleTools.dot template open, go to the Visual Basic Editor, choose GoogleTools in the
Project Explorer, and then select Insert Module to create a new code module.

Insert the following code in the new module:

Sub SimpleGoogleSearch()

Dim vSearchResults As Variant

Dim v As Variant

Dim sResults As String

Dim sGoogleAPIKey As String

Dim sSearchQuery As String

http://www.google.com/apis/
http://lib.ommolketab.ir

Dim lStart As Long

Dim lMaxResults As Long

Dim bFilter As Boolean

Dim sRestrict As String

Dim bSafeSearch As Boolean

Dim sLanguageRestrict As String

Dim sInputEncoding As String

Dim sOutputEncoding As String

Dim google_search As New clsws_GoogleSearchService

sGoogleAPIKey = "your_key_here"

lStart = 1

lMaxResults = 10

bFilter = True

sRestrict = ""

bSafeSearch = False

sLanguageRestrict = ""

sInputEncoding = "UTF-8"

sOutputEncoding = "UTF-8"

sSearchQuery = InputBox("Enter a Google query")

If Len(sSearchQuery) = 0 Then Exit Sub

vSearchResults = google_search.wsm_doGoogleSearch(_

 str_key:=sGoogleAPIKey, _

 str_q:=sSearchQuery, _

http://lib.ommolketab.ir

 lng_start:=lStart, _

 lng_maxResults:=lMaxResults, _

 bln_filter:=bFilter, _

 str_restrict:=sRestrict, _

 bln_safeSearch:=bSafeSearch, _

 str_lr:=sLanguageRestrict, _

 str_ie:=sInputEncoding, _

 str_oe:=sOutputEncoding).resultElements

On Error Resume Next

For Each v In vSearchResults

 sResults = sResults & v.URL & vbCr

Next v

If Len(sResults) <> 0 Then

 MsgBox "Found the following sites: " & vbCr & sResults

Else

 MsgBox "Sorry, no results found"

End If

End Sub

Note the line:

Dim google_search As New clsws_GoogleSearchService

This line creates a new instance of one of the classes that the Web Services Toolkit installed in your
template.

The call to the google_search object is a bit complex. Ten parameters are required for a Google API

call. The following list, adapted from Google Hacks, describes the parameters:

http://lib.ommolketab.ir

str_key (key)

This is where you put your Google API developer's key. Without a key, the query won't get
very far.

str_q (query)

This is your query, composed of keywords, phrases, and special syntaxes.

lng_start (start)

Also known as the offset, this value specifies at what result to start counting when determining
which 10 results to return. If this number were 16, the Google API would return results 16-25;
if 300, it would return results 300-309 (assuming, of course, that your query found that many
results). This is what's known as a "zero-based index"; counting starts at 0, not 1. The first
result is result 0, and the 999th is 998. It's a little odd, admittedly, but you get used to it
quickly-especially if you go on to do much programming. Acceptable values are 0 to 999

because Google returns only up to a thousand results for a query.

lng_maxResults (maximum results)

This integer specifies the number of results you'd like the API to return. The API returns results
in batches of up to 10, so acceptable values are 1 through 10.

bln_filter (filter)

You might think this parameter concerns the SafeSearch filter for adult content. It doesn't. This
Boolean value specifies whether your results go through automatic query filtering, removing
near-duplicate content (i.e., where titles and snippets are very similar) and multiple (more than
two) results from the same host or site. With filtering enabled, only the first two results from
each host are included in the result set.

str_restrict (restrict)

No, this one doesn't have anything to do with SafeSearch either. It allows for restricting your
search to one of Google's topical searches or to a specific country. Google has four topic
restricts: U.S. Government (unclesam), Linux (linux), Macintosh (mac), and FreeBSD (bsd).

You'll find the complete country list in the Google Web API documentation. To leave your
search unrestricted, leave this option blank (usually signified by empty quotation marks, "").

http://lib.ommolketab.ir

bln_safeSearch (safe search)

Here's the SafeSearch filtering option. This Boolean specifies whether results returned will be
filtered for questionable (read: adult) content.

str_lr (language restrict)

This one's a bit tricky. Google has a list of languages in its API documentation to which you can
restrict search results, or you can simply leave this option blank and have no language
restrictions.

There are several ways you can restrict to a language. First, you can simply include a language
code. If you wanted to restrict results to English, for example, you'd use lang_en. But you can
also restrict results to more than one language, separating each language code with a | (pipe),
signifying OR. lang_en|lang_de, for example, constrains results to only those in English or

German.

You can omit languages from results by prepending them with a minus sign (-). The phrase -
lang_en returns all results but those in English.

str_ie (input encoding)

This stands for "input encoding," allowing you to specify the character encoding used in the
query you're feeding the API. Google's documentation says, "Clients should encode all request
data in UTF-8 and should expect results to be in UTF-8." In the first iteration of Google's API
program, the Google API documentation offered a table of encoding options (latin1,
cyrillic, etc.), but now everything is UTF-8. In fact, requests for anything other than UTF-8

are summarily ignored.

str_oe (output encoding)

This stands for "output encoding." As with input encoding, everything's UTF-8.

10.11.4 Running the Hack

To run the hack, close the Visual Basic Editor and return to Word. Select Tools Macro Macros,
choose SimpleGoogleSearch, and click the Run button. You'll be prompted with the dialog box shown

in Figure 10-19

Figure 10-19. Doing a simple Google search from a macro

http://lib.ommolketab.ir

When you click the OK button, a new dialog appears, reporting the URLs Google found to match your
query (Figure 10-20).

Figure 10-20. The sites found by Google displayed in Word

This simple example will help you learn the Google API from Visual Basic and get you ready for your
own hacking projects. For a more elaborate example, see [Hack #100] .

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Hack 100 Google Without Leaving Word

This hack shows you how to search Google from within Word and display the results on
the Task Pane.

You probably use Google a few dozen times a day. If you work in Word, this means switching over to
your web browser, checking the results, and then going back to Word. Once you get Google working
from a macro [Hack #99], this hack will show how to display the search results in the New
Document Task Pane [Hack #9].

This hack uses a configuration file [Hack #67] to store data and some code that uses VBScript
regular expressions [Hack #82] . Before you dive in, check out those hacks.

10.12.1 The Code

Open the GoogleTools.dot template you created when you installed the Web Services Toolkit, as
discussed in [Hack #99] . Select Tools Macro Macros and insert the following code, which
consists of a procedure named GoogleToTaskPane and a supporting function named StripHTML.

Sub GoogleToTaskPane()

Dim vSearchResults As Variant

Dim v As Variant

Dim sResults As String

Dim sEntryName As String

Dim sEntryURL As String

Dim sLogFile As String

Dim sSearchDisplayTitle As String

Dim sSearchURL As String

Dim i As Integer

' Google API variables

http://lib.ommolketab.ir

Dim sGoogleAPIKey As String

Dim sSearchQuery As String

Dim lStart As Long

Dim lMaxResults As Long

Dim bFilter As Boolean

Dim sRestrict As String

Dim bSafeSearch As Boolean

Dim sLanguageRestrict As String

Dim sInputEncoding As String

Dim sOutputEncoding As String

Dim google_search As New clsws_GoogleSearchService

' Initialize variables

sLogFile = "C:\google_taskpane.ini"

sGoogleAPIKey = "your_key_here"

lStart = 1

lMaxResults = 10

bFilter = True

sRestrict = ""

bSafeSearch = False

sLanguageRestrict = ""

sInputEncoding = "UTF-8"

sOutputEncoding = "UTF-8"

' Hide the Task Pane

Application.CommandBars("Task Pane").Visible = False

http://lib.ommolketab.ir

' Remove existing items from New Document Task Pane

For i = 0 To 9

 sEntryURL = System.PrivateProfileString(_

 FileName:=sLogFile, _

 Section:="GoogleTaskPane", _

 Key:="URLName" & CStr(i))

 sEntryName = System.PrivateProfileString(_

 FileName:=sLogFile, _

 Section:="GoogleTaskPane", _

 Key:="EntryName" & CStr(i))

 If Len(sEntryURL) > 0 Then

 Application.NewDocument.Remove _

 FileName:=sEntryURL, _

 Section:=msoBottomSection, _

 DisplayName:=sEntryName, _

 Action:=msoOpenFile

 End If

Next i

' Get new search query

sSearchQuery = InputBox("Enter a Google query:")

If Len(sSearchQuery) = 0 Then Exit Sub

' Get search results

vSearchResults = google_search.wsm_doGoogleSearch(_

http://lib.ommolketab.ir

 str_key:=sGoogleAPIKey, _

 str_q:=sSearchQuery, _

 lng_start:=lStart, _

 lng_maxResults:=lMaxResults, _

 bln_filter:=bFilter, _

 str_restrict:=sRestrict, _

 bln_safeSearch:=bSafeSearch, _

 str_lr:=sLanguageRestrict, _

 str_ie:=sInputEncoding, _

 str_oe:=sOutputEncoding).resultElements

' Check for no results

On Error Resume Next

v = UBound(vSearchResults)

If Err.Number = 9 Then

 MsgBox "No results found"

 Exit Sub

ElseIf Err.Number <> 0 Then

 MsgBox "An error has occurred: " & _

 Err.Number & vbCr & _

 Err.Description

 Exit Sub

End If

' Add each result to the Task Pane

' and to the log file

http://lib.ommolketab.ir

i = 0

For Each v In vSearchResults

 sSearchURL = v.URL

 sSearchDisplayTitle = StripHTML(v.title)

 Application.NewDocument.Add _

 FileName:=sSearchURL, _

 Section:=msoBottomSection, _

 DisplayName:=sSearchDisplayTitle, _

 Action:=msoOpenFile

 System.PrivateProfileString(_

 FileName:=sLogFile, _

 Section:="GoogleTaskPane", _

 Key:="URLName" & CStr(i)) = sSearchURL

 System.PrivateProfileString(_

 FileName:=sLogFile, _

 Section:="GoogleTaskPane", _

 Key:="EntryName" & CStr(i)) = sSearchDisplayTitle

 i = i + 1

Next v

' Show the New Document Task Pane

CommandBars("Menu Bar").Controls("File").Controls("New...").Execute

End Sub

http://lib.ommolketab.ir

Function StripHTML(str As String) As String

Dim re As Object

Dim k As Long

On Error Resume Next

Set re = GetObject(Class:="VBScript.RegExp")

If Err.Number = 429 Then

 Set re = CreateObject(Class:="VBScript.RegExp")

 Err.Clear

ElseIf Err.Number <> 0 Then

 MsgBox Err.Number & vbCr & Err.Description

End If

' Check for common character entities by ASCII value

For k = 33 To 255

 re.Pattern = "&#" & k & ";"

 str = re.Replace(str, Chr$(k))

Next k

' Remove common HTML tags

re.Pattern = "<[^>]+?>|&[^;]+?;"

re.Global = True

str = re.Replace(str, vbNullString)

StripHTML = str

End Function

http://lib.ommolketab.ir

Make sure you replace the value your_key_here with your Google developer's

key.

This hack uses two parts of the Google search results: the URLs and titles. Google formats the search
result title as HTML, but you can put only plain text in the Task Pane. The StripHTML function uses a
few simple VBScript regular expressions to strip out common HTML tags (such as) and replace
character entities (such as @) with their ASCII character equivalents ([Hack #30]).

The StripHTML function uses late binding, as discussed in [Hack #84] .

It can be tricky to remove files from the Task Pane using VBA unless you know their exact names, as
discussed in [Hack #9]. This macro, however, stores the search results in a .ini file. Thus, the next
time you do a search, you can easily remove the previous results. The macro uses a file named
C:\google_taskpane.ini, which is defined in the GoogleToTaskPane procedure.

10.12.2 Running the Hack

After you insert the code, switch back to Word. Next, select Tools Macro Macros, choose
GoogleToTaskPane, and click the Run button to display the dialog shown in Figure 10-21.

Figure 10-21. Entering a Google search that will display in the Task Pane

Enter your search terms and click the OK button. The New Document Task Pane will appear and
display the search results, as shown in Figure 10-22. Hover your mouse over any of the entries to
display the URL. Click a URL to open the site in your web browser.

Figure 10-22. Google results displayed in the Task Pane

http://lib.ommolketab.ir

Every time you run a search, the macro removes the previous results from the Task Pane. If you
want to remove the previous results without displaying new ones, click the Cancel button in the
dialog box shown in Figure 10-21.

To make sure this handy macro loads automatically when Word starts [Hack #50], put
GoogleTools.dot into your STARTUP folder.

10.12.3 Hacking the Hack

To take this hack one step further, you can modify it to use the currently selected text as the search
text, rather than displaying an input box for you to enter text in.

The following macro, named GoogleSelectionToTaskPane, does a Google search of the currently

selected text and displays the results in the Task Pane. The modified code is shown in bold.

Sub GoogleSelectionToTaskPane()

Dim vSearchResults As Variant

Dim v As Variant

Dim sResults As String

Dim sEntryName As String

Dim sEntryURL As String

Dim sLogFile As String

http://lib.ommolketab.ir

Dim sSearchDisplayTitle As String

Dim sSearchURL As String

Dim i As Integer

' Google API variables

Dim sGoogleAPIKey As String

Dim sSearchQuery As String

Dim lStart As Long

Dim lMaxResults As Long

Dim bFilter As Boolean

Dim sRestrict As String

Dim bSafeSearch As Boolean

Dim sLanguageRestrict As String

Dim sInputEncoding As String

Dim sOutputEncoding As String

Dim google_search As New clsws_GoogleSearchService

' Initialize variables

sLogFile = "C:\google_taskpane.ini"

sGoogleAPIKey = your_key_here

lStart = 1

lMaxResults = 10

bFilter = True

sRestrict = ""

bSafeSearch = False

sLanguageRestrict = ""

http://lib.ommolketab.ir

sInputEncoding = "UTF-8"

sOutputEncoding = "UTF-8"

' Hide the Task Pane

Application.CommandBars("Task Pane").Visible = False

' Remove existing items from New Document Task Pane

For i = 0 To 9

 sEntryURL = System.PrivateProfileString(_

 FileName:=sLogFile, _

 Section:="GoogleTaskPane", _

 Key:="URLName" & CStr(i))

 sEntryName = System.PrivateProfileString(_

 FileName:=sLogFile, _

 Section:="GoogleTaskPane", _

 Key:="EntryName" & CStr(i))

 If Len(sEntryURL) > 0 Then

 Application.NewDocument.Remove _

 FileName:=sEntryURL, _

 Section:=msoBottomSection, _

 DisplayName:=sEntryName, _

 Action:=msoOpenFile

 End If

Next i

' Move ends of selection to exclude spaces

http://lib.ommolketab.ir

' and paragraph marks

Selection.MoveStartWhile cset:=Chr (32) & Chr (19), _

 Count:=Selection.Characters.Count

Selection.MoveEndWhile cset:=Chr (32) & Chr (19), _

 Count:=-Selection.Characters.Count

' Get selection text for search

sSearchQuery = Selection.Text

If Len(sSearchQuery) = 0 Then Exit Sub

' Get search results

vSearchResults = google_search.wsm_doGoogleSearch(_

 str_key:=sGoogleAPIKey, _

 str_q:=sSearchQuery, _

 lng_start:=lStart, _

 lng_maxResults:=lMaxResults, _

 bln_filter:=bFilter, _

 str_restrict:=sRestrict, _

 bln_safeSearch:=bSafeSearch, _

 str_lr:=sLanguageRestrict, _

 str_ie:=sInputEncoding, _

 str_oe:=sOutputEncoding).resultElements

' Check for no results

On Error Resume Next

v = UBound(vSearchResults)

http://lib.ommolketab.ir

If Err.Number = 9 Then

 MsgBox "No results found"

 Exit Sub

ElseIf Err.Number <> 0 Then

 MsgBox "An error has occurred: " & _

 Err.Number & vbCr & _

 Err.Description

 Exit Sub

End If

' Add each result to the Task Pane

' and to the log file

i = 0

For Each v In vSearchResults

 sSearchURL = v.URL

 sSearchDisplayTitle = StripHTML(v.title)

 Application.NewDocument.Add _

 FileName:=sSearchURL, _

 Section:=msoBottomSection, _

 DisplayName:=sSearchDisplayTitle, _

 Action:=msoOpenFile

 System.PrivateProfileString(_

 FileName:=sLogFile, _

 Section:="GoogleTaskPane", _

 Key:="URLName" & CStr(i)) = sSearchURL

http://lib.ommolketab.ir

 System.PrivateProfileString(_

 FileName:=sLogFile, _

 Section:="GoogleTaskPane", _

 Key:="EntryName" & CStr(i)) = _

 sSearchDisplayTitle

 i = i + 1

Next v

' Show the New Document Task Pane

CommandBars("Menu Bar").Controls("File").Controls("New...").Execute

End Sub

To help ensure a good Google search, the following two lines collapse two ends of the selection if they
contain spaces or a paragraph mark:

Selection.MoveStartWhile cset:=Chr (32) & Chr (19), _

 Count:=Selection.Characters.Count

Selection.MoveEndWhile cset:=Chr (32) & Chr (19), _

 Count:=-Selection.Characters.Count

Add the GoogleSelectionToTaskPane macro to your Text shortcut menu [Hack #3], and Google

results will be just a right-click away.

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The tool on the cover of Word Hacks is a handheld mixer. The first patent for an electric mixer was
issued in 1885. Many of the early mixers appeared very industrial, looking more suited for mixing
paint than pound cake. By the 1930s, more modern glass-bottomed mixers were produced with a
motor built into the lid. By World War II, mixers were mounted on a stand with a bowl underneath.
Eventually mixers became smaller and contained entirely in a small plastic case with a handle: the
modern handheld mixer. Today's consumer can choose from an assortment of manufacturers'
handheld or the the more heavy-duty stand mixers.

Mary Anne Mayo was the production editor, Rachel Wheeler was the copyeditor, and Matt Hutchinson
was the proofreader for Word Hacks . Sarah Sherman and Colleen Gorman provided quality control.
Mary Agner provided production assistance. Johnna Dinse wrote the index.

Hanna Dyer designed the cover of this book, based on a series design by Edie Freedman. The cover
image is an original photograph by Hanna Dyer. Clay Fernald produced the cover layout with
QuarkXPress 4.1 using Adobe's Helvetica Neue and ITC Garamond fonts.

David Futato designed the interior layout. This book was converted Julie Hawks to FrameMaker 5.5.6
with a format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that
uses Perl and XML technologies. The text font is Linotype Birka; the heading font is Adobe Helvetica
Neue Condensed; and the code font is LucasFont's TheSans Mono Condensed. The illustrations that
appear in the book were produced by Robert Romano and Jessamyn Read using Macromedia
FreeHand MX and Adobe Photoshop CS. This colophon was written by Mary Anne Weeks Mayo.

The online edition of this book was created by the Safari production group (John Chodacki, Ellie
Cutler, and Ken Douglass) using a set of Frame-to-XML conversion and cleanup tools written and
maintained by Erik Ray, Benn Salter, John Chodacki, Ellie Cutler, and Jeff Liggett.

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

Adaptive Menus, turn off

add-ins, disabling

age calculation, DATE field

aliases

 styles

 VBA

AND logical operator

angle operations

animation, Office Assistant

application events, VBA code and

arguments, named arguments

 Perl

 Python and

 Ruby

arithmetic operators in formula fields

ASCII codes 2nd

 searches and

author information, Track Changes

AutoCorrect, placeholder text creation

AutoMacros

 disabling

automation

 captions

 COM automation

 early binding and

 late binding and

 scripting languages and

AUTOTEXTLIST field

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

backreferencing, RegExp object and

backups, Word as Windows utility

bar graph creation

BASIC, VBA and

batch processes

 XSLT and

bookmarks

 cross-references and 2nd

 deleting all

borders, imported images

bounded random numbers

built-in styles, renaming

bullets and numbering

 buttons

 mapping styles to

 paragraph styles

buttons

 bullets and numbering

 mapping styles to

 images

 browsing all

 custom

 toolbar replacement

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

Calculate command

 macro

 operators

 reverse precedence order

calculations

 complex

 formula fields

calendars, forms

captions

 automation

 styles

cell references

Char styles

 linked, removing with XSLT

character codes

 ASCII characters

 searches

 Unicode

character styles, linked

characters, numeric codes

code examples, using

code optimization, VBA

codes [See field codes]

COM (Component Object Model)

 automation

 Python and

 objects

 Perl Dev kit and

 run from Word

 servers

command-line, XML tools

commands

 interactive execution, dialogs and

 intercept

 names

 precedence

 Python

comments

 convert to regular text

 deleting all

 VBA

comparison operators

complex calculations, fields

compound picture switches

ConfigWordBackup.cfg file

 Folders section

http://lib.ommolketab.ir

 Parameters section

constant-width fonts

constants

 Perl and

 Python and

 Ruby and

contacting O'Reilly

context-sensitive formatting

continuous progress bar, macros

conventions used in book

conversion

 confirmation

 Perl

 Ruby

 field codes to plain text

 plain text to fields

 XML documents to Word

cosine operations

counter variables, for each loops

crop marks, including in documents

Cross-reference dialog

cross-references

 bookmarks and 2nd

 creating

 custom dialog

 documents

 heading styles and

 INCLUDETEXT fields

 native cross-referencing

Custom Dictionaries dialog

custom dictionary file

custom images, buttons

custom menus, controlling

custom views

Customize dialog

 Keyboard button

customizing menus

customizing toolbars

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

data key, deleting

DATE field

 age calculation

 fiscal-year

 insert automatically

 long form of dates

 year

debugging macros

deleting

 bookmarks, all

 comments, all

 data key

 templates, list templates

 temporary files, troubleshooting and

developer's key, Google API

Diagram feature, organizational charts and

dialogs

 command execution, interactive

 Cross-reference

 cross-referencing, custom

 Custom Dictionaries

 Customize

 input and

 return value

 Run, startup switches

 Templates and Add-Ins

 Word dialogs in macros

dictionary

 custom

 custom dictionary file

 exclusion list

directory structures, mapping to outline

document templates

document types, XML

documents

 bookmarks, deleting all

 comments

 convert to regular text

 deleting all

 creating in Notepad, XML and

 crop mark inclusion

 cross-references

 New Document Task Pane

 numbering

 opening in Internet Explorer, stopping

 outlines

http://lib.ommolketab.ir

 as plain text Outlook message

 standardizing, XSLT and

 WordprocessingML

 batch processing and

 XML conversion to Word

drop-down list, AUTOTEXTLIST field

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

early binding

Emacs 2nd [See also VBacs]

emphasis style

event handler setup

Excel macros, Word in

exclusion lists, dictionary

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

field braces

field codes

 converting plain text to

 converting to plain text

 recursion

fields

 AUTOTEXTLIST

 calculations, complex

 crop mark inclusion

 DATE

 age calculation

 fiscal-year

 insert automatically

 long forms of dates

 year

 formula fields

 arithmetic operators

 comparison operators

 functions

 logical functions

 INCLUDETEXT, cross-references

 logarithms

 nested

 conversion and

 numeric, formatting results

 print information

 save information

 trigonometry

 watermark text

FileRevertToSaved macro

files

 batch processes

 .ini files

 temporary, deleting

 .tmp

fill-in forms, fake

Find and Replace

 excluding text

 multiple files

 VBA code for

fiscal-year dates

Folders section, ConfigWordBackup.cfg file

Font menu

 display

 viewing

fonts

http://lib.ommolketab.ir

 constant-width

 displaying

 Font menu

 in names

 recently used

 system fonts, samples

footnotes, tables

 separators

for each loops

formatting

 context-sensitive

 numeric field results

 removing, XSLT and

formatting restrictions, avoiding

forms

 calendar

 fill-in, fake

formula fields

 arithmetic operators

 comparison operators

 functions

 logical functions

functions, formula fields

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

generating random numbers

Ghostscript utility

 downloading

 PDF creation

GhostWord interface

global templates

 creating

 disabling

 macros

globbing

GNU Lesser Public License, VBacs and

Google

 access from macros

 from within Word

 setup

Google API, developer's key

GoogleTools.dot template

GoogleTools.dot template, Google access from within Word

graphs, bar graphs

GSview, downloading

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

hackers, definition

hacks, definition

headers, repeating

headings

 captions, styles

 partial in TOC

 styles, cross-references and

Hello World program

hexadecimal values, Unicode characters

hiding/showing

 macros, Macros dialog

 nonprinting characters 2nd

HTML

 file import, Python and

 printouts

 Perl and

 Ruby and

Hyperlink style, removing links and

hyperlinks, unlinking

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

identity transformation, XSLT and 2nd

IIf function, VBA

images

 borders, imported images

 buttons

 browsing all

 custom

Immediate window, Visual Basic Editor

importing images, borders on

INCLUDETEXT fields, cross-references and

incremental progress bar, macros

.ini files

input

 dialogs

 users, macros

integer division, VBA code and

IntelliSense, Visual Basic Editor

interactive calendars in forms

interactive execution of commands, dialogs and

intercept commands

Internet Explorer

 Word documents, stopping opening

 WordprocessingML files

internet resources

invisible Office Assistant

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

key-value pairs, .ini files

keyboard assignments

Keyboard button, Customize dialog

keyboards, Emacs emulation

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

late binding

leaders [See tab leaders]

Leonhard, Woody

libxml project, command-line utilities

links

 Char styles, removing with XSLT

 unlinking

list templates, deleting

logarithms, fields

logical functions, formula fields

loops, for each

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

macros

 AutoMacros

 disabling

 automatic

 batch processes

 debugging

 definition

 Excel, Word in

 FileRevertToSaved, adding to File menu

 Google access and

 Hello World program

 naming

 Normal.dot template

 organization

 Perl and

 progress bar

 continuous progress

 incremental progress

 Python and

 recipe analogy

 RegExp object in

 running

 stepping through

 (Sub) procedure

 subroutines

 templates and

 global template

 user input

 variables, declaring

 VBA, aliases

 Visual Basic Editor 2nd

 stepping through code

 Word dialogs in

Macros dialog

 cleanup

 hiding macros

 macro names

mapping

 directory structures to outlines

 styles to buttons

masks, images

MegaMRU

 user form

menus

 Adaptive Menus, turn off

 buttons, browsing all images

http://lib.ommolketab.ir

 custom, controlling

 customizing

 item modification

 shortcut 2nd

 modifying

 View

 viewing options

 views, adding

message balloons, Office Assistant

messages, Outlook, documents as

metacharacters, RegExp object

modules, MRU

monospaced fonts

Most Valuable Professional (MVP) web site

MouseTrax, template for options display

MRU (most recently used)

 clearing

 document information

 MegaMRU and

 user form

 module creation

 overview

msxsl.exe processor

MVP (Most Valuable Professional) web site

My Documents alternatives

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

n-digit random numbers

named arguments

 Perl

 Python

 Ruby

names

 commands

 macros

native cross-referencing

nested fields

 conversion and

New Document pane

New Document Task Pane

 document creation

 templates, adding

NewDocument property

newsgroups, Word-related

nonprinting characters, hiding/showing

Normal.dot template

 macros

 startup

Notepad, Word document creation (XML and)

numbers

 bullets and numbering

 Calculate command

 numbering documents

 outline numbering

 random

 bounded

 n-digit

 random number generation

numeric code for characters

numeric fields, formatting results

numeric picture switches

 compound picture switches

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

O'Reilly contacts

object model

objects

 assigning to variables, VBA and

 COM, Perl Dev Kit and

 Python, run from Word

 RegExp

 Replace method

 Word.Application

Office Assistant

 animation

 characters, switching

 deleting

 information display

 invisible

 message balloons

Office Update web site

opening documents in Internet Explorer, stopping

operators

 Calculate command

 comparison operators

 formula fields

 reference operators

optimizing VBA code

options, displaying with template

OR logical operator

order of precedence, Calculate command

organization, macros

organizational charts

 Diagram feature

 outlines and

 root node

Outline view, improvements

Outline.dot template

outlines

 creating

 mapping structures to

 organizational charts and

Outlook messages, send document as

Overtype mode, disabling permanently

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

page headers, repeating

paragraph styles, bullets and numbering

Parameters section, ConfigWordBackup.cfg file

paths, My Documents alternatives

PDF creation, PostScript files

PDF files, Ghostscript utility and

Perl

 conversion confirmation

 HTML printouts

 named arguments

 run from Word

 VBA Shell function

 Word constants and

Perl Dev Kit, COM object creation

PI (processing instruction), XML and

placeholder text

 AutoCorrect and

 inserting

PostScript files

 PDF creation

 watermark text

printing

 crop marks

 including in documents

 watermark and

 field information

 HTML documents

 Perl and

 Ruby

progress bar, macros

 continuous progress

 incremental progress

Project Explorer, Visual Basic Editor

Python

 COM automation

 commands, interactive execution

 conversion confirmation

 downloading

 HTML files, importing

 interactive control of Word

 macros and

 named arguments and

 objects, run from Word

 running Word from

 Word constants

http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

random number generation

random numbers

 bounded

 n-digit

recursion

 overview

reference operators

RegExp object

 macros and

 metacharacters

 Replace method

regular expressions

 RegExp object

 searches and

Remove Hyperlink option

renaming styles, built-in

Replace method, RegExp object

replaceable text

resources

reverse precedence order, Calculate command

Revert to Saved command

 FileRevertToSaved macro on File menu

revisions, author info edits

root node, organizational chart

Ruby

 constants and

 conversion confirmation

 HTML printouts

 named arguments

Run dialog, startup switches

running macros

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

saving field information

ScreenTips, shortcut keys

scripting languages, Word automation and

searches

 ASCII characters

 ASCII codes and

 backreferencing

 character codes and

 Find and Replace, excluding text

 regular expressions and

 special characters and

 Unicode and 2nd

Section headers, repeating

separators in footnote text

sequential numbering of documents

servers, COM server

sessions, multiple

Shell function (VBA), Perl and

shortcut keys, ScreenTips and

Shortcut Menu toolbar

 access

 modifying

shortcut menus

 modifying

 rearranging

 Text

showing [See hiding/showing]

sine operations

special characters

 ASCII characters

 numeric code

 searches

 Unicode

Spelling and Grammar check

 dictionary

 custom

 exclusion list

spreadsheets [See also Calculate command] [See also Calculate command]

Standard toolbar buttons,replacing

startup

 controlling

 templates and

startup switches

stepping through macros, Visual Basic Editor

strings, VBA code and

styles

http://lib.ommolketab.ir

 aliases and

 built-in, renaming

 captions

 Char styles

 character styles, linked

 mapping to buttons

 paragraph styles, bullets and numbering

StyleSeparator, headings in TOC and

stylesheets (XSLT), identity transformation and

(Sub) procedure in macros

subroutines, macros

switches,startup switches

system fonts, sampling

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

tab leaders

tables

 bar graph creation and

 cell references

 data references

 footnotes

 separators

tangent operations

Task Pane

 disabling

 New Document

 document creation

 templates

template gallery for Office products

template rules, XSLT and

templates

 document numbering and

 document templates

 global templates

 creating

 disabling

 GoogleTools.dot

 identity transformation, XSLT and

 list templates, deleting

 macros and

 global template

 multiple files and

 New Document Task Pane

 Normal.dot

 macros

 options display

 Outline.dot

 startup

 VBacs

 Word as backup utility

 WordBackup.dot

 Workgroup templates

Templates and Add-Ins dialog

 local templates

temporary files, deleting

text

 comments, converting from

 converting field codes to plain

 emphasis

 footnotes, separators

 message balloons from Office Assistant

http://lib.ommolketab.ir

 placeholder text

 AutoCorrect and

 inserting

 plain, converting to/from fields

 replaceable

 searches, exluding from

 watermark text

 fields

Text shortcut menu

.tmp files

TOC (table of contents), partial headings in

toolbars

 buttons, browsing all images

 customizing

 Shortcut menu

 access

 modifying

Tools menu, customization and

Track Changes, author information

trigonometry

troubleshooting

 data key deletion

 formatting restrictions

 global template disable

 list template deletion

 startup control

 styles

 built-in

 linked

 temporary files, deleting

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

undo operations, Revert to Saved command

Unicode characters

 searches and 2nd

user input, macros

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

variables

 declaring, macros

 object assignment, VBA and

variants, VBA code

VBA (Visual Basic for Applications)

 aliases in

 application events and

 BASIC and

 code optimization

 comments

 Find and Replace operations

 Hello World program

 IIf function

 integer division 2nd

 macros 2nd

 progress bar

 object model

 objects, assigning to variables

 Shell function, Perl and

 strings

 Visual Basic Editor

VBacs

 commands

 installation

 key bindings

 removing

 template download

VBScript, searches and

View menu

 viewing options

 views, adding

views [See also hiding/showing]

 adding to View menu

 custom

 options, activating

 Outline

Visual Basic Editor

 Immediate window

 IntelliSense

 macros 2nd

 stepping through code

Visual Basic Explorer, Project Explorer

vocabulary, XML

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

watermark text

 fields

wildcards [See also regular expressions] [See also regular expressions]

Woody's Watch web site

Word

 as backup

 Excel macros and

Word object model [See object model]

Word versions

Word.Application object

WordBackup.dot file

WordprocessingML

 convert XML documents to Word

 documents

 batch processing and

 Internet Explorer and

Workgroup templates

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

XML

 command-line tools

 document conversion to Word

 document types

 libxml project, command-line utilities

 PIs (processing instructions)

 vocabulary

 Word document creation, in Notepad

XML Toolbox

XSLT

 batch processes and

 document standardization and

 formatting, removing

 stylesheets

 identity transformation and

 template rule and

XSLT processor

 < Day Day Up >

http://lib.ommolketab.ir

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

year, DATE field

 < Day Day Up >

http://lib.ommolketab.ir

	Word Hacks
	Table of Contents
	Copyright
	Credits
	About the Author
	Contributors

	Dedication
	Preface
	Why Word Hacks?
	How to Use This Book
	How This Book Is Organized
	Conventions Used in This Book
	Using Code Examples
	How to Contact Us
	Got a Hack?
	Acknowledgments

	Chapter 1. Word Under the Hood
	Introduction: Hacks #1-2
	Hack 1 Tweak the Interface
	Hack 2 Macros 101: A Crash Course

	Chapter 2. The Word Workspace
	Introduction: Hacks #3-13
	Hack 3 Hack Your Shortcut Menus
	Hack 4 Create Custom Views
	Hack 5 Revert to Saved
	2.5 Quickly Change Your File Open Path
	Hack 7 Report and Review Your Options
	Hack 8 Force Internet Explorer to Hand Off Word Documents
	Hack 9 Tweak the New Document Task Pane
	Hack 10 Browse All Button Images
	Hack 11 Create a Custom Button Image
	Hack 12 Hack the Office Assistant
	Hack 13 Build a Better MRU

	Chapter 3. Formatting, Printing, and Table Hacks
	Introduction: Hacks #14-26
	Hack 14 Insert Placeholder Text
	Hack 15 Sample Your System Fonts
	Hack 16 Tab Me to Your Leader
	Hack 17 Make Styles More Manageable with Aliases
	Hack 18 Make a Simple Bar Graph
	Hack 19 Put Footnotes in Tables
	Hack 20 Repeat a Section Heading Across Pages
	Hack 21 Simplify Borders Around Imported Images
	Hack 22 Make More Flexible Captions
	Hack 23 Make PDFs Without Acrobat
	Hack 24 Create a Custom Text Watermark
	Hack 25 Include Only Part of a Heading in a TOC
	Hack 26 Put Crop Marks on a Page

	Chapter 4. Editing Power Tools
	Introduction: Hacks #27-44
	Hack 27 Crunch Numbers Quickly in Word
	Hack 28 Unlink Every Hyperlink
	Hack 29 Exclude Text from Find and Replace
	Hack 30 Use Character Codes to Find or Insert Special Characters
	Hack 31 Find/Replace in Multiple Files
	Hack 32 Find and Replace Without Find and Replace
	Hack 33 Quickly Create a Custom Dictionary
	Hack 34 Create a Dictionary Exclusion List
	Hack 35 Disable Overtype Permanently
	Hack 36 Delete All Comments in a Document
	Hack 37 Delete All Bookmarks in a Document
	Hack 38 Turn Comments into Regular Text
	Hack 39 Apply Context-Sensitive Formatting
	Hack 40 Send a Document as a Plain-Text Outlook Email
	Hack 41 Swap Revision Authors
	Hack 42 Corral Basic Bullets and Numbering
	Hack 43 Cross-Reference Automatically
	Hack 44 Hack More Flexible Cross-Referencing

	Chapter 5. Templates and Outlines
	Introduction: Hacks #45-50
	Hack 45 Create an Outline-Only Copy of a Document
	Hack 46 Build a Better Outline
	Hack 47 Use an Outline to Build an Org Chart
	Hack 48 Attach the Same Template to Multiple Files
	Hack 49 Quickly Attach a Workgroup Template
	Hack 50 Manage Macros with Templates

	Chapter 6. Housekeeping
	Introduction: Hacks #51-56
	Hack 51 Troubleshoot Common Word Problems
	Hack 52 Control Word Startup
	Hack 53 Sidestep Formatting Restrictions
	Hack 54 Rename Built-in Styles
	Hack 55 Clean Out Linked
	Hack 56 Reduce Document Bloat by Deleting Old List Templates

	Chapter 7. Macro Hacks
	Introduction: Hacks #57-69
	Hack 57 Get Simple User Input for a Macro
	Hack 58 Keep the Macros Dialog Box Tidy
	Hack 59 Do Something to Every File in a Directory
	Hack 60 Run Macros Automatically
	Hack 61 Intercept Word Commands
	Hack 62 Keep Custom Menus Under Control
	Hack 63 Use Word Dialogs in a Macro
	Hack 64 Optimize Your VBA Code
	Hack 65 Show Progress from VBA
	Hack 66 Hack Documents with For Each Loops
	Hack 67 Store Settings and Data in .ini Files
	Hack 68 Generate Random Numbers
	Hack 69 Hack with Application Events

	Chapter 8. Forms and Fields
	Introduction: Hacks #70-79
	Hack 70 Fake (and Easy) Fill-in Forms
	Hack 71 Hack DATE Fields
	Hack 72 Perform Calculations with Formula Fields
	Hack 73 Format Numeric Field Results
	Hack 74 Use Fields for Heavy-Duty Calculations
	Hack 75 Include an Interactive Calendar in Your Forms
	Hack 76 Use Custom Shortcut Menus to Make Frequent Selections
	Hack 77 Number Documents Sequentially
	Hack 78 Cross-Reference Among Documents
	Hack 79 Convert Field Codes to Text and Back Again

	Chapter 9. Advanced Word Hacks
	Introduction: Hacks #80-89
	Hack 80 Emulate Emacs with VBacs
	Hack 81 Use Word as a Windows Backup Utility
	Hack 82 Perform Power Text Searches with Regular Expressions
	Hack 83 Show a Directory Structure as a Word Outline
	Hack 84 Automate Word from Other Applications
	Hack 85 Hack Word from Python
	Hack 86 Hack Word from Perl
	Hack 87 Hack Word from Ruby
	Hack 88 Use Python from Word
	Hack 89 Use Perl from Word

	Chapter 10. Word 2003 XML Hacks
	Introduction: Hacks #90-100
	Hack 90 Get a Command-Line XML Processor
	Hack 91 Create a Word Document in Notepad
	Hack 92 Get the XML Toolbox
	Hack 93 Use IE to Inspect WordprocessingML Documents
	Hack 94 Transforming XML into a Word Document
	Hack 95 Batch-Process Word Documents with XSLT
	Hack 96 Standardize Documents with XSLT
	Hack 97 Remove Direct Formatting with XSLT
	Hack 98 Remove Linked
	Hack 99 Use Google from Your Macros
	Hack 100 Google Without Leaving Word

	Colophon
	Index
	index_A
	index_B
	index_C
	index_D
	index_E
	index_F
	index_G
	index_H
	index_I
	index_K
	index_L
	index_M
	index_N
	index_O
	index_P
	index_R
	index_S
	index_T
	index_U
	index_V
	index_W
	index_X
	index_Y

