downloaded from: lib.ommolkefab.ir

"1Windows PowerShell Pocket Reference

by Lee Holmes
Wincloos

_L]:ﬂi"-'-"-'r'ﬁh'-'“ Publisher: O'Reilly

' Pub Date: May 20, 2008

Print ISBN-13: 978-0-596-52178-3
Pages: 174

Table of Contents
Index

Overview

This portable reference to Windows PowerShell summarizes both the command shell and scripting language, and
provides a concise reference to the major tasks that make PowerShell so successful. It's an ideal on-the-job tool
for Windows administrators who don't have time to plow through huge books or search online. Written by
Microsoft PowerShell team member Lee Holmes, and excerpted from his Windows PowerShell Cookbook,
Windows PowerShell Pocket Reference offers up-to-date coverage of PowerShell's 1.0 release. You'll find
Information on .NET classes and legacy management tools that you need to manage your system, along with
chapters on how to write scripts, manage errors, format output, and much more. Beginning with a whirlwind
tour of Windows PowerShell, this convenient guide covers:

e PowerShell language and environment

e Regular expression reference

e PowerShell automatic variables

e Standard PowerShell verbs

e Selected .NET classes and their uses

e \WMI reference

e Selected COM objects and their uses

e _NET string formatting

e .NET datetime formatting

An authoritative source of information about PowerShell since its earliest betas, Lee Holmes' vast experience
lets him incorporate both the "how" and the "why" into the book's discussions. His relationship with the
PowerShell and administration community -- through newsgroups, mailing lists, and his informative blog Lee
Holmes -- gives him insight into problems faced by administrators and PowerShell users alike. If you're ready to
learn this powerful tool without having to break stride in your routine, this is the book you want.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

Winckrows

downloaded from: lib.ommolkefab.ir

Windows PowerShell Pocket Reference
by Lee Holmes

DRl

Pomrershell

i 2

Table of Contents
Index

Copyright
Preface
Chapter 1. A Whirlwind Tour of Windows PowerShell

Section 1.1.
Section 1.2.
Section 1.3.
Section 1.4.
Section 1.5.
Section 1.6.
Section 1.7.
Section 1.8.
Section 1.9.
Section 1.10
Section 1.11
Section 1.12
Section 1.13

Publisher: O'Reilly

Pub Date: May 20, 2008

Print ISBN-13: 978-0-596-52178-3
Pages: 174

Introduction

An Interactive Shell

Structured Commands (Cmdlets)

Deep Integration of Objects
Administrators As First-Class Users
Composable Commands

Techniques to Protect You from Yourself
Common Discovery Commands
Ubiquitous Scripting

. Ad-Hoc Development

. Bridging Technologies

. Namespace Navigation Through Providers
. Much, Much More

Chapter 2. PowerShell Language and Environment

Section 2.1.
Section 2.2.
Section 2.3.
Section 2.4.
Section 2.5.
Section 2.6.
Section 2.7.
Section 2.8.
Section 2.9.

Section 2.10.
Section 2.11.
Section 2.12.
Section 2.13.
Section 2.14.
Section 2.15.
Section 2.16.
Section 2.17.
Section 2.18.
Section 2.109.
Section 2.20.

Commands and Expressions
Comments

Variables

Booleans

Strings

Numbers

Arrays and Lists

Hashtables (Associative Arrays)
XML

Simple Operators

Comparison Operators

Conditional Statements

Looping Statements

Working with the .NET Framework
Writing Scripts, Reusing Functionality
Managing Errors

Formatting Output

Capturing Output

Tracing and Debugging

Common Customization Points

Chapter 3.
Chapter 4.
Chapter 5.
Chapter 6.

Regular Expression Reference
PowerShell Automatic Variables
Standard PowerShell Verbs
Selected .NET Classes and Their Uses
Chapter 7. WMI Reference
Chapter 8. Selected COM Objects and Their Uses
Chapter 9. .NET String Formatting

Section 9.1. String Formatting Syntax

Section 9.2. Standard Numeric Format Strings

Section 9.3. Custom Numeric Format Strings
Chapter 10. .NET DateTime Formatting

Section 10.1. Custom DateTime Format Strings
Index

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Copyright

Copyright © 2008, O'Reilly Media. All rights reserved.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also
available for most titles (http://safari.oreilly.com). For more information, contact our corporate/institutional
sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Rellly logo are registered trademarks of O'Relilly
Media, Inc. The Pocket Reference series designations, Windows PowerShell Pocket Reference, the image of a box
turtle, and related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of a trademark

claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

downloaded from: lib.ommolkefab.ir

http://safari.oreilly.com
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Preface

Windows PowerShell introduces a revolution to the world of system management and command-line shells.
From its object-based pipelines, to its administrator focus, to its enormous reach into other Microsoft
management technologies, PowerShell drastically improves the productivity of administrators and power-users
alike.

Much of this power comes from providing access to powerful technologies: an expressive scripting language,
regular expressions, the .NET Framework, Windows Management Instrumentation (WMI), COM, the Windows
registry, and much more.

Although help for these technologies is independently available, it is scattered, unfocused, and buried among
documentation intended for a developer audience.

To solve that problem, this Pocket Reference summarizes the Windows PowerShell command shell and scripting
language, while also providing a concise reference for the major tasks that make it so successful.

P.1. Font Conventions

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLSs, filenames, and file extensions.

Constant w dt h

Indicates computer coding in a broad sense. This includes commands, options, elements, variables,
attributes, keys, requests, functions, methods, types, classes, modules, properties, parameters, values,
objects, events, event handlers, XML and XHTML tags, macros, and keywords.

Constant w dth bol d

Indicates commands or other text that the user should type literally.

Constant wwdth i1talic

Indicates text that should be replaced with user-supplied values or values determined by context.

P.2. Comments and Questions

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Please address comments and questions concerning this book to the publisher:

O'Rellly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

There is a web page for this book, which lists errata, examples, or any additional information. You can access
this page at:

http://www.oreilly.com/catalog/9780596521783
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For information about books, conferences, Resource Centers, and the O'Reilly Network, see the O'Reilly web site
at:

http://www.oreilly.com

P.3. Safari® Books Online

When you see a Safari® Books Online icon on the cover of your favorite technology book, that means the book
IS available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search thousands of
top tech books, cut and paste code samples, download chapters, and find quick answers when you need the
most accurate, current information. Try it for free at http://safari.oreilly.com.

downloaded from: lib.ommolkefab.ir

http://www.oreilly.com/catalog/9780596521783
http://www.oreilly.com
http://safari.oreilly.com
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 1. A Whirlwind Tour of Windows PowerShell

Introduction

An Interactive Shell

Structured Commands (Cmdlets)

Deep Integration of Objects
Administrators As First-Class Users
Composable Commands

Techniques to Protect You from Yourself
Common Discovery Commands
Ubiquitous Scripting

Ad-Hoc Development

Bridging Technologies

Namespace Navigation Through Providers

Much, Much More

1.1. Introduction

When learning a new technology, it is natural to feel bewildered at first by all the unfamiliar features and
functionality. This perhaps rings especially true for users new to Windows PowerShell, because it may be their
first experience with a fully featured command-line shell. Or worse, they've heard stories of PowerShell's

fantastic integrated scripting capabilities and fear being forced into a world of programming that they've actively
avoided until now.

Fortunately, these fears are entirely misguided: PowerShell is a shell that both grows with you and grows on
you. Let's take a tour to see what it is capable of:

e PowerShell works with standard Windows commands and applications. You don't have to throw away what
you already know and use.

e PowerShell introduces a powerful new type of command. PowerShell commands (called cmdlets) share a
common Ver b- Noun syntax and offer many usability improvements over standard commands.

e PowerShell understands objects. Working directly with richly structured objects makes working with (and

combining) PowerShell commands immensely easier than working in the plain-text world of traditional
shells.

e PowerShell caters to administrators. Even with all its advances, PowerShell focuses strongly on its use as

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

an interactive shell, and the experience of entering commands in a running PowerShell application.

e PowerShell supports discovery. Using three simple commands, you can learn and discover almost anything
PowerShell has to offer.

e PowerShell enables ubiquitous scripting. With a fully fledged scripting language that works directly from
the command line, PowerShell lets you automate tasks with ease.

e PowerShell bridges many technologies. By letting you work with .NET, COM, WMI, XML, and Active
Directory, PowerShell makes working with these previously isolated technologies easier than ever before.

e PowerShell simplifies management of data stores. Through its provider model, PowerShell lets you
manage data stores using the same technigues you already use to manage files and folders.

We'll explore each of these attributes in this introductory tour of PowerShell.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 1. A Whirlwind Tour of Windows PowerShell

Introduction

An Interactive Shell

Structured Commands (Cmdlets)

Deep Integration of Objects
Administrators As First-Class Users
Composable Commands

Techniques to Protect You from Yourself
Common Discovery Commands
Ubiquitous Scripting

Ad-Hoc Development

Bridging Technologies

Namespace Navigation Through Providers

Much, Much More

1.1. Introduction

When learning a new technology, it is natural to feel bewildered at first by all the unfamiliar features and
functionality. This perhaps rings especially true for users new to Windows PowerShell, because it may be their
first experience with a fully featured command-line shell. Or worse, they've heard stories of PowerShell's

fantastic integrated scripting capabilities and fear being forced into a world of programming that they've actively
avoided until now.

Fortunately, these fears are entirely misguided: PowerShell is a shell that both grows with you and grows on
you. Let's take a tour to see what it is capable of:

e PowerShell works with standard Windows commands and applications. You don't have to throw away what
you already know and use.

e PowerShell introduces a powerful new type of command. PowerShell commands (called cmdlets) share a
common Ver b- Noun syntax and offer many usability improvements over standard commands.

e PowerShell understands objects. Working directly with richly structured objects makes working with (and

combining) PowerShell commands immensely easier than working in the plain-text world of traditional
shells.

e PowerShell caters to administrators. Even with all its advances, PowerShell focuses strongly on its use as

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

an interactive shell, and the experience of entering commands in a running PowerShell application.

e PowerShell supports discovery. Using three simple commands, you can learn and discover almost anything
PowerShell has to offer.

e PowerShell enables ubiquitous scripting. With a fully fledged scripting language that works directly from
the command line, PowerShell lets you automate tasks with ease.

e PowerShell bridges many technologies. By letting you work with .NET, COM, WMI, XML, and Active
Directory, PowerShell makes working with these previously isolated technologies easier than ever before.

e PowerShell simplifies management of data stores. Through its provider model, PowerShell lets you
manage data stores using the same technigues you already use to manage files and folders.

We'll explore each of these attributes in this introductory tour of PowerShell.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.2. An Interactive Shell

At its core, PowerShell is first and foremost an interactive shell. While it supports scripting and other powerful
features, its focus as a shell underpins everything.

Getting started in PowerShell is a simple matter of launching PowerShell.exe rather than cmd.exe-the shells

begin to diverge as you explore the intermediate and advanced functionality, but you can be productive in
PowerShell immediately.

To launch Windows PowerShell, click:

Start ==* All Programs ==#* Windows PowerShell 1.0 Windows PowerShell
Or alternatively, click:

Start ==#* Run

and then type:

Power Shel |

A PowerShell prompt window opens that's nearly identical to the traditional command prompt window of
Windows XP, Windows Server 2003, and their many ancestors. The PS> prompt indicates that PowerShell is
ready for input, as shown in Figure 1-1.

Figure 1-1. Windows PowerShell, ready for input

Once you've launched your PowerShell prompt, you can enter DOS-style and Unix-style commands for

navigating around the filesystem, just as you would with any Windows or Unix command prompt-as in the
Interactive session shown in Example 1-1.

Example 1-1. Entering standard DOS-style file manipulation commmands in response to the

PowerShell prompt produces the same results you get when you use them with any other Windows
shell

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Code View:

PS C.\ Docunents and Settings\Lee> function Pronpt { "PS >" }
PS >pushd .

PS >cd \

PS >dir

Directory: Mcrosoft. Power Shell. Core\Fil eSystem : C:\

Mode Last WiteTi ne Lengt h Nane

d---- 11/ 2/ 2006 4. 36 AM $W NDOWG. ~BT

d---- 5/ 8/ 2007 8: 37 PM Bl ur par k

d---- 11/ 29/ 2006 2: 47 PM Boot

d---- 11/ 28/ 2006 2:10 PM DECCHECK

d---- 10/ 7/ 2006 4.30 PM Docunents and Setti ngs
d---- 5/ 21/ 2007 6: 02 PM F&SC- deno

d---- 4/ 2/ 2007 7:21 PM | net pub

d---- 5/ 20/ 2007 4:59 PM Program Fi |l es
d---- 5/ 21/ 2007 7:26 PM tenmp

d---- 5/ 21/ 2007 8: 55 PM W ndows

-a--- 1/ 7/ 2006 10: 37 PM O aut oexec. bat

-ar-s 11/ 29/ 2006 1: 39 PM 8192 BOOTSECT. BAK

-a--- 1/ 7/ 2006 10: 37 PM O config.sys

-a- - - 5/ 1/ 2007 8:43 PM 33057 RUU. | og

-a--- 4/ 2/ 2007 7:46 PM 2487 secedit.| NTEG RAW
PS >popd

PS >pwd

Pat h

C.\ Docunents and Setti ngs\Lee

As shown in Example 1-1, you can use the pushd, cd, dir, pwd, and popd commands to store the current

location, navigate around the filesystem, list items in the current directory, and then return to your original
location. Try it!

The pushd command is an alternative name (alias) to the much more descriptively
named PowerShell command, Push- Locat i on. Likewise, the cd, dir, popd, and pwd
commands all have more memorable counterparts.

Although navigating around the filesystem is helpful, so is running the tools you know and love, such as
| pconfi g and not epad. Type the command name and you'll see results like those shown in Example 1-2.

Example 1-2. Windows tools and applications, such as ipconfig, run in PowerShell just as they do Iin
the Windows prompt

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

PS >i pconfig
W ndows | P Configuration

Et hernet adapter Wrel ess Network Connection 4:

Connection-specific DNS Suffix . : hsdl.wa.contast. net.
| P Address. : 192.168.1.100

Subnet Mask : 255.255.255.0
Default Gateway : 192.168.1.1

PS >not epad
(not epad | aunches)

Entering | pconfi g displays the IP addresses of your current network connections. Entering not epad runs-as
you'd expect-the Notepad editor that ships with Windows. Try them both on your own machine.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.3. Structured Commands (Cmdlets)

In addition to supporting traditional Windows executables, PowerShell introduces a powerful new type of
command called a cmdlet (pronounced command-let.) All cmdlets are named in a Ver b- Noun pattern, such as

Get - Process, Get-Content, and St op- Process.
PS >Cet - Process - Nane | sass
Handl es NPMK) PMK) W5(K) VMM CPU(s) |Id ProcessNane

668 13 6228 1660 46 932 | sass

Once you know the handful of common verbs in PowerShell, learning how to work with
« new nouns becomes much easier. While you may never have worked with a certain
object before (such as a Service), the standard Get, Set, Start, and St op actions still

apply. For a list of these common verbs, see Chapter 5.

You don't always have to type these full cmdlet names, however. PowerShell lets you use the Tab key to auto-
complete cmdlet names and parameter names:

PS >CGet - Pr<Tab> - N<Tab> | sass

For quick interactive use, even that may be too much typing. For improved efficiency, PowerShell defines aliases
for all common commands and lets you define your own. In addition to alias names, PowerShell only requires
that you type enough of the parameter name to disambiguate it from the other parameters in that cmdlet.
PowerShell is also case-insensitive. Using the built-in gps alias that represents the Get - Process cmdlet (along

with parameter shortening), you can instead type:
PS >gps -n | sass
Going even further, PowerShell supports positional parameters on cmdlets. Positional parameters let you

provide parameter values in a certain position on the command line, rather than having to specify them by
name. The Get - Process cmdlet takes a process name as its first positional parameter. This parameter even

supports wildcards:

PS >gps | *s

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.4. Deep Integration of Objects

PowerShell begins to flex more of its muscle as you explore the way it handles structured data and richly
functional objects. For example, the following command generates a simple text string. Since nothing captures
that output, PowerShell displays it to you:

PS > Hello Wirl d"
Hel |l o Wor | d

The string you just generated is, in fact, a fully functional object from the .NET Framework. For example, you
can access its Lengt h property, which tells you how many characters are in the string. To access a property, you
place a dot between the object and its property name:

PS >"Hell o Worl d". Length
11

All PowerShell commands that produce output generate that output as objects as well. For example, the Get -
Process cmdlet generates a Syst em D agnosti cs. Process object, which you can store in a variable. In
PowerShell, variable names start with a $ character. If you have an instance of Notepad running, the following
command stores a reference to It:

$process = Get-Process not epad

Since this is a fully functional Pr ocess object from the .NET Framework, you can call methods on that object to
perform actions on it. This command calls the Ki | | () method, which stops a process. To access a method, you
place a dot between the object and its method name:

$process. Kill ()

PowerShell supports this functionality more directly through the St op- Process cmdlet, but this example
demonstrates an important point about your ability to interact with these rich objects.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.5. Administrators As First-Class Users

While PowerShell's support for objects from the .NET Framework quickens the pulse of most users, PowerShell
continues to focus strongly on administrative tasks. For example, PowerShell supports MB (for megabyte) and GB

(for gigabyte) as some of the standard administrative constants. For example, how many disks will it take to
back up a 40 GB hard drive to CD-ROM?

PS >40GB / 650MB
63. 0153846153846

Just because PowerShell is an administrator-focused shell doesn't mean you can't still use the .NET Framework
for administrative tasks, though! In fact, PowerShell makes a great calendar. For example, is 2008 a leap year?
PowerShell can tell you:

PS >[DateTine]::lsLeapYear (2008)
True

Going further, how might you determine how much time remains until summer? The following command
converts " 06/ 21/ 2008" (the start of summer) to a date, and then subtracts the current date from that. It stores
the result in the $resul t variable, and then accesses the Tot al Days property.

PS >$result = [DateTine] "06/21/2008" - [DateTine]:: Now

PS >$resul t. Tot al Days
283. 0549285662616

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.6. Composable Commands

Whenever a command generates output, you can use a pipeline character (]) to pass that output directly to
another command. If the second command understands the objects produced by the first command, it can
operate on the results.

You can chain together many commands this way, creating powerful compositions out of a few simple
operations. For example, the following command gets all items in the Pat hl directory and moves them to the

Pat h2 directory:

Get-Item Pathl* | Move-ltem -Destination Path2

You can create even more complex commands by adding additional cmdlets to the pipeline. In Example 1-3, the
first command gets all processes running on the system. It passes those to the Wier e- bj ect cmdlet, which

runs a comparison against each incoming item. In this case, the comparison is $. Handl es -ge 500, which
checks whether the Handl es property of the current object (represented by the $ variable) is greater than or
equal to 500. For each object in which this comparison holds true, you pass the results to the Sort - Cbj ect
cmdlet, asking it to sort items by their Handl es property. Finally, you pass the objects to the For nat - Tabl e
cmdlet to generate a table that contains the Handl es, Nanme, and Descri pti on of the process.

Example 1-3. You can build more complex PowerShell commands by using pipelines to link cmdlets,
as shown in this example with Get-Process, Where-Object, Sort Object, and Format-Table

PS >Cet - Process |

>> Where-nject { $.Handles -ge 500 } |

>> Sort-(Chj ect Handl es |

>> For mat - Tabl e Handl es, Nane, Descri ption - Autc
>>

Handl es Nane Descri ption

588 w nl ogon

592 svchost

667 | sass

725 csrss

742 System

964 WNWORD M crosoft O fice Wrd
1112 QUTLOOK M crosoft Ofice Qutl ook
2063 svchost

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.7. Technigques to Protect You from Yourself

While aliases, wildcards, and composable pipelines are powerful, their use in commands that modify system
Information can easily be nerve-wracking. After all, what does this command do? Think about it, but don't try it
just yet:

PS >gps [b-t]*[c-r] | Stop-Process

It appears to stop all processes that begin with the letters b through t and end with the letters ¢ through r.
How can you be sure? Let PowerShell tell you. For commands that modify data, PowerShell supports - What | f
and - Conf i r mparameters that let you see what a command would do:

PS >gps [b-t]*[c-r] | Stop-Process -whatif

What if: Perform ng operation "Stop-Process" on Target
"ctfnon (812)".

What if: Perform ng operation "Stop-Process" on Target
"Ditto (1916)".

What if: Perform ng operation "Stop-Process" on Target
"dsamain (316)".

What 1f: Perform ng operation "Stop-Process” on Target
"ehrecvr (1832)".

What if: Perform ng operation "Stop-Process" on Target
"ehSched (1852)".

What if: Perform ng operation "Stop-Process" on Target
"EXCEL (2092)".

VWhat if: Perform ng operation "Stop-Process" on Target
"explorer (1900)".

(...)

In this interaction, using the - What | f parameter with the St op- Pr ocess pipelined command lets you preview
which processes on your system will be stopped before you actually carry out the operation.

Note that this example is not a dare! In the words of one reviewer:

Not only did it stop everything, but on Vista, it forced a shutdown with only one minute warning!

It was very funny though.... At least | had enough time to save everything first!

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.8. Common Discovery Commands

While reading through a guided tour is helpful, 1 find that most learning happens in an ad-hoc fashion. To find
all commands that match a given wildcard, use the Get - Conmand cmdlet. For example, by entering the

following, you can find out which PowerShell commands (and Windows applications) contain the word pr ocess.

PS >CGet - Command *process*

CommandType Nanme Definition

Cndl et Get - Process Get-Process [[-Nane] <Str...
Appl i cation gprocess. exe c:\w ndows\systenB2\ gproc...
Cndl et St op- Process Stop-Process [-1d] <Int32...

To see what a command such as Get - Pr ocess does, use the Get - Hel p cmdlet, like this:
PS >CGet-Hel p Get-Process
Since PowerShell lets you work with objects from the .NET Framework, it provides the Get - Menber cmdlet to

retrieve information about the properties and methods that an object, such as a .NET System St ri ng, supports.
Piping a string to the CGet - Menber command displays its type name and its members:

Code View:
PS >"Hello World" | Get-Menber

TypeNane: System String

Name Menber Type Definition

(...)

PadLef t Met hod System String PadLeft(Int32 tota...

PadRi ght Met hod System String PadR ght (Int32 tot...

Renove Met hod System String Renove(lnt32 start. ..

Repl ace Met hod System String Replace(Char ol dCh. ..

Split Met hod System String[] Split(Paranms Cha...

StartsWth Met hod System Bool ean StartsWth(String...

Substring WMethod System String Substring(lnt32 st...

ToChar - System Char[] ToCharArray(), Sys...

Ar rayMet hod

ToLower Met hod System String ToLower (), System. ..

ToLower - Met hod System String ToLowerl nvari ant ()

| nvar i ant

ToStri ng Met hod System String ToString(), System..

ToUpper Met hod System String ToUpper(), System...

ToUpper - Met hod System String ToUpperlnvari ant ()

| nvar i ant

Trim Met hod System String Trin(Parans Char|[]. ..

Tri nEnd Met hod System String TrinkEnd(Parans Cha. ..

Trinttart Met hod System String TrintStart(Parans C. ..

Char s Paraneter- System Char Chars(Int32 index) {...
| zedPr operty

Lengt h Property System I nt32 Length {get;}

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.9. Ubiquitous Scripting

PowerShell makes no distinction between the commands you type at the command line and the commands you
write in a script. This means that your favorite cmdlets work in scripts and that your favorite scripting
techniques (such as the f or each statement) work directly on the command line.

For example, to add up the handle count for all running processes:

PS >$handl eCount = 0

PS >foreach($process in Get-Process) { $handl eCount +=
$pr ocess. Handl es }

PS >$handl| eCount

19403

While PowerShell provides a command (Measur e- Qbj ect) to measure statistics about collections, this short

example shows how PowerShell lets you apply technigues that normally require a separate scripting or
programming language.

In addition to using PowerShell scripting keywords, you can also create and work directly with objects from the
.NET Framework. PowerShell becomes almost like the C# immediate mode in Visual Studio. In Example 1-4, you
see how PowerShell lets you easily interact with the .NET Framework.

Example 1-4. Using objects from the .NET Framework to retrieve a web page and process its content

PS >$webC i ent = New (bj ect System Net.Webd i ent

PS >$content = $webd i ent. Downl oadString("http://blogs. msdn. com
Power Shel | /rss. aspx")

PS >$cont ent. Substri ng(0, 1000)

<?xm version="1.0" encodi ng="UTF-8" 7>

<?xm -styl esheet type="text/xsl" href="http://bl ogs. nedn. con
utility/ FeedStyl esheets/rss. xsl" nedi a="screen" ?>

<rss version="2.0"

xm ns:dc="http://purl.org/dc/elenents/1.1/"

xm ns:slash="http://purl.org/rss/ 1. 0/ nodul es/ sl ash/"

xmns: Ww="http://wellfornmedweb. or g/ Conment APl / " ><channel >
<title>Wndo

(...)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.10. Ad-Hoc Development

By blurring the lines between interactive administration and writing scripts, the history buffer of PowerShell
sessions quickly becomes the basis for ad-hoc script development. In this example, you call the Get - H story
cmdlet to retrieve the history of your session. For each of those items, you get its ConmandLi ne property (the

thing you typed) and send the output to a new script file.

PS >Get-Hi story | Foreach-Cbject { $.ComandLine } >
c:\tenmp\script.psl

PS >notepad c:\tenp\script.psl

(save the content you want to keep)

PS >c:\tenp\script.psl

If this is the first time you've run a script in PowerShell, you will need to configure your
« Execution Policy. For more information, type 'hel p about _si gni ng".

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.11. Bridging Technologies

We've seen how PowerShell lets you fully leverage the .NET Framework in your tasks, but its support for
common technologies stretches even further. As Example 1-5 shows, PowerShell supports XML.

Example 1-5. Working with XML content in PowerShell

PS >$xm Content = [xm] $cont ent
PS >$xnl Cont ent

Xm xm - styl esheet r'ss

I'ss
PS >$xnl Content.rss

version : 2.0

dc . http://purl.org/dc/elenents/ 1.1/

sl ash . http://purl.org/rss/ 1. 0/ nodul es/ sl ash/
wf w . http://wellfornmedweb. or g/ Conment API /
channel : channel

PS >$xm Content.rss.channel .item| select Title

title

CMVD. exe conpatibility

Time Stanping Log Files

M crosoft Conpute Cluster now has a Power Shell Provider anc
Cndl et s

The Virtuous Cycle: .NET Devel opers using Power Shel |
(...)

And Windows Management Instrumentation (WMI):
PS >Get - Wn (bj ect Wn32_Bi os

SMBI OSBI OSVer si on : ASUS A7N8X Del uxe ACPI BI OS Rev 1009

Manuf act ur er . Phoeni x Technol ogi es, LTD
Name . Phoeni x - Awar dBI OGS v6. 00PG
Seri al Nunber LOXXX XXX XXX XX

Ver si on . Nvidia - 42302e31

Or, as Example 1-6 shows, Active Directory Service Interfaces (ADSI).

Example 1-6. Working with Active Directory in PowerShell

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Code View:

PS >[ADSI|] "WnNT://./Adm nistrator" | Format-List *
User Fl ags {66113}

Max St or age {-1}

Passwor dAge { 19550795}

Passwor dExpi r ed {0}

Logi nHour s

Ful | Name
Descri ption

BadPasswor dAtt enpt s
Last Logi n

HoneDi rectory

Logi nScr i pt

Profile

HoneDirDri ve

Par anet er s
PrimaryG oupl D

Name

M nPasswor dLengt h
MaxPasswor dAge

M nPasswor dAge

Passwor dH st orylLengt h

Aut oUnl ockl nt er val

Lockout Cbser vati onl nt erval
Max BadPasswor dsAl | owed
RasPer m ssi ons

obj ect Si d

{255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 255}

{}

{Built-in account for

adm ni stering the conputer/
domai n}

{0}

{5/21/ 2007 3:00: 00 AM

{}

{}

{}

{}

{}
{513}

{ Adm ni strator}

{0}

13710851}

{0}

{0}

{1800}

{1800}

{0}

{1}

{1500000521000 121 227
252 83 122 130 50 34 67 23 10 50
244 1 0 0}

Or, as Example 1-7 shows, even scripting traditional COM objects.

Example 1-7. Working with COM objects in PowerShell

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

PS >$firewal | = New (bj ect

-com HNet Cf g. FwMgr

PS >$firewal | . Local Policy.CurrentProfile

Type
Fi r ewal | Enabl ed
Except i onsNot Al | owed

Noti ficationsD sabl ed

Uni cast ResponsesToMul ti -

cast Br oadcast D sabl ed
Renot eAdm nSet ti ngs

| cnpSettings

d obal | yOpenPort s

Servi ces

Aut hori zedAppl i cati ons

downloaded from: lib.ommolkefab.ir

1

Tr ue
Fal se
Fal se

Fal se

System __ Contj ect

System __ Contj ect

{ Medi a Center Extender Service,
Renote Medi a Center EXxperience,
Adam Test | nstance, QMVE...}
{File and Printer Sharing, UPnF
Franmewor k, Renote Deskt op}

{ Renot e Assi stance, W ndows
Messenger, Media Center,
Trillian...}

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.12. Namespace Navigation Through Providers

Another avenue PowerShell provides for working with the system is a providers. PowerShell providers let you
navigate and manage data stores using the same techniques you already use to work with the filesystem, as
Illustrated in Example 1-8.

Example 1-8. Navigating the filesystem

PS >Set-Location c:\
PS >dir

Directory: Mcrosoft. PowerShell. Core\Fil eSystem: C:\

Mode Last WiteTi ne Length Nanme

d---- 11/ 2/ 2006 4. 36 AM $W NDOWGS. ~BT

d---- 5/ 8/ 2007 8: 37 PM Bl ur par k

d---- 11/ 29/ 2006 2:47 PM Boot

d---- 11/ 28/ 2006 2:10 PM DECCHECK

d---- 10/ 7/ 2006 4.30 PM Docunent s and
Settings

d---- 5/ 21/ 2007 6: 02 PM F&SC- deno

d---- 4/ 2/ 2007 7:21 PM | net pub

d---- 5/ 20/ 2007 4:59 PM Program Fi |l es

d---- 5/ 21/ 2007 11:47 PM tenmp

d---- 5/ 21/ 2007 8: 55 PM W ndows

-a--- 1/ 7/ 2006 10: 37 PM O aut oexec. bat

-ar-s 11/ 29/ 2006 1: 39 PM 8192 BOOTSECT. BAK

-a--- 1/ 7/ 2006 10: 37 PM O config.sys

-a- - - 5/ 1/ 2007 8:43 PM 33057 RUU. | og

-a- - - 4/ 2/ 2007 7:46 PM 2487 secedit. | NTEG RAV

This also works on the registry, as shown in Example 1-9.

Example 1-9. Navigating the registry

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

PS >Set - Locati on HKCU: \ Sof t ware\ M cr osof t \ W ndows\
PS >Get-Childltem

Hi ve: M crosoft. Power Shel | . Core\ Regi stry: : HKEY CURRENT USER\

Sof t war e\ M cr osoft\ W ndows

SKC VC Nane Property
30 1 Current Version {1 SC}
3 1 Shel | { BagMRU Si ze}
4 2 Shel | NoRoam {(default), BagMRU Si ze}

PS >Set - Locati on Current Versi on\ Run
PS >Cet-ItenProperty .

(...)

Fol der Shar e "C.\ Program Fi | es\ Fol der Shar e\
Fol der Shar e. exe" /background
d:\l ee\tool s\ TaskSw t chXP. exe
C. \ W NDOAE\ syst en32\ ct f non. exe

C\ProgramFiles\Ditto\D tto. exe

TaskSw t chXP
ct f non. exe
Dtto

(...)

Or even the machine’'s certificate store, as Example 1-10 illustrates.

Example 1-10. Navigating the certificate store

PS >Set-Location cert:\Current User\ Root
PS >Get-Childltem

Directory: Mcrosoft. Power Shell. Security\Certificate::
Current User \ Root

Thunbpri nt

CDDAEEAE6000AC/F40C3802C171E30148030C072

BE36A4562FB2EEOSDBB3D32323ADF445084ED656

A43489159A520F0D93D032CCAF37E/FE20A8B419
OFE47B4D05D46ES066BAB1D1BFCOE48F1DBEGB26
/F88CD7223F3C813818C994614A89CO9FA3B5247

245CO9/DF/514E7CF2DF8BE72AE9S57BOEO4741E85

downloaded from: lib.ommolkefab.ir

Subj ect

CN=M crosoft Root
Certificate...
CN=Thaw e

Ti mest anpi ng CA,
CN=M crosoft Root
Aut hority,
CN=Power Shel |
Certifica...
CN=M crosoft
Aut henti code(tm. ..
OU=Copyri ght (c)
1997 M croso. ..

Local

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.13. Much, Much More

As exciting as this guided tour was, it barely scratches the surface of how you can use PowerShell to improve
your productivity and systems management skills. For more information about getting started in PowerShell,
see the "Getting Started" and "User Guide" files included in the Windows PowerShell section of your Start menu.
For a cookbook-style guide to PowerShell (and hard-won solutions to its most common problems), you may be

Interested in the source of the material in this pocket reference: my book Windows PowerShell Cookbook
(O'Reilly).

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 2. PowerShell Language and Environment

Commands and Expressions
Comments

Variables

Booleans

Strings

Numbers

Arrays and Lists

Hashtables (Associative Arrays)
XML

Simple Operators

Comparison Operators

Conditional Statements

Looping Statements

Working with the .NET Framework
Writing Scripts, Reusing Functionality
Managing Errors

Formatting Output

Capturing Output

Tracing and Debugging

Common Customization Points

2.1. Commands and Expressions

PowerShell breaks any line that you enter into its individual units (tokens), and then interprets each token in
one of two ways: as a command or as an expression. The difference is subtle: expressions support logic and
flow control statements (such asif, foreach, andthrow) while commands do not. You will often want to

control the way that Windows PowerShell interprets your statements, so Table 2-1 lists the available options.

Table 2-1. Windows PowerShell evaluation controls

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Statement

Precedence
control:()

EXpression
subparse: $(0)

List
evaluation:@()

Example Explanation

PS >5 * (1 + 2) Forces the evaluation of a command or expression, similar to how
15 parentheses force the order of evaluation in a math expression.

PS >(dir). Count
2276

Forces the evaluation of a command or expression, similar to how
parentheses force the order of evaluation in a mathematical
expression. However, a subparse is as powerful as a subprogram,
and is required only when it contains logic or flow control
statements. This statement is also used to expand dynamic
Information inside a string.

PS >"The answer 1S
(2+2)"

The answer is (2+2)

PS >"The answer 1S

$(2+2)"
The answer 1s 4

PS >%$val ue = 10

PS >$result = $(
>> | f($val ue -gt 0)
{ $true }
el se { $false }
>>)
>>
PS >%result
True

PS >"Hel |l 0". Length Forces an expression to be evaluated as a list. If it is already a

5 list, it will remain a list. If it is not, PowerShell temporarily treats
PS >@"Hel | 0"). Length It asone.
1
PS >(Get-Childltem.
Count
12

PS >(Get-Childltem
*.txt). Count

PS >@ CGet-Childltem
*.txt). Count

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 2. PowerShell Language and Environment

Commands and Expressions
Comments

Variables

Booleans

Strings

Numbers

Arrays and Lists

Hashtables (Associative Arrays)
XML

Simple Operators

Comparison Operators

Conditional Statements

Looping Statements

Working with the .NET Framework
Writing Scripts, Reusing Functionality
Managing Errors

Formatting Output

Capturing Output

Tracing and Debugging

Common Customization Points

2.1. Commands and Expressions

PowerShell breaks any line that you enter into its individual units (tokens), and then interprets each token in
one of two ways: as a command or as an expression. The difference is subtle: expressions support logic and
flow control statements (such asif, foreach, andthrow) while commands do not. You will often want to

control the way that Windows PowerShell interprets your statements, so Table 2-1 lists the available options.

Table 2-1. Windows PowerShell evaluation controls

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Statement

Precedence
control:()

EXpression
subparse: $(0)

List
evaluation:@()

Example Explanation

PS >5 * (1 + 2) Forces the evaluation of a command or expression, similar to how
15 parentheses force the order of evaluation in a math expression.

PS >(dir). Count
2276

Forces the evaluation of a command or expression, similar to how
parentheses force the order of evaluation in a mathematical
expression. However, a subparse is as powerful as a subprogram,
and is required only when it contains logic or flow control
statements. This statement is also used to expand dynamic
Information inside a string.

PS >"The answer 1S
(2+2)"

The answer is (2+2)

PS >"The answer 1S

$(2+2)"
The answer 1s 4

PS >%$val ue = 10

PS >$result = $(
>> | f($val ue -gt 0)
{ $true }
el se { $false }
>>)
>>
PS >%result
True

PS >"Hel |l 0". Length Forces an expression to be evaluated as a list. If it is already a

5 list, it will remain a list. If it is not, PowerShell temporarily treats
PS >@"Hel | 0"). Length It asone.
1
PS >(Get-Childltem.
Count
12

PS >(Get-Childltem
*.txt). Count

PS >@ CGet-Childltem
*.txt). Count

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.2. Comments

To create single-line comments, begin a line with the # character. Windows PowerShell does not support
multiline comments, but you can deactivate larger regions of your script by placing them in a here string:

This I1s a regular coment
Start of the here string
$null = @

function MyTest

{

}

"Thi s should not be considered a function"

10;

$nyVari abl e

@
End of the here string

This Is regular script again

See "Strings" to learn more about here strings.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.3. Variables

Windows PowerShell provides several ways to define and access variables, as summarized in Table 2-2.

Table 2-2. Windows PowerShell variable syntaxes

Syntax

$si npl evVari abl e = "Val ue"

${arbitrary! @@t {var }iable} =
"Val ue”

${c:\fil enane. ext ensi on}

[dat at ype] $vari abl e "Val ue"

$SCOPE: vari abl e

New- | t em
Var i abl e: \ vari abl e-Val ue val ue

Get-l1tem Vari abl e: \ vari abl eGet -
Vari abl e vari abl e

New Var i abl e vari abl e- Opti on
opt i on- Val ue val ue

downloaded from: lib.ommolkefab.ir

Meaning

A simple variable name. The variable name must consist of
alphanumeric characters. Variable names are not case sensitive.

An arbitrary variable name. The variable name must be surrounded by
curly braces, but may contain any characters. Curly braces in the
variable name must be escaped with a backtick (7).

Variable "Get and Set Content"” syntax. This is similar to the arbitrary
variable name syntax. If the name corresponds to a valid PowerShell
path, you can get and set the content of the item at that location by

reading and writing to the variable.

Strongly typed variable. Ensures that the variable may contain only
data of the type you declare. PowerShell throws an error if it cannot
coerce the data to this type when you assign it.

Gets or sets the variable at that specific scope. Valid scope names are
gl obal (to make a variable available to the entire shell), scri pt (to

make a variable available only to the current script), | ocal (to make a

variable available only to the current scope and subscopes), and
pri vat e (to make a variable available only to the current scope). The

default scope is the current scope: gl obal when defined interactively In
the shell, scri pt when defined outside any functions or script blocks in
a script, and | ocal elsewhere.

Creates a new variable using the Variable Provider.

Gets the variable using the Variable Provider or Get - Vari abl e cmdlet.

This lets you access extra information about the variable, such as its
options and description.

Creates a variable using the New Var i abl e cmdlet. This lets you provide

extra information about the variable, such as its options and
description.

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Unlike some languages, PowerShell rounds (not truncates) numbers when it converts
« them to the [i nt] data type:

PS >(3/2)

1.5

PS >[int] (3/2)
2

To have PowerShell truncate a number, use the static Tr uncat e method in the Math
class:

PS >[Mat h] : : Truncat e(3/ 2)
1

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.4. Booleans

Boolean (true or false) variables are most commonly initialized to their literal values of $t r ue and $f al se.
When it evaluates variables as part of a Boolean expression (for example, ani f statement), though, PowerShell
maps them to a suitable Boolean representation, as listed in Table 2-3.

Table 2-3. Windows PowerShell Boolean interpretations

Result Boolean representation
$true True
$f al se False
$nul | False
Nonzero number True
Zero False
Nonempty string True
Empty string False
Nonempty array True
Empty array False
Hashtable (either empty or not) True

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.5. Strings

Windows PowerShell offers several facilities for working with plain-text data.

2.5.1. Literal and Expanding Strings

To define a literal string (one in which no variable or escape expansion occurs), enclose it in single quotes:

$nyString = 'hello 't $ENV: Syst enRoot "

$nyStri ng gets the actual value of hel l o 't $ENV: Syst enRoot .

To define an expanding string (one in which variable and escape expansion occurs), enclose it in double quotes:

$nyString = "hello 't $ENV: Syst enRoot "

$nyStri ng gets a value similar to hel |l o C. \ W NDO\B.

To include a single quote in a single-quoted string or a double guote in a double-quoted string, you may include
two of the quote characters in a row:

PS >"Hello ""There""!"
Hell o "There"!
PS > Hello '' There'"'!"
Hell o ' There'!

To Iinclude a complex expression inside an expanding string, use a subexpression. For
example:

$pronpt = "$(Get-Location) >"

$pronpt gets a value similar to c:\tenp >.

Accessing the properties of an object requires a subexpression:

$out put = "Current script name is:
$($nyl nvocat i on. MyCommand. Pat h) "

$out put gets a value similar to Current script nane is c:\Test-Script. psl.

2.5.2. Here Strings

To define a here string (one that may span multiple lines), place the two characters @" at the beginning, and
the two characters "@ on their own line at the end.

For example:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

$nyHereString = @

This text may span nmultiple |ines, and nay

contain "quotes".

'@

Here strings may be of either the literal (single-quoted) or expanding (double quoted) variety.

2.5.3. Escape Sequences

Windows PowerShell supports escape sequences inside strings, as listed in Table 2-4.

Seguence

N\

Vv

"(Two single guotes)

(Two double
quotes)

<any ot her
char act er>

downloaded from: lib.ommolkefab.ir

Table 2-4. Windows PowerShell escape sequences

Meaning

The null character. Often used as a record separator.
The alarm character. Generates a beep when displayed on the console.

The backspace character. The previous character remains in the string but is
overwritten when displayed on the console.

A form feed. Creates a page break when printed on most printers.
A newline.

A carriage return. Newlines in PowerShell are indicated entirely by the " n character, so
this is rarely required.

A tab.
A vertical tab.

A single quote, when in a literal string.

A double quote, when in an expanding string.

That character, taken literally.

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.6. Numbers

PowerShell offers several options for interacting with numbers and numeric data.

2.6.1. Simple Assignment

To define a variable that holds numeric data, simply assign it as you would other variables. PowerShell
automatically stores your data in a format that is sufficient to accurately hold it.

$nylnt = 10

$nyl nt gets the value of 10, as a (32-bit) integer.

$nyDoubl e = 3. 14

$nyDoubl e gets the value of 3. 14, as a (53-bit, 9 bits of precision) double.

To explicitly assign a number as a long (64-bit) integer or decimal (96-bit, 96 bits of precision), use the long
and decimal suffixes:

$myLong = 2147483648L

$nmyLong gets the value of 2147483648, as a long integer.

$nyDeci mal = 0.999D

$nyDeci mal gets the value of 0. 999.

PowerShell also supports scientific notation:

$nyPi = 3141592653e-9

$nyPi gets the value of 3. 141592653.

The data types in PowerShell (integer, long integer, double, and decimal) are built on the .NET data types of the
same name.

2.6.2. Administrative Numeric Constants

Since computer administrators rarely get the chance to work with numbers in even powers of ten, PowerShell
offers the numeric constants of gb, nb, and kb to represent gigabytes, megabytes, and kilobytes, respectively:

PS >$downl oadTine = (1gb + 250nb) / 120kb
PS >$downl oadTi ne
10871. 4666666667

2.6.3. Hexadecimal and Other Number Bases

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

To directly enter a hexadecimal number, use the hexadecimal prefix 0x:

$nyError Code = OxFE4A

$nyErr or Code gets the integer value 65098.

The PowerShell scripting language does not natively support other number bases, but its support for interaction
with the .NET Framework enables conversion to and from binary, octal, decimal, and hexadecimal:

$nyBinary = [Convert]::Tolnt32("101101010101", 2)

$nyBi nary gets the integer value of 2901.

$nyCctal = [Convert]:: Tolnt32("1234567", 8)

$nyCct al gets the integer value of 342391.

$nyHexString = [Convert]::ToString(65098, 16)

$nmyHexSt ri ng gets the string value of f e4a.

$nyBinaryString = [Convert]::ToString(12345, 2)

$nyBi narySt ri ng gets the string value of 11000000111001.

See "Working with the .NET Framework," later in this chapter, to learn more about using
PowerShell to interact with the .NET Framework.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.7. Arrays and Lists
2.7.1. Array Definitions

PowerShell arrays hold lists of data. The @ () (array cast) syntax tells PowerShell to treat the contents between
the parentheses as an array. To create an empty array, type:

$nyArray = @)

To define a nonempty array, use a comma to separate its elements:

$nySi npl eArray = 1,"Two", 3. 14

Arrays may optionally be only a single element long:

$nyList = ,"Hello"

Or, alternatively (using the array cast syntax):

$nyList = @"Hello")

Elements of an array do not need to be all of the same data type, unless you declare it as a strongly typed
array. In the following example, the outer square brackets define a strongly typed variable (as mentioned in
"Variables," earlier in this chapter), and i nt[] represents an array of integers:

[int[]] $myArray = 1,2,3.14

In this mode, PowerShell throws an error if it cannot convert any of the elements in your list to the required
data type. In this case, it rounds 3. 14 to the integer value of 3.

PS >$nyArray| 2]
3

To ensure that PowerShell treats collections of uncertain length (such as history lists or
directory listings) as a list, use the list evaluation syntax @(...) described in "Commands
and Expressions," earlier in this chapter.

Arrays can also be multidimensional "jagged" arrays-arrays within arrays:

$nul ti Di nensional = @
(1,2, 3,4),
(5,6,7,8)

$rmul ti D nensional [0] [1] returns 2, coming from row O, column 1.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

$rmul ti D nensi onal [1] [3] returns 8, coming from row 1, column 3.

To define a multidimensional array that is not jagged, create a multidimensional instance of the .NET type. For
Integers, that would be an array of System I nt 32:

$nul tidi nensional = New Gbject "Int32[,]" 2,4
$nul tidinmensional [0,1] = 2
$nul tidinensional[1,3] = 8

2.7.2. Array Access

To access a specific element in an array, use the [] operator. PowerShell numbers your array elements starting
at 0. Using $nyArray = 1, 2, 3,4, 5, 6 as an example:

$nyArray[0]

Returns 1, the first element in the array.

$nyArray[2]

Returns 3, the third element in the array.

$nyArray][-1]

Returns 6, the last element in the array.

$nyArray] - 2]

Returns 5, the second-to-last element in the array.

You can also access ranges of elements in your array:

PS >$nyArray[0. . 2]
1
2
3

Returns elements 0 through 2, inclusive.

PS >$nyArray[-1.. 2]
6

1
2
3

Returns the final element, wraps around, and returns elements 0 through 2, inclusive. PowerShell wraps around
because the first number in the range is positive, and the second number in the range is negative.

PS >$nyArray[-1..-3]

6
5

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Returns the last element in the array through to the third-to-last element in the array in decreasing order.
PowerShell does not wrap around (and therefore scans backward in this case) because both numbers in the
range share the same sign.

2.7.3. Array Slicing

You can combine several of the above statements at once to extract more complex ranges from an array. Use
the + sign to separate array ranges from explicit indexes:

$nyArray[0, 2, 4]

Returns the elements at indices 0, 2, and 4.

$nyArray[0, 2+4. . 5]

Returns the elements at indices 0, 2, and 4 through 5, inclusive.

$nyArray[, 0+2. . 3+0, O]

Returns the elements at indices 0, 2 through 3 inclusive, 0, and 0 again.

You can use the array slicing syntax to create arrays as well:

$nyArray = ,0+2..3+0,0

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.8. Hashtables (Associative Arrays)
2.8.1. Hashtable Definitions

PowerShell hashtables (or associative arrays) let you associate keys with values. To define a hashtable, use the
syntax:

$nyHasht able = @}

You can initialize a hashtable with its key/value pairs when you create it. PowerShell assumes that the keys are
strings, but the values may be any data type.

$nyHashtable = @ Keyl = "Val uel”;
"Key 2" =1,2,3;, 3.14 = "hPi" }

2.8.2. Hashtable Access

To access or modify a specific element in an associative array, you may use either the array-access or property-
access syntax:

$nyHasht abl e[" Key1"]

Returns " Val uel" .

$nmyHasht abl e. " Key 2"

Returns the array 1, 2, 3.

$nyHasht abl e["New Itenf] =5

Adds "New |t eni' to the hashtable.

$nyHasht abl e. "New Itenf' = 5

Also adds "New |t ent to the hashtable.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.9. XML

PowerShell supports XML as a native data type. To create an XML variable, cast a string to the [xm] type:

SnyXm = [xmM] @
<Addr essBook>
<Per son cont act Type="Per sonal ">
<Nane>Lee</ Nane>
<Phone type="home">555-1212</ Phone>
<Phone type="wor k" >555-1213</ Phone>
</ Per son>
<Per son cont act Type="Busi ness" >
<Nane>Ar i el </ Nanme>
<Phone>555-1234</ Phone>
</ Per son>
</ Addr essBook>

@

PowerShell exposes all child nodes and attributes as properties. When it does this, PowerShell automatically
groups children that share the same node type:

$nyXm . Addr essBook

Returns an object that contains a Per son property.

$nyXm . Addr essBook. Per son

Returns a list of Per son nodes. Each Per son node exposes cont act Type, Nanme, and Phone as properties.

$nyXnl . Addr essBook. Per son[0]

Returns the first Per son node.

$ny Xm . Addr essBook. Per son[0] . Cont act Type

Returns Per sonal as the contact type of the first Per son node.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The XML data type wraps the .NET Xm Docunent and Xml El enent classes. Unlike most

= PowerShell .NET wrappers, this wrapper does not expose the properties from the

underlying class because they may conflict with the dynamic properties that PowerShell
adds for node names.

To access properties of the underlying class, use the PsBase property. For example:

$nyXnm . PsBase. | nner Xni

See "Working with the .NET Framework," later in this chapter, to learn more about using
PowerShell to interact with the .NET Framework.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.10. Simple Operators

Once you've defined your data, the next step is to work with it.

2.10.1. Arithmetic Operators

The arithmetic operators let you perform mathematical operations on your data, as shown in Table 2-5.

Table 2-5. Windows PowerShell arithmetic operators

Operator Meaning

+ The addition operator:
$l ef t Val ue + $right Val ue

When used with numbers, returns their sum.
When used with strings, returns a new string created by appending the second string to the first.
When used with arrays, returns a new array created by appending the second array to the first.

When used with hashtables, returns a new hashtable created by merging the two hashtables. Since
hashtable keys must be unique, PowerShell returns an error if the second hashtable includes any
keys already defined in the first hashtable.

When used with any other type, PowerShell uses that type's addition operator (op_ Addi ti on) if it
Implements one.

- The subtraction operator:
$l ef t Val ue - $ri ght Val ue

When used with numbers, returns their difference.
This operator does not apply to strings.
This operator does not apply to arrays.

This operator does not apply to hashtables.

When used with any other type, PowerShell uses that type's subtraction operator
(op_Subtraction) if it implements one.

* The multiplication operator:
$l eft Val ue * $ri ght Val ue

When used with numbers, returns their product.

When used with strings ("=" * 80), returns a new string created by appending the string to itself
the number of times you specify.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Operator Meaning

%

When used with arrays (1..3 * 7), returns a new array created by appending the array to itself
the number of times you specify.

This operator does not apply to hashtables.

When used with any other type, PowerShell uses that type's multiplication operator (op_Mil ti ply)
If It Implements one.

The division operator:
$l eft Val ue / $right Val ue

When used with numbers, returns their quotient.
This operator does not apply to strings.

This operator does not apply to arrays.

This operator does not apply to hashtables.

When used with any other type, PowerShell uses that type's multiplication operator (op_Di vi si on)
If it iImplements one.

The modulus operator:
$l ef t Val ue % $ri ght Val ue

When used with numbers, returns the remainder of their division.
This operator does not apply to strings.

This operator does not apply to arrays.

This operator does not apply to hashtables.

When used with any other type, PowerShell uses that type's multiplication operator (op_NModul us)
If It Implements one.

Assignment operators:
$vari abl e operator = val ue

These operators match the simple arithmetic operators (+, -, *, /, and %) but store the result in
the variable on the lefthand side of the operator. It is a short form for
$vari abl e = $vari abl e operator val ue

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The Syst em Mat h class in the .NET Framework offers many powerful operations in
= addition to the native operators supported by PowerShell:

PS >[Math]:: Pow([Math]::E, [Math]::Pi)
23. 1406926327793

See "Working with the .NET Framework," later in this chapter, to learn more about using
PowerShell to interact with the .NET Framework.

2.10.2. Logical Operators

The logical operators let you compare Boolean values, as shown in Table 2-6.

Table 2-6. Windows PowerShell logical operators

Operator Meaning

- and

- Ofr

- XOr

- not !

Logical AND:
$l eft Val ue -and $ri ght Val ue

Returns $t r ue if both lefthand and righthand arguments evaluate to $t r ue. Returns $f al se
otherwise.

You can combine several - and operators in the same expression:
$val uel -and $val ue2 -and $val ue3d ...

PowerShell implements the - and operator as a short-circuit operator, and evaluates arguments
only if all arguments preceding it evaluate to $true.

Logical OR:
$l eft Val ue -or $right Val ue

Returns $t r ue if the lefthand or righthand arguments evaluate to $t r ue. Returns $f al se otherwise.
You can combine several - or operators in the same expression:
$val uel -or $value2 -or $value3d ...

PowerShell implements the - or operator as a short-circuit operator and evaluates arguments only
If all arguments preceding it evaluate to $f al se.

Logical Exclusive OR:
$l ef t Val ue -xor $right Val ue

Returns $t r ue if either the lefthand or righthand argument evaluates to $t r ue, but not if both do.
Returns $f al se otherwise.

Logical NOT:
-not $val ue

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Operator Meaning

Returns $t r ue if its (only) righthand argument evaluates to $f al se.

Returns $f al se otherwise.

2.10.3. Binary Operators

The binary operators listed in Table 2-7 let you apply the Boolean logical operators bit by bit to the operator's
arguments. When comparing bits, a 1 represents $t r ue, while a 0 represents $f al se.

Table 2-7. Windows PowerShell binary operators

Operator Meaning

- band

- bor

- bxor

Binary AND:
$l ef t Val ue -band $ri ght Val ue

Returns a number where bits are set to 1 if the bits of the lefthand and righthand arguments at
that position are both 1. All other bits are set to 0. For example:
PS >%$bool eanl = "110110110"

PS >$bool ean2 = "010010010"

PS >$intl = [Convert]:: Tol nt 32($bool eanl, 2)
PS >$int2 = [Convert]:: Tol nt32($bool ean2, 2)
PS >$result = $intl -band $int2

PS >[Convert]::ToString($result, 2)

10010010

Binary OR:
$l ef t Val ue -bor $rightVal ue

Returns a number where bits are set to 1 if either of the bits of the lefthand and righthand
arguments at that position is 1. All other bits are set to 0. For example:
PS >$bool eanl = "110110110"

PS >$bool ean2 = "010010010"

PS >$intl = [Convert]:: Tol nt32($bool eanl, 2)
PS >$int2 = [Convert]:: Tol nt 32($bool ean2, 2)
PS >$result = $intl -bor $int2

PS >[Convert]:: ToString($result, 2)
110110110

Binary Exclusive OR:
$l ef t Val ue -bxor $ri ght Val ue

Returns a number where bits are set to 1 if either of the bits of the lefthand or righthand
arguments at that position is 1, but not if both are. All other bits are set to 0. For example:
PS >%$bool eanl = "110110110"

PS >$bool ean2 = "010010010"

PS >$intl = [Convert]:: Tol nt32($bool eanl, 2)
PS >$int2 = [Convert]:: Tol nt32($bool ean2, 2)
PS >$result = $intl -bor $int2

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Operator Meaning

PS >[Convert]:: ToString($result, 2)
100100100

- bnot Binary NOT:
-bnot $val ue

Returns a number where bits are set to 1 if the bit of the righthand (and only) argument at that
position is set to 1. All other bits are set to 0. For example:
PS >%$bool eanl = "110110110"

PS >$intl = [Convert]:: Tol nt32($bool eanl, 2)
PS >$result = -bnot $intl

PS >[Convert]::ToString($result, 2)
11111111111111111111111001001001

2.10.4. Other Operators

Table 2-8 lists other simple operators supported by PowerShell.

Table 2-8. Other Windows PowerShell operators

Operator Meaning

-repl ace The replace operator:
"target" -replace "pattern","replacenent™

Returns a new string, where the text in "t arget" that matches the regular expression "pattern"
has been replaced with the replacement text, "r epl acenent .

By default, PowerShell performs a case-insensitive comparison. The - i r epl ace operator makes this
case insensitivity explicit, while the - cr epl ace operator performs a case-sensitive comparison.

If the regular expression pattern contains named captures or capture groups, the replacement
string may reference those as well.

For example:
PS >"Hell o Wrl d" -repl ace

"(.*) (.*)","'$2 $1
Wrld Hello

If"target" represents an array, the -r epl ace operator operates on each element of that array.

For more details on regular expressions, see Chapter 3.

- f The format operator:
"Format String" -f Val ues

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Operator Meaning

Returns a string, where the format items in the format string have been replaced with the text
equivalent of the values in the value array.

For example:

PS >"{0:n0}" -f 1000000000
1, 000, 000, 000

The format string for the format operator is exactly the format string supported by the .NET
String. Format method.

For more details about the syntax of the format string, see Chapter 9.

-as The type conversion operator:
$val ue -as [Type]

Returns $val ue cast to the given .NET type. If this conversion is not possible, PowerShell returns
$nul | .

For example:
PS >3/2 -as [Int]

2

PS >$result = "Hell 0" -as [int]
PS >$result -eq $null

True

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.11. Comparison Operators

The PowerShell comparison operators, listed in Table 2-9, let you compare expressions against each other. By

default, PowerShell's comparison operators are case insensitive. For all operators where case sensitivity applies,

the -1 prefix makes this case insensitivity explicit, while the - ¢ prefix performs a case-sensitive comparison.

Operator

_eq

- ne

_ge

Table 2-9. Windows PowerShell comparison operators

Meaning

The equality operator:
$l eft Val ue -eq $right Val ue

For all primitive types, returns $true if $l ef t Val ue and $ri ght Val ue are equal.

When used with arrays, returns all elements in $l ef t Val ue that are equal to $ri ght Val ue.

When used with any other type, PowerShell uses that type's Equal s() method if it implements

one.

The negated equality operator:
$l ef t Val ue -ne $ri ght Val ue

For all primitive types, returns $true if $l eft Val ue and $ri ght Val ue are not equal.

When used with arrays, returns all elements in $l ef t Val ue that are not equal to $ri ght Val ue.

When used with any other type, PowerShell returns the negation of that type's Equal s()
method If it implements one.

The greater-than-or-equal to operator:
$l eft Val ue -ge $right Val ue

For all primitive types, returns $t r ue if $l ef t Val ue is greater than or equal to $ri ght Val ue.

When used with arrays, returns all elements in $l ef t Val ue that are greater than or equal to
$ri ght Val ue.

When used with any other type, PowerShell returns the result of that object's Conpar e()
method if it implements one. If the method returns a number greater than or equal to O, the
operator returns $t r ue.

The greater-than operator:
$l eft Val ue -gt $right Val ue

For all primitive types, returns $true if $l eft Val ue is greater than $ri ght Val ue.

When used with arrays, returns all elements in $l ef t Val ue that are greater than $ri ght Val ue.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Operator

-1t

-l e

-11 ke

Meaning

When used with any other type, PowerShell returns the result of that object's Conpar e()

method if it implements one. If the method returns a number greater than O, the operator
returns $t r ue.

The less-than operator:
$leftvalue -1t $rightVal ue

For all primitive types, returns $true if $l ef t Val ue is less than $ri ght Val ue.
When used with arrays, returns all elements in $l ef t Val ue that are less than $ri ght Val ue.

When used with any other type, PowerShell returns the result of that object's Conpar e()

method If it implements one. If the method returns a number less than O, the operator returns
$true.

The less-than-or-equal to operator:
$l eftValue -1e $rightVal ue

For all primitive types, returns $tr ue if $l ef t Val ue is less than or equal to $ri ght Val ue.

When used with arrays, returns all elements in $l ef t Val ue that are less than or equal to
$ri ght Val ue.

When used with any other type, PowerShell returns the result of that object's Conpar e()

method If it implements one. If the method returns a number less than or equal to O, the
operator returns $t r ue.

The like operator:
$leftValue -like Pattern

Evaluates the pattern against the target, returning $t r ue if the simple match is successful.

When used with arrays, returns all elements in $l ef t Val ue that match Patt er n.

The - || ke operator supports these simple wildcard characters:

? Any single unspecified character

* Zero or more unspecified characters

[a- b]

Any character in the range of a-b

[ab]

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Operator

-not |l i ke

- mat ch

- hot nat ch

-cont ail ns

- not cont al ns

-1S

-1 snot

Meaning

The specified characters a or b

For example:

PS >"Test" -like "[A-Z]e?[tr]"
True
The negated like operator: Returns $t r ue when the -1 i ke operator would return $f al se.

The match operator:
"target" -match Reqgul ar Expression

Evaluates the regular expression against the target, returning $t r ue if the match is successful.
Once complete, PowerShell places the successful matches in the $nat ches variable.

When used with arrays, returns all elements in Tar get that match Regul ar Expressi on.

The $nmat ches variable is a hashtable that maps the individual matches to the text they match.
0 Is the entire text of the match, 1 and on contain the text from any unnamed captures in the
regular expression, and string values contain the text from any named captures in the regular
expression.

For example:

PS >"Hello Wrld" -match "(.*) (.*)"
Tr ue

PS >$mat ches|[1]

Hel | o

For more details on regular expressions, see Chapter 3.

The negated match operator:

Returns $t r ue when the - nat ch operator would return $f al se.

The - not mat ch operator still populates the $mat ches variable with the results of nat ch.

The contains operator:
$list -contains $val ue

Returns $t r ue if the list specified by $l i st contains the value $val ue, that is, if $item- eq
$val ue returns $t r ue for at least one item in the list.

The negated contains operator: Returns $t r ue when the - cont ai ns operator would return
$f al se.

The type operator:
$l eft Val ue -i s type]

Returns $t rue if $val ue is (or extends) the specified .NET type.

The negated type operator: Returns $t r ue when the -i s operator would return $f al se.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.12. Conditional Statements

Conditional statements in PowerShell let you change the flow of execution in your script.

2.12.1. 1f, elseif, and else Statements
| f (condi tion)

{

st at enent bl ock
}
el seif(condition)
{

st at enent bl ock
}
el se
{

st at enent bl ock
}

If condi ti on evaluates to $t r ue, then PowerShell executes the statement block you provide. Then, it resumes

execution at the end of theif / elseif / el se statement list. PowerShell requires the enclosing braces
around the statement block even if the statement block contains only one statement.

See "Simple Operators" and "Comparison Operators," both earlier in this chapter, for a
discussion of how PowerShell evaluates expressions as conditions.

If condi ti on evaluates to $f al se, then PowerShell evaluates any following (optional) el sei f conditions until

one matches. If one matches, PowerShell executes the statement block associated with that condition, then
resumes execution at the end of theif / elseif / el se statement list.

For example:

$t ext ToMat ch = Read- Host "Enter sone text"

$mat chType = Read- Host "Apply Sinple or Regex matchi ng?”
$pattern = Read-Host "Match pattern”

| f ($mat chType -eq " Si npl e")

{

$t ext ToMatch -1i ke $pattern
}
el sei f ($mat chType -eq " Regex")
{

$t ext ToMatch -natch $pattern
}
el se
{

Wite-Host "Match type nust be Sinple or Regex"
}

If none of the conditions evaluate to $t r ue, then PowerShell executes the statement block associated with the
(optional) el se clause, then resumes execution at the end of theif / elseif / el se statement list.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.12.2. switch Statements

switch options expression

{
conpari son val ue { statenent block }
Or
{ conparison expression } { statenent bl ock }
(...)
def aul t { statenent bl ock }
}
or:

swtch options -file filenane

{
conpari son val ue { statenent bl ock }
Or
{ conparison expression } { statenent Dbl ock }
(...)
def aul t { statenent bl ock }
}

When PowerShell evaluates a sw t ch statement, it evaluates expr essi on against the statements in the switch
body. If expressi on is a list of values, PowerShell evaluates each item against the statements in the switch
body. If you specify the -fi | e option, PowerShell treats the lines in the file as though they were a list of items

INn expr essi on.

The conpari son val ue statements let you match the current input item against the pattern specified by
conpari son val ue. By default, PowerShell treats this as a case-insensitive exact match, but the options you
provide to the sw t ch statement can change this, as shown in Table 2-10.

Option

-casesensiti ve

Table 2-10. Options supported by PowerShell switch statements

Meaning

Case-sensitive match.

With this option active, PowerShell executes the associated statement block only if the
current input item exactly matches the value specified by conpari son val ue. If the current

Input object is a string, the match is case-sensitive.

Exact match.

With this option active, PowerShell executes the associated statement block only if the
current input item exactly matches the value specified by conpari sonval ue. This match is

case-insensitive. This is the default mode of operation.

Regular-expression match.

With this option active, PowerShell executes the associated statement block only if the
current input item matches the regular expression specified by conpari sonval ue. This

match Is case-insensitive.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Option Meaning
-wW | dcard Wildcard match.
- W With this option active, PowerShell executes the associated statement block only if the

current input item matches the wildcard specified by conpari sonval ue.

The wildcard match supports the following simple wildcard characters:
? Any single unspecified character

* Zero or more unspecified characters

[a- b]

Any character In the range of a-b

[ab]

The specified characters a or b

This match Is case-insensitive.

The { conpari son expressi on } statements let you process the current input item (stored in the $ variable)
In an arbitrary script block. When PowerShell processes a { conpari son expressi on } statement, it executes
the associated statement block only if { conpari son expressi on } evaluates to $tr ue.

PowerShell executes the statement block associated with the (optional) def aul t statement if no other
statements in the sw t ch body match.

When processing a sw t ch statement, PowerShell tries to match the current input object against each
statement in the sw t ch body, falling through to the next statement even after one or more have already
matched. To have PowerShell exit a sw t ch statement after it processes a match, include a br eak statement as
the last statement in the statement block.

For example:
$nyPhones = "(555) 555-1212","555-1234"

swtch -regex ($nmyPhones)

{
{ $.Length -le 8 } { "Area code was not specified";
break }
{ $.Length -gt 8 } { "Area code was specified" }
"\ ((555)\).*" { "In the $($mat ches[1]) area code" }
}

Produces the output:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Area code was specified
In the 555 area code
Area code was not specified

See the following section, "Looping Statements," for more information about the br eak
= Statement.

By default, PowerShell treats this as a case-insensitive exact match, but the options you provide to the swt ch
statement can change this.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.13. Looping Statements

Looping statements in PowerShell let you execute groups of statements multiple times.

2.13.1. for Statement

.l oop _label for(initialization; condition; iIncrenent)

{
}

st at enent bl ock

When PowerShell executes a f or statement, it first executes the expression given by initialization. It next
evaluates condi ti on. If condi ti on evaluates to $t r ue, PowerShell executes the given statement block. It then
executes the expression given by I ncr enent . PowerShell continues to execute the statement block and

| ncr enent statement as long as condi ti on evaluates to $true.

For example:

for($counter = 0; $counter -It 10; $counter++)

{
}

Wite-Host "Processing item $counter”

The br eak and cont i nue statements (discussed later in the chapter) can specify the | oop | abel of any
enclosing looping statement as their target.

2.13.2. foreach Statement

.1 oop_| abel foreach(variable in expression)

{
}

st atenent bl ock

When PowerShell executes a f or each statement, it executes the pipeline given by expr essi on-for example,
Get - Process| Where-bject{$. Handles -gt 500 } or 1..10. For each item produced by the expression, it
assigns that item to the variable specified by vari abl e and then executes the given statement block. For

example:

$handl eSum = 0;
foreach($process in Get-Process |
VWhere-(bject { $. Handles -gt 500 })

{

$handl eSum += $pr ocess. Handl es
}
$handl eSum

The br eak and cont | nue statements (discussed later in the chapter) can specify the | oop | abel of any
enclosing looping statement as their target.

2.13.3. while Statement

.1 oop_| abel while(condition)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

st atenent bl ock

When PowerShell executes a whi | e statement, it first evaluates the expression given by condi ti on. If this

expression evaluates to $t r ue, PowerShell executes the given statement block. PowerShell continues to execute
the statement block as long as condi ti on evaluates to $t r ue. For example:

$comand = "";
whi | e($command -notmatch "quit")
{

$command = Read- Host "Enter your command"

}

The br eak and cont | nue statements (discussed later in this chapter) can specify the | oop_ | abel of any
enclosing looping statement as their target.

2.13.4. do ... while Statement/do ... until Statement

.1 oop_| abel do

{

st at enent bl ock
} while(condition)

or.

.1 oop_| abel do

{

st at enent bl ock
} until (condition)

When PowerShell executes a do..whi | e or do..unti | statement, it first executes the given statement block. In a
do..whi | e statement, PowerShell continues to execute the statement block as long as condi ti on evaluates to

$true. Inado..until statement, PowerShell continues to execute the statement as long as condi ti on
evaluates to $f al se. For example:

$val i dResponses = "Yes", "No"
$response = ""

do

{

$response = Read-Host "Yes or No?"
} whil e($val i dResponses -not contai ns $response)

"Got it."
$response = ""
do

{

$response = Read-Host "Yes or No?"
} until ($val i dResponses -contai ns $response)
"Got it."

The br eak and cont | nue statements (discussed later in this chapter) can specify the | oop | abel of any
enclosing looping statement as their target.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.13.5. Flow Control Statements

PowerShell supports two statements to help you control flow within loops: break and conti nue.

2.13.5.1. break
The br eak statement halts execution of the current loop. PowerShell then resumes execution at the end of the

current looping statement, as though the looping statement had completed naturally. If you specify a label with
the br eak statement-for example, break : outer | oop-PowerShell halts the execution of that loop instead.

For example:

couter for($counter = 0; $counter -1t 5; S$counter++)

{
for($counter2 = 0; $counter2 -1t 5; $counter2++)
{
| f ($counter2 -eq 2)
{
break :outer
}
Wite-Host "Processing item $counter, $count er 2"
}
}

Produces the output:

Processing itemO,O0
Processing itemO, 1
Processing item1,0
Processing iteml1,1
Processing item2,0
Processing item2,1
Processing item 3,0
Processing item 3,1
Processing item4,0
Processing item4,1

2.13.5.2. continue

The cont | nue statement skips execution of the rest of the current statement block. PowerShell then continues
with the next iteration of the current looping statement as though the statement block had completed naturally.
If you specify a label with the cont | nue statement-for example, conti nue : out er -PowerShell continues with
the next iteration of that loop instead.

For example:

couter for($counter = 0; S$counter -It 5; SFcounter++)

{
for($counter2 = 0; $counter2 -1t 5; $counter2++)
{
| f($counter2 -eq 2)
{
continue :outer
}

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Wite-Host

Produces the output:

Processing itemO,0
Processing itemO, 1
Processing itemO, 3
Processing itemO, 4
Processing item1,0
Processing iteml1,1
Processing item1l, 3
Processing item1,4
Processing item2,0
Processing item 2,1
Processing item 2,3
Processing item 2,4
Processing item 3,0
Processing item 3,1
Processing item 3, 3
Processing item 3,4
Processing item4,0
Processing item4,1
Processing item4, 3
Processing item4,4

downloaded from: lib.ommolkefab.ir

"Processing item $counter, $count er 2"

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.14. Working with the .NET Framework

One feature that gives PowerShell its incredible reach into both system administration and application
development is its capability to leverage Microsoft's enormous and broad .NET Framework.

Work with the .NET Framework in PowerShell comes mainly by way of one of two tasks: calling methods or
accessing properties.

2.14.1. Static Methods

To call a static method on a class, type:

[G assNane] : : Met hodName(paraneter |ist)

For example:

PS >[System Di agnosti cs. Process]:: Get ProcessByl d(0)

gets the process with the ID of 0 and displays the following output:

Handles NPMK) PMK) W5(K) VMM CPU(s) Id ProcessNane

2.14.2. Instance Methods

To call a method on an instance of an object, type:

$obj ect Ref er ence. Met hodNane(paraneter |ist)

For example:

PS >$process = [System Di agnosti cs. Process]::
Get ProcessByl d(0)
PS >$pr ocess. Ref resh()

This stores the process with the ID of O into the $pr ocess variable. It then calls the Ref resh() instance method
on that specific process.

2.14.3. Static Properties

To access a static property on a class, type:

[G assNane] : : Propert yNane

or.

| G assNane] : : PropertyNanme = val ue

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

For example, the [Syst em Dat eTi ne] class provides a Now static property that returns the current time:
PS >[Syst em Dat eTi ne] : : Now
Sunday, July 16, 2006 2:07:20 PM

Although rare, some types let you set the value of some static properties.

2.14.4. Instance Properties

To access an instance property on an object, type:

$obj ect Ref er ence. Propert yNane

or:

$obj ect Ref er ence. Propert yNane = val ue

For example:

PS >%$t oday = [System Dat eTi ne] : : Now
PS >$t oday. DayOf Week
Sunday

This stores the current date in the $t oday variable. It then calls the DayOf Week instance property on that
specific date.

2.14.5. Learning About Types

The two primary avenues for learning about classes and types are the Get - Menber cmdlet and the
documentation for the .NET Framework.

2.14.5.1. The Get-Member cmdlet

To learn what methods and properties a given type supports, pass it through the Get - Menber cmdlet, as shown

In Table 2-11.

Table 2-11. Working with the Get-Member cmdlet
Action Result
[typenane] | GCet - All the static methods and properties of a given type.

Menber -Static

$obj ect Ref erence | All the static methods and properties provided by the type in $obj ect Ref er ence.
Get - Menber -Static

$obj ect Ref erence | All the instance methods and properties provided by the type in $obj ect Ref er ence.
CGet - Menber If $obj ect Ref er ence represents a collection of items, PowerShell returns the
Instances and properties of the types contained by that collection. To view the

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Action

[typenane] | GCet-
Menber

Result

Instances and properties of a collection itself, use the - | nput Cbj ect parameter of
Get - Menber :

Get - Menber - | nput Cbj ect

$obj ect Ref erence

All the instance methods and properties of a Syst em Runt i meType object that
represents this type.

2.14.5.2. .NET Framework documentation

Another source of information about the classes in the .NET Framework is the documentation itself, available
through the search facilities at http://msdn.microsoft.com.

Typical documentation for a class first starts with a general overview, then provides a hyperlink to the members
of the class-listing the methods and properties it supports.

To get to the documentation for the members quickly, search for them more explicitly
« by adding the term "members" to your MSDN search term:

cl assnane nenbers

The documentation for the members of a class lists their constructors, methods, properties, and more. It uses
an S icon to represent the static methods and properties. Click the member name for more information about
that member-including the type of object that the member produces.

2.14.6. Type Shortcuts

When you specify a type name, PowerShell lets you use a short form for some of the most common types, as

listed In Table 2-12.

Type shortcut
[Adsi]

| Hasht abl e]

| PSChj ect |
| Ref]

 Regex]

[Scri pt Bl ock]

[SW t ch]

downloaded from: lib.ommolkefab.ir

Table 2-12. PowerShell type shortcuts

Full classname

| System DirectoryServices. DirectoryEntry]

| System Col | ecti ons. Hasht abl €]

| Syst em Managenent . Aut omat i on. PSQbj ect |
| Syst em Managenent . Aut omat i on. PSRef er ence]

| System Text . Regul ar Expr essi ons. Regex]

| Syst em Managenent . Aut omat i on. Scri pt Bl ock]

[Syst em Managenent . Aut onat i on. Sw t chPar anmet er |

http://msdn.microsoft.com
http://msdn.microsoft.com
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Type shortcut Full classname

[Wn] [Syst em Managenent . Managenment bj ect |

[Wn Cl ass] [Syst em Managenent . Managenent Cl ass]

| Wn Sear cher | | Syst em Managenent . Managenent Qbj ect Sear cher |
[X] [System Xml . Xnml Docunent |

| TypeNane] | System TypeNane]

2.14.7. Creating Instances of Types

$obj ect Ref erence = New Obj ect TypeNane paraneters

Although static methods and properties of a class generate objects, you will often want to create them explicitly
yourself. PowerShell's New Obj ect cmdlet lets you create an instance of the type you specify. The parameter list
must match the list of parameters accepted by one of the type's constructors, as documented on MSDN.

For example:

$webd i ent = New (bj ect Net.Webd i ent

$webd i ent . Downl cadString("http://search. nsn. com')

Most common types are available by default. However, many are available only after you load the library (called
the assembly) that defines them. The MSDN documentation for a class includes the assembly that defines it.

To load an assembly, use the methods provided by the Syst em Ref | ecti on. Assenbl y class:

PS >[Refl ection. Assenbl y]:: LoadWthParti al Name(" Syst em Web")

GAC Ver si on Locat i on
True v2. 0. 50727 C. \ W NDOAS\ assenbl y\ GAC 32\ (.. .)\
System Web. dl |

PS >[Web. HttpUtility]:: Ul Encode("http://search. nsn. conl)
ht t p%Ba%2f %2f search. nen. com

The LoadWt hParti al Nane method is unsuitable for scripts that you want to share with

others or use In a production environment. It loads the most current version of the
assembly, which may not be the same as the version you used to develop your script.
To load an assembly In the safest way possible, use its fully qualified name with the

| Ref | ection. Assenbl y] :: Load() method.

2.14.8. Interacting with COM Objects

PowerShell lets you access methods and properties on COM objects the same way you would interact with
objects from the .NET Framework. To interact with a COM object, use its Pr ogl d with the - ConObj ect parameter
(often shortened to - Com) on New (bj ect :

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

PS >$shell = New (bject -Com Shell. Application
PS >$shel | . Wndows() | Sel ect-bj ect
Locat i onNane, Locat i onUr |

For more information about the COM objects most useful to system administrators, see Chapter 6.

2.14.9. Extending Types

PowerShell supports two ways to add your own methods and properties to any type: the Add- Menber cmdlet
and a custom types extension file.

2.14.9.1. The Add-Member cmdlet

The Add- Menber cmdlet lets you dynamically add methods, properties, and more to an object. It supports the
extensions shown in Table 2-13.

Table 2-13. Selected member types supported by the Add-Member cmdlet

Member type

Al I asProperty

CodePr operty

Not ePr operty

Scri pt Property

PropertySet

Meaning

A property defined to alias another property:
PS >$t est Obj ect = [Ps(hj ect] "Test"
PS >$t est (bj ect |

Add- Menber "Ali asProperty"” Count
Lengt h
PS >$t est bj ect . Count
4

A property defined by a Syst em Ref | ecti on. Met hodl nf o. This method must be public,
static, return results (nonvoid), and take one parameter of type Ps(bj ect .

A property defined by the initial value you provide:
PS >$tes thject = [PsCbject] "Test"

PS >$t est Obj ect | Add- Menber Not eProperty
Reversed tseT

PS >$t est Obj ect. Rever sed

tseTl

A property defined by the script block you provide. In that script block, $t hi s refers to the
current instance:

PS >$test hject = [PsCbject] ("H " * 100)

PS >$t est Cbj ect | Add- Menber

ScriptProperty IsLong {

>> $this.Length -gt 100
>> }

>> $t est Obj ect. | sLong

>>

True

A property defined as a shortcut to a set of properties. Used in cmdlets such as Sel ect -
(bj ect :
PS >$t est Obj ect = [PsCbj ect] [DateTine]::

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Member type Meaning

Now
PS >$col |l ecti on = New (bj ect
>> Col | ecti ons. (nj ect Model .
Col l ection'' 1] System Stri ng]
>> $col | ecti on. Add(" Mont h")
>> $col | ecti on. Add(" Year")
>> $test Obj ect | Add- Menber PropertySet
Mont hYear $col |l ecti on
>> $t est bj ect | sel ect Mont hYear

>>
Mont h Year
6 2007

CodeMet hod A method defined by a Syst em Ref | ecti on. Met hodl nf o. This method must be public,

static, and take one parameter of type Ps(bj ect .

Scri pt Met hod A method defined by the script block you provide. In that script block, $t hi s refers to the
current instance, and $ar gs refers to the input parameters:
PS >$t est bj ect = [PsCbj ect] "Hell o"

PS >$t est Obj ect | Add- Menber Scri pt Met hod
| sLong {

>> $this.Length -gt S$args[0]

>> }

>> $t est bj ect. | sLong(3)

>> $t est bj ect. | sLong(100)

>>

True

Fal se

2.14.9.2. Custom type extension files

While the Add- Menber cmdlet lets you customize individual objects, PowerShell also supports configuration files
that let you customize all objects of a given type. For example, you might want to add a Rever se() method to
all strings or a Hel pUr| property (based on the MSDN Url Aliases) to all types.

PowerShell adds several type extensions to the file types.pslxml, in the PowerShell installation directory. This
file is useful as a source of examples, but you should not modify it directly. Instead, create a new one and use
the Updat e- TypeDat a cmdlet to load your customizations. The following command loads Types.custom.pslxml

from the same directory as your profile:
$typesFile = Join-Path (Split-Path $profile) "Types.

Custom Ps1Xm "
Updat e- TypeDat a - PrependPat h $typesFil e

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.15. Writing Scripts, Reusing Functionality

When you want to start packaging and reusing your commands, the best place to put them is in scripts and
functions. A script is a text file that contains a sequence of PowerShell commands. A function is also a sequence
of PowerShell commands but is usually used within a script to break it into smaller, more easily understood
segments.

2.15.1. Writing Scripts

To write a script, write your PowerShell commands in a text editor and save the file with a .psl extension.

2.15.2. Running Scripts

There are two ways to execute a script: by invoking it or by dot-sourcing it.

2.15.2.1. Invoking

Invoking a script runs the commands inside it. Unless explicitly defined with the GLOBAL scope keyword,
variables and functions defined in the script do not persist once the script exits.

You invoke a script by using the invoke/call operator (&) with the script name as the parameter:

& "C:\Script Drectory\Run- Commands. psl" Paraneters

You can use either a fully gualified path or a path relative to the current location. If the script is in the current
directory, you must explicitly say so:

.\ Run- Conmands. psl Paraneters

If the path contains no spaces, you may omit both the quotes and invoke the operator.

2.15.2.2. Dot-sourcing

Dot-sourcing a script runs the commands inside it. Unlike invoking a script, variables and functions defined in
the script do persist after the script exits.

You dot-source a script by using the dot operator (.) and providing the script name as the parameter:
"C.:\Script Drectory\Run- Commands. psl" Paraneters

You can use either a fully qualified path or a path relative to the current location. If the script is in the current

directory, you must explicitly say so:

.\ Run- Commands. psl Paraneters

If the path contains no spaces, you may omit the quotes.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

By default, a security feature in PowerShell called the Execution Policy prevents scripts
. from running. When you want to enable scripting in PowerShell, you must change this
setting. To understand the different execution policies available to you, type Get - Hel p

about si gni ng. After selecting an execution policy, use the Set - Execut i onPol i cy cmd-
let to configure it:

Set - Executi onPol i cy Renot eSi gned

2.15.3. Providing Input to Scripts

PowerShell offers several options for processing input to a script.

2.15.3.1. Argument array

To access the command-line arguments by position, use the argument array that PowerShell places in the $ar gs
special variable:

$first Argunent = $args| 0]

$secondAr gunent = $ar gs[1]
$ar gurrent Count = $ar gs. Count

2.15.3.2. Formal parameters
paranm([TypeNane] $vari abl eNane = Default, .)

Formal parameters let you benefit from some of the many benefits of PowerShell's consistent command-line
parsing engine.

PowerShell exposes your parameter names (for example, $vari abl eNane) the same way that it exposes

parameters in cmdlets. Users need only to type enough of your parameter name to disambiguate it from the
rest of the parameters. If the user does not specify the parameter name, PowerShell attempts to assign the
Input to your parameters by position.

If you specify a type name for the parameter, PowerShell ensures that the user input is of that type. If you
specify a default value, PowerShell uses that value if the user does not provide input for that parameter.

To make a parameter mandatory, define the default value so that it throws an error:

par anm($nandat ory =
$(throw "This paraneter is required."))

2.15.3.3. Pipeline input

To access the data being passed to your script via the pipeline, use the input enumerator that PowerShell places
In the $i nput special variable:

f oreach($el emrent in $input)

{
}

"I nput was: $el enent”

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The $i nput variable is a .NET enumerator over the pipeline input. Enumerators support streaming scenarios

very efficiently but do not let you access arbitrary elements as you would with an array. If you want to process
their elements again, you must call the Reset () method on the $i nput enumerator once you reach the end.

If you need to access the pipeline input in an unstructured way, use the following command to convert the input
enumerator to an array:

$i nput Array = @ $i nput)

2.15.3.4. Cmdlet keywords In scripts

When pipeline input Is a core scenario of your script, you may include statement blocks labeled begi n,
process, and end:

paran(...)

begi n
{

}

process

PowerShell executes the begi n statement when it loads your script, the process statement for each item
passed down the pipeline, and the end statement after all pipeline input has been processed. In the process
statement block, the $ variable represents the current pipeline object.

When you write a script that includes these keywords, all the commands in your script must be contained within
the statement blocks.

2.15.3.5. $MylInvocation automatic variable

The $M/l nvocat i on automatic variable contains information about the context under which the script was run,
Including detailed information about the command (MyCommand) , the script that defines it (Scri pt Nane) , and

more.

2.15.4. Retrieving Output from Scripts

PowerShell provides three primary ways to retrieve output from a script.

2.15.4.1. Pipeline output
any conmand

The return value/output of a script is any data that it generates but does not capture. If a script contains the
commands:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

"Text Qutput”
9% 5

then assigning the output of that script to a variable creates an array with the two values, Text Qut put and 25.

2.15.4.2. Return statement
return val ue
The statement

return $f al se

IS simply a short form for pipeline output:

$f al se
return

2.15.4.3. Exit statement
exit errorlLevel

The exi t statement returns an error code from the current script or instance of PowerShell. If called anywhere
In a script (inline, in a function, or in a script block), it exits the script.

If called outside of a script, it exits PowerShell. The exit statement sets the $Last Exi t Code automatic variable
to errorLevel . In turn, that sets the $? automatic variable to $f al se if error Level is not zero.

See Chapter 4 for more information about automatic variables.

2.15.5. Functions

functi on SCOPE: nanme(par anet er s)

{
}

st at enent bl ock

or:

filter SCOPE:. nanme(par anet ers)
{

}

st at enent bl ock

Functions let you package blocks of closely related commands into a single unit that you can access by name.

Valid scope names are gl obal (to create a function available to the entire shell), scri pt (to create a function
available only to the current script), | ocal (to create a function available only to the current scope and
subscopes), and pri vat e (to create a function available only to the current scope). The default scope is the

| ocal scope, which follows the same rules as those of default variable scopes.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The content of a function's statement block follows the same rules as the content of a script. Functions support
the $ar gs array, formal parameters, the $i nput enumerator, cmdlet keywords, pipeline output, and equivalent
return semantics.

A common mistake iIs to call a function as you would call a method:

$result = Get MyResul ts($itenl, $itenk)

PowerShell treats functions as it treats scripts and other commands, so this should
Instead be:

$result = Get MyResults $iteml $iten?

The first command passes an array that contains the items $i t enll and $i t en? to the
Get MyResul t s function.

A parameter declaration, as an alternative to a par amstatement, follows the same syntax as the formal
parameter list but does not require the par amkeyword.

A filter is simply a function where the statements are treated as though they are contained within a pr ocess
statement block.

Commands in your script can access only functions that have already been defined. This
can often make large scripts difficult to understand when the beginning of the script is
composed entirely of helper functions. Structuring a script in the following manner often
makes it more clear:

function Mai n

{
(...)
Hel per Functi on

(...)
}

function Hel per Functi on

{
}

(...)

Mai n

As with a script, you may either invoke or dot-source a function.

2.15.6. Script Blocks

$obj ect Ref erence =

{

st at enent bl ock

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

PowerShell supports script blocks, which act exactly like unnamed functions and scripts. Like both scripts and
functions, the content of a script block's statement block follows the same rules as the content of a function or
script. Script blocks support the $ar gs array, formal parameters, the $i nput enumerator, cmdlet keywords,
pipeline output, and equivalent return semantics.

As with both scripts and functions, you may either invoke or dot-source a script block. Since a script block does

not have a name, you either invoke it directly (& { "Hel | 0"}) or invoke the variable (& $obj ect Ref er ence)
that contains it.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.16. Managing Errors

PowerShell supports two classes of errors: nonterminating and terminating. It collects both types of errors as a
list in the $err or automatic variable.

2.16.1. Nonterminating Errors

Most errors are nonterminating errors, in that they do not halt execution of the current cmdlet, script, function,
or pipeline. When a command outputs an error (via PowerShell's error-output facilities), PowerShell writes that
error to a stream called the error output stream.

You can output a nonterminating error using the Wit e- Error cmdlet (or the WiteError () APl when writing a
cmdlet).

The $Err or Acti onPr ef er ence automatic variable lets you control how PowerShell handles nonterminating
errors. It supports the following values, as shown in Table 2-14.

Table 2-14. $ErrorActionPreference automatic variable values

Value Meaning
Silentl yConti nue Do not display errors.
St op Treat nonterminating errors as terminating errors.

Cont | nue Display errors, but continue execution of the current cmdlet, script, function, or pipeline.
This Is the default.

| nqui re Display a prompt that asks how PowerShell should treat this error.

Most cmdlets let you configure this explicitly by passing one of the above values to its Error Act i on parameter.

2.16.2. Terminating Errors

A terminating error halts execution of the current cmdlet, script, function, or pipeline. If a command (such as a
cmdlet or .NET method call) generates a structured exception (for example, iIf you provide a method with
parameters outside their valid range), PowerShell exposes this as a terminating error. PowerShell also
generates a terminating error If it fails to parse an element of your script, function, or pipeline.

You can generate a terminating error in your script using the t hr ow keyword:

t hrow nessage

In your own scripts and cmdlets, generate terminating errors only when the
fundamental intent of the operation is impossible to accomplish. For example, failing to
execute a command on a remote server should be considered a nonterminating error,
while failing to connect to the remote server altogether should be considered a
terminating error.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

PowerShell lets you intercept terminating errors if you define a t r ap statement before PowerShell encounters
that error:

trap [exception type]
{

st at enent bl ock
[conti nue or break]

If you specify an exception type, the t r ap statement applies only to terminating errors of that type.

If specified, the cont i nue keyword tells PowerShell to continue processing the rest of your script, function, or
pipeline after the point at which it encountered the terminating error.

If specified, the br eak keyword tells PowerShell to halt processing the rest of your script, function, or pipeline
after the point at which it encountered the terminating error. Br eak is the default mode and applies if you

specify neither br eak nor conti nue at all.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.17. Formatting Output

Pipeline | Formatting Command

When objects reach the end of the output pipeline, PowerShell converts them to text to make them suitable for
human consumption. PowerShell supports several options to help you control this formatting process, as listed

In Table 2-15.

Formatting
command

For mat - Tabl e
Properties

For mat - Li st
Properties

For mat - W de
Property

Table 2-15. PowerShell formatting commands

Result

Formats the properties of the input objects as a table, including only the object properties
you specify. If you do not specify a property list, PowerShell picks a default set.

In addition to supplying object properties, you may also provide advanced formatting
statements:

PS > Get-Process |
Format - Tabl e - Auto Nane,

@ Label =" Hex| d";
Expression={ "{0:x}" -f

$.1d}
W dt h=4
Al i gn="Ri ght"

}

The advanced formatting statement is a hashtable with the keys Label and Expr essi on (or
any short form of them). The value of the Expr essi on key should be a script block that
returns a result for the current object (represented by the $ variable).

For more information about the For nat - Tabl e cmdlet, type Get - Hel p For mat - Tabl e.

Formats the properties of the input objects as a list, including only the object properties you
specify. If you do not specify a property list, PowerShell picks a default set.

The For mat - Li st cmdlet supports the advanced formatting statements as used by the
For mat - Tabl e cmdlet.

The For mat - Li st cmdlet is the one you will use most often to get a detailed summary of an
object's properties.

The command For mat - Li st * returns all properties but does not include those that
PowerShell hides by default. The command Format - Li st * - For ce returns all properties.

For more information about the For mat - Li st cmdlet, type Get-Hel p Format - Li st .

Formats the properties of the input objects in an extremely terse summary view. If you do
not specify a property, PowerShell picks a default.

In addition to supplying object properties, you may also provide advanced formatting

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Formatting Result
command

statements:

PS >Get - Process |
Format - Wde -Auto
@ Expression={ "{0:x}" -f
$.1d} }

The advanced formatting statement is a hashtable with the key Expr essi on (or any short
form of it). The value of the Expr essi on key should be a script block that returns a result for
the current object (represented by the $ variable).

For more information about the For mat - W de cmdlet, type Get - Hel p For mat - W de.

2.17.1. Custom formatting files
2.17.1.1. Custom formatting files

All the formatting defaults in PowerShell (e.g., when you do not specify a formatting command or formatting
properties) are driven by the *.Format.Ps1Xml files in the installation directory in a manner similar to the type
extension files mentioned in the "Custom type extension files" section in "Working with the .NET Framework,"
earlier in this chapter.

To create your own formatting customizations, use these files as a source of examples, but do not modify them
directly. Instead, create a new file and use the Updat e- For mat Dat a cmdlet to load your customizations. The

Updat e- For mat Dat a cmdlet applies your changes to the current instance of PowerShell. If you wish to load them
every time you launch PowerShell, call Updat e- For mat Dat a in your profile script. The following command loads
Format.custom.Ps1Xml from the same directory as your profile:

$formatFile = Join-Path (Split-Path $profile)

"For mat . Cust om Ps1Xm "
Updat e- For nat Dat a - PrependPat h $t ypesFil e

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.18. Capturing Output

There are several ways to capture the output of commands in PowerShell, as listed in Table 2-16.

Command

$vari abl e = Comrand
$vari abl e = Command |
Qut-String

$vari able =

Nat 1 veConmmand

Conmmand - Qut Var i abl e
vari abl e

Command > File

Command >> File

Command 2= Fi |l e

Command 2>> Fil e

Command > File 2>&1

Command >> File 2>&1

downloaded from: lib.ommolkefab.ir

Table 2-16. Capturing output in PowerShell

Result

Stores the objects produced by the PowerShell command into $vari abl e.

Stores the visual representation of the PowerShell command into $vari abl e. This is
the PowerShell command after it's been converted to human-readable output.

Stores the (string) output of the native command into $vari abl e. PowerShell stores
this as a list of strings-one for each line of output from the native command.

For most commands, stores the objects produced by the PowerShell command into
$vari abl e. The parameter - Qut Var i abl e can also be written - Ov.

Redirects the visual representation of the PowerShell (or standard output of a native
command) into Fi | e, overwriting Fi | e if it exists. Errors are not captured by this

redirection.

Redirects the visual representation of the PowerShell (or standard output of a native
command) into Fi | e, appending to Fi | e if it exists. Errors are not captured by this

redirection.

Redirects the errors from the PowerShell or native command into Fi | e, overwriting
Fi | e if it exists.

Redirects the errors from the PowerShell or native command into Fi | e, appending
to Fi | e if it exists.

Redirects both the error and standard output streams of the PowerShell or native
command into Fi | e, overwriting Fi | e if it exists.

Redirects both the error and standard output streams of the PowerShell or native
command into Fi | e, appending to Fi | e if it exists.

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.19. Tracing and Debugging

The three facilities for tracing and debugging in PowerShell are the Set - PsDebug cmdilet, the Tr ace- Command
cmdlet, and the verbose cmdlet output.

2.19.1. The Set-PsDebug Cmdlet

The Set - PsDebug cmdlet lets you control tracing, stepping, and strict mode in PowerShell. Table 2-17 lists the
parameters of the Set - PsDebug cmdiet.

Table 2-17. Parameters of the Set-PsDebug cmdlet

Parameter Description

Trace Sets the amount of tracing detail that PowerShell outputs when running commands. A value of 1
outputs all lines as PowerShell evaluates them. A value of 2 outputs all lines as PowerShell
evaluates them, along with information about variable assignments, function calls, and scripts. A
value of 0 disables tracing.

Step Enables and disables per-command stepping. When enabled, PowerShell prompts you before it
executes a command.

Strict Enables and disables strict mode. When enabled, PowerShell throws a terminating error if you
attempt to reference a variable that you have not yet defined.

O f Turns off tracing, stepping, and strict mode.

2.19.2. The Trace-Command Cmdlet
Trace- Command CommandDi scovery -PsHost { gci c:\ }

The Tr ace- Command cmdlet exposes diagnostic and support information for PowerShell commands. PowerShell
groups its diagnostic information into categories called trace sources.

A full list of trace sources is available through the Get - TraceSour ce cmdlet.

For more information about the Tr ace- Conmand cmdlet, type Get - Hel p Trace- Conmand.

2.19.3. The Verbose Cmdlet Output
Cndl et - Verbose

PowerShell commands can generate verbose output using the Wi t e- Ver bose cmdlet (if written as a script), or
the Wi teVerbose() API (when written as a cmdlet).

The $Ver bosePr ef er ence automatic variable lets you control how PowerShell handles verbose output. It
supports the values listed in Table 2-18.

Table 2-18. VerbosePreference automatic variable values

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Value Meaning

Silentl yConti nue Do not display verbose output. This is the default.

St op Treat verbose output as a terminating error.

Cont | nue Display verbose output and continue execution of the current cmdlet, script, function, or
pipeline.

| nquire Display a prompt that asks how PowerShell should treat this verbose output.

Most cmdlets let you configure this explicitly by passing one of the values listed in Table 2-18 to its Ver bose
parameter.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.20. Common Customization Points

As useful as it is out of the box, PowerShell offers several avenues for customization and personalization.

2.20.1. Console Settings

The Windows PowerShell user interface offers several features to make your shell experience more efficient.

2.20.1.1. Adjust your window size

In the System menu (right-click the PowerShell icon at the top left of the console window), select Properties
— Layout. The Window Size options let you control the actual window size (how big the window appears on
screen), while the Screen Buffer Size options let you control the virtual window size (how much content the
window can hold). If the screen buffer size is larger than the actual window size, the console window changes to
Include scrollbars. Increase the virtual window height to make PowerShell store more output from earlier in your
session. If you launch PowerShell from the Start menu, PowerShell launches with some default modifications to
the window size.

2.20.1.2. Make text selection easier

In the System menu, click Options QuickEdit Mode. QuickEdit mode lets you use the mouse to efficiently
copy and paste text into or out of your PowerShell console. If you launch PowerShell from the Start menu,
PowerShell launches with QuickEdit mode enabled.

2.20.1.3. Use hotkeys to operate the shell more efficiently

The Windows PowerShell console supports many hotkeys that help make operating the console more efficient,
as shown in Table 2-19.

Table 2-19. Windows PowerShell hotkeys
Hotkey Meaning

Windows key + r, and | Launch Windows PowerShell.
then type power shel |

Up arrow Scan backward through your command history.

Down arrow Scan forward through your command history.

Page Up Display the first command in your command history.

Page Down Display the last command in your command history.

Left arrow Move cursor one character to the left on your command line.

Right arrow Move cursor one character to the right on your command line. If at the end of the line,

It Inserts a character from the text of your last command at that position.
Home Move the cursor to the beginning of the command line.

End Move the cursor to the end of the command line.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Hotkey

Control + left arrow
Control + right arrow
Alt + space, e, |

Alt + space, e, f

Alt + space, e, k

Alt + space, e, p

Alt + space, C
Control + c

Control + break

Control + home

Control + end

F1

F2

F3

F4

F5

F7

F8

FO

Alt + F7

Meaning

Move the cursor one word to the left on your command line.
Move the cursor one word to the right on your command line.
Scroll through the screen buffer.

Search for text in the screen buffer.

Select text to be copied from the screen buffer.

Paste clipboard contents into the Windows PowerShell console.
Close the Windows PowerShell console.

Cancel the current operation.

Forcefully close the Windows PowerShell window.

Delete characters from the beginning of the current command line up to (but not
Including) the current cursor position.

Delete characters from (and including) the current cursor position to the end of the
current command line.

Move cursor one character to the right on your command line. If at the end of the line,
It Inserts a character from the text of your last command at that position.

Create a new command line by copying your last command line up to the character
that you type.

Complete the command line with content from your last command line, from the
current cursor position to the end.

Delete characters from your cursor position up to (but not including) the character that
you type.

Scan backward through your command history.

Interactively select a command from your command history. Use the arrow keys to
scroll through the window that appears. Press the Enter key to execute the command,
or use the right arrow key to place the text on your command line instead.

Scan backward through your command history, only displaying matches for commands
that match the text you've typed so far on the command line.

Invoke a specific numbered command from your command history. The numbers of
these commands correspond to the numbers that the command-history selection
window (F7) shows.

Clear the command history list.

While useful in their own right, the hotkeys listed in Table 2-19 become even more
useful when you map them to shorter or more intuitive keystrokes using a hotkey
program, such as the free AutoHotkey http://www.autohotkey.com.

downloaded from: lib.ommolkefab.ir

http://www.autohotkey.com
http://www.autohotkey.com
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.20.2. Profiles

Windows PowerShell automatically runs the four scripts listed in Table 2-20 during startup. Each, if present, lets
you customize your execution environment. PowerShell runs anything you place in these files as though you had
entered it manually at the command line.

Table 2-20. Windows PowerShell profiles

Profile purpose Profile location

Customization of all PowerShell | nstal |l ationDirectory\profile.psl
sessions, including PowerShell

hosting applications for all users on

the system

Customization of PowerShell.exe | nstal |l ati onDi rectory\M crosoft. Power Shel | _profile.psl
sessions for all users on the system

Customization of all PowerShell My Docunent s\ W ndowsPower Shel | \ profile. psl
sessions, including PowerShell
hosting applications

Typical customization of My
PowerShell.exe sessions Docunent s\ W ndowsPower Shel | \ M crosoft. Power Shel | _profile.psl

PowerShell makes editing your profile script simple by defining the automatic variable,
$profile.

To create a new profile, type:

New-ltem -Type file -Force $profile

To edit this profile, type:

Not epad S$profile

For more information on writing scripts, see "Writing Scripts, Reusing Functionality," earlier in this chapter.

2.20.3. Prompts

To customize your prompt, add a "prompt" function to your profile. This function returns a string. For example:

function Pronpt
{

}

"PS [$env: COMPUTERNAME] >"

2.20.4. Tab Completion

You may define a TabExpansi on function to customize the way that Windows PowerShell completes properties,

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

variables, parameters, and files when you press the Tab key.

Your TabExpansi on function overrides the one that PowerShell defines by default, though, so you may want to
use its definition as a starting point:

Get - Cont ent function:\ TabExpansi on

As Its arguments, this function receives the entire command line as input, as well as the last word of the
command line. If the function returns one or more strings, PowerShell cycles through those strings during tab

completion. Otherwise, it uses its built-in logic to tab-complete file names, directory names, cmdlet names, and
variable names.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 3. Regular Expression Reference

Regular expressions play an important role in most text parsing and text matching tasks. They form an
iImportant underpinning of the - mat ch operator, the sw t ch statement, the Sel ect - St ri ng cmdlet, and more.

Tables Table 3-1 through Table 3-9 list commonly used regular expressions.

Table 3-1. Character classes: Patterns that represent sets of characters

Character class

[char act er s]

[“char act er s]

[start-end]

[*start-end]

\ p{ character
cl ass}

\ P{char act er
cl ass}

\'w

downloaded from: lib.ommolkefab.ir

Matches

Any character except for a newline. If the regular expression uses the Si ngl eLi ne option,

It matches any character.
PS >"T" -match '.'
True

Any character In the brackets. For example: [ael ou] .
PS >"Test" -match '[Tes]'
True

Any character not in the brackets. For example: [*aei ou] .
PS >"Test" -match '["Tes]'
Fal se

Any character between the characters st art and end, inclusive. You may include multiple
character ranges between the brackets. For example, [a-eh-j] .

PS >"Test" -match '[e-1]"'
True

Any character not between any of the character ranges st art through end, inclusive. You
may include multiple character ranges between the brackets. For example, [*a-eh-]].

PS >"Test" -match '["e-t]'
Fal se

Any character in the Unicode group or block range specified by {charact er cl ass}.
PS >"+" -match "\ p{Sn}’
True

Any character not in the Unicode group or block range specified by { character cl ass}.
PS >"+" -match "\ P{Sn}'
Fal se

Any word character.
PS >"a" -match '"\'w
True

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Character class | Matches

\' W Any nonword character.
PS >"!1" -match '"\'W
True

\'s Any whitespace character.
PS >""t" -match '\s’
True

\'S Any nonwhitespace character.
PS >" "t" -match '\S
Fal se

\d Any decimal digit.
PS >"5" -match '\ d'
True

\D Any nondecimal digit.
PS >"1" -match "\ D
True

Table 3-2. Quantifiers: Expressions that enforce quantity on the preceding expression

Quantifier | Meaning

<none> One match.
PS >"T" -match 'T
True
* Zero or more matches, matching as much as possible.
PS >" A" -match ' T*'
True
PS >"TTTTT" -match 'AT*$'
True
+ One or more matches, matching as much as possible.
PS >"A" -match ' T+
Fal se
PS >"TTTTT" -match ' AT+$
True

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Quantifier Meaning

? Zero or one matches, matching as much as possible.
PS >"TTTTT" -match '*T?$
Fal se

{n} Exactly n matches.
PS >"TTTTT" -match '*T{5} $
True

{n, } n or more matches, matching as much as possible.
PS >"TTTTT" -match '*T{4,} %
True

{n, m} Between n and mmatches (inclusive), matching as much as possible.
PS >"TTTTT" -match '~T{4, 6} %
True

*7? Zero or more matches, matching as little as possible.
PS >"A" -match ' 2"AT *?%'
True

+7? One or more matches, matching as little as possible.
PS >"A" -match ' "AT +?%'
Fal se

?7? Zero or one matches, matching as little as possible.
PS >"A" -match ' 2"AT ??%'
True

{n}? Exactly n matches.
PS >"TTTTT" -nmatch ' *"T{5}?%
True

{n, }? n or more matches, matching as little as possible.
PS >"TTTTT" -match '~T{4,}?%
True

{n, m}? Between n and mmatches (inclusive), matching as little as possible.
PS >"TTTTT" -match '*T{4, 6} ?%
True

Table 3-3. Grouping constructs: Expressions that let you group characters, patterns, and other
expressions

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Grouping
construct

(t ext)

(?<nane>)

(?<nanel-
nanez2>)

(?:)

(?1 msx-
| MNSX:)

Description

Captures the text matched inside the parentheses. These captures are named by number
(starting at one) based on the order of the opening parenthesis.
PS >"Hello" -match '"~(.*)II 0% ;
$mat ches[1]
True
He

Captures the text matched inside the parentheses. These captures are named by the name
given in nane.
PS >"Hello" -match '*(?<One>. *) I 1| 0%' ;
$mat ches. One
True
He

A balancing group definition. This is an advanced regular expression construct, but allows you
to match evenly balanced pairs of terms.

Noncapturing group.
PS >"Al" -match ' ((A B)\d)';

$mat ches
True
Nanme Val ue
2 A
1 Al
0 Al

PS >"Al1" -match '((?: A/B)\d)'; $matches

True

Nanme Val ue
1 Al

0 Al

Applies or disables the given option for this group. Supported options are:
| case-insensitive

mmultiline

n explicit capture

s single line

X Ignore whitespace

PS >"Te nst" -match ' (T e.st)'

Fal se
PS >"Te nst" -match ' (?sx: T e.st)'

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Grouping Description
construct

True

(?=) Zero-width positive lookahead assertion. Ensures that the given pattern matches to the right,
without actually performing the match.
PS >"555-1212" -match '(?=...-)(.*)";
$mat ches|[1]
True
555-1212

(?1) Zero-width negative lookahead assertion. Ensures that the given pattern does not match to
the right, without actually performing the match.
PS >"friendly" -match

"(?'friendly)friend
Fal se

(?<=) Zero-width positive lookbehind assertion. Ensures that the given pattern matches to the left,
without actually performing the match.
PS >"public int X' -match

"N *(?<=public)int .*$
True

(?<!) Zero-width negative lookbehind assertion. Ensures that the given pattern does not match to
the left, without actually performing the match.
PS >"private int X' -match

‘A (?<lprivate)int . *$
Fal se

(?=) Nonbacktracking subexpression. Matches only if this subexpression can be matched
completely.
PS >"Hello Wrld" -match

"(Hello.*)orl d’

True

PS >"Hell o Wrl d" -match
"(?>Hel l 0. *)orl d'

Fal se

The nonbacktracking version of the subexpression fails to match, as its complete match would
be "Hello World".

Table 3-4. Atomic zero-width assertions: Patterns that restrict where a match may occur

Assertion Restriction

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Assertion Restriction

/\

\A

\Z

\z

\G

\b

\B

Pattern

The match must occur at the beginning of the string (or line, if the Mul ti |1 ne option is in effect).
PS >"Test" -match ' “est'
Fal se

The match must occur at the end of the string (or line, if the Mul ti | I ne option Is In effect).
PS >"Test" -match ' Tes$'
Fal se

The match must occur at the beginning of the string.
PS >"The nTest" -match ' (?m ~Test)'

True

PS >"The nTest" -match ' (?m\ATest)"

Fal se

The match must occur at the end of the string or before \ n at the end of the string.
PS >"The nTest n" -match ' (?m The$)'

True

PS >"The nTest n" -match ' (?m The \2)'
Fal se

PS >"The nTest n" -match ' Test\Z

Tr ue

The match must occur at the end of the string.
PS >"The nTest n" -match ' Test\Zz'

Fal se

The match must occur where the previous match ended. Used with the
System Text . Regul ar Expr essi ons. Mat ch. Next Mat ch() method.

The match must occur on a word boundary-the first or last characters in words separated by
nonalphanumeric characters.

PS >"Testing" -match 'ing \b'

True

The match must not occur on a word boundary.
PS >"Testing" -match '"ing\B
Fal se

Table 3-5. Substitution patterns: Patterns used in a reqular expression-replace operation

Substitution

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Pattern

$nunber

${ nane}

$$

$&

'S

Substitution

The text matched by group number <nunber >.
PS >"Test" -replace '(.*)st',' $lar'
Tear

The text matched by group named <nane>.

PS >"Test" -repl ace
‘(?<pre>.*)st','${pretar’
Tear

A literal $.
PS >"Test" -replace '.','$$
RN

A copy of the entire match.
PS >"Test" -replace '~.*$',"' Found: $&
Found: Test

The text of the input string that precedes the match.
PS >"Test" -replace 'est$' ,' Te$
TTeT

The text of the input string that follows the match.
PS >"Test" -replace '~Tes',' Res$' "'
Rest t

The last group captured.
PS >"Testing" -replace '(.*)ing',"' $+ed’
Test ed

The entire input string.

PS >"Testing" -repl ace
"(.*)ing',"String: $

String: Testing

Table 3-6. Alternation constructs: Expressions that allow you to perform either/or logic

Alternation
construct

(?(expr essi on)
yes| no)

downloaded from: lib.ommolkefab.ir

Description

Matches any of the terms separated by the vertical bar character.
PS >"Test" -match '(B| T)est'
True

Matches the yes term if expression matches at this point. Otherwise, matches the no
term. The no term is optional.

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Alternation Description
construct

L4 r

PS >"3.14" -match ' (?(\d)3. 14| Pi)"

Tr ue

PS >"Pi" -match '(?(\d)3. 14| Pi)"'
Tr ue

PS >"2. 71" -match '(?(\d)3.14|Pi)"
Fal se

(?(nane) yes| no) | Matches the yes term if the capture group named nane has a capture at this point.
Otherwise, matches the no term. The no term is optional.
PS >"123" -match

' (?<one>1) ?(?(one) 23| 234)"
True
PS >"23" -match

' (?<one>1) ?(?(one) 23| 234)"
Fal se
PS >"234" -match

" (?<one>1) ?(?(one) 23| 234)"
True

Table 3-7. Backreference constructs: Expressions that refer to a capture group within the expression

Backreference construct Refers to

\ nunber Group number nunber in the expression.
PS >"| Text|" -match '(.) Text\1'
True
PS >"| Text+" -match '(.) Text\1'
Fal se

\ k<nane> The group named nane in the expression.
PS >"| Text|" -match

' (?<Synbol >.) Text \ k<Synbol >

True

PS >"| Text+" -match
' (?<Synbol >.) Text \ k<Synbol >
Fal se

Table 3-8. Other constructs: Other expressions that modify a regular expression

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Construct

(?1 MSX-1 NMSX)

(?#)

#[to end of
| 1 nej

Description

Applies or disables the given option for the rest of this expression. Supported options
are:

| case-insensitive
mmultiline

n explicit capture
s single line

X Ignore whitespace
PS >"Te nst" -match ' (?sx)T e. st
True

Inline comment. This terminates at the first closing parenthesis.
PS >"Test" -match

"(?# Match 'Test') Test'
True

Comment form allowed when the regular expression has the | gnor eWi t espace option

enabled.
PS >"Test" -nmatch

"(?x) Test # Matches Test'
True

Table 3-9. Character escapes: Character sequences that represent another character

Escaped
character

<ordi nary
char act er s>

\ a

\'b

\ t
\r
\v
\ f
\n

\e

Match

Characters other than . $ ™ { [(]) * + ? \ match themselves.

A bell (alarm) \ u0007.

A backspace \ u0008 if in a [] character class. In a regular expression, \ b denotes a word
boundary (between \ wand \ Wcharacters) except within a [] character class, where \ b refers
to the backspace character. In a replacement pattern, \ b always denotes a backspace.

A tab \ u0009.

A carriage return \ u0O00D.
A vertical tab \ uOOOB.

A form feed \ u0O0O0C.

A new line \ uOOOA.

An escape \ uOO1B.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Escaped
character

\ ddd

\ xdd
\cC
\ udddd

\

Match

An ASCII character as octal (up to three digits). Numbers with no leading zero are treated
as backreferences if they have only one digit, or if they correspond to a capturing group
number.

An ASCII character using hexadecimal representation (exactly two digits).
An ASCII control character. For example, \ cC is Control-C.
A Unicode character using hexadecimal representation (exactly four digits).

When followed by a character that is not recognized as an escaped character, matches that
character. For example,* is the literal character *.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 4. PowerShell Automatic Variables

PowerShell defines and populates several variables automatically. These variables let you access information
about the execution environment, PowerShell preferences, and more.

Table 4-1 provides a listing of these automatic variables and their meanings.

Table 4-1. Windows PowerShell automatic variables: Variables automatically used and set by

Variable

$$
$?
$A
$

$ar gs

$confirnPreference

$consol eFi | enane

$current!| yExecut i ngComand

$debugPr ef er ence

$error

$error Acti onPref er ence

$error Vi ew

$execut i onCont ext

$f al se
$f or each

$f or mat Enuner ati onLi m t

downloaded from: lib.ommolkefab.ir

Windows PowerShell

Meaning

Last token of the last line received by the shell.

Success/fail status of the last operation.

First token of the last line received by the shell.

Current pipeline object in a pipelined script block.

Array of parameters passed to the script, function, or script block.

Preference that controls the level of impact that operations may have before
requesting confirmation. Supports the values none, | ow, nedium high. A

value of none disables confirmation messages.

Filename of the PowerShell console file that configured this session, if one was
used.

Currently executing command, when in a suspended prompt.

Preference that controls how PowerShell should handle debug output written
by a script or cmdlet. Supports the values Si | ent| yConti nue, Conti nue,

| nqui re, and St op.

Array that holds the terminating and nonterminating errors generated in the
shell.

Preference that controls how PowerShell should handle error output written by
a script or cmdlet. Supports the values Si | ent| yConti nue, Conti nue,

| nqui re, and St op.

Preference that controls how PowerShell should output errors in the shell.
Supports the values of Nor nal and Cat egor yVi ew (a more succinct and

categorical view of the error).

Means by which scripts can access the APIs typically used by cmdlets and
providers.

Variable that represents the Boolean value Fal se.
Enumerator within a f or each loop.

Limit on how deep into an object the formatting and output facilities travel
before outputting an object.

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Variable

$hone

$host

$i nput

$l ast Exi t Code

$l ogEngi neHeal t hEvent

$l ogEngi neLi f ecycl eEvent

$l ogCommandHeal t hEvent

$l ogConmandLi f ecycl eEvent

$l ogPr ovi der Heal t hEvent

$l ogPr ovi der Li fecycl eEvent

$mat ches

$maxi nunmAl i asCount

$maxi munDr i veCount

$maxi muner r or Count
$maxi munFunct i onCount
$nmaxi nunHi st or yCount
$maxi munVar i abl eCount

$nyl nvocati on

$nest edPr onpt Level

$nul |

$of s

$out put Encodi ng

downloaded from: lib.ommolkefab.ir

Meaning

User's home directory.

Means by which scripts can access the APIs and implementation details of the
current host and user interface.

Current input pipeline in a pipelined script block.

Exit code of the last command. Can be explicitly set by scripts, and is
automatically set when calling native executables.

Preference that tells PowerShell to log engine health events, such as errors
and exceptions. Supports the values $t r ue and $f al se.

Preference that tells PowerShell to log engine lifecycle events, such as St art
and St op. Supports the values $t r ue and $f al se.

Preference that tells PowerShell to log command health events, such as errors
and exceptions. Supports the values $t r ue and $f al se.

Preference that tells PowerShell to log command lifecycle events, such as
Start and St op. Supports the values $t r ue and $f al se.

Preference that tells PowerShell to log provider health events, such as errors
and exceptions. Supports the values $t r ue and $f al se.

Preference that tells PowerShell to log provider lifecycle events, such as St art
and St op. Supports the values $t r ue and $f al se.

Results of the last successful regular expression match (through the —nat ch
operator).

Limit on how many aliases may be defined.

Limit on how many drives may be defined. Does not include default system
drives.

Limit on how many errors PowerShell retains in the $err or collection.
Limit on how many functions may be defined.
Limit on how many history items are retained.
Limit on how many variables may be defined.

Information about the context under which the script, function, or script block
was run, including detailed information about the command (MyCommand) and

the script that defines it (Scri pt Nane).

Nesting level of the current prompt. Incremented by operations that enter a
nested prompt (such as $host . Ent er Nest edPronpt ()) and decremented by

the exi t statement.
Variable that represents the concept of Nul | .

Output field separator. Placed between elements when PowerShell outputs a
list as a string.

Character encoding used when sending pipeline data to external processes.

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Variable
$pi d
$profile

$progressPref erence

$psHone
$pwd

$shel |l I'd
$st ackTrace
$this
$transcri pt
$true

$ver boseHel pErrors

$ver bosePr ef er ence

$war ni ngPr ef erence

$what i f Pr ef er ence

downloaded from: lib.ommolkefab.ir

Meaning

Process ID of the current PowerShell instance.
Location and filename of the PowerShell profile for this host.

Preference that controls how PowerShell should handle progress output
written by a script or cmdlet. Supports the values Si | ent | yCont i nue,

Cont i nue, | nquire, and Stop.

Installation location of PowerShell.

Current working directory.

Shell identifier of this host.

Detailed stack trace information of the last error.

Reference to the current object in Scri pt Met hods and Scri pt Properti es.
Filename used by the Start-Transcri pt cmdlet.

Variable that represents the Boolean value Tr ue.

Preference that tells PowerShell to output detailed error information when
parsing malformed help files. Supports the values $t r ue and $f al se.

Preference that controls how PowerShell should handle verbose output written
by a script or cmdlet. Supports the values Si | ent | yConti nue, Conti nue,

| nqui re, and St op.

Preference that controls how PowerShell should handle warning output written
by a script or cmdlet. Supports the values Si | ent | yConti nue, Contli nue,

| nqui re, and St op.

Preference that controls how PowerShell should handle confirmation requests
called by a script or cmdlet. Supports the values Si | ent | yCont i nue,

Conti nue, I nquire, and Stop.

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 5. Standard PowerShell Verbs

Cmdlets and scripts should be named using a Ver b- Noun syntax, for example, Get - Chi | dl t em The official

guidance is that, with rare exception, cmdlets should use the standard PowerShell verbs. They should avoid any
synonyms or concepts that can be mapped to the standard. This allows administrators to quickly understand a

set of cmdlets that use a new noun.

Verbs should be phrased in the present tense, and nouns should be singular. Tables Table 5-1 through Table 5-

6 list the different categories of standard PowerShell verbs.

Table 5-1. Standard Windows PowerShell common verbs

Adds a resource to a container, or attaches an element to another

Removes all elements from a container.

Copies a resource to another name or container.

Verb | Meaning
Add
element.
Cl ear
Copy
Get Retrieves data.
H de Makes a display not visible.
Joi n Joins a resource.
Lock Locks a resource.
Move Moves a resource.
New Creates a new resource.

Push Puts an item onto the top of a stack.

Pop Removes an item from the top of a stack.
Renmove Removes a resource from a container.
Renane Gives a resource a new name.

Sear ch | Finds a resource (or summary information about that resource) Iin
a collection. Does not actually retrieve the resource, but provides
Information to be used when retrieving It.

Sel ect Creates a subset of data from a larger data set.

Set Places data.

Show | Retrieves, formats, and displays information.

downloaded from: lib.ommolkefab.ir

Synonyms

Append, Attach, Concatenate,
Insert

Flush, Erase, Release, Unmark,
Unset, Nullify

Duplicate, Clone, Replicate
Read, Open, Cat, Type, Dir,

Obtain, Dump, Acquire, Examine,
Find, Search

Suppress

Combine, Unite, Connect,
Associate

Restrict, Bar
Transfer, Name, Migrate

Create, Generate, Build, Make,
Allocate

Put, Add, Copy
Remove, Paste
Delete, Kill
Ren, Swap

Find, Get, Grep, Select

Pick, Grep, Filter
Write, Assign, Configure

Display, Report

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Verb Meaning

Split | Separates data into smaller elements.
Unl ock Unlocks a resource.

Use Applies or associates a resource with a context.

Synonyms
Divide, Chop, Parse
Free, Unrestrict

With, Having

Table 5-2. Standard Windows PowerShell communication verbs

Verb Meaning

Connect Connects a source to a destination.

Di sconnect Disconnects a source from a destination.

Read Acquires information from a nonconnected source.
Recei ve Acquires information from a connected source.
Send Writes information to a connected destination.
Wite Writes information to a nonconnected destination.

Verb

Backup
Checkpol nt
Conpar e

Convert

Convert From
ConvertTo
Di snount

Export

| nport

Initirall ze

Limt

Mer ge

Table 5-3. Standard Windows PowerShell data verbs

Meaning

Backs up data.
Creates a snapshot of the current state of data or its configuration.
Compares a resource with another resource.

Changes from one representation to another, when the cmdlet supports
bidirectional conversion, or conversion of many data types.

Converts from one primary input to several supported outputs.
Converts from several supported inputs to one primary output.
Detaches a name entity from a location in a namespace.

Stores the primary input resource into a backing store or interchange
format.

Creates a primary output resource from a backing store or interchange
format.

Prepares a resource for use, and initializes it to a default state.

Applies constraints to a resource.

Creates a single data instance from multiple data sets.

downloaded from: lib.ommolkefab.ir

Synonyms

Join, Telnet

Break, Logoff
Prompt, Get

Read, Accept, Peek
Put, Broadcast, Mall

Put, Print

Synonyms

Save, Burn

Diff, StartTransaction
Diff, Bc

Change, Resize,
Resample

Export, Output, Out
Import, Input, In
Dismount, Unlink

Extract, Backup

Load, Read

Setup, Renew,
Rebuild

Quota, Enforce

Combine, Join

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Verb Meaning Synonyms

Mount Attaches a named entity to a location in a hamespace. Attach, Link

Qut Sends data to a terminal location. Print, Format, Send

Publ | sh Make a resource known or visible to others. Deploy, Release,
Install

Rest ore Restores a resource to a set of conditions that have been predefined or Repair, Return, Fix

set by a checkpoint.

Unpubl | sh Removes a resource from public visibility. Uninstall, Revert
Updat e Updates or refreshes a resource. Refresh, Renew,
Index

Table 5-4. Standard Windows PowerShell diagnostic verbs

Verb Meaning Synonyms

Debug Examines a resource, diagnoses operational problems. Attach, Diagnhose

Measur e ldentifies resources consumed by an operation, or retrieves statistics about a | Calculate, Determine,
resource. Analyze

Pl ng Determines whether a resource is active and responsive; in most instances, @ Connect, Debug
this should be replaced by the verb, Test .

Resol ve Maps a shorthand representation to a more complete one. Expand, Determine

Test Verifies the validity or consistency of a resource. Diagnose, Verify,
Analyze

Trace Follows the activities of the resource. Inspect, Dig

Table 5-5. Standard Windows PowerShell lifecycle verbs

Verb Meaning Synonyms

D sabl e Configures an item to be unavailable. Halt, Hide

Enabl e Configures an item to be available. Allow, Permit

| nst al | Places a resource In the specified location and optionally initializes it. Setup, Configure

| nstal | w Calls or launches an activity that cannot be stopped. Run, Call, Perform
Rest art Stops an operation and starts it again. Recycle, Hup

Resune Begins an operation after it has been suspended. Continue

Start Begins an activity. Launch, Initiate

St op Discontinues an activity. Halt, End, Discontinue

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Verb Meaning Synonyms

Suspend Pauses an operation, but does not discontinue it. Pause, Sleep, Break
Uni nstal | | Removes a resource from the specified location. Remove, Clear, Clean
Wi t Pauses until an expected event occurs. Sleep, Pause, Join

Table 5-6. Standard Windows PowerShell security verbs

Verb Meaning Synonyms

Bl ock Restricts access to a resource. Prevent, Limit, Deny
G ant Grants access to a resource. Allow, Enable
Revoke ' Removes access to a resource. Remove, Disable
Unbl ock Removes a restriction of access to a resource. Clear, Allow

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 6. Selected .NET Classes and Their Uses

Tables Table 6-1 through Table 6-16 provide pointers to types in the .NET Framework that usefully complement
the functionality that PowerShell provides. For detailed descriptions and documentation, search the official
documentation at http://msdn.microsoft.com.

Table 6-1. Windows PowerShell

Class Description

Syst em Managenent . Aut omat 1 on. PSCbj ect Represents a PowerShell object to which you can add notes,
properties, and more.

Table 6-2. Utility

Class Description

Syst em Dat eTi ne Represents an instant in time, typically expressed as a date and
time of day.

System Gui d Represents a globally unique identifier (GUID).

System NMat h Provides constants and static methods for trigonometric,
logarithmic, and other common mathematical functions.

Syst em Random Represents a pseudorandom number generator, a device that
produces a sequence of numbers that meet certain statistical
requirements for randomness.

Syst em Convert Converts a base data type to another base data type.

Syst em Envi r onnent Provides information about, and means to manipulate, the current
environment and platform.

Syst em Consol e Represents the standard input, output, and error streams for
console applications.

System Text . Regul ar Expr essi ons. Regex Represents an immutable regular expression.

Syst em D aghosti cs. Debug Provides a set of methods and properties that help debug your
code.

System Di agnosti cs. Event Log Provides interaction with Windows event logs.

System Di agnosti cs. Process Provides access to local and remote processes, and enables you to

start and stop local system processes.

System Di agnosti cs. St opwat ch Provides a set of methods and properties that you can use to
accurately measure elapsed time.

Syst em Medi a. SoundPl ayer Controls playback of a sound from a .wav file.

Table 6-3. Collections and object utilities

downloaded from: lib.ommolkefab.ir

http://msdn.microsoft.com
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Class

System Array

Syst em Enum
System String

System Text. StringBui |l der

Description

Provides methods for creating, manipulating,
searching, and sorting arrays, thereby serving as
the base class for all arrays in the Common
Language Runtime.

Provides the base class for enumerations.
Represents text as a series of Unicode characters.

Represents a mutable string of characters.

System Col | ecti ons. Speci al i zed. OrderedDi cti onary | Represents a collection of key/value pairs that are

System Col | ections. ArraylLi st

accessible by the key or index.

Implements the | Li st interface using an array
whose size is dynamically increased as required.

Table 6-4. The .NET Framework

Class

System AppDonail n

System Refl ecti on. Assenbl y

System Type

Syst em Thr eadi ng. Thr ead

System Runti ne. I nt eropServi ces. Mar shal

M cr osoft. CShar p. CShar pCodePr ovi der

Class Description

Description

Represents an application domain, which is an isolated
environment where applications execute.

Defines an assembly, which is a reusable, versionable, and self-
describing building block of a Common Language Runtime
application.

Represents type declarations: class types, interface types, array
types, value types, enumeration types, type parameters,
generic type definitions, and open or closed constructed generic

types.

Creates and controls a thread, sets its priority, and gets its
status.

Provides a collection of methods for allocating unmanaged
memory, copying unmanaged memory blocks, and converting
managed to unmanaged types, as well as other miscellaneous
methods used when interacting with unmanaged code.

Provides access to instances of the C# code generator and code
compiler.

Table 6-5. Reqistry

M crosoft. Wn32. Regi stry Provides Regi st r yKey objects that represent the root keys in the Windows
registry, and static methods to access key/ value pairs.

M crosoft. Wn32. Reqgi stryKey Represents a key-level node in the Windows registry.

Table 6-6. Input and output

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Class

System | O Stream
System | O Bi nar yReader
System | O BinaryWiter

System | O Buf f eredSt ream

System | O Directory

System O Filelnfo

System IO Directorylnfo

System IO File

System | O MenorySt ream

System | O Pat h

System | O Text Reader

System | O St reanReader

System | O Text Witer

System 1O StreamW i ter

System | O Stri ngReader
System O StringWiter

System | O. Conpressi on. Defl at eSt ream

System | O Conpressi on. &Zi pStream

System | O Fi | eSyst em\Mt cher

Class

Description

Provides a generic view of a sequence of bytes.
Reads primitive data types as binary values.
Writes primitive types in binary to a stream.

Adds a buffering layer to read and write operations on another
stream.

Exposes static methods for creating, moving, and enumerating
through directories and subdirectories.

Provides instance methods for the creation, copying, deletion,
moving, and opening of files, and aids in the creation of
Fi | eSt r eamobjects.

Exposes instance methods for creating, moving, and enumerating
through directories and subdirectories.

Provides static methods for the creation, copying, deletion, moving,
and opening of files, and aids in the creation of Fi | eSt r eamobjects.

Creates a stream whose backing store is memory.

Performs operations on string instances that contain file or
directory path information. These operations are performed in a
cross-platform manner.

Represents a reader that can read a sequential series of characters.

Implements a Text Reader that reads characters from a byte
stream in a particular encoding.

Represents a writer that can write a sequential series of characters.

Implements a Text Wit er for writing characters to a stream in a
particular encoding.

Implements a Text Reader that reads from a string.
Implements a Text Wi t er for writing information to a string.

Provides methods and properties used to compress and decompress
streams using the Deflate algorithm.

Provides methods and properties used to compress and decompress
streams using the GZip algorithm.

Listens to the file system change notifications and raises events
when a directory, or file in a directory, changes.

Table 6-7. Security

Description

System Security. Principal. Wndowsl dentity Represents a Windows user.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Class

System Security. Principal.WndowsPri nci pal

System Security. Principal. Wl | KnownSi dType

System Security. Principal.WndowsBuiltlnRole

System Security. SecureString

System Security. Cryptography. Tri pl eDESCr ypt oSer vi ce-
Provi der

System Security. Cryptography. PasswordDeri veByt es

System Security. Cryptography. SHAL1

System Security. AccessControl . Fil eSystenSecurity

System Security. AccessControl . Regi strySecurity

Description

Allows code to check the Windows group
membership of a Windows user.

Defines a set of commonly used security
Identifiers (SIDs).

Specifies common roles to be used with
| sl nRol e.

Represents text that should be kept
confidential. The text is encrypted for privacy
when being used and deleted from computer
memory when no longer needed.

Defines a wrapper object to access the
cryptographic service provider (CSP) version
of the TripleDES algorithm.

Derives a key from a password using an
extension of the PBKDF1 algorithm.

Computes the SHA1 hash for the input data.

Represents the access control and audit
security for a file or directory.

Represents the Windows access control
security for a regqistry key.

Table 6-8. User interface

Class Description

System W ndows. For ns. Form Represents a window or dialog box that makes up an application’'s

user interface.

System W ndows. For ns. Fl owLayout Panel Represents a panel that dynamically lays out its contents.

Table 6-9. Image manipulation

Class Description

System Draw ng. | nage | A class that provides functionality for the Bi t nap and Met af i | e classes.

System Draw ng. Bi t map Encapsulates a GDI+ bitmap, which consists of the pixel data for a graphics image
and its attributes. A bitmap is an object used to work with images defined by pixel

data.

Table 6-10. Networking

Class Description

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Class

System Uri

Description

Provides an object representation of a uniform resource identifier (URI) and
easy access to the parts of the URI.

Syst em Net . Net wor kCr edent 1 al Provides credentials for password-based authentication schemes, such as

Syst em Net . Dns
System Net . Ft p\WWebRequest
System Net . H t pWebRequest

System Net . Wb | ent

basic, digest, NTLM, and Kerberos authentication.

Provides simple domain name resolution functionality.
Implements a File Transfer Protocol (FTP) client.
Provides an HTTP-specific implementation of the WebRequest class.

Provides common methods for sending data to and receiving data from a
resource identified by a URI.

System Net . Sockets. Tcpd i ent Provides client connections for TCP network services.

System Net. Mai | . Mai | Address Represents the address of an electronic mail sender or recipient.

System Net. Mai | . Mai | Message | Represents an email message that can be sent using the Snt pd i ent class.

System Net. Mai | . Snt pCl | ent Allows applications to send email by using the Simple Mail Transfer Protocol

(SMTP).

System | O Ports. Seri al Port Represents a serial port resource.

System Web. HHtpUtility

Class

System Xm . Xnml Text Witer

System Xml . Xnml Docunent

Provides methods for encoding and decoding URLs when processing web
requests.

Table 6-11. XML

Description

Represents a writer that provides a fast, noncached, forward-only way of
generating streams or files containing XML data that conforms to the W3C
Extensible Markup Language (XML) 1.0 and the namespaces in XML
recommendations.

Represents an XML document.

Table 6-12. Windows Management Instrumentation

Class Description
Syst em Managenent . Managenent (bj ect Represents a WMI instance.
Syst em Managenent . Managenent Cl ass Represents a management class. A management class

downloaded from: lib.ommolkefab.ir

Is a WMI class, such as W n32 Logi cal D sk, which can
represent a disk drive, and W n32_ Process, which
represents a process, such as an instance of
Notepad.exe. The members of this class enable you to
access WMI data using a specific WMI class path. For
more information, see "Win32 Classes" in the Windows
Management Instrumentation documentation in the
MSDN Library at http://msdn.microsoft.com/library.

http://msdn.microsoft.com/library
http://msdn.microsoft.com/library
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Class

Syst em Managenent . Managenent (bj ect Sear cher

Syst em Managenent . Managenent Dat eTi neConvert er

Syst em Managenent . Managenent Event Wat cher

Description

Retrieves a collection of WMI management objects
based on a specified query. This class is one of the
more commonly used entry points to retrieving
management information. For example, it can be used
to enumerate all disk drives, network adapters,
processes, and many more management objects on a
system, or to query for all network connections that are
up, services that are paused, and so on. When
Instantiated, an instance of this class takes as input a
WMI query, represented in an (bj ect Query or its

derivatives, and optionally a Managenent Scope,
representing the WMI namespace to execute the query
In. It can also take additional advanced options in an
Enuner ati onOpti ons. When the Get method on this
object is invoked, the Managenent Cbj ect Sear cher
executes the given query in the specified scope and
returns a collection of management objects that match
the query in a Managenent Obj ect Col | ect i on.

Provides methods to convert DMTF datetime and time
Intervals to CLR-compliant Dat eTi ne and Ti neSpan

formats and vice versa.

Subscribes to temporary event notifications based on a
specified event query.

Table 6-13. Active Directory

Class Description

System Di rectoryServices. D rectorySear cher Performs gueries against Active Directory.

System DirectoryServices.DirectoryEntry The Director yEnt ry class encapsulates a node or object in
the Active Directory hierarchy.

Table 6-14. Database

Class Description

Syst em Dat a. Dat aSet Represents an in-memory cache of data.

Syst em Dat a. Dat aTabl e Represents one table of in-memory data.

System Dat a. Sgl C 1 ent . Sql Conmand Represents a Tr ansact - SQL statement or stored procedure to

execute against a SQL Server database.

System Dat a. Sgl C 1 ent. Sql Connecti on | Represents an open connection to a SQL Server database.

System Dat a. Sgl C | ent. Sql Dat aAdapt er Represents a set of data commands and a database connection
that are used to fill the Dat aSet and update a SQL Server

database.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Class

Syst em Dat a. Odbc

Syst em Dat a. Odbc

Syst em Dat a. Odbc

Class

. dbcCommand

. bcConnecti on

. GdbcDat aAdapt er

Description

Represents a SQL statement or stored procedure to execute
against a data source.

Represents an open connection to a data source.

Represents a set of data commands and a connection to a data
source that are used to fill the Dat aSet and update the data

source.

Table 6-15. Message gueuing

Description

Syst em Messagi ng. MessageQueue Provides access to a queue on a Message Queuing server.

Class

System Transact |

downloaded from: lib.ommolkefab.ir

ons. Transacti on

Table 6-16. Transactions

Description

Represents a transaction.

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 7. WMI Reference

The Windows Management Instrumentation (WMI) facilities in Windows offer thousands of classes that provide
iInformation of interest to administrators. Table 7-1 lists the categories and subcategories covered by WMI and
can be used to get a general idea of the scope of WMI classes. Table 7-2 provides a selected subset of the most
useful WMI classes. For more information about a category, search the official WMI documentation at

http://msdn.microsoft.com.

Table 7-1. WMI class categories and subcateqgories

Category Subcategory

Computer Cooling device, input device, mass storage, motherboard, controller and port, networking
System device, power, printing, telephony, video, and monitor

Hardware

Operating COM, desktop, drivers, filesystem, job objects, memory and page files, multimedia
System audio/visual, networking, operating system events, operating system settings, processes,

registry, scheduler jobs, security, services, shares, Start menu, storage, users, Windows NT
event log, Windows product activation

WMI Service WMI configuration, WMI management
Management
General Installed applications, performance counter, security descriptor

Class

W n32 BaseBoard

W n32 BI OS

W n32_Boot Confi guration

W n32_ CDROMDX i ve

W n32_ Conput er Syst em

W n32 Processor

W n32_ Conput er Syst enPr oduct

Cl M Dat aFi | e

downloaded from: lib.ommolkefab.ir

Table 7-2. Selected WMI classes

Description

Represents a baseboard, which is also known as a motherboard or
system board.

Represents the attributes of the computer system's basic input/output
services (BIOS) that are installed on a computer.

Represents the boot configuration of a Windows system.

Represents a CD-ROM drive on a Windows computer system. Be aware
that the name of the drive does not correspond to the logical drive
letter assigned to the device.

Represents a computer system in a Windows environment.

Represents a device that can interpret a sequence of instructions on a
computer running on a Windows operating system. On a
multiprocessor computer, one instance of the W n32_ Processor class

exists for each processor.

Represents a product. This includes software and hardware used on
this computer system.

Represents a named collection of data or executable code. Currently,
the provider returns files on fixed and mapped logical disks. In the
future, only instances of files on local fixed disks will be returned.

http://msdn.microsoft.com
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Class

W n32_ DCOVAppl i cation
W n32 Deskt op

W n32 Deskt opMoni t or

W n32_ Devi ceMenor yAddr ess

W n32 D skDrive

W n32 D skQuot a

W n32_ DMAChannel

W n32_ Envi r onnment

Wn32 Directory

W n32 G oup

W n32 | DEControl | er

downloaded from: lib.ommolkefab.ir

Description

Represents the properties of a DCOM application.

Represents the common characteristics of a user's desktop. The
properties of this class can be modified by the user to customize the
desktop.

Represents the type of monitor or display device attached to the
computer system.

Represents a device memory address on a Windows system.

Represents a physical disk drive as seen by a computer running the
Windows operating system. Any interface to a Windows physical disk
drive is a descendant (or member) of this class. The features of the
disk drive seen through this object correspond to the logical and
management characteristics of the drive. In some cases, this may not
reflect the actual physical characteristics of the device. Any object
based on another logical device would not be a member of this class.

Tracks disk space usage for NTFS filesystem volumes. A system
administrator (SA) can configure Windows to prevent further disk
space use and log an event when a user exceeds a specified disk space
limit. An SA can also log an event when a user exceeds a specified disk
space warning level. This class is new in Windows XP.

Represents a direct memory access (DMA) channel on a Windows
computer system. DMA is a method of moving data from a device to
memory (or vice versa) without the help of the microprocessor. The
system board uses a DMA controller to handle a fixed number of
channels, each of which can be used by one (and only one) device at a
time.

Represents an environment or system environment setting on a
Windows computer system. Querying this class returns environment
variables found in:

HKLM Syst em

Current Control Set\ Control\
Sessi onmanager \
Envi r onnent

as well as:
HKEY USERS\ <user si d>\

Envi ronnent

Represents a directory entry on a Windows computer system. A
directory is a type of file that logically groups data files and provides
path information for the grouped files. Wn32 Directory does not

include directories of network drives.

Represents data about a group account. A group account allows access
privileges to be changed for a list of users, for example,
administrators.

Manages the capabilities of an integrated device electronics (IDE)
controller device.

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Class

W n32 | RQResour ce

W n32_ Schedul edJob

W n32 LoadOr der G oup

W n32_ Logi cal Di sk

W n32 LogonSessi on

W n32_ CacheMenory

W n32 Logi cal Menory
Conf i guration

downloaded from: lib.ommolkefab.ir

Description

Represents an interrupt request line (IRQ) number on a Windows
computer system. An interrupt request is a signal sent to the CPU by a
device or program for time-critical events. IRQ can be hardware- or
software-based.

Represents a job created with the AT command. The
W n32 Schedul edJob class does not represent a job created with the

Scheduled Task Wizard from the Control Panel. You cannot change a
task created by WMI in the Scheduled Tasks Ul. Windows 2000 and
Windows NT 4.0: You can use the Scheduled Tasks Ul to modify the
task you originally created with WMI. However, although the task is
successfully modified, you can no longer access the task using WMI.

Each job scheduled against the schedule service is stored persistently
(the scheduler can start a job after a reboot) and is executed at the
specified time and day of the week or month. If the computer is not
active or if the scheduled service is not running at the specified job
time, the schedule service runs the specified job on the next day at the
specified time.

Jobs are scheduled according to Universal Coordinated Time (UTC) with
bias offset from Greenwich mean time (GMT), which means that a job
can be specified using any time zone. The W n32_ Schedul edJob class
returns the local time with UTC offset when enumerating an object and
converts to local time when creating new jobs. For example, a job
specified to run on a computer in Boston at 10:30 P.M. Monday PST will
be scheduled to run locally at 1:30 A.M. Tuesday EST. Note that a
client must take into account whether Daylight Savings Time is in
operation on the local computer, and if it is, then subtract a bias of 60
minutes from the UTC offset.

Represents a group of system services that define execution
dependencies. The services must be Initiated in the order specified by
the Load Order Group as the services are dependent on each other.
These dependent services require the presence of the antecedent
services to function correctly. The data in this class is derived by the
provider from the registry key:

System Current Control Set\

Control \ G oupOrderLi st

Represents a data source that resolves to an actual local storage
device on a Windows system.

Describes the logon session or sessions associated with a user logged
on to Windows NT or Windows 2000.

Represents internal and external cache memory on a computer system.

Represents the layout and availability of memory on a Windows
system. Beginning with Windows Vista, this class is no longer available
In the operating system.

Windows XP and Windows Server 2003: This class is no longer
supported. Use the W n32_ Oper ati ngSyst emclass instead.

Windows 2000: This class is available and supported.

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Class

W n32_Physi cal Menor yArr ay

W n32 Net wor kd i ent

W n32_ Net wor kLogi nProfil e

W n32_Net wor kPr ot ocol

W n32_ Net wor kConnecti on

W n32_ Net wor kAdapt er

W n32_ Net wor kAdapt er
Conf i guration

W n32_ NTDonai n

W n32 NTLogEvent

W n32 NTEvent| ogFil e

W n32_ OnBoar dDevi ce

W n32 OperatingSyst em

W n32 PageFi | eUsage

downloaded from: lib.ommolkefab.ir

Description

Represents details about the computer system's physical memory. This
Includes the number of memory devices, memory capacity available,
and memory type-for example, system or video memory.

Represents a network client on a Windows system. Any computer
system on the network with a client relationship to the system is a
descendant (or member) of this class (for example, a computer
running Windows 2000 Workstation or Windows 98 that is part of a
Windows 2000 domain).

Represents the network login information of a specific user on a
Windows system. This includes but is not limited to password status,
access privileges, disk gquotas, and login directory paths.

Represents a protocol and its network characteristics on a Win32
computer system.

Represents an active network connection in a Windows environment.

Represents a network adapter of a computer running on a Windows
operating system.

Represents the attributes and behaviors of a network adapter. This
class includes extra properties and methods that support the
management of the TCP/IP and Internetworking Packet Exchange (1PX)
protocols that are independent from the network adapter.

Represents a Windows NT domain.

Used to translate instances from the Windows NT event log. An
application must have SeSecurityPrivi | ege to receive events from
the security event log; otherwise, "Access Denied" is returned to the
application.

Represents a logical file or directory of Windows NT events. The file is
also known as the event log.

Represents common adapter devices built into the motherboard
(system board).

Represents an operating system installed on a computer running on a
Windows operating system. Any operating system that can be installed
on a Windows system is a descendant or member of this class.

W n32_ Oper ati ngSyst emis a singleton class. To get the single
Instance, use @ for the key. Windows Server 2003, Windows XP,
Windows 2000, and Windows NT 4.0: If a computer has multiple
operating systems installed, this class returns only an instance for the
currently active operating system.

Represents the file used for handling virtual memory file swapping on a
WIin32 system. Information contained within objects instantiated from
this class specify the runtime state of the page file.

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Class

W n32 PageFi |l eSetti ng

W n32 D skPartition

W n32 Port Resource

W n32_ Port Connect or

W n32 Printer

W n32 PrinterConfiguration

W n32_ PrintJob

W n32 Process

W n32_ Pr oduct

W n32_ Qui ckFi XEngi neeri ng
W n32 Quot aSetting

W n32_ OSRecover yConfiguration

W n32 Registry
W n32 SCSI Control |l er

W n32 Perf RawDat a_Per f Net _Ser ver

W n32_ Servi ce

downloaded from: lib.ommolkefab.ir

Description

Represents the settings of a page file. Information contained within
objects instantiated from this class specifies the page file parameters
used when the file is created at system startup. The properties in this
class can be modified and deferred until startup. These settings are
different from the runtime state of a page file expressed through the
associated class W n32_PageFi | eUsage.

Represents the capabilities and management capacity of a partitioned
area of a physical disk on a Windows system. Example: Disk #0,
Partition #1.

Represents an 1I/0 port on a Windows computer system.

Represents physical connection ports, such as DB-25 pin male,
Centronics, or PS/2.

Represents a device connected to a computer running on a Microsoft
Windows operating system that can produce a printed image or text on
paper or another medium.

Represents the configuration for a printer device. This includes
capabilities such as resolution, color, fonts, and orientation.

Represents a print job generated by a Windows application. Any unit of
work generated by the Print command of an application that is running
on a computer running on a Windows operating system is a descendant
or member of this class.

Represents a process on an operating system.

Represents products as they are installed by Windows Installer. A
product generally correlates to one installation package. Note: for
Information about support or requirements for installation of a specific
operating system, visit http://msdn.microsoft.com and search for
"Operating System Availability of WMI Components.”

Represents system-wide Quick Fix Engineering (QFE) or updates that
have been applied to the current operating system.

Contains setting information for disk quotas on a volume.

Represents the types of information that will be gathered from memory
when the operating system fails. This includes boot failures and system
crashes.

Represents the system registry on a Windows computer system.
Represents an SCSI controller on a Windows system.

Provides raw data from performance counters that monitor
communications using the WINS Server service.

Represents a service on a computer running on a Microsoft Windows
operating system. A service application conforms to the interface rules
of the Service Control Manager (SCM), and can be started by a user
automatically at system start through the Services Control Panel utility,
or by an application that uses the service functions included in the
Windows API. Services can start when there are no users logged on to
the computer.

http://msdn.microsoft.com
http://msdn.microsoft.com
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Class

W n32 Share

W n32_ Sof t war eEl enent

W n32_ Sof t war eFeat ur e

W n32_ SoundDevi ce

W n32 St art upCommand

W n32 Syst emAccount

W n32 SystenDriver

W n32_ Syst entncl osure

W n32_ Syst entSl ot

W n32 TapeDrive

W n32_ Tenper at ur ePr obe

W n32_ Ti neZone

Wn32 Uninterruptible
Power Suppl y

downloaded from: lib.ommolkefab.ir

Description

Represents a shared resource on a Windows system. This may be a
disk drive, printer, interprocess communication, or other shareable
device.

Represents a software element, part of a software feature (a distinct
subset of a product, which may contain one or more elements). Each
software element is defined in a W n32_Sof t war eEl enent instance, and
the association between a feature and its W n32_Sof t war eFeat ur e
Instance is defined in the W n32_Sof t war eFeat ur eSof t war e- El enent s
association class. Note: for information about support or requirements
for installation on a specific operating system, visit
http://msdn.microsoft.com and search for "Operating System
Availability of WMI Components."

Represents a distinct subset of a product that consists of one or more
software elements. Each software element is defined in a

W n32_ Sof t war eEl enent instance, and the association between a
feature and its W n32_Sof t war eFeat ur e instance is defined in the

W n32_Sof t war eFeat ur eSof t war e- El enent s association class. Note:
for information about support or requirements for installation on a
specific operating system, visit http://msdn.microsoft.com and search
for "Operating System Availability of WMI Components.™

Represents the properties of a sound device on a Windows computer
system.

Represents a command that runs automatically when a user logs on to
the computer system.

Represents a system account. The system account is used by the
operating system and services that run under Windows NT. There are
many services and processes within Windows NT that need the
capability to log on internally, for example, during a Windows NT
Installation. The system account was designed for that purpose.

Represents the system driver for a base service.

Represents the properties that are associated with a physical system
enclosure.

Represents physical connection points, including ports, motherboard
slots and peripherals, and proprietary connection points.

Represents a tape drive on a Windows computer. Tape drives are
primarily distinguished by the fact that they can be accessed only
sequentially.

Represents the properties of a temperature sensor (electronic
thermometer).

Represents the time zone information for a Windows system, which
Includes changes required for the Daylight Savings Time transition.

Represents the capabilities and management capacity of an
uninterruptible power supply (UPS). Beginning with Windows Vista, this
class is obsolete and not available because the UPS service is no longer
available. This service worked with serially attached UPS devices, not
USB devices. Windows Server 2003 and Windows XP: This class is

http://msdn.microsoft.com
http://msdn.microsoft.com
http://msdn.microsoft.com
http://msdn.microsoft.com
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Class

W n32_ User Account

W n32 Vol t agePr obe

W n32_ Vol umeQuot aSet ti ng

W n32 VW Setting

downloaded from: lib.ommolkefab.ir

Description

available but not usable because the UPS service fails. Windows Server
2003, Windows XP, Windows 2000, and Windows NT 4.0: This class is
available and implemented.

Contains information about a user account on a computer running on a
Windows operating system. Note: Because both the Nane and Donai n

are key properties, enumerating W n32_User Account on a large
network can affect performance negatively. Calling Get Obj ect or
querying for a specific instance has less impact.

Represents the properties of a voltage sensor (electronic voltmeter).

Relates disk quota settings with a specific disk volume. Windows
2000/NT: This class is not available.

Contains the operational parameters for the WMI service. This class
can only have one instance, which always exists for each Windows
system and cannot be deleted. Additional instances cannot be created.

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 8. Selected COM Objects and Their Uses

As an extensibility and administration interface, many applications expose useful functionality through COM
objects. While PowerShell handles many of these tasks directly, many COM objects still provide significant
value.

Table 8-1 lists a selection of the COM objects most useful to system administrators.

Table 8-1. COM identifiers and descriptions

Identifier Description

Access. Application Allows for interaction and automation of Microsoft Access.

Agent . Cont r ol Allows for the control of Microsoft Agent 3D-animated characters.
Aut ol t X3. Cont r ol (Nondefault.) Provides access to Windows Automation via the Aut ol t

administration tool.

CeEnrol |l . CeEnroll Provides access to certificate enrollment services.

CertificateAuthority. Request Provides access to a request to a certificate authority.

COVAdmM n. COMAdmM nCat al og Provides access to and management of the Windows COM+ catalog.

Excel . Application Allows for interaction and automation of Microsoft Excel.

Excel . Sheet Allows for interaction with Microsoft Excel worksheets.

HNet Cf g. FwiVr Provides access to the management functionality of the Windows Firewall.

HNet Cf g. HNet Shar e Provides access to the management functionality of Windows Connection
Sharing.

HTM.Fi | e Allows for interaction and authoring of a new Internet Explorer document.

| nf oPat h. Appl i cati on Allows for interaction and automation of Microsoft InfoPath.

| nt er net Expl orer. Application | Allows for interaction and automation of Microsoft Internet Explorer.
| XSSO. Query Allows for interaction with Microsoft Index Server.
| XSSO. Ui | Provides access to utilities used along with the | XSSO. Quer y object.

Legi t CheckControl . LegitCheck | Provides access to information about Windows Genuine Advantage status
on the current computer.

MakeCab. MakeCab Provides functionality to create and manage cabinet (.cab) files.

MAPI . Sessi on Provides access to a MAPI (Messaging Application Programming Interface)
session, such as folders, messages, and the address book.

Messenger . Messenger App Allows for interaction and automation of Messenger.

M crosoft. FeedsManager Allows for interaction with the Microsoft RSS feed platform.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Ildentifier

M crosoft. | SAdm

M crosoft. Updat e. Aut oUpdat e
M crosoft. Update. |l nstaller
M crosoft. Updat e. Sear cher

M crosoft. Updat e. Sessi on

M crosoft. Update. System nfo

MMC20. Appl i cati on

M5Scri pt Control . Scri pt Contr ol
Mexml 2. XSLTenpl at e

Cut | ook. Appl i cati on

CQut | ookExpress. Messagelli st

Power Poi nt . Appl i cation
Publ | sher. Appl i cation
RDS. Dat aSpace

SAPI . SpVoi ce

Scripting. Fil eSyst enbj ect

Scripting. Si gner
Scriptlet. TypeLib

Scri pt PW Password

Shar ePoi nt . OQpenDocunent s

Shel | . Application

Shel | . Local Machi ne

Shel | . User

SQLDMO. SQLSer ver

downloaded from: lib.ommolkefab.ir

Description

Provides management of Microsoft Index Server.

Provides management of the auto update schedule for Microsoft Update.
Allows for installation of updates from Microsoft Update.

Provides search functionality for updates from Microsoft Update.
Provides access to local information about Microsoft Update history.

Provides access to information related to Microsoft Update for the current
system.

Allows for interaction and automation of Microsoft Management Console
(MMC).

Allows for the evaluation and control of WSH scripts.
Allows for processing of XSL transforms.

Allows for interaction and automation of your email, calendar, contacts,
tasks, and more through Microsoft Outlook.

Allows for interaction and automation of your email through Microsoft
Outlook EXxpress.

Allows for interaction and automation of Microsoft PowerPoint.
Allows for interaction and automation of Microsoft Publisher.
Provides access to proxies of Remote DataSpace business objects.
Provides access to the Microsoft Speech API.

Provides access to the computer's filesystem. Most functionality is
available more directly through PowerShell or through PowerShell's
support for the .NET Framework.

Provides management of digital signatures on WSH files.
Allows the dynamic creation of scripting type library (.tlb) files.

Allows for the masked input of plain-text passwords. When possible, you
should avoid this in preference of the Read- Host cmdlet with the

—AsSecur eStri ng parameter.
Allows for interaction with Microsoft SharePoint Services.

Provides access to aspects of the Windows Explorer Shell application, such
as managing windows, files and folders, and the current session.

Provides access to information about the current machine related to the
Windows shell.

Provides access to aspects of the current user's Windows session and
profile.

Provides access to the management functionality of Microsoft SQL Server.

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Identifier
Vi m Appl i cation

W A. CommonDi al og

WPl ayer . OCX
Wor d. Appl i cati on
Wor d. Docunent

WEcr 1 pt . Net wor k

WEcr i pt . Shel |

WEHCont r ol | er

downloaded from: lib.ommolkefab.ir

Description

(Nondefault.) Allows for interaction and automation of the VIM editor.

Provides access to image capture through the Windows Image Acquisition
facilities.

Allows for interaction and automation of Windows Media Player.
Allows for interaction and automation of Microsoft Word.
Allows for interaction with Microsoft Word documents.

Provides access to aspects of a networked Windows environment, such as
printers and network drives, as well as computer and domain information.

Provides access to aspects of the Windows Shell, such as applications,
shortcuts, environment variables, the registry, and operating environment.

Allows the execution of WSH scripts on remote computers.

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 9. .NET String Formatting

String Formatting Syntax
Standard Numeric Format Strings

Custom Numeric Format Strings

9.1. String Formatting Syntax

The format string supported by the format (- f) operator is a string that contains format items. Each format
item takes the form of:

{index[,alignment][:formatString]}

<I ndex> represents the zero-based index of the item in the object array following the format operator.

<al i gnment > is optional and represents the alignment of the item. A positive number aligns the item to the

right of a field of the specified width. A negative number aligns the item to the left of a field of the specified
width.

<f or mat St ri ng> Is optional and formats the item using that type's specific format string syntax.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 9. .NET String Formatting

String Formatting Syntax
Standard Numeric Format Strings

Custom Numeric Format Strings

9.1. String Formatting Syntax

The format string supported by the format (- f) operator is a string that contains format items. Each format
item takes the form of:

{index[,alignment][:formatString]}

<I ndex> represents the zero-based index of the item in the object array following the format operator.

<al i gnment > is optional and represents the alignment of the item. A positive number aligns the item to the

right of a field of the specified width. A negative number aligns the item to the left of a field of the specified
width.

<f or mat St ri ng> Is optional and formats the item using that type's specific format string syntax.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

9.2. Standard Numeric Format Strings

Table 9-1 lists the standard numeric format strings. All format specifiers may be
O and 99 to control the precision of the formatting.

Table 9-1. Standard numeric format strings

Format Description
specifier
(Name)

Cor ¢ (Currency) A currency amount.

Dor d (Decimal) | A decimal amount (for integral types). The precision
specifier controls the minimum number of digits in the
result.

E or e (Scientific) Scientific (exponential) notation. The precision specifier
controls the number of digits past the decimal point.

Forf (Fixed- Fixed point notation. The precision specifier controls the
point) number of digits past the decimal point.

Gor g (General) A The most compact representation (between fixed-point and
scientific) of the number. The precision specifier controls
the number of significant digits.

Nor n (Number) | The human readable form of the number, which includes
separators between number groups. The precision specifier
controls the number of digits past the decimal point.

P or p (Percent) | The number (generally between O and 1) represented as a
percentage. The precision specifier controls the number of
digits past the decimal point.

Ror r (Round- The single or double number formatted with a precision that
trip) guarantees the string (when parsed) will result in the
original number again.

Xor x The number converted to a string of hexadecimal digits.

(Hexadecimal) The case of the specifier controls the case of the resulting
hexadecimal digits. The precision specifier controls the
minimum number of digits in the resulting string.

downloaded from: lib.ommolkefab.ir

followed by a number between

Example

PS >"{0:C" -f 1.23
$1. 23

PS >"{0:D4}" -f 2
0002

PS >"{0:E3}" -f [Math]::Pi
3. 142E+000

PS >"{0: E3}" -f [Math]::Pi
3. 142

PS >"{0:G3}" -f [Math]::Pi
3. 14

PS >"{0:G3}" -f 1nb

1. O5E+06

PS >"{0: N4}" -f 1nb
1, 048, 576. 0000

PS >"{0: P4}" -f 0.67
67. 0000 %

PS >"{0:R" -f (1nmb/2.0)
524288

PS >"{0:R}" -f (1mb/9.0)
116508. 44444444444

PS >"{0: X4}" -f 1324
052C

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

9.3. Custom Numeric Format Strings

You may use custom numeric format strings, listed in Table 9-2, to format numbers in ways not supported by
the standard format strings.

Table 9-2. Custom numeric format strings

Format Description Example

specifier

(Name)

0 (Zero Specifies the precision and width of a number string. PS >"{0:00.0}" -f 4.12341234

placeholder)

(Digit
placeholder)

Zeroes not matched by digits in the original number are
output as zeroes.

Specifies the precision and width of a number string. #
symbols not matched by digits in the input number are
not output.

04.1

PS >"{0: ##. #}" -f 4.12341234
4.1

. (Decimal Determines the location of the decimal separator. PS >"{0:##. #}" -f 4.12341234
point) 4.1
, (Thousands | When placed between a zero or digit placeholder before PS >"{0:#, # #}" -f 1234.121234
separator) the decimal point in a formatting string, adds the 1,234.1

separator character between number groups.
, (Number When placed before the literal (or implicit) decimal point PS >"{0: ##,,.000}" -f 1048576
scaling) In a formatting string, divides the input by 1,000. You 1. 049

may apply this format specifier more than once.
% Multiplies the input by 100 and inserts the percent sign PS >"{0: %##. 000}" -f .68
(Percentage where shown in the format specifier. %8. 000

placeholder)

EO Displays the input in scientific notation. The number of PS >"{0: ##. #E000}" -f 2.71828
zeroes that follow the E define the minimum length of the | 27. 2E- 001

E+0 exponent field.

E-O

el

e+0

e-0

(Scientific

notation)

"text' Inserts the provided text literally into the output without PSS >"{O0:#.00'## }" -f 2.71828

"text" affecting formatting. 2. 12##

(Literal

string)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Format Description

specifier

(Name)

; (Section Allows for conditional formatting. If your format specifier
separator) contains no section separators, then the formatting

statement applies to all input. If your format specifier
contains one separator (creating two sections), then the
first section applies to positive numbers and zero. The
second section applies to negative numbers. If your
format specifier contains two separators (creating three
sections), then the sections apply to positive numbers,
negative numbers, and zero.

Other (Other Inserts the provided text literally into the output without
character) affecting formatting.

downloaded from: lib.ommolkefab.ir

Example

PS >"{0: PCS; NEG ZERG} " - f
NEG

PS >"{0: $## Pl ease}"-f 14
$14 Pl ease

- 14

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 10. .NET DateTime Formatting

DateTime format strings convert a Dat eTi ne object to one of several standard formats, as listed in Table 10-1.

Format
specifier
(Name)

d(Short date)

D (Long date)

f (Full date/
short time)

F (Full date/
long time)

g (General date/

short time)

G (General date/

long time)

Mor m(Month
day)

o (Round-trip
date/time)

Rorr
(RFC1123)

s (Sortable)

t (Short time)

Table 10-1. Standard DateTime format strings

Description

The culture's short date format.

The culture's long date format.

Combines the long date and short time format

patterns.

Combines the long date and long time format

patterns.

Combines the short date and short time
format patterns.

Combines the short date and long time format

patterns.

The culture's Mont hDay format.

The date formatted with a pattern that
guarantees the string (when parsed) will
result in the original Dat eTi ne again.

The standard RFC1123 format pattern.

Sortable format pattern. Conforms to 1SO

8601 and provides output suitable for sorting.

The culture's short time format.

downloaded from: lib.ommolkefab.ir

Example

PS >"{0:d}" -f [DateTine] "01/23/4567"

1/ 23/ 4567

PS >"{0:D}" -f [DateTime] "01/23/4567"

Friday, January 23, 4567

PS >"{0:f}" -f [DateTinme] "01/23/4567"
Friday, January 23, 4567 12:00 AM

PS >"{0: F}" -f [DateTinme] "01/23/4567"
Friday, January 23, 4567 12:00: 00 AM

PS >"{0:g}" -f [DateTime] "01/23/4567"

1/ 23/ 4567 12: 00 AM

PS >'{0:G" -f [DateTime] "01/23/4567"

1/ 23/ 4567 12: 00: 00 AM

PS >"{0:M" -f [DateTime] "01/23/4567"

January 23

PS >"{0:0}" -f [DateTime] "01/23/4567"
4567- 01- 23T00: 00: 00. 0000000

PS >"{0:R" -f [DateTine] "01/23/4567"
Fri, 23 Jan 4567 00: 00: 00 Gur

PS >"{0:s}" -f [DateTime] "01/23/4567"

4567-01-23T00: 00: 00

PS >"'{0:t}" -f [DateTime] "01/23/4567"

12: 00 AM

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Format
specifier
(Name)

T (Long time)

u (Universal
sortable)

U (Universal)

Yory (Year
month)

Description

The culture's long time format.

The culture's universal sortable Dat eTi ne

format applied to the UTC equivalent of the
INnput.

The culture's Ful | Dat e- Ti e format applied
to the UTC equivalent of the input.

The culture's Year Mont h format.

10.1. Custom DateTime Format Strings

Example

PS >"{0:T}" -f [DateTime] "01/23/4567"

12: 00: 00 AM

PS >"{0:u}" -f [DateTine] "01/23/4567"

4567-01-23 00: 00: 00Z

PS >"{0:U" -f [DateTine] "01/23/4567"
Friday, January 23, 4567 8:00: 00 AM

PS >"{0:Y}" -f [DateTime] "01/23/4567"

January, 4567

You may use custom Dat eTi me format strings, listed in Table 10-2, to format dates in ways not supported by
the standard format strings. Note: Single-character format specifiers are interpreted as a standard Dat eTi ne
formatting string unless used with other formatting specifiers.

Format
specifier

d

dd

ddd

dddd

Table 10-2. Custom DateTime format strings

Description

Day of the month as a number between 1 and 31.

Represents single-digit days without a leading

Zero.

Day of the month as a number between 1 and 31.

Represents single-digit days with a leading zero.

Abbreviated name of the day of the week.

Full name of the day of the week.

downloaded from: lib.ommolkefab.ir

2 02 Fri

2 02 Fri

2 02 Fri

PS >"{0:d dd ddd dddd}"

2 02 Fri

Example

PS >'{0:d dd ddd dddd}" -f

[Dat eTi me] "01/02/4567"

Fri day

PS >"{0:d dd ddd dddd}" -f

[Dat eTi me] "01/ 02/ 4567"

Fri day

PS >"{0:d dd ddd dddd}" -f

[Dat eTi me] "01/02/ 4567"

Fri day

- f
[Dat eTi me] " 01/ 02/ 4567"

Fri day

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Format
specifier

f

ff

fff

ffff

frfff

ffffff

fPfffff

FF

FFF

Description

Most significant digit of the seconds fraction
(milliseconds).

Two most significant digits of the seconds fraction
(milliseconds).

Three most significant digits of the seconds
fraction (milliseconds).

Four most significant digits of the seconds fraction
(milliseconds).

Five most significant digits of the seconds fraction
(milliseconds).

Six most significant digits of the seconds fraction
(milliseconds).

Seven most significant digits of the seconds
fraction (milliseconds).

Most significant digit of the seconds fraction
(milliseconds). Displays nothing if the number is
Zero.

Two most significant digits of the seconds fraction
(milliseconds). Displays nothing if the number is
Zero.

Three most significant digits of the seconds

downloaded from: lib.ommolkefab.ir

Example

PS >"{0:f ff fff ffff}" -f
[Dat eTi me] " 01/ 02/ 4567"
0 00 000 0000

PS >"{0:f ff fff ffff}" -f
[Dat eTi ne] " 01/ 02/ 4567"
0 00 000 0000

PS >"{0:f ff fff ffff}" -f
[Dat eTi ne] " 01/ 02/ 4567"
0 00 000 0000

PS >"{0:f ff fff ffff}" -f
[Dat eTi ne] " 01/ 02/ 4567"
0 00 000 0000

PS >"{0: fffff ffffff fFFffff}" -f
[Dat eTi me] " 01/ 02/ 4567"
00000 000000 0000000

PS >"{Q:fffff ffffff fIeffff)" -f
[Dat eTi me] "01/02/ 4567"
00000 000000 0000000

PS >"{0: fffff ffffff fFFffff}" -f
[Dat eTi ne] " 01/ 02/ 4567"
00000 000000 0000000

PS >"{0: F FF FFF FFFF}" -f
[Dat eTi ne] : : Now
6 66 669 6696

PS >"{0:|F FF FFF FFFF|}" -f
[Dat eTi ne] "01/02/ 4567"

PS >"{0: F FF FFF FFFF}" -f
[Dat eTi ne] : : Now
6 66 669 6696

PS >"{0: | F FF FFF FFFF|}" -f
[Dat eTi me] "01/02/ 4567"

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Format
specifier

FFF

FFFF

FFFFF

FFFFFF

FFFFFFF

%g or gg

%h

Description

Three most significant digits of the seconds
fraction (milliseconds). Displays nothing if the
number Is zero.

Four most significant digits of the seconds fraction
(milliseconds). Displays nothing if the number is
Zero.

Five most significant digits of the seconds fraction
(milliseconds). Displays nothing if the number is
Zero.

Six most significant digits of the seconds fraction
(milliseconds). Displays nothing if the number is
Zero.

Seven most significant digits of the seconds
fraction (milliseconds). Displays nothing if the
number Is zero.

Era (i.e., A.D.).

Hours, as a number between 1 and 12. Single
digits do not include a leading zero.

downloaded from: lib.ommolkefab.ir

Example

PS >"{0: F FF FFF FFFF}" -f
[Dat eTi ne] : : Now
6 66 669 6696

PS >"{0:|F FF FFF FFFF|}" -f
[Dat eTi me] "01/02/ 4567"

PS >"{0:F FF FFF FFFF}" -f
[Dat eTi ne] : : Now
6 66 669 6696

PS >"{0:|F FF FFF FFFF|}" -f
[Dat eTi me] "01/02/ 4567"

PS >"{0: FFFFF FFFFFF FFFFFFF}" -f
[Dat eTi ne] : : Now
1071 107106 1071068

PS >"{0: | FFFFF FFFFFF FFFFFFF|}" -f
| Dat eTi ne] "01/02/4567"

PS >"{0: FFFFF FFFFFF FFFFFFF}" -f
[Dat eTi ne] : : Now
1071 107106 1071068

PS >"{0: | FFFFF FFFFFF FFFFFFF|}" -f
[Dat eTi ne] "01/ 02/ 4567"

PS >"{0: FFFFF FFFFFF FFFFFFF}" -f
[Dat eTi ne] : : Now
1071 107106 1071068

PS >"{0: | FFFFF FFFFFF FFFFFFF|}" -f
[Dat eTi ne] "01/02/ 4567"

PS >"{0:gg}" -f [DateTine]
"01/ 02/ 4567"
A. D

PS >"{0: %}" -f
[Dat eTi me] " 01/ 02/ 4567 4: 00pnt

4

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Format
specifier

hh

%H

HH

Description

Hours, as a number between 01 and 12. Single
digits include a leading zero. Note: This is
Interpreted as a standard Dat eTi ne formatting
string unless used with other formatting
specifiers.

Hours, as a number between O and 23. Single
digits do not include a leading zero.

Hours, as a number between 00 and 23. Single
digits include a leading zero.

Dat eTi ne. Ki nd specifier that corresponds to the

kind (i.e., Local, Utc, or Unspecified) of input date.

Minute, as a number between O and 59. Single
digits do not include a leading zero.

Minute, as a number between 00 and 59. Single
digits include a leading zero.

Month, as a number between 1 and 12. Single
digits do not include a leading zero.

Month, as a number between 01 and 12. Single
digits include a leading zero.

Abbreviated month name.

Full month name.

Seconds, as a number between 0 and 59. Single
digits do not include a leading zero.

downloaded from: lib.ommolkefab.ir

Example

PS >"{0: hh}" -f

[Dat eTi me] "01/02/ 4567 4: 00pnt

04

PS >"{0: %f" -f

[Dat eTi me] "01/ 02/ 4567 4: 00pnt

16

PS >"{0: HH " -f

[Dat eTi me] "01/02/ 4567 4: 00amt

04

PS >"{0: K}" -f

[Dat eTi ne] : : Now. ToUni ver sal Ti ne(

PS >"{0: m" -f [DateTinme]:: Now

PS >"{0: m}" -f [DateTine]::Now

08

PS >"{0: M MM MW MVWM " -f
[DateTi ne] "01/02/4567"
1 01 Jan January

PS >"{0: M MM MW MVWWM " -f
[Dat eTi ne] "01/02/ 4567"
1 01 Jan January

PS >"{0: M MM MW MVMMM " -f
[Dat eTi ne] "01/02/4567"
1 01 Jan January

PS >"{0: M MM MW MVMM " - f
[Dat eTi ne] "01/ 02/ 4567"
1 01 Jan January

PS > "{0:s ss t tt}" -f
[Dat eTi ne] : : Now
3 03 A AM

)

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Format Description Example
specifier
SS Seconds, as a number between 00 and 59. Single PS > "{0:s ss t tt}" -f
digits include a leading zero. [Dat eTi ne] : : Now
3 03 A AM
t First character of the A.M./P.M. designator. PS > "{0:s ss t tt}" -f
[Dat eTi ne] : : Now
3 03 A AM
tt A.M./P.M designator. PS > "{0:s ss t tt}" -f
| Dat eTi ne] : : Now
3 03 A AM
y Year, in (at most) one digit. PS >"{0:y yy yyy Vyyy yyyyy}" -f

[Dat eTi me] "01/ 02/ 4567"
67 67 4567 4567 04567

yy Year, Iin (at most) two digits. PS >"{0:y vy yyy Vyyyy yyyyy}" -f
[DateTi ne] "01/02/4567"

67 67 4567 4567 04567

yyy Year, Iin (at most) three digits. PS >"{0:y Yy VYy Vyyy yyyyy}" -f
[Dat eTi ne] "01/02/4567"

67 67 4567 4567 04567

yyyy Year, in (at most) four digits. PS >"{0:y VY Yyy Yyyy yyyyy}" -f
| DateTi ne] "01/02/4567"

67 67 4567 4567 04567

YYyyy Year, in (at most) five digits. PS >"{0:y Yy VYY VYYy yyyyy}" -f
[Dat eTi ne] "01/02/4567"

67 67 4567 4567 04567

Z Signed time zone offset from GMT. Does not PS >"{0:z zz zzz}" -f
Include a leading zero. | Dat eTi nme] : : Now
-7 -07 -07:00
ZZ Signed time zone offset from GMT. Includes a PS >"{0:z zz zzz}" -f
leading zero. [Dat eTi ne] : : Now

-7 -07 -07:00

Z2Z Signed time zone offset from GMT, measured In PS >"{0:z zz zzz}" -f
hours and minutes. | Dat eTi nme] : : Now
-7 -07 -07:00

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Format Description
specifier

Time separator.

/ Date separator.

"text" Inserts the provided text literally into the output
"text' without affecting formatting.

%cC Syntax allowing for single-character custom
formatting specifiers. The % sign is not added to

the output.

Other Inserts the provided text literally into the output
without affecting formatting.

downloaded from: lib.ommolkefab.ir

Example

PS > "{0:y/md h:ms}" -f
[Dat eTi ne] "01/02/ 4567 4:00pnt
67/0/2 4:0:0

PS > "{0:y/md h:ms}" -f
[Dat eTi ne] "01/02/ 4567 4:00pnt
67/0/2 4:0:0

PS >"{0:'Day:. 'dddd}" -f
| Dat eTi ne] : : Now
Day: Monday

PS >"{0: %} " -f
[Dat eTi me] " 01/ 02/ 4567 4: 00pnt
4

PS >"{0:dddd!}" -f
[Dat eTi ne] : : Now
Monday!

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 10. .NET DateTime Formatting

DateTime format strings convert a Dat eTi ne object to one of several standard formats, as listed in Table 10-1.

Format
specifier
(Name)

d(Short date)

D (Long date)

f (Full date/
short time)

F (Full date/
long time)

g (General date/

short time)

G (General date/

long time)

Mor m(Month
day)

o (Round-trip
date/time)

Rorr
(RFC1123)

s (Sortable)

t (Short time)

Table 10-1. Standard DateTime format strings

Description

The culture's short date format.

The culture's long date format.

Combines the long date and short time format

patterns.

Combines the long date and long time format

patterns.

Combines the short date and short time
format patterns.

Combines the short date and long time format

patterns.

The culture's Mont hDay format.

The date formatted with a pattern that
guarantees the string (when parsed) will
result in the original Dat eTi ne again.

The standard RFC1123 format pattern.

Sortable format pattern. Conforms to 1SO

8601 and provides output suitable for sorting.

The culture's short time format.

downloaded from: lib.ommolkefab.ir

Example

PS >"{0:d}" -f [DateTine] "01/23/4567"

1/ 23/ 4567

PS >"{0:D}" -f [DateTime] "01/23/4567"

Friday, January 23, 4567

PS >"{0:f}" -f [DateTinme] "01/23/4567"
Friday, January 23, 4567 12:00 AM

PS >"{0: F}" -f [DateTinme] "01/23/4567"
Friday, January 23, 4567 12:00: 00 AM

PS >"{0:g}" -f [DateTime] "01/23/4567"

1/ 23/ 4567 12: 00 AM

PS >'{0:G" -f [DateTime] "01/23/4567"

1/ 23/ 4567 12: 00: 00 AM

PS >"{0:M" -f [DateTime] "01/23/4567"

January 23

PS >"{0:0}" -f [DateTime] "01/23/4567"
4567- 01- 23T00: 00: 00. 0000000

PS >"{0:R" -f [DateTine] "01/23/4567"
Fri, 23 Jan 4567 00: 00: 00 Gur

PS >"{0:s}" -f [DateTime] "01/23/4567"

4567-01-23T00: 00: 00

PS >"'{0:t}" -f [DateTime] "01/23/4567"

12: 00 AM

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Format
specifier
(Name)

T (Long time)

u (Universal
sortable)

U (Universal)

Yory (Year
month)

Description

The culture's long time format.

The culture's universal sortable Dat eTi ne

format applied to the UTC equivalent of the
INnput.

The culture's Ful | Dat e- Ti e format applied
to the UTC equivalent of the input.

The culture's Year Mont h format.

10.1. Custom DateTime Format Strings

Example

PS >"{0:T}" -f [DateTime] "01/23/4567"

12: 00: 00 AM

PS >"{0:u}" -f [DateTine] "01/23/4567"

4567-01-23 00: 00: 00Z

PS >"{0:U" -f [DateTine] "01/23/4567"
Friday, January 23, 4567 8:00: 00 AM

PS >"{0:Y}" -f [DateTime] "01/23/4567"

January, 4567

You may use custom Dat eTi me format strings, listed in Table 10-2, to format dates in ways not supported by
the standard format strings. Note: Single-character format specifiers are interpreted as a standard Dat eTi ne
formatting string unless used with other formatting specifiers.

Format
specifier

d

dd

ddd

dddd

Table 10-2. Custom DateTime format strings

Description

Day of the month as a number between 1 and 31.

Represents single-digit days without a leading

Zero.

Day of the month as a number between 1 and 31.

Represents single-digit days with a leading zero.

Abbreviated name of the day of the week.

Full name of the day of the week.

downloaded from: lib.ommolkefab.ir

2 02 Fri

2 02 Fri

2 02 Fri

PS >"{0:d dd ddd dddd}"

2 02 Fri

Example

PS >'{0:d dd ddd dddd}" -f

[Dat eTi me] "01/02/4567"

Fri day

PS >"{0:d dd ddd dddd}" -f

[Dat eTi me] "01/ 02/ 4567"

Fri day

PS >"{0:d dd ddd dddd}" -f

[Dat eTi me] "01/02/ 4567"

Fri day

- f
[Dat eTi me] " 01/ 02/ 4567"

Fri day

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Format
specifier

f

ff

fff

ffff

frfff

ffffff

fPfffff

FF

FFF

Description

Most significant digit of the seconds fraction
(milliseconds).

Two most significant digits of the seconds fraction
(milliseconds).

Three most significant digits of the seconds
fraction (milliseconds).

Four most significant digits of the seconds fraction
(milliseconds).

Five most significant digits of the seconds fraction
(milliseconds).

Six most significant digits of the seconds fraction
(milliseconds).

Seven most significant digits of the seconds
fraction (milliseconds).

Most significant digit of the seconds fraction
(milliseconds). Displays nothing if the number is
Zero.

Two most significant digits of the seconds fraction
(milliseconds). Displays nothing if the number is
Zero.

Three most significant digits of the seconds

downloaded from: lib.ommolkefab.ir

Example

PS >"{0:f ff fff ffff}" -f
[Dat eTi me] " 01/ 02/ 4567"
0 00 000 0000

PS >"{0:f ff fff ffff}" -f
[Dat eTi ne] " 01/ 02/ 4567"
0 00 000 0000

PS >"{0:f ff fff ffff}" -f
[Dat eTi ne] " 01/ 02/ 4567"
0 00 000 0000

PS >"{0:f ff fff ffff}" -f
[Dat eTi ne] " 01/ 02/ 4567"
0 00 000 0000

PS >"{0: fffff ffffff fFFffff}" -f
[Dat eTi me] " 01/ 02/ 4567"
00000 000000 0000000

PS >"{Q:fffff ffffff fIeffff)" -f
[Dat eTi me] "01/02/ 4567"
00000 000000 0000000

PS >"{0: fffff ffffff fFFffff}" -f
[Dat eTi ne] " 01/ 02/ 4567"
00000 000000 0000000

PS >"{0: F FF FFF FFFF}" -f
[Dat eTi ne] : : Now
6 66 669 6696

PS >"{0:|F FF FFF FFFF|}" -f
[Dat eTi ne] "01/02/ 4567"

PS >"{0: F FF FFF FFFF}" -f
[Dat eTi ne] : : Now
6 66 669 6696

PS >"{0: | F FF FFF FFFF|}" -f
[Dat eTi me] "01/02/ 4567"

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Format
specifier

FFF

FFFF

FFFFF

FFFFFF

FFFFFFF

%g or gg

%h

Description

Three most significant digits of the seconds
fraction (milliseconds). Displays nothing if the
number Is zero.

Four most significant digits of the seconds fraction
(milliseconds). Displays nothing if the number is
Zero.

Five most significant digits of the seconds fraction
(milliseconds). Displays nothing if the number is
Zero.

Six most significant digits of the seconds fraction
(milliseconds). Displays nothing if the number is
Zero.

Seven most significant digits of the seconds
fraction (milliseconds). Displays nothing if the
number Is zero.

Era (i.e., A.D.).

Hours, as a number between 1 and 12. Single
digits do not include a leading zero.

downloaded from: lib.ommolkefab.ir

Example

PS >"{0: F FF FFF FFFF}" -f
[Dat eTi ne] : : Now
6 66 669 6696

PS >"{0:|F FF FFF FFFF|}" -f
[Dat eTi me] "01/02/ 4567"

PS >"{0:F FF FFF FFFF}" -f
[Dat eTi ne] : : Now
6 66 669 6696

PS >"{0:|F FF FFF FFFF|}" -f
[Dat eTi me] "01/02/ 4567"

PS >"{0: FFFFF FFFFFF FFFFFFF}" -f
[Dat eTi ne] : : Now
1071 107106 1071068

PS >"{0: | FFFFF FFFFFF FFFFFFF|}" -f
| Dat eTi ne] "01/02/4567"

PS >"{0: FFFFF FFFFFF FFFFFFF}" -f
[Dat eTi ne] : : Now
1071 107106 1071068

PS >"{0: | FFFFF FFFFFF FFFFFFF|}" -f
[Dat eTi ne] "01/ 02/ 4567"

PS >"{0: FFFFF FFFFFF FFFFFFF}" -f
[Dat eTi ne] : : Now
1071 107106 1071068

PS >"{0: | FFFFF FFFFFF FFFFFFF|}" -f
[Dat eTi ne] "01/02/ 4567"

PS >"{0:gg}" -f [DateTine]
"01/ 02/ 4567"
A. D

PS >"{0: %}" -f
[Dat eTi me] " 01/ 02/ 4567 4: 00pnt

4

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Format
specifier

hh

%H

HH

Description

Hours, as a number between 01 and 12. Single
digits include a leading zero. Note: This is
Interpreted as a standard Dat eTi ne formatting
string unless used with other formatting
specifiers.

Hours, as a number between O and 23. Single
digits do not include a leading zero.

Hours, as a number between 00 and 23. Single
digits include a leading zero.

Dat eTi ne. Ki nd specifier that corresponds to the

kind (i.e., Local, Utc, or Unspecified) of input date.

Minute, as a number between O and 59. Single
digits do not include a leading zero.

Minute, as a number between 00 and 59. Single
digits include a leading zero.

Month, as a number between 1 and 12. Single
digits do not include a leading zero.

Month, as a number between 01 and 12. Single
digits include a leading zero.

Abbreviated month name.

Full month name.

Seconds, as a number between 0 and 59. Single
digits do not include a leading zero.

downloaded from: lib.ommolkefab.ir

Example

PS >"{0: hh}" -f

[Dat eTi me] "01/02/ 4567 4: 00pnt

04

PS >"{0: %f" -f

[Dat eTi me] "01/ 02/ 4567 4: 00pnt

16

PS >"{0: HH " -f

[Dat eTi me] "01/02/ 4567 4: 00amt

04

PS >"{0: K}" -f

[Dat eTi ne] : : Now. ToUni ver sal Ti ne(

PS >"{0: m" -f [DateTinme]:: Now

PS >"{0: m}" -f [DateTine]::Now

08

PS >"{0: M MM MW MVWM " -f
[DateTi ne] "01/02/4567"
1 01 Jan January

PS >"{0: M MM MW MVWWM " -f
[Dat eTi ne] "01/02/ 4567"
1 01 Jan January

PS >"{0: M MM MW MVMMM " -f
[Dat eTi ne] "01/02/4567"
1 01 Jan January

PS >"{0: M MM MW MVMM " - f
[Dat eTi ne] "01/ 02/ 4567"
1 01 Jan January

PS > "{0:s ss t tt}" -f
[Dat eTi ne] : : Now
3 03 A AM

)

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Format Description Example
specifier
SS Seconds, as a number between 00 and 59. Single PS > "{0:s ss t tt}" -f
digits include a leading zero. [Dat eTi ne] : : Now
3 03 A AM
t First character of the A.M./P.M. designator. PS > "{0:s ss t tt}" -f
[Dat eTi ne] : : Now
3 03 A AM
tt A.M./P.M designator. PS > "{0:s ss t tt}" -f
| Dat eTi ne] : : Now
3 03 A AM
y Year, in (at most) one digit. PS >"{0:y yy yyy Vyyy yyyyy}" -f

[Dat eTi me] "01/ 02/ 4567"
67 67 4567 4567 04567

yy Year, Iin (at most) two digits. PS >"{0:y vy yyy Vyyyy yyyyy}" -f
[DateTi ne] "01/02/4567"

67 67 4567 4567 04567

yyy Year, Iin (at most) three digits. PS >"{0:y Yy VYy Vyyy yyyyy}" -f
[Dat eTi ne] "01/02/4567"

67 67 4567 4567 04567

yyyy Year, in (at most) four digits. PS >"{0:y VY Yyy Yyyy yyyyy}" -f
| DateTi ne] "01/02/4567"

67 67 4567 4567 04567

YYyyy Year, in (at most) five digits. PS >"{0:y Yy VYY VYYy yyyyy}" -f
[Dat eTi ne] "01/02/4567"

67 67 4567 4567 04567

Z Signed time zone offset from GMT. Does not PS >"{0:z zz zzz}" -f
Include a leading zero. | Dat eTi nme] : : Now
-7 -07 -07:00
ZZ Signed time zone offset from GMT. Includes a PS >"{0:z zz zzz}" -f
leading zero. [Dat eTi ne] : : Now

-7 -07 -07:00

Z2Z Signed time zone offset from GMT, measured In PS >"{0:z zz zzz}" -f
hours and minutes. | Dat eTi nme] : : Now
-7 -07 -07:00

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Format Description
specifier

Time separator.

/ Date separator.

"text" Inserts the provided text literally into the output
"text' without affecting formatting.

%cC Syntax allowing for single-character custom
formatting specifiers. The % sign is not added to

the output.

Other Inserts the provided text literally into the output
without affecting formatting.

downloaded from: lib.ommolkefab.ir

Example

PS > "{0:y/md h:ms}" -f
[Dat eTi ne] "01/02/ 4567 4:00pnt
67/0/2 4:0:0

PS > "{0:y/md h:ms}" -f
[Dat eTi ne] "01/02/ 4567 4:00pnt
67/0/2 4:0:0

PS >"{0:'Day:. 'dddd}" -f
| Dat eTi ne] : : Now
Day: Monday

PS >"{0: %} " -f
[Dat eTi me] " 01/ 02/ 4567 4: 00pnt
4

PS >"{0:dddd!}" -f
[Dat eTi ne] : : Now
Monday!

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

INndeXx

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N [O] [P [Q] [R] [S] [T] [U] V] [W] [X] [Y] [£]

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

INndeXx

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [11 [J] [K]1 [L] [M] [N [O] [P]1 [Q] [R] [S] [T] [U] V] [W] [X] [Y] [£]

I (exclamation point)
(comment character) 2nd
% (percent sign)
+7?
addition operator
In array ranges
%g format specifier
%H format specifier
%h format specifier
& (ampersand)
" (backtick)
' (single quote)
(...) (parentheses)
@(...)
array definition
. (dot)
In regular expressions
method and property access
(double quote)
0=
=

/=
- (hyphen) 2nd
subtraction operator
* (asterisk)
*?
In regular expressions
multiplication operator
Ox prefix
- (colon)
=+ (plus sign)
addition assignment
addition operator (+)
In array ranges
> (right angle bracket)
? (question mark)
?1
?H
?:
?7<l
7<=
7=

77

In regular expressions 2nd
@ (at sign)

@(..)

list evaluation control

[...] (square brackets)

array access using
\ (backslash)
\A
\B

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

\b

\D

\d

\G

\k

\P

\p

\S

\s

\W

\w

\Z

\z

N (caret) 2nd 3rd

{...} (curly braces)
In regular expressions 2nd
INn variable definition
statement block

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

INndeXx

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J1 [K] [L] [M] [N] [O] [P] [Q] [R1 [S]1 [T]1 [V] [V] [W] [X] [Y] [£]

Access.Application object
Active Directory
Active Directory Service Interfaces (ADSI) support
Add verb
Add-Member cmdlet 2nd 3rd 4th
administrative tasks 2nd
ADSI (Active Directory Service Interfaces) support
Adsi type shortcut
Agent.Control object
alarm character
aliases for cmdlets
AliasProperty type
Alt + F7 hotkey
Alt + space 2nd 3rd 4th 5th
alternation constructs
-and (logical AND operator)
AppDomain class
arbitrary variables
arithmetic operators 2nd
Array class
ArrayList class
arrays
accessing elements of
associative (hashtables)
data type of
numbering of elements in
ranges in 2nd
slicing
-as (type conversion operator)
Assembly class 2nd
assignment operators
associative arrays (hashtables)
asterisk (*)
*?
atomic zero-width assertions
auto-complete for cmdlets
AutoHotkey program
AutoltX3.Control object
automatic variables 2nd

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

INndeXx

[SYMBOL] [A] [B] [C] [DO] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P [Q] [R] [S] [T] [U] V] [W] [X] [Y] [£]

backreference constructs
backspace character

Backup verb

-band (binary AND operator)
begin keyword in scripts
begin statement

binary exclusive OR operator (-bxor)
binary NOT operator (-bnot)
binary numbers

binary operators 2nd 3rd
binary OR operator (-bor)
BinaryReader class
BinaryWriter class

Bitmap class

-bnot (binary NOT operator)
Boolean values

Boolean variables

-bor (binary OR operator)
break keyword

break statement
BufferedStream class

-bxor (binary exclusive OR operator)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

INndeXx

[SYMBOL] [A] [B] [C] [DO] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P [Q] [R] [S] [T] [U] V] [W] [X] [Y] [£]

C format specifier
-c option
-c prefix
calendar calculations
cancel
carriage return
case sensitivity
for comparison operators
In switch statement
-casesensitive option
cd command
CEnroll.CEnroll object
certificate store
CertificateAuthority.Request object
character classes
Checkpoint verb
CIM_DataFile class
classes
assembly for
extending 2nd
Information about
Instances of
WMI classes 2nd 3rd 4th 5th
Clear verb
cmdlets 2nd
IN scripts
positional parameters for
CodeMethod type
CodeProperty type
collections
COM objects 2nd 3rd 4th 5th
COMAdmMin.COMAdminCatalog object
command history
command line
commands
formatting output for 2nd 3rd 4th
Information about
objects generated by
output of 2nd
Unix
comments
IN scripts
communication
-ComODbject parameter
Compare verb
comparison operators 2nd 3rd
conditional statements 2nd 3rd 4th 5th 6th
configuration files
for extending types
for output formatting
Confirm parameter
Connect verb
Console class
-contains operator
Continue ErrorAction preference

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

continue keyword
continue statement
Continue verbose preference
Control + break hotkey
Control + ¢ hotkey
Control + end hotkey
Control + home hotkey
Control + left arrow hotkey
Control + right arrow hotkey
Convert class
Convert verb
ConvertFrom verb
ConvertTo verb
Copy verb
CSharpCodeProvider class
curly braces ({...})
statement block
customization
hotkeys 2nd
of console 2nd 3rd 4th
QuickEdit mode
window size

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

INndeXx

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J1 [K] [L] [M] [N] [O] [P] [Q] [R1 [S] [T]1 [V] [V] [W] [X] [Y] [£]

D format specifier 2nd
d format specifier
data
data type conversions
operator for
to integer
data types
of array elements
XML
database
DataSet class
DataTable class
date calculations
DateTime class
DateTime format strings 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
dd format specifier
ddd format specifier
dddd format specifier
Debug class
Debug verb
debugging
decimal numbers
DeflateStream class
dir command
Directory class
DirectoryEntry class 2nd
Directorylinfo class
DirectorySearcher class
Disable verb
Disconnect verb
Dismount verb
division assignment operator (/=)
division operator (/)
Dns class
do until statement
do while statement
DOS commands
double quote (")
double quotes ("..."")
Down arrow hotkey

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

INndeXx

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J1 [KT [L] [M] [N] [O] [P] [Q] [R1 [S]1 [T]1 [V] [V] [W] [X] [Y] [£]

E format specifier
-e option
else statement
elseif statement
Enable verb
end keyword Iin scripts
end statement
Enum class
Environment class
equality operator (-ed)
error codes returned from scripts
error output stream
ErrorAction parameter for cmdlets
errors
nonterminating
escape seqguences
In strings
evaluation controls
EventLog class
-exact option
Excel.Application object
Excel.Sheet object
exit statement
expanding strings
explicit capture
Export verb
expression subparse control (
expressions
In expanding strings

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

INndeXx

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] 191 [KT [L] [M] [N] [O] [P] [Q] [R1 [S]1 [T]1 [V] [V] [W] [X] [Y] [£]

-f format operator 2nd 3rd 4th
F format specifier 2nd
f format specifier
F1 hotkey
F2 hotkey
F3 hotkey
F4 hotkey
F5 hotkey
F8 hotkey
FO hotkey
FF format specifier
ff format specifier
FFF format specifier
fff format specifier
FFFF format specifier
ffff format specifier
FFFFF format specifier
fffff format specifier
FFFFFF format specifier
ffffff format specifier
FFFFFFF format specifier
fffffff format specifier
File class
FileInfo class
files
command output in
getting and setting content as variables
filesystem
FileSystemSecurity class
FileSystemWatcher class
FlowLayoutPanel class
for statement
foreach statement
Form class
form feed
format operator (-f)
Format-List cmdlet
Format-Table cmdlet
Format-Wide cmdlet
.Format.Ps1Xml file extension
formatting command output 2nd 3rd 4th
formatting files
FtpWebReqguest class
functions 2nd
location of

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

INndeXx

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N]T [O] [P [Q] [R] [S] [T] [U] V] [W] [X] [Y] [£]

G format specifier 2nd

g format specifier

gb (gigabyte) constant 2nd
-ge (greater than or equal operator)
Get verb

Get-Command cmdlet
Get-Help cmdlet
Get-History cmdlet
Get-Item Variable cmdlet
Get-Member cmdlet 2nd
Get-Process cmdlet
Get-TraceSource cmdlet
Get-Variable cmdlet

gg format specifier
gigabyte (gb) constant 2nd
gps alias

greater than operator (-gt)
grouping constructs

-gt (greater than operator)
Guid class

GZipStream class

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

INndeXx

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J1 [K] [L] [M] [N] [O] [P] [Q] [R1 [S]1 [T]1 [V] [V] [W] [X] [Y] [£]

Hashtable class

hashtable definition (@4{...})
Hashtable type shortcut
hashtables

here strings 2nd
hexadecimal base
hexadecimal numbers

HH format specifier

Hide verb

history buffer

history of commands
HNetCfg.FwMgr object
HNetCfg.HNetShare object
hotkeys 2nd 3rd 4th
HTMLFile object
HttpUtility class
HttpWebRequest class

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

INndeXx

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J1 [K] [L] [M] [N] [O] [P] [Q] [R1 [S]1 [T]1 [V] [V] [W] [X] [Y] [£]

-1 prefix

Image class

Import verb

InfoPath.Application object
Initialize verb

Inquire verbose preference
Install verb

Instance methods

Instance properties

Int data type

Interactive shell 2nd 3rd 4th 5th
InternetExplorer.Application object
Invoke verb

Invoke/call operator (&)

Ipconfig tool

-1s (type operator)

-isnot (negated type operator)
IXSSO.Query object

IXSSO.Util object

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

INndeXx

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [91 [K] [L] [M] [N] [O] [P] [Q] [R1 [S]1 [T]1 [V] [V] [W] [X] [Y] [£]

jagged arrays
Join verb

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

INndeXx

[SYMBOL] [A] [B] [C] [DO] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N [O] [P [Q] [R] [S] [T] [U] V] [W] [X] [Y] [£]

K format specifier
kb (kilobyte) constant
kilobyte (kb) constant

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

INndeXx

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R1 [S]1 [T]1 [V] [V] [W] [X] [Y] [£]

-le (less than or equal operator)
LegitCheckControl.LegitCheck object
less than operator (-It)
-like operator
Limit verb
list evaluation control (@(...))
literal strings
LoadWithPartialIName method
Lock verb
logic statements
logical exclusive OR operator (-xor)
logical NOT operator (-not or !)
logical operators
logical OR operator (-or)
looping statements 2nd 3rd 4th 5th 6th
halting execution of
skipping execution of current statement block
-1t (less than operator)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

INndeXx

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J1 [K] [L] [M] [N] [O] [P] [Q] [R1 [S]1 [T]1 [V] [V] [W] [X] [Y] [£]

M format specifier 2nd
m format specifier
MailAddress class
MailMessage class
MakeCab.MakeCab object
ManagementClass class 2nd
ManagementDateTimeConverter class
ManagementEventWatcher class
ManagementODbject class 2nd
ManagementObjectSearcher class 2nd
MAPI.Session object
Marshal class
-match operator
Math class
mb (megabyte) constant 2nd
Measure verb
megabyte (mb) constant 2nd
MemoryStream class
Merge verb
Messenger.MessengerApp object
methods

adding to types 2nd 3rd 4th

Instance

listing for types or classes

static
Microsoft.FeedsManager object
Microsoft.ISAdm object
Microsoft.Update.AutoUpdate object
Microsoft.Update.Installer object
Microsoft.Update.Searcher object
Microsoft.Update.Session object
Microsoft.Update.SystemInfo object
MM format specifier
MMC20.Application object
MMM format specifier
MMMM format specifier
modulus assignment operator (%=)
modulus operator (%0)
Move verb
MSScriptControl.ScriptControl object
Msxml2.XSLTemplate object
multidimensional arrays
multiplication assignment operator (*=)
multiplication operator (*)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

INndeXx

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J1 [K] [L] [M] [N] [O] [P] [Q] [R1 [S]1 [T]1 [V] [V] [W] [X] [Y] [£]

N format specifier
-ne (negated equality operator)
negated contains operator (-notcontains)
negated equality operator (-ne)
negated like operator (-notlike)
negated match operator (-notmatch)
negated type operator (-isnot)
.NET Framework

documentation for

methods

properties

types and classes

creating instances of

.NET Framework classes

Active Directory

collections

database

Image manipulation

PowerShell object

registry

security

user interface

WMI

XML
NetworkCredential class
networking
New verb
New-ltem Variable cmdlet
New-ODbject cmdlet 2nd
New-Variable cmdiet
newline
nonterminating errors
-not (logical NOT operator)
-notcontains (negated contains operator)
notepad tool
NoteProperty type
-notlike (negated like operator)
-notmatch (negated match operator)
null character
numbers 2nd 3rd

assigning to variables

bases for

numeric constants
numeric format strings 2nd 3rd 4th

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

INndeXx

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] V] [W] [X] [Y] [£]

o format specifier
objects
methods of
output generating
properties of
octal numbers
OdbcCommand class
OdbcConnection class
OdbcDataAdapter class
Operators
operators 2nd 3rd 4th 5th 6th
arithmetic
binary 2nd 3rd
comparison 2nd
logical
-or (logical OR operator)
OrderedDictionary class
Out verb
Out-String cmdlet
Outlook.Application object
OutlookExpress.MessageList object
output
output (command)
capturing
formatting 2nd 3rd 4th
-OutVariable parameter

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

INndeXx

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J1 [K] [L] [M] [N] [O] [P] [Q] [R1 [S]1 [T]1 [V] [V] [W] [X] [Y] [£]

P format specifier
Page Down hotkey
Page Up hotkey
PasswordDeriveBytes class
Path class
Ping verb
pipeline character (|)
plus sign (+)
+7?
Pop verb
popd command
positional parameters
PowerPoint.Application object
PowerShell
.NET class representing
as interactive shell 2nd 3rd 4th 5th
documentation for
prompt for
technologies supported by 2nd 3rd
PowerShell verbs 2nd 3rd 4th
PowerShell window
PowerShell.exe file
precedence control ((...))
Process class
process keyword in scripts
process statement
profiles
properties
Instance
static
PropertySet type
providers
PS > prompt
PsBase
.psl file extension
PSObject class 2nd
PSODbject type shortcut
PSReference class
Publish verb
Publisher.Application object
Push verb
pushd command
pwd command

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

INndeXx

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] V] [W] [X] [Y] [£]

quantifiers
question mark (?)
?1
?:
?7<l
7<=
=
7>
?7?
QuickEdit mode

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

INndeXx

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R]1 [S]1 [T]1 [V] [V] [W] [X] [Y] [£]

R format specifier 2nd

-r option

Random class

RDS.DataSpace object

Read verb

Receive verb

Ref type shortcut

Regex class 2nd

-regex option

Regex type shortcut

registry

Registry class

RegistryKey class

RegistrySecurity class

regular expressions
backreference constructs
case sensitivity Iin
quantifiers
whitespace in

Remove verb

Rename verb

-replace operator

Resolve verb

Restore verb

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

INndeXx

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] V] [W] [X] [Y] [£]

s format specifier 2nd
SAPI.SpVoice object
scope of variables
screen buffer
size
script blocks
ScriptBlock class
ScriptBlock type shortcut
Scripting.FileSystemObject object
Scripting.Signer object
Scriptlet. TypeLib object
ScriptMethod type
ScriptProperty type
ScriptPW.Password object
scripts
commands in
objects in
running
statement blocks in
writing
writing using history buffer
Search verb
SecureString class
security
Select verb
Send verb
SerialPort class
Set verb
Set-PsDebug cmdlet
SHAL1 class
shortcuts for types
Show verb
single quote
single quotes ('...")
SmtpClient class
SoundPlayer class
Split verb
SqlCommand class
SqglConnection class
SqlDataAdapter class
ss format specifier
statement blocks 2nd
static methods
static properties
Stop verbose preference
Stopwatch class
StreamReader class
StreamWriter class
String class
string formatting
date and time 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
numeric 2nd 3rd
StringBuilder class
StringReader class
strings 2nd 3rd

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

escape seqguences in

replacing text in
StringWriter class
strongly typed arrays
strongly typed variables
substitution patterns
subtraction operator (-)
switch statement 2nd 3rd 4th
Switch type shortcut
SwitchParameter class
System.Math class

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

INndeXx

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J1 [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T]1 [V] [V] [W] [X] [Y] [£]

T format specifier

t format specifier

tab

TcpClient class

Test verb

text format specifier
text selection

'text' format specifier
TextReader class
TextWriter class

Thread class

tokens

trace sources

Trace verb
Trace-Command cmdlet
tracing

trap statement
TripleDESCryptoService-Provider class
Truncate method

tt format specifier

Type class

type conversion operator (-as)
type operator (-is)

type shortcuts
TypeName class
TypeName type shortcut

types
types.pslxml file

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

INndeXx

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J1 [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [£]

U format specifier

Unix commands

Unlock verb

Unpublish verb

Up arrow hotkey

Update verb
Update-FormatData cmdlet
Update-TypeData cmdlet
Uri class

Use verb

user interface

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

INndeXx

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] V] [W] [X] [Y] [£]

Variable Provider

verbose output from commands
verbs 2nd 3rd

vertical tab

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

INndeXx

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J1 [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [V] [V [W] [X] [Y] [£]

-w option
web site resources

PowerShell documentation

WMI documentation
WebClient class
WellKnownSidType class
Whatlf parameter
while statement
whitespace
-wildcard option
wildcards

In Get-Command cmdlet

In parameters

In switch statement
Win32_ BaseBoard class
Win32_BIOS class
Win32_BootConfiguration class
Win32_CacheMemory class
Win32_CDROMDrive class
Win32_ComputerSystem class
Win32_ ComputerSystemProduct class
Win32_ DCOMApplication class
Win32_Desktop class
Win32_DesktopMonitor class
Win32_DeviceMemoryAddress class
Win32_ Directory class
Win32_DiskDrive class
Win32_DiskPartition class
Win32_ DiskQuota class
Win32_DMAChannel class
Win32_ Environment class
Win32_Group class
Win32_IDEController class
Win32_IRQResource class
Win32_LoadOrderGroup class
Win32_LogicalDisk class
Win32_LogicalMemoryConfigu-ration class
WIin32_LogonSession class
Win32_NetworkAdapter class
Win32_NetworkAdapterConfigu-ration class
WIN32_NetworkClient class
Win32_NetworkConnection class
Win32_NetworkLoginProfile class
Win32_NetworkProtocol class
Win32_NTDomain class
Win32_NTEventlogFile class
Win32_NTLogEvent class
Win32_OnBoardDevice class
WIin32_OperatingSystem class
Win32_0OSRecoveryConfiguration class
Win32_PageFileSetting class
Win32_PageFileUsage class
Win32_ PerfRawData_ PerfNet_Server class
Win32_ PhysicalMemoryArray class
Win32 PortConnector class

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Win32_ PortResource class
Win32_Printer class
Win32_PrinterConfiguration class
Win32_ PrintJob class
WIin32_Process class
WIin32_ Processor class
Win32_Product class
Win32_QuickFixEngineering class
Win32_ QuotaSetting class
WIin32_Registry class
Win32_ScheduledJob class
Win32_SCSIController class
Win32_Service class
Win32_Share class
Win32_ SoftwareElement class
Win32_SoftwareFeature class
WIN32_ SoundDevice class
Win32_StartupCommand class
Win32_SystemAccount class
Win32_SystemDriver class
Win32_SystemEnclosure class
Win32_SystemsSlot class
Win32_TapeDrive class
Win32_TemperatureProbe class
Win32_TimeZone class
Win32_UninterruptiblePower-Supply class
Win32_UserAccount class
Win32_VoltageProbe class
window
window size
Windows key + r hotkey
WindowsBuiltinRole class
Windowsldentity class
WindowsPrincipal class
WMI (Windows Management Instrumentation)
class categories
Wmi type shortcut
WmiClass type shortcut
WmiSearcher type shortcut
Write verb

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

INndeXx

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P [Q] [R] [S] [T] [U] V] [W] [X] [Y] [£]

X format specifier

XML as data type

XML support

Xml type shortcut

XmlIDocument class 2nd 3rd
XmlElement class

XmITextWriter class

-xor (logical exclusive OR operator

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

INndeXx
[SYMBOL] [A] [B] [C] [D] [E] [F1 [G] [H] [1] [91 [K] [L] [M] [N] [O] [P] [Q] [R1 [S] [T1 [U] [V] [W] [X] [Y] [Z]

Y format specifier

y format specifier

yy format specifier
yyy format specifier
yyyy format specifier
yyyyy format specifier

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

INndeXx
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [11 [91 [K] [L] [M] [N] [O] [P] [Q] [R1 [S] [T1 [U] [V] [W] [X] [Y] [Z]

z format specifier
zz format specifier
zzz format specifier

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir

	Windows PowerShell Pocket Reference
	Table of Contents
	Copyright
	Preface
	Chapter 1. A Whirlwind Tour of Windows PowerShell
	Section 1.1. Introduction
	Section 1.2. An Interactive Shell
	Section 1.3. Structured Commands (Cmdlets)
	Section 1.4. Deep Integration of Objects
	Section 1.5. Administrators As First-Class Users
	Section 1.6. Composable Commands
	Section 1.7. Techniques to Protect You from Yourself
	Section 1.8. Common Discovery Commands
	Section 1.9. Ubiquitous Scripting
	Section 1.10. Ad-Hoc Development
	Section 1.11. Bridging Technologies
	Section 1.12. Namespace Navigation Through Providers
	Section 1.13. Much, Much More

	Chapter 2. PowerShell Language and Environment
	Section 2.1. Commands and Expressions
	Section 2.2. Comments
	Section 2.3. Variables
	Section 2.4. Booleans
	Section 2.5. Strings
	Section 2.6. Numbers
	Section 2.7. Arrays and Lists
	Section 2.8. Hashtables (Associative Arrays)
	Section 2.9. XML
	Section 2.10. Simple Operators
	Section 2.11. Comparison Operators
	Section 2.12. Conditional Statements
	Section 2.13. Looping Statements
	Section 2.14. Working with the .NET Framework
	Section 2.15. Writing Scripts, Reusing Functionality
	Section 2.16. Managing Errors
	Section 2.17. Formatting Output
	Section 2.18. Capturing Output
	Section 2.19. Tracing and Debugging
	Section 2.20. Common Customization Points

	Chapter 3. Regular Expression Reference
	Chapter 4. PowerShell Automatic Variables
	Chapter 5. Standard PowerShell Verbs
	Chapter 6. Selected .NET Classes and Their Uses
	Chapter 7. WMI Reference
	Chapter 8. Selected COM Objects and Their Uses
	Chapter 9. .NET String Formatting
	Section 9.1. String Formatting Syntax
	Section 9.2. Standard Numeric Format Strings
	Section 9.3. Custom Numeric Format Strings

	Chapter 10. .NET DateTime Formatting
	Section 10.1. Custom DateTime Format Strings

	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

