downloaded from: lib.ommolkefab.ir

e —— Building Tag Clouds in Perl and PHP

TagOowh ==]

i === By Jim Bumgardner

== Publisher: O'Reilly

xb# Pub Date: May 2006

e—— Print ISBN-10: 0-596-52794-2
Print ISBN-13: 978-0-59-652794-5
Pages: 48

Table of Contents

Overview

Tag clouds are everywhere on the web these days. First popularized by the web sites Flickr,
Technorati, and del.icio.us, these amorphous clumps of words now appear on a slew of web sites as
visual evidence of their membership in the elite corps of "Web 2.0." This PDF analyzes what is and
Isn't a tag cloud, offers design tips for using them effectively, and then goes on to show how to
collect tags and display them in the tag cloud format. Scripts are provided in Perl and PHP.

Yes, some have said tag clouds are a fad. But as you will see, tag clouds, when used properly, have
real merits. More importantly, the skills you learn in making your own tag clouds enable you to
make other interesting kinds of interfaces that will outlast the mercurial fads of this year or the
next.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

T — Building Tag Clouds in Perl and PHP

TgOeh ==

il = By Jim Bumgardner

S Publisher: O'Reilly

xb# Pub Date: May 2006

e—— Print ISBN-10: 0-596-52794-2
Print ISBN-13: 978-0-59-652794-5
Pages: 48

Table of Contents

Copyright
Building Tag Clouds in Perl and PHP
Tag Clouds: Ephemeral or Enduring?
Weighted Lists
Section 1.1. Creating Weighted Lists
Section 1.2. Tag Cloud Properties
Section 1.3. The Utility of Tag Clouds
Some History

Design Tips for Building Tag Clouds

Section 4.1. Choose the Right Lanquage

Section 4.2. Make Your Tag Clouds Visible to Search Engines

Section 4.3. Frequency Sorting

Section 4.4. Avoid Random Mappings

Section 4.5. Make Tag Clouds Relevant to Your Users

Section 4.6. Try Different Mappings

Making Tag Clouds in Perl

Section 5.1. Collecting Tags

Section 5.2. Collecting Genesis Words in Perl

Section 5.3. Collecting del.icio.us Tags in Perl

Section 5.4. Displaying Tags In Perl Using HTML::TagCloud

Section 5.5. Displaying Tags In Perl Using Your Own Code

Section 5.6. Magnifying the Lonqg Tail (Inverse Power Mapping in Perl
Making Tag Clouds in PHP
Section 6.1. Collecting Tags

Section 6.2. Collecting Genesis Words in PHP

Section 6.3. Collecting del.icio.us Tags in PHP

Section 6.4. Display Tags in PHP

Section 6.5. Magnifying the Long Tail (Inverse Power Mapping in PHF

Conclusion

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Copyright
Building Tag Clouds with Perl and PHP, by Jim Bumgardner
Copyright © 2006 O'Relilly Media, Inc. All rights reserved.

Not for redistribution without permission from O'Reilly Media, Inc.

ISBN: 0596527942

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Building Tag Clouds In Perl and PHP

By Jim Bumgardner

Tag clouds are everywhere on the Web these days. First popularized by the web sites Flickr,
Technorati, and del.icio.us, these amorphous clumps of words now appear on a slew of web sites as
visual evidence of their membership in the elite corps of "Web 2.0."

This PDF analyzes what is and isn't a tag cloud, offers design tips for using them effectively, and ther

goes on to show how to collect tags and display them in the tag cloud format. Scripts are provided In
Perl and PHP.

Yes, tag clouds are a fad. But as you will see, tag clouds, when used properly, have real merits. More
Importantly, the skills you learn in constructing your own tag clouds enable you to make other
Interesting kinds of interfaces that will outlast the mercurial fads of this year or the next

Contents

Tag Clouds: Ephemeral or Enduring? 2
Weighted Lists 3
Some History 11
Design Tips for Building Tag Clouds 13
Making Tag Clouds in Perl 15
Making Tag Clouds in PHP 31
Conclusion 46

Tag clouds are everywhere on the Web these days. First popularized by the web sites Flickr,
Technorati, and del.icio.us, these amorphous clumps of words now appear on a slew of web sites as
visual evidence of their membership in the elite corps of "Web 2.0."

This PDF analyzes what is and isn't a tag cloud, offers design tips for using them effectively, and ther

goes on to show how to collect tags and display them in the tag cloud format. Scripts are provided in
Perl and PHP.

Yes, some have said tag clouds are a fad. But as you will see, tag clouds, when used properly, have
real merits. More importantly, the skills you learn in constructing your own tag clouds enable you to
make other interesting kinds of interfaces that will outlast the mercurial fads of this year or the next.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Tag Clouds: Ephemeral or Enduring?

If you're reading this, you've probably seen a tag cloud (Figure 1) as you've browsed the Web. In
this article, I'm going to provide a little analysis and history of tag clouds, and then get on to more
Important matters: I'll demonstrate how to create your own tag clouds in Perl and PHP.

Tag clouds are a current fashion. But in April of 2005, web design guru Jeffrey Zeldman decried their
faddishness in his headline, "Tag Clouds Are the New Mullets," comparing them to the once popular
haircut that has become a fashion joke. And this was before theyreally started to catch on.

But jaded criticism is a common side effect of sudden ubiquity, and Zeldman also praised the
brilliance of the idea. And as | have said, | will show how tag clouds, when used properly, have real,
and lasting merits.

Note: All of the scripts in this article can be downloaded from O'Rellly's web site at the following URL.:
http://examples.oreilly.com/tagclouds/ .

Figure 1. A tag cloud from Flickr

downloaded from: lib.ommolkefab.ir

http://examples.oreilly.com/tagclouds/

downloaded from: lib.ommolkefab.ir

afica amsterdam animal animals april architecture art australia astumn baby

barcelona D€ACH berlin blrthday nlack blackandwhite BIU€ boston builging DW
california cameraphﬂne camping CANAdA canon car cat cats chicago

china christmas church city clouds coler concert day de december dOQ dogs
england europe wi family resival florida flower flowers food france
friends fun garden geotagged germany gl araffit green halloween hawaii
holiday home horeymoon hengkong house india ireland isiane ItalY japan july kids

lake landscape light |0nd0ﬂ losangeles MACro march IME MeXico moblog mountain
mountains museun MUSIC NAture new nEWYﬂrk (EREIEEI nevezealand nlght

Ork

nikon MYC ocean PArIS park party people pho portrait red river roadtrip rack
rome san SANTrANCISCO schoal scotland sea seattle snow SKY SNOW spain spring
street SUMMET sun SUNSet syiney taiwan texas thailand tokyo toronto travel
tree trees trip uk uban usa vacation vancouver washington ‘water

WEddlng white Winter veiow vork Zoo

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Weighted Lists

So, what is a tag cloud? A tag cloud is a specific kind of weighted list. For lack of a standard working
definition of weighted list, I'm going to make one up.

Weighted list

n . A list of words or phrases, in which one or more visual features in the list (such as font size
are correlated to some underlying data.

While tag clouds are a specific type of weighted list, not all weighted lists are tag clouds. For example
the list of cities at the popular craigslist web site (Figure 2J is a weighted list because font size is
correlated with popularity, but it lacks the random appearance of a tag cloud, due to the
arrangement of the cities in a matrix.

Figure 2. Weighted cities list from craigslist

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

craigslist unifed states sfonyclaxbos seapdxwdc sdochisacden canada enrope asia uk & ie
. . albany denver mernphis redding calgary amslerdam bangalore belfast
Katrina Relief
allentown des moines miami reno edmaonton athens bangkak birrmingham
help pages albuguerque delro milwaukee nchmond halifax barcelona baijing brstol
bet ol anchorage el pazo rinneapolis rochesler montraal berlin chennail cardiff
ann arbor Bugens rmobile sacramento ottt awa brussels dalh dublin
tactshest asheville fort myers modesto salt lake city quebec budapest hong kong edinburgh
job boards atlanta fresno montana san anfonio saskatoon copenhagen hyderabad glasgow
austin grand rapids monterey bay san diego taranto florence Istanbul leads
list in space bakersfield greensboro montgomery sf bay area WaRCOUver frankfurt jakarta liverpoal
Toshirls baltimore hamshburg nashwlle san luis obispo victona JeEneva Jerusalem london
baton rouge hartford new hampshire santa barbara winnipeq hamburg kolkata manchestar
Craig’s blog bimringham houston nevw haven savannah] helsink manila newcaslle
i honalul I i S I b
foundation oise onolulu new |Brsey seattle yon mumbai
buenos aires au & nz
boston humboldl new york city shreveport rmadnd nsaka
|
il lnenn s buffalo indianapolis new orleans south dakota ik rarseilles seoul Sininy
: : cosla rica . auckland
system status burlinglon inland emp norfolk spokana : rmilan shanghal
- : lima brisbane
[champ-urb ithaca north dakota st louis MOSCOwW singapore 1
terms of use '
charleston Jackson oklahoma city stockton i rmunich tokyo s b
: - rio de janeino LT perth
YOUr privacy charlotte jacksomville omaha Syracuse | naples taipen
chicago kansas city orange county lallahassee aaniuge ozlo telaviy Fydony
chico knoxwlle orlando lampa bay parns 2
: . : tijuana atiica
cincinnati little rock pensacola loledo prague
: cairo
@ 19952008 cleveland las vegas philadelphia lucson rorme
T
2ot columbia lexington phosnix lulsa st petersburg Fape b
columbus los angeles pittsburgh wash DC stockholm okmBstaiy
dallas louisville portland westarm mass VIENna
delaware maine puerto nco wisl palm beh Warsaw
dayton madison providence wesl virginia zunch
raleigh wichita
Wy OrmIng

Another kind of weighted list, one that's even more distant from tag clouds, is that of the statistically
Improbable phrases (SIPs) and capitalized phrases (CAPs) lists provided by Amazon.com(Figure 3).
In the SIP list, word order correlates to the improbability of the phrase, and in the CAP list, to the
frequency with which the phrase appears in the book.

Figure 3. Weighted phrase lists from Amazon.com

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Statistically Improbable Phrases (SIPs): (lasm mars)
antipodal merdian, orange dove, first mendian, relief amy, agua vitae, daserted ship, mnfinite worlds

Capitalized Phrases (CAPS): (laarn mors)

Father Caspar, Padre Emanuele, Islands of Solomon, Powder of Sympathy, San Patnzio, Specula Melitensis, Stone Fish, Charles Emmanuel, Isla
de Hierro, Land of Romancas, Tweads Daphne, Mansiaur da la Grive, Monsiaur da Saint-Sawvin, Prima Meridian, Solomon [slands, Canon of Digne,
Terra Incognita, 1sland of Solomon, Punto Fijo, Roberto de la Grive, San Giorgio, Knight of Malta, Monsieur de Tairas, Persona Vitrea, Captain
Gamberao

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.1. Creating Weighted Lists

There are lots of ways to make weighted lists. Given any list of words or phrases, there are a handfu
of visual features that you can choose to correlate with underlying data:

1.1.1. A: Visual Features

e Font size

e \Word order

e \Word color

e Word shape (typeface and style)

The Kinds of underlying data you might correlate or map these features to is a much larger list, but
here are a few possible things you might want to map:

1.1.2. B: Underlying Data

e Quantity

e Lexical order
e Subject

e Location

e Time

To make a weighted list, take one of the items from column A and correlate it to one of the items In
column B (and repeat, if you like, with different items).

Tag clouds are just one kind of weighted list. There are many different implementations of tag clouds
and they do not all share the same mappings, but almost all of them tend to associate font size with
quantity. For example, the weighted lists at Flickr have the following mappings:

A. Visual Features B. Underlying Data
Font size Quantity

Word order Lexical order

Word color Blue

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

A. Visual Features B. Underlying Data

Word shape Sans serif

Weighted lists on other web sites differ in varying degrees from Flickr's basic design, but the more
closely they follow it, the more likely they will be described as 'tag clouds" rather than as "weighted
lists" or "lists." The tag cloud on the web site 43 Things (Figure 4 has the following mappings:

A. Visual Features B. Underlying Data

Font size Quantity

Word order Random

Word color Black with beige background
Type face San serif

Figure 4. Tag cloud for 43 Things

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

329,095 people in 6,096 cities are doing 430,537 things including...

walk on Mars trust Keep my website updated ' cookiesinatincan wants to

talk with philosophers and people intersted in philosophy write 3 song be an

extra in a film improve my Hebrew love Learn to draw/paint. do my pushups 5

davs a week, download windows media plaver 10 qrow roses., improve my skin

decide what the hell T would like to do with the rest of my

life kiss someone in the rain Lose my freshman 15 learn to play the accaordion

E:#ii lanny 727 wants to Buy a MP3 learn to sail learn how to cook like my mom
[

fead the entire Bible in 2 veor Get organized @G@T @ tattooO
build my own house own a home bulld a darkroom KISS |n the I‘aln

Own a successful business m michaelresolution wants to read the Bible daily

be a volunteer write more letters by hand |earn to sew Be happy without being in

love., See a Final Fantasy Concert Run Boston sing in a choir Take vitamins daily

become more cultured work in china write more, write better learn to play the

accordian

?;. rixie wants to keep my house clean get 1 million neopoints on
neopets improve my memory make a new friend Be 7 bEttEl’ ﬁ'iEl‘ld Learn

Ruby Sden\fE I want to attend a Goon-meet eat more fruit

trainee teacher girl wants to stop feeling lonely learn something new every
day be more positive download the new episode of 24 StArt m y OWn
business visit eavpt get another piercing €@aE healthier tecome fat

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.2. Tag Cloud Properties

Tag clouds generally have the following additional properties:

e The words are arranged In a continuous list, rather than a table. The order of the words Is
uncorrelated to tag frequency; for example, they might be listed alphabetically or randomly.

e The words represent tags, or community-created metadata. This metadata often follows power
lawsthere are few popular items, and many more unpopular items.

e The tags are links navigable to the tagged content.

The first property gives tag clouds their cloudy or amorphous appearance. They have a simple beaut
that is more attractive than a grid.

The second two properties give tag clouds a dual function. They function not only as a graph of
Interesting data, but are a navigation interface to user-generated content (or what Derek Powazek

calls "authentic media"). In other words, tag clouds are both something to look at and something to
click on.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.3. The Utility of Tag Clouds

While you can click on tag clouds, you can also just look at them to get a quick reading of a web site'
zeitgeist. Looking at the Flickr tag cloud in Figure 1, you can see that wedding photos are to be found
In large quantities, and that they have a lot of photos taken in London and Japan (perhaps at
weddings?). Looking at 43 Things (Figure 4), you can see that a lot of people want to get a tattoo.
The list at 43 Things is a randomized selection from a much larger list, so if you refresh the page you
get different winners such as "buy a house," "write a book," and "be happy."

The dual nature of tag clouds comes at the expense of a design trade-off. There are more effective
ways to navigate. In general, "browsing" interfaces are not as efficient for finding stuff as searching
(and tag clouds are usually accompanied by a standard issue search box, which sees more use). But
browsing and searching are two different activities that serve different needs. The dynamic way that
tag clouds show popular lists is a remarkably effective way to browse.

There are also more accurate ways to graph tag popularity. Consider the following lists, which show
the most common words in the book of Genesis. You could provide tags in a table with actual
numbers (Figure 5), or in a bar graph (Figure 6).

Figure 5. Word frequency list

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Abraham 115

Abram S0
And 1250
Sehold 53
S Ut S
Canaan 24
— gypL 67
Esall Ss
For 29
God 227
487
Saac fill
Srae 37

Jacob 1556
Joseph 133

LORD 1536
Laban 47
_eah 26
et 249
ot 24
Noah 36
MOy 3
Pharaoch 73
Rachel 35
Sarah 35

Figure 6. Word frequency bar graph

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Leah

_aban
LORD

Joseph

Jacob

lsrael

lsaac

I
od

For
Esau
Egypt
Canaan
But

Behold
An

Abram
Abraham

0 500 1000 1500 2000 2500 3000

These methods both provide an unnecessary increase in accuracy at the expense of a great loss In
visual real estate (especially the bar graph). Unless you're into biblical numerology, you don't really
need to know that the name "Esau" is mentioned exactly 58 times. You just want to get a general
sense of what is popular or frequent. Because tag clouds use the words themselves to describe the
data (Figure 7), they can provide the essential information for a larger number of words in a much
smaller space.

Figure 7. Word frequency tag cloud

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Abraham Abram And Sehold Bul Canasn Egypt Esau For GO [Isaac 1srael Jacob Joseph LORD vLaban Leah Let Lot noan

Mew Phzrach Rachel Sarah The Then what &l accarding after agais 3” glso am an Eir’ld areé st as at wway bare EJE‘ because
before begat behold blessed bom both brethren bring brother brought but by called CaME calle children cdy come daughter daughlers
dey days did died do done Jown dream duke dwel 2@rth eal even every eves face Tather taers field nesh fl:}i' forth found TrOM gave
ave go good great had hand hast hath have hE neard her MM hiS house hundred o IF) into 1S 1T kg 12N en et e
Ived lord made make mMan may [ME men money my name ae NOT now Uf old on one our OUt over PESS people place pray put

Said saw saying seed senl sewvant senvants £81 SEVEN Ehaii shall She s0 SON SONS spake take that the thE‘E' their

them ien there thersfore these thE‘y’ ining this ThOU ihrae th'_l,i' tﬂ told took two Uﬂtﬂ up upon us WaEsS waters way we
well went were when Which wnom wife Will WItD ve years yet you your

If my own experience is typical, tag clouds are looked at more frequently than they are clicked on.
Generally, | only click on tag clouds when they correspond very closely to my actual interests at the
time. However, their function as a measurement of zeitgeist is quite useful by itself.

Tag clouds have another, less obvious function, along with being something to look at and somethincg
to click on: they effectively describe the nature of a web site to search engines like Google. In static
web sites, people use the <meta description> and <meta keywords> tags to describe the content of
the web site to search engines. But in sites like Flickr, which consist primarily of user-generated
content, you can't predict what the principal themes will be tomorrow or next month. Tag clouds
solve this problem by providing a running meter of the important items on a site. Thus, they can
dynamically boost search-engine rankings for those tags. And if the search engine pays attention to
font size (and some of them do), so much the better!

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Some History

Flickr, a photography-sharing web site that caters to bloggers, was the first web site to use
something called a tag cloud. However, tag clouds really have their roots in the blogging community.
Bloggers have a need to organize the large amounts of material they constantly churn out, and an
excellent communications medium to propagate new and interesting methods.

Flickr's tag cloud idea was likely inspired (directly or indirectly) from an older blog plugin called
Zeitgeist (Figure 8), by Jim Flanagan.

Jim provided this story when | asked him about it:

In 1997, when | was working at Brookhaven National Lab in Long Island NY, the Web was becoming
popular enough so that everybody had to have a web page, and | wanted somehow to rebel against
the canonical, hierarchical bulleted list of links. So | wrote a Perl CGI that would take a small

database of links and present them on the page in varying colors and sizes. The color and size were
selected randomly so different things would cycle into your attention each time you loaded the page.

Much later, when | got into blogging, | fell into the narcissistic practice of checking my blog referral
logs to see what was linking to me. | developed several personal "narcissurfing" tools, and noticed
that the Google and Yahoo searches that led to my site were often very amusing. In an attempt to
build a page to share the search information with my readers, | fell back to the random-colored links
approach, except that this time, the number of hits from a certain search term controlled the size.

After a while, several bloggers asked for the code, and | cleaned it up a bit and sent it along. It's still
available at http://jimfl.tensegrity.net/zeitcode .

Many bloggers use the word "zeitgeist" to mean a weighted word list in the style of Jim's plugin, as ir
Figure 8 .

Figure 8. Jim Flanagan's Zeitgeist plugin in action

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

I = = |
I Stl n g . itunes associations windows file - €SS frames . oscars

on dish network - gmail firefox remove ads . locker room with naked men
- google desktop search network . geico robot . alpine cde for 2002
. pictures of farms with a house . dick vitale can take his dookies and
shove it! . where is firefox cache . good songs . firefox fastest .
dan rather military service - hosts file ad adblock firefox - m4p
CONVErsIion - brandi chastain playboy - conservative bumper stickers + scion mileage
. static religion - chris rock, matt drudge : maureen dowd sucks - ads by
googdle block firefox : best file share « intentional free throw miss nba - firefox's -
billy packer . disable directory listing in apache . best filesharing program -
chicago bears past quarterbacks - northwestern fans - google desktop
network drives + best borat + bikini chicks « index of / pics / private « rewritecond % - |

hate michigan : download geico commercial - firefox copy text only - tara
reid wardrobe malfunction + muhammad sign with bears - dirty songs + gecko dancing

song - www_style - Simulate frames using c¢ss html . movable type rss feed

for comments - tweak mozilla - anti-duke websites - dlsable

If you look at Jim's code (or Figure 8), you'll see that it has the following mappings:

A. Visual Features B. Underlying Data
Font size Quantity

Word order Random

Word color Random

Type face Default

The team at Flickr (Stewart Butterfield, Cal Henderson, and George Oates) implemented the first tag
clouds at Flickr using Zeitgeist-like weighted lists as inspiration. The Flickr tag clouds have a few
fundamental differences from the word lists produced by Zeitgeist:

e They represent tags rather than search engine phrases, so the data being shown is actively
generated by the site's community within the site, rather than gathered from the site's server
logs.

e They do not use random word order (although many other tag clouds do). The alphabetical
word order provides an additional way to browse the list, while still giving the list a random
appearance.

Flickr also gave their tag clouds a more polished design that many other sites have emulated. They
chose an attractive font, a single color (rather than a random assortment of colors, which adds visua

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

complexity but no additional information), and they kept the lists of words relatively short, rather
than allowing them to go on for pages and pages, as many Zeitgeist-based pages do.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Design Tips for Building Tag Clouds

Tag clouds can be used effectively, and provide real value to a web site, or they can be tacked on as
an afterthought, simply because they look cool, or to make the site appear similar to other, better
web sites that offer them. Ultimately, you need to keep in mind their dual function, both as a graph
of current activity, and as a navigation aid. Here are some design and implementation tips:

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

4.1. Choose the Right Language

| like to write code In lots of different languages, and | believe in choosing the right language for a
particular job (rather than using any one language for all jobs). | think higher-level scripting
anguages like Perl, PHP, Python, and Ruby are all good choices for making tag clouds. They tend to
pe supported on servers and they have associative lists (which make counting tags much easier).
Lower-level languages that don't support associative arrays (such as C++ or Java) are not as good
for implementing tag clouds, because you will end up writing considerably more code.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

4.2. Make Your Tag Clouds Visible to Search Engines

You can make tag clouds fairly easily in Flash/ActionScript and JavaScript, and you can make them
look much snazzierflashier, even. However, | don't think these client-side languages are as good a
choice as the server-based scripting languages. Why? Because you want search engines to see your
tag clouds. Both of these technologies would effectively blind most search engines to the content of
your tag clouds. If you do pursue a Flash or JavaScript solution for the interface, consider including
the actual tags in a comment block in the HTML.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

4.3. Frequency Sorting

You can, If you like, sort tag clouds by word frequency Eigure 19). Personally, | don't think it's a
good idea. Not only does it reduce the "cloudy" nature of the word list, but it also denies your users
an additional organizational axis. Most tag clouds use either random or alphabetic sorts. | prefer the
alphabetic sort because it provides a quick way to eliminate or identify a particular tag.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

4.4. Avoid Random Mappings

In Jim Flanagan's Zeitgeist plugin, the words are colored randomly, and the colors have no
significance. While some people like this, | believe that if you desire clarity in the interface, you
should try to make each mapping meaningful, and eliminate random information that adds no value.
For example, you could associate color with time, or omit the color mapping entirely.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

4.5. Make Tag Clouds Relevant to Your Users

Tag clouds are best when they are relevant to the user's particular interests. For example, a tag
cloud that shows popular tags of the last few days is likely to be more interesting (to the breathing)
than a tag cloud that shows popular tags "of all time." Also, if you filter for recent activity, the
content of your tag clouds will change every day, rather than remaining static.

Tag clouds can also be used to accompany and annotate search results. When a user searches for a
particular tag, you can display a cloud showing related tags. This result will be much more interesting
to the user than a tag cloud showing only the most popular tags on the server.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

4.6. Try Different Mappings

Tag clouds are only one, specific kind of weighted list. There are many kinds of mappings from visual
features to underlying data that have not yet been exploited. How about trying some weighted lists
that don't look like common tag clouds? For example, you could map font size to time, showing more
recent tags in large sizes. Or, In a historical database, you could map font to decade or century, usini
progressively older-fashioned fonts for older data.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Making Tag Clouds in Perl

Note: This section, which shows how to make tag clouds in Perl, is followed by a section that covers the same material, but uses PHP. If
you are more familiar with PHP, | suggest you skip ahead to the PHP section.

Now I'll show you how to make a Flickr-style tag cloud in Perl. In order to run these scripts, you'll
need the following four CPAN modules installed on your system:

e LWP::Simple, which provides aget () function that retrieves the contents of a web page and
stores it in a text string.

e HTTP::Cache::Transparent, which provides a caching mechanism that speeds up your scripts
(the second time you run them) and reduces the load on servers that you are querying for tags

e XML::RSSLite, which is an RSS parserone of many such parsers on CPAN. We'll use it to parse
the RSS feed at del.icio.us. | chose RSSLite because code that uses it is relatively easy to read,
compared to some other parsers. However, if you already prefer another parser, then by all
means use It.

e Data::Dumper, which produces a Perl listing of any Perl data structure. | use it all the time to
save data to files for later use. It is also incredibly helpful for examining and understanding the
contents of complex data structures (such as XML trees and the data returned by RSS parsers).

There are three key steps to making a tag cloud:

1. Make tags
2. Collect tags
3. Display tags

Most of this article is concerned with the last two tasks: collecting tags and displaying them in the
form of a tag cloud. | will assume that you have a source of tags or phrases. But to begin with, we d«
need some raw data, so the scripts that count the tags will use web sites that provide data we can
use to build tag clouds.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

5.1. Collecting Tags

When developing a general-purpose script, it's a good idea to work with at least two very different
sets of data so you can get a better idea of what kinds of challenges you might encounter. I am
providing scripts that retrieve data from two very different sourcesone very old and one very new.
Both scripts collect the data and then use Data::Dumper to save the data to a file. The file contains ¢
data structure called $t ags that contains the set of tags, the tags' associated counts, and associated
URLs. The contents of this file are intended to be read by another Perl script, and it is formatted as

valid Perl. Here's a sample:

$tags = {
'RSS => {
count’ => 1,
‘url' => "http://magpi erss. sourceforge. net/"',
‘tag’ => "'RSS
¥
"NYQUI ST' => {
count’ => 1,
‘url' => "http://audacity. sourceforge. net/hel p/ nyqui st 3",
‘tag' => 'Nyqui st'
¥
' GENERATORS' => {
count’ => 1,
‘url' => "http://generatorbl og. bl ogspot.com ',
‘"tag’ => 'generators’
¥
etc...

'
1;

Notice that each tag has both a key (uppercase) and a tag value (mixed case). The uppercase key iIs
used to insure that all case-spellings of the same word are stored in a single record, and to simplify

the sort order. The tag contained within each record is the spelling of the tag that we will use In the

tag cloud (and generally corresponds to the first use of the tag in the data).

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

5.2. Collecting Genesis Words in Per|

Our first script, makeGenesisTags.pl, produces a list of the words that appear in the book of Genesis
In the Bible. The data is retrieved from the copy of the book of Genesis at the Project Gutenberg web
site. To run the script, enter this command:

makeGenesi sTags. pl

It will produce a file called genesis.pl. This script uses LWP::Simple to screen-scrape the Project
Gutenberg web site. Let's see how it works by examining the script:

#! [/ usr/ bi n/ per|

use HTTP:: Cache:: Transparent;
use LWP:: Si nmpl e;

use Dat a: : Dunper;

use strict;
use war ni ngs;

These lines insure that the HTTP::Cache::Transparent, LWP::Simple, and Data::Dumper modules are
available. If they aren't, you'll see an error message when you run the script that says something like
"Can't locate Data/Dumper.pm in @INC."

use strict;
use war ni ngs;

The above lines turn on strict warnings that help you avoid misspelled variable names and other
common problems in your script.

$Dat a: : Dunper::Terse= 1; # avoids $VARL = * ; in dunper output

This line prevents Data::Dumper from prefixing its output with the boilerplate text$VARL = . This
allows us to save the data to different variable names.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

HTTP: : Cache: : Transparent::init({
BasePath => './cache',
NoUpdat e => 30*60

o)

The HTTP::Cache::Transparent module provides a simple way to make screen-scraping scripts more
efficient. When you read data from a web site, a copy of the data is kept in a cached file. Subsequent
reads will use the cached data rather than pulling the data from the web site, if appropriate. The only
additional code that needs to be added are the above lines, which specify where to keep cached data
and how frequently to poll the web site. We will retrieve data no more than every 30 minutes.

In this particular script, we are accessing a text that is unlikely to change (the Bible), so we can use .
much larger number of NoUpdate.

specify where to get the bible, and the desired verses
nmy $url = 'http://ww. gutenberg.org/dirs/etext05/ bi b0110. txt";

This line specifies the URL of the web page we are going to screen-scrape. This particular page
contains the text of the book of Genesis. If you'd like to use some other text, go to the Project
Gutenberg web site (http://www.gutenberg.org/) to find what you want.

To see what this text looks like in its raw form, check out the web page we're grabbing in your
browser:

http://ww. gut enberg. org/dirs/etext05/ bi b0110. t xt

ny $ofil ename = "genesis.pl";

This line specifies the name of the output file where we are going to save our tags.

get the text
my $txt = get($url);

This line retrieves the actual text of the page using theget () function that is provided by
LWP::Simple.

Renobve Project Gutenberg Header
$txt =~ s/ **** START OF THE PRQIECT GUTENBERJ "\ n]*\n//s;

skip the preface (this line is needed for the book of genesis only)
$txt =~ s/~ . *(\nBook 01)/\1/s;

downloaded from: lib.ommolkefab.ir

http://www.gutenberg.org/
http://www.gutenberg.org/dirs/etext05/bib0110.txt

downloaded from: lib.ommolkefab.ir

Renove Project GQutenberg Trailer
$txt =~ s/*** END OF THE PRQIECT GUTENBERG *$// s;

These lines extract the portions of the text we are interested in. Project Gutenberg text contain some
standard-issue boilerplate above and below the text, so we extract everything above and below thos¢
sections. The book of Genesis contains a preface, so we also remove that.

renpve sone punctuation
$txt =~ s/[\.,]/ [/gs;

This line removes commas and periods from the text, so that we have just a list of words, separated
by spaces.

convert text into individual words and count 'em

nmy $tags;

foreach ny $w (split /\s+/, $txt)

{
next if $w =~ /[0-9]/; # skip paragraph nunbers and other nunbers
next if $weq '';
ny $uw = uc($w);
$tags->{Suwt = {url=>"http://dictionary.reference.coni search?g="'.%w, count=>0,
tag=>%w} if !(defined $tags->{$uw});
$t ags- >{ $uw} - >{ count } ++;

}

This section examines each word individually and builds up the$t ags data structure. For each word,
It builds a URL to the http://dictionary.reference.com web site (keep in mind that this link may not
work for all words), and it maintains a count of how many times the word has occurred. The
associative array feature in languages like Perl makes it very simple to count words or tags.

Notice that we are using an uppercase version of the word $uw) for the key. This ensures that if we
encounter the same word with different capitalization, it will be counted as the same word.

Notice that we also store a copy of the word as it first appears. This will be output to the tag cloud.

open (OFILE, ">%$ofilenane") or die ("Can't open $ofilenane file for $ofil enanme");
print OFILE "package nytags;\n\n\$tags = " . Dunper($tags) . ";\nl;\n";
cl ose OFI LE;

printf "Wote %l tags to $ofil enane \n", scal ar(keys % $tags});

The above section uses the Dunper () function provided by Data::Dumper to output our $t ags data
structure to a file. Here are the first few lines of that file:

downloaded from: lib.ommolkefab.ir

http://dictionary.reference.com

downloaded from: lib.ommolkefab.ir

package nyt ags;

$tags = {
' PASSED => {
‘count’ => 8,
‘url' => "http://dictionary.reference. conm search?g=passed’,
‘tag' => 'passed
¥
'SORE => {
‘count' => 10,
‘url' => "http://dictionary.reference. coni search?g=sore',
"tag' => 'sore’
¥
AT => {
‘count’ => b4,
‘url' => "http://dictionary.reference. com search?q=at",
‘tag’ => "at’
¥
/] etc...

Later in this article, we'll be using this data to construct the HTML for the tag cloud, but now let's
make another script that gathers actual tags from a different source.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

5.3. Collecting del.icio.us Tags in Perl

Our second script, makeDeliciousTags.pl, produces a list of tags from the most recent entries in your
del.icio.us account. If you don't have a del.icio.us account, you can either get one (it's free) or use
my username (Jobum) as I'm doing in these examples. You can view my del.icio.us bookmarks at the
following URL: http://del.icio.us/jbum.

To run the script, enter its name on the command line, followed by the del.icio.us username that you
want to collect tags for, like so:

makeDel | ci ousTags. pl | bum

In this example, the script will produce a file calleddeliciousTags_jbum.pl.

This script is a little different, since it is parsing an RSS file. Let's examine it in more detail.

#! [/ usr/ bi n/ per|

use HITP:: Cache:: Transparent;
use LWP:: Si nmpl e;

use Dat a: : Dunper;

use XM.:: RSSLI t e;

These lines load the CPAN modules we are going to use. In addition to the modules used in the
previous script, we add the XML::RSSLite module, which enables us to parse the XML data in an RSS
feed.

use strict,;
use war ni ngs;

As In the previous script, the above lines turn on strict warning messages, and initialize the caching
mechanism.

HTTP: : Cache: : Transparent::init({
BasePath => './cache',
NoUpdate => 30*60

o)

downloaded from: lib.ommolkefab.ir

http://del.icio.us/jbum

downloaded from: lib.ommolkefab.ir

The above lines specify a local caching directory, as before, and insure that we don't access the web

site more than once every 30 minutes. This precaution not only makes your script more efficient, it i¢
the recommended access policy at del.icio.us. If you attempt to read the del.icio.us RSS feeds more

frequently, you can get blacklisted at that site.

$Dat a: : Dunper::Terse= 1; # avoids $VARL = * ; in dunper out put

This line prevents Data::Dumper from prefixing its output with the boilerplate text

$VARL = and allows us to save the data to different variable names.

ny $who = shift;
$who = 'jbum if ! $who;
ny $del URL = "http://del.icio.us/rss/$who";

These lines load the username from the command-line argument. If a username isn't specified, the
script uses my username (Jbum). The username forms the URL that contains the RSS feed we are
going to parse, and later will be incorporated into the name of the output file we are going to write.

print "loading tags...\n";
my $xm = get ($del URL);

In this line, we load the RSS feed data into a variable, using theget () function provided by
LWP::Simple.

my %esult = ();
parseRSS(\ % esul t, \$xm);

In these lines, we parse the data in the RSS feed (which is in XML format). This particular parsing
function, parsers(), Is provided by the XML::RSSLite module. On CPAN, there are other parsers you
can use, but they will have different calling conventions. If you wish to use a different parser, check
the documentation to make sure you are using it properly.

ny $tags = {};
foreach ny $item (@ $result{'item}})
{

my $url = $item >{link};
foreach nmy $tag (split / /,$item>{"dc:subject'})

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

{
my $utag = uc($tag);
i f (!$tags->{$utag}) {
$t ags- >{$utag} = {url=>%url, count=>0, tag=>$tag};
}
$t ags- >{ $ut ag} - >{ count } ++;
}

These lines walk through the parsed RSS data and extract the tags. Each bookmark on del.icio.us is
stored in an i t emrecord. The item record contains a link URL and a set of tags that are space
delimited.

This code splits the tags up into an array and then walks through the array, incorporating each tag

Into our data structure and maintaining a tally of all of the tags.

my $ofil enane = "deliciousTags_$who. pl";

This line sets the output filename, incorporating the name of the user whose tags we are interested
In. From here on out, the script is essentially the same as the script that counted the words In
Genesis.

my $ofil enane = "deliciousTags_$who. pl ";

open (OFILE, ">%ofilenane") or die ("Can't open $ofilenane file for $ofil enane ");
print OFILE "package nytags;\n\n\$tags = " . Dunper($tags) . ";\nl;\n";

cl ose OFI LE;

printf "Wote %l tags to $ofilenane \n", scal ar(keys % $t ags}) ;

These final lines use the Dunper () function provided by Data::Dumper to write the parsed tag data to
the output file. Now we can use this data to build a tag cloud!

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

5.4. Displaying Tags In Perl Using HTML::TagCloud

CPAN contains a module called HTML::TagCloud that displays tag clouds. It is faster (but not as
flexible) to use this module than to write your own code to display tag clouds. We'll develop our own
code for displaying tag clouds in a moment, but first let's take a look at the easier method. Here is a
sample script that uses HTML::TagCloud:

#! [/ usr/ bi n/ per|
use HTM.:: TagC oud;

use strict;
use war ni ngs;

require "genesis.pl";
ny $cloud = HTM.:: TagCl oud- >new,

foreach ny $tag (keys % $t ags})
{

$cl oud- >add($t ag, $tags->{$tag}->{url}, S$tags->{S$tag}->{count});
}

print $cloud->htnml and css();

This code produces a tag cloud with centered words using font sizes of 12 to 36 points. If you wish tc
customize the look of the tag clouds produced by this method, you'll need to modify the CSS code.
You can do this by providing a custom CSS file and using this alternate function to produce the tag
cloud:

print $cloud->htm ();

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

5.5. Displaying Tags In Perl Using Your Own Code

There are various ways to display a tag cloud. I've chosen a style that closely resembles the tag
clouds on Flickr. Here is the HTML for a very small tag cloud, so you can see how it is structured:

<div class="cdiv">
<p class="cbox">

tagl

t ag3

t ag3</p>
</ di v>

Each word or tag is associated with the style division classcdi v (which is defined in the CSS style
file), and the font size is given explicitly for each tag.

These days, it is fashionable to separate style from structure, and keep all stylisticinformation in the
CSS file. The tag clouds produced by HTML::TagCloudaccomplish this goal by eliminating the explicit
font-size references and using a setof individual styles ¢ agcl oudl , tagcl oud2 , tagcl oud3 , and so
on), onefor each font size. While the basic idea of separating style from structure isdesirable, this
particular use strikes me as silly, since the separate classes arefunctioning as implicit font-size
directives. It reduces clarity in the HTML codeand makes the CSS code needlessly complex.

Since we have full control over the code that generates the tag cloud, there is littleneed to use CSS
to modify the range of font sizesinstead, we will control thisdetail through scripting.

For the tag clouds in this article, | am putting the font-size directive In the tagcloud code itself, and
using a shorter CSS file called "mystyle.css" that mimics theFlickr look:

body { padding-bottom 10px; padding-top: Opx; margin: O0px; background: #fff; }
p { font: 12px Arial, Helvetica, sans-serif; }

.cbox { padding: 12px; background: #f8f8f8; }

.cdiv {margin-top: 0; padding-left: 7px; padding-right: 7px; }

.cdiv a { text-decoration: none; padding: 2px; }

.cdiv a:visited { color: #07e; }

.cdiv a:hover { color: #fff;, background: #07e; }

.cdiv a:active { color: #fff; background: #F08; }

Our challenge is to build some HTML code that looks like the sample above, giving each tag an
appropriate font size and the appropriate link from the database.

We'll start with a very simple way to accomplish this task and then work up to amore sophisticated
method. If you'd like to cut directly to the chase, you'll find the code inmakeTagCloud.pl .

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

The first script simply uses the count associated with each tag for the font size:Let's call it
makeTagCloudl.pl :

#! [/ usr/ bi n/ per|

use strict,;
use war ni ngs;

load Intag file
ny $tagfile = shift;
$tagfile = "genesis.pl' if !'$tagfile;

out put begi nning of tag cl oud
print <<EOT,
<ht m >
<head>
<link href="nystyle.css" rel ="stylesheet" type="text/css">
</ head>
<body>
<di v class="cdiv">
<p class="cbox">
EOT

out put 1 ndividual tags
foreach ny $k (sort keys % $tags})
{
ny $fsize = $tags->{$k}->{count};
ny $url = $tags->{$k}->{url};
ny $tag = $tags->{$k}->{tag};
printf "¥%\n",
$url, int($fsize), $tag;
}

output end of tag file
print <<EOT;

</ p>

</ di v>

</ body></htnl >

EOT

To use this script, supply the name of the tag file as the first parameter and redirect the output to a
temporary HTML file to test it:

$ makeTagd oudl. pl deliciousTags j bum pl >test. htnl

The result is shown In Figure 9.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Figure 9. makeTagCloudsl.pl

music =34 o

As you can see, the words are far too small. We probably don't want to see a font size smaller than

about ten points, so let's add ten to the count. We'll change the line that converts tag count to font
size from this:

ny $fsize = $tags->{$k}->{count};

to this:

ny $fsize = 10+$t ags->{Pk}->{count};
This change produces the tag cloud shown in Figure 10.

Figure 10. Minimum font size of ten points

This looks OK, but there are a few problems. The word "music" is really big, butall of the other words
are guite small. I'd like to see a little more variety in the fontsizes. Another problem becomes
apparent when | run the script on my Genesiswords. | get the tag cloud shown in Figure 11

Figure 11. Genesis Tags, without scaled mapping

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

The fonts in this tag cloud are much too large! What would happen if | had a tagwith a count of 2,00(
I'd get a font taller than the resolution of most monitors.Clearly, | need to do something a bit more
sophisticated. What | want to do is mapthe tag counts, which are going to go from some minimum
value to somemaximum value (minimum tag count maximum tag count) to a range of desired
font sizes (minimum font size =%* maximum font size). In other words, | need toscale the mapping.

To do this, I first need to determine what those numbers are. The following codesets the minimum
and maximum font sizes to constant values:

ny $m nFont Si ze = 10;
ny $maxFont Si ze = 36;
ny $font Range = $nmaxFont Si ze - $m nFont Si ze;

As you can see, I'm using the range 10 to 36a little wider than the range used byHTML::TagCloud. |
think this is more elegant than using a style sheet thatcontains a bunch of individual font directives.

To determine the minimum and maximum tag counts, we'll let the script loopthrough the data:

determ ne counts
my $nmaxTagCnt = O;
ny $m nTagCnt = 10000000;

foreach ny $k (@ortkeys)

{
$maxTagCnt = $t ags->{$k}->{count}
| f $tags->{$k}->{count} > $nmaxTagCnt ;
$m nTagCnt = $t ags->{$k}->{count}
| f $tags->{$k}->{count} < $nmi nTagCnt;
}

We'll add the following function to the bottom of the script. It converts a tag countto a font size. This
function does a straight linear mapping. It first converts the tagcount to a ratio (which goes from O t«
1) and then maps it to the desired range offont sizes:

sub Det erm neFont Si ze($)

{
ny ($taglnt) = @;
nmy $cntRatio = ($tagCnt-$m nTagCnt)/ (SmaxTagCnt - $m nTagCnt) ;
ny $fsize = $m nFont Si ze + $f ont Range * $cnt Rati o;
return $fsize;
}

To use the above function, we'll replace this line:

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

ny $fsize = 10+$tags->{3$k}->{count};

with this, which calls the function:

ny $fsize = Determ neFont Si ze($t ags->{ $k}->{count});

The resultant tag cloud, for Genesis, looks like Figure 12:

Figure 12. Linear mapping

M Abel abeimzraim Abidah Ablde Abimael Abimelitch Ablmelech's Alwaham Abraham's &hram Abram’s Acoad MAchbor Adah Adam Adbesl Admah Adullamie Afher

Aholibamah Alwizzath Ajah Saan AL Allenbachuth Almights Almodad Ake Alvah Alvan Am Amalek Amalekites Ammen Ameide Ameites Amiaphel Acabh Anamim And
Angl Angael Appoint Aram Asan Araral Arbah Asd A Al Arlgoh Angse Asate Auvedi Aphaxad ARt Avadile AS Adanath Ashbel Asher Ashlenaz Ashiamdh Ak Asshur Asshanm
Agmyria At Adad Awith Baalhanan Babel Bashemath B¢ Because Becher Bedad Besd Bewrdahairel Beesheba Behiid Bdla Bedah Banammi Benjamin Benjamin’s Benonl Beor
Bera Bewd Beniah Beilhel Belhlehem Eethuel Beware Bilhah Bidhan Binding Bisha Bles Blesed Book Both Bom Booah Bring Bul Buz By Cain Cainan Calah Calneh
Can Canaan Cansanite Canaanites Cansanibsh Caphbtosim Camni Caslubhim Cast Cause Chaldees Chedodaomer Cheian Chensbime Chesed Chezib Come Cusad Cush Damascus
Dan Day Debotah Dadan Paliver Didah Dinabk indb®s Dinhabah Clecen Dhinan Didhen Do Dodanim Dothan Drink Duloy Pomah Eah Ebal Ebar Sdar Edwn Edom Edomiles
Ewel Egvplan Egyptans Cgvpbaw Ehl Elah Elam Elbetval Eldaah Elelohstiasl Elieze' Elighaz Elshan Ellaar Slen Elpdran Emang Enmighpat Encch Ene Ephah Epha
Ephiaim Ephrasm's Ephiath Ephien Er Emch Eil Eau Esau's Escaps Eswh Eshban Eshool Ethiepia Euphiaies Eve Ewen Evary E=cepl Ezbon Ezar Feuar Feud Fiflsen Fill Fo
Forsgsmuch Fongive Feom Fulfil Gad Gaham dalesd Gotam Gather Gaxa Sanesis Seantiles e Garn
Gods Fomer Gomomih Goshen Gunl Fadad Hadar Hadoram Hagar Haggi Hai Ham Hamathite Hamer Hamors Famul Hanoch Happy Haan Hast Hase Hawe Hawilah
Hezaempetth Hizezontamar Haze He Hear Hesxven Habar Hebree Haebeews Hebron Hemarm Hamdan Here Haoeby Hath Hezren Hiddelokl Hindetd Hirah Hie Hitlite Hi#ttitex Hivile
Hobah Hon Honbe Hosibas How Hul Huppim Husham Hoeshim Hur | W oin imad ram is saac saacs lscah Ishbak ishmasl Ishmael's Ishmeelites Ishuah lrael bsraels Issachar
bg It Ithean Jaalsm Jabal Jabbek Jassln Jecob Jscob’r Jabhlesl Jahzesl Jamis Japheth Jsred Jawsn Jebisile Jebusiles Jegarahaditha Jehavahjireh Jemusl Jeak Jstheth
Jatur Jeush Jerer Jidaph Jimnah Jasb Jobab Jokehan Joldan Jerdan Jozeph Joezaph's Jubal Judak Judahe Judge Judith Madedsh Kadmaonibes Hamaim Hedsr Kedemah Kemuoel
Henaz Konites Henizziles Katurah Kidathaim Kigathaiba Kithim Hnow Hehath Kerah LORD Laban Labar's Lahaioi Lameoh Lasha Lay Laeah Leah's Lahablm Last Lat

Gashon Gat OGather Gihon Gilead Cirgashites Cigaste Sive Go God

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

5.6. Magnifying the Long Tall (Inverse Power Mapping In
Perl)

The uniformity of the font sizes | noted earlier iIs still a problem. The reason forthis is that the tag
counts are arranged in a power curve (Figure 13). Power curvesare a very common phenomenon
found In popularity or frequency data collectedfrom human activity.

Figure 13. A power curve

There tends to be a very few large values in the data, and lots and lots of smallvalues. The problem
with mapping a power curve to a limited set of font sizes isthat the "long tail" of the power curve
ends up getting represented by just one ortwo font sizes. Many of the intermediate font sizes won't
get used at all because ofthe larger gaps between the counts of the most popular words.

The way to make this tag cloud look better is to use a logarithmic function toreverse the power
curve's effects. Essentially, we will map the linear range of fontvalues to the logarithmic range of tag
counts, magnifying the differences betweensmaller counts and making the "long tail" of the power
curve more visible (Figures 14 and 15).

Figure 14. Linear mapping of X to y

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Figure 15. Logarithmic mapping of X to y

To do this, we'll add a logarithmic measure of the tag counts:

ny $m nLog = | og($m nTagCnt);
my $maxLog = | og($nmaxTagCnt) ;
my $l ogRange = $nmaxLog - $m nLog;

$l ogRange = 1 if ($maxLog == $m nLog);

And we'll modify the function that determines font size.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

sub Det er m neFont Si ze($)

{
ny ($taglnt) = @;
ny $cntRati o;

I f ($useLogCurve) {
$cntRatio = (|l og($tagCnt)-%$m nLog)/ $l ogRange;

}

el se {
$cntRatio = ($tagCnt-$m nTagCnt)/ ($maxTagCnt - $m nTagCnt) ;

}
ny $fsize = $m nFont Si ze + $f ont Range * $cnt Rat i o;

return $fsize:

The variable $uselLogCurve will be used to provide logarithmic mapping. | suggestsetting it to 1 (or
true) by default.

Note that if $useLogCurve is set to 0, we get the straight linear mapping we hadbefore.

The logarithmic mapping is shown In Figure 16.

Figure 16. Logarithmic mapping of del.icio.us tags (compare to Figure 10

The tags are looking a little better; however, there are still far too many smallwords. Let's filter the
tags down to the top 200 so we can see just the mostcommon words. This step produces a tag cloud
that fits on a single page anddisplays a wider variety of font sizes.

To do this, we'll add the following code to collect the 200 most common tags intoan array:

$maxt ags = 200;

my @ortkeys = sort {$tags->{$b}->{count} <=> $tags->{%a}->{count}} keys
% $nyt ags: : tags};

@ortkeys = splice @ortkeys, 0, $naxtags;

We use this array anywhere we were previously using keys% $t ags} .

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

The final Perl script, called makeTagCloud.pl , reads as follows:

#! /usr/ bi n/ per|

use strict;
use war ni ngs;

load I1ntag file
ny $tagfile = shift;
$tagfile = 'genesis.pl' if !'$tagfile;

require "S$tagfile";
die ("No tags |loaded\n") if (!$nytags::tags);
ny $tags = $nytags::tags;

$uselLogCurve = 1;
$m nFont Si ze = 10;
$maxFont Si ze = 36;

$f ont Range = $maxFont Si ze - $m nFont Si ze;

$maxt ags = 200;

@ortkeys = sort {$tags->{$b}->{count} <=> S$tags->{%a}->{count}} keys
o $nyt ags: : t ags};

@ortkeys = splice @ortkeys, 0, $nmaxtags;

S3S323

determ ne counts
ny $maxTagCnt 0;
ny $m nTagCnt 10000000;

foreach ny $k (@ortkeys)

{
$maxTagCnt = $t ags->{$k}->{count}
| f $tags->{$k}->{count} > $nmaxTagCnt ;
$m nTagCnt = $t ags- >{$k}->{count}
| f $tags->{$k}->{count} < $m nTagCnt;
}

my $m nLog = | og($m nTagCnt) ;

my $maxLog = | og($maxTagCnt) ;

my $l ogRange = $nmaxLog - $m nLog;

$l ogRange = 1 if ($maxLog == $m nLogQ);

sub Det er mi neFont Si ze($)

{
ny ($taglnt) = @;
ny $cnt Rati o;

| f ($uselLogCurve) {
$cntRatio = (|l og($tagCnt)-%$m nLog)/ $l ogRange;

}

el se {
$cntRatio = ($tagCnt-$m nTagCnt)/ ($maxTagCnt - $nm nTagCnt) ;

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

}
ny $fsize = $m nFont Si ze + $f ont Range * $cnt Rati o;
return $fsize;

}

out put begi nning of tag cl oud
print <<EOT,
<ht m >
<head>
<link href="nystyle.css" rel ="styl esheet" type="text/css">
</ head>
<body>
<di v class="cdiv">
<p cl ass="chox">
EOT

out put 1 ndividual tags
foreach ny $k (sort @ortkeys)
{
ny $fsize = Determ neFont Si ze($t ags- >{ $k}->{count });
my $url = $tags->{$k}->{url};
my $tag = $tags->{$k}->{tag};
printf "¥s\n",
$url, int($fsize), $tag;
}

output end of tag file
print <<EOQT;

</ p>

</ di v>

</ body></htm >

EOT

The Genesis tag cloud produced by this script is shown in Figure 17

Figure 17. Final Genesis tag cloud: top 200 terms and logarithmic mappin

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Anraham Abram Aﬂd Sehoid Bwt Carssn Egypl Esau rer 0O | szac iwren Jacob Joseph LORD Lavan cean Lat Lot mosh wows

Pharaoh Rachel Rebekah Saish The Then wial € accurting GIOT again all alo am an End Gro at 45 at eway bare be becavze before begat

behold bessed bem batn DrErEn being bDrother brought bul oy called CAIME caltle childmn cty come desghler ¢aughters day daws did die died do

done down dream 2aMH est cven EvErY eves tace TALNET tathers fickd fiesh fDl’ torth found fTOM gave give g0 good great NAA hand hast hath

have hE-‘ haard heavan NET h"Tl hlS house hundred Iﬂ Into iE |t wng 1@ND let e bved 10r made meke MEN may ME men
money my Marme night I'"IDt oy Gf d on ong our CUL over Pa53 poopl place pray pd Eald saw 33yINg seed manl zerved svants sat
seven SNAll chah she > son sons e we thAl the thee their them .. there e these TheY wing this thou

nme LNY tﬂ teld tOOK two LIH’[D Up UPON us WES wuier mutes way we wet went were when which wit= Will With ve years

Wl ':|."IIII.I ':|I'IIIL-IF

As | mentioned earlier, you can use a frequency sort (Figure 18) instead of analphabetical sort. Just
change this line in the display loop:

foreach ny $k (sort @ortkeys)

To this:

foreach ny $k (sort
{ $t ags- >{ $b}->{count} <=> $tags->{%a}->{count}}
@ort keys)

Figure 18. Tag cloud with freguency sorting

However, as | also mentioned earlier, | prefer the alpha sort. It's more "cloudy"and it provides
additional information.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Making Tag Clouds in PHP

Note: This section, which shows how to make tag clouds in PHP, is preceded by asection that covers the same material, but uses Perl.
If you are more familiar withPerl, and haven't read that section, | suggest you read it first.

Now I'll show you how to make a Flickr-style tag cloud in PHP. In order to runthese scripts, you'll
need some familiarity with PHP and access to a web serverthat supports PHP. PHP scripts are
typically uploaded to the server using FTP, andthen tested by invoking them in a local web browser
that can access the server.You can learn more about PHP by visiting the PHP web site:
http://www.php.net/.

There is one minor difference in the following scripts from the Perl scriptsdescribed in the previous
section: In the Perl scripts, we saved the tag informationto a file and passed that file (via a
command-line argument) to another script, makeTagCloud.pl, which generates the tag cloud. The
PHP counterpart scripts willnot use this temporary file, but instead collect the tags directly into an
array.Otherwise, these scripts mimic the functionality of the scripts we developed inPerl.

Most of this article i1s concerned with collecting tags and displaying them in theform of a tag cloud. |
will assume that you have a source of tags or phrases. But tobegin with, we do need some raw data,
so the scripts that count the tags will useweb sites that provide data we can use to build tag clouds.

downloaded from: lib.ommolkefab.ir

http://www.php.net/

downloaded from: lib.ommolkefab.ir

6.1. Collecting Tags

When developing a general-purpose script, it's a good idea to work with at leasttwo very different
sets of data so you can get a better idea of what kinds ofchallenges you might encounter. | am
providing scripts that retrieve data from twovery different sourcesone very old and one very new.
Both scripts collect thedata and save the data to a global associative array called$t ags. The $t ags
array contains the set of tags, the tags' associated counts, and associated URLs. If lwere to initialize
the array from scratch, it might look like this:

$tags = array(
'RSS => array(
‘count' => 1,
‘url' => "http://magpi erss. sourceforge. net/"',
‘'tag’ => "'RSS
),
"NYQUI ST' => array(

‘count' => 1,
‘url' => "http://audacity. sourceforge. net/ hel p/ nyqui st3',
‘url' => "http://audacity. sourceforge. net/ hel p/ nyqui st3',

"tag' => ' Nyqui st'
),
' GENERATORS' => array(

‘count' => 1,
‘url' => "http://generatorbl og. bl ogspot.com ',
‘"tag’' => 'generators’
),

/] etc...

) ;

Notice that each tag has both a key (uppercase) and a tag value (mixed case). Theuppercase key is
used to insure that all case spellings of the same word are storedin a single record, and to simplify
the sort order. The 'tag' element containedwithin each record is the spelling of the tag that we will
use in the tag cloud (andgenerally corresponds to the first use of the tag in the data).

Here is a function that can be used to build up such an array, using successivecalls. This function is
Included In our scriptaddTag.php.

functi on addTag($tag, $url)

{
gl obal $t ags;

$utag = strtoupper ($tag);
i f (!$tags[$utag])
$tags[$utag] = array('count’ => 0, 'url' => $url, 'tag" => $tag);

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

$tags[$utag][' cnt'] ++;

To build up a set of tags, we calladdTag() once for each occurrence of a tag, providing the name of
the tag, and the URL we want the tag to link to, like so:

addTag(' weddi ngs', 'http://ww. nywebsite.contags/weddi ngs');
addTag(' sunsets, 'http://ww. nywebsite.com tags/sunsets');
addTag(' puppies', '"http://ww. nywebsite.conltags/puppies');

If a tag occurs more than once, we call the function once for each occurrence, inorder to increment
the count.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

6.2. Collecting Genesis Words in PHP

Here i1s a PHP script, getGenesisTags.php, which collects tags by counting thewords that appear In
the book of Genesis in the Bible. The data is retrieved fromthe copy of the book of Genesis at the
Project Gutenberg web site. (This script isavailable athttp://examples.oreilly.com/tagclouds/.) Let's
see what it does.

<?
[/
/] Collect text fromgenesis

function get Tags()

{
gl obal $t ags;

The script contains a single function, calledget Tags() . This function will beinvoked from another
script, makeTagCloud.php, which we will invoke later. Thepurpose of theget Tags() function is to
populate the global associative arraycalled $t ags.

$url = "http://ww. gutenberg.org/dirs/etext05/ bi b0110. txt";

The previous line specifies the URL of the web page we are going to screen-scrape. This particular
page contains the text of the book of Genesis. If you'd liketo use some other text, go to the Project
Gutenberg web site (http://www.gutenberg.org/) to find what you want.

To see what this text looks like in its raw form, check out the web page we'regrabbing in your
browser:

http://ww. gutenberg. org/dirs/etext05/bi b0110. t xt
[l $txt = file get contents(S$url);

$ch = curl _init();

$timeout = 30; // set to zero for no tineout

curl _setopt ($ch, CURLOPT_URL, S$url);

curl _setopt ($ch, CURLOPT RETURNTRANSFER, 1);

curl _setopt ($ch, CURLOPT_ CONNECTTI MEQUT, $tineout):;
$t xt = curl exec($ch);

curl cl ose($ch);

The previous lines retrieves the bible text from the Project Gutenberg web site. lam accomplishing

downloaded from: lib.ommolkefab.ir

http://examples.oreilly.com/tagclouds/
http://www.gutenberg.org/

downloaded from: lib.ommolkefab.ir

this using the curl library. There Is a simpler way to retrievethis text, but it only works if your web
host supports the PHP

al | ow_url fopen option. Mine doesn't, because it is believed to be a securityrisk, so | am providing
this alternate method, which uses curl. If the PHPimplementation you are using supports the

al | ow _url _fopen option, you canshorten the script by replacing the previous lines with the single line
which iscommented out at the top of the block:

$txt = file get contents($url);

Moving right along, we do a little processing on the text by performing a series oftext replacements.
These next few lines describe the search and replacementpatterns and perform the replacement.

$searches = array('/”.**** START OF THE PRQIECT GUTENBERJ "\ n]*\n/s',
"IN *(\nBook 01)/s',
"/*** END OF THE PRQIECT GUTENBERG. *$/s',
"JIMNWTN-]7S8");

$replaces = array('"',
‘81,
B

$txt = preg_repl ace($searches, $repl aces, $t xt);

The patterns passed to preg repl ace are used to extract the portions of the textwe are interested In.
Project Gutenberg text contain some standard-issue boilerplateabove and below the text, so we
extract everything above and below those sections.The book of Genesis contains a preface, so we
also remove that. We also removecommas and periods from the text, so that we have just a list of
words, separatedby spaces.

Next we convert the words into an array, by using the split function:

$words = preg split('/\s+/"', $txt);

And then we walk thru the array and call theaddTag() function on each word.

f oreach ($words as $w

{
if ($w == "" || preg match('/[0-9]/"', $w))
cont i nue;
addTag($w, 'http://dictionary.reference.com search?g=".%w);
}
}
7>

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

For each word, we provide a URL to the http://dictionary.reference.com web site(keep in mind that
this link may not work for all words).

This script uses the addTag() function, which will count how many times eachword occurs. This
function will be provided by the invoking script,makeTagCloud.php.

Now let's look at a similar script, which collects actual tags, rather than words, from a different
source.

downloaded from: lib.ommolkefab.ir

http://dictionary.reference.com

downloaded from: lib.ommolkefab.ir

6.3. Collecting del.icio.us Tags in PHP

Our second PHP script, getDeliciousTags.php, produces a list of tags from themost recent entries Iin

your del.icio.us account. If you don't have a del.icio.usaccount, you can either get one (it's free) or

use my username (Jbum) as I'm doingin these examples. You can view my del.icio.us bookmarks at
the following URL:http://del.icio.us/jbum.

Del.icio.us provides tags in an RSS feed. To collect and parse the RSS data, we'lluse the library
magpie RSS, a freely available RSS parser for PHP. You candownload magpie at:
http://magpierss.sourceforge.net/

You will need to follow the instructions that come with magpie RSS to install it onyour server.

Because this script deals with RSS data, it looks a bit different than the previousscript. Let's examine
It In detall:

<?
/]
/|l Collect delicious tags (or |load themfroma cache)

function get Tags()

{
gl obal $t ags;

Again, the script contains a single function,get Tags() , which is responsible forbuilding up the global
associative array, $t ags.

/|l use the paraneter 'who' to determ ne which account to poll
/[l 1t defaults to '] bun

$who = 'j buni;

I f (isset($_GET['who']))
$who = $ GET[' who' |;

The previous lines determine which del.icio.us account you are collecting tags for.If one is specified it
the URL parameters, it will be used, otherwise, my account,'joum’ will be used.

[/ renove troubl esone characters from nane
$who = preg replace('/\W', "', $who);

downloaded from: lib.ommolkefab.ir

http://del.icio.us/jbum
http://magpierss.sourceforge.net/

downloaded from: lib.ommolkefab.ir

Since this script is intended to be used on a web site, we have to be careful thatuser don't enter
Invalid data that causes unintentional side effects, so we removeall alphanumeric characters from the
name, to reduce the security risks that mightcome from accessing unfiltered URLSs.

i f ($who == "'")
return;

And In the previous line, we return early if a blank name is provided, or we get ablank after filtering.

$del URL = "http://del.icio.us/rss/$who";

In the previous line, the username iIs used to form the URL that retrieves thedel.icio.us feed we are
Interested In.

requi re(' magpi erss/rss_fetch.inc');

Since we are using magpie RSS, we have to let PHP know that we require it.Otherwise, the script
won't work.

/] fetch and parse RSS data
$rss = fetch_rss($del URL);

Finally, we fetch the RSS data. Magpie RSS collects and parses the data. One ofthe nice things about
magpie RSS is that it has a built-in caching function, so wedon't have to worry about overtaxing the
del.icio.us servers.

/] collect tags

foreach ($rss->itens as item {
$tagstrings = preg_split('/ /',$itenfdc][subject]);
foreach ($tagstrings as $tagstring)

{
addTag($tagstring, "http://del.icio.us/$who/$tagstring”);

These lines walk through the parsed RSS data and extract the tags. Each bookmarkon del.icio.us is

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

stored in ani temrecord. The item record contains a link URLand a set of tags that are space
delimited.

This code splits the tags up into an array and then walks through the array, incorporating each tag
Into our data structure and maintaining a tally of all the tags, by calling ouraddTag() function. Each
tag's URL Is set to point to theappropriate del.icio.us page, which contains the tagged links.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

6.4. Display Tags in PHP

There are various ways to display a tag cloud. I've chosen a style that closelyresembles the tag clouds
on Flickr. Here is the HTML for a very small tag cloud, so you can see how it is structured:

<div class="cdiv">
<p class="cbox">

tagl

t ag3

t ag3</p>
</ di v>

Each word or tag is associated with the style division classcdi v (which is definedin the CSS style file),
and the font size is given explicitly for each tag.

These days, It is fashionable to separate style from structure, and keep all stylisticinformation in the
CSS file. The tag clouds produced by some scripts accomplishthis goal by eliminating the explicit font-
size references and using a set of individual styles ¢ agcl oudl , tagcl oud2 , tagcl oud3 , and so on), one
foreach font size. While the basic idea of separating style from structure is desirable, this particular
method strikes me as silly, since the separate classes are functioningas implicit font-size directives. It
reduces clarity in the HTML code and makes theCSS code needlessly complex.

Since we have full control over the code that generates the tag cloud, there is little need to use CSS tac
modify the range of font sizesinstead, we will control this detail through scripting.

For the tag clouds iIn this article, | am putting the font-size directive In the tagcloud code itself, and
using a shorter CSS file called "mystyle.css" that mimics the Flickr look:

body { padding-bottom 10px; padding-top: Opx; margin: O0px; background: #fff; }
p { font: 12px Arial, Helvetica, sans-serif; }

.cbox { padding: 12px; background: #f8f8f8; }

.cdiv {margin-top: 0; padding-left: 7px; padding-right: 7px; }

.cdiv a { text-decoration: none; padding: 2px; }

.cdiv a:visited { color: #07e; }

.cdiv a:hover { color: #fff;, background: #07e; }

.cdiv a:active { color: #fff; background: #F08; }

Our challenge is to build some HTML code that looks like the sample above, giving each tag an
appropriate font size and the appropriate link from the database.

We'll start with a very simple way to accomplish this task and then work up to a more sophisticated
method. If you'd like to cut directly to the chase, you'll find the code inmakeTagCloud.php .

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Out first version of the script simply uses the count associated with each tag for thefont size. Here is
the script, called makeTagCloudl.php :

<ht n >
<head>
<link href="nystyle.css" rel ="styl esheet" type="text/css">
</ head>
<body>
<di v class="cdiv">
<p cl ass="chox">

<?
$tags = array();
i ncl ude "addTags. php";

| ncl ude "getDeliciousTags. php";
[/ 1nclude "get Genesi sTags. php";

get Tags();
ksort($tags); # use arsort($tags) to sort by descendi ng count

foreach ($tags as $utag => S$trec)

{
$cnt = $trec[' count'];
$url = $trec['url'];
$tag = $trec['tag'];

$f si ze = $cnt;

printf("%\n", S$url, (int)$fsize,
$t ag) ;
}

?>

</ p>
</di v>
</ body></htm >

To use this script, upload the four scripts,addTags.php, getDeliciousTags.php, getGenesisTags.php ,
and makeTagCloudl.php to your server. Invoke the script inyour web browser by typing in the URL to
the script:

http://ww. yourdomai n. coml nakeTagCl oudl. php

You can optionally add a 'who' parameter to indicate the del.icio.us account youwish to access.

downloaded from: lib.ommolkefab.ir

http://www.yourdomain.com/makeTagCloud1.php

downloaded from: lib.ommolkefab.ir

The result Is shown In Figure 19.

Figure 19. The output ofmakeTagCloudsl.php

music =

Note: Figures 19 thru 28 (in the PHP section) exactly duplicate Figures 9thru 18 (in thePerl section). | did this to keep the illustrations inline
with the text, so that PHPprogrammers don't have to keep flipping back to the Perl section.

As you can see, the words In Figure 19are far too small. We probably don't wantto see a font size
smaller than about ten points, so let's add ten to the count. We'llchange the line that converts tag
count to font size from this:

$fsi ze = $cnt;

to this:

$fsize = $cnt +10:;

This change produces the tag cloud shown in Figure 20.

Figure 20. Minimum font size of ten points

This looks OK, but there are a few problems. The word "music" is really big, butall the other words are
quite small. I'd like to see a little more variety in the fontsizes. Another problem becomes apparent
when we use the Genesis words insteadof the del.icio.us tags. You can use the Genesis words by
changing which includefile is commented out.

/] 1nclude "getDeliciousTags. php";
| ncl ude "get Genesi sTags. php";

If you try this, you'll see the tag cloud shown in Figure 21

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Figure 21. Genesis Tags, without scaled mapping.

a ADB| emirsm sbidsh Abide foimasl AbimEIEGh Abimulech's

Abraham.... soam.

acrver Adah AQAIM asew ameh Adsanse ater Aholibarmah s fah dan Al Aonbachah AIMIGHTY Amodsd Alss Avah Avan Am Amalik Amabeites

dmmon Amorfe Amoifes Amaaphel ANEaN anamim

The fonts in this tag cloud are much too large! What would happen if you had a tagwith a count of
2,0007? You'd get a font taller than the resolution of most monitors.Clearly, we need to do something a
bit more sophisticated. What we want to do ismap the tag counts, which are going to go from some

minimum value to somemaximum value (minimum tag count maximum tag count) to a range of
desiredfont sizes (minimum font size =%* maximum font size). In other words, we need toscale the
mapping.

To do this, we first need to determine what those numbers are. The following codesets the minimum
and maximum font sizes to constant values:

$m nFont Si ze = 10;
$maxFont Si ze = 36;
$f ont Range = $nmaxFont Si ze - $m nFont Si ze;

As you can see, I'm using the range 10 to 36. | think specifying the font this way ismore elegant than
using a style sheet that contains a bunch of individual font-directives.

To determine the minimum and maximum tag counts, we'll let the script loop through the data:

$nmaxTagCnt = O;
$m nTagCnt 10000000;

foreach ($tags as $tag => $trec)

{

$cnt = $trec[' count'];

I ($cnt > $maxTagCnt)
$maxTagCnt = $cnt;
I f ($cnt < $m nTagCnt)
$m nTagCnt = $cnt;

}
$t agCnt Range = $maxTagCnt+1 - $m nTagCount;

We'll then modify our loop, which renders the tags to use this information to mapthe range of tag

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

counts to the desired range of font sizes.

f oreach ($tags as $utag => $trec)
{
$cnt = $trec[' count'];
$url = $trec['url'];
$tag = $trec['tag'];
$fsi ze = $m nFont Si ze + $font Range * ($cnt - $m nTagCnt)/ $t agCnt Range;
printf("%\n", $url, (int)$fsize,
$tag);
}

The resultant tag cloud, for Genesis, looks like Figure 22:

Figure 22. Linear mapping

A Abal Abslmizeaim Abidah Abide Abimasl Abimalech Abimalech's AErobom Abrsham's Abiam Abrams Accsd Assbeor Adsh Adam Adbesl Admah Adullamite Afe

Arglicamah Ahuzzath Agah Sxan Al Allgnbadhulh Almighty Almedad Alkse Alvah Alvan Am Amaled Amalekles Ammen Aments Amenles Amiaphal Anadh Andmim A'jd
Arel Angel Appaint Arsm o Asan Arseal Afhah Aed Are Al Ariech Ader Addle Amdi Amb;cad Al Aradite Ax Aesnalh Askbel Asher Achkensr Arhlemih Al Aeshar Asthunm
fegyria At Alad Awith Baakhanan Babel Bashemath Be Beoause Boeoher Bedad Beerd BSeerlahaind Beeshaba Behold Bela Belah Benammi Benjamin Benjamin®s Bonond Beo
Bara Bored Bgriah Bethel Bolhlehem Eethusl Beware Bilkah Bifhan Binding Blesha Bles Blesed Book Both Bowe Bozah Bhng Byt Buz By Caln Calnan Calakh Calngh
Can Canaan Cangante Canasnites Canssnilish Caphborim Cammi Caslubim Cad Cawe Chaldees Chedodaomer Chesan Chesubims Chesed Cheab Come Cused Cush Damesous
Can Day Deboah Dedan Deliver Di#dah Dinsh imabs Dinhabash Dieoem DPishan Dishon Do Dodanim Dolhan Deick Dubke Pumah Emth Ebal Eber Edar Edem Edom Edomites
Egyp! Egvplian Egypban’s Egvplians Ehi Elah Elam Elbsthal Eldaah Elelohsbtiiasl Elezei Eliphaz Elishah Ellasar Elen Elparan Eming Enmighpal Enoch Ends Ephah Ephwr
Echiaim Epbraim's Egheath Ephien Er Emich En Gau Esav's Escape Eswk Eshban Eshed Ethicpla Euphiates Eve Even Evary Excwpl Ezben Ezer Fede Fewd Fiflesn Fill For
Ferasmuch Foaglve Feom Falfil Sad SGavam Salesd Satam Gather Saza Seness Senbiles Gera Setar Seshen Gel Sebhar Sihon Silead Sligashites Gligasite Sivs S0 God
Godfs Somer Somomsh Goghen dum Fadad Hadar Hadomm Hagar Haggo Hai Ham Hamathibe Hamor Hamorfs Hamuol Hanech Happy Hann Hat Hasbe Hawe Hanlah
Hazaimavwth Mazezontamar Haze He Hear Hasven Haber Mebrew Hobress Hebron Hemam Hemdan Hee MHersby Helh Hezron Hiddekel Hinder Hicah Mo Hitbis Hitiles Hreerba
Hoban Her Horbe Hosites How Hul Huppim Husham Hushim Huz | in lmad iram 15 kaac baads ircan Ishbak lshmasl ishmaefs Ishmesliter lshuah bsael (srasfs lsmacha
ieui [t (thean Jaaslsm Jabal Jabbek Jacain Jacob Jacobs Jahlesl Jahzesl Jamin Japheth Jared Javan Jabusite Jebusites Jegmsshadutha Jdehovahjireh Jemusl Jerah Jethath
Jetur Jegeh Jerer Jidlsph Jimnah Jab Jobab Jekmhan Joldan Jordan Jozmeph Jeseph's Jusal Jedsh Judsh'e Judge Judith Kadesh Hadmoniter Eanaim Kedar Kedemah Memousl
Manar Heniter Kenizmifes Hetueah Hidathaim Kieadharsa K¥im Kess Kahath Barah LORD Laban Laban's Lamairel Lamech Lashy Loy Leas Leps's Lababim Lasf Lad

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

6.5. Magnifying the Long Tail (Inverse Power Mapping In
PHP)

The uniformity of the font sizes | noted earlier iIs still a problem. The reason forthis is that the tag
counts are arranged in a power curve (Figure 23). Power curvesare a very common phenomenon
found In popularity or frequency data collectedfrom human activity.

Figure 23. A power curve

There tends to be a very few large values in the data, and lots and lots of small values. The problem
with mapping a power curve to a limited set of font sizes is that the "long tail" of the power curve
ends up getting represented by just one or two font sizes. Many of the intermediate font sizes won't
get used at all because of the larger gaps between the counts of the most popular words.

The way to make this tag cloud look better is to use a logarithmic function to reverse the power
curve's effects. Essentially, we will map the linear range of font values to the logarithmic range of tag
counts, magnifying the differences between smaller counts and making the "long tail" of the power
curve more visible (Figures 24 and 25).

Figure 24. Linear mapping of X toy

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Figure 25. Logarithmic mapping of X to y

To do this, we'll add a logarithmic measure of the tag counts:

$m nLog = | og($m nTagCnt) ;

$maxLog = | og($maxTagCnt) ;

$l ogRange = $naxLog - $m nLog;

I f ($maxLog == $ni nLog) $l ogRange = 1;

And we'll modify the line that determines the font size, to allow for a logarithmiccurve option:

| f ($uselLogCurve)

$f si ze = $m nFont Si ze + $f ont Range * (1 og($cnt) - $m nLog)/ $l ogRange;
el se

$fsize = $m nFont Si ze + $font Range * ($cnt - $m nTagCnt)/ $t agCnt Range;

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

The variable $useLogCur ve will be used to provide logarithmic mapping. Isuggest setting it tol (or
true) by default.

Note that if $useLogCurve Is set to 0 , we get the straight linear mapping we hadbefore.

The logarithmic mapping is shown Iin Figure 26.

Figure 26. Logarithmic mapping of del.icio.us tags (compare to Figure 10

algorithmic algorithms antiquarian arca audio automatic bible books composition cool electronic
electronium flash flinger fOrUM god gospel harmonics heaven history judas kircher krazydad languages lisp lucky

mathematicum mechanical Midi mosko museum MUSIC musurgia musurgica NANCAarrow nyquist
organum perl piano programming rare raymondscott reference Singing skini Speech stk syntn
SYNthesis synthesize synthesizer teiharmonium toy voice whitney

The tags are looking a little better; however, there are still far too many smallwords. Let's provide an
option to filter the tags down to some user-provided limit(such as 200) so we can see just the most
common words. This will produce a tagcloud that fits on a single page and displays a wider variety of
font sizes.

To do this, we'll add the following code to pay attention to the 'limit' parameter inthe URL.

1 f (isset($ CGET['Iimt']))

{
arsort ($tags);

$tags = array _slice($tags, 0, (int)($ CGET['limt']));
}

The final PHP script, called makeTagCloud.php , reads as follows:

<ht m >
<head>
<link href="nystyle.css" rel ="stylesheet" type="text/css">
</ head>
<body>
<di v class="cdiv">
<p cl ass="cbhox">

<?

$tags = array();
I ncl ude "addTags. php";

| ncl ude 'getDeliciousTags. php';

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

/] 1 nclude "get Genesi sTags. php";
get Tags();

/[l grab top LIMT here, If argunents specify alimt
[/ and reduce to top N tags.

1 f (isset($ CET['limt']))

{

arsort ($tags);

$tags = array_slice($tags, 0, (int)($ CGET['limt']));
}
// Build Log O oud from Tags
[/
$useLogCurve = 1;

1 f (isset($ CET['linear']))

$uselLogCurve = O;

$m nFont Si ze 1
$maxFont Si ze 3
$f ont Range = $nmaxFont Si ze - $m nFont Si ze;
$maxTagCnt = O;

=1

0;
6;

$m nTagCnt 0000000;
foreach ($tags as $tag => $trec)
{
$cnt = $trec[' count'];
I f ($cnt > $maxTagCnt)
$maxTagCnt = $cnt;
1 ($cnt < $m nTagCnt)
$m nTagCnt = $cnt;
}

$t agCnt Range = $nmaxTagCnt+1 - $m nTagCount ;
$m nLog = | og($m nTagCnt) ;

$maxLog = | og($maxTagCnt) ;

$l ogRange = $maxLog - $m nLog;

I f ($maxLog == $m nLog) $l ogRange = 1;

ksort($tags); # use arsort($tags) to sort by descendi ng count

foreach ($tags as $utag => S$trec)

{
$cnt = $trec[' count'];
$url = S$trec['url'];
$tag = $trec['tag'];

| f ($uselLogCurve)
$fsize = $m nFont Si ze + $font Range * (log($cnt) - $m nLog)/ $l ogRange;
el se
$fsize = $mi nFont Si ze + $font Range * ($cnt - $nmi nTagCnt)/ $t agCnt Range;
printf("%\n", S$url, (int)3$fsize,

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

$tag);
}

2>

</ p>
</ di v>
</ body></htnl >

To use these scripts, upload the PHP files to your web server. Then invoke the makeTagCloud.php
script from your web browser by typing in a URL like thefollowing:

http://ww.yourdomain.com/makeTagCloud.php?limit=200&who=jbum
The scripts accept three parameters.
limit

Limits the maximum number of tags (particularly useful when you have a lot ofthem, as with the
Genesis tags).

who

Specifies an account to collect tags for from del.icio.us.
linear

Turns off the logarithmic font mapping.

The Genesis tag cloud produced by this script is shown In Figure 27

Figure 27. Final Genesis tag cloud: top 200 terms and logarithmic mappin

As | mentioned earlier, you can use a frequency sort (Figure 28) instead of analphabetical sort. Just
change this line above the display loop:

downloaded from: lib.ommolkefab.ir

http://ww.yourdomain.com/makeTagCloud.php?limit=200&who=jbum

downloaded from: lib.ommolkefab.ir

ksort($tags); # use arsort($tags) to sort by descendi ng count
To this:

arsort ($t ags);

Figure 28. Tag cloud with freguency sorting

and the of And his he to unto in that | said him a my was for it me with

thou thee thy is be shall they all them God not which will land came her LORD father Jacob

were she from their son upon had sons Joseph have this up Abraham earth are there years as when werl after oul

man wife name called us before we every hand ye house into also you pass brother took your these by Pharaon brethrén hath saving
Egypt an I5aac day shalt made one come begal bul beqwld men go Ssau let owr daughlers hundred children davs down broughl give did seed on
nied Ssw¢ hare seven because cstfle Behold hast st two Abramm The Labsn face daughler el cuer gave @0 pray plece loke old male Canssn G4 agsin good
g0 Dessed sl well am My fonth Sereatl Cfy theng bl pld Rached Brsel syes Moah awey serwails spake Then Beed (0 Bul people lord way done Sasabh gaal

it oyt Wharetene Beld dJdied berm waberd Sccoiding life afl manaey hear Tatheds et Mo thie heard hing Lel bath draam For wiabar hagwsn Lat fadh aven Leah Robekabk night
dae W¥hal

However, as | also mentioned earlier, | prefer the alpha sort. It's more "cloudy" and it provides
additional information.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Conclusion

Over the past few decades, digital technologies have dramatically increased ourability to store,
organize, and access information. Today, | can instantly answer allkinds of questions that would have
stumped me 20 years ago, and | have access toa wealth of words, sounds, and imagesfar more than
| have the intellectualcapacity to consume. You could say we're in the midst of an
Informationexplosion, but | like to think we're being served an information cornucopia.

The abundance of this information is ever increasing, and the user interfaces webuilt ten years ago tc
access and organize it are starting to show signs of strain andwear, like a rickety folding table

supporting the weight of a thousand pies.

Tag clouds are just one of a new crop of interfaces that aim to ease this strain.There are others,
which succeed to greater and lesser degrees, and there will bebetter ones to come. | hope to have a

part in making some of them, and | hope youdo too.

downloaded from: lib.ommolkefab.ir

	Building Tag Clouds in Perl and PHP
	Table of Contents
	Copyright
	Building Tag Clouds in Perl and PHP

	Tag Clouds: Ephemeral or Enduring?
	Weighted Lists
	Section 1.1. Creating Weighted Lists
	Section 1.2. Tag Cloud Properties
	Section 1.3. The Utility of Tag Clouds

	Some History
	Design Tips for Building Tag Clouds
	Section 4.1. Choose the Right Language
	Section 4.2. Make Your Tag Clouds Visible to Search Engines
	Section 4.3. Frequency Sorting
	Section 4.4. Avoid Random Mappings
	Section 4.5. Make Tag Clouds Relevant to Your Users
	Section 4.6. Try Different Mappings

	Making Tag Clouds in Perl
	Section 5.1. Collecting Tags
	Section 5.2. Collecting Genesis Words in Perl
	Section 5.3. Collecting del.icio.us Tags in Perl
	Section 5.4. Displaying Tags In Perl Using HTML::TagCloud
	Section 5.5. Displaying Tags In Perl Using Your Own Code
	Section 5.6. Magnifying the Long Tail (Inverse Power Mapping in Perl)

	Making Tag Clouds in PHP
	Section 6.1. Collecting Tags
	Section 6.2. Collecting Genesis Words in PHP
	Section 6.3. Collecting del.icio.us Tags in PHP
	Section 6.4. Display Tags in PHP
	Section 6.5. Magnifying the Long Tail (Inverse Power Mapping in PHP)

	Conclusion

