downloaded from: lib.ommolkefab.ir

The Ruby Programming Language
&_ by David Flanagan; Yukihiro Matsumoto

+ | Publisher: O'Reilly

The Ruby Pub Date: January 15, 2008
AR | Print ISBN-10: 0-596-51617-7
Language Print ISBN-13: 978-0-59-651617-8

_ Pages: 444
Table of Contents

Index
Overview

The Ruby Programming Language is the authoritative guide to Ruby and provides comprehensive coverage of
versions 1.8 and 1.9 of the language. It was written (and illustrated!) by an all-star team:

e David Flanagan, bestselling author of programming language "bibles" (including JavaScript: The Definitive
Guide and Java in a Nutshell) and committer to the Ruby Subversion repository.

e Yukihiro "Matz" Matsumoto, creator, designer and lead developer of Ruby and author of Ruby in a
Nutshell, which has been expanded and revised to become this book.

e why the lucky stiff, artist and Ruby programmer extraordinaire.

This book begins with a quick-start tutorial to the language, and then explains the language in detail from the
bottom up: from lexical and syntactic structure to datatypes to expressions and statements and on through
methods, blocks, lambdas, closures, classes and modules. The book also includes a long and thorough
Introduction to the rich API of the Ruby platform, demonstrating -- with heavily-commented example code --
Ruby's facilities for text processing, numeric manipulation, collections, input/output, networking, and
concurrency. An entire chapter is devoted to Ruby's metaprogramming capabilities. The Ruby Programming
Language documents the Ruby language definitively but without the formality of a language specification. It is
written for experienced programmers who are new to Ruby, and for current Ruby programmers who want to
challenge their understanding and increase their mastery of the language.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

ﬁThe Ruby Programming Language
ﬁ‘_ by David Flanagan; Yukihiro Matsumoto
Publisher: O'Reilly

The Ruby Pub Date: January 15, 2008
AR | Print ISBN-10: 0-596-51617-7
Language Print ISBN-13: 978-0-59-651617-8
Pages: 444

Table of Contents
Index

Copyright
Preface
Chapter 1. Introduction
Section 1.1. A Tour of Ruby
Section 1.2. Try Ruby
Section 1.3. About This Book
Section 1.4. A Sudoku Solver in Ruby
Chapter 2. The Structure and Execution of Ruby Programs
Section 2.1. Lexical Structure
Section 2.2. Syntactic Structure
Section 2.3. File Structure
Section 2.4. Program Encoding
Section 2.5. Program Execution
Chapter 3. Datatypes and Objects
Section 3.1. Numbers
Section 3.2. Text
Section 3.3. Arrays
Section 3.4. Hashes
Section 3.5. Ranges
Section 3.6. Symbols
Section 3.7. True, False, and Nil
Section 3.8. Objects
Chapter 4. Expressions and Operators
Section 4.1. Literals and Keyword Literals
Section 4.2. Variable References
Section 4.3. Constant References
Section 4.4. Method Invocations
Section 4.5. Assignments
Section 4.6. Operators
Chapter 5. Statements and Control Structures
Section 5.1. Conditionals
Section 5.2. Loops
Section 5.3. Iterators and Enumerable Objects
Section 5.4. Blocks
Section 5.5. Altering Control Flow
Section 5.6. Exceptions and Exception Handling
Section 5.7. BEGIN and END
Section 5.8. Threads, Fibers, and Continuations
Chapter 6. Methods, Procs, Lambdas, and Closures
Section 6.1. Defining Simple Methods
Section 6.2. Method Names
Section 6.3. Methods and Parentheses
Section 6.4. Method Arguments
Section 6.5. Procs and Lambdas
Section 6.6. Closures
Section 6.7. Method Objects
Section 6.8. Functional Programming
Chapter 7. Classes and Modules
Section 7.1. Defining a Simple Class
Section 7.2. Method Visibility: Public, Protected, Private
Section 7.3. Subclassing and Inheritance

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Section 7.4. Object Creation and Initialization
Section 7.5. Modules
Section 7.6. Loading and Requiring Modules
Section 7.7. Singleton Methods and the Eigenclass
Section 7.8. Method Lookup
Section 7.9. Constant Lookup
Chapter 8. Reflection and Metaprogramming
Section 8.1. Types, Classes, and Modules
Section 8.2. Evaluating Strings and Blocks
Section 8.3. Variables and Constants
Section 8.4. Methods
Section 8.5. Hooks
Section 8.6. Tracing
Section 8.7. ObjectSpace and GC
Section 8.8. Custom Control Structures
Section 8.9. Missing Methods and Missing Constants
Section 8.10. Dynamically Creating Methods
Section 8.11. Alias Chaining
Section 8.12. Domain-Specific Languages
Chapter 9. The Ruby Platform
Section 9.1. Strings
Section 9.2. Regular Expressions
Section 9.3. Numbers and Math
Section 9.4. Dates and Times
Section 9.5. Collections
Section 9.6. Files and Directories
Section 9.7. Input/Output
Section 9.8. Networking
Section 9.9. Threads and Concurrency
Chapter 10. The Ruby Environment
Section 10.1. Invoking the Ruby Interpreter
Section 10.2. The Top-Level Environment
Section 10.3. Practical Extraction and Reporting Shortcuts
Section 10.4. Calling the OS
Section 10.5. Security
Colophon
Index

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Copyright

Copyright © 2008, David Flanagan and Yukihiro Matsumoto. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also
available for most titles (http://safari.oreilly.com). For more information, contact our corporate/institutional
sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides
Production Editor: Sarah Schneider

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly
Media, Inc. The Ruby Programming Language, the image of Horned Sungem hummingbirds, and related trade
dress are trademarks of O'Reilly Media, Inc.

Java™ and all Java-based trademarks are registered trademarks of Sun Microsystems, Inc., in the United States
and other countries. O'Reilly Media, Inc. is independent of Sun Microsystems.

Many of the designations uses by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.
The drawings on the chapter title pages were drawn by why the lucky stiff and are licensed under the Creative
Commons Attribution-ShareAlike 3.0 License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/3.0/legalcode or send a letter to Creative Commons, 171 2nd
Street, Suite 300, San Francisco, California, 94105, USA.

downloaded from: lib.ommolkefab.ir

http://safari.oreilly.com
http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Preface

This book is an updated and expanded version of Ruby in a Nutshell (O'Rellly) by Yukihiro Matsumoto, who is
better known as Matz. It is loosely modeled after the classic The C Programming Language (Prentice Hall) by
Brian Kernighan and Dennis Ritchie, and aims to document the Ruby language comprehensively but without the
formality of a language specification. It is written for experienced programmers who are new to Ruby, and for
current Ruby programmers who want to take their understanding and mastery of the language to the next level.

You'll find a guide to the structure and organization of this book in Chapter 1.

P.1. Acknowledgments
P.1.1. David Flanagan

Before anything else, | must thank Matz for the beautiful language he has designed, for his help understanding
that language, and for the Nutshell that this book grew out of.

Thanks also to:
e why the lucky stiff for the delightful drawings that grace these pages (you'll find them on the chapter title

pages) and, of course, for his own book on Ruby, why's (poignant) guide to Ruby, which you can find
online at http://poignantguide.net/ruby/.

e My technical reviewers: David A. Black, director of Ruby Power and Light, LLC (http://www.rubypal.com);
Charles Oliver Nutter of the JRuby team (http://www.jruby.org) at Sun Microsystems; Shyouhei Urabe,
the maintainer of the Ruby 1.8.6 branch; and Ken Cooper. Their comments helped improve the quality
and clarity of the book. Any errors that remain are, of course, my own.

e My editor, Mike Loukides, for asking and persistently encouraging me to write this book, and for his
patience while | did so.

Finally, of course, my love and thanks to my family.

-David Flanagan
http://www.davidflanagan.com

January 2008

P.1.2. Yukihiro Matsumoto

In addition to the people listed by David (except myself), | appreciate the help from community members all
around the world, especially from Japan: Koichi Sasada, Nobuyoshi Nakada, Akira Tanaka, Shugo Maeda, Usaku
Nakamura, and Shyouhei Urabe to name a few (nhot in any particular order).

And finally, I thank my family, who hopefully forgive their husband and father for dedicating time to Ruby
development.

downloaded from: lib.ommolkefab.ir

http://poignantguide.net/ruby/
http://www.rubypal.com
http://www.jruby.org
http://www.davidflanagan.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

-Yukihiro Matsumoto

January 2008

P.2. Conventions Used In This Book

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant w dth

Used for program listings, as well as within paragraphs to refer to program elements such as variable or
function names, datatypes, environment variables, statements, and keywords.

Constant wdth bold

Shows commands or other text that should be typed literally by the user.

Constant wmdth italic

Shows text that should be replaced with user-supplied values or by values determined by context.

P.3. Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in your programs
and documentation. You do not need to contact us for permission unless you're reproducing a significant portion
of the code. For example, writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O'Reilly books does require permission.
Answering a question by citing this book and quoting example code does not require permission. Incorporating a
significant amount of example code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and
ISBN. For example: "The Ruby Programming Language by David Flanagan and Yukihiro Matsumoto. Copyright
2008 David Flanagan and Yukihiro Matsumoto, 978-0-596-51617-8."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us
at permissions@oreilly.com.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

P.4. How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Relilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)

707 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. You can
access this page at:

http://www.oreilly.com/catalog/9780596516178
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see our web
site at:

http://www.oreilly.com

P.5. Safari® Enabled

NOTE

When you see a Safari® Enabled icon on the cover of your favorite technology book, that means the
book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search thousands of
top tech books, cut and paste code samples, download chapters, and find quick answers when you need the
most accurate, current information. Try it for free at http://safari.oreilly.com.

downloaded from: lib.ommolkefab.ir

http://www.oreilly.com/catalog/9780596516178
http://www.oreilly.com
http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 1. Introduction

Ruby is a dynamic programming language with a complex but expressive grammar and a core class library with
a rich and powerful API. Ruby draws inspiration from Lisp, Smalltalk, and Perl, but uses a grammar that is easy
for C and Java™ programmers to learn. Ruby is a pure object-oriented language, but it is also suitable for
procedural and functional programming styles. It includes powerful metaprogramming capabilities and can be
used to create domain-specific languages or DSLs.

Matz on Ruby

Yukihiro Matsumoto, known as Matz to the English-speaking Ruby community, is the creator of
Ruby and the author of Ruby in a Nutshell (O'Reilly) (which has been updated and expanded into
the present book). He says:

| knew many languages before | created Ruby, but | was never fully satisfied with them.
They were uglier, tougher, more complex, or more simple than | expected. | wanted to
create my own language that satisfied me, as a programmer. | knew a lot about the
language's target audience: myself. To my surprise, many programmers all over the world
feel very much like I do. They feel happy when they discover and program in Ruby.

Throughout the development of the Ruby language, I've focused my energies on making
programming faster and easier. All features in Ruby, including object-oriented features, are
designed to work as ordinary programmers (e.g., me) expect them to work. Most
programmers feel it Is elegant, easy to use, and a pleasure to program.

Matz's guiding philosophy for the design of Ruby is summarized in an oft-quoted remark of his:

Ruby is designed to make programmers happy.

1.1. A Tour of Ruby

This section Is a guided, but meandering, tour through some of the most interesting features of Ruby.
Everything discussed here will be documented in detall later in the book, but this first look will give you the
flavor of the language.

1.1.1. Ruby Is Object-Oriented

We'll begin with the fact that Ruby is a completely object-oriented language. Every value is an object, even
simple numeric literals and the values true, fal se, and ni|l (nil is a special value that indicates the absence of
value; it is Ruby's version of nul |). Here we invoke a method named cl ass on these values. Comments begin

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

with # in Ruby, and the => arrows in the comments indicate the value returned by the commented code (this is
a convention used throughout this book):

=> Fi xnum the nunber 1 is a Fixnum

Fl oat: fl oating-point nunbers have class Fl oat

TrueCl ass: true is a the singleton instance of Trued ass
=> Fal se(ass

=> N | d ass

1.cl ass #
0. 0. cl ass #
true. cl ass # =
fal se.class #
nil.class #

In many languages, function and method invocations require parentheses, but there are no parentheses in any
of the code above. In Ruby, parentheses are usually optional and they are commonly omitted, especially when
the method being invoked takes no arguments. The fact that the parentheses are omitted in the method
Invocations here makes them look like references to named fields or named variables of the object. This is
Intentional, but the fact is, Ruby is very strict about encapsulation of its objects; there is no access to the
Internal state of an object from outside the object. Any such access must be mediated by an accessor method,
such as the cl ass method shown above.

1.1.2. Blocks and lterators

The fact that we can invoke methods on integers isn't just an esoteric aspect of Ruby. It is actually something
that Ruby programmers do with some frequency:

3.tinmes { print "Ruby! " } # Prints "Ruby! Ruby! Ruby!
1.upto(9) {|x| print x } # Prints "123456789"

ti mes and upt o are methods implemented by integer objects. They are a special kind of method known as an

iterator, and they behave like loops. The code within curly braces-known as a block-is associated with the
method invocation and serves as the body of the loop. The use of iterators and blocks is another notable feature
of Ruby; although the language does support an ordinary whi | e loop, it is more common to perform loops with
constructs that are actually method calls.

Integers are not the only values that have iterator methods. Arrays (and similar "enumerable™ objects) define
an iterator named each, which invokes the associated block once for each element in the array. Each invocation

of the block is passed a single element from the array:

a=1_[3, 2, 1] # This I1s an array literal

a[3] = a[2] - 1 # Use square brackets to query and set array el enents

a.each do |elt| # each is an iterator. The bl ock has a paraneter elt
print elt+1 # Prints "4321"

end # This block was delimted wth do/end i nstead of {}

Various other useful iterators are defined on top of each:

a =1[1,2,3,4] # Start wth an array

b = a.map {| x| x*x } # Square elenments: b is [1,4,9,16]

c = a.select {|x|] x%2==0 } # Sel ect even elenents: c is [2,4]

a.inject do | sum x| # Conpute the sumof the elenents => 10
sum + X

end

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Hashes, like arrays, are a fundamental data structure in Ruby. As their name implies, they are based on the
hashtable data structure and serve to map arbitrary key objects to value objects. (To put this another way, we
can say that a hash associates arbitrary value objects with key objects.) Hashes use square brackets, like arrays
do, to query and set values in the hash. Instead of using an integer index, they expect key objects within the
square brackets. Like the Arr ay class, the Hash class also defines an each iterator method. This method invokes
the associated block of code once for each key/value pair in the hash, and (this is where it differs from Array)

passes both the key and the value as parameters to the block:

h = { # A hash that maps nunber nanmes to digits
:one => 1, # The "arrows" show mappi ngs: key=>val ue
two => 2 # The colons indicate Synbol literals

}

h[: one] => 1. Access a value by key

h[:three] = 3

h. each do | key, val ue|
print "#{val ue}: #{key};

end

Add a new key/value pair to the hash
|terate through the key/val ue pairs
Not e vari ables substituted into string
Prints "1:one; 2:two; 3:three;

H H H H

Ruby's hashes can use any object as a key, but Synbol objects are the most commonly used. Symbols are

iImmutable, interned strings. They can be compared by identity rather than by textual content (because two
distinct Symbol objects will never have the same content).

The ability to associate a block of code with a method invocation is a fundamental and very powerful feature of
Ruby. Although its most obvious use is for loop-like constructs, it is also useful for methods that only invoke the
block once. For example:

File.open("data.txt") do |f| # Open naned file and pass streamto bl ock

line = f.readline # Use the streamto read fromthe file
end # Stream automatically closed at bl ock end
t = Thread. new do # Run this block in a new thread
File.read("data.txt") # Read a file in the background
end # File contents avail able as thread val ue

As an aside, notice that the Hash. each example previously included this interesting line of code:

print "#{val ue}: #{key}; " # Note variables substituted into string

Double-quoted strings can include arbitrary Ruby expressions delimited by #{ and } . The value of the expression
within these delimiters is converted to a string (by calling its t o_s method, which is supported by all objects).

The resulting string Is then used to replace the expression text and its delimiters in the string literal. This
substitution of expression values into strings is usually called string interpolation.

1.1.3. ExXpressions and Operators in Ruby
Ruby's syntax is expression-oriented. Control structures such as i f that would be called statements in other

languages are actually expressions in Ruby. They have values like other simpler expressions do, and we can
write code like this:

mnimm=1if x <y then x else y end

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Although all "statements” in Ruby are actually expressions, they do not all return meaningful values. whi | e
loops and method definitions, for example, are expressions that normally return the value ni | .

As In most languages, expressions in Ruby are usually built out of values and operators. For the most part,
Ruby's operators will be familiar to anyone who knows C, Java, JavaScript, or any similar programming
language. Here are examples of some commonplace and some more unusual Ruby operators:

Code View:

1 + 2 # => 3. addition

1 * 2 # => 2. multiplication

1 + 2 == # => true: == tests equality

2 ** 1024 # 2 to the power 1024: Ruby has arbitrary size ints
"Ruby" + " rocks!" # => "Ruby rocks!": string concatenation

"Ruby! " * 3 # => "Ruby! Ruby! Ruby! ": string repetition

"0l %" % [3, "rubies"] # => "3 Rubies": Python-style, printf formatting
mx = X >y ?2 X .Yy # The conditional operator

Many of Ruby's operators are implemented as methods, and classes can define (or redefine) these methods
however they want. (They can't define completely new operators, however; there is only a fixed set of
recognized operators.) As examples, notice that the + and * operators behave differently for integers and

strings. And you can define these operators any way you want in your own classes. The << operator is another
good example. The integer classes Fi xnumand Bi gnumuse this operator for the bitwise left-shift operation,

following the C programming language. At the same time (following C++), other classes-such as strings,
arrays, and streams-use this operator for an append operation. If you create a new class that can have values
appended to it in some way, it is a very good idea to define <<.

One of the most powerful operators to override is [] . The Array and Hash classes use this operator to access
array elements by index and hash values by key. But you can define[] In your classes for any purpose you

want. You can even define it as a method that expects multiple arguments, comma-separated between the
square brackets. (The Array class accepts an index and a length between the square brackets to indicate a

subarray or "slice" of the array.) And if you want to allow square brackets to be used on the lefthand side of an
assignment expression, you can define the corresponding [| = operator. The value on the righthand side of the

assignment will be passed as the final argument to the method that implements this operator.

1.1.4. Methods

Methods are defined with the def keyword. The return value of a method is the value of the last expression
evaluated in its body:

def squar e(x) # Define a nethod naned square wth one paraneter Xx
X* X # Return X squared
end # End of the nmethod

When a method, like the one above, is defined outside of a class or a module, it is effectively a global function
rather than a method to be invoked on an object. (Technically, however, a method like this becomes a private
method of the (bj ect class.) Methods can also be defined on individual objects by prefixing the name of the

method with the object on which it is defined. Methods like these are known as singletonmethods, and they are
how Ruby defines class methods:

def Mat h.square(x) # Define a class nethod of the Math nodul e
X* X

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

end

The Mat h module is part of the core Ruby library, and this code adds a new method to it. This is a key feature of
Ruby-classes and modules are "open" and can be modified and extended at runtime.

Method parameters may have default values specified, and methods may accept arbitrary numbers of
arguments.

1.1.5. Assignment

The (nonoverridable) = operator in Ruby assigns a value to a variable:

X =1

Assignment can be combined with other operators such as + and - :

X += 1 # I ncrenent x: note Ruby does not have ++.
y -=1 # Decrenent y: no -- operator, either.

Ruby supports parallel assignment, allowing more than one value and more than one variable in assignment
expressions:

X, y =1 2 # Sane as x = 1; y = 2
a, b =Db, a # Swap the value of two vari abl es
X,y,z =[1,2,3] # Array elenents automatically assigned to vari abl es

Methods in Ruby are allowed to return more than one value, and parallel assignment is helpful in conjunction
with such methods. For example:

Define a nethod to convert Cartesian (x,y) coordinates to Pol ar
def pol ar(x,y)

t heta = Mat h. at an2(y, x) # Conpute the angle

r = Mat h. hypot (X, y) # Conpute the distance

[r, theta] # The | ast expression is the return val ue
end

Here's how we use this nethod wth parallel assignnent
di stance, angle = polar(2, 2)

Methods that end with an equals sign (=) are special because Ruby allows them to be invoked using assignment
syntax. If an object o has a method named x=, then the following two lines of code do the very same thing:

=(1) # Normal nethod I nvocation syntax
=1

0. X
0. X # Met hod i nvocation through assi gnnent

1.1.6. Punctuation Suffixes and Prefixes

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

We saw previously that methods whose names end with = can be invoked by assignment expressions. Ruby
methods can also end with a question mark or an exclamation point. A question mark is used to mark
predicates-methods that return a Boolean value. For example, the Array and Hash classes both define
methods named enpt y? that test whether the data structure has any elements. An exclamation mark at the end
of a method name is used to indicate that caution is required with the use of the method. A number of core
Ruby classes define pairs of methods with the same name, except that one ends with an exclamation mark and
one does not. Usually, the method without the exclamation mark returns a modified copy of the object it is

Invoked on, and the one with the exclamation mark is a mutator method that alters the object in place. The
Array class, for example, defines methods sort and sort!.

In addition to these punctuation characters at the end of method names, you'll notice punctuation characters at
the start of Ruby variable names: global variables are prefixed with $, instance variables are prefixed with @
and class variables are prefixed with @@ These prefixes can take a little getting used to, but after a while you

may come to appreciate the fact that the prefix tells you the scope of the variable. The prefixes are required in
order to disambiguate Ruby's very flexible grammar. One way to think of variable prefixes is that they are one
price we pay for being able to omit parentheses around method invocations.

1.1.7. RegeXxp and Range

We mentioned arrays and hashes earlier as fundamental data structures in Ruby. We demonstrated the use of
numbers and strings as well. Two other datatypes are worth mentioning here. A Regexp (regular expression)
object describes a textual pattern and has methods for determining whether a given string matches that pattern
or not. And a Range represents the values (usually integers) between two endpoints. Regular expressions and
ranges have a literal syntax in Ruby:

[[Rr] uby/ # Matches "Ruby" or "ruby"

[\ d{5}/ # Matches 5 consecutive digits
1..3 # All X where 1 <= x <= 3
1...3 # All x where 1 <= x < 3

Regexp and Range objects define the normal == operator for testing equality. In addition, they also define the

=== gperator for testing matching and membership. Ruby's case statement (like the sw t ch statement of C or
Java) matches its expression against each of the possible cases using ===, so this operator is often called the

case eguality operator. It leads to conditional tests like these:

Code View:
Determ ne US generation nane based on birth year
Case expression tests ranges wth ===
generation = case birthyear

when 1946..1963: "Baby Booner"

when 1964..1976: "CGeneration X

when 1978..2000: "CGeneration Y"

el se nil

end

A method to ask the user to confirm sonethi ng
def are_you sure? # Define a nethod. Note question narKk!
while true # Loop until we explicitly return
print "Are you sure? [y/n]: Ask the user a question
response = gets Get her answer
case response Begi n case condi ti onal
when /M yY]/ | f response begins wwth y or Y
return true Return true fromthe nethod
when /[nN/, [7$/ | f response begins with n,Nor is enpty
return false Return fal se

H O HFHHHH

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

end
end
end

1.1.8. Classes and Modules

A class is a collection of related methods that operate on the state of an object. An object's state is held by its
Instance variables: variables whose names begin with @and whose values are specific to that particular object.

The following code defines an example class named Sequence and demonstrates how to write iterator methods
and define operators:

Code View:

#

This class represents a sequence of nunbers characterized by the three
paranmeters from to, and by. The nunbers x in the sequence obey the

followmng two constraints:

#

from<= x <=1to

Xx = from+ n*by, where n is an integer

#

cl ass Sequence
This 1s an enunerable class:; it defines an each iterator bel ow
| ncl ude Enumer abl e # I nclude the nethods of this nmodule in this cl ass

The initialize nethod is special; i1t is autonmatically invoked to
initialize newly created I nstances of the cl ass
def initialize(from to, by)
Just save our paraneters into instance variables for later use
@rom @o, @y = from to, by # Note parallel assignnent and @ prefix
end

This I1s the iterator required by the Enunerabl e nodul e

def each
X = @rom # Start at the starting point
while x <= @o # Wile we haven't reached the end
yield x # Pass x to the bl ock associated wth the iterator
X += @y # | ncrement X
end
end

Define the length nethod (followng arrays) to return the nunber of
values in the sequence

def length
return O iIf @rom> @o # Note if used as a statenent nodifier
Integer((@o-@rom/ @y) + 1 # Conpute and return |length of sequence
end

Defi ne another nane for the sanme nethod.
It 1s common for nethods to have nultiple names i n Ruby
alias size length # size i1s now a synonymfor |ength

Override the array-access operator to give random access to the sequence
def[] (1 ndex)

return nil if index < O # Return nil for negative |Indexes
v = @rom + i ndex* @y # Comput e the val ue
If v <= @o # If 1t 1s part of the sequence

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Y # Return it
el se # O herw se. ..
ni | # Return nil
end
end

Override arithnetic operators to return new Sequence objects
def *(factor)

Sequence. new(@rontfactor, @o*factor, @y*factor)
end

def +(offset)
Sequence. newm @r omtof fset, @o+of fset, @y)

end
end

Here Is some code that uses this Sequence class:

s = Sequence.new(1, 10, 2) # From1l to 10 by 2's

s.each {| x| print x } # Prints "13579"
print s[s.size-1] # Prints 9
t = (s+1)*2 # From4 to 22 by 4's

The key feature of our Sequence class is its each iterator. If we are only interested In the iterator method, there
IS N0 need to define the whole class. Instead, we can simply write an iterator method that accepts the from t o,
and by parameters. Instead of making this a global function, let's define it in a module of its own:

nodul e Sequences # Begin a new nodul e
def self.frontoby(from to, by) # A singleton nethod of the nodule
X = from
while x <=to
yield X
X += by
end
end
end

With the iterator defined this way, we write code like this:

Sequences. frontoby(1, 10, 2) {|x| print x } # Prints "13579"

An iterator like this makes it unnecessary to create a Sequence object to iterate a sequence of numbers. But the

name of the method is quite long, and its invocation syntax is unsatisfying. What we really want is a way to
iterate numeric Range objects by steps other than 1. One of the amazing features of Ruby is that its classes,

even the built-in core classes, are open: any program can add methods to them. So we really can define a new
iterator method for ranges:

Code View:
cl ass Range # Open an existing class for additions

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

def by(step) # Define an iterator naned by
X = self.begin # Start at one endpoint of the range
| f exclude_end? # For ... ranges that exclude the end
while x < self.end # Test with the < operator
yield X
X += step
end
el se # O herwse, for .. ranges that include the end
while x <= self.end # Test with <= operator
yield x
X += step
end
end
end # End of nmethod definition
end # End of class nodification
Exanpl es

(0..10).by(2) {|x|] print x} # Prints "0246810"
(0...10).by(2) {|x] print x} # Prints "02468"

This by method is convenient but unnecessary; the Range class already defines an iterator named st ep that

serves the same purpose. The core Ruby API is a rich one, and it is worth taking the time to study the platform
(see Chapter 9) so you don't end up spending time writing methods that have already been implemented for
you!

1.1.9. Ruby Surprises

Every language has features that trip up programmers who are new to the language. Here we describe two of
Ruby's surprising features.

Ruby's strings are mutable, which may be surprising to Java programmers in particular. The [] = operator allows
you to alter the characters of a string or to insert, delete, and replace substrings. The << operator allows you to
append to a string, and the St ri ng class defines various other methods that alter strings in place. Because

strings are mutable, string literals in a program are not unique objects. If you include a string literal within a
loop, it evaluates to a new object on each iteration of the loop. Call the freeze method on a string (or on any

object) to prevent any future modifications to that object.

Ruby's conditionals and loops (such as i f and whi | e) evaluate conditional expressions to determine which
branch to evaluate or whether to continue looping. Conditional expressions often evaluate to true or f al se, but
this is not required. The value of ni | is treated the same as f al se, and any other value is the same as true.
This is likely to surprise C programmers who expect 0 to work like f al se, and JavaScript programmers who
expect the empty string "" to be the same as f al se.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 1. Introduction

Ruby is a dynamic programming language with a complex but expressive grammar and a core class library with
a rich and powerful API. Ruby draws inspiration from Lisp, Smalltalk, and Perl, but uses a grammar that is easy
for C and Java™ programmers to learn. Ruby is a pure object-oriented language, but it is also suitable for
procedural and functional programming styles. It includes powerful metaprogramming capabilities and can be
used to create domain-specific languages or DSLs.

Matz on Ruby

Yukihiro Matsumoto, known as Matz to the English-speaking Ruby community, is the creator of
Ruby and the author of Ruby in a Nutshell (O'Reilly) (which has been updated and expanded into
the present book). He says:

| knew many languages before | created Ruby, but | was never fully satisfied with them.
They were uglier, tougher, more complex, or more simple than | expected. | wanted to
create my own language that satisfied me, as a programmer. | knew a lot about the
language's target audience: myself. To my surprise, many programmers all over the world
feel very much like I do. They feel happy when they discover and program in Ruby.

Throughout the development of the Ruby language, I've focused my energies on making
programming faster and easier. All features in Ruby, including object-oriented features, are
designed to work as ordinary programmers (e.g., me) expect them to work. Most
programmers feel it Is elegant, easy to use, and a pleasure to program.

Matz's guiding philosophy for the design of Ruby is summarized in an oft-quoted remark of his:

Ruby is designed to make programmers happy.

1.1. A Tour of Ruby

This section Is a guided, but meandering, tour through some of the most interesting features of Ruby.
Everything discussed here will be documented in detall later in the book, but this first look will give you the
flavor of the language.

1.1.1. Ruby Is Object-Oriented

We'll begin with the fact that Ruby is a completely object-oriented language. Every value is an object, even
simple numeric literals and the values true, fal se, and ni|l (nil is a special value that indicates the absence of
value; it is Ruby's version of nul |). Here we invoke a method named cl ass on these values. Comments begin

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

with # in Ruby, and the => arrows in the comments indicate the value returned by the commented code (this is
a convention used throughout this book):

=> Fi xnum the nunber 1 is a Fixnum

Fl oat: fl oating-point nunbers have class Fl oat

TrueCl ass: true is a the singleton instance of Trued ass
=> Fal se(ass

=> N | d ass

1.cl ass #
0. 0. cl ass #
true. cl ass # =
fal se.class #
nil.class #

In many languages, function and method invocations require parentheses, but there are no parentheses in any
of the code above. In Ruby, parentheses are usually optional and they are commonly omitted, especially when
the method being invoked takes no arguments. The fact that the parentheses are omitted in the method
Invocations here makes them look like references to named fields or named variables of the object. This is
Intentional, but the fact is, Ruby is very strict about encapsulation of its objects; there is no access to the
Internal state of an object from outside the object. Any such access must be mediated by an accessor method,
such as the cl ass method shown above.

1.1.2. Blocks and lterators

The fact that we can invoke methods on integers isn't just an esoteric aspect of Ruby. It is actually something
that Ruby programmers do with some frequency:

3.tinmes { print "Ruby! " } # Prints "Ruby! Ruby! Ruby!
1.upto(9) {|x| print x } # Prints "123456789"

ti mes and upt o are methods implemented by integer objects. They are a special kind of method known as an

iterator, and they behave like loops. The code within curly braces-known as a block-is associated with the
method invocation and serves as the body of the loop. The use of iterators and blocks is another notable feature
of Ruby; although the language does support an ordinary whi | e loop, it is more common to perform loops with
constructs that are actually method calls.

Integers are not the only values that have iterator methods. Arrays (and similar "enumerable™ objects) define
an iterator named each, which invokes the associated block once for each element in the array. Each invocation

of the block is passed a single element from the array:

a=1_[3, 2, 1] # This I1s an array literal

a[3] = a[2] - 1 # Use square brackets to query and set array el enents

a.each do |elt| # each is an iterator. The bl ock has a paraneter elt
print elt+1 # Prints "4321"

end # This block was delimted wth do/end i nstead of {}

Various other useful iterators are defined on top of each:

a =1[1,2,3,4] # Start wth an array

b = a.map {| x| x*x } # Square elenments: b is [1,4,9,16]

c = a.select {|x|] x%2==0 } # Sel ect even elenents: c is [2,4]

a.inject do | sum x| # Conpute the sumof the elenents => 10
sum + X

end

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Hashes, like arrays, are a fundamental data structure in Ruby. As their name implies, they are based on the
hashtable data structure and serve to map arbitrary key objects to value objects. (To put this another way, we
can say that a hash associates arbitrary value objects with key objects.) Hashes use square brackets, like arrays
do, to query and set values in the hash. Instead of using an integer index, they expect key objects within the
square brackets. Like the Arr ay class, the Hash class also defines an each iterator method. This method invokes
the associated block of code once for each key/value pair in the hash, and (this is where it differs from Array)

passes both the key and the value as parameters to the block:

h = { # A hash that maps nunber nanmes to digits
:one => 1, # The "arrows" show mappi ngs: key=>val ue
two => 2 # The colons indicate Synbol literals

}

h[: one] => 1. Access a value by key

h[:three] = 3

h. each do | key, val ue|
print "#{val ue}: #{key};

end

Add a new key/value pair to the hash
|terate through the key/val ue pairs
Not e vari ables substituted into string
Prints "1:one; 2:two; 3:three;

H H H H

Ruby's hashes can use any object as a key, but Synbol objects are the most commonly used. Symbols are

iImmutable, interned strings. They can be compared by identity rather than by textual content (because two
distinct Symbol objects will never have the same content).

The ability to associate a block of code with a method invocation is a fundamental and very powerful feature of
Ruby. Although its most obvious use is for loop-like constructs, it is also useful for methods that only invoke the
block once. For example:

File.open("data.txt") do |f| # Open naned file and pass streamto bl ock

line = f.readline # Use the streamto read fromthe file
end # Stream automatically closed at bl ock end
t = Thread. new do # Run this block in a new thread
File.read("data.txt") # Read a file in the background
end # File contents avail able as thread val ue

As an aside, notice that the Hash. each example previously included this interesting line of code:

print "#{val ue}: #{key}; " # Note variables substituted into string

Double-quoted strings can include arbitrary Ruby expressions delimited by #{ and } . The value of the expression
within these delimiters is converted to a string (by calling its t o_s method, which is supported by all objects).

The resulting string Is then used to replace the expression text and its delimiters in the string literal. This
substitution of expression values into strings is usually called string interpolation.

1.1.3. ExXpressions and Operators in Ruby
Ruby's syntax is expression-oriented. Control structures such as i f that would be called statements in other

languages are actually expressions in Ruby. They have values like other simpler expressions do, and we can
write code like this:

mnimm=1if x <y then x else y end

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Although all "statements” in Ruby are actually expressions, they do not all return meaningful values. whi | e
loops and method definitions, for example, are expressions that normally return the value ni | .

As In most languages, expressions in Ruby are usually built out of values and operators. For the most part,
Ruby's operators will be familiar to anyone who knows C, Java, JavaScript, or any similar programming
language. Here are examples of some commonplace and some more unusual Ruby operators:

Code View:

1 + 2 # => 3. addition

1 * 2 # => 2. multiplication

1 + 2 == # => true: == tests equality

2 ** 1024 # 2 to the power 1024: Ruby has arbitrary size ints
"Ruby" + " rocks!" # => "Ruby rocks!": string concatenation

"Ruby! " * 3 # => "Ruby! Ruby! Ruby! ": string repetition

"0l %" % [3, "rubies"] # => "3 Rubies": Python-style, printf formatting
mx = X >y ?2 X .Yy # The conditional operator

Many of Ruby's operators are implemented as methods, and classes can define (or redefine) these methods
however they want. (They can't define completely new operators, however; there is only a fixed set of
recognized operators.) As examples, notice that the + and * operators behave differently for integers and

strings. And you can define these operators any way you want in your own classes. The << operator is another
good example. The integer classes Fi xnumand Bi gnumuse this operator for the bitwise left-shift operation,

following the C programming language. At the same time (following C++), other classes-such as strings,
arrays, and streams-use this operator for an append operation. If you create a new class that can have values
appended to it in some way, it is a very good idea to define <<.

One of the most powerful operators to override is [] . The Array and Hash classes use this operator to access
array elements by index and hash values by key. But you can define[] In your classes for any purpose you

want. You can even define it as a method that expects multiple arguments, comma-separated between the
square brackets. (The Array class accepts an index and a length between the square brackets to indicate a

subarray or "slice" of the array.) And if you want to allow square brackets to be used on the lefthand side of an
assignment expression, you can define the corresponding [| = operator. The value on the righthand side of the

assignment will be passed as the final argument to the method that implements this operator.

1.1.4. Methods

Methods are defined with the def keyword. The return value of a method is the value of the last expression
evaluated in its body:

def squar e(x) # Define a nethod naned square wth one paraneter Xx
X* X # Return X squared
end # End of the nmethod

When a method, like the one above, is defined outside of a class or a module, it is effectively a global function
rather than a method to be invoked on an object. (Technically, however, a method like this becomes a private
method of the (bj ect class.) Methods can also be defined on individual objects by prefixing the name of the

method with the object on which it is defined. Methods like these are known as singletonmethods, and they are
how Ruby defines class methods:

def Mat h.square(x) # Define a class nethod of the Math nodul e
X* X

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

end

The Mat h module is part of the core Ruby library, and this code adds a new method to it. This is a key feature of
Ruby-classes and modules are "open" and can be modified and extended at runtime.

Method parameters may have default values specified, and methods may accept arbitrary numbers of
arguments.

1.1.5. Assignment

The (nonoverridable) = operator in Ruby assigns a value to a variable:

X =1

Assignment can be combined with other operators such as + and - :

X += 1 # I ncrenent x: note Ruby does not have ++.
y -=1 # Decrenent y: no -- operator, either.

Ruby supports parallel assignment, allowing more than one value and more than one variable in assignment
expressions:

X, y =1 2 # Sane as x = 1; y = 2
a, b =Db, a # Swap the value of two vari abl es
X,y,z =[1,2,3] # Array elenents automatically assigned to vari abl es

Methods in Ruby are allowed to return more than one value, and parallel assignment is helpful in conjunction
with such methods. For example:

Define a nethod to convert Cartesian (x,y) coordinates to Pol ar
def pol ar(x,y)

t heta = Mat h. at an2(y, x) # Conpute the angle

r = Mat h. hypot (X, y) # Conpute the distance

[r, theta] # The | ast expression is the return val ue
end

Here's how we use this nethod wth parallel assignnent
di stance, angle = polar(2, 2)

Methods that end with an equals sign (=) are special because Ruby allows them to be invoked using assignment
syntax. If an object o has a method named x=, then the following two lines of code do the very same thing:

=(1) # Normal nethod I nvocation syntax
=1

0. X
0. X # Met hod i nvocation through assi gnnent

1.1.6. Punctuation Suffixes and Prefixes

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

We saw previously that methods whose names end with = can be invoked by assignment expressions. Ruby
methods can also end with a question mark or an exclamation point. A question mark is used to mark
predicates-methods that return a Boolean value. For example, the Array and Hash classes both define
methods named enpt y? that test whether the data structure has any elements. An exclamation mark at the end
of a method name is used to indicate that caution is required with the use of the method. A number of core
Ruby classes define pairs of methods with the same name, except that one ends with an exclamation mark and
one does not. Usually, the method without the exclamation mark returns a modified copy of the object it is

Invoked on, and the one with the exclamation mark is a mutator method that alters the object in place. The
Array class, for example, defines methods sort and sort!.

In addition to these punctuation characters at the end of method names, you'll notice punctuation characters at
the start of Ruby variable names: global variables are prefixed with $, instance variables are prefixed with @
and class variables are prefixed with @@ These prefixes can take a little getting used to, but after a while you

may come to appreciate the fact that the prefix tells you the scope of the variable. The prefixes are required in
order to disambiguate Ruby's very flexible grammar. One way to think of variable prefixes is that they are one
price we pay for being able to omit parentheses around method invocations.

1.1.7. RegeXxp and Range

We mentioned arrays and hashes earlier as fundamental data structures in Ruby. We demonstrated the use of
numbers and strings as well. Two other datatypes are worth mentioning here. A Regexp (regular expression)
object describes a textual pattern and has methods for determining whether a given string matches that pattern
or not. And a Range represents the values (usually integers) between two endpoints. Regular expressions and
ranges have a literal syntax in Ruby:

[[Rr] uby/ # Matches "Ruby" or "ruby"

[\ d{5}/ # Matches 5 consecutive digits
1..3 # All X where 1 <= x <= 3
1...3 # All x where 1 <= x < 3

Regexp and Range objects define the normal == operator for testing equality. In addition, they also define the

=== gperator for testing matching and membership. Ruby's case statement (like the sw t ch statement of C or
Java) matches its expression against each of the possible cases using ===, so this operator is often called the

case eguality operator. It leads to conditional tests like these:

Code View:
Determ ne US generation nane based on birth year
Case expression tests ranges wth ===
generation = case birthyear

when 1946..1963: "Baby Booner"

when 1964..1976: "CGeneration X

when 1978..2000: "CGeneration Y"

el se nil

end

A method to ask the user to confirm sonethi ng
def are_you sure? # Define a nethod. Note question narKk!
while true # Loop until we explicitly return
print "Are you sure? [y/n]: Ask the user a question
response = gets Get her answer
case response Begi n case condi ti onal
when /M yY]/ | f response begins wwth y or Y
return true Return true fromthe nethod
when /[nN/, [7$/ | f response begins with n,Nor is enpty
return false Return fal se

H O HFHHHH

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

end
end
end

1.1.8. Classes and Modules

A class is a collection of related methods that operate on the state of an object. An object's state is held by its
Instance variables: variables whose names begin with @and whose values are specific to that particular object.

The following code defines an example class named Sequence and demonstrates how to write iterator methods
and define operators:

Code View:

#

This class represents a sequence of nunbers characterized by the three
paranmeters from to, and by. The nunbers x in the sequence obey the

followmng two constraints:

#

from<= x <=1to

Xx = from+ n*by, where n is an integer

#

cl ass Sequence
This 1s an enunerable class:; it defines an each iterator bel ow
| ncl ude Enumer abl e # I nclude the nethods of this nmodule in this cl ass

The initialize nethod is special; i1t is autonmatically invoked to
initialize newly created I nstances of the cl ass
def initialize(from to, by)
Just save our paraneters into instance variables for later use
@rom @o, @y = from to, by # Note parallel assignnent and @ prefix
end

This I1s the iterator required by the Enunerabl e nodul e

def each
X = @rom # Start at the starting point
while x <= @o # Wile we haven't reached the end
yield x # Pass x to the bl ock associated wth the iterator
X += @y # | ncrement X
end
end

Define the length nethod (followng arrays) to return the nunber of
values in the sequence

def length
return O iIf @rom> @o # Note if used as a statenent nodifier
Integer((@o-@rom/ @y) + 1 # Conpute and return |length of sequence
end

Defi ne another nane for the sanme nethod.
It 1s common for nethods to have nultiple names i n Ruby
alias size length # size i1s now a synonymfor |ength

Override the array-access operator to give random access to the sequence
def[] (1 ndex)

return nil if index < O # Return nil for negative |Indexes
v = @rom + i ndex* @y # Comput e the val ue
If v <= @o # If 1t 1s part of the sequence

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Y # Return it
el se # O herw se. ..
ni | # Return nil
end
end

Override arithnetic operators to return new Sequence objects
def *(factor)

Sequence. new(@rontfactor, @o*factor, @y*factor)
end

def +(offset)
Sequence. newm @r omtof fset, @o+of fset, @y)

end
end

Here Is some code that uses this Sequence class:

s = Sequence.new(1, 10, 2) # From1l to 10 by 2's

s.each {| x| print x } # Prints "13579"
print s[s.size-1] # Prints 9
t = (s+1)*2 # From4 to 22 by 4's

The key feature of our Sequence class is its each iterator. If we are only interested In the iterator method, there
IS N0 need to define the whole class. Instead, we can simply write an iterator method that accepts the from t o,
and by parameters. Instead of making this a global function, let's define it in a module of its own:

nodul e Sequences # Begin a new nodul e
def self.frontoby(from to, by) # A singleton nethod of the nodule
X = from
while x <=to
yield X
X += by
end
end
end

With the iterator defined this way, we write code like this:

Sequences. frontoby(1, 10, 2) {|x| print x } # Prints "13579"

An iterator like this makes it unnecessary to create a Sequence object to iterate a sequence of numbers. But the

name of the method is quite long, and its invocation syntax is unsatisfying. What we really want is a way to
iterate numeric Range objects by steps other than 1. One of the amazing features of Ruby is that its classes,

even the built-in core classes, are open: any program can add methods to them. So we really can define a new
iterator method for ranges:

Code View:
cl ass Range # Open an existing class for additions

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

def by(step) # Define an iterator naned by
X = self.begin # Start at one endpoint of the range
| f exclude_end? # For ... ranges that exclude the end
while x < self.end # Test with the < operator
yield X
X += step
end
el se # O herwse, for .. ranges that include the end
while x <= self.end # Test with <= operator
yield x
X += step
end
end
end # End of nmethod definition
end # End of class nodification
Exanpl es

(0..10).by(2) {|x|] print x} # Prints "0246810"
(0...10).by(2) {|x] print x} # Prints "02468"

This by method is convenient but unnecessary; the Range class already defines an iterator named st ep that

serves the same purpose. The core Ruby API is a rich one, and it is worth taking the time to study the platform
(see Chapter 9) so you don't end up spending time writing methods that have already been implemented for
you!

1.1.9. Ruby Surprises

Every language has features that trip up programmers who are new to the language. Here we describe two of
Ruby's surprising features.

Ruby's strings are mutable, which may be surprising to Java programmers in particular. The [] = operator allows
you to alter the characters of a string or to insert, delete, and replace substrings. The << operator allows you to
append to a string, and the St ri ng class defines various other methods that alter strings in place. Because

strings are mutable, string literals in a program are not unique objects. If you include a string literal within a
loop, it evaluates to a new object on each iteration of the loop. Call the freeze method on a string (or on any

object) to prevent any future modifications to that object.

Ruby's conditionals and loops (such as i f and whi | e) evaluate conditional expressions to determine which
branch to evaluate or whether to continue looping. Conditional expressions often evaluate to true or f al se, but
this is not required. The value of ni | is treated the same as f al se, and any other value is the same as true.
This is likely to surprise C programmers who expect 0 to work like f al se, and JavaScript programmers who
expect the empty string "" to be the same as f al se.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.2. Try Ruby

We hope our tour of Ruby’'s key features has piqued your interest and you are eager to try Ruby out. To do that,
you'll need a Ruby interpreter, and you'll also want to know how to use three tools-irb, ri, and gem-that are
bundled with the interpreter. This section explains how to get and use them.

1.2.1. The Ruby Interpreter

The official web site for Ruby is http://www.ruby-lang.org. If Ruby is not already installed on your computer,
you can follow the download link on the ruby-lang.org home page for instructions on downloading and installing
the standard C-based reference implementation of Ruby.

Once you have Ruby installed, you can invoke the Ruby interpreter with the r uby command:

%ruby -e '"puts "hello world!"'
hell o wor| d!

The - e command-line option causes the interpreter to execute a single specified line of Ruby code. More
commonly, you'd place your Ruby program in a file and tell the interpreter to invoke it:

% ruby hello.rb
hell o worl d!

Other Ruby Implementations

In the absence of a formal specification for the Ruby language, the Ruby interpreter from ruby-
lang.org is the reference implementation that defines the language. It is sometimes known as MRI,
or "Matz's Ruby Implementation.” For Ruby 1.9, the original MRI interpreter was merged with
YARV ("Yet Another Ruby Virtual machine") to produce a new reference implementation that
performs internal compilation to bytecode and then executes that bytecode on a virtual machine.

The reference implementation is not the only one available, however. At the time of this writing,
there is one alternative implementation released at a 1.0 level (JRuby) and several other
Implementations under development:

JRuby

JRuby is a Java-based implementation of Ruby, available from http://jruby.org. At the time
of this writing, the current release is JRuby 1.0, which is compatible with Ruby 1.8. A 1.9-
compatible release of JRuby may be available by the time you read this. JRuby is open
source software, developed primarily at Sun Microsystems.

IronRuby

downloaded from: lib.ommolkefab.ir

http://www.ruby-lang.org
http://jruby.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

IronRuby is Microsoft's implementation of Ruby for their .NET framework and DLR (Dynamic
Language Runtime). The source code for IronRuby is available under the Microsoft
Permissive License. At the time of this writing, IronRuby iIs not yet at a 1.0 release level.
The project home page is http://www.ironruby.net.

Rubinius

Rubinius is an open source project that describes itself as "an alternative Ruby
Implementation written largely in Ruby. The Rubinius virtual machine, named shotgun, is
based loosely on the Smalltalk-80 VM architecture." At the time of this writing, Rubinius is
not at version 1.0. The home page for the Rubinius project is http://rubini.us.

Cardinal

Cardinal is a Ruby implementation intended to run on the Parrot VM (which aims to power
Perl 6 and a number of other dynamic languages). At the time of this writing, neither Parrot
nor Cardinal have released a 1.0 version. Cardinal does not have its own home page; It is
hosted as part of the open source Parrot project at http://www.parrotcode.org.

1.2.2. Displaying Output

In order to try out Ruby features, you need a way to display output so that your test programs can print their
results. The put s function-used in the "hello world" code earlier-is one way to do this. Loosely speaking, puts

prints a string of text to the console and appends a newline (unless the string already ends with one). If passed
an object that is not a string, put s calls the t o_s method of that object and prints the string returned by that

method. pri nt does more or less the same thing, but it does not append a newline. For example, type the
following two-line program in a text editor and save it in a file named count.rb:

9.downto(l) {|n|] print n } # No new i ne between nunbers
puts " blastoff!” # End wwth a new i ne

Now run the program with your Ruby interpreter:

% ruby count.rb

It should produce the following output:

087654321 bl ast of !

You may find the function p to be a useful alternative to put s. Not only is it shorter to type, but it converts
objects to strings with the i nspect method, which sometimes returns more programmer-friendly
representations than t o_s does. When printing an array, for example, p outputs it using array literal notation,
whereas put s simply prints each element of the array on a line by itself.

downloaded from: lib.ommolkefab.ir

http://www.ironruby.net
http://rubini.us
http://www.parrotcode.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.2.3. Interactive Ruby with irb

iIrb (short for "interactive Ruby") is a Ruby shell. Type any Ruby expression at its prompt and it will evaluate it
and display its value for you. This is often the easiest way to try out the language features you read about in
this book. Here is an example irb session, with annotations:

$irb --sinple-pronpt # Start irb fromthe term nal
>> 2*%*3 # Try exponentiation

=> 8 # This I1s the result

>> "Ruby! " * 3 # Try string repetition

=> "Ruby! Ruby! Ruby! # The result

>> 1.upto(3){| x| puts x } # Try an iterator

1 # Three |lines of output

2 # Because we called puts 3 tines
3

=> 1 # The return val ue of 1. upto(3)
>> quit # Exit irb

$ # Back to the term nal pronpt

This example session shows you all you need to know about irb to make productive use of it while exploring
Ruby. It does have a number of other important features, however, including subshells (type "irb" at the prompt
to start a subshell) and configurability.

1.2.4. Viewing Ruby Documentation with ri

Another critical Ruby tool is the rilll documentation viewer. Invoke ri on the command line followed by the name
of a Ruby class, module, or method, and ri will display documentation for you. You may specify a method name

without a qualifying class or module name, but this will just show you a list of all methods by that name (unless
the method is unique). Normally, you can separate a class or module name from a method name with a period.

If a class defines a class method and an instance method by the same name, you must instead use :: to refer to
the class method or # to refer to the instance method. Here are some example invocations of ri:

[1] Opinions differ as to what "ri" stands for. It has been called "Ruby Index," "Ruby Information,”" and "Ruby Interactive."

ri Array

ri Array.sort
ri Hash#each
ri Math::sqgrt

This documentation displayed by ri is extracted from specially formatted comments in Ruby source code. See
Section 2.1.1.2 for details.

1.2.5. Ruby Package Management with gem

Ruby's package management system is known as RubyGems, and packages or modules distributed using
RubyGems are called "gems." RubyGems makes it easy to install Ruby software and can automatically manage
complex dependencies between packages.

The frontend script for RubyGems is gem, and it's distributed with Ruby 1.9 just as irb and ri are. In Ruby 1.8,

you must install it separately-see http://rubygems.org. Once the gem program is installed, you might use it
like this:

downloaded from: lib.ommolkefab.ir

http://rubygems.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

geminstall rails

Successfully i1 nstalled activesupport-1.4.4
Successfully installed activerecord-1.15.5
Successfully installed actionpack-1.13.5

Successfully installed actionmailer-1.3.5

Successfully installed acti onwebservice-1.2.5
Successfully installed rails-1.2.5

6 gens installed

Installing ri docunentation for activesupport-1.4.4...
Installing ri docunentation for activerecord-1.15.5...
...etc...

As you can see, the gem i nstal | command installs the most recent version of the gem you request and also

Installs any gems that the requested gem requires. gem has other useful subcommands as well. Some
examples:

gem | I st

gem envi r onent

gem update rails
gem updat e

gem update --system
gemuninstall rails

List installed gens

Di spl ay RubyGens configuration information
Updat e a named gem

Update all installed gens

Updat e RubyGens itself

Renove an installed gem

H HF H HHH

In Ruby 1.8, the gems you install cannot be automatically loaded by Ruby's r equi r e method. (See Section 7.6
for more about loading modules of Ruby code with the r equi r e method.) If you're writing a program that will be
using modules installed as gems, you must first require the r ubygens module. Some Ruby 1.8 distributions are
preconfigured with the RubyGens library, but you may need to download and install this manually. Loading this
rubygens module alters the r equi r e method itself so that it searches the set of installed gems before it
searches the standard library. You can also automatically enable RubyGems support by running Ruby with the -
rubygens command-line option. And if you add - r ubygens to the RUBYOPT environment variable, then the
RubyGens library will be loaded on every invocation of Ruby.

The r ubygens module is part of the standard library in Ruby 1.9, but it is no longer required to load gems. Ruby
1.9 knows how to find installed gems on its own, and you do not have to putrequire 'rubygens' In your
programs that use gems.

When you load a gem with r equi re (in either 1.8 or 1.9), it loads the most recent installed version of the gem
you specify. If you have more specific version requirements, you can use the gemmethod before calling

requi re. This finds a version of the gem matching the version constraints you specify and "activates" it, so that
a subsequent r equi r e will load that version:

require 'rubygens’ # Not necessary in Ruby 1.9
gem'RedCloth', '> 2.0, "< 4.0 # Activate RedC oth version 2.x or 3.X
requi re ' Redd ot h' # And now | oad it

You'll find more about r equi r e and gems in Section 7.6.1. Complete coverage of RubyGems, the gem program,
and the r ubygens module are beyond the scope of this book. The gemcommand is self-documenting-start by
running gem hel p. For details on the gemmethod, try ri gem And for complete details, see the documentation
at http://rubygems.org.

downloaded from: lib.ommolkefab.ir

http://rubygems.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.2.6. More Ruby Tutorials

This chapter began with a tutorial introduction to the Ruby language. You can try out the code snippets of that
tutorial using irb. If you want more tutorials before diving into the language more formally, there are two good
ones available by following links on the http://www.ruby-lang.org home page. One irb-based tutorial is called
"Ruby in Twenty Minutes."l"] Another tutorial, called "Try Ruby!”, is interesting because it works in your web
browser and does not require you to have Ruby or irb installed on your system.l |

[*] At the time of this writing, the direct URL for this tutorial is http://www.ruby-lang.org/en/documentation/quickstart/.

[11If you can't find the "Try Ruby!" link on the Ruby home page, try this URL: http://tryruby.hobix.com.

1.2.7. Ruby Resources

The Ruby web site (http://www.ruby-lang.org) is the place to find links to other Ruby resources, such as online
documentation, libraries, mailing lists, blogs, IRC channels, user groups, and conferences. Try the
"Documentation,” "Libraries," and "Community" links on the home page.

downloaded from: lib.ommolkefab.ir

http://www.ruby-lang.org
http://www.ruby-lang.org/en/documentation/quickstart/
http://tryruby.hobix.com
http://www.ruby-lang.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.3. About This Book

As its title implies, this book covers the Ruby programming language and aspires to do so comprehensively and
accessibly. This edition of the book covers language versions 1.8 and 1.9. Ruby blurs the distinction between
language and platform, and so our coverage of the language includes a detailed overview of the core Ruby API.
But this book is not an API reference and does not cover the core classes comprehensively. Also, this is not a
book about Ruby frameworks (like Rails), nor a book about Ruby tools (like rake and gem).

This chapter concludes with a heavily commented extended example demonstrating a nontrivial Ruby program.
The chapters that follow cover Ruby from the bottom up:

e Chapter 2 covers the lexical and syntactic structure of Ruby, including basic issues like character set, case
sensitivity, and reserved words.

e Chapter 3 explains the kinds of data-numbers, strings, ranges, arrays, and so on-that Ruby programs
can manipulate, and it covers the basic features of all Ruby objects.

e Chapter 4 covers primary expressions in Ruby-literals, variable references, method invocations, and
assignments-and it explains the operators used to combine primary expressions into compound
expressions.

e Chapter 5 explains conditionals, loops (including blocks and iterator methods), exceptions, and the other
Ruby expressions that would be called statements or control structures in other languages.

e Chapter 6 formally documents Ruby's method definition and invocation syntax, and it also covers the
Invocable objects known as procs and lambdas. This chapter includes an explanation of closures and an
exploration of functional programming techniques in Ruby.

e Chapter 7 explains how to define classes and modules in Ruby. Classes are fundamental to object-oriented
programming, and this chapter also covers topics such as inheritance, method visibility, mixin modules,
and the method name resolution algorithm.

e Chapter 8 covers Ruby’'s APIs that allow a program to inspect and manipulate itself, and then
demonstrates metaprogramming techniques that use those APIs to make programming easier. The
chapter includes an example of domain-specific language.

e Chapter 9 demonstrates the most important classes and methods of the core Ruby platform with simple
code fragments. This is not a reference but a detailed overview of the core classes. Topics include text
processing, numeric computation, collections (such as arrays and hashes), input/output, networking, and
threads. After reading this chapter, you'll understand the breadth of the Ruby platform, and you'll be able
to use the ri tool or an online reference to explore the platform in depth.

e Chapter 10 covers the top-level Ruby programming environment, including global variables and global
functions, command-line arguments supported by the Ruby interpreter, and Ruby's security mechanism.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.3.1. How to Read This Book

It is easy to program in Ruby, but Ruby is not a simple language. Because this book documents Ruby
comprehensively, it is not a simple book (though we hope that you find it easy to read and understand). It is
Intended for experienced programmers who want to master Ruby and are willing to read carefully and
thoughtfully to achieve that goal.

Like all similar programming books, this book contains forward and backward references throughout.
Programming languages are not linear systems, and it is impossible to document them linearly. As you can see
from the chapter outline, this book takes a bottom-up approach to Ruby: it starts with the simplest elements of
Ruby's grammar and moves on to document successively higher-level syntactic structures-from tokens to
values to expressions and control structures to methods and classes. This is a classic approach to documenting
programming languages, but it does not avoid the problem of forward references.

The book Is intended to be read in the order it is written, but some advanced topics are best skimmed or
skipped on the first reading; they will make much more sense when you come back to them after having read
the chapters that follow. On the other hand, don't let every forward reference scare you off. Many of them are
simply informative, letting you know that more details will be presented later. The reference does not
necessarily imply that those future details are required to understand the current material.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.4. A Sudoku Solver in Ruby

This chapter concludes with a nontrivial Ruby application to give you a better idea of what Ruby programs
actually look like. We've chosen a Sudokul™ solver as a good short to medium-length program that
demonstrates a number of features of Ruby. Don't expect to understand every detail of Example 1-1, but do
read through the code; it is very thoroughly commented, and you should have little difficulty following along.

[*] Sudoku is a logic puzzle that takes the form of a 9 x 9 grid of numbers and blank squares. The task is to fill each blank with a digit 1 to 9

so that no row or column or 3 x 3 subgrid includes the same digit twice. Sudoku has been popular in Japan for some time, but it gained sudden
popularity in the English-speaking world in 2004 and 2005. If you are unfamiliar with Sudoku, try reading the Wikipedia entry
(http://en.wikipedia.org/wiki/Sudoku) and try an online puzzle (http://websudoku.com/).

Example 1-1. A Sudoku solver in Ruby

Code View:

#

This nodul e defines a Sudoku::Puzzle class to represent a 9x9

Sudoku puzzl e and al so defines exception classes raised for

invalid I nput and over-constrai ned puzzles. This nodul e al so defines
the net hod Sudoku. solve to solve a puzzle. The sol ve net hod uses
the Sudoku.scan nethod, which is al so defined here.

#

Use this nodule to solve Sudoku puzzles wth code |ike this:

#

require 'sudoku'

puts Sudoku. sol ve(Sudoku: : Puzzl e. new ARG-. readl | nes))

#

nodul e Sudoku

The Sudoku: :Puzzle class represents the state of a 9x9 Sudoku puzzl e.
Sone definitions and term nology used in this inplenentation:

- Each elenent of a puzzle is called a "cell".

- Rows and columms are nunbered fromO to 8, and the coordinates [0, O]
refer to the cell in the upper-left corner of the puzzle.

- The nine 3x3 subgrids are known as "boxes" and are al so nunbered from
Oto 8, ordered fromleft to right and top to bottom The box in
the upper-left is box 0. The box in the upper-right is box 2. The
box in the mddle is box 4. The box in the lower-right is box 8.

Create a new puzzle wth Sudoku:: Puzzle.new, specifying the initial
state as a string or as an array of strings. The string(s) shoul d use
the characters 1 through 9 for the given values, and '.' for cells
whose val ue is unspecified. Wiitespace in the input is ignored.

Read and wite access to individual cells of the puzzle is through the

[] and []= operators, which expect two-dinensional [row, col umm] i ndexing.
These net hods use nunbers (not characters) O to 9 for cell contents.

O represents an unknown val ue.

The has _duplicates? predicate returns true if the puzzle is invalid
because any row, columm, or box includes the sane digit tw ce.

T H A HFHFHFHFHFHFHFHHAHFHFHFHHHAFHFHTFEHH AT HHH

downloaded from: lib.ommolkefab.ir

http://en.wikipedia.org/wiki/Sudoku
http://websudoku.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from:

H OH HHHFHFHHHFH T

2

downloaded from:

lib.ommolkefab.ir

The each_unknown nethod is an iterator that |oops through the cells of
t he puzzle and i nvokes the associ ated bl ock once for each cell whose
val ue 1s unknown.

The possible nethod returns an array of integers in the range 1..09.
The elenents of the array are the only values allowed in the specified
cell. If this array is enpty, then the puzzle is over-specified and
cannot be solved. If the array has only one elenent, then that el enent
must be the value for that cell of the puzzle.

ass Puzzl e

These constants are used for translating between the external

string representation of a puzzle and the internal representation.
ASCI I = ".123456789"

BIN = "\ 000\ 001\ 002\ 003\ 004\ 005\ 006\ 007\ 010\ 011"

This is the initialization nethod for the class. It is automatically
i nvoked on new Puzzle instances created with Puzzle. new. Pass the input
puzzle as an array of lines or as a single string. Use ASCI| digits 1
to 9 and use the '.' character for unknown cells. \Witespace,
including newlines, wll be stripped.
def initialize(lines)
If (lines.respond to? :join) # If argunent |ooks |ike an array of |ines

s =lines.join # Then join theminto a single string

el se # Ot herw se, assune we have a string
s = |ines.dup # And nake a private copy of it

end

Renove whitespace (including newlines) fromthe data

The '"!" 1n gsub! indicates that this is a nmutator nethod that

alters the string directly rather than naking a copy.

s.gsub! (/\s/, "") # /\s/ is a Regexp that matches any whitespace

Rai se an exception if the input is the wong size.
Note that we use unless instead of if, and use it in nodifier form
raise Invalid, "Gid is the wong size" unless s.size == 81

Check for invalid characters, and save the |ocation of the first.
Note that we assign and test the value assigned at the sane tine.
I1f i = s.index(/["123456789\.]/)

Include the invalid character in the error nessage.

Note the Ruby expression inside #{} in string literal.

raise Invalid, "lllegal character #{s[i,1l]} in puzzle"
end

The followmng two Iines convert our string of ASCII characters

to an array of integers, using two powerful String nethods.

The resulting array is stored in the instance variable @rid

The nunber O is used to represent an unknown val ue.

s.tr! (ASClI 1, BIN) # Translate ASCI| characters into bytes

@rid = s.unpack('c*') # Now unpack the bytes into an array of nunbers

Make sure that the rows, colums, and boxes have no duplicates.
raise Invalid, "Initial puzzle has duplicates" If has duplicates?

end

Return the state of the puzzle as a string of 9 lines with 9

lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

characters (plus newine) each.
def to_s

This method is inplenented wiwth a single |ine of Ruby nmagi c that
reverses the steps inthe initialize() nethod. Witing dense code
|1 ke this is probably not good coding style, but it denonstrates
t he power and expressiveness of the | anguage.

Broken down, the |ine below works |ike this:
(0..8).collect invokes the code in curly braces 9 tines--once
for each row-and collects the return value of that code into an
array. The code in curly braces takes a subarray of the grid
representing a single row and packs its nunbers into a string.
The join() nmethod joins the elenents of the array into a single
string wth new ines between them Finally, the tr() nethod
translates the binary string representation into ASCII digits.
(0..8).collect{|r|] @rid[r*9,9].pack('c9')}.join("\n").tr(BIN,ASCI |)
end

H HFHFHHHHFH BT HHE

Return a duplicate of this Puzzle object.
This method overrides Cbject.dup to copy the @rid array.

def dup
cCopy = super # Make a shall ow copy by calling Object. dup
@rid = @rid.dup # Make a new copy of the internal data
copy # Return the copied object

end

W override the array access operator to all ow access to the

individual cells of a puzzle. Puzzles are two-di nensional,

and nust be i ndexed wth row and col um coordi nat es.

def [](row, col)
Convert two-dinensional (row, col) coordinates Iinto a one-di nensional
array I ndex and get and return the cell value at that i ndex
@rid[row9 + col]

end

This method allows the array access operator to be used on the

lefthand side of an assignnent operation. It sets the val ue of

the cell at (row, col) to newal ue.

def []=(row, col, newal ue)
Ral se an exception unless the newvalue is in the range 0 to 9.
unl ess (0..9).i1nclude? newal ue

raise Invalid, "illegal cell val ue"
end
Set the appropriate elenent of the internal array to the val ue.
@rid[row9 + col] = newal ue

end

This array maps from one-di nensional grid index to box nunber.

1t 1s used in the nethod bel ow. The nane BoxO'l ndex begins with a

capital letter, so this is a constant. Al so, the array has been

frozen, so it cannot be nodified.

BoxOF I ndex = [
0,0,0,1,
3,3, 3,4,
6, 6,6, 7

].freeze

1,1,2,2,2,0,0,0,1,1,1,2,2,2,0,0,0,1,1,1,2,2,2
41 4’ 5’ 5’ 51 31 3’ 3’ 41 41 4’ 5’ 51 51 3’ 3’ 3’ 41 41 4’ 5’ 51 51
/7,7,8,8,8,6,6,6,7,7,7,8,8,8,6,6,6,7,7,7,8,8,8

This method defines a custom | ooping construct (an "iterator") for
Sudoku puzzles. For each cell whose value is unknown, this nethod

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

passes ("yields") the row nunber, colum nunber, and box nunber to the
bl ock associated with this iterator.
def each_unknown

O.upto 8 do |row # For each row
O.upto 8 do |col | # For each col umm
| ndex = row*9+col # Cell 1 ndex for (row, col)
next If @rid/findex] '= 0 # Mwve on if we know the cell's val ue
box = BoxOf | ndex|[i ndex] # Figure out the box for this cell
yield row, col, box # I nvoke the associ ated bl ock
end
end

end

Returns true if any row, columm, or box has dupli cates.
Oherwse returns false. Duplicates in rows, colums, or boxes are not
allowed I n Sudoku, so a return value of true neans an invalid puzzle.
def has_duplicates?
uniq! returns nil 1If all the elenents in an array are uni que.
So if uniq! returns sonething then the board has duplicates.
O.upto(8) {|row return true if rowdigits(row).uniq! }
O.upto(8) {|col| return true if coldigits(col).uniq! }
O.upto(8) {|box| return true 1 f boxdigits(box).uniq! }

false # If all the tests have passed, then the board has no duplicates
end

This array holds a set of all Sudoku digits. Used bel ow.
AllDgits =1, 2, 3, 4, 5, 6, 7, 8, 9].freeze

Return an array of all values that could be placed in the cell
at (row,col) wthout creating a duplicate in the row, colum, or box.
Note that the + operator on arrays does concatenation but that the -
operator perforns a set difference operation.
def possible(row, col, box)

AllDigits - (rowdigits(row + coldigits(col) + boxdigits(box))
end

private # Al nmethods after this line are private to the cl ass

Return an array of all known values in the specified row

def rowdi gits(row)
Extract the subarray that represents the row and renove all zeros.
Array subtraction is set difference, wth duplicate renoval.
@ridrow9,9] - [0]

end

Return an array of all known values in the specified col um.
def coldigits(col)

result =[] # Start wth an enpty array
col .step(80, 9) {|i| # Loop fromcol by nines up to 80
v = @rid[i] # CGet value of cell at that index
result << v if (v!=0) # Add it to the array if non-zero
}
resul t # Return the array
end

Map box nunmber to the index of the upper-left corner of the box.
BoxTol ndex = [0, 3, 6, 27, 30, 33, 54, 57, 60].freeze

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Return an array of all the known values in the specified box.
def boxdi gits(b)
Convert box nunber to index of upper-left corner of the box.
| = BoxTol ndex] b]
Return an array of values, wth 0 el enents renoved.

[
@rid[i], @rid[i+1l], @rid[i+2],
@rid[i+9], @rid[i+10], @rid[i+11],
@rid[i1+18], @rid[i+19], @rid[i+20]
1 - [0]
end
end # This is the end of the Puzzl e cl ass

An exception of this class indicates invalid iInput,
class Invalid < StandardError
end

An exception of this class indicates that a puzzle is over-constrai ned
and that no solution is possible.

cl ass I npossi bl e < StandardError

end

This nethod scans a Puzzle, |ooking for unknown cells that have only
a single possible value. If it finds any, it sets their value. Since
setting a cell alters the possible values for other cells, It
continues scanning until 1t has scanned the entire puzzle w thout
finding any cells whose value it can set.

#

#

#

#

#

#

#

This nmethod returns three values. |If It solves the puzzle, all three

values are nil. Oherwse, the first two values returned are the row and
colum of a cell whose value is still unknown. The third value is the
set of values possible at that row and colum. This is a mnimal set of
possible values: there is no unknown cell in the puzzle that has fewer
possi bl e values. This conplex return val ue enables a useful heuristic

in the solve() nethod: that nethod can guess at values for cells where
the guess is nost likely to be correct.

#
#
#
#
#
#
#
#
d

This nethod raises Inpossible if it finds a cell for which there are
no possi bl e values. This can happen if the puzzle is over-constrail ned,
or if the solve() nethod bel ow has nmade an i ncorrect guess.

This nethod nutates the specified Puzzle object in place.
| f has duplicates? is false on entry, then it wll be false on exit.

ef Sudoku. scan(puzzl e)
unchanged = false # This is our |oop variable

Loop until we've scanned the whole board w thout naking a change.
unti | unchanged

unchanged = true # Assunme no cells wll be changed this tine
rmn,cmn,pmn =nil # Track cell with mninmal possible set
mn = 10 # More than the maxi nal nunber of possibilities

Loop through cells whose val ue is unknown.

puzzl e. each_unknown do |row, col, box|
Find the set of values that could go in this cell
p = puzzl e. possi ble(row, col, box)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Branch based on the size of the set p.

W care about 3 cases: p.size==0, p.size==1, and p.size > 1.

case p.size

when O # No possi ble values neans the puzzle i s over-constrained
rai se | npossible

when 1 # W've found a unique value, so set it inthe grid

puzzle[row,col] = p[0] # Set that position on the grid to the val ue
unchanged = fal se # Note that we've nade a change
el se # For any other nunber of possibilities

Keep track of the smallest set of possibilities.
But don't bother if we're going to repeat this | oop.
| f unchanged && p.size < mn

mn = p.size # Current small est size
rmn, cmn, pmn =row, col, p # Note parallel assignnent
end
end
end
end

Return the cell wwth the mninmal set of possibilities.
Note nultiple return val ues.
return rmn, cmn, pmn

end

Sol ve a Sudoku puzzle using sinple logic, i f possible, but fall back
on brute-force when necessary. This is a recursive nethod. It either
returns a solution or raises an exception. The solution is returned
as a new Puzzle object wwth no unknown cells. This nethod does not

nodi fy the Puzzle it Is passed. Note that this nethod cannot detect
an under-constrai ned puzzl e.

def Sudoku. sol ve(puzzl e)

Make a private copy of the puzzle that we can nodify.
puzzl e = puzzl e. dup

Use logic to fill 1n as nuch of the puzzle as we can.

This nmethod nutates the puzzle we give it, but always |eaves it valid.
It returns a row, a colum, and set of possible values at that cell.

Note parallel assignnent of these return values to three vari abl es.
r,c,p = scan(puzzl e)

If we solved it with logic, return the solved puzzle.

return puzzle if r == nil
O herwse, try each of the values in p for cell [r,c].
Since we're picking froma set of possible values, the guess | eaves
the puzzle in a valid state. The guess wll either |lead to a solution
or to an inpossible puzzle. W'll know we have an i npossi bl e
puzzle if a recursive call to scan throws an exception. |If this happens
we need to try another guess, or re-raise an exception if we've tried
all the options we've got.
p. each do | guess| # For each value in the set of possible val ues
puzzle[r,c] = guess # CGuess the val ue
begi n
Now try (recursively) to solve the nodified puzzle.
This recursive invocation wll call scan() again to apply logic
to the nodified board, and wll then guess another cell If needed.
Renenber that solve() wll either return a valid solution or

rai se an exception.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

return solve(puzzle) # If it returns, we just return the sol ution

rescue | npossi bl e
next # If it raises an exception, try the next guess

end
end

|If we get here, then none of our guesses worked out
so we nust have guessed wong sonetine earlier.
rai se | npossi bl e
end
end

Example 1-1 is 345 lines long. Because the example was written for this introductory chapter, it has particularly
verbose comments. Strip away the comments and the blank lines and you're left with just 129 lines of code,
which is pretty good for an object-oriented Sudoku solver that does not rely on a simple brute-force algorithm.

We hope that this example demonstrates the power and expressiveness of Ruby.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 2. The Structure and Execution of Ruby Programs

This chapter explains the structure of Ruby programs. It starts with the lexical structure, covering tokens and
the characters that comprise them. Next, it covers the syntactic structure of a Ruby program, explaining how
expressions, control structures, methods, classes, and so on are written as a series of tokens. Finally, the
chapter describes files of Ruby code, explaining how Ruby programs can be split across multiple files and how
the Ruby interpreter executes a file of Ruby code.

2.1. Lexical Structure

The Ruby interpreter parses a program as a sequence of tokens. Tokens include comments, literals,
punctuation, identifiers, and keywords. This section introduces these types of tokens and also includes
Important information about the characters that comprise the tokens and the whitespace that separates the
tokens.

2.1.1. Comments

Comments in Ruby begin with a # character and continue to the end of the line. The Ruby interpreter ignores
the # character and any text that follows it (but does not ignore the newline character, which is meaningful
whitespace and may serve as a statement terminator). If a # character appears within a string or regular
expression literal (see Chapter 3), then it is simply part of the string or regular expression and does not
Introduce a comment:

This entire line I1s a conment

X = "#This is a string" # And this Is a coment
y = /#This Is a regular expression/ # Here's anot her comment

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Multiline comments are usually written simply by beginning each line with a separate # character:

This class represents a Conpl ex nunber
Despite its nanme, it Is not conplex at all.

H HF H R

Note that Ruby has no equivalent of the C-style / *. .. */ comment. There is no way to embed a comment in the
middle of a line of code.

2.1.1.1. Embedded documents

Ruby supports another style of multiline comment known as an embedded document. These start on a line that
begins =begi n and continue until (and include) a line that begins =end. Any text that appears after =begi n or

=end is part of the comment and is also ignored, but that extra text must be separated from the =begi n and
=end by at least one space.

Embedded documents are a convenient way to comment out long blocks of code without prefixing each line with
a # character:

=begi n Soneone needs to fix the broken code bel ow
Any code here is comment ed out

=end

Note that embedded documents only work if the = signs are the first characters of each line:

=begin This used to begin a comment. Now it is itself commented out!
The code that goes here is no | onger comment ed out

=end

As their name implies, embedded documents can be used to include long blocks of documentation within a
program, or to embed source code of another language (such as HTML or SQL) within a Ruby program.
Embedded documents are usually intended to be used by some kind of postprocessing tool that is run over the
Ruby source code, and it is typical to follow =begi n with an identifier that indicates which tool the comment is

Intended for.

2.1.1.2. Documentation commments

Ruby programs can include embedded APl documentation as specially formatted comments that precede
method, class, and module definitions. You can browse this documentation using the ri tool described earlier In
Section 1.2.4. The rdoc tool extracts documentation comments from Ruby source and formats them as HTML or
prepares them for display by ri. Documentation of the rdoc tool is beyond the scope of this book; see the file
lib/rdoc/README in the Ruby source code for details.

Documentation comments must come immediately before the module, class, or method whose API they
document. They are usually written as multiline comments where each line begins with #, but they can also be

written as embedded documents that start =begi n rdoc. (The rdoc tool will not process these comments if you
leave out the "r doc".)

The following example comment demonstrates the most important formatting elements of the markup grammar
used in Ruby's documentation comments; a detailed description of the grammar is available in the README file

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

mentioned previously:

Code View:

Rdoc comments use a sinple markup grammar |i ke those used in w kis.
Separ at e paragraphs wth a blank |ine.

= Headi ngs

Headi ngs begin with an equal s sign

== Sub- Headi ngs

The i ne above produces a subheadi ng.
=== Sub- Sub- Headi ng

And so on.

= Exanpl es

| ndented lines are displayed verbatimin code font.
Be careful not to indent your headings and |ists, though.

= Lists and Fonts

List itens begin with * or -. Indicate fonts with punctuation or HTM.:
* Jtalic_or <i>multi-word italic</i>

* *pol d* or multi-word bol d

* +code+ or <tt>multi-word code</tt>

1. Nunbered lists begin wth nunbers.
99. Any nunber wll do; they don't have to be sequential.
1. There is no way to do nested |1 sts.

The terns of a description |ist are bracketed:
[Item 1] This is a description of iteml
[iItem 2] This is a description of item?2

HHFHFHFHFHFHFAFAHFHFHFRAFTHFHFHFHTHFEHFEHRTFTHFHFHTHFHHHEFHFHHHEFH R

2.1.2. Literals

Literals are values that appear directly in Ruby source code. They include numbers, strings of text, and regular
expressions. (Other literals, such as array and hash values, are not individual tokens but are more complex
expressions.) Ruby number and string literal syntax is actually quite complicated, and is covered in detail in
Chapter 3. For now, an example suffices to illustrate what Ruby literals look like:

1 # An integer literal

1.0 # A floating-point |iteral

' one' # A string literal

"t wo" # Another string literal
/threel # A regul ar expression literal

2.1.3. Punctuation

Ruby uses punctuation characters for a number of purposes. Most Ruby operators are written using punctuation

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

characters, such as + for addition, * for multiplication, and | | for the Boolean OR operation. See Section 4.6 for

a complete list of Ruby operators. Punctuation characters also serve to delimit string, regular expression, array,
and hash literals, and to group and separate expressions, method arguments, and array indexes. We'll see
miscellaneous other uses of punctuation scattered throughout Ruby syntax.

2.1.4. Ildentifiers

An identifier is simply a name. Ruby uses identifiers to name variables, methods, classes, and so forth. Ruby
Identifiers consist of letters, numbers, and underscore characters, but they may not begin with a number.
Identifiers may not include whitespace or nonprinting characters, and they may not include punctuation
characters except as described here.

Identifiers that begin with a capital letter A—Z are constants, and the Ruby interpreter will issue a warning (but
not an error) If you alter the value of such an identifier. Class and module names must begin with initial capital
letters. The following are identifiers:

X2

ol d_val ue

_I nternal # ldentifiers may begin with underscores
PI # Const ant

By convention, multiword identifiers that are not constants are written with underscores | i ke t hi s, whereas
multiword constants are written Li keThi s or LI KE THI S.

2.1.4.1. Case sensitivity

Ruby is a case-sensitive language. Lowercase letters and uppercase letters are distinct. The keyword end, for
example, is completely different from the keyword END.

2.1.4.2. Unicode characters 1n identifiers

Ruby's rules for forming identifiers are defined in terms of ASCII characters that are not allowed. In general, all
characters outside of the ASCII character set are valid in identifiers, including characters that appear to be
punctuation. In a UTF-8 encoded file, for example, the following Ruby code is valid:

def x(x,y) # The nane of this nethod is the Unicode nmultiplication sign
X*y # The body of this nethod nultiplies its argunents
end

Similarly, a Japanese programmer writing a program encoded in SJIS or EUC can include Kanji characters in her
Identifiers. See Section 2.4.1 for more about writing Ruby programs using encodings other than ASCII.

The special rules about forming identifiers are based on ASCII characters and are not enforced for characters
outside of that set. An identifier may not begin with an ASCII digit, for example, but it may begin with a digit
from a non-Latin alphabet. Similarly, an identifier must begin with an ASCII capital letter in order to be
considered a constant. The identifier A, for example, is not a constant.

Two identifiers are the same only if they are represented by the same sequence of bytes. Some character sets,

such as Unicode, have more than one codepoint that represents the same character. No Unicode normalization

IS performed in Ruby, and two distinct codepoints are treated as distinct characters, even if they have the same
meaning or are represented by the same font glyph.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.1.4.3. Punctuation In identifiers

Punctuation characters may appear at the start and end of Ruby identifiers. They have the following meanings:

$ Global variables are prefixed with a dollar sign. Following Perl's example, Ruby defines a number of global
variables that include other punctuation characters, such as $ and $- K. See Chapter 10 for a list of these

special globals.

@ Instance variables are prefixed with a single at sign, and class variables are prefixed with two at signs.
Instance variables and class variables are explained in Chapter 7.

? | As a helpful convention, methods that return Boolean values often have names that end with a question
mark.

l ' Method names may end with an exclamation point to indicate that they should be used cautiously. This
naming convention is often to distinguish mutator methods that alter the object on which they are invoked
from variants that return a modified copy of the original object.

Methods whose names end with an equals sign can be invoked by placing the method name, without the
equals sign, on the left side of an assignment operator. (You can read more about this in Section 4.5.3 and
Section 7.1.5.)

Here are some example identifiers that contain leading or trailing punctuation characters:

$files # A gl obal variable

@lat a # An 1 nstance vari abl e

@@ ount er # A class vari able

enpty? # A Bool ean-val ued nethod or predicate

sort! # An in-place alternative to the reqgqular sort nethod
ti meout = # A nmet hod I nvoked by assi gnnent

A number of Ruby's operators are implemented as methods, so that classes can redefine them for their own
purposes. It is therefore possible to use certain operators as method names as well. In this context, the
punctuation character or characters of the operator are treated as identifiers rather than operators. See Section
4.6 for more about Ruby's operators.

2.1.5. Keywords

The following keywords have special meaning in Ruby and are treated specially by the Ruby parser:

__LINE_ case ensure not t hen
__ENCODI NG cl ass fal se or true
__HLE _ def for redo undef
BEG N def i ned? | f rescue unl ess
END do I N retry unt i |
al i as el se nmodul e return when
and el sif next sel f whi | e
begi n end ni | super yi el d
br eak

In addition to those keywords, there are three keyword-like tokens that are treated specially by the Ruby parser

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

when they appear at the beginning of a line:

=begi n =end END

As we've seen, =begi n and =end at the beginning of a line delimit multiline comments. And the token = END

marks the end of the program (and the beginning of a data section) if it appears on a line by itself with no
leading or trailing whitespace.

In most languages, these words would be called "reserved words" and they would be never allowed as
identifiers. The Ruby parser is flexible and does not complain if you prefix these keywords with @ @@ or $
prefixes and use them as instance, class, or global variable names. Also, you can use these keywords as method
names, with the caveat that the method must always be explicitly invoked through an object. Note, however,
that using these keywords in identifiers will result in confusing code. The best practice is to treat these
keywords as reserved.

Many important features of the Ruby language are actually implemented as methods of the Ker nel , Modul e,
Cl ass, and Obj ect classes. It is good practice, therefore, to treat the following identifiers as reserved words as

well:

Code View:

These are nethods that appear to be statenents or keywords
at _exit cat ch private require
attr | ncl ude proc t hr ow
attr _accessor | anbda pr ot ect ed

attr_reader | oad publ i c

attr_witer | oop rai se

These are commonly used gl obal functions

Array chonp! gsub! sel ect
Fl oat chop |terator? sl eep

| nt eger chop! | oad split
String eval open sprintf
URI exec P srand
abort exi t pri nt sub

aut ol oad exit! printf sub!
aut ol oad? fail put c syscal |
bi ndi ng fork put s system
bl ock_gi ven? f or mat r and t est
cal l cc getc readl | ne trap
cal |l er gets readl i nes war n
chomp gsub scan

These are commonly used object nethods

al l ocate freeze ki nd_of ? supercl ass
cl one frozen? nmet hod t ai nt

di spl ay hash nmet hods tai nted?
dup | d new to_a

enum f or | nherited nil? to_enum
eql ? | nspect object id to_s

equal ? | nst ance_of ? respond _to? unt ai nt
ext end s _a? send

2.1.6. Whitespace

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Spaces, tabs, and newlines are not tokens themselves but are used to separate tokens that would otherwise
merge into a single token. Aside from this basic token-separating function, most whitespace is ignored by the
Ruby interpreter and is simply used to format programs so that they are easy to read and understand. Not all
whitespace is ignored, however. Some is required, and some whitespace is actually forbidden. Ruby's grammar
IS expressive but complex, and there are a few cases in which inserting or removing whitespace can change the
meaning of a program. Although these cases do not often arise, it is important to know about them.

2.1.6.1. Newlines as statement terminators

The most common form of whitespace dependency has to do with newlines as statement terminators. In
languages like C and Java, every statement must be terminated with a semicolon. You can use semicolons to
terminate statements in Ruby, too, but this is only required if you put more than one statement on the same
line. Convention dictates that semicolons be omitted elsewhere.

Without explicit semicolons, the Ruby interpreter must figure out on its own where statements end. If the Ruby
code on a line Is a syntactically complete statement, Ruby uses the newline as the statement terminator. If the
statement is not complete, then Ruby continues parsing the statement on the next line. (In Ruby 1.9, there is
one exception, which is described later in this section.)

This i1s no problem if all your statements fit on a single line. When they don't, however, you must take care that
you break the line in such a way that the Ruby interpreter cannot interpret the first line as a statement of its
own. This is where the whitespace dependency lies: your program may behave differently depending on where
you insert a newline. For example, the following code adds x and y and assigns the sum to t ot al :

total = x + # I nconpl ete expressi on, parsing continues
y

But this code assigns x to t ot al , and then evaluates y, doing nothing with it:

total = x # This is a conplete expression
+y # A usel ess but conpl ete expression

As another example, consider the r et ur n and br eak statements. These statements may optionally be followed

by an expression that provides a return value. A newline between the keyword and the expression will terminate
the statement before the expression.

You can safely insert a newline without fear of prematurely terminating your statement after an operator or
after a period or comma in a method invocation, array literal, or hash literal.

You can also escape a line break with a backslash, which prevents Ruby from automatically terminating the
statement:

var total = first _|long variable nane + second | ong vari abl e nane \
+ third | ong variable nane # Note no statenent term nator above

In Ruby 1.9, the statement terminator rules change slightly. If the first nonspace character on a line is a period,
then the line is considered a continuation line, and the newline before it is not a statement terminator. Lines
that start with periods are useful for the long method chains sometimes used with "fluent APIs," in which each
method invocation returns an object on which additional invocations can be made. For example:

animals = Array. new
. push("dog") # Does not work in Ruby 1.8

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

. push("cow")
. push("cat")
.sort

2.1.6.2. Spaces and method invocations

Ruby's grammar allows the parentheses around method invocations to be omitted in certain circumstances. This
allows Ruby methods to be used as If they were statements, which is an important part of Ruby's elegance.
Unfortunately, however, it opens up a pernicious whitespace dependency. Consider the following two lines,

which differ only by a single space:

f(3+2) +1
f (3+2)+1

The first line passes the value 5 to the function f and then adds 1 to the result. Since the second line has a

space after the function name, Ruby assumes that the parentheses around the method call have been omitted.
The parentheses that appear after the space are used to group a subexpression, but the entire expression
(3+2) +1 is used as the method argument. If warnings are enabled (with - w), Ruby issues a warning whenever it

sees ambiguous code like this.

The solution to this whitespace dependency is straightforward:

e Never put a space between a method name and the opening parenthesis.

e If the first argument to a method begins with an open parenthesis, always use parentheses in the method
Invocation. For example, write f ((3+2) +1) .

e Always run the Ruby interpreter with the - woption so it will warn you if you forget either of the rules
above!

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 2. The Structure and Execution of Ruby Programs

This chapter explains the structure of Ruby programs. It starts with the lexical structure, covering tokens and
the characters that comprise them. Next, it covers the syntactic structure of a Ruby program, explaining how
expressions, control structures, methods, classes, and so on are written as a series of tokens. Finally, the
chapter describes files of Ruby code, explaining how Ruby programs can be split across multiple files and how
the Ruby interpreter executes a file of Ruby code.

2.1. Lexical Structure

The Ruby interpreter parses a program as a sequence of tokens. Tokens include comments, literals,
punctuation, identifiers, and keywords. This section introduces these types of tokens and also includes
Important information about the characters that comprise the tokens and the whitespace that separates the
tokens.

2.1.1. Comments

Comments in Ruby begin with a # character and continue to the end of the line. The Ruby interpreter ignores
the # character and any text that follows it (but does not ignore the newline character, which is meaningful
whitespace and may serve as a statement terminator). If a # character appears within a string or regular
expression literal (see Chapter 3), then it is simply part of the string or regular expression and does not
Introduce a comment:

This entire line I1s a conment

X = "#This is a string" # And this Is a coment
y = /#This Is a regular expression/ # Here's anot her comment

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Multiline comments are usually written simply by beginning each line with a separate # character:

This class represents a Conpl ex nunber
Despite its nanme, it Is not conplex at all.

H HF H R

Note that Ruby has no equivalent of the C-style / *. .. */ comment. There is no way to embed a comment in the
middle of a line of code.

2.1.1.1. Embedded documents

Ruby supports another style of multiline comment known as an embedded document. These start on a line that
begins =begi n and continue until (and include) a line that begins =end. Any text that appears after =begi n or

=end is part of the comment and is also ignored, but that extra text must be separated from the =begi n and
=end by at least one space.

Embedded documents are a convenient way to comment out long blocks of code without prefixing each line with
a # character:

=begi n Soneone needs to fix the broken code bel ow
Any code here is comment ed out

=end

Note that embedded documents only work if the = signs are the first characters of each line:

=begin This used to begin a comment. Now it is itself commented out!
The code that goes here is no | onger comment ed out

=end

As their name implies, embedded documents can be used to include long blocks of documentation within a
program, or to embed source code of another language (such as HTML or SQL) within a Ruby program.
Embedded documents are usually intended to be used by some kind of postprocessing tool that is run over the
Ruby source code, and it is typical to follow =begi n with an identifier that indicates which tool the comment is

Intended for.

2.1.1.2. Documentation commments

Ruby programs can include embedded APl documentation as specially formatted comments that precede
method, class, and module definitions. You can browse this documentation using the ri tool described earlier In
Section 1.2.4. The rdoc tool extracts documentation comments from Ruby source and formats them as HTML or
prepares them for display by ri. Documentation of the rdoc tool is beyond the scope of this book; see the file
lib/rdoc/README in the Ruby source code for details.

Documentation comments must come immediately before the module, class, or method whose API they
document. They are usually written as multiline comments where each line begins with #, but they can also be

written as embedded documents that start =begi n rdoc. (The rdoc tool will not process these comments if you
leave out the "r doc".)

The following example comment demonstrates the most important formatting elements of the markup grammar
used in Ruby's documentation comments; a detailed description of the grammar is available in the README file

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

mentioned previously:

Code View:

Rdoc comments use a sinple markup grammar |i ke those used in w kis.
Separ at e paragraphs wth a blank |ine.

= Headi ngs

Headi ngs begin with an equal s sign

== Sub- Headi ngs

The i ne above produces a subheadi ng.
=== Sub- Sub- Headi ng

And so on.

= Exanpl es

| ndented lines are displayed verbatimin code font.
Be careful not to indent your headings and |ists, though.

= Lists and Fonts

List itens begin with * or -. Indicate fonts with punctuation or HTM.:
* Jtalic_or <i>multi-word italic</i>

* *pol d* or multi-word bol d

* +code+ or <tt>multi-word code</tt>

1. Nunbered lists begin wth nunbers.
99. Any nunber wll do; they don't have to be sequential.
1. There is no way to do nested |1 sts.

The terns of a description |ist are bracketed:
[Item 1] This is a description of iteml
[iItem 2] This is a description of item?2

HHFHFHFHFHFHFAFAHFHFHFRAFTHFHFHFHTHFEHFEHRTFTHFHFHTHFHHHEFHFHHHEFH R

2.1.2. Literals

Literals are values that appear directly in Ruby source code. They include numbers, strings of text, and regular
expressions. (Other literals, such as array and hash values, are not individual tokens but are more complex
expressions.) Ruby number and string literal syntax is actually quite complicated, and is covered in detail in
Chapter 3. For now, an example suffices to illustrate what Ruby literals look like:

1 # An integer literal

1.0 # A floating-point |iteral

' one' # A string literal

"t wo" # Another string literal
/threel # A regul ar expression literal

2.1.3. Punctuation

Ruby uses punctuation characters for a number of purposes. Most Ruby operators are written using punctuation

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

characters, such as + for addition, * for multiplication, and | | for the Boolean OR operation. See Section 4.6 for

a complete list of Ruby operators. Punctuation characters also serve to delimit string, regular expression, array,
and hash literals, and to group and separate expressions, method arguments, and array indexes. We'll see
miscellaneous other uses of punctuation scattered throughout Ruby syntax.

2.1.4. Ildentifiers

An identifier is simply a name. Ruby uses identifiers to name variables, methods, classes, and so forth. Ruby
Identifiers consist of letters, numbers, and underscore characters, but they may not begin with a number.
Identifiers may not include whitespace or nonprinting characters, and they may not include punctuation
characters except as described here.

Identifiers that begin with a capital letter A—Z are constants, and the Ruby interpreter will issue a warning (but
not an error) If you alter the value of such an identifier. Class and module names must begin with initial capital
letters. The following are identifiers:

X2

ol d_val ue

_I nternal # ldentifiers may begin with underscores
PI # Const ant

By convention, multiword identifiers that are not constants are written with underscores | i ke t hi s, whereas
multiword constants are written Li keThi s or LI KE THI S.

2.1.4.1. Case sensitivity

Ruby is a case-sensitive language. Lowercase letters and uppercase letters are distinct. The keyword end, for
example, is completely different from the keyword END.

2.1.4.2. Unicode characters 1n identifiers

Ruby's rules for forming identifiers are defined in terms of ASCII characters that are not allowed. In general, all
characters outside of the ASCII character set are valid in identifiers, including characters that appear to be
punctuation. In a UTF-8 encoded file, for example, the following Ruby code is valid:

def x(x,y) # The nane of this nethod is the Unicode nmultiplication sign
X*y # The body of this nethod nultiplies its argunents
end

Similarly, a Japanese programmer writing a program encoded in SJIS or EUC can include Kanji characters in her
Identifiers. See Section 2.4.1 for more about writing Ruby programs using encodings other than ASCII.

The special rules about forming identifiers are based on ASCII characters and are not enforced for characters
outside of that set. An identifier may not begin with an ASCII digit, for example, but it may begin with a digit
from a non-Latin alphabet. Similarly, an identifier must begin with an ASCII capital letter in order to be
considered a constant. The identifier A, for example, is not a constant.

Two identifiers are the same only if they are represented by the same sequence of bytes. Some character sets,

such as Unicode, have more than one codepoint that represents the same character. No Unicode normalization

IS performed in Ruby, and two distinct codepoints are treated as distinct characters, even if they have the same
meaning or are represented by the same font glyph.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.1.4.3. Punctuation In identifiers

Punctuation characters may appear at the start and end of Ruby identifiers. They have the following meanings:

$ Global variables are prefixed with a dollar sign. Following Perl's example, Ruby defines a number of global
variables that include other punctuation characters, such as $ and $- K. See Chapter 10 for a list of these

special globals.

@ Instance variables are prefixed with a single at sign, and class variables are prefixed with two at signs.
Instance variables and class variables are explained in Chapter 7.

? | As a helpful convention, methods that return Boolean values often have names that end with a question
mark.

l ' Method names may end with an exclamation point to indicate that they should be used cautiously. This
naming convention is often to distinguish mutator methods that alter the object on which they are invoked
from variants that return a modified copy of the original object.

Methods whose names end with an equals sign can be invoked by placing the method name, without the
equals sign, on the left side of an assignment operator. (You can read more about this in Section 4.5.3 and
Section 7.1.5.)

Here are some example identifiers that contain leading or trailing punctuation characters:

$files # A gl obal variable

@lat a # An 1 nstance vari abl e

@@ ount er # A class vari able

enpty? # A Bool ean-val ued nethod or predicate

sort! # An in-place alternative to the reqgqular sort nethod
ti meout = # A nmet hod I nvoked by assi gnnent

A number of Ruby's operators are implemented as methods, so that classes can redefine them for their own
purposes. It is therefore possible to use certain operators as method names as well. In this context, the
punctuation character or characters of the operator are treated as identifiers rather than operators. See Section
4.6 for more about Ruby's operators.

2.1.5. Keywords

The following keywords have special meaning in Ruby and are treated specially by the Ruby parser:

__LINE_ case ensure not t hen
__ENCODI NG cl ass fal se or true
__HLE _ def for redo undef
BEG N def i ned? | f rescue unl ess
END do I N retry unt i |
al i as el se nmodul e return when
and el sif next sel f whi | e
begi n end ni | super yi el d
br eak

In addition to those keywords, there are three keyword-like tokens that are treated specially by the Ruby parser

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

when they appear at the beginning of a line:

=begi n =end END

As we've seen, =begi n and =end at the beginning of a line delimit multiline comments. And the token = END

marks the end of the program (and the beginning of a data section) if it appears on a line by itself with no
leading or trailing whitespace.

In most languages, these words would be called "reserved words" and they would be never allowed as
identifiers. The Ruby parser is flexible and does not complain if you prefix these keywords with @ @@ or $
prefixes and use them as instance, class, or global variable names. Also, you can use these keywords as method
names, with the caveat that the method must always be explicitly invoked through an object. Note, however,
that using these keywords in identifiers will result in confusing code. The best practice is to treat these
keywords as reserved.

Many important features of the Ruby language are actually implemented as methods of the Ker nel , Modul e,
Cl ass, and Obj ect classes. It is good practice, therefore, to treat the following identifiers as reserved words as

well:

Code View:

These are nethods that appear to be statenents or keywords
at _exit cat ch private require
attr | ncl ude proc t hr ow
attr _accessor | anbda pr ot ect ed

attr_reader | oad publ i c

attr_witer | oop rai se

These are commonly used gl obal functions

Array chonp! gsub! sel ect
Fl oat chop |terator? sl eep

| nt eger chop! | oad split
String eval open sprintf
URI exec P srand
abort exi t pri nt sub

aut ol oad exit! printf sub!
aut ol oad? fail put c syscal |
bi ndi ng fork put s system
bl ock_gi ven? f or mat r and t est
cal l cc getc readl | ne trap
cal |l er gets readl i nes war n
chomp gsub scan

These are commonly used object nethods

al l ocate freeze ki nd_of ? supercl ass
cl one frozen? nmet hod t ai nt

di spl ay hash nmet hods tai nted?
dup | d new to_a

enum f or | nherited nil? to_enum
eql ? | nspect object id to_s

equal ? | nst ance_of ? respond _to? unt ai nt
ext end s _a? send

2.1.6. Whitespace

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Spaces, tabs, and newlines are not tokens themselves but are used to separate tokens that would otherwise
merge into a single token. Aside from this basic token-separating function, most whitespace is ignored by the
Ruby interpreter and is simply used to format programs so that they are easy to read and understand. Not all
whitespace is ignored, however. Some is required, and some whitespace is actually forbidden. Ruby's grammar
IS expressive but complex, and there are a few cases in which inserting or removing whitespace can change the
meaning of a program. Although these cases do not often arise, it is important to know about them.

2.1.6.1. Newlines as statement terminators

The most common form of whitespace dependency has to do with newlines as statement terminators. In
languages like C and Java, every statement must be terminated with a semicolon. You can use semicolons to
terminate statements in Ruby, too, but this is only required if you put more than one statement on the same
line. Convention dictates that semicolons be omitted elsewhere.

Without explicit semicolons, the Ruby interpreter must figure out on its own where statements end. If the Ruby
code on a line Is a syntactically complete statement, Ruby uses the newline as the statement terminator. If the
statement is not complete, then Ruby continues parsing the statement on the next line. (In Ruby 1.9, there is
one exception, which is described later in this section.)

This i1s no problem if all your statements fit on a single line. When they don't, however, you must take care that
you break the line in such a way that the Ruby interpreter cannot interpret the first line as a statement of its
own. This is where the whitespace dependency lies: your program may behave differently depending on where
you insert a newline. For example, the following code adds x and y and assigns the sum to t ot al :

total = x + # I nconpl ete expressi on, parsing continues
y

But this code assigns x to t ot al , and then evaluates y, doing nothing with it:

total = x # This is a conplete expression
+y # A usel ess but conpl ete expression

As another example, consider the r et ur n and br eak statements. These statements may optionally be followed

by an expression that provides a return value. A newline between the keyword and the expression will terminate
the statement before the expression.

You can safely insert a newline without fear of prematurely terminating your statement after an operator or
after a period or comma in a method invocation, array literal, or hash literal.

You can also escape a line break with a backslash, which prevents Ruby from automatically terminating the
statement:

var total = first _|long variable nane + second | ong vari abl e nane \
+ third | ong variable nane # Note no statenent term nator above

In Ruby 1.9, the statement terminator rules change slightly. If the first nonspace character on a line is a period,
then the line is considered a continuation line, and the newline before it is not a statement terminator. Lines
that start with periods are useful for the long method chains sometimes used with "fluent APIs," in which each
method invocation returns an object on which additional invocations can be made. For example:

animals = Array. new
. push("dog") # Does not work in Ruby 1.8

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

. push("cow")
. push("cat")
.sort

2.1.6.2. Spaces and method invocations

Ruby's grammar allows the parentheses around method invocations to be omitted in certain circumstances. This
allows Ruby methods to be used as If they were statements, which is an important part of Ruby's elegance.
Unfortunately, however, it opens up a pernicious whitespace dependency. Consider the following two lines,

which differ only by a single space:

f(3+2) +1
f (3+2)+1

The first line passes the value 5 to the function f and then adds 1 to the result. Since the second line has a

space after the function name, Ruby assumes that the parentheses around the method call have been omitted.
The parentheses that appear after the space are used to group a subexpression, but the entire expression
(3+2) +1 is used as the method argument. If warnings are enabled (with - w), Ruby issues a warning whenever it

sees ambiguous code like this.

The solution to this whitespace dependency is straightforward:

e Never put a space between a method name and the opening parenthesis.

e If the first argument to a method begins with an open parenthesis, always use parentheses in the method
Invocation. For example, write f ((3+2) +1) .

e Always run the Ruby interpreter with the - woption so it will warn you if you forget either of the rules
above!

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.2. Syntactic Structure

So far, we've discussed the tokens of a Ruby program and the characters that make them up. Now we move on
to briefly describe how those lexical tokens combine into the larger syntactic structures of a Ruby program. This
section describes the syntax of Ruby programs, from the simplest expressions to the largest modules. This
section Is, in effect, a roadmap to the chapters that follow.

The basic unit of syntax in Ruby is the expression. The Ruby interpreter evaluates expressions, producing
values. The simplest expressions are primary expressions, which represent values directly. Number and string
literals, described earlier in this chapter, are primary expressions. Other primary expressions include certain
keywords such astrue, fal se, nil, and sel f. Variable references are also primary expressions; they evaluate

to the value of the variable.

More complex values can be written as compound expressions:

[1, 2, 3] # An Array literal
{1=>"o0one", 2=>"two"} # A Hash literal
1..3 # A Range literal

Operators are used to perform computations on values, and compound expressions are built by combining
simpler subexpressions with operators:

A prinmary expression
Anot her primary expression
=1 # An assignnment expression
= X + 1 # An expression with two operators

X X X B

Chapter 4 covers operators and expressions, including variables and assignment expressions.

Expressions can be combined with Ruby's keywords to create statements, such as the i f statement for
conditionally executing code and the whi | e statement for repeatedly executing code:

I f x < 10 then # If this expression is true
X =X + 1 # Then execute this statenent

end # Marks the end of the conditional

while x < 10 do # While this expression is true...

print x # Execute this statenent
X =X + 1 # Then execute this statenent
end # Marks the end of the | oop

In Ruby, these statements are technically expressions, but there is still a useful distinction between expressions
that affect the control flow of a program and those that do not. Chapter 5 explains Ruby's control structures.

In all but the most trivial programs, we usually need to group expressions and statements into parameterized
units so that they can be executed repeatedly and operate on varying inputs. You may know these

parameterized units as functions, procedures, or subroutines. Since Ruby is an object-oriented language, they
are called methods. Methods, along with related structures called procs and lambdas, are the topic of Chapter 6.

Finally, aroups of methods that are designed to interoperate can be combined Iinto classes, and groups of

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

related classes and methods that are independent of those classes can be organized into modules. Classes and
modules are the topic of Chapter 7.

2.2.1. Block Structure in Ruby

Ruby programs have a block structure. Module, class, and method definitions, and most of Ruby's statements,
Include blocks of nested code. These blocks are delimited by keywords or punctuation and, by convention, are
Indented two spaces relative to the delimiters. There are two kinds of blocks in Ruby programs. One kind is
formally called a "block." These blocks are the chunks of code associated with or passed to iterator methods:

3.tinmes { print "Ruby! " }

In this code, the curly braces and the code inside them are the block associated with the iterator method
Invocation 3. ti nes. Formal blocks of this kind may be delimited with curly braces, or they may be delimited
with the keywords do and end:

1.upto(10) do | x|
print x
end

do and end delimiters are usually used when the block is written on more than one line. Note the two-space
Indentation of the code within the block. Blocks are covered in Section 5.4.

To avoid ambiguity with these true blocks, we can call the other kind of block a body (in practice, however, the
term "block" is often used for both). A body is just the list of statements that comprise the body of a class
definition, a method definition, a whi | e loop, or whatever. Bodies are never delimited with curly braces in
Ruby-keywords usually serve as the delimiters instead. The specific syntax for statement bodies, method
bodies, and class and module bodies are documented in Chapters Chapter 5, Chapter 6, and Chapter 7.

Bodies and blocks can be nested within each other, and Ruby programs typically have several levels of nested
code, made readable by their relative indentation. Here is a schematic example:

nodul e Stats # A nodul e
cl ass Dat aset # A class in the nodul e
def initialize(filenane) # A nethod in the class
| O.foreach(filenane) do |[line|] # A block in the nethod
1f line[0,1] == "#" # An if statenent in the bl ock
next # A sinple statenent in the if
end # End the i f body
end # End the Dbl ock
end # End the net hod body
end # End the class body
end # End the nodul e body

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.3. File Structure

There are only a few rules about how a file of Ruby code must be structured. These rules are related to the
deployment of Ruby programs and are not directly relevant to the language itself.

First, if a Ruby program contains a "shebang” comment, to tell the (Unix-like) operating system how to execute
Iit, that comment must appear on the first line.

Second, If a Ruby program contains a "coding" comment (as described in Section 2.4.1), that comment must
appear on the first line or on the second line if the first line Is a shebang.

Third, if a file contains a line that consists of the single token _ END with no whitespace before or after, then

the Ruby interpreter stops processing the file at that point. The remainder of the file may contain arbitrary data
that the program can read using the | Ostream object DATA. (See Chapter 10 and Section 9.7 for more about

this global constant.)

Ruby programs are not required to fit in a single file. Many programs load additional Ruby code from external
libraries, for example. Programs use r equi r e to load code from another file. r equi r e searches for specified

modules of code against a search path, and prevents any given module from being loaded more than once. See
Section 7.6 for detalls.

The following code illustrates each of these points of Ruby file structure:

#! /usr/ bin/ruby -w shebang comment
-*- coding: utf-8 -*- codi ng comment
require 'socket' | oad networking |ibrary

program code goes here

END mar k end of code
program data goes here

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.4. Program Encoding

At the lowest level, a Ruby program is simply a sequence of characters. Ruby's lexical rules are defined using
characters of the ASCII character set. Comments begin with the # character (ASCII code 35), for example, and
allowed whitespace characters are horizontal tab (ASCII 9), newline (10), vertical tab (11), form feed (12),
carriage return (13), and space (32). All Ruby keywords are written using ASCII characters, and all operators
and other punctuation are drawn from the ASCII character set.

By default, the Ruby interpreter assumes that Ruby source code is encoded in ASCII. This is not required,
however; the interpreter can also process files that use other encodings, as long as those encodings can
represent the full set of ASCII characters. In order for the Ruby interpreter to be able to interpret the bytes of a
source file as characters, it must know what encoding to use. Ruby files can identify their own encodings or you
can tell the interpreter how they are encoded. Doing so is explained shortly.

The Ruby interpreter is actually quite flexible about the characters that appear in a Ruby program. Certain ASCII
characters have specific meanings, and certain ASCII characters are not allowed in identifiers, but beyond that,
a Ruby program may contain any characters allowed by the encoding. We explained earlier that identifiers may
contain characters outside of the ASCII character set. The same is true for comments and string and regular
expression literals: they may contain any characters other than the delimiter character that marks the end of
the comment or literal. In ASCIll-encoded files, strings may include arbitrary bytes, including those that
represent nonprinting control characters. (Using raw bytes like this is not recommended, however; Ruby string
literals support escape sequences so that arbitrary characters can be included by numeric code instead.) If the
file is written using the UTF-8 encoding, then comments, strings, and regular expressions may include arbitrary
Unicode characters. If the file is encoded using the Japanese SJIS or EUC encodings, then strings may include
Kanji characters.

2.4.1. Specifying Program Encoding

By default, the Ruby interpreter assumes that programs are encoded in ASCII. In Ruby 1.8, you can specify a
different encoding with the - Kcommand-line option. To run a Ruby program that includes Unicode characters

encoded in UTF-8, invoke the interpreter with the - Ku option. Programs that include Japanese characters in
EUC-JP or SJIS encodings can be run with the - Ke and - Ks options.

Ruby 1.9 also supports the - K option, but it is no longer the preferred way to specify the encoding of a program

file. Rather than have the user of a script specify the encoding when they invoke Ruby, the author of the script
can specify the encoding of the script by placing a special "coding comment" at the start of the file.[5] For
example:

[5] Ruby follows Python's conventions in this; see http://www.python.org/dev/peps/pep-0263/.

coding: utf-8

The comment must be written entirely in ASCII, and must include the string codi ng followed by a colon or

equals sign and the name of the desired encoding (which cannot include spaces or punctuation other than
hyphen and underscore). Whitespace is allowed on either side of the colon or equals sign, and the string codi ng

may have any prefix, such as en to spell encodi ng. The entire comment, including codi ng and the encoding
name, Is case-insensitive and can be written with upper- or lowercase letters.

Encoding comments are usually written so that they also inform a text editor of the file encoding. Emacs users
might write:

downloaded from: lib.ommolkefab.ir

http://www.python.org/dev/peps/pep-0263/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

-*- coding: utf-8 -*-

And vi users can write:

vi: set fileencoding=utf-8 :

An encoding comment like this one is usually only valid on the first line of the file. It may appear on the second
line, however, If the first line is a shebang comment (which makes a script executable on Unix-like operating
systems):

#!'/usr/ bin/ruby -w
coding: utf-8

Encoding names are not case-sensitive and may be written in uppercase, lowercase, or a mix. Ruby 1.9
supports at least the following source encodings: ASCII-8BIT (also known as BINARY), US-ASCII (7-bit ASCII),
the European encodings 1SO-8859-1 through 1SO-8859-15, the Unicode encoding UTF-8, and the Japanese
encodings SHIFT_JIS (also known as SJIS) and EUC-JP. Your build or distribution of Ruby may support
additional encodings as well.

As a special case, UTF-8-encoded files identify their encoding if the first three bytes of the file are OXEF OxBB
OxBF. These bytes are known as the BOM or "Byte Order Mark" and are optional in UTF-8-encoded files. (Certain
Windows programs add these bytes when saving Unicode files.)

In Ruby 1.9, the language keyword ENCCODI NG (there are two underscores at the beginning and at the end)
evaluates to the source encoding of the currently executing code. The resulting value is an Encodi ng object.
(See Section 3.2.6.2 for more on the Encodi ng class.)

2.4.2. Source Encoding and Default External Encoding

In Ruby 1.9, it is important to understand the difference between the source encoding of a Ruby file and the
default external encoding of a Ruby process. The source encoding is what we described earlier: it tells the Ruby
Interpreter how to read characters in a script. Source encodings are typically set with coding comments. A Ruby
program may consist of more than one file, and different files may have different source encodings. The source
encoding of a file affects the encoding of the string literals in that file. For more about the encoding of strings,
see Section 3.2.6.

The default external encoding is something different: this is the encoding that Ruby uses by default when
reading from files and streams. The default external encoding is global to the Ruby process and does not change
from file to file. Normally, the default external encoding is set based on the locale that your computer is
configured to. But you can also explicitly specify the default external encoding with command-line options, as
we'll describe shortly. The default external encoding does not affect the encoding of string literals, but it is quite
iImportant for 1/0, as we'll see in Section 9.7.2.

We described the - K interpreter option earlier as a way to set the source encoding. In fact, what this option

really does is set the default external encoding of the process and then uses that encoding as the default source
encoding.

In Ruby 1.9, the - K option exists for compatibility with Ruby 1.8 but is not the preferred way to set the default
external encoding. Two new options, - E and - - encodi ng, allow you to specify an encoding by its full name
rather than by a one-character abbreviation. For example:

ruby -E utf-8 # Encodi ng nanme follows -E

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

ruby -Eutf-8 # The space i s optional
ruby --encoding utf-8 # Encoding followng --encoding wwth a space
ruby --encodi ng=utf-8 # O use an equals sign wth --encodi ng

See Section 10.1 for complete details.

You can guery the default external encoding with Encodi ng. def aul t _ext er nal . This class method returns an
Encodi ng object. Use Encodi ng. | ocal e _char map to obtain the name (as a string) of the character encoding
derived from the locale. This method is always based on the locale setting and ignores command-line options
that override the default external encoding.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.5. Program Execution

Ruby iIs a scripting language. This means that Ruby programs are simply lists, or scripts, of statements to be
executed. By default, these statements are executed sequentially, in the order they appear. Ruby's control
structures (described in Chapter 5) alter this default execution order and allow statements to be executed
conditionally or repeatedly, for example.

Programmers who are used to traditional static compiled languages like C or Java may find this slightly
confusing. There is no special mai n method in Ruby from which execution begins. The Ruby interpreter is given

a script of statements to execute, and it begins executing at the first line and continues to the last line.

(Actually, that last statement is not quite true. The Ruby interpreter first scans the file for BEA N statements,
and executes the code in their bodies. Then it goes back to line 1 and starts executing sequentially. See Section
5.7 for more on BEQ N.)

Another difference between Ruby and compiled languages has to do with module, class, and method definitions.
In compiled languages, these are syntactic structures that are processed by the compiler. In Ruby, they are
statements like any other. When the Ruby interpreter encounters a class definition, it executes it, causing a new
class to come into existence. Similarly, when the Ruby interpreter encounters a method definition, it executes it,
causing a new method to be defined. Later in the program, the interpreter will probably encounter and execute
a method invocation expression for the method, and this invocation will cause the statements in the method
body to be executed.

The Ruby interpreter is invoked from the command line and given a script to execute. Very simple one-line
scripts are sometimes written directly on the command line. More commonly, however, the name of the file
containing the script is specified. The Ruby interpreter reads the file and executes the script. It first executes
any BEGQ N blocks. Then it starts at the first line of the file and continues until one of the following happens:

e It executes a statement that causes the Ruby program to terminate.
e It reaches the end of the file.

e It reads a line that marks the logical end of the file with the token _ END

Before it quits, the Ruby interpreter typically (unless the exi t! method was called) executes the bodies of any
END statements it has encountered and any other "shutdown hook" code registered with the at _exit function.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 3. Datatypes and Objects

In order to understand a programming language, you have to know what kinds of data it can manipulate and
what it can do with that data. This chapter is about the values manipulated by Ruby programs. It begins with
comprehensive coverage of numeric and textual values. Next, it explains arrays and hashes-two important
data structures that are a fundamental part of Ruby. The chapter then moves on to explain ranges, symbols,
and the special values true, fal se, and ni | . All Ruby values are objects, and this chapter concludes with
detailed coverage of the features that all objects share.

The classes described in this chapter are the fundamental datatypes of the Ruby language. This chapter explains
the basic behavior of those types: how literal values are written in a program, how integer and floating-point
arithmetic work, how textual data is encoded, how values can serve as hash keys, and so on. Although we cover
numbers, strings, arrays, and hashes here, this chapter makes no attempt to explain the APIs defined by those

types. Instead, Chapter 9 demonstrates those APIs by example, and it also covers many other important (but
nonfundamental) classes.

3.1. Numbers

Ruby includes five built-in classes for representing numbers, and the standard library includes three more
numeric classes that are sometimes useful. Figure 3-1 shows the class hierarchy.

Figure 3-1. Numeric class hierarchy

All number objects in Ruby are instances of Nuneri c. All integers are instances of | nt eger. If an integer value
fits within 31 bits (on most implementations), it is an instance of Fi xnum Otherwise, it is a Bi gnum Bi gnum
objects represent integers of arbitrary size, and if the result of an operation on Fi xnumoperands is too big to fit
In a Fi xnum, that result is transparently converted to a Bi gnum Similarly, if the result of an operation on Bi gnum
objects falls within the range of Fi xnum then the result is a Fi xnum Real numbers are approximated in Ruby
with the Fl oat class, which uses the native floating-point representation of the platform.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The Conpl ex, Bi gDeci mal , and Rat i onal classes are not built-in to Ruby but are distributed with Ruby as part
of the standard library. The Conpl ex class represents complex numbers, of course. Bi gDeci nal represents real

numbers with arbitrary precision, using a decimal representation rather than a binary representation. And
Rat 1 onal represents rational numbers: one integer divided by another.

All numeric objects are immutable; there are no methods that allow you to change the value held by the object.
If you pass a reference to a numeric object to a method, you need not worry that the method will modify the
object. Fi xnumobjects are commonly used, and Ruby implementations typically treat them as immediate values

rather than as references. Because numbers are immutable, however, there is really no way to tell the
difference.

3.1.1. Integer Literals

An integer literal is simply a sequence of digits:

0
123
12345678901234567890

If the integer values fit within the range of the Fi xnumclass, the value is a Fi xnum Otherwise, it is a Bi gnum

which supports integers of any size. Underscores may be inserted into integer literals (though not at the
beginning or end), and this feature is sometimes used as a thousands separator:

1 000 _000_000 # One billion (or 1,000 mllion in the UK)

If an integer literal begins with zero and has more than one digit, then it is interpreted in some base other than
base 10. Numbers beginning with Ox or 0X are hexadecimal (base 16) and use the letters a through f (or A

through F) as digits for 10 through 15. Numbers beginning Ob or OB are binary (base 2) and may only include
digits 0 and 1. Numbers beginning with 0 and no subsequent letter are octal (base 8) and should consist of
digits between 0 and 7. Examples:

0377 # Octal representation of 255
Ob1111 1111 # Binary representation of 255
OxXFF # Hexadeci mal representation of 255

To represent a negative number, simply begin an integer literal with a minus sign. Literals may also begin with
a plus sign, although this never changes the meaning of the literal.

3.1.2. Floating-Point Literals

A floating-point literal is an optional sign followed by one or more decimal digits, a decimal point (the .
character), one or more additional digits, and an optional exponent. An exponent begins with the letter e or E,
and is followed by an optional sign and one or more decimal digits. As with integer literals, underscores may be
used within floating-point literals. Unlike integer literals, it is not possible to express floating-point values in any
radix other than base 10. Here are some examples of floating-point literals:

0.0

-3. 14

6. 02e23 # This nmeans 6.02 x 1023

1 000 000.01 # One mllion and a little bit nore

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Ruby requires that digits appear before and after the decimal point. You cannot simply write . 1, for example;
you must explicitly write 0. 1. This Is necessary to avoid ambiguity in Ruby's complex grammar. Ruby differs
from many other languages in this way.

3.1.3. Arithmetic Iin Ruby

All numeric types in Ruby define standard +, —, *, and / operators for addition, subtraction, multiplication, and
division. When an integer result is too large for a Fi xnum Ruby automatically converts to a Bi gnum and as a

result, integer arithmetic in Ruby never overflows as it does in many other languages. Floating-point numbers
(at least on platforms that use the standard IEEE-754 floating-point representation) overflow to special positive
or negative infinity values, and underflow to zero.

The division operator depends on the class of the operands. If both operands are integers, then the operation
performed is truncating-integer division. If either operand is a Fl oat , then floating-point division is performed:

X = 5/2 # result 1s 2

y = 5.0/2 # result 1s 2.5
z =5/2.0 # result 1s 2.5

Integer division by zero causes a Zer oDi vi si onError to be thrown. Floating-point division by zero does not
cause an error; it simply returns the value I nfinity. The case of 0. 0/ 0. 0 is special; on most modern hardware,
and with most operating systems, it evaluates to another special floating-point value known as NaN, or Not-a-
Number.

The modulo (%9 operator computes remainder-after-integer division:

X = 502 # result 1s 1

The %operator can also be used with Fl oat operands, although this is less common:

X = 1.5%0. 4 # result 1s 0.3

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Division, Modulo, and Negative Numbers

When one (but not both) of the operands is negative, Ruby performs the integer division and
modulo operations differently than languages like C, C++, and Java do (but the same as the
languages Python and Tcl). Consider the quotient - 7/ 3. The floating-point result is —2. 33. The

result of integer division must be an integer, however, so this number must be rounded. Ruby
rounds toward negative infinity and returns —3. C and related languages round toward zero instead

and return —2. (This iIs just one way to characterize the results; no floating-point division is
actually done, of course.)

An important corollary of Ruby's definition of integer division is that, in Ruby, -a/ b equals a/-b
but may not equal - (a/ b) .

Ruby's definition of the modulo operation also differs from that of C and Java. In Ruby, —-7%3 Is 2.
In C and Java, the result is - 1 instead. The magnitude of the result differs, of course, because the

value of the quotient differs. But the sign of the result differs, too. In Ruby, the sign of the result is
always the same as the sign of the second operand. In C and Java, the sign of the result is always
the same as the sign of the first operand. (Ruby also provides a r emal nder method that behaves,

In sign and magnitude, like the C modulo operator.)

Ruby also borrows the ** operator from Fortran for exponentiation. Exponents need not be integers:

Code View:

X**4 # This is the sane thing as xX*x*x*Xx

X**-1 # The sane thing as 1/x

x**(1/ 3. 0) # The cube root of x

X**(1/4) # Oops! Integer division neans this is x**0, which is always 1

X**(1.0/4.0) # This is the fourth-root of x

When multiple exponentiations are combined into a single expression, they are evaluated from right to left.
Thus, 4**3**2 Is the same as 4**9, not 64** 2.

Exponentiation can result in very large values. Remember that integers can become arbitrarily large, but Fl oat
objects cannot represent numbers larger than Fl oat : : MAX. Thus, the expression 10** 1000 yields an exact
Integer result, but the expression 9. 9** 1000 overflows to the Fl oat value Infinity.

FI xnumand Bi gnumvalues support the standard bit-manipulation operators-~, &, |, ", >>, and <<-that are

common in C, Java, and many other languages. (See Section 4.6 for details.) In addition, integer values can
also be indexed like arrays to query (but not set) individual bits. The index O returns the least significant bit:

even = (x[0] == 0) # A nunber is even if the least-significant bit is O

3.1.4. Binary Floating-Point and Rounding Errors

Most computer hardware and most computer languages (including Ruby) approximate real numbers using a
floating-point representation like Ruby's Fl oat class. For hardware efficiency, most floating-point

representations are binary representations, which can exactly represent fractions like 1/ 2, 1/ 4, and 1/ 1024.

Unfortunately, the fractions we use most commonly (especially when performing financial calculations) are
1/ 10, 1/ 100, 1/ 1000, and so on. Binary floating-point representations cannot exactly represent numbers as

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

simple as 0. 1.

Fl oat objects have plenty of precision and can approximate 0. 1 very well, but the fact that this number cannot
be represented exactly leads to problems. Consider the following simple Ruby expression:

0.4 - 0.3 ==0.1 # Evaluates to false in nost | nplenentations

Because of rounding error, the difference between the approximations of 0. 4 and 0. 3 is not quite the same as
the approximation of 0. 1. This problem is not specific to Ruby: C, Java, JavaScript, and all languages that use
IEEE-754 floating-point numbers suffer from it as well.

One solution to this problem is to use a decimal representation of real numbers rather than a binary
representation. The Bi gDeci nmal class from Ruby's standard library is one such representation. Arithmetic on

Bi gDeci mal objects is many times slower than arithmetic on Fl oat values. It is fast enough for typical financial

calculations, but not for scientific number crunching. Section 9.3.3 includes a short example of the use of the
Bi gDeci mal library.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 3. Datatypes and Objects

In order to understand a programming language, you have to know what kinds of data it can manipulate and
what it can do with that data. This chapter is about the values manipulated by Ruby programs. It begins with
comprehensive coverage of numeric and textual values. Next, it explains arrays and hashes-two important
data structures that are a fundamental part of Ruby. The chapter then moves on to explain ranges, symbols,
and the special values true, fal se, and ni | . All Ruby values are objects, and this chapter concludes with
detailed coverage of the features that all objects share.

The classes described in this chapter are the fundamental datatypes of the Ruby language. This chapter explains
the basic behavior of those types: how literal values are written in a program, how integer and floating-point
arithmetic work, how textual data is encoded, how values can serve as hash keys, and so on. Although we cover
numbers, strings, arrays, and hashes here, this chapter makes no attempt to explain the APIs defined by those

types. Instead, Chapter 9 demonstrates those APIs by example, and it also covers many other important (but
nonfundamental) classes.

3.1. Numbers

Ruby includes five built-in classes for representing numbers, and the standard library includes three more
numeric classes that are sometimes useful. Figure 3-1 shows the class hierarchy.

Figure 3-1. Numeric class hierarchy

All number objects in Ruby are instances of Nuneri c. All integers are instances of | nt eger. If an integer value
fits within 31 bits (on most implementations), it is an instance of Fi xnum Otherwise, it is a Bi gnum Bi gnum
objects represent integers of arbitrary size, and if the result of an operation on Fi xnumoperands is too big to fit
In a Fi xnum, that result is transparently converted to a Bi gnum Similarly, if the result of an operation on Bi gnum
objects falls within the range of Fi xnum then the result is a Fi xnum Real numbers are approximated in Ruby
with the Fl oat class, which uses the native floating-point representation of the platform.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The Conpl ex, Bi gDeci mal , and Rat i onal classes are not built-in to Ruby but are distributed with Ruby as part
of the standard library. The Conpl ex class represents complex numbers, of course. Bi gDeci nal represents real

numbers with arbitrary precision, using a decimal representation rather than a binary representation. And
Rat 1 onal represents rational numbers: one integer divided by another.

All numeric objects are immutable; there are no methods that allow you to change the value held by the object.
If you pass a reference to a numeric object to a method, you need not worry that the method will modify the
object. Fi xnumobjects are commonly used, and Ruby implementations typically treat them as immediate values

rather than as references. Because numbers are immutable, however, there is really no way to tell the
difference.

3.1.1. Integer Literals

An integer literal is simply a sequence of digits:

0
123
12345678901234567890

If the integer values fit within the range of the Fi xnumclass, the value is a Fi xnum Otherwise, it is a Bi gnum

which supports integers of any size. Underscores may be inserted into integer literals (though not at the
beginning or end), and this feature is sometimes used as a thousands separator:

1 000 _000_000 # One billion (or 1,000 mllion in the UK)

If an integer literal begins with zero and has more than one digit, then it is interpreted in some base other than
base 10. Numbers beginning with Ox or 0X are hexadecimal (base 16) and use the letters a through f (or A

through F) as digits for 10 through 15. Numbers beginning Ob or OB are binary (base 2) and may only include
digits 0 and 1. Numbers beginning with 0 and no subsequent letter are octal (base 8) and should consist of
digits between 0 and 7. Examples:

0377 # Octal representation of 255
Ob1111 1111 # Binary representation of 255
OxXFF # Hexadeci mal representation of 255

To represent a negative number, simply begin an integer literal with a minus sign. Literals may also begin with
a plus sign, although this never changes the meaning of the literal.

3.1.2. Floating-Point Literals

A floating-point literal is an optional sign followed by one or more decimal digits, a decimal point (the .
character), one or more additional digits, and an optional exponent. An exponent begins with the letter e or E,
and is followed by an optional sign and one or more decimal digits. As with integer literals, underscores may be
used within floating-point literals. Unlike integer literals, it is not possible to express floating-point values in any
radix other than base 10. Here are some examples of floating-point literals:

0.0

-3. 14

6. 02e23 # This nmeans 6.02 x 1023

1 000 000.01 # One mllion and a little bit nore

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Ruby requires that digits appear before and after the decimal point. You cannot simply write . 1, for example;
you must explicitly write 0. 1. This Is necessary to avoid ambiguity in Ruby's complex grammar. Ruby differs
from many other languages in this way.

3.1.3. Arithmetic Iin Ruby

All numeric types in Ruby define standard +, —, *, and / operators for addition, subtraction, multiplication, and
division. When an integer result is too large for a Fi xnum Ruby automatically converts to a Bi gnum and as a

result, integer arithmetic in Ruby never overflows as it does in many other languages. Floating-point numbers
(at least on platforms that use the standard IEEE-754 floating-point representation) overflow to special positive
or negative infinity values, and underflow to zero.

The division operator depends on the class of the operands. If both operands are integers, then the operation
performed is truncating-integer division. If either operand is a Fl oat , then floating-point division is performed:

X = 5/2 # result 1s 2

y = 5.0/2 # result 1s 2.5
z =5/2.0 # result 1s 2.5

Integer division by zero causes a Zer oDi vi si onError to be thrown. Floating-point division by zero does not
cause an error; it simply returns the value I nfinity. The case of 0. 0/ 0. 0 is special; on most modern hardware,
and with most operating systems, it evaluates to another special floating-point value known as NaN, or Not-a-
Number.

The modulo (%9 operator computes remainder-after-integer division:

X = 502 # result 1s 1

The %operator can also be used with Fl oat operands, although this is less common:

X = 1.5%0. 4 # result 1s 0.3

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Division, Modulo, and Negative Numbers

When one (but not both) of the operands is negative, Ruby performs the integer division and
modulo operations differently than languages like C, C++, and Java do (but the same as the
languages Python and Tcl). Consider the quotient - 7/ 3. The floating-point result is —2. 33. The

result of integer division must be an integer, however, so this number must be rounded. Ruby
rounds toward negative infinity and returns —3. C and related languages round toward zero instead

and return —2. (This iIs just one way to characterize the results; no floating-point division is
actually done, of course.)

An important corollary of Ruby's definition of integer division is that, in Ruby, -a/ b equals a/-b
but may not equal - (a/ b) .

Ruby's definition of the modulo operation also differs from that of C and Java. In Ruby, —-7%3 Is 2.
In C and Java, the result is - 1 instead. The magnitude of the result differs, of course, because the

value of the quotient differs. But the sign of the result differs, too. In Ruby, the sign of the result is
always the same as the sign of the second operand. In C and Java, the sign of the result is always
the same as the sign of the first operand. (Ruby also provides a r emal nder method that behaves,

In sign and magnitude, like the C modulo operator.)

Ruby also borrows the ** operator from Fortran for exponentiation. Exponents need not be integers:

Code View:

X**4 # This is the sane thing as xX*x*x*Xx

X**-1 # The sane thing as 1/x

x**(1/ 3. 0) # The cube root of x

X**(1/4) # Oops! Integer division neans this is x**0, which is always 1

X**(1.0/4.0) # This is the fourth-root of x

When multiple exponentiations are combined into a single expression, they are evaluated from right to left.
Thus, 4**3**2 Is the same as 4**9, not 64** 2.

Exponentiation can result in very large values. Remember that integers can become arbitrarily large, but Fl oat
objects cannot represent numbers larger than Fl oat : : MAX. Thus, the expression 10** 1000 yields an exact
Integer result, but the expression 9. 9** 1000 overflows to the Fl oat value Infinity.

FI xnumand Bi gnumvalues support the standard bit-manipulation operators-~, &, |, ", >>, and <<-that are

common in C, Java, and many other languages. (See Section 4.6 for details.) In addition, integer values can
also be indexed like arrays to query (but not set) individual bits. The index O returns the least significant bit:

even = (x[0] == 0) # A nunber is even if the least-significant bit is O

3.1.4. Binary Floating-Point and Rounding Errors

Most computer hardware and most computer languages (including Ruby) approximate real numbers using a
floating-point representation like Ruby's Fl oat class. For hardware efficiency, most floating-point

representations are binary representations, which can exactly represent fractions like 1/ 2, 1/ 4, and 1/ 1024.

Unfortunately, the fractions we use most commonly (especially when performing financial calculations) are
1/ 10, 1/ 100, 1/ 1000, and so on. Binary floating-point representations cannot exactly represent numbers as

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

simple as 0. 1.

Fl oat objects have plenty of precision and can approximate 0. 1 very well, but the fact that this number cannot
be represented exactly leads to problems. Consider the following simple Ruby expression:

0.4 - 0.3 ==0.1 # Evaluates to false in nost | nplenentations

Because of rounding error, the difference between the approximations of 0. 4 and 0. 3 is not quite the same as
the approximation of 0. 1. This problem is not specific to Ruby: C, Java, JavaScript, and all languages that use
IEEE-754 floating-point numbers suffer from it as well.

One solution to this problem is to use a decimal representation of real numbers rather than a binary
representation. The Bi gDeci nmal class from Ruby's standard library is one such representation. Arithmetic on

Bi gDeci mal objects is many times slower than arithmetic on Fl oat values. It is fast enough for typical financial

calculations, but not for scientific number crunching. Section 9.3.3 includes a short example of the use of the
Bi gDeci mal library.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

3.2. Text

Text is represented in Ruby by objects of the St ri ng class. Strings are mutable objects, and the St ri ng class

defines a powerful set of operators and methods for extracting substrings, inserting and deleting text,
searching, replacing, and so on. Ruby provides a number of ways to express string literals in your programs,
and some of them support a powerful string interpolation syntax by which the values of arbitrary Ruby
expressions can be substituted into string literals. The sections that follow explain string and character literals

and string operators. The full string API is covered In Section 9.1.

Textual patterns are represented in Ruby as Regexp objects, and Ruby defines a syntax for including regular
expressions literally in your programs. The code /[a- z] \ d+/ , for example, represents a single lowercase letter

followed by one or more digits. Regular expressions are a commonly used feature of Ruby, but regexps are not
a fundamental datatype In the way that numbers, strings, and arrays are. See Section 9.2 for documentation of

regular expression syntax and the Regexp API.

Text in Ruby 1.8 and Ruby 1.9

The biggest change between Ruby 1.8 and Ruby 1.9 is that 1.9 offers comprehensive built-in
support for Unicode and other multibyte text representations. The ramifications of this change are
extensive and will be mentioned throughout this section, especially in Section 3.2.6.

3.2.1. String Literals

Ruby provides quite a few ways to embed strings literally into your programs.

3.2.1.1. Single-quoted string literals

The simplest string literals are enclosed in single quotes (the apostrophe character). The text within the quote
marks is the value of the string:

"This is a sinple Ruby string literal'

If you need to place an apostrophe within a single-quoted string literal, precede it with a backslash so that the
Ruby interpreter does not think that it terminates the string:

"Wn\'t you read O'Reilly\'s book?

The backslash also works to escape another backslash, so that the second backslash is not itself interpreted as
an escape character. Here are some situations in which you need to use a double backslash:

"This string literal ends with a single backslash: \\'
"This is a backsl ash-quote: \\\"'
"Two backsl ashes: \\\\'

In single-quoted strings, a backslash is not special if the character that follows i1t is anything other than a quote

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

or a backslash. Most of the time, therefore, backslashes need not be doubled (although they can be) Iin string
literals. For example, the following two string literals are equal:

al\b' == "a\\b’

Single-quoted strings may extend over multiple lines, and the resulting string literal includes the newline
characters. It is not possible to escape the newlines with a backslash:

"This is a long string literal \
t hat 1 ncl udes a backsl ash and a new | ne'

If you want to break a long single-quoted string literal across multiple lines without embedding newlines in it,
simply break it into multiple adjacent string literals; the Ruby interpreter will concatenate them during the
parsing process. Remember, though, that you must escape the newlines (see Chapter 2) between the literals so
that Ruby does not interpret the newline as a statement terminator:

nessage =
'These three literals are '\

‘concatenated into one by the interpreter. '\
'The resulting string contains no new i nes.'

3.2.1.2. Double-qguoted string literals

String literals delimited by double quotation marks are much more flexible than single-quoted literals. Double-
quoted literals support quite a few backslash escape sequences, such as \ n for newline, \'t for tab, and\" for a

quotation mark that does not terminate the string:

"\'t\"This quote begins with a tab and ends with a newine\"\n"
"\\" # A single backsl ash

In Ruby 1.9, the \ u escape embeds arbitrary Unicode characters, specified by their codepoint, into a double-
quoted string. This escape sequence is complex enough that we'll describe it in its own section (see Section
3.2.1.3). Many of the other backslash escape sequences are obscure and are used for encoding binary data into
strings. The complete list of escape sequences is shown in Table 3-1.

More powerfully, double-quoted string literals may also include arbitrary Ruby expressions. When the string is
created, the expression is evaluated, converted to a string, and inserted into the string in place of the
expression text itself. This substitution of an expression with its value is known in Ruby as "string interpolation.’
Expressions within double-quoted strings begin with the # character and are enclosed within curly braces:

Code View:
"360 degrees=#{2*Math::Pl} radians" # "360 degrees=6.28318530717959 r adi ans"

When the expression to be interpolated into the string literal is simply a reference to a global, instance, or class
variable, then the curly braces may be omitted:

$salutation = 'hello # Define a global variable

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

"#%sal utati on worl d" # Use it in a double-quoted string

Use a backslash to escape the # character if you do not want it to be treated specially. Note that this only needs
to be done if the character after #is {, $, or @

"My phone #: 555-1234" # No escape needed
"Use \#{ to interpol ate expressions” # Escape #{ wth backsl ash

String Interpolation with sprintf

C programmers may be happy to know that Ruby also supports pri ntf and spri nt f [6] functions
for interpolating formatted values into strings:

sprintf("pi is about %4f", Math::Pl) # Returns "pi is about 3.1416"

The advantage of this style of interpolation is that the format string can specify options, such as
the number of decimal places to display in a Fl oat . In true Ruby style, there is even an operator

form of the spri ntf method: simply use a %operator between a format string and the arguments
to be interpolated into it:

"pi 1s about % 4f" % Math:: Pl # Sanme as exanpl e above
"Os: U % ["pi", Math::PI] # Array on righthand side for nmultiple args

[6] Use ri to learn more: ri Kernel . sprintf

Double-quoted string literals may span multiple lines, and line terminators become part of the string literal,
unless escaped with a backslash:

"This string literal
has two |ines \
but 1s witten on three"

You may prefer to explicitly encode the line terminators in your strings-in order to enforce network CRLF
(Carriage Return Line Feed) line terminators, as used in the HTTP protocol, for example. To do this, write all
your string literals on a single line and explicitly include the line endings with the \ r and \ n escape sequences.
Remember that adjacent string literals are automatically concatenated, but if they are written on separate lines,
the newline between them must be escaped:

"This string has three lines.\r\n" \

"It 1s witten as three adjacent literals\r\n" \
"separ ated by escaped new i nes\r\n"

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Escape
sequence

\ X

\a
\' b
\e
\ f
\'n
\r
\'s
\ t

\ U Nnnnn

\ u{
hexdigits

}

\'v

\ nnn
\ nn
\' n

\ X nNn

\'xX n
\C X

\C x

Table 3-1. Backslash escapes in double-qguoted strings

Meaning

A backslash before any character x Is equivalent to the character x by itself, unless x is a line

terminator or one of the special characters abcef nr st uvxCWM1234567. This syntax is useful to
escape the special meaning of the \ , #, and " characters.

The BEL character (ASCII code 7). Rings the console bell. Equivalent to \ C-g or \ 007.
The Backspace character (ASCII code 8). Equivalent to\ C-h or \ 010.

The ESC character (ASCII code 27). Equivalent to \ 033.

The Form Feed character (ASCII code 12). Equivalentto\ C- | and \ 014.

The Newline character (ASCII code 10). Equivalent to\ C-] and \ 012.

The Carriage Return character (ASCII code 13). Equivalent to\ G- mand \ 015.

The Space character (ASCII code 32).

The TAB character (ASCII code 9). Equivalent to\ G i and \ 011.

The Unicode codepoint nnnn, where each n is one hexadecimal digit. Leading zeros may not be

drop<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>