
Windows PowerShell Pocket Reference
by Lee Holmes

Publisher: O'Reilly
Pub Date: May 20, 2008
Print ISBN-13: 978-0-596-52178-3
Pages: 174

Table of Contents
| Index

Overview

This portable reference to Windows PowerShell summarizes both the command shell and scripting language, and
provides a concise reference to the major tasks that make PowerShell so successful. It's an ideal on-the-job tool
for Windows administrators who don't have time to plow through huge books or search online. Written by
Microsoft PowerShell team member Lee Holmes, and excerpted from his Windows PowerShell Cookbook,
Windows PowerShell Pocket Reference offers up-to-date coverage of PowerShell's 1.0 release. You'll find
information on .NET classes and legacy management tools that you need to manage your system, along with
chapters on how to write scripts, manage errors, format output, and much more. Beginning with a whirlwind
tour of Windows PowerShell, this convenient guide covers:

PowerShell language and environment

Regular expression reference

PowerShell automatic variables

Standard PowerShell verbs

Selected .NET classes and their uses

WMI reference

Selected COM objects and their uses

.NET string formatting

.NET datetime formatting

An authoritative source of information about PowerShell since its earliest betas, Lee Holmes' vast experience
lets him incorporate both the "how" and the "why" into the book's discussions. His relationship with the
PowerShell and administration community -- through newsgroups, mailing lists, and his informative blog Lee
Holmes -- gives him insight into problems faced by administrators and PowerShell users alike. If you're ready to
learn this powerful tool without having to break stride in your routine, this is the book you want.

http://lib.ommolketab.ir

http://lib.ommolketab.ir

Windows PowerShell Pocket Reference
by Lee Holmes

Publisher: O'Reilly
Pub Date: May 20, 2008
Print ISBN-13: 978-0-596-52178-3
Pages: 174

Table of Contents
| Index

Copyright
Preface
Chapter 1. A Whirlwind Tour of Windows PowerShell

Section 1.1. Introduction
Section 1.2. An Interactive Shell
Section 1.3. Structured Commands (Cmdlets)
Section 1.4. Deep Integration of Objects
Section 1.5. Administrators As First-Class Users
Section 1.6. Composable Commands
Section 1.7. Techniques to Protect You from Yourself
Section 1.8. Common Discovery Commands
Section 1.9. Ubiquitous Scripting
Section 1.10. Ad-Hoc Development
Section 1.11. Bridging Technologies
Section 1.12. Namespace Navigation Through Providers
Section 1.13. Much, Much More

Chapter 2. PowerShell Language and Environment
Section 2.1. Commands and Expressions
Section 2.2. Comments
Section 2.3. Variables
Section 2.4. Booleans
Section 2.5. Strings
Section 2.6. Numbers
Section 2.7. Arrays and Lists
Section 2.8. Hashtables (Associative Arrays)
Section 2.9. XML
Section 2.10. Simple Operators
Section 2.11. Comparison Operators
Section 2.12. Conditional Statements
Section 2.13. Looping Statements
Section 2.14. Working with the .NET Framework
Section 2.15. Writing Scripts, Reusing Functionality
Section 2.16. Managing Errors
Section 2.17. Formatting Output
Section 2.18. Capturing Output
Section 2.19. Tracing and Debugging
Section 2.20. Common Customization Points

Chapter 3. Regular Expression Reference
Chapter 4. PowerShell Automatic Variables
Chapter 5. Standard PowerShell Verbs
Chapter 6. Selected .NET Classes and Their Uses
Chapter 7. WMI Reference
Chapter 8. Selected COM Objects and Their Uses
Chapter 9. .NET String Formatting

Section 9.1. String Formatting Syntax
Section 9.2. Standard Numeric Format Strings
Section 9.3. Custom Numeric Format Strings

Chapter 10. .NET DateTime Formatting
Section 10.1. Custom DateTime Format Strings

Index

http://lib.ommolketab.ir

http://lib.ommolketab.ir

Copyright

Copyright © 2008, O'Reilly Media. All rights reserved.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also
available for most titles (http://safari.oreilly.com). For more information, contact our corporate/institutional
sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly
Media, Inc. The Pocket Reference series designations, Windows PowerShell Pocket Reference, the image of a box
turtle, and related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

http://safari.oreilly.com
http://lib.ommolketab.ir

Preface

Windows PowerShell introduces a revolution to the world of system management and command-line shells.
From its object-based pipelines, to its administrator focus, to its enormous reach into other Microsoft
management technologies, PowerShell drastically improves the productivity of administrators and power-users
alike.

Much of this power comes from providing access to powerful technologies: an expressive scripting language,
regular expressions, the .NET Framework, Windows Management Instrumentation (WMI), COM, the Windows
registry, and much more.

Although help for these technologies is independently available, it is scattered, unfocused, and buried among
documentation intended for a developer audience.

To solve that problem, this Pocket Reference summarizes the Windows PowerShell command shell and scripting
language, while also providing a concise reference for the major tasks that make it so successful.

P.1. Font Conventions

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, filenames, and file extensions.

Constant width

Indicates computer coding in a broad sense. This includes commands, options, elements, variables,
attributes, keys, requests, functions, methods, types, classes, modules, properties, parameters, values,
objects, events, event handlers, XML and XHTML tags, macros, and keywords.

Constant width bold

Indicates commands or other text that the user should type literally.

Constant width italic

Indicates text that should be replaced with user-supplied values or values determined by context.

P.2. Comments and Questions

http://lib.ommolketab.ir

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

There is a web page for this book, which lists errata, examples, or any additional information. You can access
this page at:

http://www.oreilly.com/catalog/9780596521783

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For information about books, conferences, Resource Centers, and the O'Reilly Network, see the O'Reilly web site
at:

http://www.oreilly.com

P.3. Safari® Books Online

When you see a Safari® Books Online icon on the cover of your favorite technology book, that means the book
is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search thousands of
top tech books, cut and paste code samples, download chapters, and find quick answers when you need the
most accurate, current information. Try it for free at http://safari.oreilly.com.

http://www.oreilly.com/catalog/9780596521783
http://www.oreilly.com
http://safari.oreilly.com
http://lib.ommolketab.ir

Chapter 1. A Whirlwind Tour of Windows PowerShell

Introduction

An Interactive Shell

Structured Commands (Cmdlets)

Deep Integration of Objects

Administrators As First-Class Users

Composable Commands

Techniques to Protect You from Yourself

Common Discovery Commands

Ubiquitous Scripting

Ad-Hoc Development

Bridging Technologies

Namespace Navigation Through Providers

Much, Much More

1.1. Introduction

When learning a new technology, it is natural to feel bewildered at first by all the unfamiliar features and
functionality. This perhaps rings especially true for users new to Windows PowerShell, because it may be their
first experience with a fully featured command-line shell. Or worse, they've heard stories of PowerShell's
fantastic integrated scripting capabilities and fear being forced into a world of programming that they've actively
avoided until now.

Fortunately, these fears are entirely misguided: PowerShell is a shell that both grows with you and grows on
you. Let's take a tour to see what it is capable of:

PowerShell works with standard Windows commands and applications. You don't have to throw away what
you already know and use.

PowerShell introduces a powerful new type of command. PowerShell commands (called cmdlets) share a
common Verb-Noun syntax and offer many usability improvements over standard commands.

PowerShell understands objects. Working directly with richly structured objects makes working with (and
combining) PowerShell commands immensely easier than working in the plain-text world of traditional
shells.

PowerShell caters to administrators. Even with all its advances, PowerShell focuses strongly on its use as

http://lib.ommolketab.ir

an interactive shell, and the experience of entering commands in a running PowerShell application.

PowerShell supports discovery. Using three simple commands, you can learn and discover almost anything
PowerShell has to offer.

PowerShell enables ubiquitous scripting. With a fully fledged scripting language that works directly from
the command line, PowerShell lets you automate tasks with ease.

PowerShell bridges many technologies. By letting you work with .NET, COM, WMI, XML, and Active
Directory, PowerShell makes working with these previously isolated technologies easier than ever before.

PowerShell simplifies management of data stores. Through its provider model, PowerShell lets you
manage data stores using the same techniques you already use to manage files and folders.

We'll explore each of these attributes in this introductory tour of PowerShell.

http://lib.ommolketab.ir

Chapter 1. A Whirlwind Tour of Windows PowerShell

Introduction

An Interactive Shell

Structured Commands (Cmdlets)

Deep Integration of Objects

Administrators As First-Class Users

Composable Commands

Techniques to Protect You from Yourself

Common Discovery Commands

Ubiquitous Scripting

Ad-Hoc Development

Bridging Technologies

Namespace Navigation Through Providers

Much, Much More

1.1. Introduction

When learning a new technology, it is natural to feel bewildered at first by all the unfamiliar features and
functionality. This perhaps rings especially true for users new to Windows PowerShell, because it may be their
first experience with a fully featured command-line shell. Or worse, they've heard stories of PowerShell's
fantastic integrated scripting capabilities and fear being forced into a world of programming that they've actively
avoided until now.

Fortunately, these fears are entirely misguided: PowerShell is a shell that both grows with you and grows on
you. Let's take a tour to see what it is capable of:

PowerShell works with standard Windows commands and applications. You don't have to throw away what
you already know and use.

PowerShell introduces a powerful new type of command. PowerShell commands (called cmdlets) share a
common Verb-Noun syntax and offer many usability improvements over standard commands.

PowerShell understands objects. Working directly with richly structured objects makes working with (and
combining) PowerShell commands immensely easier than working in the plain-text world of traditional
shells.

PowerShell caters to administrators. Even with all its advances, PowerShell focuses strongly on its use as

http://lib.ommolketab.ir

an interactive shell, and the experience of entering commands in a running PowerShell application.

PowerShell supports discovery. Using three simple commands, you can learn and discover almost anything
PowerShell has to offer.

PowerShell enables ubiquitous scripting. With a fully fledged scripting language that works directly from
the command line, PowerShell lets you automate tasks with ease.

PowerShell bridges many technologies. By letting you work with .NET, COM, WMI, XML, and Active
Directory, PowerShell makes working with these previously isolated technologies easier than ever before.

PowerShell simplifies management of data stores. Through its provider model, PowerShell lets you
manage data stores using the same techniques you already use to manage files and folders.

We'll explore each of these attributes in this introductory tour of PowerShell.

http://lib.ommolketab.ir

1.2. An Interactive Shell

At its core, PowerShell is first and foremost an interactive shell. While it supports scripting and other powerful
features, its focus as a shell underpins everything.

Getting started in PowerShell is a simple matter of launching PowerShell.exe rather than cmd.exe-the shells
begin to diverge as you explore the intermediate and advanced functionality, but you can be productive in
PowerShell immediately.

To launch Windows PowerShell, click:

Start All Programs Windows PowerShell 1.0 Windows PowerShell

Or alternatively, click:

Start Run

and then type:

PowerShell

A PowerShell prompt window opens that's nearly identical to the traditional command prompt window of
Windows XP, Windows Server 2003, and their many ancestors. The PS> prompt indicates that PowerShell is

ready for input, as shown in Figure 1-1.

Figure 1-1. Windows PowerShell, ready for input

Once you've launched your PowerShell prompt, you can enter DOS-style and Unix-style commands for
navigating around the filesystem, just as you would with any Windows or Unix command prompt-as in the
interactive session shown in Example 1-1.

Example 1-1. Entering standard DOS-style file manipulation commands in response to the
PowerShell prompt produces the same results you get when you use them with any other Windows
shell

http://lib.ommolketab.ir

Code View:
PS C:\Documents and Settings\Lee> function Prompt { "PS >" }

PS >pushd .

PS >cd \

PS >dir

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 11/2/2006 4:36 AM $WINDOWS.~BT

d---- 5/8/2007 8:37 PM Blurpark

d---- 11/29/2006 2:47 PM Boot

d---- 11/28/2006 2:10 PM DECCHECK

d---- 10/7/2006 4:30 PM Documents and Settings

d---- 5/21/2007 6:02 PM F&SC-demo

d---- 4/2/2007 7:21 PM Inetpub

d---- 5/20/2007 4:59 PM Program Files

d---- 5/21/2007 7:26 PM temp

d---- 5/21/2007 8:55 PM Windows

-a--- 1/7/2006 10:37 PM 0 autoexec.bat

-ar-s 11/29/2006 1:39 PM 8192 BOOTSECT.BAK

-a--- 1/7/2006 10:37 PM 0 config.sys

-a--- 5/1/2007 8:43 PM 33057 RUU.log

-a--- 4/2/2007 7:46 PM 2487 secedit.INTEG.RAW

PS >popd

PS >pwd

Path

C:\Documents and Settings\Lee

As shown in Example 1-1, you can use the pushd, cd, dir, pwd, and popd commands to store the current

location, navigate around the filesystem, list items in the current directory, and then return to your original
location. Try it!

The pushd command is an alternative name (alias) to the much more descriptively

named PowerShell command, Push-Location. Likewise, the cd, dir, popd, and pwd

commands all have more memorable counterparts.

Although navigating around the filesystem is helpful, so is running the tools you know and love, such as
ipconfig and notepad. Type the command name and you'll see results like those shown in Example 1-2.

Example 1-2. Windows tools and applications, such as ipconfig, run in PowerShell just as they do in
the Windows prompt

http://lib.ommolketab.ir

PS >ipconfig

Windows IP Configuration

Ethernet adapter Wireless Network Connection 4:

 Connection-specific DNS Suffix . : hsd1.wa.comcast.net.

 IP Address. : 192.168.1.100

 Subnet Mask : 255.255.255.0

 Default Gateway : 192.168.1.1

PS >notepad

(notepad launches)

Entering ipconfig displays the IP addresses of your current network connections. Entering notepad runs-as

you'd expect-the Notepad editor that ships with Windows. Try them both on your own machine.

http://lib.ommolketab.ir

1.3. Structured Commands (Cmdlets)

In addition to supporting traditional Windows executables, PowerShell introduces a powerful new type of
command called a cmdlet (pronounced command-let.) All cmdlets are named in a Verb-Noun pattern, such as

Get-Process, Get-Content, and Stop-Process.

PS >Get-Process -Name lsass

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 668 13 6228 1660 46 932 lsass

In this example, you provide a value to the ProcessName parameter to get a specific process by name.

Once you know the handful of common verbs in PowerShell, learning how to work with
new nouns becomes much easier. While you may never have worked with a certain
object before (such as a Service), the standard Get, Set, Start, and Stop actions still

apply. For a list of these common verbs, see Chapter 5.

You don't always have to type these full cmdlet names, however. PowerShell lets you use the Tab key to auto-

complete cmdlet names and parameter names:

PS >Get-Pr<Tab> -N<Tab> lsass

For quick interactive use, even that may be too much typing. For improved efficiency, PowerShell defines aliases
for all common commands and lets you define your own. In addition to alias names, PowerShell only requires
that you type enough of the parameter name to disambiguate it from the other parameters in that cmdlet.
PowerShell is also case-insensitive. Using the built-in gps alias that represents the Get-Process cmdlet (along

with parameter shortening), you can instead type:

PS >gps -n lsass

Going even further, PowerShell supports positional parameters on cmdlets. Positional parameters let you
provide parameter values in a certain position on the command line, rather than having to specify them by
name. The Get-Process cmdlet takes a process name as its first positional parameter. This parameter even

supports wildcards:

PS >gps l*s

http://lib.ommolketab.ir

1.4. Deep Integration of Objects

PowerShell begins to flex more of its muscle as you explore the way it handles structured data and richly
functional objects. For example, the following command generates a simple text string. Since nothing captures
that output, PowerShell displays it to you:

PS >"Hello World"

Hello World

The string you just generated is, in fact, a fully functional object from the .NET Framework. For example, you
can access its Length property, which tells you how many characters are in the string. To access a property, you

place a dot between the object and its property name:

PS >"Hello World".Length

11

All PowerShell commands that produce output generate that output as objects as well. For example, the Get-

Process cmdlet generates a System.Diagnostics.Process object, which you can store in a variable. In

PowerShell, variable names start with a $ character. If you have an instance of Notepad running, the following

command stores a reference to it:

$process = Get-Process notepad

Since this is a fully functional Process object from the .NET Framework, you can call methods on that object to

perform actions on it. This command calls the Kill() method, which stops a process. To access a method, you

place a dot between the object and its method name:

$process.Kill()

PowerShell supports this functionality more directly through the Stop-Process cmdlet, but this example

demonstrates an important point about your ability to interact with these rich objects.

http://lib.ommolketab.ir

1.5. Administrators As First-Class Users

While PowerShell's support for objects from the .NET Framework quickens the pulse of most users, PowerShell
continues to focus strongly on administrative tasks. For example, PowerShell supports MB (for megabyte) and GB

(for gigabyte) as some of the standard administrative constants. For example, how many disks will it take to
back up a 40 GB hard drive to CD-ROM?

PS >40GB / 650MB

63.0153846153846

Just because PowerShell is an administrator-focused shell doesn't mean you can't still use the .NET Framework
for administrative tasks, though! In fact, PowerShell makes a great calendar. For example, is 2008 a leap year?
PowerShell can tell you:

PS >[DateTime]::IsLeapYear(2008)

True

Going further, how might you determine how much time remains until summer? The following command
converts "06/21/2008" (the start of summer) to a date, and then subtracts the current date from that. It stores

the result in the $result variable, and then accesses the TotalDays property.

PS >$result = [DateTime] "06/21/2008" - [DateTime]::Now

PS >$result.TotalDays

283.0549285662616

http://lib.ommolketab.ir

1.6. Composable Commands

Whenever a command generates output, you can use a pipeline character (|) to pass that output directly to
another command. If the second command understands the objects produced by the first command, it can
operate on the results.

You can chain together many commands this way, creating powerful compositions out of a few simple
operations. For example, the following command gets all items in the Path1 directory and moves them to the

Path2 directory:

Get-Item Path1* | Move-Item -Destination Path2

You can create even more complex commands by adding additional cmdlets to the pipeline. In Example 1-3, the
first command gets all processes running on the system. It passes those to the Where-Object cmdlet, which

runs a comparison against each incoming item. In this case, the comparison is $_.Handles -ge 500, which

checks whether the Handles property of the current object (represented by the $_ variable) is greater than or

equal to 500. For each object in which this comparison holds true, you pass the results to the Sort-Object

cmdlet, asking it to sort items by their Handles property. Finally, you pass the objects to the Format-Table

cmdlet to generate a table that contains the Handles, Name, and Description of the process.

Example 1-3. You can build more complex PowerShell commands by using pipelines to link cmdlets,
as shown in this example with Get-Process, Where-Object, Sort Object, and Format-Table

PS >Get-Process |

>> Where-Object { $_.Handles -ge 500 } |

>> Sort-Object Handles |

>> Format-Table Handles,Name,Description -Auto

>>

Handles Name Description

------- ---- -----------

 588 winlogon

 592 svchost

 667 lsass

 725 csrss

 742 System

 964 WINWORD Microsoft Office Word

 1112 OUTLOOK Microsoft Office Outlook

 2063 svchost

http://lib.ommolketab.ir

1.7. Techniques to Protect You from Yourself

While aliases, wildcards, and composable pipelines are powerful, their use in commands that modify system
information can easily be nerve-wracking. After all, what does this command do? Think about it, but don't try it
just yet:

PS >gps [b-t]*[c-r] | Stop-Process

It appears to stop all processes that begin with the letters b through t and end with the letters c through r.

How can you be sure? Let PowerShell tell you. For commands that modify data, PowerShell supports -WhatIf

and -Confirm parameters that let you see what a command would do:

PS >gps [b-t]*[c-r] | Stop-Process -whatif

What if: Performing operation "Stop-Process" on Target

 "ctfmon (812)".

What if: Performing operation "Stop-Process" on Target

 "Ditto (1916)".

What if: Performing operation "Stop-Process" on Target

 "dsamain (316)".

What if: Performing operation "Stop-Process" on Target

 "ehrecvr (1832)".

What if: Performing operation "Stop-Process" on Target

 "ehSched (1852)".

What if: Performing operation "Stop-Process" on Target

 "EXCEL (2092)".

What if: Performing operation "Stop-Process" on Target

 "explorer (1900)".

(...)

In this interaction, using the -WhatIf parameter with the Stop-Process pipelined command lets you preview

which processes on your system will be stopped before you actually carry out the operation.

Note that this example is not a dare! In the words of one reviewer:

Not only did it stop everything, but on Vista, it forced a shutdown with only one minute warning!

It was very funny though…. At least I had enough time to save everything first!

http://lib.ommolketab.ir

1.8. Common Discovery Commands

While reading through a guided tour is helpful, I find that most learning happens in an ad-hoc fashion. To find
all commands that match a given wildcard, use the Get-Command cmdlet. For example, by entering the

following, you can find out which PowerShell commands (and Windows applications) contain the word process.

PS >Get-Command *process*

CommandType Name Definition

----------- ---- ----------

Cmdlet Get-Process Get-Process [[-Name] <Str...

Application qprocess.exe c:\windows\system32\qproc...

Cmdlet Stop-Process Stop-Process [-Id] <Int32...

To see what a command such as Get-Process does, use the Get-Help cmdlet, like this:

PS >Get-Help Get-Process

Since PowerShell lets you work with objects from the .NET Framework, it provides the Get-Member cmdlet to

retrieve information about the properties and methods that an object, such as a .NET System.String, supports.

Piping a string to the Get-Member command displays its type name and its members:

Code View:
PS >"Hello World" | Get-Member

 TypeName: System.String

Name MemberType Definition

---- ---------- ----------

(...)

PadLeft Method System.String PadLeft(Int32 tota...

PadRight Method System.String PadRight(Int32 tot...

Remove Method System.String Remove(Int32 start...

Replace Method System.String Replace(Char oldCh...

Split Method System.String[] Split(Params Cha...

StartsWith Method System.Boolean StartsWith(String...

Substring Method System.String Substring(Int32 st...

ToChar- System.Char[] ToCharArray(), Sys...

ArrayMethod

ToLower Method System.String ToLower(), System....

ToLower- Method System.String ToLowerInvariant()

Invariant

ToString Method System.String ToString(), System...

ToUpper Method System.String ToUpper(), System....

ToUpper- Method System.String ToUpperInvariant()

Invariant

Trim Method System.String Trim(Params Char[]...

TrimEnd Method System.String TrimEnd(Params Cha...

TrimStart Method System.String TrimStart(Params C...

Chars Parameter- System.Char Chars(Int32 index) {...

 izedProperty

Length Property System.Int32 Length {get;}

http://lib.ommolketab.ir

http://lib.ommolketab.ir

1.9. Ubiquitous Scripting

PowerShell makes no distinction between the commands you type at the command line and the commands you
write in a script. This means that your favorite cmdlets work in scripts and that your favorite scripting
techniques (such as the foreach statement) work directly on the command line.

For example, to add up the handle count for all running processes:

PS >$handleCount = 0

PS >foreach($process in Get-Process) { $handleCount +=

 $process.Handles }

PS >$handleCount

19403

While PowerShell provides a command (Measure-Object) to measure statistics about collections, this short

example shows how PowerShell lets you apply techniques that normally require a separate scripting or
programming language.

In addition to using PowerShell scripting keywords, you can also create and work directly with objects from the
.NET Framework. PowerShell becomes almost like the C# immediate mode in Visual Studio. In Example 1-4, you
see how PowerShell lets you easily interact with the .NET Framework.

Example 1-4. Using objects from the .NET Framework to retrieve a web page and process its content

PS >$webClient = New-Object System.Net.WebClient

PS >$content = $webClient.DownloadString("http://blogs.msdn.com/

PowerShell/rss.aspx")

PS >$content.Substring(0,1000)

<?xml version="1.0" encoding="UTF-8" ?>

<?xml-stylesheet type="text/xsl" href="http://blogs.msdn.com/

utility/FeedStylesheets/rss.xsl" media="screen"?>

<rss version="2.0"

xmlns:dc="http://purl.org/dc/elements/1.1/"

xmlns:slash="http://purl.org/rss/1.0/modules/slash/"

xmlns:wfw="http://wellformedweb.org/CommentAPI/"><channel>

<title>Windo

(...)

http://lib.ommolketab.ir

1.10. Ad-Hoc Development

By blurring the lines between interactive administration and writing scripts, the history buffer of PowerShell
sessions quickly becomes the basis for ad-hoc script development. In this example, you call the Get-History

cmdlet to retrieve the history of your session. For each of those items, you get its CommandLine property (the

thing you typed) and send the output to a new script file.

PS >Get-History | Foreach-Object { $_.CommandLine } >

 c:\temp\script.ps1

PS >notepad c:\temp\script.ps1

(save the content you want to keep)

PS >c:\temp\script.ps1

If this is the first time you've run a script in PowerShell, you will need to configure your
Execution Policy. For more information, type 'help about_signing'.

http://lib.ommolketab.ir

1.11. Bridging Technologies

We've seen how PowerShell lets you fully leverage the .NET Framework in your tasks, but its support for
common technologies stretches even further. As Example 1-5 shows, PowerShell supports XML.

Example 1-5. Working with XML content in PowerShell

PS >$xmlContent = [xml] $content

PS >$xmlContent

xml xml-stylesheet rss

--- -------------- ---

 rss

PS >$xmlContent.rss

version : 2.0

dc : http://purl.org/dc/elements/1.1/

slash : http://purl.org/rss/1.0/modules/slash/

wfw : http://wellformedweb.org/CommentAPI/

channel : channel

PS >$xmlContent.rss.channel.item | select Title

title

CMD.exe compatibility

Time Stamping Log Files

Microsoft Compute Cluster now has a PowerShell Provider and

Cmdlets

The Virtuous Cycle: .NET Developers using PowerShell

(...)

And Windows Management Instrumentation (WMI):

PS >Get-WmiObject Win32_Bios

SMBIOSBIOSVersion : ASUS A7N8X Deluxe ACPI BIOS Rev 1009

Manufacturer : Phoenix Technologies, LTD

Name : Phoenix - AwardBIOS v6.00PG

SerialNumber : xxxxxxxxxxx

Version : Nvidia - 42302e31

Or, as Example 1-6 shows, Active Directory Service Interfaces (ADSI).

Example 1-6. Working with Active Directory in PowerShell

http://lib.ommolketab.ir

Code View:
PS >[ADSI] "WinNT://./Administrator" | Format-List *

UserFlags : {66113}

MaxStorage : {-1}

PasswordAge : {19550795}

PasswordExpired : {0}

LoginHours : {255 255 255 255 255 255 255 255

 255 255 255 255 255 255 255 255

 255 255 255 255 255}

FullName : {}

Description : {Built-in account for

 administering the computer/

 domain}

BadPasswordAttempts : {0}

LastLogin : {5/21/2007 3:00:00 AM}

HomeDirectory : {}

LoginScript : {}

Profile : {}

HomeDirDrive : {}

Parameters : {}

PrimaryGroupID : {513}

Name : {Administrator}

MinPasswordLength : {0}

MaxPasswordAge : {3710851}

MinPasswordAge : {0}

PasswordHistoryLength : {0}

AutoUnlockInterval : {1800}

LockoutObservationInterval : {1800}

MaxBadPasswordsAllowed : {0}

RasPermissions : {1}

objectSid : {1 5 0 0 0 0 0 5 21 0 0 0 121 227

 252 83 122 130 50 34 67 23 10 50

 244 1 0 0}

Or, as Example 1-7 shows, even scripting traditional COM objects.

Example 1-7. Working with COM objects in PowerShell

http://lib.ommolketab.ir

PS >$firewall = New-Object -com HNetCfg.FwMgr

PS >$firewall.LocalPolicy.CurrentProfile

Type : 1

FirewallEnabled : True

ExceptionsNotAllowed : False

NotificationsDisabled : False

UnicastResponsesToMulti-

castBroadcastDisabled : False

RemoteAdminSettings : System._ _ComObject

IcmpSettings : System._ _ComObject

GloballyOpenPorts : {Media Center Extender Service,

 Remote Media Center Experience,

 Adam Test Instance, QWAVE...}

Services : {File and Printer Sharing, UPnP

 Framework, Remote Desktop}

AuthorizedApplications : {Remote Assistance, Windows

 Messenger, Media Center,

 Trillian...}

http://lib.ommolketab.ir

1.12. Namespace Navigation Through Providers

Another avenue PowerShell provides for working with the system is a providers. PowerShell providers let you
navigate and manage data stores using the same techniques you already use to work with the filesystem, as
illustrated in Example 1-8.

Example 1-8. Navigating the filesystem

PS >Set-Location c:\

PS >dir

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 11/2/2006 4:36 AM $WINDOWS.~BT

d---- 5/8/2007 8:37 PM Blurpark

d---- 11/29/2006 2:47 PM Boot

d---- 11/28/2006 2:10 PM DECCHECK

d---- 10/7/2006 4:30 PM Documents and

 Settings

d---- 5/21/2007 6:02 PM F&SC-demo

d---- 4/2/2007 7:21 PM Inetpub

d---- 5/20/2007 4:59 PM Program Files

d---- 5/21/2007 11:47 PM temp

d---- 5/21/2007 8:55 PM Windows

-a--- 1/7/2006 10:37 PM 0 autoexec.bat

-ar-s 11/29/2006 1:39 PM 8192 BOOTSECT.BAK

-a--- 1/7/2006 10:37 PM 0 config.sys

-a--- 5/1/2007 8:43 PM 33057 RUU.log

-a--- 4/2/2007 7:46 PM 2487 secedit.INTEG.RAW

This also works on the registry, as shown in Example 1-9.

Example 1-9. Navigating the registry

http://lib.ommolketab.ir

PS >Set-Location HKCU:\Software\Microsoft\Windows\

PS >Get-ChildItem

 Hive: Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\

 Software\Microsoft\Windows

SKC VC Name Property

--- -- ---- --------

 30 1 CurrentVersion {ISC}

 3 1 Shell {BagMRU Size}

 4 2 ShellNoRoam {(default), BagMRU Size}

PS >Set-Location CurrentVersion\Run

PS >Get-ItemProperty .

(...)

FolderShare : "C:\Program Files\FolderShare\

 FolderShare.exe" /background

TaskSwitchXP : d:\lee\tools\TaskSwitchXP.exe

ctfmon.exe : C:\WINDOWS\system32\ctfmon.exe

Ditto : C:\Program Files\Ditto\Ditto.exe

(...)

Or even the machine's certificate store, as Example 1-10 illustrates.

Example 1-10. Navigating the certificate store

PS >Set-Location cert:\CurrentUser\Root

PS >Get-ChildItem

 Directory: Microsoft.PowerShell.Security\Certificate::

 CurrentUser\Root

Thumbprint Subject

---------- -------

CDD4EEAE6000AC7F40C3802C171E30148030C072 CN=Microsoft Root

 Certificate...

BE36A4562FB2EE05DBB3D32323ADF445084ED656 CN=Thawte

 Timestamping CA,

 OU...

A43489159A520F0D93D032CCAF37E7FE20A8B419 CN=Microsoft Root

 Authority, ...

9FE47B4D05D46E8066BAB1D1BFC9E48F1DBE6B26 CN=PowerShell Local

 Certifica...

7F88CD7223F3C813818C994614A89C99FA3B5247 CN=Microsoft

 Authenticode(tm)...

245C97DF7514E7CF2DF8BE72AE957B9E04741E85 OU=Copyright (c)

 1997 Microso...

(...)

http://lib.ommolketab.ir

1.13. Much, Much More

As exciting as this guided tour was, it barely scratches the surface of how you can use PowerShell to improve
your productivity and systems management skills. For more information about getting started in PowerShell,
see the "Getting Started" and "User Guide" files included in the Windows PowerShell section of your Start menu.
For a cookbook-style guide to PowerShell (and hard-won solutions to its most common problems), you may be
interested in the source of the material in this pocket reference: my book Windows PowerShell Cookbook
(O'Reilly).

http://lib.ommolketab.ir

Chapter 2. PowerShell Language and Environment

Commands and Expressions

Comments

Variables

Booleans

Strings

Numbers

Arrays and Lists

Hashtables (Associative Arrays)

XML

Simple Operators

Comparison Operators

Conditional Statements

Looping Statements

Working with the .NET Framework

Writing Scripts, Reusing Functionality

Managing Errors

Formatting Output

Capturing Output

Tracing and Debugging

Common Customization Points

2.1. Commands and Expressions

PowerShell breaks any line that you enter into its individual units (tokens), and then interprets each token in
one of two ways: as a command or as an expression. The difference is subtle: expressions support logic and
flow control statements (such as if, foreach, and throw) while commands do not. You will often want to

control the way that Windows PowerShell interprets your statements, so Table 2-1 lists the available options.

Table 2-1. Windows PowerShell evaluation controls

http://lib.ommolketab.ir

Statement Example Explanation

Precedence
control:()

PS >5 * (1 + 2)

15

PS >(dir).Count

2276

Forces the evaluation of a command or expression, similar to how
parentheses force the order of evaluation in a math expression.

Expression
subparse: $()

PS >"The answer is

(2+2)"

The answer is (2+2)

PS >"The answer is

$(2+2)"

The answer is 4

PS >$value = 10

PS >$result = $(

>> if($value -gt 0)

{ $true }

 else { $false }

>>)

>>

PS >$result

True

Forces the evaluation of a command or expression, similar to how
parentheses force the order of evaluation in a mathematical
expression. However, a subparse is as powerful as a subprogram,
and is required only when it contains logic or flow control
statements. This statement is also used to expand dynamic
information inside a string.

List
evaluation:@()

PS >"Hello".Length

5

PS >@("Hello").Length

1

PS >(Get-ChildItem).

 Count

12

PS >(Get-ChildItem

 *.txt).Count

PS >@(Get-ChildItem

 *.txt).Count

1

Forces an expression to be evaluated as a list. If it is already a
list, it will remain a list. If it is not, PowerShell temporarily treats
it as one.

http://lib.ommolketab.ir

Chapter 2. PowerShell Language and Environment

Commands and Expressions

Comments

Variables

Booleans

Strings

Numbers

Arrays and Lists

Hashtables (Associative Arrays)

XML

Simple Operators

Comparison Operators

Conditional Statements

Looping Statements

Working with the .NET Framework

Writing Scripts, Reusing Functionality

Managing Errors

Formatting Output

Capturing Output

Tracing and Debugging

Common Customization Points

2.1. Commands and Expressions

PowerShell breaks any line that you enter into its individual units (tokens), and then interprets each token in
one of two ways: as a command or as an expression. The difference is subtle: expressions support logic and
flow control statements (such as if, foreach, and throw) while commands do not. You will often want to

control the way that Windows PowerShell interprets your statements, so Table 2-1 lists the available options.

Table 2-1. Windows PowerShell evaluation controls

http://lib.ommolketab.ir

Statement Example Explanation

Precedence
control:()

PS >5 * (1 + 2)

15

PS >(dir).Count

2276

Forces the evaluation of a command or expression, similar to how
parentheses force the order of evaluation in a math expression.

Expression
subparse: $()

PS >"The answer is

(2+2)"

The answer is (2+2)

PS >"The answer is

$(2+2)"

The answer is 4

PS >$value = 10

PS >$result = $(

>> if($value -gt 0)

{ $true }

 else { $false }

>>)

>>

PS >$result

True

Forces the evaluation of a command or expression, similar to how
parentheses force the order of evaluation in a mathematical
expression. However, a subparse is as powerful as a subprogram,
and is required only when it contains logic or flow control
statements. This statement is also used to expand dynamic
information inside a string.

List
evaluation:@()

PS >"Hello".Length

5

PS >@("Hello").Length

1

PS >(Get-ChildItem).

 Count

12

PS >(Get-ChildItem

 *.txt).Count

PS >@(Get-ChildItem

 *.txt).Count

1

Forces an expression to be evaluated as a list. If it is already a
list, it will remain a list. If it is not, PowerShell temporarily treats
it as one.

http://lib.ommolketab.ir

2.2. Comments

To create single-line comments, begin a line with the # character. Windows PowerShell does not support
multiline comments, but you can deactivate larger regions of your script by placing them in a here string:

This is a regular comment

Start of the here string

$null = @"

function MyTest

{

 "This should not be considered a function"

}

$myVariable = 10;

"@

End of the here string

This is regular script again

See "Strings" to learn more about here strings.

http://lib.ommolketab.ir

2.3. Variables

Windows PowerShell provides several ways to define and access variables, as summarized in Table 2-2.

Table 2-2. Windows PowerShell variable syntaxes

Syntax Meaning

$simpleVariable = "Value" A simple variable name. The variable name must consist of
alphanumeric characters. Variable names are not case sensitive.

${arbitrary!@#@#`{var`}iable} =

"Value"

An arbitrary variable name. The variable name must be surrounded by
curly braces, but may contain any characters. Curly braces in the
variable name must be escaped with a backtick (`).

${c:\filename.extension} Variable "Get and Set Content" syntax. This is similar to the arbitrary
variable name syntax. If the name corresponds to a valid PowerShell
path, you can get and set the content of the item at that location by
reading and writing to the variable.

[datatype] $variable = "Value" Strongly typed variable. Ensures that the variable may contain only
data of the type you declare. PowerShell throws an error if it cannot
coerce the data to this type when you assign it.

$SCOPE:variable Gets or sets the variable at that specific scope. Valid scope names are
global (to make a variable available to the entire shell), script (to

make a variable available only to the current script), local (to make a

variable available only to the current scope and subscopes), and
private (to make a variable available only to the current scope). The

default scope is the current scope: global when defined interactively in

the shell, script when defined outside any functions or script blocks in

a script, and local elsewhere.

New-Item

Variable:\variable–Value value

Creates a new variable using the Variable Provider.

Get-Item Variable:\variableGet-

Variable variable

Gets the variable using the Variable Provider or Get-Variable cmdlet.

This lets you access extra information about the variable, such as its
options and description.

New-Variable variable-Option

option-Value value

Creates a variable using the New-Variable cmdlet. This lets you provide

extra information about the variable, such as its options and
description.

http://lib.ommolketab.ir

Unlike some languages, PowerShell rounds (not truncates) numbers when it converts
them to the [int] data type:

PS >(3/2)

1.5

PS >[int] (3/2)

2

To have PowerShell truncate a number, use the static Truncate method in the Math

class:

PS >[Math]::Truncate(3/2)

1

http://lib.ommolketab.ir

2.4. Booleans

Boolean (true or false) variables are most commonly initialized to their literal values of $true and $false.

When it evaluates variables as part of a Boolean expression (for example, an if statement), though, PowerShell

maps them to a suitable Boolean representation, as listed in Table 2-3.

Table 2-3. Windows PowerShell Boolean interpretations

Result Boolean representation

$true True

$false False

$null False

Nonzero number True

Zero False

Nonempty string True

Empty string False

Nonempty array True

Empty array False

Hashtable (either empty or not) True

http://lib.ommolketab.ir

2.5. Strings

Windows PowerShell offers several facilities for working with plain-text data.

2.5.1. Literal and Expanding Strings

To define a literal string (one in which no variable or escape expansion occurs), enclose it in single quotes:

$myString = 'hello 't $ENV:SystemRoot'

$myString gets the actual value of hello 't $ENV:SystemRoot.

To define an expanding string (one in which variable and escape expansion occurs), enclose it in double quotes:

$myString = "hello 't $ENV:SystemRoot"

$myString gets a value similar to hello C:\WINDOWS.

To include a single quote in a single-quoted string or a double quote in a double-quoted string, you may include
two of the quote characters in a row:

PS >"Hello ""There""!"

Hello "There"!

PS >'Hello ''There''!'

Hello 'There'!

To include a complex expression inside an expanding string, use a subexpression. For
example:

$prompt = "$(Get-Location) >"

$prompt gets a value similar to c:\temp >.

Accessing the properties of an object requires a subexpression:

$output = "Current script name is:

 $($myInvocation.MyCommand.Path)"

$output gets a value similar to Current script name is c:\Test-Script.ps1.

2.5.2. Here Strings

To define a here string (one that may span multiple lines), place the two characters @" at the beginning, and
the two characters "@ on their own line at the end.

For example:

http://lib.ommolketab.ir

$myHereString = @"

This text may span multiple lines, and may

contain "quotes".

"@

Here strings may be of either the literal (single-quoted) or expanding (double quoted) variety.

2.5.3. Escape Sequences

Windows PowerShell supports escape sequences inside strings, as listed in Table 2-4.

Table 2-4. Windows PowerShell escape sequences

Sequence Meaning

`0 The null character. Often used as a record separator.

`a The alarm character. Generates a beep when displayed on the console.

`b The backspace character. The previous character remains in the string but is
overwritten when displayed on the console.

`f A form feed. Creates a page break when printed on most printers.

`n A newline.

`r A carriage return. Newlines in PowerShell are indicated entirely by the `n character, so

this is rarely required.

`t A tab.

`v A vertical tab.

''(Two single quotes) A single quote, when in a literal string.

""(Two double
quotes)

A double quote, when in an expanding string.

'<any other

character>

That character, taken literally.

http://lib.ommolketab.ir

2.6. Numbers

PowerShell offers several options for interacting with numbers and numeric data.

2.6.1. Simple Assignment

To define a variable that holds numeric data, simply assign it as you would other variables. PowerShell
automatically stores your data in a format that is sufficient to accurately hold it.

$myInt = 10

$myInt gets the value of 10, as a (32-bit) integer.

$myDouble = 3.14

$myDouble gets the value of 3.14, as a (53-bit, 9 bits of precision) double.

To explicitly assign a number as a long (64-bit) integer or decimal (96-bit, 96 bits of precision), use the long
and decimal suffixes:

$myLong = 2147483648L

$myLong gets the value of 2147483648, as a long integer.

$myDecimal = 0.999D

$myDecimal gets the value of 0.999.

PowerShell also supports scientific notation:

$myPi = 3141592653e-9

$myPi gets the value of 3.141592653.

The data types in PowerShell (integer, long integer, double, and decimal) are built on the .NET data types of the
same name.

2.6.2. Administrative Numeric Constants

Since computer administrators rarely get the chance to work with numbers in even powers of ten, PowerShell
offers the numeric constants of gb, mb, and kb to represent gigabytes, megabytes, and kilobytes, respectively:

PS >$downloadTime = (1gb + 250mb) / 120kb

PS >$downloadTime

10871.4666666667

2.6.3. Hexadecimal and Other Number Bases

http://lib.ommolketab.ir

To directly enter a hexadecimal number, use the hexadecimal prefix 0x:

$myErrorCode = 0xFE4A

$myErrorCode gets the integer value 65098.

The PowerShell scripting language does not natively support other number bases, but its support for interaction
with the .NET Framework enables conversion to and from binary, octal, decimal, and hexadecimal:

$myBinary = [Convert]::ToInt32("101101010101", 2)

$myBinary gets the integer value of 2901.

$myOctal = [Convert]::ToInt32("1234567", 8)

$myOctal gets the integer value of 342391.

$myHexString = [Convert]::ToString(65098, 16)

$myHexString gets the string value of fe4a.

$myBinaryString = [Convert]::ToString(12345, 2)

$myBinaryString gets the string value of 11000000111001.

See "Working with the .NET Framework," later in this chapter, to learn more about using
PowerShell to interact with the .NET Framework.

http://lib.ommolketab.ir

2.7. Arrays and Lists

2.7.1. Array Definitions

PowerShell arrays hold lists of data. The @() (array cast) syntax tells PowerShell to treat the contents between
the parentheses as an array. To create an empty array, type:

$myArray = @()

To define a nonempty array, use a comma to separate its elements:

$mySimpleArray = 1,"Two",3.14

Arrays may optionally be only a single element long:

$myList = ,"Hello"

Or, alternatively (using the array cast syntax):

$myList = @("Hello")

Elements of an array do not need to be all of the same data type, unless you declare it as a strongly typed
array. In the following example, the outer square brackets define a strongly typed variable (as mentioned in
"Variables," earlier in this chapter), and int[] represents an array of integers:

[int[]] $myArray = 1,2,3.14

In this mode, PowerShell throws an error if it cannot convert any of the elements in your list to the required
data type. In this case, it rounds 3.14 to the integer value of 3.

PS >$myArray[2]

3

To ensure that PowerShell treats collections of uncertain length (such as history lists or
directory listings) as a list, use the list evaluation syntax @(…) described in "Commands
and Expressions," earlier in this chapter.

Arrays can also be multidimensional "jagged" arrays-arrays within arrays:

$multiDimensional = @(

 (1,2,3,4),

 (5,6,7,8)

)

$multiDimensional[0][1] returns 2, coming from row 0, column 1.

http://lib.ommolketab.ir

$multiDimensional[1][3] returns 8, coming from row 1, column 3.

To define a multidimensional array that is not jagged, create a multidimensional instance of the .NET type. For
integers, that would be an array of System.Int32:

$multidimensional = New-Object "Int32[,]" 2,4

$multidimensional[0,1] = 2

$multidimensional[1,3] = 8

2.7.2. Array Access

To access a specific element in an array, use the [] operator. PowerShell numbers your array elements starting
at 0. Using $myArray = 1,2,3,4,5,6 as an example:

$myArray[0]

Returns 1, the first element in the array.

$myArray[2]

Returns 3, the third element in the array.

$myArray[-1]

Returns 6, the last element in the array.

$myArray[-2]

Returns 5, the second-to-last element in the array.

You can also access ranges of elements in your array:

PS >$myArray[0..2]

1

2

3

Returns elements 0 through 2, inclusive.

PS >$myArray[-1..2]

6

1

2

3

Returns the final element, wraps around, and returns elements 0 through 2, inclusive. PowerShell wraps around

because the first number in the range is positive, and the second number in the range is negative.

PS >$myArray[-1..-3]

6

5

http://lib.ommolketab.ir

4

Returns the last element in the array through to the third-to-last element in the array in decreasing order.
PowerShell does not wrap around (and therefore scans backward in this case) because both numbers in the
range share the same sign.

2.7.3. Array Slicing

You can combine several of the above statements at once to extract more complex ranges from an array. Use
the + sign to separate array ranges from explicit indexes:

$myArray[0,2,4]

Returns the elements at indices 0, 2, and 4.

$myArray[0,2+4..5]

Returns the elements at indices 0, 2, and 4 through 5, inclusive.

$myArray[,0+2..3+0,0]

Returns the elements at indices 0, 2 through 3 inclusive, 0, and 0 again.

You can use the array slicing syntax to create arrays as well:

$myArray = ,0+2..3+0,0

http://lib.ommolketab.ir

2.8. Hashtables (Associative Arrays)

2.8.1. Hashtable Definitions

PowerShell hashtables (or associative arrays) let you associate keys with values. To define a hashtable, use the
syntax:

$myHashtable = @{}

You can initialize a hashtable with its key/value pairs when you create it. PowerShell assumes that the keys are
strings, but the values may be any data type.

$myHashtable = @{ Key1 = "Value1";

"Key 2" = 1,2,3; 3.14 = "Pi" }

2.8.2. Hashtable Access

To access or modify a specific element in an associative array, you may use either the array-access or property-
access syntax:

$myHashtable["Key1"]

Returns "Value1".

$myHashtable."Key 2"

Returns the array 1,2,3.

$myHashtable["New Item"] = 5

Adds "New Item" to the hashtable.

$myHashtable."New Item" = 5

Also adds "New Item" to the hashtable.

http://lib.ommolketab.ir

2.9. XML

PowerShell supports XML as a native data type. To create an XML variable, cast a string to the [xml] type:

$myXml = [xml] @"

<AddressBook>

 <Person contactType="Personal">

 <Name>Lee</Name>

 <Phone type="home">555-1212</Phone>

 <Phone type="work">555-1213</Phone>

 </Person>

 <Person contactType="Business">

 <Name>Ariel</Name>

 <Phone>555-1234</Phone>

 </Person>

</AddressBook>

"@

PowerShell exposes all child nodes and attributes as properties. When it does this, PowerShell automatically
groups children that share the same node type:

$myXml.AddressBook

Returns an object that contains a Person property.

$myXml.AddressBook.Person

Returns a list of Person nodes. Each Person node exposes contactType, Name, and Phone as properties.

$myXml.AddressBook.Person[0]

Returns the first Person node.

$myXml.AddressBook.Person[0].ContactType

Returns Personal as the contact type of the first Person node.

http://lib.ommolketab.ir

The XML data type wraps the .NET XmlDocument and XmlElement classes. Unlike most

PowerShell .NET wrappers, this wrapper does not expose the properties from the
underlying class because they may conflict with the dynamic properties that PowerShell
adds for node names.

To access properties of the underlying class, use the PsBase property. For example:

$myXml.PsBase.InnerXml

See "Working with the .NET Framework," later in this chapter, to learn more about using
PowerShell to interact with the .NET Framework.

http://lib.ommolketab.ir

2.10. Simple Operators

Once you've defined your data, the next step is to work with it.

2.10.1. Arithmetic Operators

The arithmetic operators let you perform mathematical operations on your data, as shown in Table 2-5.

Table 2-5. Windows PowerShell arithmetic operators

Operator Meaning

+ The addition operator:
$leftValue + $rightValue

When used with numbers, returns their sum.

When used with strings, returns a new string created by appending the second string to the first.

When used with arrays, returns a new array created by appending the second array to the first.

When used with hashtables, returns a new hashtable created by merging the two hashtables. Since
hashtable keys must be unique, PowerShell returns an error if the second hashtable includes any
keys already defined in the first hashtable.

When used with any other type, PowerShell uses that type's addition operator (op_Addition) if it

implements one.

- The subtraction operator:
$leftValue - $rightValue

When used with numbers, returns their difference.

This operator does not apply to strings.

This operator does not apply to arrays.

This operator does not apply to hashtables.

When used with any other type, PowerShell uses that type's subtraction operator
(op_Subtraction) if it implements one.

* The multiplication operator:
$leftValue * $rightValue

When used with numbers, returns their product.

When used with strings ("=" * 80), returns a new string created by appending the string to itself

the number of times you specify.

http://lib.ommolketab.ir

Operator Meaning

When used with arrays (1..3 * 7), returns a new array created by appending the array to itself

the number of times you specify.

This operator does not apply to hashtables.

When used with any other type, PowerShell uses that type's multiplication operator (op_Multiply)

if it implements one.

/ The division operator:
$leftValue / $rightValue

When used with numbers, returns their quotient.

This operator does not apply to strings.

This operator does not apply to arrays.

This operator does not apply to hashtables.

When used with any other type, PowerShell uses that type's multiplication operator (op_Division)

if it implements one.

% The modulus operator:
$leftValue % $rightValue

When used with numbers, returns the remainder of their division.

This operator does not apply to strings.

This operator does not apply to arrays.

This operator does not apply to hashtables.

When used with any other type, PowerShell uses that type's multiplication operator (op_Modulus)

if it implements one.

+=

-=

*=

/=

%=

Assignment operators:
$variable operator = value

These operators match the simple arithmetic operators (+, -, *, /, and %) but store the result in
the variable on the lefthand side of the operator. It is a short form for
$variable = $variable operator value

When used with arrays (1..3 * 7), returns a new array created by appending the array to itself

the number of times you specify.

This operator does not apply to hashtables.

When used with any other type, PowerShell uses that type's multiplication operator (op_Multiply)

if it implements one.

/ The division operator:
$leftValue / $rightValue

When used with numbers, returns their quotient.

This operator does not apply to strings.

This operator does not apply to arrays.

This operator does not apply to hashtables.

When used with any other type, PowerShell uses that type's multiplication operator (op_Division)

if it implements one.

% The modulus operator:
$leftValue % $rightValue

When used with numbers, returns the remainder of their division.

This operator does not apply to strings.

This operator does not apply to arrays.

This operator does not apply to hashtables.

When used with any other type, PowerShell uses that type's multiplication operator (op_Modulus)

if it implements one.

+=

-=

*=

/=

%=

Assignment operators:
$variable operator = value

These operators match the simple arithmetic operators (+, -, *, /, and %) but store the result in
the variable on the lefthand side of the operator. It is a short form for
$variable = $variable operator value

http://lib.ommolketab.ir

The System.Math class in the .NET Framework offers many powerful operations in

addition to the native operators supported by PowerShell:

PS >[Math]::Pow([Math]::E, [Math]::Pi)

23.1406926327793

See "Working with the .NET Framework," later in this chapter, to learn more about using
PowerShell to interact with the .NET Framework.

2.10.2. Logical Operators

The logical operators let you compare Boolean values, as shown in Table 2-6.

Table 2-6. Windows PowerShell logical operators

Operator Meaning

-and Logical AND:
$leftValue -and $rightValue

Returns $true if both lefthand and righthand arguments evaluate to $true. Returns $false

otherwise.

You can combine several -and operators in the same expression:

$value1 -and $value2 -and $value3 ...

PowerShell implements the -and operator as a short-circuit operator, and evaluates arguments

only if all arguments preceding it evaluate to $true.

-or Logical OR:
$leftValue -or $rightValue

Returns $true if the lefthand or righthand arguments evaluate to $true. Returns $false otherwise.

You can combine several -or operators in the same expression:

$value1 -or $value2 -or $value3 ...

PowerShell implements the -or operator as a short-circuit operator and evaluates arguments only

if all arguments preceding it evaluate to $false.

-xor Logical Exclusive OR:
$leftValue -xor $rightValue

Returns $true if either the lefthand or righthand argument evaluates to $true, but not if both do.

Returns $false otherwise.

-not! Logical NOT:
-not $value

http://lib.ommolketab.ir

Operator Meaning -not $value

Returns $true if its (only) righthand argument evaluates to $false.

Returns $false otherwise.

2.10.3. Binary Operators

The binary operators listed in Table 2-7 let you apply the Boolean logical operators bit by bit to the operator's
arguments. When comparing bits, a 1 represents $true, while a 0 represents $false.

Table 2-7. Windows PowerShell binary operators

Operator Meaning

-band Binary AND:
$leftValue -band $rightValue

Returns a number where bits are set to 1 if the bits of the lefthand and righthand arguments at
that position are both 1. All other bits are set to 0. For example:
PS >$boolean1 = "110110110"

PS >$boolean2 = "010010010"

PS >$int1 = [Convert]::ToInt32($boolean1, 2)

PS >$int2 = [Convert]::ToInt32($boolean2, 2)

PS >$result = $int1 -band $int2

PS >[Convert]::ToString($result, 2)

10010010

-bor Binary OR:
$leftValue -bor $rightValue

Returns a number where bits are set to 1 if either of the bits of the lefthand and righthand
arguments at that position is 1. All other bits are set to 0. For example:
PS >$boolean1 = "110110110"

PS >$boolean2 = "010010010"

PS >$int1 = [Convert]::ToInt32($boolean1, 2)

PS >$int2 = [Convert]::ToInt32($boolean2, 2)

PS >$result = $int1 -bor $int2

PS >[Convert]::ToString($result, 2)

110110110

-bxor Binary Exclusive OR:
$leftValue -bxor $rightValue

Returns a number where bits are set to 1 if either of the bits of the lefthand or righthand
arguments at that position is 1, but not if both are. All other bits are set to 0. For example:
PS >$boolean1 = "110110110"

PS >$boolean2 = "010010010"

PS >$int1 = [Convert]::ToInt32($boolean1, 2)

PS >$int2 = [Convert]::ToInt32($boolean2, 2)

PS >$result = $int1 -bor $int2

PS >[Convert]::ToString($result, 2)

-not $value

Returns $true if its (only) righthand argument evaluates to $false.

Returns $false otherwise.

2.10.3. Binary Operators

The binary operators listed in Table 2-7 let you apply the Boolean logical operators bit by bit to the operator's
arguments. When comparing bits, a 1 represents $true, while a 0 represents $false.

Table 2-7. Windows PowerShell binary operators

Operator Meaning

-band Binary AND:
$leftValue -band $rightValue

Returns a number where bits are set to 1 if the bits of the lefthand and righthand arguments at
that position are both 1. All other bits are set to 0. For example:
PS >$boolean1 = "110110110"

PS >$boolean2 = "010010010"

PS >$int1 = [Convert]::ToInt32($boolean1, 2)

PS >$int2 = [Convert]::ToInt32($boolean2, 2)

PS >$result = $int1 -band $int2

PS >[Convert]::ToString($result, 2)

10010010

-bor Binary OR:
$leftValue -bor $rightValue

Returns a number where bits are set to 1 if either of the bits of the lefthand and righthand
arguments at that position is 1. All other bits are set to 0. For example:
PS >$boolean1 = "110110110"

PS >$boolean2 = "010010010"

PS >$int1 = [Convert]::ToInt32($boolean1, 2)

PS >$int2 = [Convert]::ToInt32($boolean2, 2)

PS >$result = $int1 -bor $int2

PS >[Convert]::ToString($result, 2)

110110110

-bxor Binary Exclusive OR:
$leftValue -bxor $rightValue

Returns a number where bits are set to 1 if either of the bits of the lefthand or righthand
arguments at that position is 1, but not if both are. All other bits are set to 0. For example:
PS >$boolean1 = "110110110"

PS >$boolean2 = "010010010"

PS >$int1 = [Convert]::ToInt32($boolean1, 2)

PS >$int2 = [Convert]::ToInt32($boolean2, 2)

PS >$result = $int1 -bor $int2

http://lib.ommolketab.ir

Operator Meaning PS >$result = $int1 -bor $int2

PS >[Convert]::ToString($result, 2)

100100100

-bnot Binary NOT:
-bnot $value

Returns a number where bits are set to 1 if the bit of the righthand (and only) argument at that
position is set to 1. All other bits are set to 0. For example:
PS >$boolean1 = "110110110"

PS >$int1 = [Convert]::ToInt32($boolean1, 2)

PS >$result = -bnot $int1

PS >[Convert]::ToString($result, 2)

11111111111111111111111001001001

2.10.4. Other Operators

Table 2-8 lists other simple operators supported by PowerShell.

Table 2-8. Other Windows PowerShell operators

Operator Meaning

-replace The replace operator:
"target" -replace "pattern","replacement"

Returns a new string, where the text in "target" that matches the regular expression "pattern"

has been replaced with the replacement text, "replacement".

By default, PowerShell performs a case-insensitive comparison. The -ireplace operator makes this

case insensitivity explicit, while the -creplace operator performs a case-sensitive comparison.

If the regular expression pattern contains named captures or capture groups, the replacement
string may reference those as well.

For example:

PS >"Hello World" -replace

 "(.*) (.*)",'$2 $1'

World Hello

If "target" represents an array, the -replace operator operates on each element of that array.

For more details on regular expressions, see Chapter 3.

-f The format operator:
"Format String" -f Values

Returns a string, where the format items in the format string have been replaced with the text

PS >$result = $int1 -bor $int2

PS >[Convert]::ToString($result, 2)

100100100

-bnot Binary NOT:
-bnot $value

Returns a number where bits are set to 1 if the bit of the righthand (and only) argument at that
position is set to 1. All other bits are set to 0. For example:
PS >$boolean1 = "110110110"

PS >$int1 = [Convert]::ToInt32($boolean1, 2)

PS >$result = -bnot $int1

PS >[Convert]::ToString($result, 2)

11111111111111111111111001001001

2.10.4. Other Operators

Table 2-8 lists other simple operators supported by PowerShell.

Table 2-8. Other Windows PowerShell operators

Operator Meaning

-replace The replace operator:
"target" -replace "pattern","replacement"

Returns a new string, where the text in "target" that matches the regular expression "pattern"

has been replaced with the replacement text, "replacement".

By default, PowerShell performs a case-insensitive comparison. The -ireplace operator makes this

case insensitivity explicit, while the -creplace operator performs a case-sensitive comparison.

If the regular expression pattern contains named captures or capture groups, the replacement
string may reference those as well.

For example:

PS >"Hello World" -replace

 "(.*) (.*)",'$2 $1'

World Hello

If "target" represents an array, the -replace operator operates on each element of that array.

For more details on regular expressions, see Chapter 3.

-f The format operator:
"Format String" -f Values

http://lib.ommolketab.ir

Operator Meaning

Returns a string, where the format items in the format string have been replaced with the text
equivalent of the values in the value array.

For example:

PS >"{0:n0}" -f 1000000000

1,000,000,000

The format string for the format operator is exactly the format string supported by the .NET
String.Format method.

For more details about the syntax of the format string, see Chapter 9.

-as The type conversion operator:
$value -as [Type]

Returns $value cast to the given .NET type. If this conversion is not possible, PowerShell returns

$null.

For example:
PS >3/2 -as [int]

2

PS >$result = "Hello" -as [int]

PS >$result -eq $null

True

Returns a string, where the format items in the format string have been replaced with the text
equivalent of the values in the value array.

For example:

PS >"{0:n0}" -f 1000000000

1,000,000,000

The format string for the format operator is exactly the format string supported by the .NET
String.Format method.

For more details about the syntax of the format string, see Chapter 9.

-as The type conversion operator:
$value -as [Type]

Returns $value cast to the given .NET type. If this conversion is not possible, PowerShell returns

$null.

For example:
PS >3/2 -as [int]

2

PS >$result = "Hello" -as [int]

PS >$result -eq $null

True

http://lib.ommolketab.ir

2.11. Comparison Operators

The PowerShell comparison operators, listed in Table 2-9, let you compare expressions against each other. By
default, PowerShell's comparison operators are case insensitive. For all operators where case sensitivity applies,
the -i prefix makes this case insensitivity explicit, while the -c prefix performs a case-sensitive comparison.

Table 2-9. Windows PowerShell comparison operators

Operator Meaning

-eq The equality operator:
$leftValue -eq $rightValue

For all primitive types, returns $true if $leftValue and $rightValue are equal.

When used with arrays, returns all elements in $leftValue that are equal to $rightValue.

When used with any other type, PowerShell uses that type's Equals() method if it implements

one.

-ne The negated equality operator:
$leftValue -ne $rightValue

For all primitive types, returns $true if $leftValue and $rightValue are not equal.

When used with arrays, returns all elements in $leftValue that are not equal to $rightValue.

When used with any other type, PowerShell returns the negation of that type's Equals()

method if it implements one.

-ge The greater-than-or-equal to operator:
$leftValue -ge $rightValue

For all primitive types, returns $true if $leftValue is greater than or equal to $rightValue.

When used with arrays, returns all elements in $leftValue that are greater than or equal to

$rightValue.

When used with any other type, PowerShell returns the result of that object's Compare()

method if it implements one. If the method returns a number greater than or equal to 0, the
operator returns $true.

-gt The greater-than operator:
$leftValue -gt $rightValue

For all primitive types, returns $true if $leftValue is greater than $rightValue.

When used with arrays, returns all elements in $leftValue that are greater than $rightValue.

http://lib.ommolketab.ir

Operator Meaning

When used with any other type, PowerShell returns the result of that object's Compare()

method if it implements one. If the method returns a number greater than 0, the operator
returns $true.

-lt The less-than operator:
$leftValue -lt $rightValue

For all primitive types, returns $true if $leftValue is less than $rightValue.

When used with arrays, returns all elements in $leftValue that are less than $rightValue.

When used with any other type, PowerShell returns the result of that object's Compare()

method if it implements one. If the method returns a number less than 0, the operator returns
$true.

-le The less-than-or-equal to operator:
$leftValue -le $rightValue

For all primitive types, returns $true if $leftValue is less than or equal to $rightValue.

When used with arrays, returns all elements in $leftValue that are less than or equal to

$rightValue.

When used with any other type, PowerShell returns the result of that object's Compare()

method if it implements one. If the method returns a number less than or equal to 0, the
operator returns $true.

-like The like operator:
$leftValue -like Pattern

Evaluates the pattern against the target, returning $true if the simple match is successful.

When used with arrays, returns all elements in $leftValue that match Pattern.

The -like operator supports these simple wildcard characters:

? Any single unspecified character

* Zero or more unspecified characters

[a-b]

Any character in the range of a-b

[ab]

When used with any other type, PowerShell returns the result of that object's Compare()

method if it implements one. If the method returns a number greater than 0, the operator
returns $true.

-lt The less-than operator:
$leftValue -lt $rightValue

For all primitive types, returns $true if $leftValue is less than $rightValue.

When used with arrays, returns all elements in $leftValue that are less than $rightValue.

When used with any other type, PowerShell returns the result of that object's Compare()

method if it implements one. If the method returns a number less than 0, the operator returns
$true.

-le The less-than-or-equal to operator:
$leftValue -le $rightValue

For all primitive types, returns $true if $leftValue is less than or equal to $rightValue.

When used with arrays, returns all elements in $leftValue that are less than or equal to

$rightValue.

When used with any other type, PowerShell returns the result of that object's Compare()

method if it implements one. If the method returns a number less than or equal to 0, the
operator returns $true.

-like The like operator:
$leftValue -like Pattern

Evaluates the pattern against the target, returning $true if the simple match is successful.

When used with arrays, returns all elements in $leftValue that match Pattern.

The -like operator supports these simple wildcard characters:

? Any single unspecified character

* Zero or more unspecified characters

[a-b]

Any character in the range of a-b

[ab]

http://lib.ommolketab.ir

Operator Meaning

The specified characters a or b

For example:
PS >"Test" -like "[A-Z]e?[tr]"

True

-notlike The negated like operator: Returns $true when the -like operator would return $false.

-match The match operator:
"target" -match Regular Expression

Evaluates the regular expression against the target, returning $true if the match is successful.

Once complete, PowerShell places the successful matches in the $matches variable.

When used with arrays, returns all elements in Target that match Regular Expression.

The $matches variable is a hashtable that maps the individual matches to the text they match.

0 is the entire text of the match, 1 and on contain the text from any unnamed captures in the

regular expression, and string values contain the text from any named captures in the regular
expression.

For example:

PS >"Hello World" -match "(.*) (.*)"

True

PS >$matches[1]

Hello

For more details on regular expressions, see Chapter 3.

-notmatch The negated match operator:

Returns $true when the -match operator would return $false.

The -notmatch operator still populates the $matches variable with the results of match.

-contains The contains operator:
$list -contains $value

Returns $true if the list specified by $list contains the value $value, that is, if $item -eq

$value returns $true for at least one item in the list.

-notcontains The negated contains operator: Returns $true when the -contains operator would return

$false.

-is The type operator:
$leftValue -is type]

Returns $true if $value is (or extends) the specified .NET type.

-isnot The negated type operator: Returns $true when the -is operator would return $false.

The specified characters a or b

For example:
PS >"Test" -like "[A-Z]e?[tr]"

True

-notlike The negated like operator: Returns $true when the -like operator would return $false.

-match The match operator:
"target" -match Regular Expression

Evaluates the regular expression against the target, returning $true if the match is successful.

Once complete, PowerShell places the successful matches in the $matches variable.

When used with arrays, returns all elements in Target that match Regular Expression.

The $matches variable is a hashtable that maps the individual matches to the text they match.

0 is the entire text of the match, 1 and on contain the text from any unnamed captures in the

regular expression, and string values contain the text from any named captures in the regular
expression.

For example:

PS >"Hello World" -match "(.*) (.*)"

True

PS >$matches[1]

Hello

For more details on regular expressions, see Chapter 3.

-notmatch The negated match operator:

Returns $true when the -match operator would return $false.

The -notmatch operator still populates the $matches variable with the results of match.

-contains The contains operator:
$list -contains $value

Returns $true if the list specified by $list contains the value $value, that is, if $item -eq

$value returns $true for at least one item in the list.

-notcontains The negated contains operator: Returns $true when the -contains operator would return

$false.

-is The type operator:
$leftValue -is type]

Returns $true if $value is (or extends) the specified .NET type.

-isnot The negated type operator: Returns $true when the -is operator would return $false.

http://lib.ommolketab.ir

2.12. Conditional Statements

Conditional statements in PowerShell let you change the flow of execution in your script.

2.12.1. if, elseif, and else Statements
if(condition)

{

 statement block

}

elseif(condition)

{

 statement block

}

else

{

 statement block

}

If condition evaluates to $true, then PowerShell executes the statement block you provide. Then, it resumes

execution at the end of the if / elseif / else statement list. PowerShell requires the enclosing braces

around the statement block even if the statement block contains only one statement.

See "Simple Operators" and "Comparison Operators," both earlier in this chapter, for a
discussion of how PowerShell evaluates expressions as conditions.

If condition evaluates to $false, then PowerShell evaluates any following (optional) elseif conditions until

one matches. If one matches, PowerShell executes the statement block associated with that condition, then
resumes execution at the end of the if / elseif / else statement list.

For example:

$textToMatch = Read-Host "Enter some text"

$matchType = Read-Host "Apply Simple or Regex matching?"

$pattern = Read-Host "Match pattern"

if($matchType -eq "Simple")

{

 $textToMatch -like $pattern

}

elseif($matchType -eq "Regex")

{

 $textToMatch -match $pattern

}

else

{

 Write-Host "Match type must be Simple or Regex"

}

If none of the conditions evaluate to $true, then PowerShell executes the statement block associated with the

(optional) else clause, then resumes execution at the end of the if / elseif / else statement list.

http://lib.ommolketab.ir

2.12.2. switch Statements
switch options expression

{

 comparison value { statement block }

 -or-

 { comparison expression } { statement block }

 (...)

 default { statement block }

}

or:

switch options -file filename

{

 comparison value { statement block }

 -or-

 { comparison expression } { statement block }

 (...)

 default { statement block }

}

When PowerShell evaluates a switch statement, it evaluates expression against the statements in the switch

body. If expression is a list of values, PowerShell evaluates each item against the statements in the switch

body. If you specify the -file option, PowerShell treats the lines in the file as though they were a list of items

in expression.

The comparison value statements let you match the current input item against the pattern specified by

comparison value. By default, PowerShell treats this as a case-insensitive exact match, but the options you

provide to the switch statement can change this, as shown in Table 2-10.

Table 2-10. Options supported by PowerShell switch statements

Option Meaning

-casesensitive Case-sensitive match.

-c With this option active, PowerShell executes the associated statement block only if the
current input item exactly matches the value specified by comparison value. If the current

input object is a string, the match is case-sensitive.

-exact Exact match.

-e With this option active, PowerShell executes the associated statement block only if the
current input item exactly matches the value specified by comparisonvalue. This match is

case-insensitive. This is the default mode of operation.

-regex Regular-expression match.

-r With this option active, PowerShell executes the associated statement block only if the
current input item matches the regular expression specified by comparisonvalue. This

match is case-insensitive.

http://lib.ommolketab.ir

Option Meaning

-wildcard Wildcard match.

-w With this option active, PowerShell executes the associated statement block only if the
current input item matches the wildcard specified by comparisonvalue.

The wildcard match supports the following simple wildcard characters:

? Any single unspecified character

* Zero or more unspecified characters

[a-b]

Any character in the range of a-b

[ab]

The specified characters a or b

This match is case-insensitive.

The { comparison expression } statements let you process the current input item (stored in the $_ variable)

in an arbitrary script block. When PowerShell processes a { comparison expression } statement, it executes

the associated statement block only if { comparison expression } evaluates to $true.

PowerShell executes the statement block associated with the (optional) default statement if no other

statements in the switch body match.

When processing a switch statement, PowerShell tries to match the current input object against each

statement in the switch body, falling through to the next statement even after one or more have already

matched. To have PowerShell exit a switch statement after it processes a match, include a break statement as

the last statement in the statement block.

For example:

$myPhones = "(555) 555-1212","555-1234"

switch -regex ($myPhones)

{

 { $_.Length -le 8 } { "Area code was not specified";

 break }

 { $_.Length -gt 8 } { "Area code was specified" }

 "\((555)\).*" { "In the $($matches[1]) area code" }

}

Produces the output:

-wildcard Wildcard match.

-w With this option active, PowerShell executes the associated statement block only if the
current input item matches the wildcard specified by comparisonvalue.

The wildcard match supports the following simple wildcard characters:

? Any single unspecified character

* Zero or more unspecified characters

[a-b]

Any character in the range of a-b

[ab]

The specified characters a or b

This match is case-insensitive.

The { comparison expression } statements let you process the current input item (stored in the $_ variable)

in an arbitrary script block. When PowerShell processes a { comparison expression } statement, it executes

the associated statement block only if { comparison expression } evaluates to $true.

PowerShell executes the statement block associated with the (optional) default statement if no other

statements in the switch body match.

When processing a switch statement, PowerShell tries to match the current input object against each

statement in the switch body, falling through to the next statement even after one or more have already

matched. To have PowerShell exit a switch statement after it processes a match, include a break statement as

the last statement in the statement block.

For example:

$myPhones = "(555) 555-1212","555-1234"

switch -regex ($myPhones)

{

 { $_.Length -le 8 } { "Area code was not specified";

 break }

 { $_.Length -gt 8 } { "Area code was specified" }

 "\((555)\).*" { "In the $($matches[1]) area code" }

}

Produces the output:

http://lib.ommolketab.ir

Area code was specified

In the 555 area code

Area code was not specified

See the following section, "Looping Statements," for more information about the break

statement.

By default, PowerShell treats this as a case-insensitive exact match, but the options you provide to the switch

statement can change this.

http://lib.ommolketab.ir

2.13. Looping Statements

Looping statements in PowerShell let you execute groups of statements multiple times.

2.13.1. for Statement
:loop_label for(initialization; condition; increment)

{

 statement block

}

When PowerShell executes a for statement, it first executes the expression given by initialization. It next

evaluates condition. If condition evaluates to $true, PowerShell executes the given statement block. It then

executes the expression given by increment. PowerShell continues to execute the statement block and

increment statement as long as condition evaluates to $true.

For example:

for($counter = 0; $counter -lt 10; $counter++)

{

 Write-Host "Processing item $counter"

}

The break and continue statements (discussed later in the chapter) can specify the loop_label of any

enclosing looping statement as their target.

2.13.2. foreach Statement
:loop_label foreach(variable in expression)

{

 statement block

}

When PowerShell executes a foreach statement, it executes the pipeline given by expression-for example,

Get-Process|Where-Object{$_.Handles -gt 500 } or 1..10. For each item produced by the expression, it

assigns that item to the variable specified by variable and then executes the given statement block. For

example:

$handleSum = 0;

foreach($process in Get-Process |

 Where-Object { $_.Handles -gt 500 })

{

 $handleSum += $process.Handles

}

$handleSum

The break and continue statements (discussed later in the chapter) can specify the loop_label of any

enclosing looping statement as their target.

2.13.3. while Statement
:loop_label while(condition)

http://lib.ommolketab.ir

{

 statement block

}

When PowerShell executes a while statement, it first evaluates the expression given by condition. If this

expression evaluates to $true, PowerShell executes the given statement block. PowerShell continues to execute

the statement block as long as condition evaluates to $true. For example:

$command = "";

while($command -notmatch "quit")

{

 $command = Read-Host "Enter your command"

}

The break and continue statements (discussed later in this chapter) can specify the loop_label of any

enclosing looping statement as their target.

2.13.4. do … while Statement/do … until Statement
:loop_label do

{

 statement block

} while(condition)

or:

:loop_label do

{

 statement block

} until(condition)

When PowerShell executes a do…while or do…until statement, it first executes the given statement block. In a

do…while statement, PowerShell continues to execute the statement block as long as condition evaluates to

$true. In a do…until statement, PowerShell continues to execute the statement as long as condition

evaluates to $false. For example:

$validResponses = "Yes","No"

$response = ""

do

{

 $response = Read-Host "Yes or No?"

} while($validResponses -notcontains $response)

"Got it."

$response = ""

do

{

 $response = Read-Host "Yes or No?"

} until($validResponses -contains $response)

"Got it."

The break and continue statements (discussed later in this chapter) can specify the loop_label of any

enclosing looping statement as their target.

http://lib.ommolketab.ir

2.13.5. Flow Control Statements

PowerShell supports two statements to help you control flow within loops: break and continue.

2.13.5.1. break

The break statement halts execution of the current loop. PowerShell then resumes execution at the end of the

current looping statement, as though the looping statement had completed naturally. If you specify a label with
the break statement-for example, break :outer_loop-PowerShell halts the execution of that loop instead.

For example:

:outer for($counter = 0; $counter -lt 5; $counter++)

{

 for($counter2 = 0; $counter2 -lt 5; $counter2++)

 {

 if($counter2 -eq 2)

 {

 break :outer

 }

 Write-Host "Processing item $counter,$counter2"

 }

}

Produces the output:

Processing item 0,0

Processing item 0,1

Processing item 1,0

Processing item 1,1

Processing item 2,0

Processing item 2,1

Processing item 3,0

Processing item 3,1

Processing item 4,0

Processing item 4,1

2.13.5.2. continue

The continue statement skips execution of the rest of the current statement block. PowerShell then continues

with the next iteration of the current looping statement as though the statement block had completed naturally.
If you specify a label with the continue statement-for example, continue :outer-PowerShell continues with

the next iteration of that loop instead.

For example:

:outer for($counter = 0; $counter -lt 5; $counter++)

{

 for($counter2 = 0; $counter2 -lt 5; $counter2++)

 {

 if($counter2 -eq 2)

 {

 continue :outer

 }

http://lib.ommolketab.ir

 Write-Host "Processing item $counter,$counter2"

 }

}

Produces the output:

Processing item 0,0

Processing item 0,1

Processing item 0,3

Processing item 0,4

Processing item 1,0

Processing item 1,1

Processing item 1,3

Processing item 1,4

Processing item 2,0

Processing item 2,1

Processing item 2,3

Processing item 2,4

Processing item 3,0

Processing item 3,1

Processing item 3,3

Processing item 3,4

Processing item 4,0

Processing item 4,1

Processing item 4,3

Processing item 4,4

http://lib.ommolketab.ir

2.14. Working with the .NET Framework

One feature that gives PowerShell its incredible reach into both system administration and application
development is its capability to leverage Microsoft's enormous and broad .NET Framework.

Work with the .NET Framework in PowerShell comes mainly by way of one of two tasks: calling methods or
accessing properties.

2.14.1. Static Methods

To call a static method on a class, type:

[ClassName]::MethodName(parameter list)

For example:

PS >[System.Diagnostics.Process]::GetProcessById(0)

gets the process with the ID of 0 and displays the following output:

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 0 0 0 16 0 0 Idle

2.14.2. Instance Methods

To call a method on an instance of an object, type:

$objectReference.MethodName(parameter list)

For example:

PS >$process = [System.Diagnostics.Process]::

GetProcessById(0)

PS >$process.Refresh()

This stores the process with the ID of 0 into the $process variable. It then calls the Refresh() instance method

on that specific process.

2.14.3. Static Properties

To access a static property on a class, type:

[ClassName]::PropertyName

or:

[ClassName]::PropertyName = value

http://lib.ommolketab.ir

For example, the [System.DateTime] class provides a Now static property that returns the current time:

PS >[System.DateTime]::Now

Sunday, July 16, 2006 2:07:20 PM

Although rare, some types let you set the value of some static properties.

2.14.4. Instance Properties

To access an instance property on an object, type:

$objectReference.PropertyName

or:

$objectReference.PropertyName = value

For example:

PS >$today = [System.DateTime]::Now

PS >$today.DayOfWeek

Sunday

This stores the current date in the $today variable. It then calls the DayOfWeek instance property on that

specific date.

2.14.5. Learning About Types

The two primary avenues for learning about classes and types are the Get-Member cmdlet and the

documentation for the .NET Framework.

2.14.5.1. The Get-Member cmdlet

To learn what methods and properties a given type supports, pass it through the Get-Member cmdlet, as shown

in Table 2-11.

Table 2-11. Working with the Get-Member cmdlet

Action Result

[typename] | Get-

Member -Static

All the static methods and properties of a given type.

$objectReference |

Get-Member -Static

All the static methods and properties provided by the type in $objectReference.

$objectReference |

Get-Member

All the instance methods and properties provided by the type in $objectReference.

If $objectReference represents a collection of items, PowerShell returns the

instances and properties of the types contained by that collection. To view the

http://lib.ommolketab.ir

Action Result
instances and properties of the types contained by that collection. To view the
instances and properties of a collection itself, use the -InputObject parameter of

Get-Member:

Get-Member -InputObject

$objectReference

[typename] | Get-

Member

All the instance methods and properties of a System.RuntimeType object that

represents this type.

2.14.5.2. .NET Framework documentation

Another source of information about the classes in the .NET Framework is the documentation itself, available
through the search facilities at http://msdn.microsoft.com.

Typical documentation for a class first starts with a general overview, then provides a hyperlink to the members
of the class-listing the methods and properties it supports.

To get to the documentation for the members quickly, search for them more explicitly
by adding the term "members" to your MSDN search term:

classname members

The documentation for the members of a class lists their constructors, methods, properties, and more. It uses
an S icon to represent the static methods and properties. Click the member name for more information about
that member-including the type of object that the member produces.

2.14.6. Type Shortcuts

When you specify a type name, PowerShell lets you use a short form for some of the most common types, as
listed in Table 2-12.

Table 2-12. PowerShell type shortcuts

Type shortcut Full classname

[Adsi] [System.DirectoryServices.DirectoryEntry]

[Hashtable] [System.Collections.Hashtable]

[PSObject] [System.Management.Automation.PSObject]

[Ref] [System.Management.Automation.PSReference]

[Regex] [System.Text.RegularExpressions.Regex]

[ScriptBlock] [System.Management.Automation.ScriptBlock]

[Switch] [System.Management.Automation.SwitchParameter]

[Wmi] [System.Management.ManagementObject]

instances and properties of the types contained by that collection. To view the
instances and properties of a collection itself, use the -InputObject parameter of

Get-Member:

Get-Member -InputObject

$objectReference

[typename] | Get-

Member

All the instance methods and properties of a System.RuntimeType object that

represents this type.

2.14.5.2. .NET Framework documentation

Another source of information about the classes in the .NET Framework is the documentation itself, available
through the search facilities at http://msdn.microsoft.com.

Typical documentation for a class first starts with a general overview, then provides a hyperlink to the members
of the class-listing the methods and properties it supports.

To get to the documentation for the members quickly, search for them more explicitly
by adding the term "members" to your MSDN search term:

classname members

The documentation for the members of a class lists their constructors, methods, properties, and more. It uses
an S icon to represent the static methods and properties. Click the member name for more information about
that member-including the type of object that the member produces.

2.14.6. Type Shortcuts

When you specify a type name, PowerShell lets you use a short form for some of the most common types, as
listed in Table 2-12.

Table 2-12. PowerShell type shortcuts

Type shortcut Full classname

[Adsi] [System.DirectoryServices.DirectoryEntry]

[Hashtable] [System.Collections.Hashtable]

[PSObject] [System.Management.Automation.PSObject]

[Ref] [System.Management.Automation.PSReference]

[Regex] [System.Text.RegularExpressions.Regex]

[ScriptBlock] [System.Management.Automation.ScriptBlock]

[Switch] [System.Management.Automation.SwitchParameter]

http://msdn.microsoft.com
http://msdn.microsoft.com
http://lib.ommolketab.ir

Type shortcut Full classname

[Wmi] [System.Management.ManagementObject]

[WmiClass] [System.Management.ManagementClass]

[WmiSearcher] [System.Management.ManagementObjectSearcher]

[Xml] [System.Xml.XmlDocument]

[TypeName] [System.TypeName]

2.14.7. Creating Instances of Types
$objectReference = New-Object TypeName parameters

Although static methods and properties of a class generate objects, you will often want to create them explicitly
yourself. PowerShell's New-Object cmdlet lets you create an instance of the type you specify. The parameter list

must match the list of parameters accepted by one of the type's constructors, as documented on MSDN.

For example:

$webClient = New-Object Net.WebClient

$webClient.DownloadString("http://search.msn.com")

Most common types are available by default. However, many are available only after you load the library (called
the assembly) that defines them. The MSDN documentation for a class includes the assembly that defines it.

To load an assembly, use the methods provided by the System.Reflection.Assembly class:

PS >[Reflection.Assembly]::LoadWithPartialName("System.Web")

GAC Version Location

-- ------- --------

True v2.0.50727 C:\WINDOWS\assembly\GAC_32\(...)\

 System.Web.dll

PS >[Web.HttpUtility]::UrlEncode("http://search.msn.com")

http%3a%2f%2fsearch.msn.com

The LoadWithPartialName method is unsuitable for scripts that you want to share with

others or use in a production environment. It loads the most current version of the
assembly, which may not be the same as the version you used to develop your script.
To load an assembly in the safest way possible, use its fully qualified name with the
[Reflection.Assembly]::Load() method.

2.14.8. Interacting with COM Objects

PowerShell lets you access methods and properties on COM objects the same way you would interact with
objects from the .NET Framework. To interact with a COM object, use its ProgId with the -ComObject parameter

(often shortened to -Com) on New-Object:

[Wmi] [System.Management.ManagementObject]

[WmiClass] [System.Management.ManagementClass]

[WmiSearcher] [System.Management.ManagementObjectSearcher]

[Xml] [System.Xml.XmlDocument]

[TypeName] [System.TypeName]

2.14.7. Creating Instances of Types
$objectReference = New-Object TypeName parameters

Although static methods and properties of a class generate objects, you will often want to create them explicitly
yourself. PowerShell's New-Object cmdlet lets you create an instance of the type you specify. The parameter list

must match the list of parameters accepted by one of the type's constructors, as documented on MSDN.

For example:

$webClient = New-Object Net.WebClient

$webClient.DownloadString("http://search.msn.com")

Most common types are available by default. However, many are available only after you load the library (called
the assembly) that defines them. The MSDN documentation for a class includes the assembly that defines it.

To load an assembly, use the methods provided by the System.Reflection.Assembly class:

PS >[Reflection.Assembly]::LoadWithPartialName("System.Web")

GAC Version Location

-- ------- --------

True v2.0.50727 C:\WINDOWS\assembly\GAC_32\(...)\

 System.Web.dll

PS >[Web.HttpUtility]::UrlEncode("http://search.msn.com")

http%3a%2f%2fsearch.msn.com

The LoadWithPartialName method is unsuitable for scripts that you want to share with

others or use in a production environment. It loads the most current version of the
assembly, which may not be the same as the version you used to develop your script.
To load an assembly in the safest way possible, use its fully qualified name with the
[Reflection.Assembly]::Load() method.

2.14.8. Interacting with COM Objects

PowerShell lets you access methods and properties on COM objects the same way you would interact with
objects from the .NET Framework. To interact with a COM object, use its ProgId with the -ComObject parameter

(often shortened to -Com) on New-Object:

http://lib.ommolketab.ir

PS >$shell = New-Object -Com Shell.Application

PS >$shell.Windows() | Select-Object

LocationName,LocationUrl

For more information about the COM objects most useful to system administrators, see Chapter 6.

2.14.9. Extending Types

PowerShell supports two ways to add your own methods and properties to any type: the Add-Member cmdlet

and a custom types extension file.

2.14.9.1. The Add-Member cmdlet

The Add-Member cmdlet lets you dynamically add methods, properties, and more to an object. It supports the

extensions shown in Table 2-13.

Table 2-13. Selected member types supported by the Add-Member cmdlet

Member type Meaning

AliasProperty A property defined to alias another property:
PS >$testObject = [PsObject] "Test"

PS >$testObject |

 Add-Member "AliasProperty" Count

Length

PS >$testObject.Count

4

CodeProperty A property defined by a System.Reflection.MethodInfo. This method must be public,

static, return results (nonvoid), and take one parameter of type PsObject.

NoteProperty A property defined by the initial value you provide:
PS >$tes tObject = [PsObject] "Test"

PS >$testObject | Add-Member NoteProperty

Reversed tseT

PS >$testObject.Reversed

tseT

ScriptProperty A property defined by the script block you provide. In that script block, $this refers to the

current instance:
PS >$testObject = [PsObject] ("Hi" * 100)

PS >$testObject | Add-Member

ScriptProperty IsLong {

>> $this.Length -gt 100

>> }

>> $testObject.IsLong

>>

True

PropertySet A property defined as a shortcut to a set of properties. Used in cmdlets such as Select-

Object:

PS >$testObject = [PsObject] [DateTime]::

http://lib.ommolketab.ir

Member type Meaning PS >$testObject = [PsObject] [DateTime]::

 Now

PS >$collection = New-Object '

>> Collections.ObjectModel.

 Collection''1[System.String]

>> $collection.Add("Month")

>> $collection.Add("Year")

>> $testObject | Add-Member PropertySet

 MonthYear $collection

>> $testObject | select MonthYear

>>

Month Year

----- ----

6 2007

CodeMethod A method defined by a System.Reflection.MethodInfo. This method must be public,

static, and take one parameter of type PsObject.

ScriptMethod A method defined by the script block you provide. In that script block, $this refers to the

current instance, and $args refers to the input parameters:

PS >$testObject = [PsObject] "Hello"

PS >$testObject | Add-Member ScriptMethod

 IsLong {

>> $this.Length -gt $args[0]

>> }

>> $testObject.IsLong(3)

>> $testObject.IsLong(100)

>>

True

False

2.14.9.2. Custom type extension files

While the Add-Member cmdlet lets you customize individual objects, PowerShell also supports configuration files

that let you customize all objects of a given type. For example, you might want to add a Reverse() method to

all strings or a HelpUrl property (based on the MSDN Url Aliases) to all types.

PowerShell adds several type extensions to the file types.ps1xml, in the PowerShell installation directory. This
file is useful as a source of examples, but you should not modify it directly. Instead, create a new one and use
the Update-TypeData cmdlet to load your customizations. The following command loads Types.custom.ps1xml

from the same directory as your profile:

$typesFile = Join-Path (Split-Path $profile) "Types.

 Custom.Ps1Xml"

Update-TypeData -PrependPath $typesFile

PS >$testObject = [PsObject] [DateTime]::

 Now

PS >$collection = New-Object '

>> Collections.ObjectModel.

 Collection''1[System.String]

>> $collection.Add("Month")

>> $collection.Add("Year")

>> $testObject | Add-Member PropertySet

 MonthYear $collection

>> $testObject | select MonthYear

>>

Month Year

----- ----

6 2007

CodeMethod A method defined by a System.Reflection.MethodInfo. This method must be public,

static, and take one parameter of type PsObject.

ScriptMethod A method defined by the script block you provide. In that script block, $this refers to the

current instance, and $args refers to the input parameters:

PS >$testObject = [PsObject] "Hello"

PS >$testObject | Add-Member ScriptMethod

 IsLong {

>> $this.Length -gt $args[0]

>> }

>> $testObject.IsLong(3)

>> $testObject.IsLong(100)

>>

True

False

2.14.9.2. Custom type extension files

While the Add-Member cmdlet lets you customize individual objects, PowerShell also supports configuration files

that let you customize all objects of a given type. For example, you might want to add a Reverse() method to

all strings or a HelpUrl property (based on the MSDN Url Aliases) to all types.

PowerShell adds several type extensions to the file types.ps1xml, in the PowerShell installation directory. This
file is useful as a source of examples, but you should not modify it directly. Instead, create a new one and use
the Update-TypeData cmdlet to load your customizations. The following command loads Types.custom.ps1xml

from the same directory as your profile:

$typesFile = Join-Path (Split-Path $profile) "Types.

 Custom.Ps1Xml"

Update-TypeData -PrependPath $typesFile

http://lib.ommolketab.ir

2.15. Writing Scripts, Reusing Functionality

When you want to start packaging and reusing your commands, the best place to put them is in scripts and
functions. A script is a text file that contains a sequence of PowerShell commands. A function is also a sequence
of PowerShell commands but is usually used within a script to break it into smaller, more easily understood
segments.

2.15.1. Writing Scripts

To write a script, write your PowerShell commands in a text editor and save the file with a .ps1 extension.

2.15.2. Running Scripts

There are two ways to execute a script: by invoking it or by dot-sourcing it.

2.15.2.1. Invoking

Invoking a script runs the commands inside it. Unless explicitly defined with the GLOBAL scope keyword,

variables and functions defined in the script do not persist once the script exits.

You invoke a script by using the invoke/call operator (&) with the script name as the parameter:

& "C:\Script Directory\Run-Commands.ps1" Parameters

You can use either a fully qualified path or a path relative to the current location. If the script is in the current
directory, you must explicitly say so:

.\Run-Commands.ps1 Parameters

If the path contains no spaces, you may omit both the quotes and invoke the operator.

2.15.2.2. Dot-sourcing

Dot-sourcing a script runs the commands inside it. Unlike invoking a script, variables and functions defined in
the script do persist after the script exits.

You dot-source a script by using the dot operator (.) and providing the script name as the parameter:

. "C:\Script Directory\Run-Commands.ps1" Parameters

You can use either a fully qualified path or a path relative to the current location. If the script is in the current
directory, you must explicitly say so:

. .\Run-Commands.ps1 Parameters

If the path contains no spaces, you may omit the quotes.

http://lib.ommolketab.ir

By default, a security feature in PowerShell called the Execution Policy prevents scripts
from running. When you want to enable scripting in PowerShell, you must change this
setting. To understand the different execution policies available to you, type Get-Help

about_signing. After selecting an execution policy, use the Set-ExecutionPolicy cmd-

let to configure it:

Set-ExecutionPolicy RemoteSigned

2.15.3. Providing Input to Scripts

PowerShell offers several options for processing input to a script.

2.15.3.1. Argument array

To access the command-line arguments by position, use the argument array that PowerShell places in the $args

special variable:

$firstArgument = $args[0]

$secondArgument = $args[1]

$argumentCount = $args.Count

2.15.3.2. Formal parameters
param([TypeName] $variableName = Default, …)

Formal parameters let you benefit from some of the many benefits of PowerShell's consistent command-line
parsing engine.

PowerShell exposes your parameter names (for example, $variableName) the same way that it exposes

parameters in cmdlets. Users need only to type enough of your parameter name to disambiguate it from the
rest of the parameters. If the user does not specify the parameter name, PowerShell attempts to assign the
input to your parameters by position.

If you specify a type name for the parameter, PowerShell ensures that the user input is of that type. If you
specify a default value, PowerShell uses that value if the user does not provide input for that parameter.

To make a parameter mandatory, define the default value so that it throws an error:

param($mandatory =

 $(throw "This parameter is required."))

2.15.3.3. Pipeline input

To access the data being passed to your script via the pipeline, use the input enumerator that PowerShell places
in the $input special variable:

foreach($element in $input)

{

 "Input was: $element"

}

http://lib.ommolketab.ir

The $input variable is a .NET enumerator over the pipeline input. Enumerators support streaming scenarios

very efficiently but do not let you access arbitrary elements as you would with an array. If you want to process
their elements again, you must call the Reset() method on the $input enumerator once you reach the end.

If you need to access the pipeline input in an unstructured way, use the following command to convert the input
enumerator to an array:

$inputArray = @($input)

2.15.3.4. Cmdlet keywords in scripts

When pipeline input is a core scenario of your script, you may include statement blocks labeled begin,

process, and end:

param(...)

begin

{

 ...

}

process

{

 ...

}

end

{

 ...

}

PowerShell executes the begin statement when it loads your script, the process statement for each item

passed down the pipeline, and the end statement after all pipeline input has been processed. In the process

statement block, the $_ variable represents the current pipeline object.

When you write a script that includes these keywords, all the commands in your script must be contained within
the statement blocks.

2.15.3.5. $MyInvocation automatic variable

The $MyInvocation automatic variable contains information about the context under which the script was run,

including detailed information about the command (MyCommand), the script that defines it (ScriptName), and

more.

2.15.4. Retrieving Output from Scripts

PowerShell provides three primary ways to retrieve output from a script.

2.15.4.1. Pipeline output
any command

The return value/output of a script is any data that it generates but does not capture. If a script contains the
commands:

http://lib.ommolketab.ir

"Text Output"

5*5

then assigning the output of that script to a variable creates an array with the two values, Text Output and 25.

2.15.4.2. Return statement
return value

The statement

return $false

is simply a short form for pipeline output:

$false

return

2.15.4.3. Exit statement
exit errorLevel

The exit statement returns an error code from the current script or instance of PowerShell. If called anywhere

in a script (inline, in a function, or in a script block), it exits the script.

If called outside of a script, it exits PowerShell. The exit statement sets the $LastExitCode automatic variable

to errorLevel. In turn, that sets the $? automatic variable to $false if errorLevel is not zero.

See Chapter 4 for more information about automatic variables.

2.15.5. Functions
function SCOPE:name(parameters)

{

 statement block

}

or:

filter SCOPE:name(parameters)

{

 statement block

}

Functions let you package blocks of closely related commands into a single unit that you can access by name.

Valid scope names are global (to create a function available to the entire shell), script (to create a function

available only to the current script), local (to create a function available only to the current scope and

subscopes), and private (to create a function available only to the current scope). The default scope is the

local scope, which follows the same rules as those of default variable scopes.

http://lib.ommolketab.ir

The content of a function's statement block follows the same rules as the content of a script. Functions support
the $args array, formal parameters, the $input enumerator, cmdlet keywords, pipeline output, and equivalent

return semantics.

A common mistake is to call a function as you would call a method:

$result = GetMyResults($item1, $item2)

PowerShell treats functions as it treats scripts and other commands, so this should
instead be:

$result = GetMyResults $item1 $item2

The first command passes an array that contains the items $item1 and $item2 to the

GetMyResults function.

A parameter declaration, as an alternative to a param statement, follows the same syntax as the formal

parameter list but does not require the param keyword.

A filter is simply a function where the statements are treated as though they are contained within a process

statement block.

Commands in your script can access only functions that have already been defined. This
can often make large scripts difficult to understand when the beginning of the script is
composed entirely of helper functions. Structuring a script in the following manner often
makes it more clear:

function Main

{

 (...)

 HelperFunction

 (...)

}

function HelperFunction

{

 (...)

}

. Main

As with a script, you may either invoke or dot-source a function.

2.15.6. Script Blocks
$objectReference =

{

 statement block

http://lib.ommolketab.ir

}

PowerShell supports script blocks, which act exactly like unnamed functions and scripts. Like both scripts and
functions, the content of a script block's statement block follows the same rules as the content of a function or
script. Script blocks support the $args array, formal parameters, the $input enumerator, cmdlet keywords,

pipeline output, and equivalent return semantics.

As with both scripts and functions, you may either invoke or dot-source a script block. Since a script block does
not have a name, you either invoke it directly (& { "Hello"}) or invoke the variable (& $objectReference)

that contains it.

http://lib.ommolketab.ir

2.16. Managing Errors

PowerShell supports two classes of errors: nonterminating and terminating. It collects both types of errors as a
list in the $error automatic variable.

2.16.1. Nonterminating Errors

Most errors are nonterminating errors, in that they do not halt execution of the current cmdlet, script, function,
or pipeline. When a command outputs an error (via PowerShell's error-output facilities), PowerShell writes that
error to a stream called the error output stream.

You can output a nonterminating error using the Write-Error cmdlet (or the WriteError() API when writing a

cmdlet).

The $ErrorActionPreference automatic variable lets you control how PowerShell handles nonterminating

errors. It supports the following values, as shown in Table 2-14.

Table 2-14. $ErrorActionPreference automatic variable values

Value Meaning

SilentlyContinue Do not display errors.

Stop Treat nonterminating errors as terminating errors.

Continue Display errors, but continue execution of the current cmdlet, script, function, or pipeline.
This is the default.

Inquire Display a prompt that asks how PowerShell should treat this error.

Most cmdlets let you configure this explicitly by passing one of the above values to its ErrorAction parameter.

2.16.2. Terminating Errors

A terminating error halts execution of the current cmdlet, script, function, or pipeline. If a command (such as a
cmdlet or .NET method call) generates a structured exception (for example, if you provide a method with
parameters outside their valid range), PowerShell exposes this as a terminating error. PowerShell also
generates a terminating error if it fails to parse an element of your script, function, or pipeline.

You can generate a terminating error in your script using the throw keyword:

throw message

In your own scripts and cmdlets, generate terminating errors only when the
fundamental intent of the operation is impossible to accomplish. For example, failing to
execute a command on a remote server should be considered a nonterminating error,
while failing to connect to the remote server altogether should be considered a
terminating error.

http://lib.ommolketab.ir

PowerShell lets you intercept terminating errors if you define a trap statement before PowerShell encounters

that error:

trap [exception type]

{

 statement block

 [continue or break]

}

If you specify an exception type, the trap statement applies only to terminating errors of that type.

If specified, the continue keyword tells PowerShell to continue processing the rest of your script, function, or

pipeline after the point at which it encountered the terminating error.

If specified, the break keyword tells PowerShell to halt processing the rest of your script, function, or pipeline

after the point at which it encountered the terminating error. Break is the default mode and applies if you

specify neither break nor continue at all.

http://lib.ommolketab.ir

2.17. Formatting Output
Pipeline | Formatting Command

When objects reach the end of the output pipeline, PowerShell converts them to text to make them suitable for
human consumption. PowerShell supports several options to help you control this formatting process, as listed
in Table 2-15.

Table 2-15. PowerShell formatting commands

Formatting
command

Result

Format-Table

Properties

Formats the properties of the input objects as a table, including only the object properties
you specify. If you do not specify a property list, PowerShell picks a default set.

In addition to supplying object properties, you may also provide advanced formatting
statements:

PS > Get-Process | `

 Format-Table -Auto Name,`

 @{Label="HexId";

 Expression={ "{0:x}" -f

 $_.Id}

 Width=4

 Align="Right"

 }

The advanced formatting statement is a hashtable with the keys Label and Expression (or

any short form of them). The value of the Expression key should be a script block that

returns a result for the current object (represented by the $_ variable).

For more information about the Format-Table cmdlet, type Get-Help Format-Table.

Format-List

Properties

Formats the properties of the input objects as a list, including only the object properties you
specify. If you do not specify a property list, PowerShell picks a default set.

The Format-List cmdlet supports the advanced formatting statements as used by the

Format-Table cmdlet.

The Format-List cmdlet is the one you will use most often to get a detailed summary of an

object's properties.

The command Format-List * returns all properties but does not include those that

PowerShell hides by default. The command Format-List * -Force returns all properties.

For more information about the Format-List cmdlet, type Get-Help Format-List.

Format-Wide

Property

Formats the properties of the input objects in an extremely terse summary view. If you do
not specify a property, PowerShell picks a default.

In addition to supplying object properties, you may also provide advanced formatting

http://lib.ommolketab.ir

Formatting
command

Result

In addition to supplying object properties, you may also provide advanced formatting
statements:

PS >Get-Process | `

 Format-Wide -Auto `

 @{ Expression={ "{0:x}" -f

 $_.Id} }

The advanced formatting statement is a hashtable with the key Expression (or any short

form of it). The value of the Expression key should be a script block that returns a result for

the current object (represented by the $_ variable).

For more information about the Format-Wide cmdlet, type Get-Help Format-Wide.

2.17.1. Custom formatting files

2.17.1.1. Custom formatting files

All the formatting defaults in PowerShell (e.g., when you do not specify a formatting command or formatting
properties) are driven by the *.Format.Ps1Xml files in the installation directory in a manner similar to the type
extension files mentioned in the "Custom type extension files" section in "Working with the .NET Framework,"
earlier in this chapter.

To create your own formatting customizations, use these files as a source of examples, but do not modify them
directly. Instead, create a new file and use the Update-FormatData cmdlet to load your customizations. The

Update-FormatData cmdlet applies your changes to the current instance of PowerShell. If you wish to load them

every time you launch PowerShell, call Update-FormatData in your profile script. The following command loads

Format.custom.Ps1Xml from the same directory as your profile:

$formatFile = Join-Path (Split-Path $profile)

 "Format.Custom.Ps1Xml"

Update-FormatData -PrependPath $typesFile

In addition to supplying object properties, you may also provide advanced formatting
statements:

PS >Get-Process | `

 Format-Wide -Auto `

 @{ Expression={ "{0:x}" -f

 $_.Id} }

The advanced formatting statement is a hashtable with the key Expression (or any short

form of it). The value of the Expression key should be a script block that returns a result for

the current object (represented by the $_ variable).

For more information about the Format-Wide cmdlet, type Get-Help Format-Wide.

2.17.1. Custom formatting files

2.17.1.1. Custom formatting files

All the formatting defaults in PowerShell (e.g., when you do not specify a formatting command or formatting
properties) are driven by the *.Format.Ps1Xml files in the installation directory in a manner similar to the type
extension files mentioned in the "Custom type extension files" section in "Working with the .NET Framework,"
earlier in this chapter.

To create your own formatting customizations, use these files as a source of examples, but do not modify them
directly. Instead, create a new file and use the Update-FormatData cmdlet to load your customizations. The

Update-FormatData cmdlet applies your changes to the current instance of PowerShell. If you wish to load them

every time you launch PowerShell, call Update-FormatData in your profile script. The following command loads

Format.custom.Ps1Xml from the same directory as your profile:

$formatFile = Join-Path (Split-Path $profile)

 "Format.Custom.Ps1Xml"

Update-FormatData -PrependPath $typesFile

http://lib.ommolketab.ir

2.18. Capturing Output

There are several ways to capture the output of commands in PowerShell, as listed in Table 2-16.

Table 2-16. Capturing output in PowerShell

Command Result

$variable = Command Stores the objects produced by the PowerShell command into $variable.

$variable = Command |

Out-String

Stores the visual representation of the PowerShell command into $variable. This is

the PowerShell command after it's been converted to human-readable output.

$variable =

NativeCommand

Stores the (string) output of the native command into $variable. PowerShell stores

this as a list of strings-one for each line of output from the native command.

Command -OutVariable

variable

For most commands, stores the objects produced by the PowerShell command into
$variable. The parameter -OutVariable can also be written -Ov.

Command > File Redirects the visual representation of the PowerShell (or standard output of a native
command) into File, overwriting File if it exists. Errors are not captured by this

redirection.

Command >> File Redirects the visual representation of the PowerShell (or standard output of a native
command) into File, appending to File if it exists. Errors are not captured by this

redirection.

Command 2> File Redirects the errors from the PowerShell or native command into File, overwriting

File if it exists.

Command 2>> File Redirects the errors from the PowerShell or native command into File, appending

to File if it exists.

Command > File 2>&1 Redirects both the error and standard output streams of the PowerShell or native
command into File, overwriting File if it exists.

Command >> File 2>&1 Redirects both the error and standard output streams of the PowerShell or native
command into File, appending to File if it exists.

http://lib.ommolketab.ir

2.19. Tracing and Debugging

The three facilities for tracing and debugging in PowerShell are the Set-PsDebug cmdlet, the Trace-Command

cmdlet, and the verbose cmdlet output.

2.19.1. The Set-PsDebug Cmdlet

The Set-PsDebug cmdlet lets you control tracing, stepping, and strict mode in PowerShell. Table 2-17 lists the

parameters of the Set-PsDebug cmdlet.

Table 2-17. Parameters of the Set-PsDebug cmdlet

Parameter Description

Trace Sets the amount of tracing detail that PowerShell outputs when running commands. A value of 1

outputs all lines as PowerShell evaluates them. A value of 2 outputs all lines as PowerShell

evaluates them, along with information about variable assignments, function calls, and scripts. A
value of 0 disables tracing.

Step Enables and disables per-command stepping. When enabled, PowerShell prompts you before it
executes a command.

Strict Enables and disables strict mode. When enabled, PowerShell throws a terminating error if you
attempt to reference a variable that you have not yet defined.

Off Turns off tracing, stepping, and strict mode.

2.19.2. The Trace-Command Cmdlet
Trace-Command CommandDiscovery -PsHost { gci c:\ }

The Trace-Command cmdlet exposes diagnostic and support information for PowerShell commands. PowerShell

groups its diagnostic information into categories called trace sources.

A full list of trace sources is available through the Get-TraceSource cmdlet.

For more information about the Trace-Command cmdlet, type Get-Help Trace-Command.

2.19.3. The Verbose Cmdlet Output
Cmdlet -Verbose

PowerShell commands can generate verbose output using the Write-Verbose cmdlet (if written as a script), or

the WriteVerbose() API (when written as a cmdlet).

The $VerbosePreference automatic variable lets you control how PowerShell handles verbose output. It

supports the values listed in Table 2-18.

Table 2-18. VerbosePreference automatic variable values

http://lib.ommolketab.ir

Value Meaning

SilentlyContinue Do not display verbose output. This is the default.

Stop Treat verbose output as a terminating error.

Continue Display verbose output and continue execution of the current cmdlet, script, function, or
pipeline.

Inquire Display a prompt that asks how PowerShell should treat this verbose output.

Most cmdlets let you configure this explicitly by passing one of the values listed in Table 2-18 to its Verbose

parameter.

http://lib.ommolketab.ir

2.20. Common Customization Points

As useful as it is out of the box, PowerShell offers several avenues for customization and personalization.

2.20.1. Console Settings

The Windows PowerShell user interface offers several features to make your shell experience more efficient.

2.20.1.1. Adjust your window size

In the System menu (right-click the PowerShell icon at the top left of the console window), select Properties

 Layout. The Window Size options let you control the actual window size (how big the window appears on
screen), while the Screen Buffer Size options let you control the virtual window size (how much content the
window can hold). If the screen buffer size is larger than the actual window size, the console window changes to
include scrollbars. Increase the virtual window height to make PowerShell store more output from earlier in your
session. If you launch PowerShell from the Start menu, PowerShell launches with some default modifications to
the window size.

2.20.1.2. Make text selection easier

In the System menu, click Options QuickEdit Mode. QuickEdit mode lets you use the mouse to efficiently
copy and paste text into or out of your PowerShell console. If you launch PowerShell from the Start menu,
PowerShell launches with QuickEdit mode enabled.

2.20.1.3. Use hotkeys to operate the shell more efficiently

The Windows PowerShell console supports many hotkeys that help make operating the console more efficient,
as shown in Table 2-19.

Table 2-19. Windows PowerShell hotkeys

Hotkey Meaning

Windows key + r, and
then type powershell

Launch Windows PowerShell.

Up arrow Scan backward through your command history.

Down arrow Scan forward through your command history.

Page Up Display the first command in your command history.

Page Down Display the last command in your command history.

Left arrow Move cursor one character to the left on your command line.

Right arrow Move cursor one character to the right on your command line. If at the end of the line,
it inserts a character from the text of your last command at that position.

Home Move the cursor to the beginning of the command line.

End Move the cursor to the end of the command line.

http://lib.ommolketab.ir

Hotkey Meaning

Control + left arrow Move the cursor one word to the left on your command line.

Control + right arrow Move the cursor one word to the right on your command line.

Alt + space, e, l Scroll through the screen buffer.

Alt + space, e, f Search for text in the screen buffer.

Alt + space, e, k Select text to be copied from the screen buffer.

Alt + space, e, p Paste clipboard contents into the Windows PowerShell console.

Alt + space, c Close the Windows PowerShell console.

Control + c Cancel the current operation.

Control + break Forcefully close the Windows PowerShell window.

Control + home Delete characters from the beginning of the current command line up to (but not
including) the current cursor position.

Control + end Delete characters from (and including) the current cursor position to the end of the
current command line.

F1 Move cursor one character to the right on your command line. If at the end of the line,
it inserts a character from the text of your last command at that position.

F2 Create a new command line by copying your last command line up to the character
that you type.

F3 Complete the command line with content from your last command line, from the
current cursor position to the end.

F4 Delete characters from your cursor position up to (but not including) the character that
you type.

F5 Scan backward through your command history.

F7 Interactively select a command from your command history. Use the arrow keys to
scroll through the window that appears. Press the Enter key to execute the command,
or use the right arrow key to place the text on your command line instead.

F8 Scan backward through your command history, only displaying matches for commands
that match the text you've typed so far on the command line.

F9 Invoke a specific numbered command from your command history. The numbers of
these commands correspond to the numbers that the command-history selection
window (F7) shows.

Alt + F7 Clear the command history list.

While useful in their own right, the hotkeys listed in Table 2-19 become even more
useful when you map them to shorter or more intuitive keystrokes using a hotkey
program, such as the free AutoHotkey http://www.autohotkey.com.

Control + left arrow Move the cursor one word to the left on your command line.

Control + right arrow Move the cursor one word to the right on your command line.

Alt + space, e, l Scroll through the screen buffer.

Alt + space, e, f Search for text in the screen buffer.

Alt + space, e, k Select text to be copied from the screen buffer.

Alt + space, e, p Paste clipboard contents into the Windows PowerShell console.

Alt + space, c Close the Windows PowerShell console.

Control + c Cancel the current operation.

Control + break Forcefully close the Windows PowerShell window.

Control + home Delete characters from the beginning of the current command line up to (but not
including) the current cursor position.

Control + end Delete characters from (and including) the current cursor position to the end of the
current command line.

F1 Move cursor one character to the right on your command line. If at the end of the line,
it inserts a character from the text of your last command at that position.

F2 Create a new command line by copying your last command line up to the character
that you type.

F3 Complete the command line with content from your last command line, from the
current cursor position to the end.

F4 Delete characters from your cursor position up to (but not including) the character that
you type.

F5 Scan backward through your command history.

F7 Interactively select a command from your command history. Use the arrow keys to
scroll through the window that appears. Press the Enter key to execute the command,
or use the right arrow key to place the text on your command line instead.

F8 Scan backward through your command history, only displaying matches for commands
that match the text you've typed so far on the command line.

F9 Invoke a specific numbered command from your command history. The numbers of
these commands correspond to the numbers that the command-history selection
window (F7) shows.

Alt + F7 Clear the command history list.

While useful in their own right, the hotkeys listed in Table 2-19 become even more
useful when you map them to shorter or more intuitive keystrokes using a hotkey
program, such as the free AutoHotkey http://www.autohotkey.com.

http://www.autohotkey.com
http://www.autohotkey.com
http://lib.ommolketab.ir

2.20.2. Profiles

Windows PowerShell automatically runs the four scripts listed in Table 2-20 during startup. Each, if present, lets
you customize your execution environment. PowerShell runs anything you place in these files as though you had
entered it manually at the command line.

Table 2-20. Windows PowerShell profiles

Profile purpose Profile location

Customization of all PowerShell
sessions, including PowerShell
hosting applications for all users on
the system

InstallationDirectory\profile.ps1

Customization of PowerShell.exe
sessions for all users on the system

InstallationDirectory\Microsoft.PowerShell_profile.ps1

Customization of all PowerShell
sessions, including PowerShell
hosting applications

My Documents\WindowsPowerShell\profile.ps1

Typical customization of
PowerShell.exe sessions

My

Documents\WindowsPowerShell\Microsoft.PowerShell_profile.ps1

PowerShell makes editing your profile script simple by defining the automatic variable,
$profile.

To create a new profile, type:

New-Item -Type file -Force $profile

To edit this profile, type:

Notepad $profile

For more information on writing scripts, see "Writing Scripts, Reusing Functionality," earlier in this chapter.

2.20.3. Prompts

To customize your prompt, add a "prompt" function to your profile. This function returns a string. For example:

function Prompt

{

 "PS [$env:COMPUTERNAME] >"

}

2.20.4. Tab Completion

You may define a TabExpansion function to customize the way that Windows PowerShell completes properties,

http://lib.ommolketab.ir

variables, parameters, and files when you press the Tab key.

Your TabExpansion function overrides the one that PowerShell defines by default, though, so you may want to

use its definition as a starting point:

Get-Content function:\TabExpansion

As its arguments, this function receives the entire command line as input, as well as the last word of the
command line. If the function returns one or more strings, PowerShell cycles through those strings during tab
completion. Otherwise, it uses its built-in logic to tab-complete file names, directory names, cmdlet names, and
variable names.

http://lib.ommolketab.ir

Chapter 3. Regular Expression Reference

Regular expressions play an important role in most text parsing and text matching tasks. They form an
important underpinning of the -match operator, the switch statement, the Select-String cmdlet, and more.

Tables Table 3-1 through Table 3-9 list commonly used regular expressions.

Table 3-1. Character classes: Patterns that represent sets of characters

Character class Matches

. Any character except for a newline. If the regular expression uses the SingleLine option,

it matches any character.
PS >"T" -match '.'

True

[characters] Any character in the brackets. For example: [aeiou].

PS >"Test" -match '[Tes]'

True

[^characters] Any character not in the brackets. For example: [^aeiou].

PS >"Test" -match '[^Tes]'

False

[start-end] Any character between the characters start and end, inclusive. You may include multiple

character ranges between the brackets. For example, [a-eh-j].

PS >"Test" -match '[e-t]'

True

[^start-end] Any character not between any of the character ranges start through end, inclusive. You

may include multiple character ranges between the brackets. For example, [^a-eh-j].

PS >"Test" -match '[^e-t]'

False

\p{character

class}

Any character in the Unicode group or block range specified by {character class}.

PS >"+" -match '\p{Sm}'

True

\P{character

class}

Any character not in the Unicode group or block range specified by {character class}.

PS >"+" -match '\P{Sm}'

False

\w Any word character.
PS >"a" -match '\w'

True

http://lib.ommolketab.ir

Character class Matches

\W Any nonword character.
PS >"!" -match '\W'

True

\s Any whitespace character.
PS >"`t" -match '\s'

True

\S Any nonwhitespace character.
PS >" `t" -match '\S'

False

\d Any decimal digit.
PS >"5" -match '\d'

True

\D Any nondecimal digit.
PS >"!" -match '\D'

True

Table 3-2. Quantifiers: Expressions that enforce quantity on the preceding expression

Quantifier Meaning

<none> One match.
PS >"T" -match 'T'

True

* Zero or more matches, matching as much as possible.
PS >"A" -match 'T*'

True

PS >"TTTTT" -match '^T*$'

True

+ One or more matches, matching as much as possible.
PS >"A" -match 'T+'

False

PS >"TTTTT" -match '^T+$'

True

? Zero or one matches, matching as much as possible.
PS >"TTTTT" -match '^T?$'

False

\W Any nonword character.
PS >"!" -match '\W'

True

\s Any whitespace character.
PS >"`t" -match '\s'

True

\S Any nonwhitespace character.
PS >" `t" -match '\S'

False

\d Any decimal digit.
PS >"5" -match '\d'

True

\D Any nondecimal digit.
PS >"!" -match '\D'

True

Table 3-2. Quantifiers: Expressions that enforce quantity on the preceding expression

Quantifier Meaning

<none> One match.
PS >"T" -match 'T'

True

* Zero or more matches, matching as much as possible.
PS >"A" -match 'T*'

True

PS >"TTTTT" -match '^T*$'

True

+ One or more matches, matching as much as possible.
PS >"A" -match 'T+'

False

PS >"TTTTT" -match '^T+$'

True

http://lib.ommolketab.ir

Quantifier Meaning

? Zero or one matches, matching as much as possible.
PS >"TTTTT" -match '^T?$'

False

{n} Exactly n matches.

PS >"TTTTT" -match '^T{5}$'

True

{n,} n or more matches, matching as much as possible.
PS >"TTTTT" -match '^T{4,}$'

True

{n,m} Between n and m matches (inclusive), matching as much as possible.

PS >"TTTTT" -match '^T{4,6}$'

True

*? Zero or more matches, matching as little as possible.
PS >"A" -match '^AT *?$'

True

+? One or more matches, matching as little as possible.
PS >"A" -match '^AT +?$'

False

?? Zero or one matches, matching as little as possible.
PS >"A" -match '^AT ??$'

True

{n}? Exactly n matches.

PS >"TTTTT" -match '^T{5}?$'

True

{n,}? n or more matches, matching as little as possible.

PS >"TTTTT" -match '^T{4,}?$'

True

{n,m}? Between n and m matches (inclusive), matching as little as possible.

PS >"TTTTT" -match '^T{4,6}?$'

True

Table 3-3. Grouping constructs: Expressions that let you group characters, patterns, and other
expressions

Grouping
construct

Description

? Zero or one matches, matching as much as possible.
PS >"TTTTT" -match '^T?$'

False

{n} Exactly n matches.

PS >"TTTTT" -match '^T{5}$'

True

{n,} n or more matches, matching as much as possible.
PS >"TTTTT" -match '^T{4,}$'

True

{n,m} Between n and m matches (inclusive), matching as much as possible.

PS >"TTTTT" -match '^T{4,6}$'

True

*? Zero or more matches, matching as little as possible.
PS >"A" -match '^AT *?$'

True

+? One or more matches, matching as little as possible.
PS >"A" -match '^AT +?$'

False

?? Zero or one matches, matching as little as possible.
PS >"A" -match '^AT ??$'

True

{n}? Exactly n matches.

PS >"TTTTT" -match '^T{5}?$'

True

{n,}? n or more matches, matching as little as possible.

PS >"TTTTT" -match '^T{4,}?$'

True

{n,m}? Between n and m matches (inclusive), matching as little as possible.

PS >"TTTTT" -match '^T{4,6}?$'

True

Table 3-3. Grouping constructs: Expressions that let you group characters, patterns, and other
expressions

http://lib.ommolketab.ir

Grouping
construct

Description

(text) Captures the text matched inside the parentheses. These captures are named by number
(starting at one) based on the order of the opening parenthesis.
PS >"Hello" -match '^(.*)llo$';

 $matches[1]

True

He

(?<name>) Captures the text matched inside the parentheses. These captures are named by the name
given in name.

PS >"Hello" -match '^(?<One>.*)llo$';

 $matches.One

True

He

(?<name1-

name2>)

A balancing group definition. This is an advanced regular expression construct, but allows you
to match evenly balanced pairs of terms.

(?:) Noncapturing group.
PS >"A1" -match '((A|B)\d)';

 $matches

True

Name Value

---- -----

2 A

1 A1

0 A1

PS >"A1" -match '((?:A|B)\d)'; $matches

True

Name Value

---- -----

1 A1

0 A1

(?imnsx-

imnsx:)

Applies or disables the given option for this group. Supported options are:

i case-insensitive

m multiline

n explicit capture

s single line

x ignore whitespace

PS >"Te`nst" -match '(T e.st)'

False

PS >"Te`nst" -match '(?sx:T e.st)'

http://lib.ommolketab.ir

Grouping
construct

Description

PS >"Te`nst" -match '(?sx:T e.st)'

True

(?=) Zero-width positive lookahead assertion. Ensures that the given pattern matches to the right,
without actually performing the match.
PS >"555-1212" -match '(?=...-)(.*)';

$matches[1]

True

555-1212

(?!) Zero-width negative lookahead assertion. Ensures that the given pattern does not match to
the right, without actually performing the match.
PS >"friendly" -match

 '(?!friendly)friend'

False

(?<=) Zero-width positive lookbehind assertion. Ensures that the given pattern matches to the left,
without actually performing the match.
PS >"public int X" -match

 '^.*(?<=public)int .*$'

True

(?<!) Zero-width negative lookbehind assertion. Ensures that the given pattern does not match to
the left, without actually performing the match.
PS >"private int X" -match

 '^.*(?<!private)int .*$'

False

(?>) Nonbacktracking subexpression. Matches only if this subexpression can be matched
completely.
PS >"Hello World" -match

 '(Hello.*)orld'

True

PS >"Hello World" -match

 '(?>Hello.*)orld'

False

The nonbacktracking version of the subexpression fails to match, as its complete match would
be "Hello World".

Table 3-4. Atomic zero-width assertions: Patterns that restrict where a match may occur

Assertion Restriction

^ The match must occur at the beginning of the string (or line, if the Multiline option is in effect).

PS >"Test" -match '^est'

False

PS >"Te`nst" -match '(?sx:T e.st)'

True

(?=) Zero-width positive lookahead assertion. Ensures that the given pattern matches to the right,
without actually performing the match.
PS >"555-1212" -match '(?=...-)(.*)';

$matches[1]

True

555-1212

(?!) Zero-width negative lookahead assertion. Ensures that the given pattern does not match to
the right, without actually performing the match.
PS >"friendly" -match

 '(?!friendly)friend'

False

(?<=) Zero-width positive lookbehind assertion. Ensures that the given pattern matches to the left,
without actually performing the match.
PS >"public int X" -match

 '^.*(?<=public)int .*$'

True

(?<!) Zero-width negative lookbehind assertion. Ensures that the given pattern does not match to
the left, without actually performing the match.
PS >"private int X" -match

 '^.*(?<!private)int .*$'

False

(?>) Nonbacktracking subexpression. Matches only if this subexpression can be matched
completely.
PS >"Hello World" -match

 '(Hello.*)orld'

True

PS >"Hello World" -match

 '(?>Hello.*)orld'

False

The nonbacktracking version of the subexpression fails to match, as its complete match would
be "Hello World".

Table 3-4. Atomic zero-width assertions: Patterns that restrict where a match may occur

Assertion Restriction

http://lib.ommolketab.ir

Assertion Restriction

^ The match must occur at the beginning of the string (or line, if the Multiline option is in effect).

PS >"Test" -match '^est'

False

$ The match must occur at the end of the string (or line, if the Multiline option is in effect).

PS >"Test" -match 'Tes$'

False

\A The match must occur at the beginning of the string.
PS >"The`nTest" -match '(?m:^Test)'

True

PS >"The`nTest" -match '(?m:\ATest)'

False

\Z The match must occur at the end of the string or before \n at the end of the string.

PS >"The`nTest`n" -match '(?m:The$)'

True

PS >"The`nTest`n" -match '(?m:The \Z)'

False

PS >"The`nTest`n" -match 'Test\Z'

True

\z The match must occur at the end of the string.
PS >"The`nTest`n" -match 'Test\z'

False

\G The match must occur where the previous match ended. Used with the
System.Text.RegularExpressions.Match.NextMatch() method.

\b The match must occur on a word boundary-the first or last characters in words separated by
nonalphanumeric characters.
PS >"Testing" -match 'ing \b'

True

\B The match must not occur on a word boundary.
PS >"Testing" -match 'ing\B'

False

Table 3-5. Substitution patterns: Patterns used in a regular expression-replace operation

Pattern Substitution

$number The text matched by group number <number>.

PS >"Test" -replace '(.*)st','$1ar'

Tear

^ The match must occur at the beginning of the string (or line, if the Multiline option is in effect).

PS >"Test" -match '^est'

False

$ The match must occur at the end of the string (or line, if the Multiline option is in effect).

PS >"Test" -match 'Tes$'

False

\A The match must occur at the beginning of the string.
PS >"The`nTest" -match '(?m:^Test)'

True

PS >"The`nTest" -match '(?m:\ATest)'

False

\Z The match must occur at the end of the string or before \n at the end of the string.

PS >"The`nTest`n" -match '(?m:The$)'

True

PS >"The`nTest`n" -match '(?m:The \Z)'

False

PS >"The`nTest`n" -match 'Test\Z'

True

\z The match must occur at the end of the string.
PS >"The`nTest`n" -match 'Test\z'

False

\G The match must occur where the previous match ended. Used with the
System.Text.RegularExpressions.Match.NextMatch() method.

\b The match must occur on a word boundary-the first or last characters in words separated by
nonalphanumeric characters.
PS >"Testing" -match 'ing \b'

True

\B The match must not occur on a word boundary.
PS >"Testing" -match 'ing\B'

False

Table 3-5. Substitution patterns: Patterns used in a regular expression-replace operation

Pattern Substitution

http://lib.ommolketab.ir

Pattern Substitution

$number The text matched by group number <number>.

PS >"Test" -replace '(.*)st','$1ar'

Tear

${name} The text matched by group named <name>.

PS >"Test" -replace

 '(?<pre>.*)st','${pre}ar'

Tear

$$ A literal $.
PS >"Test" -replace '.','$$'

$$$$

$& A copy of the entire match.
PS >"Test" -replace '^.*$','Found: $&'

Found: Test

$` The text of the input string that precedes the match.
PS >"Test" -replace 'est$','Te$`'

TTeT

$' The text of the input string that follows the match.
PS >"Test" -replace '^Tes','Res$'''

Restt

$+ The last group captured.
PS >"Testing" -replace '(.*)ing','$+ed'

Tested

$_ The entire input string.
PS >"Testing" -replace

 '(.*)ing','String: $_'

String: Testing

Table 3-6. Alternation constructs: Expressions that allow you to perform either/or logic

Alternation
construct

Description

| Matches any of the terms separated by the vertical bar character.
PS >"Test" -match '(B|T)est'

True

(?(expression)

yes|no)

Matches the yes term if expression matches at this point. Otherwise, matches the no

term. The no term is optional.

PS >"3.14" -match '(?(\d)3.14|Pi)'

$number The text matched by group number <number>.

PS >"Test" -replace '(.*)st','$1ar'

Tear

${name} The text matched by group named <name>.

PS >"Test" -replace

 '(?<pre>.*)st','${pre}ar'

Tear

$$ A literal $.
PS >"Test" -replace '.','$$'

$$$$

$& A copy of the entire match.
PS >"Test" -replace '^.*$','Found: $&'

Found: Test

$` The text of the input string that precedes the match.
PS >"Test" -replace 'est$','Te$`'

TTeT

$' The text of the input string that follows the match.
PS >"Test" -replace '^Tes','Res$'''

Restt

$+ The last group captured.
PS >"Testing" -replace '(.*)ing','$+ed'

Tested

$_ The entire input string.
PS >"Testing" -replace

 '(.*)ing','String: $_'

String: Testing

Table 3-6. Alternation constructs: Expressions that allow you to perform either/or logic

Alternation
construct

Description

| Matches any of the terms separated by the vertical bar character.
PS >"Test" -match '(B|T)est'

True

(?(expression)

yes|no)

Matches the yes term if expression matches at this point. Otherwise, matches the no

term. The no term is optional.

http://lib.ommolketab.ir

Alternation
construct

Description

yes|no) term. The no term is optional.

PS >"3.14" -match '(?(\d)3.14|Pi)'

True

PS >"Pi" -match '(?(\d)3.14|Pi)'

True

PS >"2.71" -match '(?(\d)3.14|Pi)'

False

(?(name) yes|no) Matches the yes term if the capture group named name has a capture at this point.

Otherwise, matches the no term. The no term is optional.

PS >"123" -match

 '(?<one>1)?(?(one)23|234)'

True

PS >"23" -match

 '(?<one>1)?(?(one)23|234)'

False

PS >"234" -match

 '(?<one>1)?(?(one)23|234)'

True

Table 3-7. Backreference constructs: Expressions that refer to a capture group within the expression

Backreference construct Refers to

\number Group number number in the expression.

PS >"|Text|" -match '(.)Text\1'

True

PS >"|Text+" -match '(.)Text\1'

False

\k<name> The group named name in the expression.

PS >"|Text|" -match

 '(?<Symbol>.)Text\k<Symbol>'

True

PS >"|Text+" -match

 '(?<Symbol>.)Text\k<Symbol>'

False

Table 3-8. Other constructs: Other expressions that modify a regular expression

Construct Description

(?imnsx-imnsx) Applies or disables the given option for the rest of this expression. Supported options
are:

i case-insensitive

m multiline

yes|no) term. The no term is optional.

PS >"3.14" -match '(?(\d)3.14|Pi)'

True

PS >"Pi" -match '(?(\d)3.14|Pi)'

True

PS >"2.71" -match '(?(\d)3.14|Pi)'

False

(?(name) yes|no) Matches the yes term if the capture group named name has a capture at this point.

Otherwise, matches the no term. The no term is optional.

PS >"123" -match

 '(?<one>1)?(?(one)23|234)'

True

PS >"23" -match

 '(?<one>1)?(?(one)23|234)'

False

PS >"234" -match

 '(?<one>1)?(?(one)23|234)'

True

Table 3-7. Backreference constructs: Expressions that refer to a capture group within the expression

Backreference construct Refers to

\number Group number number in the expression.

PS >"|Text|" -match '(.)Text\1'

True

PS >"|Text+" -match '(.)Text\1'

False

\k<name> The group named name in the expression.

PS >"|Text|" -match

 '(?<Symbol>.)Text\k<Symbol>'

True

PS >"|Text+" -match

 '(?<Symbol>.)Text\k<Symbol>'

False

Table 3-8. Other constructs: Other expressions that modify a regular expression

http://lib.ommolketab.ir

Construct Description

(?imnsx-imnsx) Applies or disables the given option for the rest of this expression. Supported options
are:

i case-insensitive

m multiline

n explicit capture

s single line

x ignore whitespace

PS >"Te`nst" -match '(?sx)T e.st'

True

(?#) Inline comment. This terminates at the first closing parenthesis.
PS >"Test" -match

 '(?# Match 'Test')Test'

True

[to end of

line]

Comment form allowed when the regular expression has the IgnoreWhitespace option

enabled.
PS >"Test" -match

 '(?x)Test # Matches Test'

True

Table 3-9. Character escapes: Character sequences that represent another character

Escaped
character

Match

<ordinary

characters>

Characters other than . $ ^ { [(|) * + ? \ match themselves.

\a A bell (alarm) \u0007.

\b A backspace \u0008 if in a [] character class. In a regular expression, \b denotes a word

boundary (between \w and \W characters) except within a [] character class, where \b refers

to the backspace character. In a replacement pattern, \b always denotes a backspace.

\t A tab \u0009.

\r A carriage return \u000D.

\v A vertical tab \u000B.

\f A form feed \u000C.

\n A new line \u000A.

\e An escape \u001B.

http://lib.ommolketab.ir

Escaped
character

Match

\ddd An ASCII character as octal (up to three digits). Numbers with no leading zero are treated
as backreferences if they have only one digit, or if they correspond to a capturing group
number.

\xdd An ASCII character using hexadecimal representation (exactly two digits).

\cC An ASCII control character. For example, \cC is Control-C.

\udddd A Unicode character using hexadecimal representation (exactly four digits).

\ When followed by a character that is not recognized as an escaped character, matches that
character. For example,* is the literal character *.

\ddd An ASCII character as octal (up to three digits). Numbers with no leading zero are treated
as backreferences if they have only one digit, or if they correspond to a capturing group
number.

\xdd An ASCII character using hexadecimal representation (exactly two digits).

\cC An ASCII control character. For example, \cC is Control-C.

\udddd A Unicode character using hexadecimal representation (exactly four digits).

\ When followed by a character that is not recognized as an escaped character, matches that
character. For example,* is the literal character *.

http://lib.ommolketab.ir

Chapter 4. PowerShell Automatic Variables

PowerShell defines and populates several variables automatically. These variables let you access information
about the execution environment, PowerShell preferences, and more.

Table 4-1 provides a listing of these automatic variables and their meanings.

Table 4-1. Windows PowerShell automatic variables: Variables automatically used and set by
Windows PowerShell

Variable Meaning

$$ Last token of the last line received by the shell.

$? Success/fail status of the last operation.

$^ First token of the last line received by the shell.

$_ Current pipeline object in a pipelined script block.

$args Array of parameters passed to the script, function, or script block.

$confirmPreference Preference that controls the level of impact that operations may have before
requesting confirmation. Supports the values none, low, medium, high. A

value of none disables confirmation messages.

$consoleFilename Filename of the PowerShell console file that configured this session, if one was
used.

$currentlyExecutingCommand Currently executing command, when in a suspended prompt.

$debugPreference Preference that controls how PowerShell should handle debug output written
by a script or cmdlet. Supports the values SilentlyContinue, Continue,

Inquire, and Stop.

$error Array that holds the terminating and nonterminating errors generated in the
shell.

$errorActionPreference Preference that controls how PowerShell should handle error output written by
a script or cmdlet. Supports the values SilentlyContinue, Continue,

Inquire, and Stop.

$errorView Preference that controls how PowerShell should output errors in the shell.
Supports the values of Normal and CategoryView (a more succinct and

categorical view of the error).

$executionContext Means by which scripts can access the APIs typically used by cmdlets and
providers.

$false Variable that represents the Boolean value False.

$foreach Enumerator within a foreach loop.

$formatEnumerationLimit Limit on how deep into an object the formatting and output facilities travel
before outputting an object.

http://lib.ommolketab.ir

Variable Meaning

$home User's home directory.

$host Means by which scripts can access the APIs and implementation details of the
current host and user interface.

$input Current input pipeline in a pipelined script block.

$lastExitCode Exit code of the last command. Can be explicitly set by scripts, and is
automatically set when calling native executables.

$logEngineHealthEvent Preference that tells PowerShell to log engine health events, such as errors
and exceptions. Supports the values $true and $false.

$logEngineLifecycleEvent Preference that tells PowerShell to log engine lifecycle events, such as Start

and Stop. Supports the values $true and $false.

$logCommandHealthEvent Preference that tells PowerShell to log command health events, such as errors
and exceptions. Supports the values $true and $false.

$logCommandLifecycleEvent Preference that tells PowerShell to log command lifecycle events, such as
Start and Stop. Supports the values $true and $false.

$logProviderHealthEvent Preference that tells PowerShell to log provider health events, such as errors
and exceptions. Supports the values $true and $false.

$logProviderLifecycleEvent Preference that tells PowerShell to log provider lifecycle events, such as Start

and Stop. Supports the values $true and $false.

$matches Results of the last successful regular expression match (through the –match

operator).

$maximumAliasCount Limit on how many aliases may be defined.

$maximumDriveCount Limit on how many drives may be defined. Does not include default system
drives.

$maximumErrorCount Limit on how many errors PowerShell retains in the $error collection.

$maximumFunctionCount Limit on how many functions may be defined.

$maximumHistoryCount Limit on how many history items are retained.

$maximumVariableCount Limit on how many variables may be defined.

$myInvocation Information about the context under which the script, function, or script block
was run, including detailed information about the command (MyCommand) and

the script that defines it (ScriptName).

$nestedPromptLevel Nesting level of the current prompt. Incremented by operations that enter a
nested prompt (such as $host.EnterNestedPrompt()) and decremented by

the exit statement.

$null Variable that represents the concept of Null.

$ofs Output field separator. Placed between elements when PowerShell outputs a
list as a string.

$outputEncoding Character encoding used when sending pipeline data to external processes.

$home User's home directory.

$host Means by which scripts can access the APIs and implementation details of the
current host and user interface.

$input Current input pipeline in a pipelined script block.

$lastExitCode Exit code of the last command. Can be explicitly set by scripts, and is
automatically set when calling native executables.

$logEngineHealthEvent Preference that tells PowerShell to log engine health events, such as errors
and exceptions. Supports the values $true and $false.

$logEngineLifecycleEvent Preference that tells PowerShell to log engine lifecycle events, such as Start

and Stop. Supports the values $true and $false.

$logCommandHealthEvent Preference that tells PowerShell to log command health events, such as errors
and exceptions. Supports the values $true and $false.

$logCommandLifecycleEvent Preference that tells PowerShell to log command lifecycle events, such as
Start and Stop. Supports the values $true and $false.

$logProviderHealthEvent Preference that tells PowerShell to log provider health events, such as errors
and exceptions. Supports the values $true and $false.

$logProviderLifecycleEvent Preference that tells PowerShell to log provider lifecycle events, such as Start

and Stop. Supports the values $true and $false.

$matches Results of the last successful regular expression match (through the –match

operator).

$maximumAliasCount Limit on how many aliases may be defined.

$maximumDriveCount Limit on how many drives may be defined. Does not include default system
drives.

$maximumErrorCount Limit on how many errors PowerShell retains in the $error collection.

$maximumFunctionCount Limit on how many functions may be defined.

$maximumHistoryCount Limit on how many history items are retained.

$maximumVariableCount Limit on how many variables may be defined.

$myInvocation Information about the context under which the script, function, or script block
was run, including detailed information about the command (MyCommand) and

the script that defines it (ScriptName).

$nestedPromptLevel Nesting level of the current prompt. Incremented by operations that enter a
nested prompt (such as $host.EnterNestedPrompt()) and decremented by

the exit statement.

$null Variable that represents the concept of Null.

$ofs Output field separator. Placed between elements when PowerShell outputs a
list as a string.

$outputEncoding Character encoding used when sending pipeline data to external processes.

http://lib.ommolketab.ir

Variable Meaning

$pid Process ID of the current PowerShell instance.

$profile Location and filename of the PowerShell profile for this host.

$progressPreference Preference that controls how PowerShell should handle progress output
written by a script or cmdlet. Supports the values SilentlyContinue,

Continue, Inquire, and Stop.

$psHome Installation location of PowerShell.

$pwd Current working directory.

$shellId Shell identifier of this host.

$stackTrace Detailed stack trace information of the last error.

$this Reference to the current object in ScriptMethods and ScriptProperties.

$transcript Filename used by the Start-Transcript cmdlet.

$true Variable that represents the Boolean value True.

$verboseHelpErrors Preference that tells PowerShell to output detailed error information when
parsing malformed help files. Supports the values $true and $false.

$verbosePreference Preference that controls how PowerShell should handle verbose output written
by a script or cmdlet. Supports the values SilentlyContinue, Continue,

Inquire, and Stop.

$warningPreference Preference that controls how PowerShell should handle warning output written
by a script or cmdlet. Supports the values SilentlyContinue, Continue,

Inquire, and Stop.

$whatifPreference Preference that controls how PowerShell should handle confirmation requests
called by a script or cmdlet. Supports the values SilentlyContinue,

Continue, Inquire, and Stop.

$pid Process ID of the current PowerShell instance.

$profile Location and filename of the PowerShell profile for this host.

$progressPreference Preference that controls how PowerShell should handle progress output
written by a script or cmdlet. Supports the values SilentlyContinue,

Continue, Inquire, and Stop.

$psHome Installation location of PowerShell.

$pwd Current working directory.

$shellId Shell identifier of this host.

$stackTrace Detailed stack trace information of the last error.

$this Reference to the current object in ScriptMethods and ScriptProperties.

$transcript Filename used by the Start-Transcript cmdlet.

$true Variable that represents the Boolean value True.

$verboseHelpErrors Preference that tells PowerShell to output detailed error information when
parsing malformed help files. Supports the values $true and $false.

$verbosePreference Preference that controls how PowerShell should handle verbose output written
by a script or cmdlet. Supports the values SilentlyContinue, Continue,

Inquire, and Stop.

$warningPreference Preference that controls how PowerShell should handle warning output written
by a script or cmdlet. Supports the values SilentlyContinue, Continue,

Inquire, and Stop.

$whatifPreference Preference that controls how PowerShell should handle confirmation requests
called by a script or cmdlet. Supports the values SilentlyContinue,

Continue, Inquire, and Stop.

http://lib.ommolketab.ir

Chapter 5. Standard PowerShell Verbs

Cmdlets and scripts should be named using a Verb-Noun syntax, for example, Get-ChildItem. The official

guidance is that, with rare exception, cmdlets should use the standard PowerShell verbs. They should avoid any
synonyms or concepts that can be mapped to the standard. This allows administrators to quickly understand a
set of cmdlets that use a new noun.

Verbs should be phrased in the present tense, and nouns should be singular. Tables Table 5-1 through Table 5-
6 list the different categories of standard PowerShell verbs.

Table 5-1. Standard Windows PowerShell common verbs

Verb Meaning Synonyms

Add Adds a resource to a container, or attaches an element to another
element.

Append, Attach, Concatenate,
Insert

Clear Removes all elements from a container. Flush, Erase, Release, Unmark,
Unset, Nullify

Copy Copies a resource to another name or container. Duplicate, Clone, Replicate

Get Retrieves data. Read, Open, Cat, Type, Dir,
Obtain, Dump, Acquire, Examine,
Find, Search

Hide Makes a display not visible. Suppress

Join Joins a resource. Combine, Unite, Connect,
Associate

Lock Locks a resource. Restrict, Bar

Move Moves a resource. Transfer, Name, Migrate

New Creates a new resource. Create, Generate, Build, Make,
Allocate

Push Puts an item onto the top of a stack. Put, Add, Copy

Pop Removes an item from the top of a stack. Remove, Paste

Remove Removes a resource from a container. Delete, Kill

Rename Gives a resource a new name. Ren, Swap

Search Finds a resource (or summary information about that resource) in
a collection. Does not actually retrieve the resource, but provides
information to be used when retrieving it.

Find, Get, Grep, Select

Select Creates a subset of data from a larger data set. Pick, Grep, Filter

Set Places data. Write, Assign, Configure

Show Retrieves, formats, and displays information. Display, Report

http://lib.ommolketab.ir

Verb Meaning Synonyms

Split Separates data into smaller elements. Divide, Chop, Parse

Unlock Unlocks a resource. Free, Unrestrict

Use Applies or associates a resource with a context. With, Having

Table 5-2. Standard Windows PowerShell communication verbs

Verb Meaning Synonyms

Connect Connects a source to a destination. Join, Telnet

Disconnect Disconnects a source from a destination. Break, Logoff

Read Acquires information from a nonconnected source. Prompt, Get

Receive Acquires information from a connected source. Read, Accept, Peek

Send Writes information to a connected destination. Put, Broadcast, Mail

Write Writes information to a nonconnected destination. Put, Print

Table 5-3. Standard Windows PowerShell data verbs

Verb Meaning Synonyms

Backup Backs up data. Save, Burn

Checkpoint Creates a snapshot of the current state of data or its configuration. Diff, StartTransaction

Compare Compares a resource with another resource. Diff, Bc

Convert Changes from one representation to another, when the cmdlet supports
bidirectional conversion, or conversion of many data types.

Change, Resize,
Resample

ConvertFrom Converts from one primary input to several supported outputs. Export, Output, Out

ConvertTo Converts from several supported inputs to one primary output. Import, Input, In

Dismount Detaches a name entity from a location in a namespace. Dismount, Unlink

Export Stores the primary input resource into a backing store or interchange
format.

Extract, Backup

Import Creates a primary output resource from a backing store or interchange
format.

Load, Read

Initialize Prepares a resource for use, and initializes it to a default state. Setup, Renew,
Rebuild

Limit Applies constraints to a resource. Quota, Enforce

Merge Creates a single data instance from multiple data sets. Combine, Join

Mount Attaches a named entity to a location in a namespace. Attach, Link

Split Separates data into smaller elements. Divide, Chop, Parse

Unlock Unlocks a resource. Free, Unrestrict

Use Applies or associates a resource with a context. With, Having

Table 5-2. Standard Windows PowerShell communication verbs

Verb Meaning Synonyms

Connect Connects a source to a destination. Join, Telnet

Disconnect Disconnects a source from a destination. Break, Logoff

Read Acquires information from a nonconnected source. Prompt, Get

Receive Acquires information from a connected source. Read, Accept, Peek

Send Writes information to a connected destination. Put, Broadcast, Mail

Write Writes information to a nonconnected destination. Put, Print

Table 5-3. Standard Windows PowerShell data verbs

Verb Meaning Synonyms

Backup Backs up data. Save, Burn

Checkpoint Creates a snapshot of the current state of data or its configuration. Diff, StartTransaction

Compare Compares a resource with another resource. Diff, Bc

Convert Changes from one representation to another, when the cmdlet supports
bidirectional conversion, or conversion of many data types.

Change, Resize,
Resample

ConvertFrom Converts from one primary input to several supported outputs. Export, Output, Out

ConvertTo Converts from several supported inputs to one primary output. Import, Input, In

Dismount Detaches a name entity from a location in a namespace. Dismount, Unlink

Export Stores the primary input resource into a backing store or interchange
format.

Extract, Backup

Import Creates a primary output resource from a backing store or interchange
format.

Load, Read

Initialize Prepares a resource for use, and initializes it to a default state. Setup, Renew,
Rebuild

Limit Applies constraints to a resource. Quota, Enforce

Merge Creates a single data instance from multiple data sets. Combine, Join

http://lib.ommolketab.ir

Verb Meaning Synonyms

Mount Attaches a named entity to a location in a namespace. Attach, Link

Out Sends data to a terminal location. Print, Format, Send

Publish Make a resource known or visible to others. Deploy, Release,
Install

Restore Restores a resource to a set of conditions that have been predefined or
set by a checkpoint.

Repair, Return, Fix

Unpublish Removes a resource from public visibility. Uninstall, Revert

Update Updates or refreshes a resource. Refresh, Renew,
Index

Table 5-4. Standard Windows PowerShell diagnostic verbs

Verb Meaning Synonyms

Debug Examines a resource, diagnoses operational problems. Attach, Diagnose

Measure Identifies resources consumed by an operation, or retrieves statistics about a
resource.

Calculate, Determine,
Analyze

Ping Determines whether a resource is active and responsive; in most instances,
this should be replaced by the verb, Test.

Connect, Debug

Resolve Maps a shorthand representation to a more complete one. Expand, Determine

Test Verifies the validity or consistency of a resource. Diagnose, Verify,
Analyze

Trace Follows the activities of the resource. Inspect, Dig

Table 5-5. Standard Windows PowerShell lifecycle verbs

Verb Meaning Synonyms

Disable Configures an item to be unavailable. Halt, Hide

Enable Configures an item to be available. Allow, Permit

Install Places a resource in the specified location and optionally initializes it. Setup, Configure

Installw Calls or launches an activity that cannot be stopped. Run, Call, Perform

Restart Stops an operation and starts it again. Recycle, Hup

Resume Begins an operation after it has been suspended. Continue

Start Begins an activity. Launch, Initiate

Stop Discontinues an activity. Halt, End, Discontinue

Suspend Pauses an operation, but does not discontinue it. Pause, Sleep, Break

Mount Attaches a named entity to a location in a namespace. Attach, Link

Out Sends data to a terminal location. Print, Format, Send

Publish Make a resource known or visible to others. Deploy, Release,
Install

Restore Restores a resource to a set of conditions that have been predefined or
set by a checkpoint.

Repair, Return, Fix

Unpublish Removes a resource from public visibility. Uninstall, Revert

Update Updates or refreshes a resource. Refresh, Renew,
Index

Table 5-4. Standard Windows PowerShell diagnostic verbs

Verb Meaning Synonyms

Debug Examines a resource, diagnoses operational problems. Attach, Diagnose

Measure Identifies resources consumed by an operation, or retrieves statistics about a
resource.

Calculate, Determine,
Analyze

Ping Determines whether a resource is active and responsive; in most instances,
this should be replaced by the verb, Test.

Connect, Debug

Resolve Maps a shorthand representation to a more complete one. Expand, Determine

Test Verifies the validity or consistency of a resource. Diagnose, Verify,
Analyze

Trace Follows the activities of the resource. Inspect, Dig

Table 5-5. Standard Windows PowerShell lifecycle verbs

Verb Meaning Synonyms

Disable Configures an item to be unavailable. Halt, Hide

Enable Configures an item to be available. Allow, Permit

Install Places a resource in the specified location and optionally initializes it. Setup, Configure

Installw Calls or launches an activity that cannot be stopped. Run, Call, Perform

Restart Stops an operation and starts it again. Recycle, Hup

Resume Begins an operation after it has been suspended. Continue

Start Begins an activity. Launch, Initiate

Stop Discontinues an activity. Halt, End, Discontinue

http://lib.ommolketab.ir

Verb Meaning Synonyms

Suspend Pauses an operation, but does not discontinue it. Pause, Sleep, Break

Uninstall Removes a resource from the specified location. Remove, Clear, Clean

Wait Pauses until an expected event occurs. Sleep, Pause, Join

Table 5-6. Standard Windows PowerShell security verbs

Verb Meaning Synonyms

Block Restricts access to a resource. Prevent, Limit, Deny

Grant Grants access to a resource. Allow, Enable

Revoke Removes access to a resource. Remove, Disable

Unblock Removes a restriction of access to a resource. Clear, Allow

Suspend Pauses an operation, but does not discontinue it. Pause, Sleep, Break

Uninstall Removes a resource from the specified location. Remove, Clear, Clean

Wait Pauses until an expected event occurs. Sleep, Pause, Join

Table 5-6. Standard Windows PowerShell security verbs

Verb Meaning Synonyms

Block Restricts access to a resource. Prevent, Limit, Deny

Grant Grants access to a resource. Allow, Enable

Revoke Removes access to a resource. Remove, Disable

Unblock Removes a restriction of access to a resource. Clear, Allow

http://lib.ommolketab.ir

Chapter 6. Selected .NET Classes and Their Uses

Tables Table 6-1 through Table 6-16 provide pointers to types in the .NET Framework that usefully complement
the functionality that PowerShell provides. For detailed descriptions and documentation, search the official
documentation at http://msdn.microsoft.com.

Table 6-1. Windows PowerShell

Class Description

System.Management.Automation.PSObject Represents a PowerShell object to which you can add notes,
properties, and more.

Table 6-2. Utility

Class Description

System.DateTime Represents an instant in time, typically expressed as a date and
time of day.

System.Guid Represents a globally unique identifier (GUID).

System.Math Provides constants and static methods for trigonometric,
logarithmic, and other common mathematical functions.

System.Random Represents a pseudorandom number generator, a device that
produces a sequence of numbers that meet certain statistical
requirements for randomness.

System.Convert Converts a base data type to another base data type.

System.Environment Provides information about, and means to manipulate, the current
environment and platform.

System.Console Represents the standard input, output, and error streams for
console applications.

System.Text.RegularExpressions.Regex Represents an immutable regular expression.

System.Diagnostics.Debug Provides a set of methods and properties that help debug your
code.

System.Diagnostics.EventLog Provides interaction with Windows event logs.

System.Diagnostics.Process Provides access to local and remote processes, and enables you to
start and stop local system processes.

System.Diagnostics.Stopwatch Provides a set of methods and properties that you can use to
accurately measure elapsed time.

System.Media.SoundPlayer Controls playback of a sound from a .wav file.

Table 6-3. Collections and object utilities

http://msdn.microsoft.com
http://lib.ommolketab.ir

Class Description

System.Array Provides methods for creating, manipulating,
searching, and sorting arrays, thereby serving as
the base class for all arrays in the Common
Language Runtime.

System.Enum Provides the base class for enumerations.

System.String Represents text as a series of Unicode characters.

System.Text.StringBuilder Represents a mutable string of characters.

System.Collections.Specialized.OrderedDictionary Represents a collection of key/value pairs that are
accessible by the key or index.

System.Collections.ArrayList Implements the IList interface using an array

whose size is dynamically increased as required.

Table 6-4. The .NET Framework

Class Description

System.AppDomain Represents an application domain, which is an isolated
environment where applications execute.

System.Reflection.Assembly Defines an assembly, which is a reusable, versionable, and self-
describing building block of a Common Language Runtime
application.

System.Type Represents type declarations: class types, interface types, array
types, value types, enumeration types, type parameters,
generic type definitions, and open or closed constructed generic
types.

System.Threading.Thread Creates and controls a thread, sets its priority, and gets its
status.

System.Runtime.InteropServices.Marshal Provides a collection of methods for allocating unmanaged
memory, copying unmanaged memory blocks, and converting
managed to unmanaged types, as well as other miscellaneous
methods used when interacting with unmanaged code.

Microsoft.CSharp.CSharpCodeProvider Provides access to instances of the C# code generator and code
compiler.

Table 6-5. Registry

Class Description

Microsoft.Win32.Registry Provides RegistryKey objects that represent the root keys in the Windows

registry, and static methods to access key/ value pairs.

Microsoft.Win32.RegistryKey Represents a key-level node in the Windows registry.

Table 6-6. Input and output

http://lib.ommolketab.ir

Class Description

System.IO.Stream Provides a generic view of a sequence of bytes.

System.IO.BinaryReader Reads primitive data types as binary values.

System.IO.BinaryWriter Writes primitive types in binary to a stream.

System.IO.BufferedStream Adds a buffering layer to read and write operations on another
stream.

System.IO.Directory Exposes static methods for creating, moving, and enumerating
through directories and subdirectories.

System.IO.FileInfo Provides instance methods for the creation, copying, deletion,
moving, and opening of files, and aids in the creation of
FileStream objects.

System.IO.DirectoryInfo Exposes instance methods for creating, moving, and enumerating
through directories and subdirectories.

System.IO.File Provides static methods for the creation, copying, deletion, moving,
and opening of files, and aids in the creation of FileStream objects.

System.IO.MemoryStream Creates a stream whose backing store is memory.

System.IO.Path Performs operations on string instances that contain file or
directory path information. These operations are performed in a
cross-platform manner.

System.IO.TextReader Represents a reader that can read a sequential series of characters.

System.IO.StreamReader Implements a TextReader that reads characters from a byte

stream in a particular encoding.

System.IO.TextWriter Represents a writer that can write a sequential series of characters.

System.IO.StreamWriter Implements a TextWriter for writing characters to a stream in a

particular encoding.

System.IO.StringReader Implements a TextReader that reads from a string.

System.IO.StringWriter Implements a TextWriter for writing information to a string.

System.IO.Compression.DeflateStream Provides methods and properties used to compress and decompress
streams using the Deflate algorithm.

System.IO.Compression.GZipStream Provides methods and properties used to compress and decompress
streams using the GZip algorithm.

System.IO.FileSystemWatcher Listens to the file system change notifications and raises events
when a directory, or file in a directory, changes.

Table 6-7. Security

Class Description

System.Security.Principal.WindowsIdentity Represents a Windows user.

http://lib.ommolketab.ir

Class Description

System.Security.Principal.WindowsPrincipal Allows code to check the Windows group
membership of a Windows user.

System.Security.Principal.WellKnownSidType Defines a set of commonly used security
identifiers (SIDs).

System.Security.Principal.WindowsBuiltInRole Specifies common roles to be used with
IsInRole.

System.Security.SecureString Represents text that should be kept
confidential. The text is encrypted for privacy
when being used and deleted from computer
memory when no longer needed.

System.Security.Cryptography.TripleDESCryptoService-

Provider

Defines a wrapper object to access the
cryptographic service provider (CSP) version
of the TripleDES algorithm.

System.Security.Cryptography.PasswordDeriveBytes Derives a key from a password using an
extension of the PBKDF1 algorithm.

System.Security.Cryptography.SHA1 Computes the SHA1 hash for the input data.

System.Security.AccessControl.FileSystemSecurity Represents the access control and audit
security for a file or directory.

System.Security.AccessControl.RegistrySecurity Represents the Windows access control
security for a registry key.

Table 6-8. User interface

Class Description

System.Windows.Forms.Form Represents a window or dialog box that makes up an application's
user interface.

System.Windows.Forms.FlowLayoutPanel Represents a panel that dynamically lays out its contents.

Table 6-9. Image manipulation

Class Description

System.Drawing.Image A class that provides functionality for the Bitmap and Metafile classes.

System.Drawing.Bitmap Encapsulates a GDI+ bitmap, which consists of the pixel data for a graphics image
and its attributes. A bitmap is an object used to work with images defined by pixel
data.

Table 6-10. Networking

Class Description

System.Uri Provides an object representation of a uniform resource identifier (URI) and
easy access to the parts of the URI.

System.Security.Principal.WindowsPrincipal Allows code to check the Windows group
membership of a Windows user.

System.Security.Principal.WellKnownSidType Defines a set of commonly used security
identifiers (SIDs).

System.Security.Principal.WindowsBuiltInRole Specifies common roles to be used with
IsInRole.

System.Security.SecureString Represents text that should be kept
confidential. The text is encrypted for privacy
when being used and deleted from computer
memory when no longer needed.

System.Security.Cryptography.TripleDESCryptoService-

Provider

Defines a wrapper object to access the
cryptographic service provider (CSP) version
of the TripleDES algorithm.

System.Security.Cryptography.PasswordDeriveBytes Derives a key from a password using an
extension of the PBKDF1 algorithm.

System.Security.Cryptography.SHA1 Computes the SHA1 hash for the input data.

System.Security.AccessControl.FileSystemSecurity Represents the access control and audit
security for a file or directory.

System.Security.AccessControl.RegistrySecurity Represents the Windows access control
security for a registry key.

Table 6-8. User interface

Class Description

System.Windows.Forms.Form Represents a window or dialog box that makes up an application's
user interface.

System.Windows.Forms.FlowLayoutPanel Represents a panel that dynamically lays out its contents.

Table 6-9. Image manipulation

Class Description

System.Drawing.Image A class that provides functionality for the Bitmap and Metafile classes.

System.Drawing.Bitmap Encapsulates a GDI+ bitmap, which consists of the pixel data for a graphics image
and its attributes. A bitmap is an object used to work with images defined by pixel
data.

Table 6-10. Networking

Class Description

http://lib.ommolketab.ir

Class Description

System.Uri Provides an object representation of a uniform resource identifier (URI) and
easy access to the parts of the URI.

System.Net.NetworkCredential Provides credentials for password-based authentication schemes, such as
basic, digest, NTLM, and Kerberos authentication.

System.Net.Dns Provides simple domain name resolution functionality.

System.Net.FtpWebRequest Implements a File Transfer Protocol (FTP) client.

System.Net.HttpWebRequest Provides an HTTP-specific implementation of the WebRequest class.

System.Net.WebClient Provides common methods for sending data to and receiving data from a
resource identified by a URI.

System.Net.Sockets.TcpClient Provides client connections for TCP network services.

System.Net.Mail.MailAddress Represents the address of an electronic mail sender or recipient.

System.Net.Mail.MailMessage Represents an email message that can be sent using the SmtpClient class.

System.Net.Mail.SmtpClient Allows applications to send email by using the Simple Mail Transfer Protocol
(SMTP).

System.IO.Ports.SerialPort Represents a serial port resource.

System.Web.HttpUtility Provides methods for encoding and decoding URLs when processing web
requests.

Table 6-11. XML

Class Description

System.Xml.XmlTextWriter Represents a writer that provides a fast, noncached, forward-only way of
generating streams or files containing XML data that conforms to the W3C
Extensible Markup Language (XML) 1.0 and the namespaces in XML
recommendations.

System.Xml.XmlDocument Represents an XML document.

Table 6-12. Windows Management Instrumentation

Class Description

System.Management.ManagementObject Represents a WMI instance.

System.Management.ManagementClass Represents a management class. A management class
is a WMI class, such as Win32_LogicalDisk, which can

represent a disk drive, and Win32_Process, which

represents a process, such as an instance of
Notepad.exe. The members of this class enable you to
access WMI data using a specific WMI class path. For
more information, see "Win32 Classes" in the Windows
Management Instrumentation documentation in the
MSDN Library at http://msdn.microsoft.com/library.

System.Uri Provides an object representation of a uniform resource identifier (URI) and
easy access to the parts of the URI.

System.Net.NetworkCredential Provides credentials for password-based authentication schemes, such as
basic, digest, NTLM, and Kerberos authentication.

System.Net.Dns Provides simple domain name resolution functionality.

System.Net.FtpWebRequest Implements a File Transfer Protocol (FTP) client.

System.Net.HttpWebRequest Provides an HTTP-specific implementation of the WebRequest class.

System.Net.WebClient Provides common methods for sending data to and receiving data from a
resource identified by a URI.

System.Net.Sockets.TcpClient Provides client connections for TCP network services.

System.Net.Mail.MailAddress Represents the address of an electronic mail sender or recipient.

System.Net.Mail.MailMessage Represents an email message that can be sent using the SmtpClient class.

System.Net.Mail.SmtpClient Allows applications to send email by using the Simple Mail Transfer Protocol
(SMTP).

System.IO.Ports.SerialPort Represents a serial port resource.

System.Web.HttpUtility Provides methods for encoding and decoding URLs when processing web
requests.

Table 6-11. XML

Class Description

System.Xml.XmlTextWriter Represents a writer that provides a fast, noncached, forward-only way of
generating streams or files containing XML data that conforms to the W3C
Extensible Markup Language (XML) 1.0 and the namespaces in XML
recommendations.

System.Xml.XmlDocument Represents an XML document.

Table 6-12. Windows Management Instrumentation

Class Description

System.Management.ManagementObject Represents a WMI instance.

System.Management.ManagementClass Represents a management class. A management class
is a WMI class, such as Win32_LogicalDisk, which can

represent a disk drive, and Win32_Process, which

represents a process, such as an instance of
Notepad.exe. The members of this class enable you to
access WMI data using a specific WMI class path. For
more information, see "Win32 Classes" in the Windows
Management Instrumentation documentation in the
MSDN Library at http://msdn.microsoft.com/library.

http://msdn.microsoft.com/library
http://msdn.microsoft.com/library
http://lib.ommolketab.ir

Class Description

System.Management.ManagementObjectSearcher Retrieves a collection of WMI management objects
based on a specified query. This class is one of the
more commonly used entry points to retrieving
management information. For example, it can be used
to enumerate all disk drives, network adapters,
processes, and many more management objects on a
system, or to query for all network connections that are
up, services that are paused, and so on. When
instantiated, an instance of this class takes as input a
WMI query, represented in an ObjectQuery or its

derivatives, and optionally a ManagementScope,

representing the WMI namespace to execute the query
in. It can also take additional advanced options in an
EnumerationOptions. When the Get method on this

object is invoked, the ManagementObjectSearcher

executes the given query in the specified scope and
returns a collection of management objects that match
the query in a ManagementObjectCollection.

System.Management.ManagementDateTimeConverter Provides methods to convert DMTF datetime and time
intervals to CLR-compliant DateTime and TimeSpan

formats and vice versa.

System.Management.ManagementEventWatcher Subscribes to temporary event notifications based on a
specified event query.

Table 6-13. Active Directory

Class Description

System.DirectoryServices.DirectorySearcher Performs queries against Active Directory.

System.DirectoryServices.DirectoryEntry The DirectoryEntry class encapsulates a node or object in

the Active Directory hierarchy.

Table 6-14. Database

Class Description

System.Data.DataSet Represents an in-memory cache of data.

System.Data.DataTable Represents one table of in-memory data.

System.Data.SqlClient.SqlCommand Represents a Transact-SQL statement or stored procedure to

execute against a SQL Server database.

System.Data.SqlClient.SqlConnection Represents an open connection to a SQL Server database.

System.Data.SqlClient.SqlDataAdapter Represents a set of data commands and a database connection
that are used to fill the DataSet and update a SQL Server

database.

System.Data.Odbc.OdbcCommand Represents a SQL statement or stored procedure to execute
against a data source.

System.Management.ManagementObjectSearcher Retrieves a collection of WMI management objects
based on a specified query. This class is one of the
more commonly used entry points to retrieving
management information. For example, it can be used
to enumerate all disk drives, network adapters,
processes, and many more management objects on a
system, or to query for all network connections that are
up, services that are paused, and so on. When
instantiated, an instance of this class takes as input a
WMI query, represented in an ObjectQuery or its

derivatives, and optionally a ManagementScope,

representing the WMI namespace to execute the query
in. It can also take additional advanced options in an
EnumerationOptions. When the Get method on this

object is invoked, the ManagementObjectSearcher

executes the given query in the specified scope and
returns a collection of management objects that match
the query in a ManagementObjectCollection.

System.Management.ManagementDateTimeConverter Provides methods to convert DMTF datetime and time
intervals to CLR-compliant DateTime and TimeSpan

formats and vice versa.

System.Management.ManagementEventWatcher Subscribes to temporary event notifications based on a
specified event query.

Table 6-13. Active Directory

Class Description

System.DirectoryServices.DirectorySearcher Performs queries against Active Directory.

System.DirectoryServices.DirectoryEntry The DirectoryEntry class encapsulates a node or object in

the Active Directory hierarchy.

Table 6-14. Database

Class Description

System.Data.DataSet Represents an in-memory cache of data.

System.Data.DataTable Represents one table of in-memory data.

System.Data.SqlClient.SqlCommand Represents a Transact-SQL statement or stored procedure to

execute against a SQL Server database.

System.Data.SqlClient.SqlConnection Represents an open connection to a SQL Server database.

System.Data.SqlClient.SqlDataAdapter Represents a set of data commands and a database connection
that are used to fill the DataSet and update a SQL Server

database.

http://lib.ommolketab.ir

Class Description

System.Data.Odbc.OdbcCommand Represents a SQL statement or stored procedure to execute
against a data source.

System.Data.Odbc.OdbcConnection Represents an open connection to a data source.

System.Data.Odbc.OdbcDataAdapter Represents a set of data commands and a connection to a data
source that are used to fill the DataSet and update the data

source.

Table 6-15. Message queuing

Class Description

System.Messaging.MessageQueue Provides access to a queue on a Message Queuing server.

Table 6-16. Transactions

Class Description

System.Transactions.Transaction Represents a transaction.

System.Data.Odbc.OdbcCommand Represents a SQL statement or stored procedure to execute
against a data source.

System.Data.Odbc.OdbcConnection Represents an open connection to a data source.

System.Data.Odbc.OdbcDataAdapter Represents a set of data commands and a connection to a data
source that are used to fill the DataSet and update the data

source.

Table 6-15. Message queuing

Class Description

System.Messaging.MessageQueue Provides access to a queue on a Message Queuing server.

Table 6-16. Transactions

Class Description

System.Transactions.Transaction Represents a transaction.

http://lib.ommolketab.ir

Chapter 7. WMI Reference

The Windows Management Instrumentation (WMI) facilities in Windows offer thousands of classes that provide
information of interest to administrators. Table 7-1 lists the categories and subcategories covered by WMI and
can be used to get a general idea of the scope of WMI classes. Table 7-2 provides a selected subset of the most
useful WMI classes. For more information about a category, search the official WMI documentation at
http://msdn.microsoft.com.

Table 7-1. WMI class categories and subcategories

Category Subcategory

Computer
System
Hardware

Cooling device, input device, mass storage, motherboard, controller and port, networking
device, power, printing, telephony, video, and monitor

Operating
System

COM, desktop, drivers, filesystem, job objects, memory and page files, multimedia
audio/visual, networking, operating system events, operating system settings, processes,
registry, scheduler jobs, security, services, shares, Start menu, storage, users, Windows NT
event log, Windows product activation

WMI Service
Management

WMI configuration, WMI management

General Installed applications, performance counter, security descriptor

Table 7-2. Selected WMI classes

Class Description

Win32_BaseBoard Represents a baseboard, which is also known as a motherboard or
system board.

Win32_BIOS Represents the attributes of the computer system's basic input/output
services (BIOS) that are installed on a computer.

Win32_BootConfiguration Represents the boot configuration of a Windows system.

Win32_CDROMDrive Represents a CD-ROM drive on a Windows computer system. Be aware
that the name of the drive does not correspond to the logical drive
letter assigned to the device.

Win32_ComputerSystem Represents a computer system in a Windows environment.

Win32_Processor Represents a device that can interpret a sequence of instructions on a
computer running on a Windows operating system. On a
multiprocessor computer, one instance of the Win32_Processor class

exists for each processor.

Win32_ComputerSystemProduct Represents a product. This includes software and hardware used on
this computer system.

CIM_DataFile Represents a named collection of data or executable code. Currently,
the provider returns files on fixed and mapped logical disks. In the
future, only instances of files on local fixed disks will be returned.

http://msdn.microsoft.com
http://lib.ommolketab.ir

Class Description

Win32_DCOMApplication Represents the properties of a DCOM application.

Win32_Desktop Represents the common characteristics of a user's desktop. The
properties of this class can be modified by the user to customize the
desktop.

Win32_DesktopMonitor Represents the type of monitor or display device attached to the
computer system.

Win32_DeviceMemoryAddress Represents a device memory address on a Windows system.

Win32_DiskDrive Represents a physical disk drive as seen by a computer running the
Windows operating system. Any interface to a Windows physical disk
drive is a descendant (or member) of this class. The features of the
disk drive seen through this object correspond to the logical and
management characteristics of the drive. In some cases, this may not
reflect the actual physical characteristics of the device. Any object
based on another logical device would not be a member of this class.

Win32_DiskQuota Tracks disk space usage for NTFS filesystem volumes. A system
administrator (SA) can configure Windows to prevent further disk
space use and log an event when a user exceeds a specified disk space
limit. An SA can also log an event when a user exceeds a specified disk
space warning level. This class is new in Windows XP.

Win32_DMAChannel Represents a direct memory access (DMA) channel on a Windows
computer system. DMA is a method of moving data from a device to
memory (or vice versa) without the help of the microprocessor. The
system board uses a DMA controller to handle a fixed number of
channels, each of which can be used by one (and only one) device at a
time.

Win32_Environment Represents an environment or system environment setting on a
Windows computer system. Querying this class returns environment
variables found in:
HKLM\System\

CurrentControlSet\Control\

 Sessionmanager\

Environment

as well as:
HKEY_USERS\<user sid>\

Environment

Win32_Directory Represents a directory entry on a Windows computer system. A
directory is a type of file that logically groups data files and provides
path information for the grouped files. Win32_Directory does not

include directories of network drives.

Win32_Group Represents data about a group account. A group account allows access
privileges to be changed for a list of users, for example,
administrators.

Win32_IDEController Manages the capabilities of an integrated device electronics (IDE)
controller device.

Win32_DCOMApplication Represents the properties of a DCOM application.

Win32_Desktop Represents the common characteristics of a user's desktop. The
properties of this class can be modified by the user to customize the
desktop.

Win32_DesktopMonitor Represents the type of monitor or display device attached to the
computer system.

Win32_DeviceMemoryAddress Represents a device memory address on a Windows system.

Win32_DiskDrive Represents a physical disk drive as seen by a computer running the
Windows operating system. Any interface to a Windows physical disk
drive is a descendant (or member) of this class. The features of the
disk drive seen through this object correspond to the logical and
management characteristics of the drive. In some cases, this may not
reflect the actual physical characteristics of the device. Any object
based on another logical device would not be a member of this class.

Win32_DiskQuota Tracks disk space usage for NTFS filesystem volumes. A system
administrator (SA) can configure Windows to prevent further disk
space use and log an event when a user exceeds a specified disk space
limit. An SA can also log an event when a user exceeds a specified disk
space warning level. This class is new in Windows XP.

Win32_DMAChannel Represents a direct memory access (DMA) channel on a Windows
computer system. DMA is a method of moving data from a device to
memory (or vice versa) without the help of the microprocessor. The
system board uses a DMA controller to handle a fixed number of
channels, each of which can be used by one (and only one) device at a
time.

Win32_Environment Represents an environment or system environment setting on a
Windows computer system. Querying this class returns environment
variables found in:
HKLM\System\

CurrentControlSet\Control\

 Sessionmanager\

Environment

as well as:
HKEY_USERS\<user sid>\

Environment

Win32_Directory Represents a directory entry on a Windows computer system. A
directory is a type of file that logically groups data files and provides
path information for the grouped files. Win32_Directory does not

include directories of network drives.

Win32_Group Represents data about a group account. A group account allows access
privileges to be changed for a list of users, for example,
administrators.

Win32_IDEController Manages the capabilities of an integrated device electronics (IDE)
controller device.

http://lib.ommolketab.ir

Class Description

Win32_IRQResource Represents an interrupt request line (IRQ) number on a Windows
computer system. An interrupt request is a signal sent to the CPU by a
device or program for time-critical events. IRQ can be hardware- or
software-based.

Win32_ScheduledJob Represents a job created with the AT command. The

Win32_ScheduledJob class does not represent a job created with the

Scheduled Task Wizard from the Control Panel. You cannot change a
task created by WMI in the Scheduled Tasks UI. Windows 2000 and
Windows NT 4.0: You can use the Scheduled Tasks UI to modify the
task you originally created with WMI. However, although the task is
successfully modified, you can no longer access the task using WMI.

Each job scheduled against the schedule service is stored persistently
(the scheduler can start a job after a reboot) and is executed at the
specified time and day of the week or month. If the computer is not
active or if the scheduled service is not running at the specified job
time, the schedule service runs the specified job on the next day at the
specified time.

Jobs are scheduled according to Universal Coordinated Time (UTC) with
bias offset from Greenwich mean time (GMT), which means that a job
can be specified using any time zone. The Win32_ScheduledJob class

returns the local time with UTC offset when enumerating an object and
converts to local time when creating new jobs. For example, a job
specified to run on a computer in Boston at 10:30 P.M. Monday PST will
be scheduled to run locally at 1:30 A.M. Tuesday EST. Note that a
client must take into account whether Daylight Savings Time is in
operation on the local computer, and if it is, then subtract a bias of 60
minutes from the UTC offset.

Win32_LoadOrderGroup Represents a group of system services that define execution
dependencies. The services must be initiated in the order specified by
the Load Order Group as the services are dependent on each other.
These dependent services require the presence of the antecedent
services to function correctly. The data in this class is derived by the
provider from the registry key:
System\CurrentControlSet\

Control\GroupOrderList

Win32_LogicalDisk Represents a data source that resolves to an actual local storage
device on a Windows system.

Win32_LogonSession Describes the logon session or sessions associated with a user logged
on to Windows NT or Windows 2000.

Win32_CacheMemory Represents internal and external cache memory on a computer system.

Win32_LogicalMemory

Configuration

Represents the layout and availability of memory on a Windows
system. Beginning with Windows Vista, this class is no longer available
in the operating system.

Windows XP and Windows Server 2003: This class is no longer
supported. Use the Win32_OperatingSystem class instead.

Windows 2000: This class is available and supported.

Win32_IRQResource Represents an interrupt request line (IRQ) number on a Windows
computer system. An interrupt request is a signal sent to the CPU by a
device or program for time-critical events. IRQ can be hardware- or
software-based.

Win32_ScheduledJob Represents a job created with the AT command. The

Win32_ScheduledJob class does not represent a job created with the

Scheduled Task Wizard from the Control Panel. You cannot change a
task created by WMI in the Scheduled Tasks UI. Windows 2000 and
Windows NT 4.0: You can use the Scheduled Tasks UI to modify the
task you originally created with WMI. However, although the task is
successfully modified, you can no longer access the task using WMI.

Each job scheduled against the schedule service is stored persistently
(the scheduler can start a job after a reboot) and is executed at the
specified time and day of the week or month. If the computer is not
active or if the scheduled service is not running at the specified job
time, the schedule service runs the specified job on the next day at the
specified time.

Jobs are scheduled according to Universal Coordinated Time (UTC) with
bias offset from Greenwich mean time (GMT), which means that a job
can be specified using any time zone. The Win32_ScheduledJob class

returns the local time with UTC offset when enumerating an object and
converts to local time when creating new jobs. For example, a job
specified to run on a computer in Boston at 10:30 P.M. Monday PST will
be scheduled to run locally at 1:30 A.M. Tuesday EST. Note that a
client must take into account whether Daylight Savings Time is in
operation on the local computer, and if it is, then subtract a bias of 60
minutes from the UTC offset.

Win32_LoadOrderGroup Represents a group of system services that define execution
dependencies. The services must be initiated in the order specified by
the Load Order Group as the services are dependent on each other.
These dependent services require the presence of the antecedent
services to function correctly. The data in this class is derived by the
provider from the registry key:
System\CurrentControlSet\

Control\GroupOrderList

Win32_LogicalDisk Represents a data source that resolves to an actual local storage
device on a Windows system.

Win32_LogonSession Describes the logon session or sessions associated with a user logged
on to Windows NT or Windows 2000.

Win32_CacheMemory Represents internal and external cache memory on a computer system.

Win32_LogicalMemory

Configuration

Represents the layout and availability of memory on a Windows
system. Beginning with Windows Vista, this class is no longer available
in the operating system.

Windows XP and Windows Server 2003: This class is no longer
supported. Use the Win32_OperatingSystem class instead.

Windows 2000: This class is available and supported.

http://lib.ommolketab.ir

Class Description

Win32_PhysicalMemoryArray Represents details about the computer system's physical memory. This
includes the number of memory devices, memory capacity available,
and memory type-for example, system or video memory.

Win32_NetworkClient Represents a network client on a Windows system. Any computer
system on the network with a client relationship to the system is a
descendant (or member) of this class (for example, a computer
running Windows 2000 Workstation or Windows 98 that is part of a
Windows 2000 domain).

Win32_NetworkLoginProfile Represents the network login information of a specific user on a
Windows system. This includes but is not limited to password status,
access privileges, disk quotas, and login directory paths.

Win32_NetworkProtocol Represents a protocol and its network characteristics on a Win32
computer system.

Win32_NetworkConnection Represents an active network connection in a Windows environment.

Win32_NetworkAdapter Represents a network adapter of a computer running on a Windows
operating system.

Win32_NetworkAdapter

Configuration

Represents the attributes and behaviors of a network adapter. This
class includes extra properties and methods that support the
management of the TCP/IP and Internetworking Packet Exchange (IPX)
protocols that are independent from the network adapter.

Win32_NTDomain Represents a Windows NT domain.

Win32_NTLogEvent Used to translate instances from the Windows NT event log. An
application must have SeSecurityPrivilege to receive events from

the security event log; otherwise, "Access Denied" is returned to the
application.

Win32_NTEventlogFile Represents a logical file or directory of Windows NT events. The file is
also known as the event log.

Win32_OnBoardDevice Represents common adapter devices built into the motherboard
(system board).

Win32_OperatingSystem Represents an operating system installed on a computer running on a
Windows operating system. Any operating system that can be installed
on a Windows system is a descendant or member of this class.
Win32_OperatingSystem is a singleton class. To get the single

instance, use @ for the key. Windows Server 2003, Windows XP,
Windows 2000, and Windows NT 4.0: If a computer has multiple
operating systems installed, this class returns only an instance for the
currently active operating system.

Win32_PageFileUsage Represents the file used for handling virtual memory file swapping on a
Win32 system. Information contained within objects instantiated from
this class specify the runtime state of the page file.

Win32_PhysicalMemoryArray Represents details about the computer system's physical memory. This
includes the number of memory devices, memory capacity available,
and memory type-for example, system or video memory.

Win32_NetworkClient Represents a network client on a Windows system. Any computer
system on the network with a client relationship to the system is a
descendant (or member) of this class (for example, a computer
running Windows 2000 Workstation or Windows 98 that is part of a
Windows 2000 domain).

Win32_NetworkLoginProfile Represents the network login information of a specific user on a
Windows system. This includes but is not limited to password status,
access privileges, disk quotas, and login directory paths.

Win32_NetworkProtocol Represents a protocol and its network characteristics on a Win32
computer system.

Win32_NetworkConnection Represents an active network connection in a Windows environment.

Win32_NetworkAdapter Represents a network adapter of a computer running on a Windows
operating system.

Win32_NetworkAdapter

Configuration

Represents the attributes and behaviors of a network adapter. This
class includes extra properties and methods that support the
management of the TCP/IP and Internetworking Packet Exchange (IPX)
protocols that are independent from the network adapter.

Win32_NTDomain Represents a Windows NT domain.

Win32_NTLogEvent Used to translate instances from the Windows NT event log. An
application must have SeSecurityPrivilege to receive events from

the security event log; otherwise, "Access Denied" is returned to the
application.

Win32_NTEventlogFile Represents a logical file or directory of Windows NT events. The file is
also known as the event log.

Win32_OnBoardDevice Represents common adapter devices built into the motherboard
(system board).

Win32_OperatingSystem Represents an operating system installed on a computer running on a
Windows operating system. Any operating system that can be installed
on a Windows system is a descendant or member of this class.
Win32_OperatingSystem is a singleton class. To get the single

instance, use @ for the key. Windows Server 2003, Windows XP,
Windows 2000, and Windows NT 4.0: If a computer has multiple
operating systems installed, this class returns only an instance for the
currently active operating system.

Win32_PageFileUsage Represents the file used for handling virtual memory file swapping on a
Win32 system. Information contained within objects instantiated from
this class specify the runtime state of the page file.

http://lib.ommolketab.ir

Class Description

Win32_PageFileSetting Represents the settings of a page file. Information contained within
objects instantiated from this class specifies the page file parameters
used when the file is created at system startup. The properties in this
class can be modified and deferred until startup. These settings are
different from the runtime state of a page file expressed through the
associated class Win32_PageFileUsage.

Win32_DiskPartition Represents the capabilities and management capacity of a partitioned
area of a physical disk on a Windows system. Example: Disk #0,
Partition #1.

Win32_PortResource Represents an I/O port on a Windows computer system.

Win32_PortConnector Represents physical connection ports, such as DB-25 pin male,
Centronics, or PS/2.

Win32_Printer Represents a device connected to a computer running on a Microsoft
Windows operating system that can produce a printed image or text on
paper or another medium.

Win32_PrinterConfiguration Represents the configuration for a printer device. This includes
capabilities such as resolution, color, fonts, and orientation.

Win32_PrintJob Represents a print job generated by a Windows application. Any unit of
work generated by the Print command of an application that is running
on a computer running on a Windows operating system is a descendant
or member of this class.

Win32_Process Represents a process on an operating system.

Win32_Product Represents products as they are installed by Windows Installer. A
product generally correlates to one installation package. Note: for
information about support or requirements for installation of a specific
operating system, visit http://msdn.microsoft.com and search for
"Operating System Availability of WMI Components."

Win32_QuickFixEngineering Represents system-wide Quick Fix Engineering (QFE) or updates that
have been applied to the current operating system.

Win32_QuotaSetting Contains setting information for disk quotas on a volume.

Win32_OSRecoveryConfiguration Represents the types of information that will be gathered from memory
when the operating system fails. This includes boot failures and system
crashes.

Win32_Registry Represents the system registry on a Windows computer system.

Win32_SCSIController Represents an SCSI controller on a Windows system.

Win32_PerfRawData_PerfNet_Server Provides raw data from performance counters that monitor
communications using the WINS Server service.

Win32_Service Represents a service on a computer running on a Microsoft Windows
operating system. A service application conforms to the interface rules
of the Service Control Manager (SCM), and can be started by a user
automatically at system start through the Services Control Panel utility,
or by an application that uses the service functions included in the
Windows API. Services can start when there are no users logged on to
the computer.

Win32_PageFileSetting Represents the settings of a page file. Information contained within
objects instantiated from this class specifies the page file parameters
used when the file is created at system startup. The properties in this
class can be modified and deferred until startup. These settings are
different from the runtime state of a page file expressed through the
associated class Win32_PageFileUsage.

Win32_DiskPartition Represents the capabilities and management capacity of a partitioned
area of a physical disk on a Windows system. Example: Disk #0,
Partition #1.

Win32_PortResource Represents an I/O port on a Windows computer system.

Win32_PortConnector Represents physical connection ports, such as DB-25 pin male,
Centronics, or PS/2.

Win32_Printer Represents a device connected to a computer running on a Microsoft
Windows operating system that can produce a printed image or text on
paper or another medium.

Win32_PrinterConfiguration Represents the configuration for a printer device. This includes
capabilities such as resolution, color, fonts, and orientation.

Win32_PrintJob Represents a print job generated by a Windows application. Any unit of
work generated by the Print command of an application that is running
on a computer running on a Windows operating system is a descendant
or member of this class.

Win32_Process Represents a process on an operating system.

Win32_Product Represents products as they are installed by Windows Installer. A
product generally correlates to one installation package. Note: for
information about support or requirements for installation of a specific
operating system, visit http://msdn.microsoft.com and search for
"Operating System Availability of WMI Components."

Win32_QuickFixEngineering Represents system-wide Quick Fix Engineering (QFE) or updates that
have been applied to the current operating system.

Win32_QuotaSetting Contains setting information for disk quotas on a volume.

Win32_OSRecoveryConfiguration Represents the types of information that will be gathered from memory
when the operating system fails. This includes boot failures and system
crashes.

Win32_Registry Represents the system registry on a Windows computer system.

Win32_SCSIController Represents an SCSI controller on a Windows system.

Win32_PerfRawData_PerfNet_Server Provides raw data from performance counters that monitor
communications using the WINS Server service.

Win32_Service Represents a service on a computer running on a Microsoft Windows
operating system. A service application conforms to the interface rules
of the Service Control Manager (SCM), and can be started by a user
automatically at system start through the Services Control Panel utility,
or by an application that uses the service functions included in the
Windows API. Services can start when there are no users logged on to
the computer.

http://msdn.microsoft.com
http://msdn.microsoft.com
http://lib.ommolketab.ir

Class Description

Win32_Share Represents a shared resource on a Windows system. This may be a
disk drive, printer, interprocess communication, or other shareable
device.

Win32_SoftwareElement Represents a software element, part of a software feature (a distinct
subset of a product, which may contain one or more elements). Each
software element is defined in a Win32_SoftwareElement instance, and

the association between a feature and its Win32_SoftwareFeature

instance is defined in the Win32_SoftwareFeatureSoftware-Elements

association class. Note: for information about support or requirements
for installation on a specific operating system, visit
http://msdn.microsoft.com and search for "Operating System
Availability of WMI Components."

Win32_SoftwareFeature Represents a distinct subset of a product that consists of one or more
software elements. Each software element is defined in a
Win32_SoftwareElement instance, and the association between a

feature and its Win32_SoftwareFeature instance is defined in the

Win32_SoftwareFeatureSoftware-Elements association class. Note:

for information about support or requirements for installation on a
specific operating system, visit http://msdn.microsoft.com and search
for "Operating System Availability of WMI Components."

Win32_SoundDevice Represents the properties of a sound device on a Windows computer
system.

Win32_StartupCommand Represents a command that runs automatically when a user logs on to
the computer system.

Win32_SystemAccount Represents a system account. The system account is used by the
operating system and services that run under Windows NT. There are
many services and processes within Windows NT that need the
capability to log on internally, for example, during a Windows NT
installation. The system account was designed for that purpose.

Win32_SystemDriver Represents the system driver for a base service.

Win32_SystemEnclosure Represents the properties that are associated with a physical system
enclosure.

Win32_SystemSlot Represents physical connection points, including ports, motherboard
slots and peripherals, and proprietary connection points.

Win32_TapeDrive Represents a tape drive on a Windows computer. Tape drives are
primarily distinguished by the fact that they can be accessed only
sequentially.

Win32_TemperatureProbe Represents the properties of a temperature sensor (electronic
thermometer).

Win32_TimeZone Represents the time zone information for a Windows system, which
includes changes required for the Daylight Savings Time transition.

Win32_Uninterruptible

PowerSupply

Represents the capabilities and management capacity of an
uninterruptible power supply (UPS). Beginning with Windows Vista, this
class is obsolete and not available because the UPS service is no longer
available. This service worked with serially attached UPS devices, not
USB devices. Windows Server 2003 and Windows XP: This class is

Win32_Share Represents a shared resource on a Windows system. This may be a
disk drive, printer, interprocess communication, or other shareable
device.

Win32_SoftwareElement Represents a software element, part of a software feature (a distinct
subset of a product, which may contain one or more elements). Each
software element is defined in a Win32_SoftwareElement instance, and

the association between a feature and its Win32_SoftwareFeature

instance is defined in the Win32_SoftwareFeatureSoftware-Elements

association class. Note: for information about support or requirements
for installation on a specific operating system, visit
http://msdn.microsoft.com and search for "Operating System
Availability of WMI Components."

Win32_SoftwareFeature Represents a distinct subset of a product that consists of one or more
software elements. Each software element is defined in a
Win32_SoftwareElement instance, and the association between a

feature and its Win32_SoftwareFeature instance is defined in the

Win32_SoftwareFeatureSoftware-Elements association class. Note:

for information about support or requirements for installation on a
specific operating system, visit http://msdn.microsoft.com and search
for "Operating System Availability of WMI Components."

Win32_SoundDevice Represents the properties of a sound device on a Windows computer
system.

Win32_StartupCommand Represents a command that runs automatically when a user logs on to
the computer system.

Win32_SystemAccount Represents a system account. The system account is used by the
operating system and services that run under Windows NT. There are
many services and processes within Windows NT that need the
capability to log on internally, for example, during a Windows NT
installation. The system account was designed for that purpose.

Win32_SystemDriver Represents the system driver for a base service.

Win32_SystemEnclosure Represents the properties that are associated with a physical system
enclosure.

Win32_SystemSlot Represents physical connection points, including ports, motherboard
slots and peripherals, and proprietary connection points.

Win32_TapeDrive Represents a tape drive on a Windows computer. Tape drives are
primarily distinguished by the fact that they can be accessed only
sequentially.

Win32_TemperatureProbe Represents the properties of a temperature sensor (electronic
thermometer).

Win32_TimeZone Represents the time zone information for a Windows system, which
includes changes required for the Daylight Savings Time transition.

Win32_Uninterruptible

PowerSupply

Represents the capabilities and management capacity of an
uninterruptible power supply (UPS). Beginning with Windows Vista, this
class is obsolete and not available because the UPS service is no longer
available. This service worked with serially attached UPS devices, not
USB devices. Windows Server 2003 and Windows XP: This class is

http://msdn.microsoft.com
http://msdn.microsoft.com
http://msdn.microsoft.com
http://msdn.microsoft.com
http://lib.ommolketab.ir

Class Description
USB devices. Windows Server 2003 and Windows XP: This class is
available but not usable because the UPS service fails. Windows Server
2003, Windows XP, Windows 2000, and Windows NT 4.0: This class is
available and implemented.

Win32_UserAccount Contains information about a user account on a computer running on a
Windows operating system. Note: Because both the Name and Domain

are key properties, enumerating Win32_UserAccount on a large

network can affect performance negatively. Calling GetObject or

querying for a specific instance has less impact.

Win32_VoltageProbe Represents the properties of a voltage sensor (electronic voltmeter).

Win32_VolumeQuotaSetting Relates disk quota settings with a specific disk volume. Windows
2000/NT: This class is not available.

Win32_WMISetting Contains the operational parameters for the WMI service. This class
can only have one instance, which always exists for each Windows
system and cannot be deleted. Additional instances cannot be created.

USB devices. Windows Server 2003 and Windows XP: This class is
available but not usable because the UPS service fails. Windows Server
2003, Windows XP, Windows 2000, and Windows NT 4.0: This class is
available and implemented.

Win32_UserAccount Contains information about a user account on a computer running on a
Windows operating system. Note: Because both the Name and Domain

are key properties, enumerating Win32_UserAccount on a large

network can affect performance negatively. Calling GetObject or

querying for a specific instance has less impact.

Win32_VoltageProbe Represents the properties of a voltage sensor (electronic voltmeter).

Win32_VolumeQuotaSetting Relates disk quota settings with a specific disk volume. Windows
2000/NT: This class is not available.

Win32_WMISetting Contains the operational parameters for the WMI service. This class
can only have one instance, which always exists for each Windows
system and cannot be deleted. Additional instances cannot be created.

http://lib.ommolketab.ir

Chapter 8. Selected COM Objects and Their Uses

As an extensibility and administration interface, many applications expose useful functionality through COM
objects. While PowerShell handles many of these tasks directly, many COM objects still provide significant
value.

Table 8-1 lists a selection of the COM objects most useful to system administrators.

Table 8-1. COM identifiers and descriptions

Identifier Description

Access.Application Allows for interaction and automation of Microsoft Access.

Agent.Control Allows for the control of Microsoft Agent 3D-animated characters.

AutoItX3.Control (Nondefault.) Provides access to Windows Automation via the AutoIt

administration tool.

CEnroll.CEnroll Provides access to certificate enrollment services.

CertificateAuthority.Request Provides access to a request to a certificate authority.

COMAdmin.COMAdminCatalog Provides access to and management of the Windows COM+ catalog.

Excel.Application Allows for interaction and automation of Microsoft Excel.

Excel.Sheet Allows for interaction with Microsoft Excel worksheets.

HNetCfg.FwMgr Provides access to the management functionality of the Windows Firewall.

HNetCfg.HNetShare Provides access to the management functionality of Windows Connection
Sharing.

HTMLFile Allows for interaction and authoring of a new Internet Explorer document.

InfoPath.Application Allows for interaction and automation of Microsoft InfoPath.

InternetExplorer.Application Allows for interaction and automation of Microsoft Internet Explorer.

IXSSO.Query Allows for interaction with Microsoft Index Server.

IXSSO.Util Provides access to utilities used along with the IXSSO.Query object.

LegitCheckControl.LegitCheck Provides access to information about Windows Genuine Advantage status
on the current computer.

MakeCab.MakeCab Provides functionality to create and manage cabinet (.cab) files.

MAPI.Session Provides access to a MAPI (Messaging Application Programming Interface)
session, such as folders, messages, and the address book.

Messenger.MessengerApp Allows for interaction and automation of Messenger.

Microsoft.FeedsManager Allows for interaction with the Microsoft RSS feed platform.

http://lib.ommolketab.ir

Identifier Description

Microsoft.ISAdm Provides management of Microsoft Index Server.

Microsoft.Update.AutoUpdate Provides management of the auto update schedule for Microsoft Update.

Microsoft.Update.Installer Allows for installation of updates from Microsoft Update.

Microsoft.Update.Searcher Provides search functionality for updates from Microsoft Update.

Microsoft.Update.Session Provides access to local information about Microsoft Update history.

Microsoft.Update.SystemInfo Provides access to information related to Microsoft Update for the current
system.

MMC20.Application Allows for interaction and automation of Microsoft Management Console
(MMC).

MSScriptControl.ScriptControl Allows for the evaluation and control of WSH scripts.

Msxml2.XSLTemplate Allows for processing of XSL transforms.

Outlook.Application Allows for interaction and automation of your email, calendar, contacts,
tasks, and more through Microsoft Outlook.

OutlookExpress.MessageList Allows for interaction and automation of your email through Microsoft
Outlook Express.

PowerPoint.Application Allows for interaction and automation of Microsoft PowerPoint.

Publisher.Application Allows for interaction and automation of Microsoft Publisher.

RDS.DataSpace Provides access to proxies of Remote DataSpace business objects.

SAPI.SpVoice Provides access to the Microsoft Speech API.

Scripting.FileSystemObject Provides access to the computer's filesystem. Most functionality is
available more directly through PowerShell or through PowerShell's
support for the .NET Framework.

Scripting.Signer Provides management of digital signatures on WSH files.

Scriptlet.TypeLib Allows the dynamic creation of scripting type library (.tlb) files.

ScriptPW.Password Allows for the masked input of plain-text passwords. When possible, you
should avoid this in preference of the Read-Host cmdlet with the

–AsSecureString parameter.

SharePoint.OpenDocuments Allows for interaction with Microsoft SharePoint Services.

Shell.Application Provides access to aspects of the Windows Explorer Shell application, such
as managing windows, files and folders, and the current session.

Shell.LocalMachine Provides access to information about the current machine related to the
Windows shell.

Shell.User Provides access to aspects of the current user's Windows session and
profile.

SQLDMO.SQLServer Provides access to the management functionality of Microsoft SQL Server.

Microsoft.ISAdm Provides management of Microsoft Index Server.

Microsoft.Update.AutoUpdate Provides management of the auto update schedule for Microsoft Update.

Microsoft.Update.Installer Allows for installation of updates from Microsoft Update.

Microsoft.Update.Searcher Provides search functionality for updates from Microsoft Update.

Microsoft.Update.Session Provides access to local information about Microsoft Update history.

Microsoft.Update.SystemInfo Provides access to information related to Microsoft Update for the current
system.

MMC20.Application Allows for interaction and automation of Microsoft Management Console
(MMC).

MSScriptControl.ScriptControl Allows for the evaluation and control of WSH scripts.

Msxml2.XSLTemplate Allows for processing of XSL transforms.

Outlook.Application Allows for interaction and automation of your email, calendar, contacts,
tasks, and more through Microsoft Outlook.

OutlookExpress.MessageList Allows for interaction and automation of your email through Microsoft
Outlook Express.

PowerPoint.Application Allows for interaction and automation of Microsoft PowerPoint.

Publisher.Application Allows for interaction and automation of Microsoft Publisher.

RDS.DataSpace Provides access to proxies of Remote DataSpace business objects.

SAPI.SpVoice Provides access to the Microsoft Speech API.

Scripting.FileSystemObject Provides access to the computer's filesystem. Most functionality is
available more directly through PowerShell or through PowerShell's
support for the .NET Framework.

Scripting.Signer Provides management of digital signatures on WSH files.

Scriptlet.TypeLib Allows the dynamic creation of scripting type library (.tlb) files.

ScriptPW.Password Allows for the masked input of plain-text passwords. When possible, you
should avoid this in preference of the Read-Host cmdlet with the

–AsSecureString parameter.

SharePoint.OpenDocuments Allows for interaction with Microsoft SharePoint Services.

Shell.Application Provides access to aspects of the Windows Explorer Shell application, such
as managing windows, files and folders, and the current session.

Shell.LocalMachine Provides access to information about the current machine related to the
Windows shell.

Shell.User Provides access to aspects of the current user's Windows session and
profile.

SQLDMO.SQLServer Provides access to the management functionality of Microsoft SQL Server.

http://lib.ommolketab.ir

Identifier Description

Vim.Application (Nondefault.) Allows for interaction and automation of the VIM editor.

WIA.CommonDialog Provides access to image capture through the Windows Image Acquisition
facilities.

WMPlayer.OCX Allows for interaction and automation of Windows Media Player.

Word.Application Allows for interaction and automation of Microsoft Word.

Word.Document Allows for interaction with Microsoft Word documents.

WScript.Network Provides access to aspects of a networked Windows environment, such as
printers and network drives, as well as computer and domain information.

WScript.Shell Provides access to aspects of the Windows Shell, such as applications,
shortcuts, environment variables, the registry, and operating environment.

WSHController Allows the execution of WSH scripts on remote computers.

Vim.Application (Nondefault.) Allows for interaction and automation of the VIM editor.

WIA.CommonDialog Provides access to image capture through the Windows Image Acquisition
facilities.

WMPlayer.OCX Allows for interaction and automation of Windows Media Player.

Word.Application Allows for interaction and automation of Microsoft Word.

Word.Document Allows for interaction with Microsoft Word documents.

WScript.Network Provides access to aspects of a networked Windows environment, such as
printers and network drives, as well as computer and domain information.

WScript.Shell Provides access to aspects of the Windows Shell, such as applications,
shortcuts, environment variables, the registry, and operating environment.

WSHController Allows the execution of WSH scripts on remote computers.

http://lib.ommolketab.ir

Chapter 9. .NET String Formatting

String Formatting Syntax

Standard Numeric Format Strings

Custom Numeric Format Strings

9.1. String Formatting Syntax

The format string supported by the format (-f) operator is a string that contains format items. Each format

item takes the form of:

{index[,alignment][:formatString]}

<index> represents the zero-based index of the item in the object array following the format operator.

<alignment> is optional and represents the alignment of the item. A positive number aligns the item to the

right of a field of the specified width. A negative number aligns the item to the left of a field of the specified
width.

<formatString> is optional and formats the item using that type's specific format string syntax.

http://lib.ommolketab.ir

Chapter 9. .NET String Formatting

String Formatting Syntax

Standard Numeric Format Strings

Custom Numeric Format Strings

9.1. String Formatting Syntax

The format string supported by the format (-f) operator is a string that contains format items. Each format

item takes the form of:

{index[,alignment][:formatString]}

<index> represents the zero-based index of the item in the object array following the format operator.

<alignment> is optional and represents the alignment of the item. A positive number aligns the item to the

right of a field of the specified width. A negative number aligns the item to the left of a field of the specified
width.

<formatString> is optional and formats the item using that type's specific format string syntax.

http://lib.ommolketab.ir

9.2. Standard Numeric Format Strings

Table 9-1 lists the standard numeric format strings. All format specifiers may be followed by a number between
0 and 99 to control the precision of the formatting.

Table 9-1. Standard numeric format strings

Format
specifier
(Name)

Description Example

C or c (Currency) A currency amount. PS >"{0:C}" -f 1.23

$1.23

D or d (Decimal) A decimal amount (for integral types). The precision
specifier controls the minimum number of digits in the
result.

PS >"{0:D4}" -f 2

0002

E or e (Scientific) Scientific (exponential) notation. The precision specifier
controls the number of digits past the decimal point.

PS >"{0:E3}" -f [Math]::Pi

3.142E+000

F or f (Fixed-

point)

Fixed point notation. The precision specifier controls the
number of digits past the decimal point.

PS >"{0:E3}" -f [Math]::Pi

3.142

G or g (General) The most compact representation (between fixed-point and
scientific) of the number. The precision specifier controls
the number of significant digits.

PS >"{0:G3}" -f [Math]::Pi

3.14

PS >"{0:G3}" -f 1mb

1.05E+06

N or n (Number) The human readable form of the number, which includes
separators between number groups. The precision specifier
controls the number of digits past the decimal point.

PS >"{0:N4}" -f 1mb

1,048,576.0000

P or p (Percent) The number (generally between 0 and 1) represented as a
percentage. The precision specifier controls the number of
digits past the decimal point.

PS >"{0:P4}" -f 0.67

67.0000 %

R or r (Round-

trip)

The single or double number formatted with a precision that
guarantees the string (when parsed) will result in the
original number again.

PS >"{0:R}" -f (1mb/2.0)

524288

PS >"{0:R}" -f (1mb/9.0)

116508.44444444444

X or x

(Hexadecimal)

The number converted to a string of hexadecimal digits.
The case of the specifier controls the case of the resulting
hexadecimal digits. The precision specifier controls the
minimum number of digits in the resulting string.

PS >"{0:X4}" -f 1324

052C

http://lib.ommolketab.ir

9.3. Custom Numeric Format Strings

You may use custom numeric format strings, listed in Table 9-2, to format numbers in ways not supported by
the standard format strings.

Table 9-2. Custom numeric format strings

Format
specifier
(Name)

Description Example

0 (Zero

placeholder)

Specifies the precision and width of a number string.
Zeroes not matched by digits in the original number are
output as zeroes.

PS >"{0:00.0}" -f 4.12341234

04.1

(Digit
placeholder)

Specifies the precision and width of a number string. #
symbols not matched by digits in the input number are
not output.

PS >"{0:##.#}" -f 4.12341234

4.1

. (Decimal
point)

Determines the location of the decimal separator. PS >"{0:##.#}" -f 4.12341234

4.1

, (Thousands
separator)

When placed between a zero or digit placeholder before
the decimal point in a formatting string, adds the
separator character between number groups.

PS >"{0:#,#.#}" -f 1234.121234

1,234.1

, (Number
scaling)

When placed before the literal (or implicit) decimal point
in a formatting string, divides the input by 1,000. You
may apply this format specifier more than once.

PS >"{0:##,,.000}" -f 1048576

1.049

%
(Percentage
placeholder)

Multiplies the input by 100 and inserts the percent sign
where shown in the format specifier.

PS >"{0:%##.000}" -f .68

%68.000

E0

E+0

E-0

e0

e+0

e-0

(Scientific
notation)

Displays the input in scientific notation. The number of
zeroes that follow the E define the minimum length of the

exponent field.

PS >"{0:##.#E000}" -f 2.71828

27.2E-001

'text'

"text"

(Literal
string)

Inserts the provided text literally into the output without
affecting formatting.

PS >"{0:#.00'##'}" -f 2.71828

2.72##

http://lib.ommolketab.ir

Format
specifier
(Name)

Description Example

; (Section
separator)

Allows for conditional formatting. If your format specifier
contains no section separators, then the formatting
statement applies to all input. If your format specifier
contains one separator (creating two sections), then the
first section applies to positive numbers and zero. The
second section applies to negative numbers. If your
format specifier contains two separators (creating three
sections), then the sections apply to positive numbers,
negative numbers, and zero.

PS >"{0:POS;NEG;ZERO}"-f -14

NEG

Other (Other
character)

Inserts the provided text literally into the output without
affecting formatting.

PS >"{0:$## Please}"-f 14

$14 Please

; (Section
separator)

Allows for conditional formatting. If your format specifier
contains no section separators, then the formatting
statement applies to all input. If your format specifier
contains one separator (creating two sections), then the
first section applies to positive numbers and zero. The
second section applies to negative numbers. If your
format specifier contains two separators (creating three
sections), then the sections apply to positive numbers,
negative numbers, and zero.

PS >"{0:POS;NEG;ZERO}"-f -14

NEG

Other (Other
character)

Inserts the provided text literally into the output without
affecting formatting.

PS >"{0:$## Please}"-f 14

$14 Please

http://lib.ommolketab.ir

Chapter 10. .NET DateTime Formatting

DateTime format strings convert a DateTime object to one of several standard formats, as listed in Table 10-1.

Table 10-1. Standard DateTime format strings

Format
specifier
(Name)

Description Example

d(Short date) The culture's short date format. PS >"{0:d}" -f [DateTime] "01/23/4567"

1/23/4567

D (Long date) The culture's long date format. PS >"{0:D}" -f [DateTime] "01/23/4567"

Friday, January 23, 4567

f (Full date/

short time)

Combines the long date and short time format
patterns.

PS >"{0:f}" -f [DateTime] "01/23/4567"

Friday, January 23, 4567 12:00 AM

F (Full date/

long time)

Combines the long date and long time format
patterns.

PS >"{0:F}" -f [DateTime] "01/23/4567"

Friday, January 23, 4567 12:00:00 AM

g (General date/

short time)

Combines the short date and short time
format patterns.

PS >"{0:g}" -f [DateTime] "01/23/4567"

1/23/4567 12:00 AM

G (General date/

long time)

Combines the short date and long time format
patterns.

PS >"{0:G}" -f [DateTime] "01/23/4567"

1/23/4567 12:00:00 AM

M or m(Month

day)

The culture's MonthDay format. PS >"{0:M}" -f [DateTime] "01/23/4567"

January 23

o (Round-trip

date/time)

The date formatted with a pattern that
guarantees the string (when parsed) will
result in the original DateTime again.

PS >"{0:o}" -f [DateTime] "01/23/4567"

4567-01-23T00:00:00.0000000

R or r

(RFC1123)

The standard RFC1123 format pattern. PS >"{0:R}" -f [DateTime] "01/23/4567"

Fri, 23 Jan 4567 00:00:00 GMT

s (Sortable) Sortable format pattern. Conforms to ISO
8601 and provides output suitable for sorting.

PS >"{0:s}" -f [DateTime] "01/23/4567"

4567-01-23T00:00:00

t (Short time) The culture's short time format. PS >"{0:t}" -f [DateTime] "01/23/4567"

12:00 AM

http://lib.ommolketab.ir

Format
specifier
(Name)

Description Example

T (Long time) The culture's long time format. PS >"{0:T}" -f [DateTime] "01/23/4567"

12:00:00 AM

u (Universal

sortable)

The culture's universal sortable DateTime

format applied to the UTC equivalent of the
input.

PS >"{0:u}" -f [DateTime] "01/23/4567"

4567-01-23 00:00:00Z

U (Universal) The culture's FullDate-Time format applied

to the UTC equivalent of the input.

PS >"{0:U}" -f [DateTime] "01/23/4567"

Friday, January 23, 4567 8:00:00 AM

Y or y (Year

month)

The culture's YearMonth format. PS >"{0:Y}" -f [DateTime] "01/23/4567"

January, 4567

10.1. Custom DateTime Format Strings

You may use custom DateTime format strings, listed in Table 10-2, to format dates in ways not supported by

the standard format strings. Note: Single-character format specifiers are interpreted as a standard DateTime

formatting string unless used with other formatting specifiers.

Table 10-2. Custom DateTime format strings

Format
specifier

Description Example

d Day of the month as a number between 1 and 31.
Represents single-digit days without a leading
zero.

PS >"{0:d dd ddd dddd}" -f

 [DateTime] "01/02/4567"

2 02 Fri Friday

dd Day of the month as a number between 1 and 31.
Represents single-digit days with a leading zero.

PS >"{0:d dd ddd dddd}" -f

 [DateTime] "01/02/4567"

2 02 Fri Friday

ddd Abbreviated name of the day of the week. PS >"{0:d dd ddd dddd}" -f

 [DateTime] "01/02/4567"

2 02 Fri Friday

dddd Full name of the day of the week. PS >"{0:d dd ddd dddd}" -f

 [DateTime] "01/02/4567"

2 02 Fri Friday

f Most significant digit of the seconds fraction
(milliseconds).

PS >"{0:f ff fff ffff}" -f

 [DateTime] "01/02/4567"

0 00 000 0000

T (Long time) The culture's long time format. PS >"{0:T}" -f [DateTime] "01/23/4567"

12:00:00 AM

u (Universal

sortable)

The culture's universal sortable DateTime

format applied to the UTC equivalent of the
input.

PS >"{0:u}" -f [DateTime] "01/23/4567"

4567-01-23 00:00:00Z

U (Universal) The culture's FullDate-Time format applied

to the UTC equivalent of the input.

PS >"{0:U}" -f [DateTime] "01/23/4567"

Friday, January 23, 4567 8:00:00 AM

Y or y (Year

month)

The culture's YearMonth format. PS >"{0:Y}" -f [DateTime] "01/23/4567"

January, 4567

10.1. Custom DateTime Format Strings

You may use custom DateTime format strings, listed in Table 10-2, to format dates in ways not supported by

the standard format strings. Note: Single-character format specifiers are interpreted as a standard DateTime

formatting string unless used with other formatting specifiers.

Table 10-2. Custom DateTime format strings

Format
specifier

Description Example

d Day of the month as a number between 1 and 31.
Represents single-digit days without a leading
zero.

PS >"{0:d dd ddd dddd}" -f

 [DateTime] "01/02/4567"

2 02 Fri Friday

dd Day of the month as a number between 1 and 31.
Represents single-digit days with a leading zero.

PS >"{0:d dd ddd dddd}" -f

 [DateTime] "01/02/4567"

2 02 Fri Friday

ddd Abbreviated name of the day of the week. PS >"{0:d dd ddd dddd}" -f

 [DateTime] "01/02/4567"

2 02 Fri Friday

dddd Full name of the day of the week. PS >"{0:d dd ddd dddd}" -f

 [DateTime] "01/02/4567"

2 02 Fri Friday

http://lib.ommolketab.ir

Format
specifier

Description Example

f Most significant digit of the seconds fraction
(milliseconds).

PS >"{0:f ff fff ffff}" -f

 [DateTime] "01/02/4567"

0 00 000 0000

ff Two most significant digits of the seconds fraction
(milliseconds).

PS >"{0:f ff fff ffff}" -f

 [DateTime] "01/02/4567"

0 00 000 0000

fff Three most significant digits of the seconds
fraction (milliseconds).

PS >"{0:f ff fff ffff}" -f

 [DateTime] "01/02/4567"

0 00 000 0000

ffff Four most significant digits of the seconds fraction
(milliseconds).

PS >"{0:f ff fff ffff}" -f

 [DateTime] "01/02/4567"

0 00 000 0000

fffff Five most significant digits of the seconds fraction
(milliseconds).

PS >"{0:fffff ffffff fffffff}" -f

 [DateTime] "01/02/4567"

00000 000000 0000000

ffffff Six most significant digits of the seconds fraction
(milliseconds).

PS >"{0:fffff ffffff fffffff}" -f

 [DateTime] "01/02/4567"

00000 000000 0000000

fffffff Seven most significant digits of the seconds
fraction (milliseconds).

PS >"{0:fffff ffffff fffffff}" -f

 [DateTime] "01/02/4567"

00000 000000 0000000

F Most significant digit of the seconds fraction
(milliseconds). Displays nothing if the number is
zero.

PS >"{0:F FF FFF FFFF}" -f

 [DateTime]::Now

6 66 669 6696

PS >"{0:|F FF FFF FFFF|}" -f

 [DateTime] "01/02/4567"

| |

FF Two most significant digits of the seconds fraction
(milliseconds). Displays nothing if the number is
zero.

PS >"{0:F FF FFF FFFF}" -f

 [DateTime]::Now

6 66 669 6696

PS >"{0:|F FF FFF FFFF|}" -f

 [DateTime] "01/02/4567"

| |

FFF Three most significant digits of the seconds
fraction (milliseconds). Displays nothing if the

PS >"{0:F FF FFF FFFF}" -f

f Most significant digit of the seconds fraction
(milliseconds).

PS >"{0:f ff fff ffff}" -f

 [DateTime] "01/02/4567"

0 00 000 0000

ff Two most significant digits of the seconds fraction
(milliseconds).

PS >"{0:f ff fff ffff}" -f

 [DateTime] "01/02/4567"

0 00 000 0000

fff Three most significant digits of the seconds
fraction (milliseconds).

PS >"{0:f ff fff ffff}" -f

 [DateTime] "01/02/4567"

0 00 000 0000

ffff Four most significant digits of the seconds fraction
(milliseconds).

PS >"{0:f ff fff ffff}" -f

 [DateTime] "01/02/4567"

0 00 000 0000

fffff Five most significant digits of the seconds fraction
(milliseconds).

PS >"{0:fffff ffffff fffffff}" -f

 [DateTime] "01/02/4567"

00000 000000 0000000

ffffff Six most significant digits of the seconds fraction
(milliseconds).

PS >"{0:fffff ffffff fffffff}" -f

 [DateTime] "01/02/4567"

00000 000000 0000000

fffffff Seven most significant digits of the seconds
fraction (milliseconds).

PS >"{0:fffff ffffff fffffff}" -f

 [DateTime] "01/02/4567"

00000 000000 0000000

F Most significant digit of the seconds fraction
(milliseconds). Displays nothing if the number is
zero.

PS >"{0:F FF FFF FFFF}" -f

 [DateTime]::Now

6 66 669 6696

PS >"{0:|F FF FFF FFFF|}" -f

 [DateTime] "01/02/4567"

| |

FF Two most significant digits of the seconds fraction
(milliseconds). Displays nothing if the number is
zero.

PS >"{0:F FF FFF FFFF}" -f

 [DateTime]::Now

6 66 669 6696

PS >"{0:|F FF FFF FFFF|}" -f

 [DateTime] "01/02/4567"

| |

FFF Three most significant digits of the seconds

http://lib.ommolketab.ir

Format
specifier

Description Example

FFF Three most significant digits of the seconds
fraction (milliseconds). Displays nothing if the
number is zero.

PS >"{0:F FF FFF FFFF}" -f

 [DateTime]::Now

6 66 669 6696

PS >"{0:|F FF FFF FFFF|}" -f

 [DateTime] "01/02/4567"

| |

FFFF Four most significant digits of the seconds fraction
(milliseconds). Displays nothing if the number is
zero.

PS >"{0:F FF FFF FFFF}" -f

 [DateTime]::Now

6 66 669 6696

PS >"{0:|F FF FFF FFFF|}" -f

 [DateTime] "01/02/4567"

| |

FFFFF Five most significant digits of the seconds fraction
(milliseconds). Displays nothing if the number is
zero.

PS >"{0:FFFFF FFFFFF FFFFFFF}" -f

 [DateTime]::Now

1071 107106 1071068

PS >"{0:|FFFFF FFFFFF FFFFFFF|}" -f

 [DateTime] "01/02/4567"

| |

FFFFFF Six most significant digits of the seconds fraction
(milliseconds). Displays nothing if the number is
zero.

PS >"{0:FFFFF FFFFFF FFFFFFF}" -f

 [DateTime]::Now

1071 107106 1071068

PS >"{0:|FFFFF FFFFFF FFFFFFF|}" -f

 [DateTime] "01/02/4567"

| |

FFFFFFF Seven most significant digits of the seconds
fraction (milliseconds). Displays nothing if the
number is zero.

PS >"{0:FFFFF FFFFFF FFFFFFF}" -f

 [DateTime]::Now

1071 107106 1071068

PS >"{0:|FFFFF FFFFFF FFFFFFF|}" -f

 [DateTime] "01/02/4567"

| |

%g or gg Era (i.e., A.D.). PS >"{0:gg}" -f [DateTime]

 "01/02/4567"

A.D.

%h Hours, as a number between 1 and 12. Single
digits do not include a leading zero.

PS >"{0:%h}" -f

 [DateTime] "01/02/4567 4:00pm"

4

FFF Three most significant digits of the seconds
fraction (milliseconds). Displays nothing if the
number is zero.

PS >"{0:F FF FFF FFFF}" -f

 [DateTime]::Now

6 66 669 6696

PS >"{0:|F FF FFF FFFF|}" -f

 [DateTime] "01/02/4567"

| |

FFFF Four most significant digits of the seconds fraction
(milliseconds). Displays nothing if the number is
zero.

PS >"{0:F FF FFF FFFF}" -f

 [DateTime]::Now

6 66 669 6696

PS >"{0:|F FF FFF FFFF|}" -f

 [DateTime] "01/02/4567"

| |

FFFFF Five most significant digits of the seconds fraction
(milliseconds). Displays nothing if the number is
zero.

PS >"{0:FFFFF FFFFFF FFFFFFF}" -f

 [DateTime]::Now

1071 107106 1071068

PS >"{0:|FFFFF FFFFFF FFFFFFF|}" -f

 [DateTime] "01/02/4567"

| |

FFFFFF Six most significant digits of the seconds fraction
(milliseconds). Displays nothing if the number is
zero.

PS >"{0:FFFFF FFFFFF FFFFFFF}" -f

 [DateTime]::Now

1071 107106 1071068

PS >"{0:|FFFFF FFFFFF FFFFFFF|}" -f

 [DateTime] "01/02/4567"

| |

FFFFFFF Seven most significant digits of the seconds
fraction (milliseconds). Displays nothing if the
number is zero.

PS >"{0:FFFFF FFFFFF FFFFFFF}" -f

 [DateTime]::Now

1071 107106 1071068

PS >"{0:|FFFFF FFFFFF FFFFFFF|}" -f

 [DateTime] "01/02/4567"

| |

%g or gg Era (i.e., A.D.). PS >"{0:gg}" -f [DateTime]

 "01/02/4567"

A.D.

%h Hours, as a number between 1 and 12. Single
digits do not include a leading zero.

PS >"{0:%h}" -f

 [DateTime] "01/02/4567 4:00pm"

4

http://lib.ommolketab.ir

Format
specifier

Description Example

hh Hours, as a number between 01 and 12. Single
digits include a leading zero. Note: This is
interpreted as a standard DateTime formatting

string unless used with other formatting
specifiers.

PS >"{0:hh}" -f

 [DateTime] "01/02/4567 4:00pm"

04

%H Hours, as a number between 0 and 23. Single
digits do not include a leading zero.

PS >"{0:%H}" -f

 [DateTime] "01/02/4567 4:00pm"

16

HH Hours, as a number between 00 and 23. Single
digits include a leading zero.

PS >"{0:HH}" -f

 [DateTime] "01/02/4567 4:00am"

04

K DateTime.Kind specifier that corresponds to the

kind (i.e., Local, Utc, or Unspecified) of input date.

PS >"{0: K}" -f

 [DateTime]::Now.ToUniversalTime()

Z

m Minute, as a number between 0 and 59. Single
digits do not include a leading zero.

PS >"{0: m}" -f [DateTime]::Now

7

mm Minute, as a number between 00 and 59. Single
digits include a leading zero.

PS >"{0:mm}" -f [DateTime]::Now

08

M Month, as a number between 1 and 12. Single
digits do not include a leading zero.

PS >"{0:M MM MMM MMMM}" -f

 [DateTime] "01/02/4567"

1 01 Jan January

MM Month, as a number between 01 and 12. Single
digits include a leading zero.

PS >"{0:M MM MMM MMMM}" -f

 [DateTime] "01/02/4567"

1 01 Jan January

MMM Abbreviated month name. PS >"{0:M MM MMM MMMM}" -f

 [DateTime] "01/02/4567"

1 01 Jan January

MMMM Full month name. PS >"{0:M MM MMM MMMM}" -f

 [DateTime] "01/02/4567"

1 01 Jan January

s Seconds, as a number between 0 and 59. Single
digits do not include a leading zero.

PS > "{0:s ss t tt}" -f

 [DateTime]::Now

3 03 A AM

hh Hours, as a number between 01 and 12. Single
digits include a leading zero. Note: This is
interpreted as a standard DateTime formatting

string unless used with other formatting
specifiers.

PS >"{0:hh}" -f

 [DateTime] "01/02/4567 4:00pm"

04

%H Hours, as a number between 0 and 23. Single
digits do not include a leading zero.

PS >"{0:%H}" -f

 [DateTime] "01/02/4567 4:00pm"

16

HH Hours, as a number between 00 and 23. Single
digits include a leading zero.

PS >"{0:HH}" -f

 [DateTime] "01/02/4567 4:00am"

04

K DateTime.Kind specifier that corresponds to the

kind (i.e., Local, Utc, or Unspecified) of input date.

PS >"{0: K}" -f

 [DateTime]::Now.ToUniversalTime()

Z

m Minute, as a number between 0 and 59. Single
digits do not include a leading zero.

PS >"{0: m}" -f [DateTime]::Now

7

mm Minute, as a number between 00 and 59. Single
digits include a leading zero.

PS >"{0:mm}" -f [DateTime]::Now

08

M Month, as a number between 1 and 12. Single
digits do not include a leading zero.

PS >"{0:M MM MMM MMMM}" -f

 [DateTime] "01/02/4567"

1 01 Jan January

MM Month, as a number between 01 and 12. Single
digits include a leading zero.

PS >"{0:M MM MMM MMMM}" -f

 [DateTime] "01/02/4567"

1 01 Jan January

MMM Abbreviated month name. PS >"{0:M MM MMM MMMM}" -f

 [DateTime] "01/02/4567"

1 01 Jan January

MMMM Full month name. PS >"{0:M MM MMM MMMM}" -f

 [DateTime] "01/02/4567"

1 01 Jan January

s Seconds, as a number between 0 and 59. Single
digits do not include a leading zero.

PS > "{0:s ss t tt}" -f

 [DateTime]::Now

3 03 A AM

http://lib.ommolketab.ir

Format
specifier

Description Example

ss Seconds, as a number between 00 and 59. Single
digits include a leading zero.

PS > "{0:s ss t tt}" -f

 [DateTime]::Now

3 03 A AM

t First character of the A.M./P.M. designator. PS > "{0:s ss t tt}" -f

 [DateTime]::Now

3 03 A AM

tt A.M./P.M designator. PS > "{0:s ss t tt}" -f

 [DateTime]::Now

3 03 A AM

y Year, in (at most) one digit. PS >"{0:y yy yyy yyyy yyyyy}" -f

 [DateTime] "01/02/4567"

67 67 4567 4567 04567

yy Year, in (at most) two digits. PS >"{0:y yy yyy yyyy yyyyy}" -f

 [DateTime] "01/02/4567"

67 67 4567 4567 04567

yyy Year, in (at most) three digits. PS >"{0:y yy yyy yyyy yyyyy}" -f

 [DateTime] "01/02/4567"

67 67 4567 4567 04567

yyyy Year, in (at most) four digits. PS >"{0:y yy yyy yyyy yyyyy}" -f

 [DateTime] "01/02/4567"

67 67 4567 4567 04567

yyyyy Year, in (at most) five digits. PS >"{0:y yy yyy yyyy yyyyy}" -f

 [DateTime] "01/02/4567"

67 67 4567 4567 04567

z Signed time zone offset from GMT. Does not
include a leading zero.

PS >"{0:z zz zzz}" -f

 [DateTime]::Now

-7 -07 -07:00

zz Signed time zone offset from GMT. Includes a
leading zero.

PS >"{0:z zz zzz}" -f

 [DateTime]::Now

-7 -07 -07:00

zzz Signed time zone offset from GMT, measured in
hours and minutes.

PS >"{0:z zz zzz}" -f

 [DateTime]::Now

-7 -07 -07:00

ss Seconds, as a number between 00 and 59. Single
digits include a leading zero.

PS > "{0:s ss t tt}" -f

 [DateTime]::Now

3 03 A AM

t First character of the A.M./P.M. designator. PS > "{0:s ss t tt}" -f

 [DateTime]::Now

3 03 A AM

tt A.M./P.M designator. PS > "{0:s ss t tt}" -f

 [DateTime]::Now

3 03 A AM

y Year, in (at most) one digit. PS >"{0:y yy yyy yyyy yyyyy}" -f

 [DateTime] "01/02/4567"

67 67 4567 4567 04567

yy Year, in (at most) two digits. PS >"{0:y yy yyy yyyy yyyyy}" -f

 [DateTime] "01/02/4567"

67 67 4567 4567 04567

yyy Year, in (at most) three digits. PS >"{0:y yy yyy yyyy yyyyy}" -f

 [DateTime] "01/02/4567"

67 67 4567 4567 04567

yyyy Year, in (at most) four digits. PS >"{0:y yy yyy yyyy yyyyy}" -f

 [DateTime] "01/02/4567"

67 67 4567 4567 04567

yyyyy Year, in (at most) five digits. PS >"{0:y yy yyy yyyy yyyyy}" -f

 [DateTime] "01/02/4567"

67 67 4567 4567 04567

z Signed time zone offset from GMT. Does not
include a leading zero.

PS >"{0:z zz zzz}" -f

 [DateTime]::Now

-7 -07 -07:00

zz Signed time zone offset from GMT. Includes a
leading zero.

PS >"{0:z zz zzz}" -f

 [DateTime]::Now

-7 -07 -07:00

zzz Signed time zone offset from GMT, measured in
hours and minutes.

PS >"{0:z zz zzz}" -f

 [DateTime]::Now

-7 -07 -07:00

http://lib.ommolketab.ir

Format
specifier

Description Example

: Time separator. PS > "{0:y/m/d h:m:s}" -f

 [DateTime] "01/02/4567 4:00pm"

67/0/2 4:0:0

/ Date separator. PS > "{0:y/m/d h:m:s}" -f

 [DateTime] "01/02/4567 4:00pm"

67/0/2 4:0:0

"text"

'text'

Inserts the provided text literally into the output
without affecting formatting.

PS >"{0:'Day: 'dddd}" -f

 [DateTime]::Now

Day: Monday

%c Syntax allowing for single-character custom
formatting specifiers. The % sign is not added to
the output.

PS >"{0:%h}" -f

 [DateTime] "01/02/4567 4:00pm"

4

Other Inserts the provided text literally into the output
without affecting formatting.

PS >"{0:dddd!}" -f

 [DateTime]::Now

Monday!

: Time separator. PS > "{0:y/m/d h:m:s}" -f

 [DateTime] "01/02/4567 4:00pm"

67/0/2 4:0:0

/ Date separator. PS > "{0:y/m/d h:m:s}" -f

 [DateTime] "01/02/4567 4:00pm"

67/0/2 4:0:0

"text"

'text'

Inserts the provided text literally into the output
without affecting formatting.

PS >"{0:'Day: 'dddd}" -f

 [DateTime]::Now

Day: Monday

%c Syntax allowing for single-character custom
formatting specifiers. The % sign is not added to
the output.

PS >"{0:%h}" -f

 [DateTime] "01/02/4567 4:00pm"

4

Other Inserts the provided text literally into the output
without affecting formatting.

PS >"{0:dddd!}" -f

 [DateTime]::Now

Monday!

http://lib.ommolketab.ir

Chapter 10. .NET DateTime Formatting

DateTime format strings convert a DateTime object to one of several standard formats, as listed in Table 10-1.

Table 10-1. Standard DateTime format strings

Format
specifier
(Name)

Description Example

d(Short date) The culture's short date format. PS >"{0:d}" -f [DateTime] "01/23/4567"

1/23/4567

D (Long date) The culture's long date format. PS >"{0:D}" -f [DateTime] "01/23/4567"

Friday, January 23, 4567

f (Full date/

short time)

Combines the long date and short time format
patterns.

PS >"{0:f}" -f [DateTime] "01/23/4567"

Friday, January 23, 4567 12:00 AM

F (Full date/

long time)

Combines the long date and long time format
patterns.

PS >"{0:F}" -f [DateTime] "01/23/4567"

Friday, January 23, 4567 12:00:00 AM

g (General date/

short time)

Combines the short date and short time
format patterns.

PS >"{0:g}" -f [DateTime] "01/23/4567"

1/23/4567 12:00 AM

G (General date/

long time)

Combines the short date and long time format
patterns.

PS >"{0:G}" -f [DateTime] "01/23/4567"

1/23/4567 12:00:00 AM

M or m(Month

day)

The culture's MonthDay format. PS >"{0:M}" -f [DateTime] "01/23/4567"

January 23

o (Round-trip

date/time)

The date formatted with a pattern that
guarantees the string (when parsed) will
result in the original DateTime again.

PS >"{0:o}" -f [DateTime] "01/23/4567"

4567-01-23T00:00:00.0000000

R or r

(RFC1123)

The standard RFC1123 format pattern. PS >"{0:R}" -f [DateTime] "01/23/4567"

Fri, 23 Jan 4567 00:00:00 GMT

s (Sortable) Sortable format pattern. Conforms to ISO
8601 and provides output suitable for sorting.

PS >"{0:s}" -f [DateTime] "01/23/4567"

4567-01-23T00:00:00

t (Short time) The culture's short time format. PS >"{0:t}" -f [DateTime] "01/23/4567"

12:00 AM

http://lib.ommolketab.ir

Format
specifier
(Name)

Description Example

T (Long time) The culture's long time format. PS >"{0:T}" -f [DateTime] "01/23/4567"

12:00:00 AM

u (Universal

sortable)

The culture's universal sortable DateTime

format applied to the UTC equivalent of the
input.

PS >"{0:u}" -f [DateTime] "01/23/4567"

4567-01-23 00:00:00Z

U (Universal) The culture's FullDate-Time format applied

to the UTC equivalent of the input.

PS >"{0:U}" -f [DateTime] "01/23/4567"

Friday, January 23, 4567 8:00:00 AM

Y or y (Year

month)

The culture's YearMonth format. PS >"{0:Y}" -f [DateTime] "01/23/4567"

January, 4567

10.1. Custom DateTime Format Strings

You may use custom DateTime format strings, listed in Table 10-2, to format dates in ways not supported by

the standard format strings. Note: Single-character format specifiers are interpreted as a standard DateTime

formatting string unless used with other formatting specifiers.

Table 10-2. Custom DateTime format strings

Format
specifier

Description Example

d Day of the month as a number between 1 and 31.
Represents single-digit days without a leading
zero.

PS >"{0:d dd ddd dddd}" -f

 [DateTime] "01/02/4567"

2 02 Fri Friday

dd Day of the month as a number between 1 and 31.
Represents single-digit days with a leading zero.

PS >"{0:d dd ddd dddd}" -f

 [DateTime] "01/02/4567"

2 02 Fri Friday

ddd Abbreviated name of the day of the week. PS >"{0:d dd ddd dddd}" -f

 [DateTime] "01/02/4567"

2 02 Fri Friday

dddd Full name of the day of the week. PS >"{0:d dd ddd dddd}" -f

 [DateTime] "01/02/4567"

2 02 Fri Friday

f Most significant digit of the seconds fraction
(milliseconds).

PS >"{0:f ff fff ffff}" -f

 [DateTime] "01/02/4567"

0 00 000 0000

T (Long time) The culture's long time format. PS >"{0:T}" -f [DateTime] "01/23/4567"

12:00:00 AM

u (Universal

sortable)

The culture's universal sortable DateTime

format applied to the UTC equivalent of the
input.

PS >"{0:u}" -f [DateTime] "01/23/4567"

4567-01-23 00:00:00Z

U (Universal) The culture's FullDate-Time format applied

to the UTC equivalent of the input.

PS >"{0:U}" -f [DateTime] "01/23/4567"

Friday, January 23, 4567 8:00:00 AM

Y or y (Year

month)

The culture's YearMonth format. PS >"{0:Y}" -f [DateTime] "01/23/4567"

January, 4567

10.1. Custom DateTime Format Strings

You may use custom DateTime format strings, listed in Table 10-2, to format dates in ways not supported by

the standard format strings. Note: Single-character format specifiers are interpreted as a standard DateTime

formatting string unless used with other formatting specifiers.

Table 10-2. Custom DateTime format strings

Format
specifier

Description Example

d Day of the month as a number between 1 and 31.
Represents single-digit days without a leading
zero.

PS >"{0:d dd ddd dddd}" -f

 [DateTime] "01/02/4567"

2 02 Fri Friday

dd Day of the month as a number between 1 and 31.
Represents single-digit days with a leading zero.

PS >"{0:d dd ddd dddd}" -f

 [DateTime] "01/02/4567"

2 02 Fri Friday

ddd Abbreviated name of the day of the week. PS >"{0:d dd ddd dddd}" -f

 [DateTime] "01/02/4567"

2 02 Fri Friday

dddd Full name of the day of the week. PS >"{0:d dd ddd dddd}" -f

 [DateTime] "01/02/4567"

2 02 Fri Friday

http://lib.ommolketab.ir

Format
specifier

Description Example

f Most significant digit of the seconds fraction
(milliseconds).

PS >"{0:f ff fff ffff}" -f

 [DateTime] "01/02/4567"

0 00 000 0000

ff Two most significant digits of the seconds fraction
(milliseconds).

PS >"{0:f ff fff ffff}" -f

 [DateTime] "01/02/4567"

0 00 000 0000

fff Three most significant digits of the seconds
fraction (milliseconds).

PS >"{0:f ff fff ffff}" -f

 [DateTime] "01/02/4567"

0 00 000 0000

ffff Four most significant digits of the seconds fraction
(milliseconds).

PS >"{0:f ff fff ffff}" -f

 [DateTime] "01/02/4567"

0 00 000 0000

fffff Five most significant digits of the seconds fraction
(milliseconds).

PS >"{0:fffff ffffff fffffff}" -f

 [DateTime] "01/02/4567"

00000 000000 0000000

ffffff Six most significant digits of the seconds fraction
(milliseconds).

PS >"{0:fffff ffffff fffffff}" -f

 [DateTime] "01/02/4567"

00000 000000 0000000

fffffff Seven most significant digits of the seconds
fraction (milliseconds).

PS >"{0:fffff ffffff fffffff}" -f

 [DateTime] "01/02/4567"

00000 000000 0000000

F Most significant digit of the seconds fraction
(milliseconds). Displays nothing if the number is
zero.

PS >"{0:F FF FFF FFFF}" -f

 [DateTime]::Now

6 66 669 6696

PS >"{0:|F FF FFF FFFF|}" -f

 [DateTime] "01/02/4567"

| |

FF Two most significant digits of the seconds fraction
(milliseconds). Displays nothing if the number is
zero.

PS >"{0:F FF FFF FFFF}" -f

 [DateTime]::Now

6 66 669 6696

PS >"{0:|F FF FFF FFFF|}" -f

 [DateTime] "01/02/4567"

| |

FFF Three most significant digits of the seconds
fraction (milliseconds). Displays nothing if the

PS >"{0:F FF FFF FFFF}" -f

f Most significant digit of the seconds fraction
(milliseconds).

PS >"{0:f ff fff ffff}" -f

 [DateTime] "01/02/4567"

0 00 000 0000

ff Two most significant digits of the seconds fraction
(milliseconds).

PS >"{0:f ff fff ffff}" -f

 [DateTime] "01/02/4567"

0 00 000 0000

fff Three most significant digits of the seconds
fraction (milliseconds).

PS >"{0:f ff fff ffff}" -f

 [DateTime] "01/02/4567"

0 00 000 0000

ffff Four most significant digits of the seconds fraction
(milliseconds).

PS >"{0:f ff fff ffff}" -f

 [DateTime] "01/02/4567"

0 00 000 0000

fffff Five most significant digits of the seconds fraction
(milliseconds).

PS >"{0:fffff ffffff fffffff}" -f

 [DateTime] "01/02/4567"

00000 000000 0000000

ffffff Six most significant digits of the seconds fraction
(milliseconds).

PS >"{0:fffff ffffff fffffff}" -f

 [DateTime] "01/02/4567"

00000 000000 0000000

fffffff Seven most significant digits of the seconds
fraction (milliseconds).

PS >"{0:fffff ffffff fffffff}" -f

 [DateTime] "01/02/4567"

00000 000000 0000000

F Most significant digit of the seconds fraction
(milliseconds). Displays nothing if the number is
zero.

PS >"{0:F FF FFF FFFF}" -f

 [DateTime]::Now

6 66 669 6696

PS >"{0:|F FF FFF FFFF|}" -f

 [DateTime] "01/02/4567"

| |

FF Two most significant digits of the seconds fraction
(milliseconds). Displays nothing if the number is
zero.

PS >"{0:F FF FFF FFFF}" -f

 [DateTime]::Now

6 66 669 6696

PS >"{0:|F FF FFF FFFF|}" -f

 [DateTime] "01/02/4567"

| |

FFF Three most significant digits of the seconds

http://lib.ommolketab.ir

Format
specifier

Description Example

FFF Three most significant digits of the seconds
fraction (milliseconds). Displays nothing if the
number is zero.

PS >"{0:F FF FFF FFFF}" -f

 [DateTime]::Now

6 66 669 6696

PS >"{0:|F FF FFF FFFF|}" -f

 [DateTime] "01/02/4567"

| |

FFFF Four most significant digits of the seconds fraction
(milliseconds). Displays nothing if the number is
zero.

PS >"{0:F FF FFF FFFF}" -f

 [DateTime]::Now

6 66 669 6696

PS >"{0:|F FF FFF FFFF|}" -f

 [DateTime] "01/02/4567"

| |

FFFFF Five most significant digits of the seconds fraction
(milliseconds). Displays nothing if the number is
zero.

PS >"{0:FFFFF FFFFFF FFFFFFF}" -f

 [DateTime]::Now

1071 107106 1071068

PS >"{0:|FFFFF FFFFFF FFFFFFF|}" -f

 [DateTime] "01/02/4567"

| |

FFFFFF Six most significant digits of the seconds fraction
(milliseconds). Displays nothing if the number is
zero.

PS >"{0:FFFFF FFFFFF FFFFFFF}" -f

 [DateTime]::Now

1071 107106 1071068

PS >"{0:|FFFFF FFFFFF FFFFFFF|}" -f

 [DateTime] "01/02/4567"

| |

FFFFFFF Seven most significant digits of the seconds
fraction (milliseconds). Displays nothing if the
number is zero.

PS >"{0:FFFFF FFFFFF FFFFFFF}" -f

 [DateTime]::Now

1071 107106 1071068

PS >"{0:|FFFFF FFFFFF FFFFFFF|}" -f

 [DateTime] "01/02/4567"

| |

%g or gg Era (i.e., A.D.). PS >"{0:gg}" -f [DateTime]

 "01/02/4567"

A.D.

%h Hours, as a number between 1 and 12. Single
digits do not include a leading zero.

PS >"{0:%h}" -f

 [DateTime] "01/02/4567 4:00pm"

4

FFF Three most significant digits of the seconds
fraction (milliseconds). Displays nothing if the
number is zero.

PS >"{0:F FF FFF FFFF}" -f

 [DateTime]::Now

6 66 669 6696

PS >"{0:|F FF FFF FFFF|}" -f

 [DateTime] "01/02/4567"

| |

FFFF Four most significant digits of the seconds fraction
(milliseconds). Displays nothing if the number is
zero.

PS >"{0:F FF FFF FFFF}" -f

 [DateTime]::Now

6 66 669 6696

PS >"{0:|F FF FFF FFFF|}" -f

 [DateTime] "01/02/4567"

| |

FFFFF Five most significant digits of the seconds fraction
(milliseconds). Displays nothing if the number is
zero.

PS >"{0:FFFFF FFFFFF FFFFFFF}" -f

 [DateTime]::Now

1071 107106 1071068

PS >"{0:|FFFFF FFFFFF FFFFFFF|}" -f

 [DateTime] "01/02/4567"

| |

FFFFFF Six most significant digits of the seconds fraction
(milliseconds). Displays nothing if the number is
zero.

PS >"{0:FFFFF FFFFFF FFFFFFF}" -f

 [DateTime]::Now

1071 107106 1071068

PS >"{0:|FFFFF FFFFFF FFFFFFF|}" -f

 [DateTime] "01/02/4567"

| |

FFFFFFF Seven most significant digits of the seconds
fraction (milliseconds). Displays nothing if the
number is zero.

PS >"{0:FFFFF FFFFFF FFFFFFF}" -f

 [DateTime]::Now

1071 107106 1071068

PS >"{0:|FFFFF FFFFFF FFFFFFF|}" -f

 [DateTime] "01/02/4567"

| |

%g or gg Era (i.e., A.D.). PS >"{0:gg}" -f [DateTime]

 "01/02/4567"

A.D.

%h Hours, as a number between 1 and 12. Single
digits do not include a leading zero.

PS >"{0:%h}" -f

 [DateTime] "01/02/4567 4:00pm"

4

http://lib.ommolketab.ir

Format
specifier

Description Example

hh Hours, as a number between 01 and 12. Single
digits include a leading zero. Note: This is
interpreted as a standard DateTime formatting

string unless used with other formatting
specifiers.

PS >"{0:hh}" -f

 [DateTime] "01/02/4567 4:00pm"

04

%H Hours, as a number between 0 and 23. Single
digits do not include a leading zero.

PS >"{0:%H}" -f

 [DateTime] "01/02/4567 4:00pm"

16

HH Hours, as a number between 00 and 23. Single
digits include a leading zero.

PS >"{0:HH}" -f

 [DateTime] "01/02/4567 4:00am"

04

K DateTime.Kind specifier that corresponds to the

kind (i.e., Local, Utc, or Unspecified) of input date.

PS >"{0: K}" -f

 [DateTime]::Now.ToUniversalTime()

Z

m Minute, as a number between 0 and 59. Single
digits do not include a leading zero.

PS >"{0: m}" -f [DateTime]::Now

7

mm Minute, as a number between 00 and 59. Single
digits include a leading zero.

PS >"{0:mm}" -f [DateTime]::Now

08

M Month, as a number between 1 and 12. Single
digits do not include a leading zero.

PS >"{0:M MM MMM MMMM}" -f

 [DateTime] "01/02/4567"

1 01 Jan January

MM Month, as a number between 01 and 12. Single
digits include a leading zero.

PS >"{0:M MM MMM MMMM}" -f

 [DateTime] "01/02/4567"

1 01 Jan January

MMM Abbreviated month name. PS >"{0:M MM MMM MMMM}" -f

 [DateTime] "01/02/4567"

1 01 Jan January

MMMM Full month name. PS >"{0:M MM MMM MMMM}" -f

 [DateTime] "01/02/4567"

1 01 Jan January

s Seconds, as a number between 0 and 59. Single
digits do not include a leading zero.

PS > "{0:s ss t tt}" -f

 [DateTime]::Now

3 03 A AM

hh Hours, as a number between 01 and 12. Single
digits include a leading zero. Note: This is
interpreted as a standard DateTime formatting

string unless used with other formatting
specifiers.

PS >"{0:hh}" -f

 [DateTime] "01/02/4567 4:00pm"

04

%H Hours, as a number between 0 and 23. Single
digits do not include a leading zero.

PS >"{0:%H}" -f

 [DateTime] "01/02/4567 4:00pm"

16

HH Hours, as a number between 00 and 23. Single
digits include a leading zero.

PS >"{0:HH}" -f

 [DateTime] "01/02/4567 4:00am"

04

K DateTime.Kind specifier that corresponds to the

kind (i.e., Local, Utc, or Unspecified) of input date.

PS >"{0: K}" -f

 [DateTime]::Now.ToUniversalTime()

Z

m Minute, as a number between 0 and 59. Single
digits do not include a leading zero.

PS >"{0: m}" -f [DateTime]::Now

7

mm Minute, as a number between 00 and 59. Single
digits include a leading zero.

PS >"{0:mm}" -f [DateTime]::Now

08

M Month, as a number between 1 and 12. Single
digits do not include a leading zero.

PS >"{0:M MM MMM MMMM}" -f

 [DateTime] "01/02/4567"

1 01 Jan January

MM Month, as a number between 01 and 12. Single
digits include a leading zero.

PS >"{0:M MM MMM MMMM}" -f

 [DateTime] "01/02/4567"

1 01 Jan January

MMM Abbreviated month name. PS >"{0:M MM MMM MMMM}" -f

 [DateTime] "01/02/4567"

1 01 Jan January

MMMM Full month name. PS >"{0:M MM MMM MMMM}" -f

 [DateTime] "01/02/4567"

1 01 Jan January

s Seconds, as a number between 0 and 59. Single
digits do not include a leading zero.

PS > "{0:s ss t tt}" -f

 [DateTime]::Now

3 03 A AM

http://lib.ommolketab.ir

Format
specifier

Description Example

ss Seconds, as a number between 00 and 59. Single
digits include a leading zero.

PS > "{0:s ss t tt}" -f

 [DateTime]::Now

3 03 A AM

t First character of the A.M./P.M. designator. PS > "{0:s ss t tt}" -f

 [DateTime]::Now

3 03 A AM

tt A.M./P.M designator. PS > "{0:s ss t tt}" -f

 [DateTime]::Now

3 03 A AM

y Year, in (at most) one digit. PS >"{0:y yy yyy yyyy yyyyy}" -f

 [DateTime] "01/02/4567"

67 67 4567 4567 04567

yy Year, in (at most) two digits. PS >"{0:y yy yyy yyyy yyyyy}" -f

 [DateTime] "01/02/4567"

67 67 4567 4567 04567

yyy Year, in (at most) three digits. PS >"{0:y yy yyy yyyy yyyyy}" -f

 [DateTime] "01/02/4567"

67 67 4567 4567 04567

yyyy Year, in (at most) four digits. PS >"{0:y yy yyy yyyy yyyyy}" -f

 [DateTime] "01/02/4567"

67 67 4567 4567 04567

yyyyy Year, in (at most) five digits. PS >"{0:y yy yyy yyyy yyyyy}" -f

 [DateTime] "01/02/4567"

67 67 4567 4567 04567

z Signed time zone offset from GMT. Does not
include a leading zero.

PS >"{0:z zz zzz}" -f

 [DateTime]::Now

-7 -07 -07:00

zz Signed time zone offset from GMT. Includes a
leading zero.

PS >"{0:z zz zzz}" -f

 [DateTime]::Now

-7 -07 -07:00

zzz Signed time zone offset from GMT, measured in
hours and minutes.

PS >"{0:z zz zzz}" -f

 [DateTime]::Now

-7 -07 -07:00

ss Seconds, as a number between 00 and 59. Single
digits include a leading zero.

PS > "{0:s ss t tt}" -f

 [DateTime]::Now

3 03 A AM

t First character of the A.M./P.M. designator. PS > "{0:s ss t tt}" -f

 [DateTime]::Now

3 03 A AM

tt A.M./P.M designator. PS > "{0:s ss t tt}" -f

 [DateTime]::Now

3 03 A AM

y Year, in (at most) one digit. PS >"{0:y yy yyy yyyy yyyyy}" -f

 [DateTime] "01/02/4567"

67 67 4567 4567 04567

yy Year, in (at most) two digits. PS >"{0:y yy yyy yyyy yyyyy}" -f

 [DateTime] "01/02/4567"

67 67 4567 4567 04567

yyy Year, in (at most) three digits. PS >"{0:y yy yyy yyyy yyyyy}" -f

 [DateTime] "01/02/4567"

67 67 4567 4567 04567

yyyy Year, in (at most) four digits. PS >"{0:y yy yyy yyyy yyyyy}" -f

 [DateTime] "01/02/4567"

67 67 4567 4567 04567

yyyyy Year, in (at most) five digits. PS >"{0:y yy yyy yyyy yyyyy}" -f

 [DateTime] "01/02/4567"

67 67 4567 4567 04567

z Signed time zone offset from GMT. Does not
include a leading zero.

PS >"{0:z zz zzz}" -f

 [DateTime]::Now

-7 -07 -07:00

zz Signed time zone offset from GMT. Includes a
leading zero.

PS >"{0:z zz zzz}" -f

 [DateTime]::Now

-7 -07 -07:00

zzz Signed time zone offset from GMT, measured in
hours and minutes.

PS >"{0:z zz zzz}" -f

 [DateTime]::Now

-7 -07 -07:00

http://lib.ommolketab.ir

Format
specifier

Description Example

: Time separator. PS > "{0:y/m/d h:m:s}" -f

 [DateTime] "01/02/4567 4:00pm"

67/0/2 4:0:0

/ Date separator. PS > "{0:y/m/d h:m:s}" -f

 [DateTime] "01/02/4567 4:00pm"

67/0/2 4:0:0

"text"

'text'

Inserts the provided text literally into the output
without affecting formatting.

PS >"{0:'Day: 'dddd}" -f

 [DateTime]::Now

Day: Monday

%c Syntax allowing for single-character custom
formatting specifiers. The % sign is not added to
the output.

PS >"{0:%h}" -f

 [DateTime] "01/02/4567 4:00pm"

4

Other Inserts the provided text literally into the output
without affecting formatting.

PS >"{0:dddd!}" -f

 [DateTime]::Now

Monday!

: Time separator. PS > "{0:y/m/d h:m:s}" -f

 [DateTime] "01/02/4567 4:00pm"

67/0/2 4:0:0

/ Date separator. PS > "{0:y/m/d h:m:s}" -f

 [DateTime] "01/02/4567 4:00pm"

67/0/2 4:0:0

"text"

'text'

Inserts the provided text literally into the output
without affecting formatting.

PS >"{0:'Day: 'dddd}" -f

 [DateTime]::Now

Day: Monday

%c Syntax allowing for single-character custom
formatting specifiers. The % sign is not added to
the output.

PS >"{0:%h}" -f

 [DateTime] "01/02/4567 4:00pm"

4

Other Inserts the provided text literally into the output
without affecting formatting.

PS >"{0:dddd!}" -f

 [DateTime]::Now

Monday!

http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

! (exclamation point)
(comment character) 2nd
% (percent sign)
 +?
 addition operator
 in array ranges
%g format specifier
%H format specifier
%h format specifier
& (ampersand)
' (backtick)
' (single quote)
(…) (parentheses)
 @(…)
 array definition
. (dot)
 in regular expressions
 method and property access
(double quote)
 %=
 +=
 -=
 /=
- (hyphen) 2nd
 subtraction operator
* (asterisk)
 *=
 *?
 in regular expressions
 multiplication operator
0x prefix
: (colon)
=+ (plus sign)
 addition assignment
 addition operator (+)
 in array ranges
> (right angle bracket)
? (question mark)
 ?!
 ?#
 ?:
 ?<!
 ?<=
 ?=
 ?>
 ??
 in regular expressions 2nd
@ (at sign)
 @(…)
 list evaluation control
[…] (square brackets)
 array access using
\ (backslash)
\A
\B

http://lib.ommolketab.ir

\b
\D
\d
\G
\k
\P
\p
\S
\s
\W
\w
\Z
\z
^ (caret) 2nd 3rd
{…} (curly braces)
 in regular expressions 2nd
 in variable definition
 statement block

http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Access.Application object
Active Directory
Active Directory Service Interfaces (ADSI) support
Add verb
Add-Member cmdlet 2nd 3rd 4th
administrative tasks 2nd
ADSI (Active Directory Service Interfaces) support
Adsi type shortcut
Agent.Control object
alarm character
aliases for cmdlets
AliasProperty type
Alt + F7 hotkey
Alt + space 2nd 3rd 4th 5th
alternation constructs
-and (logical AND operator)
AppDomain class
arbitrary variables
arithmetic operators 2nd
Array class
ArrayList class
arrays
 accessing elements of
 associative (hashtables)
 data type of
 numbering of elements in
 ranges in 2nd
 slicing
-as (type conversion operator)
Assembly class 2nd
assignment operators
associative arrays (hashtables)
asterisk (*)
 *?
atomic zero-width assertions
auto-complete for cmdlets
AutoHotkey program
AutoItX3.Control object
automatic variables 2nd

http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

backreference constructs
backspace character
Backup verb
-band (binary AND operator)
begin keyword in scripts
begin statement
binary exclusive OR operator (-bxor)
binary NOT operator (-bnot)
binary numbers
binary operators 2nd 3rd
binary OR operator (-bor)
BinaryReader class
BinaryWriter class
Bitmap class
-bnot (binary NOT operator)
Boolean values
Boolean variables
-bor (binary OR operator)
break keyword
break statement
BufferedStream class
-bxor (binary exclusive OR operator)

http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

C format specifier
-c option
-c prefix
calendar calculations
cancel
carriage return
case sensitivity
 for comparison operators
 in switch statement
-casesensitive option
cd command
CEnroll.CEnroll object
certificate store
CertificateAuthority.Request object
character classes
Checkpoint verb
CIM_DataFile class
classes
 assembly for
 extending 2nd
 information about
 instances of
 WMI classes 2nd 3rd 4th 5th
Clear verb
cmdlets 2nd
 in scripts
 positional parameters for
CodeMethod type
CodeProperty type
collections
COM objects 2nd 3rd 4th 5th
COMAdmin.COMAdminCatalog object
command history
command line
commands
 formatting output for 2nd 3rd 4th
 information about
 objects generated by
 output of 2nd
 Unix
comments
 in scripts
communication
-ComObject parameter
Compare verb
comparison operators 2nd 3rd
conditional statements 2nd 3rd 4th 5th 6th
configuration files
 for extending types
 for output formatting
Confirm parameter
Connect verb
Console class
-contains operator
Continue ErrorAction preference

http://lib.ommolketab.ir

continue keyword
continue statement
Continue verbose preference
Control + break hotkey
Control + c hotkey
Control + end hotkey
Control + home hotkey
Control + left arrow hotkey
Control + right arrow hotkey
Convert class
Convert verb
ConvertFrom verb
ConvertTo verb
Copy verb
CSharpCodeProvider class
curly braces ({…})
 statement block
customization
 hotkeys 2nd
 of console 2nd 3rd 4th
 QuickEdit mode
 window size

http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

D format specifier 2nd
d format specifier
data
data type conversions
 operator for
 to integer
data types
 of array elements
 XML
database
DataSet class
DataTable class
date calculations
DateTime class
DateTime format strings 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
dd format specifier
ddd format specifier
dddd format specifier
Debug class
Debug verb
debugging
decimal numbers
DeflateStream class
dir command
Directory class
DirectoryEntry class 2nd
DirectoryInfo class
DirectorySearcher class
Disable verb
Disconnect verb
Dismount verb
division assignment operator (/=)
division operator (/)
Dns class
do until statement
do while statement
DOS commands
double quote (")
double quotes ("…")
Down arrow hotkey

http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

E format specifier
-e option
else statement
elseif statement
Enable verb
end keyword in scripts
end statement
Enum class
Environment class
equality operator (-ed)
error codes returned from scripts
error output stream
ErrorAction parameter for cmdlets
errors
 nonterminating
escape sequences
 in strings
evaluation controls
EventLog class
-exact option
Excel.Application object
Excel.Sheet object
exit statement
expanding strings
explicit capture
Export verb
expression subparse control (
expressions
 in expanding strings

http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

-f format operator 2nd 3rd 4th
F format specifier 2nd
f format specifier
F1 hotkey
F2 hotkey
F3 hotkey
F4 hotkey
F5 hotkey
F8 hotkey
F9 hotkey
FF format specifier
ff format specifier
FFF format specifier
fff format specifier
FFFF format specifier
ffff format specifier
FFFFF format specifier
fffff format specifier
FFFFFF format specifier
ffffff format specifier
FFFFFFF format specifier
fffffff format specifier
File class
FileInfo class
files
 command output in
 getting and setting content as variables
filesystem
FileSystemSecurity class
FileSystemWatcher class
FlowLayoutPanel class
for statement
foreach statement
Form class
form feed
format operator (-f)
Format-List cmdlet
Format-Table cmdlet
Format-Wide cmdlet
.Format.Ps1Xml file extension
formatting command output 2nd 3rd 4th
formatting files
FtpWebRequest class
functions 2nd
 location of

http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

G format specifier 2nd
g format specifier
gb (gigabyte) constant 2nd
-ge (greater than or equal operator)
Get verb
Get-Command cmdlet
Get-Help cmdlet
Get-History cmdlet
Get-Item Variable cmdlet
Get-Member cmdlet 2nd
Get-Process cmdlet
Get-TraceSource cmdlet
Get-Variable cmdlet
gg format specifier
gigabyte (gb) constant 2nd
gps alias
greater than operator (-gt)
grouping constructs
-gt (greater than operator)
Guid class
GZipStream class

http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Hashtable class
hashtable definition (@{…})
Hashtable type shortcut
hashtables
here strings 2nd
hexadecimal base
hexadecimal numbers
HH format specifier
Hide verb
history buffer
history of commands
HNetCfg.FwMgr object
HNetCfg.HNetShare object
hotkeys 2nd 3rd 4th
HTMLFile object
HttpUtility class
HttpWebRequest class

http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

-i prefix
Image class
Import verb
InfoPath.Application object
Initialize verb
Inquire verbose preference
Install verb
instance methods
instance properties
int data type
interactive shell 2nd 3rd 4th 5th
InternetExplorer.Application object
Invoke verb
invoke/call operator (&)
ipconfig tool
-is (type operator)
-isnot (negated type operator)
IXSSO.Query object
IXSSO.Util object

http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

jagged arrays
Join verb

http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

K format specifier
kb (kilobyte) constant
kilobyte (kb) constant

http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

-le (less than or equal operator)
LegitCheckControl.LegitCheck object
less than operator (-lt)
-like operator
Limit verb
list evaluation control (@(…))
literal strings
LoadWithPartialName method
Lock verb
logic statements
logical exclusive OR operator (-xor)
logical NOT operator (-not or !)
logical operators
logical OR operator (-or)
looping statements 2nd 3rd 4th 5th 6th
 halting execution of
 skipping execution of current statement block
-lt (less than operator)

http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

M format specifier 2nd
m format specifier
MailAddress class
MailMessage class
MakeCab.MakeCab object
ManagementClass class 2nd
ManagementDateTimeConverter class
ManagementEventWatcher class
ManagementObject class 2nd
ManagementObjectSearcher class 2nd
MAPI.Session object
Marshal class
-match operator
Math class
mb (megabyte) constant 2nd
Measure verb
megabyte (mb) constant 2nd
MemoryStream class
Merge verb
Messenger.MessengerApp object
methods
 adding to types 2nd 3rd 4th
 instance
 listing for types or classes
 static
Microsoft.FeedsManager object
Microsoft.ISAdm object
Microsoft.Update.AutoUpdate object
Microsoft.Update.Installer object
Microsoft.Update.Searcher object
Microsoft.Update.Session object
Microsoft.Update.SystemInfo object
MM format specifier
MMC20.Application object
MMM format specifier
MMMM format specifier
modulus assignment operator (%=)
modulus operator (%)
Move verb
MSScriptControl.ScriptControl object
Msxml2.XSLTemplate object
multidimensional arrays
multiplication assignment operator (*=)
multiplication operator (*)

http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

N format specifier
-ne (negated equality operator)
negated contains operator (-notcontains)
negated equality operator (-ne)
negated like operator (-notlike)
negated match operator (-notmatch)
negated type operator (-isnot)
.NET Framework
 documentation for
 methods
 properties
 types and classes
 creating instances of
.NET Framework classes
 Active Directory
 collections
 database
 image manipulation
 PowerShell object
 registry
 security
 user interface
 WMI
 XML
NetworkCredential class
networking
New verb
New-Item Variable cmdlet
New-Object cmdlet 2nd
New-Variable cmdlet
newline
nonterminating errors
-not (logical NOT operator)
-notcontains (negated contains operator)
notepad tool
NoteProperty type
-notlike (negated like operator)
-notmatch (negated match operator)
null character
numbers 2nd 3rd
 assigning to variables
 bases for
 numeric constants
numeric format strings 2nd 3rd 4th

http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

o format specifier
objects
 methods of
 output generating
 properties of
octal numbers
OdbcCommand class
OdbcConnection class
OdbcDataAdapter class
Operators
operators 2nd 3rd 4th 5th 6th
 arithmetic
 binary 2nd 3rd
 comparison 2nd
 logical
-or (logical OR operator)
OrderedDictionary class
Out verb
Out-String cmdlet
Outlook.Application object
OutlookExpress.MessageList object
output
output (command)
 capturing
 formatting 2nd 3rd 4th
-OutVariable parameter

http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

P format specifier
Page Down hotkey
Page Up hotkey
PasswordDeriveBytes class
Path class
Ping verb
pipeline character (|)
plus sign (+)
 +?
Pop verb
popd command
positional parameters
PowerPoint.Application object
PowerShell
 .NET class representing
 as interactive shell 2nd 3rd 4th 5th
 documentation for
 prompt for
 technologies supported by 2nd 3rd
PowerShell verbs 2nd 3rd 4th
PowerShell window
PowerShell.exe file
precedence control ((…))
Process class
process keyword in scripts
process statement
profiles
properties
 instance
 static
PropertySet type
providers
PS > prompt
PsBase
.psl file extension
PSObject class 2nd
PSObject type shortcut
PSReference class
Publish verb
Publisher.Application object
Push verb
pushd command
pwd command

http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

quantifiers
question mark (?)
 ?!
 ?:
 ?<!
 ?<=
 ?=
 ?>
 ??
QuickEdit mode

http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

R format specifier 2nd
-r option
Random class
RDS.DataSpace object
Read verb
Receive verb
Ref type shortcut
Regex class 2nd
-regex option
Regex type shortcut
registry
Registry class
RegistryKey class
RegistrySecurity class
regular expressions
 backreference constructs
 case sensitivity in
 quantifiers
 whitespace in
Remove verb
Rename verb
-replace operator
Resolve verb
Restore verb

http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

s format specifier 2nd
SAPI.SpVoice object
scope of variables
screen buffer
 size
script blocks
ScriptBlock class
ScriptBlock type shortcut
Scripting.FileSystemObject object
Scripting.Signer object
Scriptlet.TypeLib object
ScriptMethod type
ScriptProperty type
ScriptPW.Password object
scripts
 commands in
 objects in
 running
 statement blocks in
 writing
 writing using history buffer
Search verb
SecureString class
security
Select verb
Send verb
SerialPort class
Set verb
Set-PsDebug cmdlet
SHA1 class
shortcuts for types
Show verb
single quote
single quotes ('…')
SmtpClient class
SoundPlayer class
Split verb
SqlCommand class
SqlConnection class
SqlDataAdapter class
ss format specifier
statement blocks 2nd
static methods
static properties
Stop verbose preference
Stopwatch class
StreamReader class
StreamWriter class
String class
string formatting
 date and time 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 numeric 2nd 3rd
StringBuilder class
StringReader class
strings 2nd 3rd

http://lib.ommolketab.ir

 escape sequences in
 replacing text in
StringWriter class
strongly typed arrays
strongly typed variables
substitution patterns
subtraction operator (-)
switch statement 2nd 3rd 4th
Switch type shortcut
SwitchParameter class
System.Math class

http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

T format specifier
t format specifier
tab
TcpClient class
Test verb
text format specifier
text selection
'text' format specifier
TextReader class
TextWriter class
Thread class
tokens
trace sources
Trace verb
Trace-Command cmdlet
tracing
trap statement
TripleDESCryptoService-Provider class
Truncate method
tt format specifier
Type class
type conversion operator (-as)
type operator (-is)
type shortcuts
TypeName class
TypeName type shortcut
types
types.ps1xml file

http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

U format specifier
Unix commands
Unlock verb
Unpublish verb
Up arrow hotkey
Update verb
Update-FormatData cmdlet
Update-TypeData cmdlet
Uri class
Use verb
user interface

http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Variable Provider
verbose output from commands
verbs 2nd 3rd
vertical tab

http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

-w option
web site resources
 PowerShell documentation
 WMI documentation
WebClient class
WellKnownSidType class
WhatIf parameter
while statement
whitespace
-wildcard option
wildcards
 in Get-Command cmdlet
 in parameters
 in switch statement
Win32_BaseBoard class
Win32_BIOS class
Win32_BootConfiguration class
Win32_CacheMemory class
Win32_CDROMDrive class
Win32_ComputerSystem class
Win32_ComputerSystemProduct class
Win32_DCOMApplication class
Win32_Desktop class
Win32_DesktopMonitor class
Win32_DeviceMemoryAddress class
Win32_Directory class
Win32_DiskDrive class
Win32_DiskPartition class
Win32_DiskQuota class
Win32_DMAChannel class
Win32_Environment class
Win32_Group class
Win32_IDEController class
Win32_IRQResource class
Win32_LoadOrderGroup class
Win32_LogicalDisk class
Win32_LogicalMemoryConfigu-ration class
Win32_LogonSession class
Win32_NetworkAdapter class
Win32_NetworkAdapterConfigu-ration class
WIN32_NetworkClient class
Win32_NetworkConnection class
Win32_NetworkLoginProfile class
Win32_NetworkProtocol class
Win32_NTDomain class
Win32_NTEventlogFile class
Win32_NTLogEvent class
Win32_OnBoardDevice class
Win32_OperatingSystem class
Win32_OSRecoveryConfiguration class
Win32_PageFileSetting class
Win32_PageFileUsage class
Win32_PerfRawData_PerfNet_Server class
Win32_PhysicalMemoryArray class
Win32_PortConnector class

http://lib.ommolketab.ir

Win32_PortResource class
Win32_Printer class
Win32_PrinterConfiguration class
Win32_PrintJob class
Win32_Process class
Win32_Processor class
Win32_Product class
Win32_QuickFixEngineering class
Win32_QuotaSetting class
Win32_Registry class
Win32_ScheduledJob class
Win32_SCSIController class
Win32_Service class
Win32_Share class
Win32_SoftwareElement class
Win32_SoftwareFeature class
WIN32_SoundDevice class
Win32_StartupCommand class
Win32_SystemAccount class
Win32_SystemDriver class
Win32_SystemEnclosure class
Win32_SystemSlot class
Win32_TapeDrive class
Win32_TemperatureProbe class
Win32_TimeZone class
Win32_UninterruptiblePower-Supply class
Win32_UserAccount class
Win32_VoltageProbe class
window
window size
Windows key + r hotkey
WindowsBuiltInRole class
WindowsIdentity class
WindowsPrincipal class
WMI (Windows Management Instrumentation)
 class categories
Wmi type shortcut
WmiClass type shortcut
WmiSearcher type shortcut
Write verb

http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

X format specifier
XML as data type
XML support
Xml type shortcut
XmlDocument class 2nd 3rd
XmlElement class
XmlTextWriter class
-xor (logical exclusive OR operator

http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Y format specifier
y format specifier
yy format specifier
yyy format specifier
yyyy format specifier
yyyyy format specifier

http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

z format specifier
zz format specifier
zzz format specifier

http://lib.ommolketab.ir

	Windows PowerShell Pocket Reference
	Table of Contents
	Copyright
	Preface
	Chapter 1. A Whirlwind Tour of Windows PowerShell
	Section 1.1. Introduction
	Section 1.2. An Interactive Shell
	Section 1.3. Structured Commands (Cmdlets)
	Section 1.4. Deep Integration of Objects
	Section 1.5. Administrators As First-Class Users
	Section 1.6. Composable Commands
	Section 1.7. Techniques to Protect You from Yourself
	Section 1.8. Common Discovery Commands
	Section 1.9. Ubiquitous Scripting
	Section 1.10. Ad-Hoc Development
	Section 1.11. Bridging Technologies
	Section 1.12. Namespace Navigation Through Providers
	Section 1.13. Much, Much More

	Chapter 2. PowerShell Language and Environment
	Section 2.1. Commands and Expressions
	Section 2.2. Comments
	Section 2.3. Variables
	Section 2.4. Booleans
	Section 2.5. Strings
	Section 2.6. Numbers
	Section 2.7. Arrays and Lists
	Section 2.8. Hashtables (Associative Arrays)
	Section 2.9. XML
	Section 2.10. Simple Operators
	Section 2.11. Comparison Operators
	Section 2.12. Conditional Statements
	Section 2.13. Looping Statements
	Section 2.14. Working with the .NET Framework
	Section 2.15. Writing Scripts, Reusing Functionality
	Section 2.16. Managing Errors
	Section 2.17. Formatting Output
	Section 2.18. Capturing Output
	Section 2.19. Tracing and Debugging
	Section 2.20. Common Customization Points

	Chapter 3. Regular Expression Reference
	Chapter 4. PowerShell Automatic Variables
	Chapter 5. Standard PowerShell Verbs
	Chapter 6. Selected .NET Classes and Their Uses
	Chapter 7. WMI Reference
	Chapter 8. Selected COM Objects and Their Uses
	Chapter 9. .NET String Formatting
	Section 9.1. String Formatting Syntax
	Section 9.2. Standard Numeric Format Strings
	Section 9.3. Custom Numeric Format Strings

	Chapter 10. .NET DateTime Formatting
	Section 10.1. Custom DateTime Format Strings

	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

