
The Ruby Programming Language
by David Flanagan; Yukihiro Matsumoto

Publisher: O'Reilly
Pub Date: January 15, 2008
Print ISBN-10: 0-596-51617-7
Print ISBN-13: 978-0-59-651617-8
Pages: 444

Table of Contents
| Index

Overview

The Ruby Programming Language is the authoritative guide to Ruby and provides comprehensive coverage of
versions 1.8 and 1.9 of the language. It was written (and illustrated!) by an all-star team:

David Flanagan, bestselling author of programming language "bibles" (including JavaScript: The Definitive
Guide and Java in a Nutshell) and committer to the Ruby Subversion repository.

Yukihiro "Matz" Matsumoto, creator, designer and lead developer of Ruby and author of Ruby in a
Nutshell, which has been expanded and revised to become this book.

why the lucky stiff, artist and Ruby programmer extraordinaire.

This book begins with a quick-start tutorial to the language, and then explains the language in detail from the
bottom up: from lexical and syntactic structure to datatypes to expressions and statements and on through
methods, blocks, lambdas, closures, classes and modules. The book also includes a long and thorough
introduction to the rich API of the Ruby platform, demonstrating -- with heavily-commented example code --
Ruby's facilities for text processing, numeric manipulation, collections, input/output, networking, and
concurrency. An entire chapter is devoted to Ruby's metaprogramming capabilities. The Ruby Programming
Language documents the Ruby language definitively but without the formality of a language specification. It is
written for experienced programmers who are new to Ruby, and for current Ruby programmers who want to
challenge their understanding and increase their mastery of the language.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Ruby Programming Language
by David Flanagan; Yukihiro Matsumoto

Publisher: O'Reilly
Pub Date: January 15, 2008
Print ISBN-10: 0-596-51617-7
Print ISBN-13: 978-0-59-651617-8
Pages: 444

Table of Contents
| Index

Copyright
Preface
Chapter 1. Introduction

Section 1.1. A Tour of Ruby
Section 1.2. Try Ruby
Section 1.3. About This Book
Section 1.4. A Sudoku Solver in Ruby

Chapter 2. The Structure and Execution of Ruby Programs
Section 2.1. Lexical Structure
Section 2.2. Syntactic Structure
Section 2.3. File Structure
Section 2.4. Program Encoding
Section 2.5. Program Execution

Chapter 3. Datatypes and Objects
Section 3.1. Numbers
Section 3.2. Text
Section 3.3. Arrays
Section 3.4. Hashes
Section 3.5. Ranges
Section 3.6. Symbols
Section 3.7. True, False, and Nil
Section 3.8. Objects

Chapter 4. Expressions and Operators
Section 4.1. Literals and Keyword Literals
Section 4.2. Variable References
Section 4.3. Constant References
Section 4.4. Method Invocations
Section 4.5. Assignments
Section 4.6. Operators

Chapter 5. Statements and Control Structures
Section 5.1. Conditionals
Section 5.2. Loops
Section 5.3. Iterators and Enumerable Objects
Section 5.4. Blocks
Section 5.5. Altering Control Flow
Section 5.6. Exceptions and Exception Handling
Section 5.7. BEGIN and END
Section 5.8. Threads, Fibers, and Continuations

Chapter 6. Methods, Procs, Lambdas, and Closures
Section 6.1. Defining Simple Methods
Section 6.2. Method Names
Section 6.3. Methods and Parentheses
Section 6.4. Method Arguments
Section 6.5. Procs and Lambdas
Section 6.6. Closures
Section 6.7. Method Objects
Section 6.8. Functional Programming

Chapter 7. Classes and Modules
Section 7.1. Defining a Simple Class
Section 7.2. Method Visibility: Public, Protected, Private
Section 7.3. Subclassing and Inheritance

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Section 7.4. Object Creation and Initialization
Section 7.5. Modules
Section 7.6. Loading and Requiring Modules
Section 7.7. Singleton Methods and the Eigenclass
Section 7.8. Method Lookup
Section 7.9. Constant Lookup

Chapter 8. Reflection and Metaprogramming
Section 8.1. Types, Classes, and Modules
Section 8.2. Evaluating Strings and Blocks
Section 8.3. Variables and Constants
Section 8.4. Methods
Section 8.5. Hooks
Section 8.6. Tracing
Section 8.7. ObjectSpace and GC
Section 8.8. Custom Control Structures
Section 8.9. Missing Methods and Missing Constants
Section 8.10. Dynamically Creating Methods
Section 8.11. Alias Chaining
Section 8.12. Domain-Specific Languages

Chapter 9. The Ruby Platform
Section 9.1. Strings
Section 9.2. Regular Expressions
Section 9.3. Numbers and Math
Section 9.4. Dates and Times
Section 9.5. Collections
Section 9.6. Files and Directories
Section 9.7. Input/Output
Section 9.8. Networking
Section 9.9. Threads and Concurrency

Chapter 10. The Ruby Environment
Section 10.1. Invoking the Ruby Interpreter
Section 10.2. The Top-Level Environment
Section 10.3. Practical Extraction and Reporting Shortcuts
Section 10.4. Calling the OS
Section 10.5. Security

Colophon
Index

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Copyright

Copyright © 2008, David Flanagan and Yukihiro Matsumoto. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also
available for most titles (http://safari.oreilly.com). For more information, contact our corporate/institutional
sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides

Production Editor: Sarah Schneider

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly
Media, Inc. The Ruby Programming Language, the image of Horned Sungem hummingbirds, and related trade
dress are trademarks of O'Reilly Media, Inc.

Java™ and all Java-based trademarks are registered trademarks of Sun Microsystems, Inc., in the United States
and other countries. O'Reilly Media, Inc. is independent of Sun Microsystems.

Many of the designations uses by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.
The drawings on the chapter title pages were drawn by why the lucky stiff and are licensed under the Creative
Commons Attribution-ShareAlike 3.0 License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/3.0/legalcode or send a letter to Creative Commons, 171 2nd
Street, Suite 300, San Francisco, California, 94105, USA.

http://safari.oreilly.com
http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Preface

This book is an updated and expanded version of Ruby in a Nutshell (O'Reilly) by Yukihiro Matsumoto, who is
better known as Matz. It is loosely modeled after the classic The C Programming Language (Prentice Hall) by
Brian Kernighan and Dennis Ritchie, and aims to document the Ruby language comprehensively but without the
formality of a language specification. It is written for experienced programmers who are new to Ruby, and for
current Ruby programmers who want to take their understanding and mastery of the language to the next level.

You'll find a guide to the structure and organization of this book in Chapter 1.

P.1. Acknowledgments

P.1.1. David Flanagan

Before anything else, I must thank Matz for the beautiful language he has designed, for his help understanding
that language, and for the Nutshell that this book grew out of.

Thanks also to:

why the lucky stiff for the delightful drawings that grace these pages (you'll find them on the chapter title
pages) and, of course, for his own book on Ruby, why's (poignant) guide to Ruby, which you can find
online at http://poignantguide.net/ruby/.

My technical reviewers: David A. Black, director of Ruby Power and Light, LLC (http://www.rubypal.com);
Charles Oliver Nutter of the JRuby team (http://www.jruby.org) at Sun Microsystems; Shyouhei Urabe,
the maintainer of the Ruby 1.8.6 branch; and Ken Cooper. Their comments helped improve the quality
and clarity of the book. Any errors that remain are, of course, my own.

My editor, Mike Loukides, for asking and persistently encouraging me to write this book, and for his
patience while I did so.

Finally, of course, my love and thanks to my family.

-David Flanagan

http://www.davidflanagan.com

January 2008

P.1.2. Yukihiro Matsumoto

In addition to the people listed by David (except myself), I appreciate the help from community members all
around the world, especially from Japan: Koichi Sasada, Nobuyoshi Nakada, Akira Tanaka, Shugo Maeda, Usaku
Nakamura, and Shyouhei Urabe to name a few (not in any particular order).

And finally, I thank my family, who hopefully forgive their husband and father for dedicating time to Ruby
development.

http://poignantguide.net/ruby/
http://www.rubypal.com
http://www.jruby.org
http://www.davidflanagan.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

-Yukihiro Matsumoto

January 2008

P.2. Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements such as variable or
function names, datatypes, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values determined by context.

P.3. Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in your programs
and documentation. You do not need to contact us for permission unless you're reproducing a significant portion
of the code. For example, writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O'Reilly books does require permission.
Answering a question by citing this book and quoting example code does not require permission. Incorporating a
significant amount of example code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and
ISBN. For example: "The Ruby Programming Language by David Flanagan and Yukihiro Matsumoto. Copyright
2008 David Flanagan and Yukihiro Matsumoto, 978-0-596-51617-8."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us
at permissions@oreilly.com.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

P.4. How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. You can
access this page at:

http://www.oreilly.com/catalog/9780596516178

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see our web
site at:

http://www.oreilly.com

P.5. Safari® Enabled

NOTE

When you see a Safari® Enabled icon on the cover of your favorite technology book, that means the
book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search thousands of
top tech books, cut and paste code samples, download chapters, and find quick answers when you need the
most accurate, current information. Try it for free at http://safari.oreilly.com.

http://www.oreilly.com/catalog/9780596516178
http://www.oreilly.com
http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 1. Introduction

Ruby is a dynamic programming language with a complex but expressive grammar and a core class library with
a rich and powerful API. Ruby draws inspiration from Lisp, Smalltalk, and Perl, but uses a grammar that is easy
for C and Java™ programmers to learn. Ruby is a pure object-oriented language, but it is also suitable for
procedural and functional programming styles. It includes powerful metaprogramming capabilities and can be
used to create domain-specific languages or DSLs.

Matz on Ruby

Yukihiro Matsumoto, known as Matz to the English-speaking Ruby community, is the creator of
Ruby and the author of Ruby in a Nutshell (O'Reilly) (which has been updated and expanded into
the present book). He says:

I knew many languages before I created Ruby, but I was never fully satisfied with them.
They were uglier, tougher, more complex, or more simple than I expected. I wanted to
create my own language that satisfied me, as a programmer. I knew a lot about the
language's target audience: myself. To my surprise, many programmers all over the world
feel very much like I do. They feel happy when they discover and program in Ruby.

Throughout the development of the Ruby language, I've focused my energies on making
programming faster and easier. All features in Ruby, including object-oriented features, are
designed to work as ordinary programmers (e.g., me) expect them to work. Most
programmers feel it is elegant, easy to use, and a pleasure to program.

Matz's guiding philosophy for the design of Ruby is summarized in an oft-quoted remark of his:

Ruby is designed to make programmers happy.

1.1. A Tour of Ruby

This section is a guided, but meandering, tour through some of the most interesting features of Ruby.
Everything discussed here will be documented in detail later in the book, but this first look will give you the
flavor of the language.

1.1.1. Ruby Is Object-Oriented

We'll begin with the fact that Ruby is a completely object-oriented language. Every value is an object, even
simple numeric literals and the values true, false, and nil (nil is a special value that indicates the absence of

value; it is Ruby's version of null). Here we invoke a method named class on these values. Comments begin

http://lib.ommolketab.ir
http://lib.ommolketab.ir

with # in Ruby, and the => arrows in the comments indicate the value returned by the commented code (this is

a convention used throughout this book):

1.class # => Fixnum: the number 1 is a Fixnum

0.0.class # => Float: floating-point numbers have class Float

true.class # => TrueClass: true is a the singleton instance of TrueClass

false.class # => FalseClass

nil.class # => NilClass

In many languages, function and method invocations require parentheses, but there are no parentheses in any
of the code above. In Ruby, parentheses are usually optional and they are commonly omitted, especially when
the method being invoked takes no arguments. The fact that the parentheses are omitted in the method
invocations here makes them look like references to named fields or named variables of the object. This is
intentional, but the fact is, Ruby is very strict about encapsulation of its objects; there is no access to the
internal state of an object from outside the object. Any such access must be mediated by an accessor method,
such as the class method shown above.

1.1.2. Blocks and Iterators

The fact that we can invoke methods on integers isn't just an esoteric aspect of Ruby. It is actually something
that Ruby programmers do with some frequency:

3.times { print "Ruby! " } # Prints "Ruby! Ruby! Ruby! "

1.upto(9) {|x| print x } # Prints "123456789"

times and upto are methods implemented by integer objects. They are a special kind of method known as an

iterator, and they behave like loops. The code within curly braces-known as a block-is associated with the
method invocation and serves as the body of the loop. The use of iterators and blocks is another notable feature
of Ruby; although the language does support an ordinary while loop, it is more common to perform loops with

constructs that are actually method calls.

Integers are not the only values that have iterator methods. Arrays (and similar "enumerable" objects) define
an iterator named each, which invokes the associated block once for each element in the array. Each invocation

of the block is passed a single element from the array:

a = [3, 2, 1] # This is an array literal

a[3] = a[2] - 1 # Use square brackets to query and set array elements

a.each do |elt| # each is an iterator. The block has a parameter elt

 print elt+1 # Prints "4321"

end # This block was delimited with do/end instead of {}

Various other useful iterators are defined on top of each:

a = [1,2,3,4] # Start with an array

b = a.map {|x| x*x } # Square elements: b is [1,4,9,16]

c = a.select {|x| x%2==0 } # Select even elements: c is [2,4]

a.inject do |sum,x| # Compute the sum of the elements => 10

 sum + x

end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Hashes, like arrays, are a fundamental data structure in Ruby. As their name implies, they are based on the
hashtable data structure and serve to map arbitrary key objects to value objects. (To put this another way, we
can say that a hash associates arbitrary value objects with key objects.) Hashes use square brackets, like arrays
do, to query and set values in the hash. Instead of using an integer index, they expect key objects within the
square brackets. Like the Array class, the Hash class also defines an each iterator method. This method invokes

the associated block of code once for each key/value pair in the hash, and (this is where it differs from Array)

passes both the key and the value as parameters to the block:

h = { # A hash that maps number names to digits

 :one => 1, # The "arrows" show mappings: key=>value

 :two => 2 # The colons indicate Symbol literals

}

h[:one] # => 1. Access a value by key

h[:three] = 3 # Add a new key/value pair to the hash

h.each do |key,value| # Iterate through the key/value pairs

 print "#{value}:#{key}; " # Note variables substituted into string

end # Prints "1:one; 2:two; 3:three; "

Ruby's hashes can use any object as a key, but Symbol objects are the most commonly used. Symbols are

immutable, interned strings. They can be compared by identity rather than by textual content (because two
distinct Symbol objects will never have the same content).

The ability to associate a block of code with a method invocation is a fundamental and very powerful feature of
Ruby. Although its most obvious use is for loop-like constructs, it is also useful for methods that only invoke the
block once. For example:

File.open("data.txt") do |f| # Open named file and pass stream to block

 line = f.readline # Use the stream to read from the file

end # Stream automatically closed at block end

t = Thread.new do # Run this block in a new thread

 File.read("data.txt") # Read a file in the background

end # File contents available as thread value

As an aside, notice that the Hash.each example previously included this interesting line of code:

print "#{value}:#{key}; " # Note variables substituted into string

Double-quoted strings can include arbitrary Ruby expressions delimited by #{ and }. The value of the expression

within these delimiters is converted to a string (by calling its to_s method, which is supported by all objects).

The resulting string is then used to replace the expression text and its delimiters in the string literal. This
substitution of expression values into strings is usually called string interpolation.

1.1.3. Expressions and Operators in Ruby

Ruby's syntax is expression-oriented. Control structures such as if that would be called statements in other

languages are actually expressions in Ruby. They have values like other simpler expressions do, and we can
write code like this:

minimum = if x < y then x else y end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Although all "statements" in Ruby are actually expressions, they do not all return meaningful values. while

loops and method definitions, for example, are expressions that normally return the value nil.

As in most languages, expressions in Ruby are usually built out of values and operators. For the most part,
Ruby's operators will be familiar to anyone who knows C, Java, JavaScript, or any similar programming
language. Here are examples of some commonplace and some more unusual Ruby operators:

Code View:
1 + 2 # => 3: addition

1 * 2 # => 2: multiplication

1 + 2 == 3 # => true: == tests equality

2 ** 1024 # 2 to the power 1024: Ruby has arbitrary size ints

"Ruby" + " rocks!" # => "Ruby rocks!": string concatenation

"Ruby! " * 3 # => "Ruby! Ruby! Ruby! ": string repetition

"%d %s" % [3, "rubies"] # => "3 Rubies": Python-style, printf formatting

max = x > y ? x : y # The conditional operator

Many of Ruby's operators are implemented as methods, and classes can define (or redefine) these methods
however they want. (They can't define completely new operators, however; there is only a fixed set of
recognized operators.) As examples, notice that the + and * operators behave differently for integers and

strings. And you can define these operators any way you want in your own classes. The << operator is another

good example. The integer classes Fixnum and Bignum use this operator for the bitwise left-shift operation,

following the C programming language. At the same time (following C++), other classes-such as strings,
arrays, and streams-use this operator for an append operation. If you create a new class that can have values
appended to it in some way, it is a very good idea to define <<.

One of the most powerful operators to override is []. The Array and Hash classes use this operator to access

array elements by index and hash values by key. But you can define [] in your classes for any purpose you

want. You can even define it as a method that expects multiple arguments, comma-separated between the
square brackets. (The Array class accepts an index and a length between the square brackets to indicate a

subarray or "slice" of the array.) And if you want to allow square brackets to be used on the lefthand side of an
assignment expression, you can define the corresponding []= operator. The value on the righthand side of the

assignment will be passed as the final argument to the method that implements this operator.

1.1.4. Methods

Methods are defined with the def keyword. The return value of a method is the value of the last expression

evaluated in its body:

def square(x) # Define a method named square with one parameter x

 x*x # Return x squared

end # End of the method

When a method, like the one above, is defined outside of a class or a module, it is effectively a global function
rather than a method to be invoked on an object. (Technically, however, a method like this becomes a private
method of the Object class.) Methods can also be defined on individual objects by prefixing the name of the

method with the object on which it is defined. Methods like these are known as singletonmethods, and they are
how Ruby defines class methods:

def Math.square(x) # Define a class method of the Math module

 x*x

http://lib.ommolketab.ir
http://lib.ommolketab.ir

end

The Math module is part of the core Ruby library, and this code adds a new method to it. This is a key feature of

Ruby-classes and modules are "open" and can be modified and extended at runtime.

Method parameters may have default values specified, and methods may accept arbitrary numbers of
arguments.

1.1.5. Assignment

The (nonoverridable) = operator in Ruby assigns a value to a variable:

x = 1

Assignment can be combined with other operators such as + and -:

x += 1 # Increment x: note Ruby does not have ++.

y -= 1 # Decrement y: no -- operator, either.

Ruby supports parallel assignment, allowing more than one value and more than one variable in assignment
expressions:

x, y = 1, 2 # Same as x = 1; y = 2

a, b = b, a # Swap the value of two variables

x,y,z = [1,2,3] # Array elements automatically assigned to variables

Methods in Ruby are allowed to return more than one value, and parallel assignment is helpful in conjunction
with such methods. For example:

Define a method to convert Cartesian (x,y) coordinates to Polar

def polar(x,y)

 theta = Math.atan2(y,x) # Compute the angle

 r = Math.hypot(x,y) # Compute the distance

 [r, theta] # The last expression is the return value

end

Here's how we use this method with parallel assignment

distance, angle = polar(2,2)

Methods that end with an equals sign (=) are special because Ruby allows them to be invoked using assignment

syntax. If an object o has a method named x=, then the following two lines of code do the very same thing:

o.x=(1) # Normal method invocation syntax

o.x = 1 # Method invocation through assignment

1.1.6. Punctuation Suffixes and Prefixes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We saw previously that methods whose names end with = can be invoked by assignment expressions. Ruby

methods can also end with a question mark or an exclamation point. A question mark is used to mark
predicates-methods that return a Boolean value. For example, the Array and Hash classes both define

methods named empty? that test whether the data structure has any elements. An exclamation mark at the end

of a method name is used to indicate that caution is required with the use of the method. A number of core
Ruby classes define pairs of methods with the same name, except that one ends with an exclamation mark and
one does not. Usually, the method without the exclamation mark returns a modified copy of the object it is
invoked on, and the one with the exclamation mark is a mutator method that alters the object in place. The
Array class, for example, defines methods sort and sort!.

In addition to these punctuation characters at the end of method names, you'll notice punctuation characters at
the start of Ruby variable names: global variables are prefixed with $, instance variables are prefixed with @,

and class variables are prefixed with @@. These prefixes can take a little getting used to, but after a while you

may come to appreciate the fact that the prefix tells you the scope of the variable. The prefixes are required in
order to disambiguate Ruby's very flexible grammar. One way to think of variable prefixes is that they are one
price we pay for being able to omit parentheses around method invocations.

1.1.7. Regexp and Range

We mentioned arrays and hashes earlier as fundamental data structures in Ruby. We demonstrated the use of
numbers and strings as well. Two other datatypes are worth mentioning here. A Regexp (regular expression)

object describes a textual pattern and has methods for determining whether a given string matches that pattern
or not. And a Range represents the values (usually integers) between two endpoints. Regular expressions and

ranges have a literal syntax in Ruby:

/[Rr]uby/ # Matches "Ruby" or "ruby"

/\d{5}/ # Matches 5 consecutive digits

1..3 # All x where 1 <= x <= 3

1...3 # All x where 1 <= x < 3

Regexp and Range objects define the normal == operator for testing equality. In addition, they also define the

=== operator for testing matching and membership. Ruby's case statement (like the switch statement of C or

Java) matches its expression against each of the possible cases using ===, so this operator is often called the

case equality operator. It leads to conditional tests like these:

Code View:
Determine US generation name based on birth year

Case expression tests ranges with ===

generation = case birthyear

 when 1946..1963: "Baby Boomer"

 when 1964..1976: "Generation X"

 when 1978..2000: "Generation Y"

 else nil

 end

A method to ask the user to confirm something

def are_you_sure? # Define a method. Note question mark!

 while true # Loop until we explicitly return

 print "Are you sure? [y/n]: " # Ask the user a question

 response = gets # Get her answer

 case response # Begin case conditional

 when /^[yY]/ # If response begins with y or Y

 return true # Return true from the method

 when /^[nN]/, /^$/ # If response begins with n,N or is empty

 return false # Return false

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 end

 end

end

1.1.8. Classes and Modules

A class is a collection of related methods that operate on the state of an object. An object's state is held by its
instance variables: variables whose names begin with @ and whose values are specific to that particular object.

The following code defines an example class named Sequence and demonstrates how to write iterator methods

and define operators:

Code View:
#

This class represents a sequence of numbers characterized by the three

parameters from, to, and by. The numbers x in the sequence obey the

following two constraints:

#

from <= x <= to

x = from + n*by, where n is an integer

class Sequence

 # This is an enumerable class; it defines an each iterator below.

 include Enumerable # Include the methods of this module in this class

 # The initialize method is special; it is automatically invoked to

 # initialize newly created instances of the class

 def initialize(from, to, by)

 # Just save our parameters into instance variables for later use

 @from, @to, @by = from, to, by # Note parallel assignment and @ prefix

 end

 # This is the iterator required by the Enumerable module

 def each

 x = @from # Start at the starting point

 while x <= @to # While we haven't reached the end

 yield x # Pass x to the block associated with the iterator

 x += @by # Increment x

 end

 end

 # Define the length method (following arrays) to return the number of

 # values in the sequence

 def length

 return 0 if @from > @to # Note if used as a statement modifier

 Integer((@to-@from)/@by) + 1 # Compute and return length of sequence

 end

 # Define another name for the same method.

 # It is common for methods to have multiple names in Ruby

 alias size length # size is now a synonym for length

 # Override the array-access operator to give random access to the sequence

 def[](index)

 return nil if index < 0 # Return nil for negative indexes

 v = @from + index*@by # Compute the value

 if v <= @to # If it is part of the sequence

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 v # Return it

 else # Otherwise...

 nil # Return nil

 end

 end

 # Override arithmetic operators to return new Sequence objects

 def *(factor)

 Sequence.new(@from*factor, @to*factor, @by*factor)

 end

 def +(offset)

 Sequence.new(@from+offset, @to+offset, @by)

 end

end

Here is some code that uses this Sequence class:

s = Sequence.new(1, 10, 2) # From 1 to 10 by 2's

s.each {|x| print x } # Prints "13579"

print s[s.size-1] # Prints 9

t = (s+1)*2 # From 4 to 22 by 4's

The key feature of our Sequence class is its each iterator. If we are only interested in the iterator method, there

is no need to define the whole class. Instead, we can simply write an iterator method that accepts the from, to,

and by parameters. Instead of making this a global function, let's define it in a module of its own:

module Sequences # Begin a new module

 def self.fromtoby(from, to, by) # A singleton method of the module

 x = from

 while x <= to

 yield x

 x += by

 end

 end

end

With the iterator defined this way, we write code like this:

Sequences.fromtoby(1, 10, 2) {|x| print x } # Prints "13579"

An iterator like this makes it unnecessary to create a Sequence object to iterate a sequence of numbers. But the

name of the method is quite long, and its invocation syntax is unsatisfying. What we really want is a way to
iterate numeric Range objects by steps other than 1. One of the amazing features of Ruby is that its classes,

even the built-in core classes, are open: any program can add methods to them. So we really can define a new
iterator method for ranges:

Code View:
class Range # Open an existing class for additions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 def by(step) # Define an iterator named by

 x = self.begin # Start at one endpoint of the range

 if exclude_end? # For ... ranges that exclude the end

 while x < self.end # Test with the < operator

 yield x

 x += step

 end

 else # Otherwise, for .. ranges that include the end

 while x <= self.end # Test with <= operator

 yield x

 x += step

 end

 end

 end # End of method definition

end # End of class modification

Examples

(0..10).by(2) {|x| print x} # Prints "0246810"

(0...10).by(2) {|x| print x} # Prints "02468"

This by method is convenient but unnecessary; the Range class already defines an iterator named step that

serves the same purpose. The core Ruby API is a rich one, and it is worth taking the time to study the platform
(see Chapter 9) so you don't end up spending time writing methods that have already been implemented for
you!

1.1.9. Ruby Surprises

Every language has features that trip up programmers who are new to the language. Here we describe two of
Ruby's surprising features.

Ruby's strings are mutable, which may be surprising to Java programmers in particular. The []= operator allows

you to alter the characters of a string or to insert, delete, and replace substrings. The << operator allows you to

append to a string, and the String class defines various other methods that alter strings in place. Because

strings are mutable, string literals in a program are not unique objects. If you include a string literal within a
loop, it evaluates to a new object on each iteration of the loop. Call the freeze method on a string (or on any

object) to prevent any future modifications to that object.

Ruby's conditionals and loops (such as if and while) evaluate conditional expressions to determine which

branch to evaluate or whether to continue looping. Conditional expressions often evaluate to true or false, but

this is not required. The value of nil is treated the same as false, and any other value is the same as true.

This is likely to surprise C programmers who expect 0 to work like false, and JavaScript programmers who

expect the empty string "" to be the same as false.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 1. Introduction

Ruby is a dynamic programming language with a complex but expressive grammar and a core class library with
a rich and powerful API. Ruby draws inspiration from Lisp, Smalltalk, and Perl, but uses a grammar that is easy
for C and Java™ programmers to learn. Ruby is a pure object-oriented language, but it is also suitable for
procedural and functional programming styles. It includes powerful metaprogramming capabilities and can be
used to create domain-specific languages or DSLs.

Matz on Ruby

Yukihiro Matsumoto, known as Matz to the English-speaking Ruby community, is the creator of
Ruby and the author of Ruby in a Nutshell (O'Reilly) (which has been updated and expanded into
the present book). He says:

I knew many languages before I created Ruby, but I was never fully satisfied with them.
They were uglier, tougher, more complex, or more simple than I expected. I wanted to
create my own language that satisfied me, as a programmer. I knew a lot about the
language's target audience: myself. To my surprise, many programmers all over the world
feel very much like I do. They feel happy when they discover and program in Ruby.

Throughout the development of the Ruby language, I've focused my energies on making
programming faster and easier. All features in Ruby, including object-oriented features, are
designed to work as ordinary programmers (e.g., me) expect them to work. Most
programmers feel it is elegant, easy to use, and a pleasure to program.

Matz's guiding philosophy for the design of Ruby is summarized in an oft-quoted remark of his:

Ruby is designed to make programmers happy.

1.1. A Tour of Ruby

This section is a guided, but meandering, tour through some of the most interesting features of Ruby.
Everything discussed here will be documented in detail later in the book, but this first look will give you the
flavor of the language.

1.1.1. Ruby Is Object-Oriented

We'll begin with the fact that Ruby is a completely object-oriented language. Every value is an object, even
simple numeric literals and the values true, false, and nil (nil is a special value that indicates the absence of

value; it is Ruby's version of null). Here we invoke a method named class on these values. Comments begin

http://lib.ommolketab.ir
http://lib.ommolketab.ir

with # in Ruby, and the => arrows in the comments indicate the value returned by the commented code (this is

a convention used throughout this book):

1.class # => Fixnum: the number 1 is a Fixnum

0.0.class # => Float: floating-point numbers have class Float

true.class # => TrueClass: true is a the singleton instance of TrueClass

false.class # => FalseClass

nil.class # => NilClass

In many languages, function and method invocations require parentheses, but there are no parentheses in any
of the code above. In Ruby, parentheses are usually optional and they are commonly omitted, especially when
the method being invoked takes no arguments. The fact that the parentheses are omitted in the method
invocations here makes them look like references to named fields or named variables of the object. This is
intentional, but the fact is, Ruby is very strict about encapsulation of its objects; there is no access to the
internal state of an object from outside the object. Any such access must be mediated by an accessor method,
such as the class method shown above.

1.1.2. Blocks and Iterators

The fact that we can invoke methods on integers isn't just an esoteric aspect of Ruby. It is actually something
that Ruby programmers do with some frequency:

3.times { print "Ruby! " } # Prints "Ruby! Ruby! Ruby! "

1.upto(9) {|x| print x } # Prints "123456789"

times and upto are methods implemented by integer objects. They are a special kind of method known as an

iterator, and they behave like loops. The code within curly braces-known as a block-is associated with the
method invocation and serves as the body of the loop. The use of iterators and blocks is another notable feature
of Ruby; although the language does support an ordinary while loop, it is more common to perform loops with

constructs that are actually method calls.

Integers are not the only values that have iterator methods. Arrays (and similar "enumerable" objects) define
an iterator named each, which invokes the associated block once for each element in the array. Each invocation

of the block is passed a single element from the array:

a = [3, 2, 1] # This is an array literal

a[3] = a[2] - 1 # Use square brackets to query and set array elements

a.each do |elt| # each is an iterator. The block has a parameter elt

 print elt+1 # Prints "4321"

end # This block was delimited with do/end instead of {}

Various other useful iterators are defined on top of each:

a = [1,2,3,4] # Start with an array

b = a.map {|x| x*x } # Square elements: b is [1,4,9,16]

c = a.select {|x| x%2==0 } # Select even elements: c is [2,4]

a.inject do |sum,x| # Compute the sum of the elements => 10

 sum + x

end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Hashes, like arrays, are a fundamental data structure in Ruby. As their name implies, they are based on the
hashtable data structure and serve to map arbitrary key objects to value objects. (To put this another way, we
can say that a hash associates arbitrary value objects with key objects.) Hashes use square brackets, like arrays
do, to query and set values in the hash. Instead of using an integer index, they expect key objects within the
square brackets. Like the Array class, the Hash class also defines an each iterator method. This method invokes

the associated block of code once for each key/value pair in the hash, and (this is where it differs from Array)

passes both the key and the value as parameters to the block:

h = { # A hash that maps number names to digits

 :one => 1, # The "arrows" show mappings: key=>value

 :two => 2 # The colons indicate Symbol literals

}

h[:one] # => 1. Access a value by key

h[:three] = 3 # Add a new key/value pair to the hash

h.each do |key,value| # Iterate through the key/value pairs

 print "#{value}:#{key}; " # Note variables substituted into string

end # Prints "1:one; 2:two; 3:three; "

Ruby's hashes can use any object as a key, but Symbol objects are the most commonly used. Symbols are

immutable, interned strings. They can be compared by identity rather than by textual content (because two
distinct Symbol objects will never have the same content).

The ability to associate a block of code with a method invocation is a fundamental and very powerful feature of
Ruby. Although its most obvious use is for loop-like constructs, it is also useful for methods that only invoke the
block once. For example:

File.open("data.txt") do |f| # Open named file and pass stream to block

 line = f.readline # Use the stream to read from the file

end # Stream automatically closed at block end

t = Thread.new do # Run this block in a new thread

 File.read("data.txt") # Read a file in the background

end # File contents available as thread value

As an aside, notice that the Hash.each example previously included this interesting line of code:

print "#{value}:#{key}; " # Note variables substituted into string

Double-quoted strings can include arbitrary Ruby expressions delimited by #{ and }. The value of the expression

within these delimiters is converted to a string (by calling its to_s method, which is supported by all objects).

The resulting string is then used to replace the expression text and its delimiters in the string literal. This
substitution of expression values into strings is usually called string interpolation.

1.1.3. Expressions and Operators in Ruby

Ruby's syntax is expression-oriented. Control structures such as if that would be called statements in other

languages are actually expressions in Ruby. They have values like other simpler expressions do, and we can
write code like this:

minimum = if x < y then x else y end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Although all "statements" in Ruby are actually expressions, they do not all return meaningful values. while

loops and method definitions, for example, are expressions that normally return the value nil.

As in most languages, expressions in Ruby are usually built out of values and operators. For the most part,
Ruby's operators will be familiar to anyone who knows C, Java, JavaScript, or any similar programming
language. Here are examples of some commonplace and some more unusual Ruby operators:

Code View:
1 + 2 # => 3: addition

1 * 2 # => 2: multiplication

1 + 2 == 3 # => true: == tests equality

2 ** 1024 # 2 to the power 1024: Ruby has arbitrary size ints

"Ruby" + " rocks!" # => "Ruby rocks!": string concatenation

"Ruby! " * 3 # => "Ruby! Ruby! Ruby! ": string repetition

"%d %s" % [3, "rubies"] # => "3 Rubies": Python-style, printf formatting

max = x > y ? x : y # The conditional operator

Many of Ruby's operators are implemented as methods, and classes can define (or redefine) these methods
however they want. (They can't define completely new operators, however; there is only a fixed set of
recognized operators.) As examples, notice that the + and * operators behave differently for integers and

strings. And you can define these operators any way you want in your own classes. The << operator is another

good example. The integer classes Fixnum and Bignum use this operator for the bitwise left-shift operation,

following the C programming language. At the same time (following C++), other classes-such as strings,
arrays, and streams-use this operator for an append operation. If you create a new class that can have values
appended to it in some way, it is a very good idea to define <<.

One of the most powerful operators to override is []. The Array and Hash classes use this operator to access

array elements by index and hash values by key. But you can define [] in your classes for any purpose you

want. You can even define it as a method that expects multiple arguments, comma-separated between the
square brackets. (The Array class accepts an index and a length between the square brackets to indicate a

subarray or "slice" of the array.) And if you want to allow square brackets to be used on the lefthand side of an
assignment expression, you can define the corresponding []= operator. The value on the righthand side of the

assignment will be passed as the final argument to the method that implements this operator.

1.1.4. Methods

Methods are defined with the def keyword. The return value of a method is the value of the last expression

evaluated in its body:

def square(x) # Define a method named square with one parameter x

 x*x # Return x squared

end # End of the method

When a method, like the one above, is defined outside of a class or a module, it is effectively a global function
rather than a method to be invoked on an object. (Technically, however, a method like this becomes a private
method of the Object class.) Methods can also be defined on individual objects by prefixing the name of the

method with the object on which it is defined. Methods like these are known as singletonmethods, and they are
how Ruby defines class methods:

def Math.square(x) # Define a class method of the Math module

 x*x

http://lib.ommolketab.ir
http://lib.ommolketab.ir

end

The Math module is part of the core Ruby library, and this code adds a new method to it. This is a key feature of

Ruby-classes and modules are "open" and can be modified and extended at runtime.

Method parameters may have default values specified, and methods may accept arbitrary numbers of
arguments.

1.1.5. Assignment

The (nonoverridable) = operator in Ruby assigns a value to a variable:

x = 1

Assignment can be combined with other operators such as + and -:

x += 1 # Increment x: note Ruby does not have ++.

y -= 1 # Decrement y: no -- operator, either.

Ruby supports parallel assignment, allowing more than one value and more than one variable in assignment
expressions:

x, y = 1, 2 # Same as x = 1; y = 2

a, b = b, a # Swap the value of two variables

x,y,z = [1,2,3] # Array elements automatically assigned to variables

Methods in Ruby are allowed to return more than one value, and parallel assignment is helpful in conjunction
with such methods. For example:

Define a method to convert Cartesian (x,y) coordinates to Polar

def polar(x,y)

 theta = Math.atan2(y,x) # Compute the angle

 r = Math.hypot(x,y) # Compute the distance

 [r, theta] # The last expression is the return value

end

Here's how we use this method with parallel assignment

distance, angle = polar(2,2)

Methods that end with an equals sign (=) are special because Ruby allows them to be invoked using assignment

syntax. If an object o has a method named x=, then the following two lines of code do the very same thing:

o.x=(1) # Normal method invocation syntax

o.x = 1 # Method invocation through assignment

1.1.6. Punctuation Suffixes and Prefixes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We saw previously that methods whose names end with = can be invoked by assignment expressions. Ruby

methods can also end with a question mark or an exclamation point. A question mark is used to mark
predicates-methods that return a Boolean value. For example, the Array and Hash classes both define

methods named empty? that test whether the data structure has any elements. An exclamation mark at the end

of a method name is used to indicate that caution is required with the use of the method. A number of core
Ruby classes define pairs of methods with the same name, except that one ends with an exclamation mark and
one does not. Usually, the method without the exclamation mark returns a modified copy of the object it is
invoked on, and the one with the exclamation mark is a mutator method that alters the object in place. The
Array class, for example, defines methods sort and sort!.

In addition to these punctuation characters at the end of method names, you'll notice punctuation characters at
the start of Ruby variable names: global variables are prefixed with $, instance variables are prefixed with @,

and class variables are prefixed with @@. These prefixes can take a little getting used to, but after a while you

may come to appreciate the fact that the prefix tells you the scope of the variable. The prefixes are required in
order to disambiguate Ruby's very flexible grammar. One way to think of variable prefixes is that they are one
price we pay for being able to omit parentheses around method invocations.

1.1.7. Regexp and Range

We mentioned arrays and hashes earlier as fundamental data structures in Ruby. We demonstrated the use of
numbers and strings as well. Two other datatypes are worth mentioning here. A Regexp (regular expression)

object describes a textual pattern and has methods for determining whether a given string matches that pattern
or not. And a Range represents the values (usually integers) between two endpoints. Regular expressions and

ranges have a literal syntax in Ruby:

/[Rr]uby/ # Matches "Ruby" or "ruby"

/\d{5}/ # Matches 5 consecutive digits

1..3 # All x where 1 <= x <= 3

1...3 # All x where 1 <= x < 3

Regexp and Range objects define the normal == operator for testing equality. In addition, they also define the

=== operator for testing matching and membership. Ruby's case statement (like the switch statement of C or

Java) matches its expression against each of the possible cases using ===, so this operator is often called the

case equality operator. It leads to conditional tests like these:

Code View:
Determine US generation name based on birth year

Case expression tests ranges with ===

generation = case birthyear

 when 1946..1963: "Baby Boomer"

 when 1964..1976: "Generation X"

 when 1978..2000: "Generation Y"

 else nil

 end

A method to ask the user to confirm something

def are_you_sure? # Define a method. Note question mark!

 while true # Loop until we explicitly return

 print "Are you sure? [y/n]: " # Ask the user a question

 response = gets # Get her answer

 case response # Begin case conditional

 when /^[yY]/ # If response begins with y or Y

 return true # Return true from the method

 when /^[nN]/, /^$/ # If response begins with n,N or is empty

 return false # Return false

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 end

 end

end

1.1.8. Classes and Modules

A class is a collection of related methods that operate on the state of an object. An object's state is held by its
instance variables: variables whose names begin with @ and whose values are specific to that particular object.

The following code defines an example class named Sequence and demonstrates how to write iterator methods

and define operators:

Code View:
#

This class represents a sequence of numbers characterized by the three

parameters from, to, and by. The numbers x in the sequence obey the

following two constraints:

#

from <= x <= to

x = from + n*by, where n is an integer

class Sequence

 # This is an enumerable class; it defines an each iterator below.

 include Enumerable # Include the methods of this module in this class

 # The initialize method is special; it is automatically invoked to

 # initialize newly created instances of the class

 def initialize(from, to, by)

 # Just save our parameters into instance variables for later use

 @from, @to, @by = from, to, by # Note parallel assignment and @ prefix

 end

 # This is the iterator required by the Enumerable module

 def each

 x = @from # Start at the starting point

 while x <= @to # While we haven't reached the end

 yield x # Pass x to the block associated with the iterator

 x += @by # Increment x

 end

 end

 # Define the length method (following arrays) to return the number of

 # values in the sequence

 def length

 return 0 if @from > @to # Note if used as a statement modifier

 Integer((@to-@from)/@by) + 1 # Compute and return length of sequence

 end

 # Define another name for the same method.

 # It is common for methods to have multiple names in Ruby

 alias size length # size is now a synonym for length

 # Override the array-access operator to give random access to the sequence

 def[](index)

 return nil if index < 0 # Return nil for negative indexes

 v = @from + index*@by # Compute the value

 if v <= @to # If it is part of the sequence

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 v # Return it

 else # Otherwise...

 nil # Return nil

 end

 end

 # Override arithmetic operators to return new Sequence objects

 def *(factor)

 Sequence.new(@from*factor, @to*factor, @by*factor)

 end

 def +(offset)

 Sequence.new(@from+offset, @to+offset, @by)

 end

end

Here is some code that uses this Sequence class:

s = Sequence.new(1, 10, 2) # From 1 to 10 by 2's

s.each {|x| print x } # Prints "13579"

print s[s.size-1] # Prints 9

t = (s+1)*2 # From 4 to 22 by 4's

The key feature of our Sequence class is its each iterator. If we are only interested in the iterator method, there

is no need to define the whole class. Instead, we can simply write an iterator method that accepts the from, to,

and by parameters. Instead of making this a global function, let's define it in a module of its own:

module Sequences # Begin a new module

 def self.fromtoby(from, to, by) # A singleton method of the module

 x = from

 while x <= to

 yield x

 x += by

 end

 end

end

With the iterator defined this way, we write code like this:

Sequences.fromtoby(1, 10, 2) {|x| print x } # Prints "13579"

An iterator like this makes it unnecessary to create a Sequence object to iterate a sequence of numbers. But the

name of the method is quite long, and its invocation syntax is unsatisfying. What we really want is a way to
iterate numeric Range objects by steps other than 1. One of the amazing features of Ruby is that its classes,

even the built-in core classes, are open: any program can add methods to them. So we really can define a new
iterator method for ranges:

Code View:
class Range # Open an existing class for additions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 def by(step) # Define an iterator named by

 x = self.begin # Start at one endpoint of the range

 if exclude_end? # For ... ranges that exclude the end

 while x < self.end # Test with the < operator

 yield x

 x += step

 end

 else # Otherwise, for .. ranges that include the end

 while x <= self.end # Test with <= operator

 yield x

 x += step

 end

 end

 end # End of method definition

end # End of class modification

Examples

(0..10).by(2) {|x| print x} # Prints "0246810"

(0...10).by(2) {|x| print x} # Prints "02468"

This by method is convenient but unnecessary; the Range class already defines an iterator named step that

serves the same purpose. The core Ruby API is a rich one, and it is worth taking the time to study the platform
(see Chapter 9) so you don't end up spending time writing methods that have already been implemented for
you!

1.1.9. Ruby Surprises

Every language has features that trip up programmers who are new to the language. Here we describe two of
Ruby's surprising features.

Ruby's strings are mutable, which may be surprising to Java programmers in particular. The []= operator allows

you to alter the characters of a string or to insert, delete, and replace substrings. The << operator allows you to

append to a string, and the String class defines various other methods that alter strings in place. Because

strings are mutable, string literals in a program are not unique objects. If you include a string literal within a
loop, it evaluates to a new object on each iteration of the loop. Call the freeze method on a string (or on any

object) to prevent any future modifications to that object.

Ruby's conditionals and loops (such as if and while) evaluate conditional expressions to determine which

branch to evaluate or whether to continue looping. Conditional expressions often evaluate to true or false, but

this is not required. The value of nil is treated the same as false, and any other value is the same as true.

This is likely to surprise C programmers who expect 0 to work like false, and JavaScript programmers who

expect the empty string "" to be the same as false.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.2. Try Ruby

We hope our tour of Ruby's key features has piqued your interest and you are eager to try Ruby out. To do that,
you'll need a Ruby interpreter, and you'll also want to know how to use three tools-irb, ri, and gem-that are
bundled with the interpreter. This section explains how to get and use them.

1.2.1. The Ruby Interpreter

The official web site for Ruby is http://www.ruby-lang.org. If Ruby is not already installed on your computer,
you can follow the download link on the ruby-lang.org home page for instructions on downloading and installing
the standard C-based reference implementation of Ruby.

Once you have Ruby installed, you can invoke the Ruby interpreter with the ruby command:

% ruby -e 'puts "hello world!"'

hello world!

The -e command-line option causes the interpreter to execute a single specified line of Ruby code. More

commonly, you'd place your Ruby program in a file and tell the interpreter to invoke it:

% ruby hello.rb

hello world!

Other Ruby Implementations

In the absence of a formal specification for the Ruby language, the Ruby interpreter from ruby-
lang.org is the reference implementation that defines the language. It is sometimes known as MRI,
or "Matz's Ruby Implementation." For Ruby 1.9, the original MRI interpreter was merged with
YARV ("Yet Another Ruby Virtual machine") to produce a new reference implementation that
performs internal compilation to bytecode and then executes that bytecode on a virtual machine.

The reference implementation is not the only one available, however. At the time of this writing,
there is one alternative implementation released at a 1.0 level (JRuby) and several other
implementations under development:

JRuby

JRuby is a Java-based implementation of Ruby, available from http://jruby.org. At the time
of this writing, the current release is JRuby 1.0, which is compatible with Ruby 1.8. A 1.9-
compatible release of JRuby may be available by the time you read this. JRuby is open
source software, developed primarily at Sun Microsystems.

IronRuby

http://www.ruby-lang.org
http://jruby.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

IronRuby is Microsoft's implementation of Ruby for their .NET framework and DLR (Dynamic
Language Runtime). The source code for IronRuby is available under the Microsoft
Permissive License. At the time of this writing, IronRuby is not yet at a 1.0 release level.
The project home page is http://www.ironruby.net.

Rubinius

Rubinius is an open source project that describes itself as "an alternative Ruby
implementation written largely in Ruby. The Rubinius virtual machine, named shotgun, is
based loosely on the Smalltalk-80 VM architecture." At the time of this writing, Rubinius is
not at version 1.0. The home page for the Rubinius project is http://rubini.us.

Cardinal

Cardinal is a Ruby implementation intended to run on the Parrot VM (which aims to power
Perl 6 and a number of other dynamic languages). At the time of this writing, neither Parrot
nor Cardinal have released a 1.0 version. Cardinal does not have its own home page; it is
hosted as part of the open source Parrot project at http://www.parrotcode.org.

1.2.2. Displaying Output

In order to try out Ruby features, you need a way to display output so that your test programs can print their
results. The puts function-used in the "hello world" code earlier-is one way to do this. Loosely speaking, puts

prints a string of text to the console and appends a newline (unless the string already ends with one). If passed
an object that is not a string, puts calls the to_s method of that object and prints the string returned by that

method. print does more or less the same thing, but it does not append a newline. For example, type the

following two-line program in a text editor and save it in a file named count.rb:

9.downto(1) {|n| print n } # No newline between numbers

puts " blastoff!" # End with a newline

Now run the program with your Ruby interpreter:

% ruby count.rb

It should produce the following output:

987654321 blastoff!

You may find the function p to be a useful alternative to puts. Not only is it shorter to type, but it converts

objects to strings with the inspect method, which sometimes returns more programmer-friendly

representations than to_s does. When printing an array, for example, p outputs it using array literal notation,

whereas puts simply prints each element of the array on a line by itself.

http://www.ironruby.net
http://rubini.us
http://www.parrotcode.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.2.3. Interactive Ruby with irb

irb (short for "interactive Ruby") is a Ruby shell. Type any Ruby expression at its prompt and it will evaluate it
and display its value for you. This is often the easiest way to try out the language features you read about in
this book. Here is an example irb session, with annotations:

$ irb --simple-prompt # Start irb from the terminal

>> 2**3 # Try exponentiation

=> 8 # This is the result

>> "Ruby! " * 3 # Try string repetition

=> "Ruby! Ruby! Ruby! " # The result

>> 1.upto(3){|x| puts x } # Try an iterator

1 # Three lines of output

2 # Because we called puts 3 times

3

=> 1 # The return value of 1.upto(3)

>> quit # Exit irb

$ # Back to the terminal prompt

This example session shows you all you need to know about irb to make productive use of it while exploring
Ruby. It does have a number of other important features, however, including subshells (type "irb" at the prompt
to start a subshell) and configurability.

1.2.4. Viewing Ruby Documentation with ri

Another critical Ruby tool is the ri[1] documentation viewer. Invoke ri on the command line followed by the name
of a Ruby class, module, or method, and ri will display documentation for you. You may specify a method name
without a qualifying class or module name, but this will just show you a list of all methods by that name (unless
the method is unique). Normally, you can separate a class or module name from a method name with a period.
If a class defines a class method and an instance method by the same name, you must instead use :: to refer to
the class method or # to refer to the instance method. Here are some example invocations of ri:

[1] Opinions differ as to what "ri" stands for. It has been called "Ruby Index," "Ruby Information," and "Ruby Interactive."

ri Array

ri Array.sort

ri Hash#each

ri Math::sqrt

This documentation displayed by ri is extracted from specially formatted comments in Ruby source code. See
Section 2.1.1.2 for details.

1.2.5. Ruby Package Management with gem

Ruby's package management system is known as RubyGems, and packages or modules distributed using
RubyGems are called "gems." RubyGems makes it easy to install Ruby software and can automatically manage
complex dependencies between packages.

The frontend script for RubyGems is gem, and it's distributed with Ruby 1.9 just as irb and ri are. In Ruby 1.8,
you must install it separately-see http://rubygems.org. Once the gem program is installed, you might use it
like this:

http://rubygems.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

gem install rails

Successfully installed activesupport-1.4.4

Successfully installed activerecord-1.15.5

Successfully installed actionpack-1.13.5

Successfully installed actionmailer-1.3.5

Successfully installed actionwebservice-1.2.5

Successfully installed rails-1.2.5

6 gems installed

Installing ri documentation for activesupport-1.4.4...

Installing ri documentation for activerecord-1.15.5...

...etc...

As you can see, the gem install command installs the most recent version of the gem you request and also

installs any gems that the requested gem requires. gem has other useful subcommands as well. Some
examples:

gem list # List installed gems

gem enviroment # Display RubyGems configuration information

gem update rails # Update a named gem

gem update # Update all installed gems

gem update --system # Update RubyGems itself

gem uninstall rails # Remove an installed gem

In Ruby 1.8, the gems you install cannot be automatically loaded by Ruby's require method. (See Section 7.6

for more about loading modules of Ruby code with the require method.) If you're writing a program that will be

using modules installed as gems, you must first require the rubygems module. Some Ruby 1.8 distributions are

preconfigured with the RubyGems library, but you may need to download and install this manually. Loading this

rubygems module alters the require method itself so that it searches the set of installed gems before it

searches the standard library. You can also automatically enable RubyGems support by running Ruby with the -

rubygems command-line option. And if you add -rubygems to the RUBYOPT environment variable, then the

RubyGems library will be loaded on every invocation of Ruby.

The rubygems module is part of the standard library in Ruby 1.9, but it is no longer required to load gems. Ruby

1.9 knows how to find installed gems on its own, and you do not have to put require 'rubygems' in your

programs that use gems.

When you load a gem with require (in either 1.8 or 1.9), it loads the most recent installed version of the gem

you specify. If you have more specific version requirements, you can use the gem method before calling

require. This finds a version of the gem matching the version constraints you specify and "activates" it, so that

a subsequent require will load that version:

require 'rubygems' # Not necessary in Ruby 1.9

gem 'RedCloth', '> 2.0', '< 4.0' # Activate RedCloth version 2.x or 3.x

require 'RedCloth' # And now load it

You'll find more about require and gems in Section 7.6.1. Complete coverage of RubyGems, the gem program,

and the rubygems module are beyond the scope of this book. The gem command is self-documenting-start by

running gem help. For details on the gem method, try ri gem. And for complete details, see the documentation

at http://rubygems.org.

http://rubygems.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.2.6. More Ruby Tutorials

This chapter began with a tutorial introduction to the Ruby language. You can try out the code snippets of that
tutorial using irb. If you want more tutorials before diving into the language more formally, there are two good
ones available by following links on the http://www.ruby-lang.org home page. One irb-based tutorial is called
"Ruby in Twenty Minutes."[*] Another tutorial, called "Try Ruby!", is interesting because it works in your web
browser and does not require you to have Ruby or irb installed on your system.[]

[*] At the time of this writing, the direct URL for this tutorial is http://www.ruby-lang.org/en/documentation/quickstart/.

[] If you can't find the "Try Ruby!" link on the Ruby home page, try this URL: http://tryruby.hobix.com.

1.2.7. Ruby Resources

The Ruby web site (http://www.ruby-lang.org) is the place to find links to other Ruby resources, such as online
documentation, libraries, mailing lists, blogs, IRC channels, user groups, and conferences. Try the
"Documentation," "Libraries," and "Community" links on the home page.

http://www.ruby-lang.org
http://www.ruby-lang.org/en/documentation/quickstart/
http://tryruby.hobix.com
http://www.ruby-lang.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.3. About This Book

As its title implies, this book covers the Ruby programming language and aspires to do so comprehensively and
accessibly. This edition of the book covers language versions 1.8 and 1.9. Ruby blurs the distinction between
language and platform, and so our coverage of the language includes a detailed overview of the core Ruby API.
But this book is not an API reference and does not cover the core classes comprehensively. Also, this is not a
book about Ruby frameworks (like Rails), nor a book about Ruby tools (like rake and gem).

This chapter concludes with a heavily commented extended example demonstrating a nontrivial Ruby program.
The chapters that follow cover Ruby from the bottom up:

Chapter 2 covers the lexical and syntactic structure of Ruby, including basic issues like character set, case
sensitivity, and reserved words.

Chapter 3 explains the kinds of data-numbers, strings, ranges, arrays, and so on-that Ruby programs
can manipulate, and it covers the basic features of all Ruby objects.

Chapter 4 covers primary expressions in Ruby-literals, variable references, method invocations, and
assignments-and it explains the operators used to combine primary expressions into compound
expressions.

Chapter 5 explains conditionals, loops (including blocks and iterator methods), exceptions, and the other
Ruby expressions that would be called statements or control structures in other languages.

Chapter 6 formally documents Ruby's method definition and invocation syntax, and it also covers the
invocable objects known as procs and lambdas. This chapter includes an explanation of closures and an
exploration of functional programming techniques in Ruby.

Chapter 7 explains how to define classes and modules in Ruby. Classes are fundamental to object-oriented
programming, and this chapter also covers topics such as inheritance, method visibility, mixin modules,
and the method name resolution algorithm.

Chapter 8 covers Ruby's APIs that allow a program to inspect and manipulate itself, and then
demonstrates metaprogramming techniques that use those APIs to make programming easier. The
chapter includes an example of domain-specific language.

Chapter 9 demonstrates the most important classes and methods of the core Ruby platform with simple
code fragments. This is not a reference but a detailed overview of the core classes. Topics include text
processing, numeric computation, collections (such as arrays and hashes), input/output, networking, and
threads. After reading this chapter, you'll understand the breadth of the Ruby platform, and you'll be able
to use the ri tool or an online reference to explore the platform in depth.

Chapter 10 covers the top-level Ruby programming environment, including global variables and global
functions, command-line arguments supported by the Ruby interpreter, and Ruby's security mechanism.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.3.1. How to Read This Book

It is easy to program in Ruby, but Ruby is not a simple language. Because this book documents Ruby
comprehensively, it is not a simple book (though we hope that you find it easy to read and understand). It is
intended for experienced programmers who want to master Ruby and are willing to read carefully and
thoughtfully to achieve that goal.

Like all similar programming books, this book contains forward and backward references throughout.
Programming languages are not linear systems, and it is impossible to document them linearly. As you can see
from the chapter outline, this book takes a bottom-up approach to Ruby: it starts with the simplest elements of
Ruby's grammar and moves on to document successively higher-level syntactic structures-from tokens to
values to expressions and control structures to methods and classes. This is a classic approach to documenting
programming languages, but it does not avoid the problem of forward references.

The book is intended to be read in the order it is written, but some advanced topics are best skimmed or
skipped on the first reading; they will make much more sense when you come back to them after having read
the chapters that follow. On the other hand, don't let every forward reference scare you off. Many of them are
simply informative, letting you know that more details will be presented later. The reference does not
necessarily imply that those future details are required to understand the current material.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.4. A Sudoku Solver in Ruby

This chapter concludes with a nontrivial Ruby application to give you a better idea of what Ruby programs
actually look like. We've chosen a Sudoku[*] solver as a good short to medium-length program that
demonstrates a number of features of Ruby. Don't expect to understand every detail of Example 1-1, but do
read through the code; it is very thoroughly commented, and you should have little difficulty following along.

[*] Sudoku is a logic puzzle that takes the form of a 9 x 9 grid of numbers and blank squares. The task is to fill each blank with a digit 1 to 9

so that no row or column or 3 x 3 subgrid includes the same digit twice. Sudoku has been popular in Japan for some time, but it gained sudden

popularity in the English-speaking world in 2004 and 2005. If you are unfamiliar with Sudoku, try reading the Wikipedia entry

(http://en.wikipedia.org/wiki/Sudoku) and try an online puzzle (http://websudoku.com/).

Example 1-1. A Sudoku solver in Ruby

Code View:
#

This module defines a Sudoku::Puzzle class to represent a 9x9

Sudoku puzzle and also defines exception classes raised for

invalid input and over-constrained puzzles. This module also defines

the method Sudoku.solve to solve a puzzle. The solve method uses

the Sudoku.scan method, which is also defined here.

Use this module to solve Sudoku puzzles with code like this:

#

require 'sudoku'

puts Sudoku.solve(Sudoku::Puzzle.new(ARGF.readlines))

#

module Sudoku

 #

 # The Sudoku::Puzzle class represents the state of a 9x9 Sudoku puzzle.

 #

 # Some definitions and terminology used in this implementation:

 #

 # - Each element of a puzzle is called a "cell".

 # - Rows and columns are numbered from 0 to 8, and the coordinates [0,0]

 # refer to the cell in the upper-left corner of the puzzle.

 # - The nine 3x3 subgrids are known as "boxes" and are also numbered from

 # 0 to 8, ordered from left to right and top to bottom. The box in

 # the upper-left is box 0. The box in the upper-right is box 2. The

 # box in the middle is box 4. The box in the lower-right is box 8.

 #

 # Create a new puzzle with Sudoku::Puzzle.new, specifying the initial

 # state as a string or as an array of strings. The string(s) should use

 # the characters 1 through 9 for the given values, and '.' for cells

 # whose value is unspecified. Whitespace in the input is ignored.

 #

 # Read and write access to individual cells of the puzzle is through the

 # [] and []= operators, which expect two-dimensional [row,column] indexing.

 # These methods use numbers (not characters) 0 to 9 for cell contents.

 # 0 represents an unknown value.

 #

 # The has_duplicates? predicate returns true if the puzzle is invalid

 # because any row, column, or box includes the same digit twice.

http://en.wikipedia.org/wiki/Sudoku
http://websudoku.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 #

 # The each_unknown method is an iterator that loops through the cells of

 # the puzzle and invokes the associated block once for each cell whose

 # value is unknown.

 #

 # The possible method returns an array of integers in the range 1..9.

 # The elements of the array are the only values allowed in the specified

 # cell. If this array is empty, then the puzzle is over-specified and

 # cannot be solved. If the array has only one element, then that element

 # must be the value for that cell of the puzzle.

 #

 class Puzzle

 # These constants are used for translating between the external

 # string representation of a puzzle and the internal representation.

 ASCII = ".123456789"

 BIN = "\000\001\002\003\004\005\006\007\010\011"

 # This is the initialization method for the class. It is automatically

 # invoked on new Puzzle instances created with Puzzle.new. Pass the input

 # puzzle as an array of lines or as a single string. Use ASCII digits 1

 # to 9 and use the '.' character for unknown cells. Whitespace,

 # including newlines, will be stripped.

 def initialize(lines)

 if (lines.respond_to? :join) # If argument looks like an array of lines

 s = lines.join # Then join them into a single string

 else # Otherwise, assume we have a string

 s = lines.dup # And make a private copy of it

 end

 # Remove whitespace (including newlines) from the data

 # The '!' in gsub! indicates that this is a mutator method that

 # alters the string directly rather than making a copy.

 s.gsub!(/\s/, "") # /\s/ is a Regexp that matches any whitespace

 # Raise an exception if the input is the wrong size.

 # Note that we use unless instead of if, and use it in modifier form.

 raise Invalid, "Grid is the wrong size" unless s.size == 81

 # Check for invalid characters, and save the location of the first.

 # Note that we assign and test the value assigned at the same time.

 if i = s.index(/[^123456789\.]/)

 # Include the invalid character in the error message.

 # Note the Ruby expression inside #{} in string literal.

 raise Invalid, "Illegal character #{s[i,1]} in puzzle"

 end

 # The following two lines convert our string of ASCII characters

 # to an array of integers, using two powerful String methods.

 # The resulting array is stored in the instance variable @grid

 # The number 0 is used to represent an unknown value.

 s.tr!(ASCII, BIN) # Translate ASCII characters into bytes

 @grid = s.unpack('c*') # Now unpack the bytes into an array of numbers

 # Make sure that the rows, columns, and boxes have no duplicates.

 raise Invalid, "Initial puzzle has duplicates" if has_duplicates?

 end

 # Return the state of the puzzle as a string of 9 lines with 9

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 # characters (plus newline) each.

 def to_s

 # This method is implemented with a single line of Ruby magic that

 # reverses the steps in the initialize() method. Writing dense code

 # like this is probably not good coding style, but it demonstrates

 # the power and expressiveness of the language.

 #

 # Broken down, the line below works like this:

 # (0..8).collect invokes the code in curly braces 9 times--once

 # for each row--and collects the return value of that code into an

 # array. The code in curly braces takes a subarray of the grid

 # representing a single row and packs its numbers into a string.

 # The join() method joins the elements of the array into a single

 # string with newlines between them. Finally, the tr() method

 # translates the binary string representation into ASCII digits.

 (0..8).collect{|r| @grid[r*9,9].pack('c9')}.join("\n").tr(BIN,ASCII)

 end

 # Return a duplicate of this Puzzle object.

 # This method overrides Object.dup to copy the @grid array.

 def dup

 copy = super # Make a shallow copy by calling Object.dup

 @grid = @grid.dup # Make a new copy of the internal data

 copy # Return the copied object

 end

 # We override the array access operator to allow access to the

 # individual cells of a puzzle. Puzzles are two-dimensional,

 # and must be indexed with row and column coordinates.

 def [](row, col)

 # Convert two-dimensional (row,col) coordinates into a one-dimensional

 # array index and get and return the cell value at that index

 @grid[row*9 + col]

 end

 # This method allows the array access operator to be used on the

 # lefthand side of an assignment operation. It sets the value of

 # the cell at (row, col) to newvalue.

 def []=(row, col, newvalue)

 # Raise an exception unless the new value is in the range 0 to 9.

 unless (0..9).include? newvalue

 raise Invalid, "illegal cell value"

 end

 # Set the appropriate element of the internal array to the value.

 @grid[row*9 + col] = newvalue

 end

 # This array maps from one-dimensional grid index to box number.

 # It is used in the method below. The name BoxOfIndex begins with a

 # capital letter, so this is a constant. Also, the array has been

 # frozen, so it cannot be modified.

 BoxOfIndex = [

 0,0,0,1,1,1,2,2,2,0,0,0,1,1,1,2,2,2,0,0,0,1,1,1,2,2,2,

 3,3,3,4,4,4,5,5,5,3,3,3,4,4,4,5,5,5,3,3,3,4,4,4,5,5,5,

 6,6,6,7,7,7,8,8,8,6,6,6,7,7,7,8,8,8,6,6,6,7,7,7,8,8,8

].freeze

 # This method defines a custom looping construct (an "iterator") for

 # Sudoku puzzles. For each cell whose value is unknown, this method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 # passes ("yields") the row number, column number, and box number to the

 # block associated with this iterator.

 def each_unknown

 0.upto 8 do |row| # For each row

 0.upto 8 do |col| # For each column

 index = row*9+col # Cell index for (row,col)

 next if @grid[index] != 0 # Move on if we know the cell's value

 box = BoxOfIndex[index] # Figure out the box for this cell

 yield row, col, box # Invoke the associated block

 end

 end

 end

 # Returns true if any row, column, or box has duplicates.

 # Otherwise returns false. Duplicates in rows, columns, or boxes are not

 # allowed in Sudoku, so a return value of true means an invalid puzzle.

 def has_duplicates?

 # uniq! returns nil if all the elements in an array are unique.

 # So if uniq! returns something then the board has duplicates.

 0.upto(8) {|row| return true if rowdigits(row).uniq! }

 0.upto(8) {|col| return true if coldigits(col).uniq! }

 0.upto(8) {|box| return true if boxdigits(box).uniq! }

 false # If all the tests have passed, then the board has no duplicates

 end

 # This array holds a set of all Sudoku digits. Used below.

 AllDigits = [1, 2, 3, 4, 5, 6, 7, 8, 9].freeze

 # Return an array of all values that could be placed in the cell

 # at (row,col) without creating a duplicate in the row, column, or box.

 # Note that the + operator on arrays does concatenation but that the -

 # operator performs a set difference operation.

 def possible(row, col, box)

 AllDigits - (rowdigits(row) + coldigits(col) + boxdigits(box))

 end

 private # All methods after this line are private to the class

 # Return an array of all known values in the specified row.

 def rowdigits(row)

 # Extract the subarray that represents the row and remove all zeros.

 # Array subtraction is set difference, with duplicate removal.

 @grid[row*9,9] - [0]

 end

 # Return an array of all known values in the specified column.

 def coldigits(col)

 result = [] # Start with an empty array

 col.step(80, 9) {|i| # Loop from col by nines up to 80

 v = @grid[i] # Get value of cell at that index

 result << v if (v != 0) # Add it to the array if non-zero

 }

 result # Return the array

 end

 # Map box number to the index of the upper-left corner of the box.

 BoxToIndex = [0, 3, 6, 27, 30, 33, 54, 57, 60].freeze

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 # Return an array of all the known values in the specified box.

 def boxdigits(b)

 # Convert box number to index of upper-left corner of the box.

 i = BoxToIndex[b]

 # Return an array of values, with 0 elements removed.

 [

 @grid[i], @grid[i+1], @grid[i+2],

 @grid[i+9], @grid[i+10], @grid[i+11],

 @grid[i+18], @grid[i+19], @grid[i+20]

] - [0]

 end

 end # This is the end of the Puzzle class

 # An exception of this class indicates invalid input,

 class Invalid < StandardError

 end

 # An exception of this class indicates that a puzzle is over-constrained

 # and that no solution is possible.

 class Impossible < StandardError

 end

 #

 # This method scans a Puzzle, looking for unknown cells that have only

 # a single possible value. If it finds any, it sets their value. Since

 # setting a cell alters the possible values for other cells, it

 # continues scanning until it has scanned the entire puzzle without

 # finding any cells whose value it can set.

 #

 # This method returns three values. If it solves the puzzle, all three

 # values are nil. Otherwise, the first two values returned are the row and

 # column of a cell whose value is still unknown. The third value is the

 # set of values possible at that row and column. This is a minimal set of

 # possible values: there is no unknown cell in the puzzle that has fewer

 # possible values. This complex return value enables a useful heuristic

 # in the solve() method: that method can guess at values for cells where

 # the guess is most likely to be correct.

 #

 # This method raises Impossible if it finds a cell for which there are

 # no possible values. This can happen if the puzzle is over-constrained,

 # or if the solve() method below has made an incorrect guess.

 #

 # This method mutates the specified Puzzle object in place.

 # If has_duplicates? is false on entry, then it will be false on exit.

 #

 def Sudoku.scan(puzzle)

 unchanged = false # This is our loop variable

 # Loop until we've scanned the whole board without making a change.

 until unchanged

 unchanged = true # Assume no cells will be changed this time

 rmin,cmin,pmin = nil # Track cell with minimal possible set

 min = 10 # More than the maximal number of possibilities

 # Loop through cells whose value is unknown.

 puzzle.each_unknown do |row, col, box|

 # Find the set of values that could go in this cell

 p = puzzle.possible(row, col, box)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 # Branch based on the size of the set p.

 # We care about 3 cases: p.size==0, p.size==1, and p.size > 1.

 case p.size

 when 0 # No possible values means the puzzle is over-constrained

 raise Impossible

 when 1 # We've found a unique value, so set it in the grid

 puzzle[row,col] = p[0] # Set that position on the grid to the value

 unchanged = false # Note that we've made a change

 else # For any other number of possibilities

 # Keep track of the smallest set of possibilities.

 # But don't bother if we're going to repeat this loop.

 if unchanged && p.size < min

 min = p.size # Current smallest size

 rmin, cmin, pmin = row, col, p # Note parallel assignment

 end

 end

 end

 end

 # Return the cell with the minimal set of possibilities.

 # Note multiple return values.

 return rmin, cmin, pmin

 end

 # Solve a Sudoku puzzle using simple logic, if possible, but fall back

 # on brute-force when necessary. This is a recursive method. It either

 # returns a solution or raises an exception. The solution is returned

 # as a new Puzzle object with no unknown cells. This method does not

 # modify the Puzzle it is passed. Note that this method cannot detect

 # an under-constrained puzzle.

 def Sudoku.solve(puzzle)

 # Make a private copy of the puzzle that we can modify.

 puzzle = puzzle.dup

 # Use logic to fill in as much of the puzzle as we can.

 # This method mutates the puzzle we give it, but always leaves it valid.

 # It returns a row, a column, and set of possible values at that cell.

 # Note parallel assignment of these return values to three variables.

 r,c,p = scan(puzzle)

 # If we solved it with logic, return the solved puzzle.

 return puzzle if r == nil

 # Otherwise, try each of the values in p for cell [r,c].

 # Since we're picking from a set of possible values, the guess leaves

 # the puzzle in a valid state. The guess will either lead to a solution

 # or to an impossible puzzle. We'll know we have an impossible

 # puzzle if a recursive call to scan throws an exception. If this happens

 # we need to try another guess, or re-raise an exception if we've tried

 # all the options we've got.

 p.each do |guess| # For each value in the set of possible values

 puzzle[r,c] = guess # Guess the value

 begin

 # Now try (recursively) to solve the modified puzzle.

 # This recursive invocation will call scan() again to apply logic

 # to the modified board, and will then guess another cell if needed.

 # Remember that solve() will either return a valid solution or

 # raise an exception.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 return solve(puzzle) # If it returns, we just return the solution

 rescue Impossible

 next # If it raises an exception, try the next guess

 end

 end

 # If we get here, then none of our guesses worked out

 # so we must have guessed wrong sometime earlier.

 raise Impossible

 end

end

Example 1-1 is 345 lines long. Because the example was written for this introductory chapter, it has particularly
verbose comments. Strip away the comments and the blank lines and you're left with just 129 lines of code,
which is pretty good for an object-oriented Sudoku solver that does not rely on a simple brute-force algorithm.
We hope that this example demonstrates the power and expressiveness of Ruby.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 2. The Structure and Execution of Ruby Programs

This chapter explains the structure of Ruby programs. It starts with the lexical structure, covering tokens and
the characters that comprise them. Next, it covers the syntactic structure of a Ruby program, explaining how
expressions, control structures, methods, classes, and so on are written as a series of tokens. Finally, the
chapter describes files of Ruby code, explaining how Ruby programs can be split across multiple files and how
the Ruby interpreter executes a file of Ruby code.

2.1. Lexical Structure

The Ruby interpreter parses a program as a sequence of tokens. Tokens include comments, literals,
punctuation, identifiers, and keywords. This section introduces these types of tokens and also includes
important information about the characters that comprise the tokens and the whitespace that separates the
tokens.

2.1.1. Comments

Comments in Ruby begin with a # character and continue to the end of the line. The Ruby interpreter ignores

the # character and any text that follows it (but does not ignore the newline character, which is meaningful

whitespace and may serve as a statement terminator). If a # character appears within a string or regular

expression literal (see Chapter 3), then it is simply part of the string or regular expression and does not
introduce a comment:

This entire line is a comment

x = "#This is a string" # And this is a comment

y = /#This is a regular expression/ # Here's another comment

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Multiline comments are usually written simply by beginning each line with a separate # character:

#

This class represents a Complex number

Despite its name, it is not complex at all.

#

Note that Ruby has no equivalent of the C-style /*...*/ comment. There is no way to embed a comment in the

middle of a line of code.

2.1.1.1. Embedded documents

Ruby supports another style of multiline comment known as an embedded document. These start on a line that
begins =begin and continue until (and include) a line that begins =end. Any text that appears after =begin or

=end is part of the comment and is also ignored, but that extra text must be separated from the =begin and

=end by at least one space.

Embedded documents are a convenient way to comment out long blocks of code without prefixing each line with
a # character:

=begin Someone needs to fix the broken code below!

 Any code here is commented out

=end

Note that embedded documents only work if the = signs are the first characters of each line:

=begin This used to begin a comment. Now it is itself commented out!

 The code that goes here is no longer commented out

=end

As their name implies, embedded documents can be used to include long blocks of documentation within a
program, or to embed source code of another language (such as HTML or SQL) within a Ruby program.
Embedded documents are usually intended to be used by some kind of postprocessing tool that is run over the
Ruby source code, and it is typical to follow =begin with an identifier that indicates which tool the comment is

intended for.

2.1.1.2. Documentation comments

Ruby programs can include embedded API documentation as specially formatted comments that precede
method, class, and module definitions. You can browse this documentation using the ri tool described earlier in
Section 1.2.4. The rdoc tool extracts documentation comments from Ruby source and formats them as HTML or
prepares them for display by ri. Documentation of the rdoc tool is beyond the scope of this book; see the file
lib/rdoc/README in the Ruby source code for details.

Documentation comments must come immediately before the module, class, or method whose API they
document. They are usually written as multiline comments where each line begins with #, but they can also be

written as embedded documents that start =begin rdoc. (The rdoc tool will not process these comments if you

leave out the "rdoc".)

The following example comment demonstrates the most important formatting elements of the markup grammar
used in Ruby's documentation comments; a detailed description of the grammar is available in the README file

http://lib.ommolketab.ir
http://lib.ommolketab.ir

mentioned previously:

Code View:
#

Rdoc comments use a simple markup grammar like those used in wikis.

Separate paragraphs with a blank line.

= Headings

Headings begin with an equals sign

== Sub-Headings

The line above produces a subheading.

=== Sub-Sub-Heading

And so on.

= Examples

Indented lines are displayed verbatim in code font.

Be careful not to indent your headings and lists, though.

= Lists and Fonts

List items begin with * or -. Indicate fonts with punctuation or HTML:

* _italic_ or <i>multi-word italic</i>

* *bold* or multi-word bold

* +code+ or <tt>multi-word code</tt>

1. Numbered lists begin with numbers.

99. Any number will do; they don't have to be sequential.

1. There is no way to do nested lists.

The terms of a description list are bracketed:

[item 1] This is a description of item 1

[item 2] This is a description of item 2

2.1.2. Literals

Literals are values that appear directly in Ruby source code. They include numbers, strings of text, and regular
expressions. (Other literals, such as array and hash values, are not individual tokens but are more complex
expressions.) Ruby number and string literal syntax is actually quite complicated, and is covered in detail in
Chapter 3. For now, an example suffices to illustrate what Ruby literals look like:

1 # An integer literal

1.0 # A floating-point literal

'one' # A string literal

"two" # Another string literal

/three/ # A regular expression literal

2.1.3. Punctuation

Ruby uses punctuation characters for a number of purposes. Most Ruby operators are written using punctuation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

characters, such as + for addition, * for multiplication, and || for the Boolean OR operation. See Section 4.6 for

a complete list of Ruby operators. Punctuation characters also serve to delimit string, regular expression, array,
and hash literals, and to group and separate expressions, method arguments, and array indexes. We'll see
miscellaneous other uses of punctuation scattered throughout Ruby syntax.

2.1.4. Identifiers

An identifier is simply a name. Ruby uses identifiers to name variables, methods, classes, and so forth. Ruby
identifiers consist of letters, numbers, and underscore characters, but they may not begin with a number.
Identifiers may not include whitespace or nonprinting characters, and they may not include punctuation
characters except as described here.

Identifiers that begin with a capital letter A–Z are constants, and the Ruby interpreter will issue a warning (but
not an error) if you alter the value of such an identifier. Class and module names must begin with initial capital
letters. The following are identifiers:

i

x2

old_value

_internal # Identifiers may begin with underscores

PI # Constant

By convention, multiword identifiers that are not constants are written with underscores like_this, whereas

multiword constants are written LikeThis or LIKE_THIS.

2.1.4.1. Case sensitivity

Ruby is a case-sensitive language. Lowercase letters and uppercase letters are distinct. The keyword end, for

example, is completely different from the keyword END.

2.1.4.2. Unicode characters in identifiers

Ruby's rules for forming identifiers are defined in terms of ASCII characters that are not allowed. In general, all
characters outside of the ASCII character set are valid in identifiers, including characters that appear to be
punctuation. In a UTF-8 encoded file, for example, the following Ruby code is valid:

def x(x,y) # The name of this method is the Unicode multiplication sign

 x*y # The body of this method multiplies its arguments

end

Similarly, a Japanese programmer writing a program encoded in SJIS or EUC can include Kanji characters in her
identifiers. See Section 2.4.1 for more about writing Ruby programs using encodings other than ASCII.

The special rules about forming identifiers are based on ASCII characters and are not enforced for characters
outside of that set. An identifier may not begin with an ASCII digit, for example, but it may begin with a digit
from a non-Latin alphabet. Similarly, an identifier must begin with an ASCII capital letter in order to be
considered a constant. The identifier Å, for example, is not a constant.

Two identifiers are the same only if they are represented by the same sequence of bytes. Some character sets,
such as Unicode, have more than one codepoint that represents the same character. No Unicode normalization
is performed in Ruby, and two distinct codepoints are treated as distinct characters, even if they have the same
meaning or are represented by the same font glyph.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.1.4.3. Punctuation in identifiers

Punctuation characters may appear at the start and end of Ruby identifiers. They have the following meanings:

$ Global variables are prefixed with a dollar sign. Following Perl's example, Ruby defines a number of global
variables that include other punctuation characters, such as $_ and $-K. See Chapter 10 for a list of these

special globals.

@ Instance variables are prefixed with a single at sign, and class variables are prefixed with two at signs.
Instance variables and class variables are explained in Chapter 7.

? As a helpful convention, methods that return Boolean values often have names that end with a question
mark.

! Method names may end with an exclamation point to indicate that they should be used cautiously. This
naming convention is often to distinguish mutator methods that alter the object on which they are invoked
from variants that return a modified copy of the original object.

= Methods whose names end with an equals sign can be invoked by placing the method name, without the
equals sign, on the left side of an assignment operator. (You can read more about this in Section 4.5.3 and
Section 7.1.5.)

Here are some example identifiers that contain leading or trailing punctuation characters:

$files # A global variable

@data # An instance variable

@@counter # A class variable

empty? # A Boolean-valued method or predicate

sort! # An in-place alternative to the regular sort method

timeout= # A method invoked by assignment

A number of Ruby's operators are implemented as methods, so that classes can redefine them for their own
purposes. It is therefore possible to use certain operators as method names as well. In this context, the
punctuation character or characters of the operator are treated as identifiers rather than operators. See Section
4.6 for more about Ruby's operators.

2.1.5. Keywords

The following keywords have special meaning in Ruby and are treated specially by the Ruby parser:

__LINE__ case ensure not then

__ENCODING__ class false or true

__FILE__ def for redo undef

BEGIN defined? if rescue unless

END do in retry until

alias else module return when

and elsif next self while

begin end nil super yield

break

In addition to those keywords, there are three keyword-like tokens that are treated specially by the Ruby parser

http://lib.ommolketab.ir
http://lib.ommolketab.ir

when they appear at the beginning of a line:

=begin =end __END__

As we've seen, =begin and =end at the beginning of a line delimit multiline comments. And the token __END__

marks the end of the program (and the beginning of a data section) if it appears on a line by itself with no
leading or trailing whitespace.

In most languages, these words would be called "reserved words" and they would be never allowed as
identifiers. The Ruby parser is flexible and does not complain if you prefix these keywords with @, @@, or $

prefixes and use them as instance, class, or global variable names. Also, you can use these keywords as method
names, with the caveat that the method must always be explicitly invoked through an object. Note, however,
that using these keywords in identifiers will result in confusing code. The best practice is to treat these
keywords as reserved.

Many important features of the Ruby language are actually implemented as methods of the Kernel, Module,

Class, and Object classes. It is good practice, therefore, to treat the following identifiers as reserved words as

well:

Code View:
These are methods that appear to be statements or keywords

at_exit catch private require

attr include proc throw

attr_accessor lambda protected

attr_reader load public

attr_writer loop raise

These are commonly used global functions

Array chomp! gsub! select

Float chop iterator? sleep

Integer chop! load split

String eval open sprintf

URI exec p srand

abort exit print sub

autoload exit! printf sub!

autoload? fail putc syscall

binding fork puts system

block_given? format rand test

callcc getc readline trap

caller gets readlines warn

chomp gsub scan

These are commonly used object methods

allocate freeze kind_of? superclass

clone frozen? method taint

display hash methods tainted?

dup id new to_a

enum_for inherited nil? to_enum

eql? inspect object_id to_s

equal? instance_of? respond_to? untaint

extend is_a? send

2.1.6. Whitespace

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Spaces, tabs, and newlines are not tokens themselves but are used to separate tokens that would otherwise
merge into a single token. Aside from this basic token-separating function, most whitespace is ignored by the
Ruby interpreter and is simply used to format programs so that they are easy to read and understand. Not all
whitespace is ignored, however. Some is required, and some whitespace is actually forbidden. Ruby's grammar
is expressive but complex, and there are a few cases in which inserting or removing whitespace can change the
meaning of a program. Although these cases do not often arise, it is important to know about them.

2.1.6.1. Newlines as statement terminators

The most common form of whitespace dependency has to do with newlines as statement terminators. In
languages like C and Java, every statement must be terminated with a semicolon. You can use semicolons to
terminate statements in Ruby, too, but this is only required if you put more than one statement on the same
line. Convention dictates that semicolons be omitted elsewhere.

Without explicit semicolons, the Ruby interpreter must figure out on its own where statements end. If the Ruby
code on a line is a syntactically complete statement, Ruby uses the newline as the statement terminator. If the
statement is not complete, then Ruby continues parsing the statement on the next line. (In Ruby 1.9, there is
one exception, which is described later in this section.)

This is no problem if all your statements fit on a single line. When they don't, however, you must take care that
you break the line in such a way that the Ruby interpreter cannot interpret the first line as a statement of its
own. This is where the whitespace dependency lies: your program may behave differently depending on where
you insert a newline. For example, the following code adds x and y and assigns the sum to total:

total = x + # Incomplete expression, parsing continues

 y

But this code assigns x to total, and then evaluates y, doing nothing with it:

total = x # This is a complete expression

 + y # A useless but complete expression

As another example, consider the return and break statements. These statements may optionally be followed

by an expression that provides a return value. A newline between the keyword and the expression will terminate
the statement before the expression.

You can safely insert a newline without fear of prematurely terminating your statement after an operator or
after a period or comma in a method invocation, array literal, or hash literal.

You can also escape a line break with a backslash, which prevents Ruby from automatically terminating the
statement:

var total = first_long_variable_name + second_long_variable_name \

 + third_long_variable_name # Note no statement terminator above

In Ruby 1.9, the statement terminator rules change slightly. If the first nonspace character on a line is a period,
then the line is considered a continuation line, and the newline before it is not a statement terminator. Lines
that start with periods are useful for the long method chains sometimes used with "fluent APIs," in which each
method invocation returns an object on which additional invocations can be made. For example:

animals = Array.new

 .push("dog") # Does not work in Ruby 1.8

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 .push("cow")

 .push("cat")

 .sort

2.1.6.2. Spaces and method invocations

Ruby's grammar allows the parentheses around method invocations to be omitted in certain circumstances. This
allows Ruby methods to be used as if they were statements, which is an important part of Ruby's elegance.
Unfortunately, however, it opens up a pernicious whitespace dependency. Consider the following two lines,
which differ only by a single space:

f(3+2)+1

f (3+2)+1

The first line passes the value 5 to the function f and then adds 1 to the result. Since the second line has a

space after the function name, Ruby assumes that the parentheses around the method call have been omitted.
The parentheses that appear after the space are used to group a subexpression, but the entire expression
(3+2)+1 is used as the method argument. If warnings are enabled (with -w), Ruby issues a warning whenever it

sees ambiguous code like this.

The solution to this whitespace dependency is straightforward:

Never put a space between a method name and the opening parenthesis.

If the first argument to a method begins with an open parenthesis, always use parentheses in the method
invocation. For example, write f((3+2)+1).

Always run the Ruby interpreter with the -w option so it will warn you if you forget either of the rules

above!

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 2. The Structure and Execution of Ruby Programs

This chapter explains the structure of Ruby programs. It starts with the lexical structure, covering tokens and
the characters that comprise them. Next, it covers the syntactic structure of a Ruby program, explaining how
expressions, control structures, methods, classes, and so on are written as a series of tokens. Finally, the
chapter describes files of Ruby code, explaining how Ruby programs can be split across multiple files and how
the Ruby interpreter executes a file of Ruby code.

2.1. Lexical Structure

The Ruby interpreter parses a program as a sequence of tokens. Tokens include comments, literals,
punctuation, identifiers, and keywords. This section introduces these types of tokens and also includes
important information about the characters that comprise the tokens and the whitespace that separates the
tokens.

2.1.1. Comments

Comments in Ruby begin with a # character and continue to the end of the line. The Ruby interpreter ignores

the # character and any text that follows it (but does not ignore the newline character, which is meaningful

whitespace and may serve as a statement terminator). If a # character appears within a string or regular

expression literal (see Chapter 3), then it is simply part of the string or regular expression and does not
introduce a comment:

This entire line is a comment

x = "#This is a string" # And this is a comment

y = /#This is a regular expression/ # Here's another comment

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Multiline comments are usually written simply by beginning each line with a separate # character:

#

This class represents a Complex number

Despite its name, it is not complex at all.

#

Note that Ruby has no equivalent of the C-style /*...*/ comment. There is no way to embed a comment in the

middle of a line of code.

2.1.1.1. Embedded documents

Ruby supports another style of multiline comment known as an embedded document. These start on a line that
begins =begin and continue until (and include) a line that begins =end. Any text that appears after =begin or

=end is part of the comment and is also ignored, but that extra text must be separated from the =begin and

=end by at least one space.

Embedded documents are a convenient way to comment out long blocks of code without prefixing each line with
a # character:

=begin Someone needs to fix the broken code below!

 Any code here is commented out

=end

Note that embedded documents only work if the = signs are the first characters of each line:

=begin This used to begin a comment. Now it is itself commented out!

 The code that goes here is no longer commented out

=end

As their name implies, embedded documents can be used to include long blocks of documentation within a
program, or to embed source code of another language (such as HTML or SQL) within a Ruby program.
Embedded documents are usually intended to be used by some kind of postprocessing tool that is run over the
Ruby source code, and it is typical to follow =begin with an identifier that indicates which tool the comment is

intended for.

2.1.1.2. Documentation comments

Ruby programs can include embedded API documentation as specially formatted comments that precede
method, class, and module definitions. You can browse this documentation using the ri tool described earlier in
Section 1.2.4. The rdoc tool extracts documentation comments from Ruby source and formats them as HTML or
prepares them for display by ri. Documentation of the rdoc tool is beyond the scope of this book; see the file
lib/rdoc/README in the Ruby source code for details.

Documentation comments must come immediately before the module, class, or method whose API they
document. They are usually written as multiline comments where each line begins with #, but they can also be

written as embedded documents that start =begin rdoc. (The rdoc tool will not process these comments if you

leave out the "rdoc".)

The following example comment demonstrates the most important formatting elements of the markup grammar
used in Ruby's documentation comments; a detailed description of the grammar is available in the README file

http://lib.ommolketab.ir
http://lib.ommolketab.ir

mentioned previously:

Code View:
#

Rdoc comments use a simple markup grammar like those used in wikis.

Separate paragraphs with a blank line.

= Headings

Headings begin with an equals sign

== Sub-Headings

The line above produces a subheading.

=== Sub-Sub-Heading

And so on.

= Examples

Indented lines are displayed verbatim in code font.

Be careful not to indent your headings and lists, though.

= Lists and Fonts

List items begin with * or -. Indicate fonts with punctuation or HTML:

* _italic_ or <i>multi-word italic</i>

* *bold* or multi-word bold

* +code+ or <tt>multi-word code</tt>

1. Numbered lists begin with numbers.

99. Any number will do; they don't have to be sequential.

1. There is no way to do nested lists.

The terms of a description list are bracketed:

[item 1] This is a description of item 1

[item 2] This is a description of item 2

2.1.2. Literals

Literals are values that appear directly in Ruby source code. They include numbers, strings of text, and regular
expressions. (Other literals, such as array and hash values, are not individual tokens but are more complex
expressions.) Ruby number and string literal syntax is actually quite complicated, and is covered in detail in
Chapter 3. For now, an example suffices to illustrate what Ruby literals look like:

1 # An integer literal

1.0 # A floating-point literal

'one' # A string literal

"two" # Another string literal

/three/ # A regular expression literal

2.1.3. Punctuation

Ruby uses punctuation characters for a number of purposes. Most Ruby operators are written using punctuation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

characters, such as + for addition, * for multiplication, and || for the Boolean OR operation. See Section 4.6 for

a complete list of Ruby operators. Punctuation characters also serve to delimit string, regular expression, array,
and hash literals, and to group and separate expressions, method arguments, and array indexes. We'll see
miscellaneous other uses of punctuation scattered throughout Ruby syntax.

2.1.4. Identifiers

An identifier is simply a name. Ruby uses identifiers to name variables, methods, classes, and so forth. Ruby
identifiers consist of letters, numbers, and underscore characters, but they may not begin with a number.
Identifiers may not include whitespace or nonprinting characters, and they may not include punctuation
characters except as described here.

Identifiers that begin with a capital letter A–Z are constants, and the Ruby interpreter will issue a warning (but
not an error) if you alter the value of such an identifier. Class and module names must begin with initial capital
letters. The following are identifiers:

i

x2

old_value

_internal # Identifiers may begin with underscores

PI # Constant

By convention, multiword identifiers that are not constants are written with underscores like_this, whereas

multiword constants are written LikeThis or LIKE_THIS.

2.1.4.1. Case sensitivity

Ruby is a case-sensitive language. Lowercase letters and uppercase letters are distinct. The keyword end, for

example, is completely different from the keyword END.

2.1.4.2. Unicode characters in identifiers

Ruby's rules for forming identifiers are defined in terms of ASCII characters that are not allowed. In general, all
characters outside of the ASCII character set are valid in identifiers, including characters that appear to be
punctuation. In a UTF-8 encoded file, for example, the following Ruby code is valid:

def x(x,y) # The name of this method is the Unicode multiplication sign

 x*y # The body of this method multiplies its arguments

end

Similarly, a Japanese programmer writing a program encoded in SJIS or EUC can include Kanji characters in her
identifiers. See Section 2.4.1 for more about writing Ruby programs using encodings other than ASCII.

The special rules about forming identifiers are based on ASCII characters and are not enforced for characters
outside of that set. An identifier may not begin with an ASCII digit, for example, but it may begin with a digit
from a non-Latin alphabet. Similarly, an identifier must begin with an ASCII capital letter in order to be
considered a constant. The identifier Å, for example, is not a constant.

Two identifiers are the same only if they are represented by the same sequence of bytes. Some character sets,
such as Unicode, have more than one codepoint that represents the same character. No Unicode normalization
is performed in Ruby, and two distinct codepoints are treated as distinct characters, even if they have the same
meaning or are represented by the same font glyph.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.1.4.3. Punctuation in identifiers

Punctuation characters may appear at the start and end of Ruby identifiers. They have the following meanings:

$ Global variables are prefixed with a dollar sign. Following Perl's example, Ruby defines a number of global
variables that include other punctuation characters, such as $_ and $-K. See Chapter 10 for a list of these

special globals.

@ Instance variables are prefixed with a single at sign, and class variables are prefixed with two at signs.
Instance variables and class variables are explained in Chapter 7.

? As a helpful convention, methods that return Boolean values often have names that end with a question
mark.

! Method names may end with an exclamation point to indicate that they should be used cautiously. This
naming convention is often to distinguish mutator methods that alter the object on which they are invoked
from variants that return a modified copy of the original object.

= Methods whose names end with an equals sign can be invoked by placing the method name, without the
equals sign, on the left side of an assignment operator. (You can read more about this in Section 4.5.3 and
Section 7.1.5.)

Here are some example identifiers that contain leading or trailing punctuation characters:

$files # A global variable

@data # An instance variable

@@counter # A class variable

empty? # A Boolean-valued method or predicate

sort! # An in-place alternative to the regular sort method

timeout= # A method invoked by assignment

A number of Ruby's operators are implemented as methods, so that classes can redefine them for their own
purposes. It is therefore possible to use certain operators as method names as well. In this context, the
punctuation character or characters of the operator are treated as identifiers rather than operators. See Section
4.6 for more about Ruby's operators.

2.1.5. Keywords

The following keywords have special meaning in Ruby and are treated specially by the Ruby parser:

__LINE__ case ensure not then

__ENCODING__ class false or true

__FILE__ def for redo undef

BEGIN defined? if rescue unless

END do in retry until

alias else module return when

and elsif next self while

begin end nil super yield

break

In addition to those keywords, there are three keyword-like tokens that are treated specially by the Ruby parser

http://lib.ommolketab.ir
http://lib.ommolketab.ir

when they appear at the beginning of a line:

=begin =end __END__

As we've seen, =begin and =end at the beginning of a line delimit multiline comments. And the token __END__

marks the end of the program (and the beginning of a data section) if it appears on a line by itself with no
leading or trailing whitespace.

In most languages, these words would be called "reserved words" and they would be never allowed as
identifiers. The Ruby parser is flexible and does not complain if you prefix these keywords with @, @@, or $

prefixes and use them as instance, class, or global variable names. Also, you can use these keywords as method
names, with the caveat that the method must always be explicitly invoked through an object. Note, however,
that using these keywords in identifiers will result in confusing code. The best practice is to treat these
keywords as reserved.

Many important features of the Ruby language are actually implemented as methods of the Kernel, Module,

Class, and Object classes. It is good practice, therefore, to treat the following identifiers as reserved words as

well:

Code View:
These are methods that appear to be statements or keywords

at_exit catch private require

attr include proc throw

attr_accessor lambda protected

attr_reader load public

attr_writer loop raise

These are commonly used global functions

Array chomp! gsub! select

Float chop iterator? sleep

Integer chop! load split

String eval open sprintf

URI exec p srand

abort exit print sub

autoload exit! printf sub!

autoload? fail putc syscall

binding fork puts system

block_given? format rand test

callcc getc readline trap

caller gets readlines warn

chomp gsub scan

These are commonly used object methods

allocate freeze kind_of? superclass

clone frozen? method taint

display hash methods tainted?

dup id new to_a

enum_for inherited nil? to_enum

eql? inspect object_id to_s

equal? instance_of? respond_to? untaint

extend is_a? send

2.1.6. Whitespace

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Spaces, tabs, and newlines are not tokens themselves but are used to separate tokens that would otherwise
merge into a single token. Aside from this basic token-separating function, most whitespace is ignored by the
Ruby interpreter and is simply used to format programs so that they are easy to read and understand. Not all
whitespace is ignored, however. Some is required, and some whitespace is actually forbidden. Ruby's grammar
is expressive but complex, and there are a few cases in which inserting or removing whitespace can change the
meaning of a program. Although these cases do not often arise, it is important to know about them.

2.1.6.1. Newlines as statement terminators

The most common form of whitespace dependency has to do with newlines as statement terminators. In
languages like C and Java, every statement must be terminated with a semicolon. You can use semicolons to
terminate statements in Ruby, too, but this is only required if you put more than one statement on the same
line. Convention dictates that semicolons be omitted elsewhere.

Without explicit semicolons, the Ruby interpreter must figure out on its own where statements end. If the Ruby
code on a line is a syntactically complete statement, Ruby uses the newline as the statement terminator. If the
statement is not complete, then Ruby continues parsing the statement on the next line. (In Ruby 1.9, there is
one exception, which is described later in this section.)

This is no problem if all your statements fit on a single line. When they don't, however, you must take care that
you break the line in such a way that the Ruby interpreter cannot interpret the first line as a statement of its
own. This is where the whitespace dependency lies: your program may behave differently depending on where
you insert a newline. For example, the following code adds x and y and assigns the sum to total:

total = x + # Incomplete expression, parsing continues

 y

But this code assigns x to total, and then evaluates y, doing nothing with it:

total = x # This is a complete expression

 + y # A useless but complete expression

As another example, consider the return and break statements. These statements may optionally be followed

by an expression that provides a return value. A newline between the keyword and the expression will terminate
the statement before the expression.

You can safely insert a newline without fear of prematurely terminating your statement after an operator or
after a period or comma in a method invocation, array literal, or hash literal.

You can also escape a line break with a backslash, which prevents Ruby from automatically terminating the
statement:

var total = first_long_variable_name + second_long_variable_name \

 + third_long_variable_name # Note no statement terminator above

In Ruby 1.9, the statement terminator rules change slightly. If the first nonspace character on a line is a period,
then the line is considered a continuation line, and the newline before it is not a statement terminator. Lines
that start with periods are useful for the long method chains sometimes used with "fluent APIs," in which each
method invocation returns an object on which additional invocations can be made. For example:

animals = Array.new

 .push("dog") # Does not work in Ruby 1.8

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 .push("cow")

 .push("cat")

 .sort

2.1.6.2. Spaces and method invocations

Ruby's grammar allows the parentheses around method invocations to be omitted in certain circumstances. This
allows Ruby methods to be used as if they were statements, which is an important part of Ruby's elegance.
Unfortunately, however, it opens up a pernicious whitespace dependency. Consider the following two lines,
which differ only by a single space:

f(3+2)+1

f (3+2)+1

The first line passes the value 5 to the function f and then adds 1 to the result. Since the second line has a

space after the function name, Ruby assumes that the parentheses around the method call have been omitted.
The parentheses that appear after the space are used to group a subexpression, but the entire expression
(3+2)+1 is used as the method argument. If warnings are enabled (with -w), Ruby issues a warning whenever it

sees ambiguous code like this.

The solution to this whitespace dependency is straightforward:

Never put a space between a method name and the opening parenthesis.

If the first argument to a method begins with an open parenthesis, always use parentheses in the method
invocation. For example, write f((3+2)+1).

Always run the Ruby interpreter with the -w option so it will warn you if you forget either of the rules

above!

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.2. Syntactic Structure

So far, we've discussed the tokens of a Ruby program and the characters that make them up. Now we move on
to briefly describe how those lexical tokens combine into the larger syntactic structures of a Ruby program. This
section describes the syntax of Ruby programs, from the simplest expressions to the largest modules. This
section is, in effect, a roadmap to the chapters that follow.

The basic unit of syntax in Ruby is the expression. The Ruby interpreter evaluates expressions, producing
values. The simplest expressions are primary expressions, which represent values directly. Number and string
literals, described earlier in this chapter, are primary expressions. Other primary expressions include certain
keywords such as true, false, nil, and self. Variable references are also primary expressions; they evaluate

to the value of the variable.

More complex values can be written as compound expressions:

[1,2,3] # An Array literal

{1=>"one", 2=>"two"} # A Hash literal

1..3 # A Range literal

Operators are used to perform computations on values, and compound expressions are built by combining
simpler subexpressions with operators:

1 # A primary expression

x # Another primary expression

x = 1 # An assignment expression

x = x + 1 # An expression with two operators

Chapter 4 covers operators and expressions, including variables and assignment expressions.

Expressions can be combined with Ruby's keywords to create statements, such as the if statement for

conditionally executing code and the while statement for repeatedly executing code:

if x < 10 then # If this expression is true

 x = x + 1 # Then execute this statement

end # Marks the end of the conditional

while x < 10 do # While this expression is true...

 print x # Execute this statement

 x = x + 1 # Then execute this statement

end # Marks the end of the loop

In Ruby, these statements are technically expressions, but there is still a useful distinction between expressions
that affect the control flow of a program and those that do not. Chapter 5 explains Ruby's control structures.

In all but the most trivial programs, we usually need to group expressions and statements into parameterized
units so that they can be executed repeatedly and operate on varying inputs. You may know these
parameterized units as functions, procedures, or subroutines. Since Ruby is an object-oriented language, they
are called methods. Methods, along with related structures called procs and lambdas, are the topic of Chapter 6.

Finally, groups of methods that are designed to interoperate can be combined into classes, and groups of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

related classes and methods that are independent of those classes can be organized into modules. Classes and
modules are the topic of Chapter 7.

2.2.1. Block Structure in Ruby

Ruby programs have a block structure. Module, class, and method definitions, and most of Ruby's statements,
include blocks of nested code. These blocks are delimited by keywords or punctuation and, by convention, are
indented two spaces relative to the delimiters. There are two kinds of blocks in Ruby programs. One kind is
formally called a "block." These blocks are the chunks of code associated with or passed to iterator methods:

3.times { print "Ruby! " }

In this code, the curly braces and the code inside them are the block associated with the iterator method
invocation 3.times. Formal blocks of this kind may be delimited with curly braces, or they may be delimited

with the keywords do and end:

1.upto(10) do |x|

 print x

end

do and end delimiters are usually used when the block is written on more than one line. Note the two-space

indentation of the code within the block. Blocks are covered in Section 5.4.

To avoid ambiguity with these true blocks, we can call the other kind of block a body (in practice, however, the
term "block" is often used for both). A body is just the list of statements that comprise the body of a class
definition, a method definition, a while loop, or whatever. Bodies are never delimited with curly braces in

Ruby-keywords usually serve as the delimiters instead. The specific syntax for statement bodies, method
bodies, and class and module bodies are documented in Chapters Chapter 5, Chapter 6, and Chapter 7.

Bodies and blocks can be nested within each other, and Ruby programs typically have several levels of nested
code, made readable by their relative indentation. Here is a schematic example:

module Stats # A module

 class Dataset # A class in the module

 def initialize(filename) # A method in the class

 IO.foreach(filename) do |line| # A block in the method

 if line[0,1] == "#" # An if statement in the block

 next # A simple statement in the if

 end # End the if body

 end # End the block

 end # End the method body

 end # End the class body

end # End the module body

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.3. File Structure

There are only a few rules about how a file of Ruby code must be structured. These rules are related to the
deployment of Ruby programs and are not directly relevant to the language itself.

First, if a Ruby program contains a "shebang" comment, to tell the (Unix-like) operating system how to execute
it, that comment must appear on the first line.

Second, if a Ruby program contains a "coding" comment (as described in Section 2.4.1), that comment must
appear on the first line or on the second line if the first line is a shebang.

Third, if a file contains a line that consists of the single token __END__ with no whitespace before or after, then

the Ruby interpreter stops processing the file at that point. The remainder of the file may contain arbitrary data
that the program can read using the IO stream object DATA. (See Chapter 10 and Section 9.7 for more about

this global constant.)

Ruby programs are not required to fit in a single file. Many programs load additional Ruby code from external
libraries, for example. Programs use require to load code from another file. require searches for specified

modules of code against a search path, and prevents any given module from being loaded more than once. See
Section 7.6 for details.

The following code illustrates each of these points of Ruby file structure:

#!/usr/bin/ruby -w shebang comment

-*- coding: utf-8 -*- coding comment

require 'socket' load networking library

 ... program code goes here

__END__ mark end of code

 ... program data goes here

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.4. Program Encoding

At the lowest level, a Ruby program is simply a sequence of characters. Ruby's lexical rules are defined using
characters of the ASCII character set. Comments begin with the # character (ASCII code 35), for example, and

allowed whitespace characters are horizontal tab (ASCII 9), newline (10), vertical tab (11), form feed (12),
carriage return (13), and space (32). All Ruby keywords are written using ASCII characters, and all operators
and other punctuation are drawn from the ASCII character set.

By default, the Ruby interpreter assumes that Ruby source code is encoded in ASCII. This is not required,
however; the interpreter can also process files that use other encodings, as long as those encodings can
represent the full set of ASCII characters. In order for the Ruby interpreter to be able to interpret the bytes of a
source file as characters, it must know what encoding to use. Ruby files can identify their own encodings or you
can tell the interpreter how they are encoded. Doing so is explained shortly.

The Ruby interpreter is actually quite flexible about the characters that appear in a Ruby program. Certain ASCII
characters have specific meanings, and certain ASCII characters are not allowed in identifiers, but beyond that,
a Ruby program may contain any characters allowed by the encoding. We explained earlier that identifiers may
contain characters outside of the ASCII character set. The same is true for comments and string and regular
expression literals: they may contain any characters other than the delimiter character that marks the end of
the comment or literal. In ASCII-encoded files, strings may include arbitrary bytes, including those that
represent nonprinting control characters. (Using raw bytes like this is not recommended, however; Ruby string
literals support escape sequences so that arbitrary characters can be included by numeric code instead.) If the
file is written using the UTF-8 encoding, then comments, strings, and regular expressions may include arbitrary
Unicode characters. If the file is encoded using the Japanese SJIS or EUC encodings, then strings may include
Kanji characters.

2.4.1. Specifying Program Encoding

By default, the Ruby interpreter assumes that programs are encoded in ASCII. In Ruby 1.8, you can specify a
different encoding with the -K command-line option. To run a Ruby program that includes Unicode characters

encoded in UTF-8, invoke the interpreter with the -Ku option. Programs that include Japanese characters in

EUC-JP or SJIS encodings can be run with the -Ke and -Ks options.

Ruby 1.9 also supports the -K option, but it is no longer the preferred way to specify the encoding of a program

file. Rather than have the user of a script specify the encoding when they invoke Ruby, the author of the script
can specify the encoding of the script by placing a special "coding comment" at the start of the file.[5] For
example:

[5] Ruby follows Python's conventions in this; see http://www.python.org/dev/peps/pep-0263/.

coding: utf-8

The comment must be written entirely in ASCII, and must include the string coding followed by a colon or

equals sign and the name of the desired encoding (which cannot include spaces or punctuation other than
hyphen and underscore). Whitespace is allowed on either side of the colon or equals sign, and the string coding

may have any prefix, such as en to spell encoding. The entire comment, including coding and the encoding

name, is case-insensitive and can be written with upper- or lowercase letters.

Encoding comments are usually written so that they also inform a text editor of the file encoding. Emacs users
might write:

http://www.python.org/dev/peps/pep-0263/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

-*- coding: utf-8 -*-

And vi users can write:

vi: set fileencoding=utf-8 :

An encoding comment like this one is usually only valid on the first line of the file. It may appear on the second
line, however, if the first line is a shebang comment (which makes a script executable on Unix-like operating
systems):

#!/usr/bin/ruby -w

coding: utf-8

Encoding names are not case-sensitive and may be written in uppercase, lowercase, or a mix. Ruby 1.9
supports at least the following source encodings: ASCII-8BIT (also known as BINARY), US-ASCII (7-bit ASCII),
the European encodings ISO-8859-1 through ISO-8859-15, the Unicode encoding UTF-8, and the Japanese
encodings SHIFT_JIS (also known as SJIS) and EUC-JP. Your build or distribution of Ruby may support
additional encodings as well.

As a special case, UTF-8-encoded files identify their encoding if the first three bytes of the file are 0xEF 0xBB
0xBF. These bytes are known as the BOM or "Byte Order Mark" and are optional in UTF-8-encoded files. (Certain
Windows programs add these bytes when saving Unicode files.)

In Ruby 1.9, the language keyword __ENCODING__ (there are two underscores at the beginning and at the end)

evaluates to the source encoding of the currently executing code. The resulting value is an Encoding object.

(See Section 3.2.6.2 for more on the Encoding class.)

2.4.2. Source Encoding and Default External Encoding

In Ruby 1.9, it is important to understand the difference between the source encoding of a Ruby file and the
default external encoding of a Ruby process. The source encoding is what we described earlier: it tells the Ruby
interpreter how to read characters in a script. Source encodings are typically set with coding comments. A Ruby
program may consist of more than one file, and different files may have different source encodings. The source
encoding of a file affects the encoding of the string literals in that file. For more about the encoding of strings,
see Section 3.2.6.

The default external encoding is something different: this is the encoding that Ruby uses by default when
reading from files and streams. The default external encoding is global to the Ruby process and does not change
from file to file. Normally, the default external encoding is set based on the locale that your computer is
configured to. But you can also explicitly specify the default external encoding with command-line options, as
we'll describe shortly. The default external encoding does not affect the encoding of string literals, but it is quite
important for I/O, as we'll see in Section 9.7.2.

We described the -K interpreter option earlier as a way to set the source encoding. In fact, what this option

really does is set the default external encoding of the process and then uses that encoding as the default source
encoding.

In Ruby 1.9, the -K option exists for compatibility with Ruby 1.8 but is not the preferred way to set the default

external encoding. Two new options, -E and --encoding, allow you to specify an encoding by its full name

rather than by a one-character abbreviation. For example:

ruby -E utf-8 # Encoding name follows -E

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ruby -Eutf-8 # The space is optional

ruby --encoding utf-8 # Encoding following --encoding with a space

ruby --encoding=utf-8 # Or use an equals sign with --encoding

See Section 10.1 for complete details.

You can query the default external encoding with Encoding.default_external. This class method returns an

Encoding object. Use Encoding.locale_charmap to obtain the name (as a string) of the character encoding

derived from the locale. This method is always based on the locale setting and ignores command-line options
that override the default external encoding.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.5. Program Execution

Ruby is a scripting language. This means that Ruby programs are simply lists, or scripts, of statements to be
executed. By default, these statements are executed sequentially, in the order they appear. Ruby's control
structures (described in Chapter 5) alter this default execution order and allow statements to be executed
conditionally or repeatedly, for example.

Programmers who are used to traditional static compiled languages like C or Java may find this slightly
confusing. There is no special main method in Ruby from which execution begins. The Ruby interpreter is given

a script of statements to execute, and it begins executing at the first line and continues to the last line.

(Actually, that last statement is not quite true. The Ruby interpreter first scans the file for BEGIN statements,

and executes the code in their bodies. Then it goes back to line 1 and starts executing sequentially. See Section
5.7 for more on BEGIN.)

Another difference between Ruby and compiled languages has to do with module, class, and method definitions.
In compiled languages, these are syntactic structures that are processed by the compiler. In Ruby, they are
statements like any other. When the Ruby interpreter encounters a class definition, it executes it, causing a new
class to come into existence. Similarly, when the Ruby interpreter encounters a method definition, it executes it,
causing a new method to be defined. Later in the program, the interpreter will probably encounter and execute
a method invocation expression for the method, and this invocation will cause the statements in the method
body to be executed.

The Ruby interpreter is invoked from the command line and given a script to execute. Very simple one-line
scripts are sometimes written directly on the command line. More commonly, however, the name of the file
containing the script is specified. The Ruby interpreter reads the file and executes the script. It first executes
any BEGIN blocks. Then it starts at the first line of the file and continues until one of the following happens:

It executes a statement that causes the Ruby program to terminate.

It reaches the end of the file.

It reads a line that marks the logical end of the file with the token __END__.

Before it quits, the Ruby interpreter typically (unless the exit! method was called) executes the bodies of any

END statements it has encountered and any other "shutdown hook" code registered with the at_exit function.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 3. Datatypes and Objects

In order to understand a programming language, you have to know what kinds of data it can manipulate and
what it can do with that data. This chapter is about the values manipulated by Ruby programs. It begins with
comprehensive coverage of numeric and textual values. Next, it explains arrays and hashes-two important
data structures that are a fundamental part of Ruby. The chapter then moves on to explain ranges, symbols,
and the special values true, false, and nil. All Ruby values are objects, and this chapter concludes with

detailed coverage of the features that all objects share.

The classes described in this chapter are the fundamental datatypes of the Ruby language. This chapter explains
the basic behavior of those types: how literal values are written in a program, how integer and floating-point
arithmetic work, how textual data is encoded, how values can serve as hash keys, and so on. Although we cover
numbers, strings, arrays, and hashes here, this chapter makes no attempt to explain the APIs defined by those
types. Instead, Chapter 9 demonstrates those APIs by example, and it also covers many other important (but
nonfundamental) classes.

3.1. Numbers

Ruby includes five built-in classes for representing numbers, and the standard library includes three more
numeric classes that are sometimes useful. Figure 3-1 shows the class hierarchy.

Figure 3-1. Numeric class hierarchy

All number objects in Ruby are instances of Numeric. All integers are instances of Integer. If an integer value

fits within 31 bits (on most implementations), it is an instance of Fixnum. Otherwise, it is a Bignum. Bignum

objects represent integers of arbitrary size, and if the result of an operation on Fixnum operands is too big to fit

in a Fixnum, that result is transparently converted to a Bignum. Similarly, if the result of an operation on Bignum

objects falls within the range of Fixnum, then the result is a Fixnum. Real numbers are approximated in Ruby

with the Float class, which uses the native floating-point representation of the platform.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Complex, BigDecimal, and Rational classes are not built-in to Ruby but are distributed with Ruby as part

of the standard library. The Complex class represents complex numbers, of course. BigDecimal represents real

numbers with arbitrary precision, using a decimal representation rather than a binary representation. And
Rational represents rational numbers: one integer divided by another.

All numeric objects are immutable; there are no methods that allow you to change the value held by the object.
If you pass a reference to a numeric object to a method, you need not worry that the method will modify the
object. Fixnum objects are commonly used, and Ruby implementations typically treat them as immediate values

rather than as references. Because numbers are immutable, however, there is really no way to tell the
difference.

3.1.1. Integer Literals

An integer literal is simply a sequence of digits:

0

123

12345678901234567890

If the integer values fit within the range of the Fixnum class, the value is a Fixnum. Otherwise, it is a Bignum,

which supports integers of any size. Underscores may be inserted into integer literals (though not at the
beginning or end), and this feature is sometimes used as a thousands separator:

1_000_000_000 # One billion (or 1,000 million in the UK)

If an integer literal begins with zero and has more than one digit, then it is interpreted in some base other than
base 10. Numbers beginning with 0x or 0X are hexadecimal (base 16) and use the letters a through f (or A

through F) as digits for 10 through 15. Numbers beginning 0b or 0B are binary (base 2) and may only include

digits 0 and 1. Numbers beginning with 0 and no subsequent letter are octal (base 8) and should consist of

digits between 0 and 7. Examples:

0377 # Octal representation of 255

0b1111_1111 # Binary representation of 255

0xFF # Hexadecimal representation of 255

To represent a negative number, simply begin an integer literal with a minus sign. Literals may also begin with
a plus sign, although this never changes the meaning of the literal.

3.1.2. Floating-Point Literals

A floating-point literal is an optional sign followed by one or more decimal digits, a decimal point (the .

character), one or more additional digits, and an optional exponent. An exponent begins with the letter e or E,

and is followed by an optional sign and one or more decimal digits. As with integer literals, underscores may be
used within floating-point literals. Unlike integer literals, it is not possible to express floating-point values in any
radix other than base 10. Here are some examples of floating-point literals:

0.0

-3.14

6.02e23 # This means 6.02 x 1023

1_000_000.01 # One million and a little bit more

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Ruby requires that digits appear before and after the decimal point. You cannot simply write .1, for example;

you must explicitly write 0.1. This is necessary to avoid ambiguity in Ruby's complex grammar. Ruby differs

from many other languages in this way.

3.1.3. Arithmetic in Ruby

All numeric types in Ruby define standard +, –, *, and / operators for addition, subtraction, multiplication, and

division. When an integer result is too large for a Fixnum, Ruby automatically converts to a Bignum, and as a

result, integer arithmetic in Ruby never overflows as it does in many other languages. Floating-point numbers
(at least on platforms that use the standard IEEE-754 floating-point representation) overflow to special positive
or negative infinity values, and underflow to zero.

The division operator depends on the class of the operands. If both operands are integers, then the operation
performed is truncating-integer division. If either operand is a Float, then floating-point division is performed:

x = 5/2 # result is 2

y = 5.0/2 # result is 2.5

z = 5/2.0 # result is 2.5

Integer division by zero causes a ZeroDivisionError to be thrown. Floating-point division by zero does not

cause an error; it simply returns the value Infinity. The case of 0.0/0.0 is special; on most modern hardware,

and with most operating systems, it evaluates to another special floating-point value known as NaN, or Not-a-
Number.

The modulo (%) operator computes remainder-after-integer division:

x = 5%2 # result is 1

The % operator can also be used with Float operands, although this is less common:

x = 1.5%0.4 # result is 0.3

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Division, Modulo, and Negative Numbers

When one (but not both) of the operands is negative, Ruby performs the integer division and
modulo operations differently than languages like C, C++, and Java do (but the same as the
languages Python and Tcl). Consider the quotient -7/3. The floating-point result is –2.33. The

result of integer division must be an integer, however, so this number must be rounded. Ruby
rounds toward negative infinity and returns –3. C and related languages round toward zero instead

and return –2. (This is just one way to characterize the results; no floating-point division is

actually done, of course.)

An important corollary of Ruby's definition of integer division is that, in Ruby, -a/b equals a/-b

but may not equal -(a/b).

Ruby's definition of the modulo operation also differs from that of C and Java. In Ruby, –7%3 is 2.

In C and Java, the result is -1 instead. The magnitude of the result differs, of course, because the

value of the quotient differs. But the sign of the result differs, too. In Ruby, the sign of the result is
always the same as the sign of the second operand. In C and Java, the sign of the result is always
the same as the sign of the first operand. (Ruby also provides a remainder method that behaves,

in sign and magnitude, like the C modulo operator.)

Ruby also borrows the ** operator from Fortran for exponentiation. Exponents need not be integers:

Code View:
x**4 # This is the same thing as x*x*x*x

x**-1 # The same thing as 1/x

x**(1/3.0) # The cube root of x

x**(1/4) # Oops! Integer division means this is x**0, which is always 1

x**(1.0/4.0) # This is the fourth-root of x

When multiple exponentiations are combined into a single expression, they are evaluated from right to left.
Thus, 4**3**2 is the same as 4**9, not 64**2.

Exponentiation can result in very large values. Remember that integers can become arbitrarily large, but Float

objects cannot represent numbers larger than Float::MAX. Thus, the expression 10**1000 yields an exact

integer result, but the expression 9.9**1000 overflows to the Float value Infinity.

Fixnum and Bignum values support the standard bit-manipulation operators-~, &, |, ^, >>, and <<-that are

common in C, Java, and many other languages. (See Section 4.6 for details.) In addition, integer values can
also be indexed like arrays to query (but not set) individual bits. The index 0 returns the least significant bit:

even = (x[0] == 0) # A number is even if the least-significant bit is 0

3.1.4. Binary Floating-Point and Rounding Errors

Most computer hardware and most computer languages (including Ruby) approximate real numbers using a
floating-point representation like Ruby's Float class. For hardware efficiency, most floating-point

representations are binary representations, which can exactly represent fractions like 1/2, 1/4, and 1/1024.

Unfortunately, the fractions we use most commonly (especially when performing financial calculations) are
1/10, 1/100, 1/1000, and so on. Binary floating-point representations cannot exactly represent numbers as

http://lib.ommolketab.ir
http://lib.ommolketab.ir

simple as 0.1.

Float objects have plenty of precision and can approximate 0.1 very well, but the fact that this number cannot

be represented exactly leads to problems. Consider the following simple Ruby expression:

0.4 - 0.3 == 0.1 # Evaluates to false in most implementations

Because of rounding error, the difference between the approximations of 0.4 and 0.3 is not quite the same as

the approximation of 0.1. This problem is not specific to Ruby: C, Java, JavaScript, and all languages that use

IEEE-754 floating-point numbers suffer from it as well.

One solution to this problem is to use a decimal representation of real numbers rather than a binary
representation. The BigDecimal class from Ruby's standard library is one such representation. Arithmetic on

BigDecimal objects is many times slower than arithmetic on Float values. It is fast enough for typical financial

calculations, but not for scientific number crunching. Section 9.3.3 includes a short example of the use of the
BigDecimal library.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 3. Datatypes and Objects

In order to understand a programming language, you have to know what kinds of data it can manipulate and
what it can do with that data. This chapter is about the values manipulated by Ruby programs. It begins with
comprehensive coverage of numeric and textual values. Next, it explains arrays and hashes-two important
data structures that are a fundamental part of Ruby. The chapter then moves on to explain ranges, symbols,
and the special values true, false, and nil. All Ruby values are objects, and this chapter concludes with

detailed coverage of the features that all objects share.

The classes described in this chapter are the fundamental datatypes of the Ruby language. This chapter explains
the basic behavior of those types: how literal values are written in a program, how integer and floating-point
arithmetic work, how textual data is encoded, how values can serve as hash keys, and so on. Although we cover
numbers, strings, arrays, and hashes here, this chapter makes no attempt to explain the APIs defined by those
types. Instead, Chapter 9 demonstrates those APIs by example, and it also covers many other important (but
nonfundamental) classes.

3.1. Numbers

Ruby includes five built-in classes for representing numbers, and the standard library includes three more
numeric classes that are sometimes useful. Figure 3-1 shows the class hierarchy.

Figure 3-1. Numeric class hierarchy

All number objects in Ruby are instances of Numeric. All integers are instances of Integer. If an integer value

fits within 31 bits (on most implementations), it is an instance of Fixnum. Otherwise, it is a Bignum. Bignum

objects represent integers of arbitrary size, and if the result of an operation on Fixnum operands is too big to fit

in a Fixnum, that result is transparently converted to a Bignum. Similarly, if the result of an operation on Bignum

objects falls within the range of Fixnum, then the result is a Fixnum. Real numbers are approximated in Ruby

with the Float class, which uses the native floating-point representation of the platform.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Complex, BigDecimal, and Rational classes are not built-in to Ruby but are distributed with Ruby as part

of the standard library. The Complex class represents complex numbers, of course. BigDecimal represents real

numbers with arbitrary precision, using a decimal representation rather than a binary representation. And
Rational represents rational numbers: one integer divided by another.

All numeric objects are immutable; there are no methods that allow you to change the value held by the object.
If you pass a reference to a numeric object to a method, you need not worry that the method will modify the
object. Fixnum objects are commonly used, and Ruby implementations typically treat them as immediate values

rather than as references. Because numbers are immutable, however, there is really no way to tell the
difference.

3.1.1. Integer Literals

An integer literal is simply a sequence of digits:

0

123

12345678901234567890

If the integer values fit within the range of the Fixnum class, the value is a Fixnum. Otherwise, it is a Bignum,

which supports integers of any size. Underscores may be inserted into integer literals (though not at the
beginning or end), and this feature is sometimes used as a thousands separator:

1_000_000_000 # One billion (or 1,000 million in the UK)

If an integer literal begins with zero and has more than one digit, then it is interpreted in some base other than
base 10. Numbers beginning with 0x or 0X are hexadecimal (base 16) and use the letters a through f (or A

through F) as digits for 10 through 15. Numbers beginning 0b or 0B are binary (base 2) and may only include

digits 0 and 1. Numbers beginning with 0 and no subsequent letter are octal (base 8) and should consist of

digits between 0 and 7. Examples:

0377 # Octal representation of 255

0b1111_1111 # Binary representation of 255

0xFF # Hexadecimal representation of 255

To represent a negative number, simply begin an integer literal with a minus sign. Literals may also begin with
a plus sign, although this never changes the meaning of the literal.

3.1.2. Floating-Point Literals

A floating-point literal is an optional sign followed by one or more decimal digits, a decimal point (the .

character), one or more additional digits, and an optional exponent. An exponent begins with the letter e or E,

and is followed by an optional sign and one or more decimal digits. As with integer literals, underscores may be
used within floating-point literals. Unlike integer literals, it is not possible to express floating-point values in any
radix other than base 10. Here are some examples of floating-point literals:

0.0

-3.14

6.02e23 # This means 6.02 x 1023

1_000_000.01 # One million and a little bit more

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Ruby requires that digits appear before and after the decimal point. You cannot simply write .1, for example;

you must explicitly write 0.1. This is necessary to avoid ambiguity in Ruby's complex grammar. Ruby differs

from many other languages in this way.

3.1.3. Arithmetic in Ruby

All numeric types in Ruby define standard +, –, *, and / operators for addition, subtraction, multiplication, and

division. When an integer result is too large for a Fixnum, Ruby automatically converts to a Bignum, and as a

result, integer arithmetic in Ruby never overflows as it does in many other languages. Floating-point numbers
(at least on platforms that use the standard IEEE-754 floating-point representation) overflow to special positive
or negative infinity values, and underflow to zero.

The division operator depends on the class of the operands. If both operands are integers, then the operation
performed is truncating-integer division. If either operand is a Float, then floating-point division is performed:

x = 5/2 # result is 2

y = 5.0/2 # result is 2.5

z = 5/2.0 # result is 2.5

Integer division by zero causes a ZeroDivisionError to be thrown. Floating-point division by zero does not

cause an error; it simply returns the value Infinity. The case of 0.0/0.0 is special; on most modern hardware,

and with most operating systems, it evaluates to another special floating-point value known as NaN, or Not-a-
Number.

The modulo (%) operator computes remainder-after-integer division:

x = 5%2 # result is 1

The % operator can also be used with Float operands, although this is less common:

x = 1.5%0.4 # result is 0.3

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Division, Modulo, and Negative Numbers

When one (but not both) of the operands is negative, Ruby performs the integer division and
modulo operations differently than languages like C, C++, and Java do (but the same as the
languages Python and Tcl). Consider the quotient -7/3. The floating-point result is –2.33. The

result of integer division must be an integer, however, so this number must be rounded. Ruby
rounds toward negative infinity and returns –3. C and related languages round toward zero instead

and return –2. (This is just one way to characterize the results; no floating-point division is

actually done, of course.)

An important corollary of Ruby's definition of integer division is that, in Ruby, -a/b equals a/-b

but may not equal -(a/b).

Ruby's definition of the modulo operation also differs from that of C and Java. In Ruby, –7%3 is 2.

In C and Java, the result is -1 instead. The magnitude of the result differs, of course, because the

value of the quotient differs. But the sign of the result differs, too. In Ruby, the sign of the result is
always the same as the sign of the second operand. In C and Java, the sign of the result is always
the same as the sign of the first operand. (Ruby also provides a remainder method that behaves,

in sign and magnitude, like the C modulo operator.)

Ruby also borrows the ** operator from Fortran for exponentiation. Exponents need not be integers:

Code View:
x**4 # This is the same thing as x*x*x*x

x**-1 # The same thing as 1/x

x**(1/3.0) # The cube root of x

x**(1/4) # Oops! Integer division means this is x**0, which is always 1

x**(1.0/4.0) # This is the fourth-root of x

When multiple exponentiations are combined into a single expression, they are evaluated from right to left.
Thus, 4**3**2 is the same as 4**9, not 64**2.

Exponentiation can result in very large values. Remember that integers can become arbitrarily large, but Float

objects cannot represent numbers larger than Float::MAX. Thus, the expression 10**1000 yields an exact

integer result, but the expression 9.9**1000 overflows to the Float value Infinity.

Fixnum and Bignum values support the standard bit-manipulation operators-~, &, |, ^, >>, and <<-that are

common in C, Java, and many other languages. (See Section 4.6 for details.) In addition, integer values can
also be indexed like arrays to query (but not set) individual bits. The index 0 returns the least significant bit:

even = (x[0] == 0) # A number is even if the least-significant bit is 0

3.1.4. Binary Floating-Point and Rounding Errors

Most computer hardware and most computer languages (including Ruby) approximate real numbers using a
floating-point representation like Ruby's Float class. For hardware efficiency, most floating-point

representations are binary representations, which can exactly represent fractions like 1/2, 1/4, and 1/1024.

Unfortunately, the fractions we use most commonly (especially when performing financial calculations) are
1/10, 1/100, 1/1000, and so on. Binary floating-point representations cannot exactly represent numbers as

http://lib.ommolketab.ir
http://lib.ommolketab.ir

simple as 0.1.

Float objects have plenty of precision and can approximate 0.1 very well, but the fact that this number cannot

be represented exactly leads to problems. Consider the following simple Ruby expression:

0.4 - 0.3 == 0.1 # Evaluates to false in most implementations

Because of rounding error, the difference between the approximations of 0.4 and 0.3 is not quite the same as

the approximation of 0.1. This problem is not specific to Ruby: C, Java, JavaScript, and all languages that use

IEEE-754 floating-point numbers suffer from it as well.

One solution to this problem is to use a decimal representation of real numbers rather than a binary
representation. The BigDecimal class from Ruby's standard library is one such representation. Arithmetic on

BigDecimal objects is many times slower than arithmetic on Float values. It is fast enough for typical financial

calculations, but not for scientific number crunching. Section 9.3.3 includes a short example of the use of the
BigDecimal library.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.2. Text

Text is represented in Ruby by objects of the String class. Strings are mutable objects, and the String class

defines a powerful set of operators and methods for extracting substrings, inserting and deleting text,
searching, replacing, and so on. Ruby provides a number of ways to express string literals in your programs,
and some of them support a powerful string interpolation syntax by which the values of arbitrary Ruby
expressions can be substituted into string literals. The sections that follow explain string and character literals
and string operators. The full string API is covered in Section 9.1.

Textual patterns are represented in Ruby as Regexp objects, and Ruby defines a syntax for including regular

expressions literally in your programs. The code /[a-z]\d+/, for example, represents a single lowercase letter

followed by one or more digits. Regular expressions are a commonly used feature of Ruby, but regexps are not
a fundamental datatype in the way that numbers, strings, and arrays are. See Section 9.2 for documentation of
regular expression syntax and the Regexp API.

Text in Ruby 1.8 and Ruby 1.9

The biggest change between Ruby 1.8 and Ruby 1.9 is that 1.9 offers comprehensive built-in
support for Unicode and other multibyte text representations. The ramifications of this change are
extensive and will be mentioned throughout this section, especially in Section 3.2.6.

3.2.1. String Literals

Ruby provides quite a few ways to embed strings literally into your programs.

3.2.1.1. Single-quoted string literals

The simplest string literals are enclosed in single quotes (the apostrophe character). The text within the quote
marks is the value of the string:

'This is a simple Ruby string literal'

If you need to place an apostrophe within a single-quoted string literal, precede it with a backslash so that the
Ruby interpreter does not think that it terminates the string:

'Won\'t you read O\'Reilly\'s book?'

The backslash also works to escape another backslash, so that the second backslash is not itself interpreted as
an escape character. Here are some situations in which you need to use a double backslash:

'This string literal ends with a single backslash: \\'

'This is a backslash-quote: \\\''

'Two backslashes: \\\\'

In single-quoted strings, a backslash is not special if the character that follows it is anything other than a quote

http://lib.ommolketab.ir
http://lib.ommolketab.ir

or a backslash. Most of the time, therefore, backslashes need not be doubled (although they can be) in string
literals. For example, the following two string literals are equal:

'a\b' == 'a\\b'

Single-quoted strings may extend over multiple lines, and the resulting string literal includes the newline
characters. It is not possible to escape the newlines with a backslash:

'This is a long string literal \

that includes a backslash and a newline'

If you want to break a long single-quoted string literal across multiple lines without embedding newlines in it,
simply break it into multiple adjacent string literals; the Ruby interpreter will concatenate them during the
parsing process. Remember, though, that you must escape the newlines (see Chapter 2) between the literals so
that Ruby does not interpret the newline as a statement terminator:

message =

'These three literals are '\

'concatenated into one by the interpreter. '\

'The resulting string contains no newlines.'

3.2.1.2. Double-quoted string literals

String literals delimited by double quotation marks are much more flexible than single-quoted literals. Double-
quoted literals support quite a few backslash escape sequences, such as \n for newline, \t for tab, and \" for a

quotation mark that does not terminate the string:

"\t\"This quote begins with a tab and ends with a newline\"\n"

"\\" # A single backslash

In Ruby 1.9, the \u escape embeds arbitrary Unicode characters, specified by their codepoint, into a double-

quoted string. This escape sequence is complex enough that we'll describe it in its own section (see Section
3.2.1.3). Many of the other backslash escape sequences are obscure and are used for encoding binary data into
strings. The complete list of escape sequences is shown in Table 3-1.

More powerfully, double-quoted string literals may also include arbitrary Ruby expressions. When the string is
created, the expression is evaluated, converted to a string, and inserted into the string in place of the
expression text itself. This substitution of an expression with its value is known in Ruby as "string interpolation."
Expressions within double-quoted strings begin with the # character and are enclosed within curly braces:

Code View:
"360 degrees=#{2*Math::PI} radians" # "360 degrees=6.28318530717959 radians"

When the expression to be interpolated into the string literal is simply a reference to a global, instance, or class
variable, then the curly braces may be omitted:

$salutation = 'hello' # Define a global variable

http://lib.ommolketab.ir
http://lib.ommolketab.ir

"#$salutation world" # Use it in a double-quoted string

Use a backslash to escape the # character if you do not want it to be treated specially. Note that this only needs

to be done if the character after # is {, $, or @:

"My phone #: 555-1234" # No escape needed

"Use \#{ to interpolate expressions" # Escape #{ with backslash

String Interpolation with sprintf

C programmers may be happy to know that Ruby also supports printf and sprintf[6] functions

for interpolating formatted values into strings:

sprintf("pi is about %.4f", Math::PI) # Returns "pi is about 3.1416"

The advantage of this style of interpolation is that the format string can specify options, such as
the number of decimal places to display in a Float. In true Ruby style, there is even an operator

form of the sprintf method: simply use a % operator between a format string and the arguments

to be interpolated into it:

"pi is about %.4f" % Math::PI # Same as example above

"%s: %f" % ["pi", Math::PI] # Array on righthand side for multiple args

[6] Use ri to learn more: ri Kernel.sprintf

Double-quoted string literals may span multiple lines, and line terminators become part of the string literal,
unless escaped with a backslash:

"This string literal

has two lines \

but is written on three"

You may prefer to explicitly encode the line terminators in your strings-in order to enforce network CRLF
(Carriage Return Line Feed) line terminators, as used in the HTTP protocol, for example. To do this, write all
your string literals on a single line and explicitly include the line endings with the \r and \n escape sequences.

Remember that adjacent string literals are automatically concatenated, but if they are written on separate lines,
the newline between them must be escaped:

"This string has three lines.\r\n" \

"It is written as three adjacent literals\r\n" \

"separated by escaped newlines\r\n"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 3-1. Backslash escapes in double-quoted strings

Escape
sequence

Meaning

\ x A backslash before any character x is equivalent to the character x by itself, unless x is a line

terminator or one of the special characters abcefnrstuvxCM01234567. This syntax is useful to

escape the special meaning of the \, #, and " characters.

\a The BEL character (ASCII code 7). Rings the console bell. Equivalent to \C-g or \007.

\b The Backspace character (ASCII code 8). Equivalent to \C-h or \010.

\e The ESC character (ASCII code 27). Equivalent to \033.

\f The Form Feed character (ASCII code 12). Equivalent to \C-l and \014.

\n The Newline character (ASCII code 10). Equivalent to \C-j and \012.

\r The Carriage Return character (ASCII code 13). Equivalent to \C-m and \015.

\s The Space character (ASCII code 32).

\t The TAB character (ASCII code 9). Equivalent to \C-i and \011.

\u nnnn The Unicode codepoint nnnn, where each n is one hexadecimal digit. Leading zeros may not be

dropped; all four digits are required in this form of the \u escape. Supported in Ruby 1.9 and

later.

\u{

hexdigits

}

The Unicode codepoint(s) specified by hexdigits. See the description of this escape in the main

text. Ruby 1.9 and later.

\v The vertical tab character (ASCII code 11). Equivalent to \C-k and \013.

\ nnn The byte nnn, where nnn is three octal digits between 000 and 377.

\ nn Same as \0nn, where nn is two octal digits between 00 and 77.

\ n Same as \00n, where n is an octal digit between 0 and 7.

\x nn The byte nn, where nn is two hexadecimal digits between 00 and FF. (Both lowercase and

uppercase letters are allowed as hexadecimal digits.)

\x n Same as \x0n, where n is a hexadecimal digit between 0 and F (or f).

\c x Shorthand for \C-x.

\C- x The character whose character code is formed by zeroing the sixth and seventh bits of x,

retaining the high-order bit and the five low bits. x can be any character, but this sequence is

usually used to represent control characters Control-A through Control-Z (ASCII codes 1 through
26). Because of the layout of the ASCII table, you can use either lowercase or uppercase letters
for x. Note that \cx is shorthand. x can be any single character or an escape other than \C \u,

\x, or \nnn.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Escape
sequence

Meaning

\M- x The character whose character code is formed by setting the high bit of the code of x. This is

used to represent "meta" characters, which are not technically part of the ASCII character set. x

can be any single character or an escape other than \M \u, \x, or \nnn. \M can be combined with

\C as in \M-\C-A.

\ eol A backslash before a line terminator escapes the terminator. Neither the backslash nor the
terminator appear in the string.

3.2.1.3. Unicode escapes

In Ruby 1.9, double-quoted strings can include arbitrary Unicode characters with \u escapes. In its simplest

form, \u is followed by exactly four hexadecimal digits (letters can be upper- or lowercase), which represent a

Unicode codepoint between 0000 and FFFF. For example:

"\u00D7" # => "x": leading zeros cannot be dropped

"\u20ac" # => "€": lowercase letters are okay

A second form of the \u escape is followed by an open curly brace, one to six hexadecimal digits, and a close

curly brace. The digits between the braces can represent any Unicode codepoint between 0 and 10FFFF, and
leading zeros can be dropped in this form:

"\u{A5}" # => "¥": same as "\u00A5"

"\u{3C0}" # Greek lowercase pi: same as "\u03C0"

"\u{10ffff}" # The largest Unicode codepoint

Finally, the \u{} form of this escape allows multiple codepoints to be embedded within a single escape. Simply

place multiple runs of one to six hexadecimal digits, separated by a single space or tab character, within the
curly braces. Spaces are not allowed after the opening curly brace or before the closing brace:

money = "\u{20AC A3 A5}" # => "€£¥"

Note that spaces within the curly braces do not encode spaces in the string itself. You can, however, encode the
ASCII space character with Unicode codepoint 20:

money = "\u{20AC 20 A3 20 A5}" # => "€ £ ¥"

Strings that use the \u escape are encoded using the Unicode UTF-8 encoding. (See Section 3.2.6 for more on

the encoding of strings.)

\u escapes are usually, but not always, legal in strings. If the source file uses an encoding other than UTF-8,

and a string contains multibyte characters in that encoding (literal characters, not characters created with
escapes), then it is not legal to use \u in that string-it is just not possible for one string to encode characters in

two different encodings. You can always use \u if the source encoding (see Section 2.4.1) is UTF-8. And you can

always use \u in a string that only contains ASCII characters.

\M- x The character whose character code is formed by setting the high bit of the code of x. This is

used to represent "meta" characters, which are not technically part of the ASCII character set. x

can be any single character or an escape other than \M \u, \x, or \nnn. \M can be combined with

\C as in \M-\C-A.

\ eol A backslash before a line terminator escapes the terminator. Neither the backslash nor the
terminator appear in the string.

3.2.1.3. Unicode escapes

In Ruby 1.9, double-quoted strings can include arbitrary Unicode characters with \u escapes. In its simplest

form, \u is followed by exactly four hexadecimal digits (letters can be upper- or lowercase), which represent a

Unicode codepoint between 0000 and FFFF. For example:

"\u00D7" # => "x": leading zeros cannot be dropped

"\u20ac" # => "€": lowercase letters are okay

A second form of the \u escape is followed by an open curly brace, one to six hexadecimal digits, and a close

curly brace. The digits between the braces can represent any Unicode codepoint between 0 and 10FFFF, and
leading zeros can be dropped in this form:

"\u{A5}" # => "¥": same as "\u00A5"

"\u{3C0}" # Greek lowercase pi: same as "\u03C0"

"\u{10ffff}" # The largest Unicode codepoint

Finally, the \u{} form of this escape allows multiple codepoints to be embedded within a single escape. Simply

place multiple runs of one to six hexadecimal digits, separated by a single space or tab character, within the
curly braces. Spaces are not allowed after the opening curly brace or before the closing brace:

money = "\u{20AC A3 A5}" # => "€£¥"

Note that spaces within the curly braces do not encode spaces in the string itself. You can, however, encode the
ASCII space character with Unicode codepoint 20:

money = "\u{20AC 20 A3 20 A5}" # => "€ £ ¥"

Strings that use the \u escape are encoded using the Unicode UTF-8 encoding. (See Section 3.2.6 for more on

the encoding of strings.)

\u escapes are usually, but not always, legal in strings. If the source file uses an encoding other than UTF-8,

and a string contains multibyte characters in that encoding (literal characters, not characters created with
escapes), then it is not legal to use \u in that string-it is just not possible for one string to encode characters in

two different encodings. You can always use \u if the source encoding (see Section 2.4.1) is UTF-8. And you can

always use \u in a string that only contains ASCII characters.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

\u escapes may appear in double-quoted strings, and also in other forms of quoted text (described shortly) such

as regular expressions, characters literals, %- and %Q-delimited strings, %W-delimited arrays, here documents,

and backquote-delimited command strings. Java programmers should note that Ruby's \u escape can only

appear in quoted text, not in program identifiers.

3.2.1.4. Arbitrary delimiters for string literals

When working with text that contains apostrophes and quotation marks, it is awkward to use it as single- and
double-quoted string literals. Ruby supports a generalized quoting syntax for string literals (and, as we'll see
later, for regular expression and array literals as well). The sequence %q begins a string literal that follows

single-quoted string rules, and the sequence %Q (or just %) introduces a literal that follows double-quoted string

rules. The first character following q or Q is the delimiter character, and the string literal continues until a

matching (unescaped) delimiter is found. If the opening delimiter is (, [, {, or <, then the matching delimiter is

),], }, or >. (Note that the backtick ` and apostrophe ' are not a matched pair.) Otherwise, the closing

delimiter is the same as the opening delimiter. Here are some examples:

%q(Don't worry about escaping ' characters!)

%Q|"How are you?", he said|

%-This string literal ends with a newline\n- # Q omitted in this one

If you find that you need to escape the delimiter character, you can use a backslash (even in the stricter %q

form) or just choose a different delimiter:

%q_This string literal contains _underscores__

%Q!Just use a _different_ delimiter\!!

If you use paired delimiters, you don't need to escape those delimiters in your literals, as long as they appear in
properly nested pairs:

XML uses paired angle brackets:

%<<book><title>Ruby in a Nutshell</title></book>> # This works

Expressions use paired, nested parens:

%((1+(2*3)) = #{(1+(2*3))}) # This works, too

%(A mismatched paren \(must be escaped) # Escape needed here

3.2.1.5. Here documents

For long string literals, there may be no single character delimiter that can be used without worrying about
remembering to escape characters within the literal. Ruby's solution to this problem is to allow you to specify an
arbitrary sequence of characters to serve as the delimiter for the string. This kind of literal is borrowed from
Unix shell syntax and is historically known as a here document. (Because the document is right here in the
source code rather than in an external file.)

Here documents begin with << or <<-. These are followed immediately (no space is allowed, to prevent

ambiguity with the left-shift operator) by an identifier or string that specifies the ending delimiter. The text of
the string literal begins on the next line and continues until the text of the delimiter appears on a line by itself.
For example:

document = <<HERE # This is how we begin a here document

This is a string literal.

It has two lines and abruptly ends...

HERE

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Ruby interpreter gets the contents of a string literal by reading a line at a time from its input. This does not
mean, however, that the << must be the last thing on its own line. In fact, after reading the content of a here

document, the Ruby interpreter goes back to the line it was on and continues parsing it. The following Ruby
code, for example, creates a string by concatenating two here documents and a regular single-quoted string:

greeting = <<HERE + <<THERE + "World"

Hello

HERE

There

THERE

The <<HERE on line 1 causes the interpreter to read lines 2 and 3. And the <<THERE causes the interpreter to

read lines 4 and 5. After these lines have been read, the three string literals are concatenated into one.

The ending delimiter of a here document really must appear on a line by itself: no comment may follow the
delimiter. If the here document begins with <<, then the delimiter must start at the beginning of the line. If the

literal begins with <<- instead, then the delimiter may have whitespace in front of it. The newline at the

beginning of a here document is not part of the literal, but the newline at the end of the document is. Therefore,
every here document ends with a line terminator, except for an empty here document, which is the same as "":

empty = <<END

END

If you use an unquoted identifier as the terminator, as in the previous examples, then the here document
behaves like a double-quoted string for the purposes of interpreting backslash escapes and the # character. If

you want to be very, very literal, allowing no escape characters whatsoever, place the delimiter in single quotes.
Doing this also allows you to use spaces in your delimiter:

document = <<'THIS IS THE END, MY ONLY FRIEND, THE END'

 .

 . lots and lots of text goes here

 . with no escaping at all.

 .

THIS IS THE END, MY ONLY FRIEND, THE END

The single quotes around the delimiter hint that this string literal is like a single-quoted string. In fact, this kind
of here document is even stricter. Because the single quote is not a delimiter, there is never a need to escape a
single quote with a backslash. And because the backslash is never needed as an escape character, there is
never a need to escape the backslash itself. In this kind of here document, therefore, backslashes are simply
part of the string literal.

You may also use a double-quoted string literal as the delimiter for a here document. This is the same as using
a single identifier, except that it allows spaces within the delimiter:

document = <<-"# # #" # This is the only place we can put a comment

<html><head><title>#{title}</title></head>

<body>

<h1>#{title}</h1>

#{body}

</body>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</html>

 # # #

Note that there is no way to include a comment within a here document except on the first line after the <<

token and before the start of the literal. Of all the # characters in this code, one introduces a comment, three

interpolate expressions into the literal, and the rest are the delimiter.

3.2.1.6. Backtick command execution

Ruby supports another syntax involving quotes and strings. When text is enclosed in backquotes (the `

character, also known as backticks), that text is treated as a double-quoted string literal. The value of that
literal is passed to the specially named Kernel.` method. This method executes the text as an operating

system shell command and returns the command's output as a string.

Consider the following Ruby code:

`ls`

On a Unix system, these four characters yield a string that lists the names of the files in the current directory.
This is highly platform-dependent, of course. A rough equivalent in Windows might be `dir`.

Ruby supports a generalized quote syntax you can use in place of backticks. This is like the %Q syntax introduced

earlier, but uses %x (for execute) instead:

%x[ls]

Note that the text within the backticks (or following %x) is processed like a double-quoted literal, which means

that arbitrary Ruby expressions can be interpolated into the string. For example:

if windows

 listcmd = 'dir'

else

 listcmd = 'ls'

end

listing = `#{listcmd}`

In a case like this, however, it is simpler just to invoke the backtick method directly:

listing = Kernel.`(listcmd)

3.2.1.7. String literals and mutability

Strings are mutable in Ruby. Therefore, the Ruby interpreter cannot use the same object to represent two
identical string literals. (If you are a Java programmer, you may find this surprising.) Each time Ruby
encounters a string literal, it creates a new object. If you include a literal within the body of a loop, Ruby will
create a new object for each iteration. You can demonstrate this for yourself as follows:

10.times { puts "test".object_id }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For efficiency, you should avoid using literals within loops.

3.2.1.8. The String.new method

In addition to all the string literal options described earlier, you can also create new strings with the String.new

method. With no arguments, this method returns a newly created string with no characters. With a single string
argument, it creates and returns a new String object that represents the same text as the argument object.

3.2.2. Character Literals

Single characters can be included literally in a Ruby program by preceding the character with a question mark.
No quotation marks of any kind are used:

?A # Character literal for the ASCII character A

?" # Character literal for the double-quote character

?? # Character literal for the question mark character

Although Ruby has a character literal syntax, it does not have a special class to represent single characters.
Also, the interpretation of character literals has changed between Ruby 1.8 and Ruby 1.9. In Ruby 1.8,
character literals evaluate to the integer encoding of the specified character. ?A, for example, is the same as 65

because the ASCII encoding for the capital letter A is the integer 65. In Ruby 1.8, the character literal syntax
only works with ASCII and single-byte characters.

In Ruby 1.9 and later, characters are simply strings of length 1. That is, the literal ?A is the same as the literal

'A', and there is really no need for this character literal syntax in new code. In Ruby 1.9, the character literal

syntax works with multibyte characters and can also be used with the \u Unicode escape (though not with the

multicodepoint form \u{a b c}):

?\u20AC == ?€ # => true: Ruby 1.9 only

?€ == "\u20AC" # => true

The character literal syntax can actually be used with any of the character escapes listed earlier in Table 3-1:

?\t # Character literal for the TAB character

?\C-x # Character literal for Ctrl-X

?\111 # Literal for character whose encoding is 0111 (octal)

3.2.3. String Operators

The String class defines several useful operators for manipulating strings of text. The + operator concatenates

two strings and returns the result as a new String object:

planet = "Earth"

"Hello" + " " + planet # Produces "Hello Earth"

Java programmers should note that the + operator does not convert its righthand operand to a string; you must

do that yourself:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

"Hello planet #" + planet_number.to_s # to_s converts to a string

Of course, in Ruby, string interpolation is usually simpler than string concatenation with +. With string

interpolation, the call to to_s is done automatically:

"Hello planet ##{planet_number}"

The << operator appends its second operand to its first, and should be familiar to C++ programmers. This

operator is very different from +; it alters the lefthand operand rather than creating and returning a new object:

greeting = "Hello"

greeting << " " << "World"

puts greeting # Outputs "Hello World"

Like +, the << operator does no type conversion on the righthand operand. If the righthand operand is an

integer, however, it is taken to be a character code, and the corresponding character is appended. In Ruby 1.8,
only integers between 0 and 255 are allowed. In Ruby 1.9, any integer that represents a valid codepoint in the
string's encoding can be used:

alphabet = "A"

alphabet << ?B # Alphabet is now "AB"

alphabet << 67 # And now it is "ABC"

alphabet << 256 # Error in Ruby 1.8: codes must be >=0 and < 256

The * operator expects an integer as its righthand operand. It returns a String that repeats the text specified

on the lefthand side the number of times specified by the righthand side:

ellipsis = '.'*3 # Evaluates to '...'

If the lefthand side is a string literal, any interpolation is performed just once before the repetition is done. This
means that the following too-clever code does not do what you might want it to:

a = 0;

"#{a=a+1} " * 3 # Returns "1 1 1 ", not "1 2 3 "

String defines all the standard comparison operators. == and != compare strings for equality and inequality.

Two strings are equal if-and only if-they have the same length and all characters are equal. <, <=, >, and >=

compare the relative order of strings by comparing the character codes of the characters that make up a string.
If one string is a prefix of another, the shorter string is less than the longer string. Comparison is based strictly
on character codes. No normalization is done, and natural language collation order (if it differs from the numeric
sequence of character codes) is ignored.

String comparison is case-sensitive.[*] Remember that in ASCII, the uppercase letters all have lower codes than
the lowercase letters. This means, for example, that "Z" < "a". For case-insensitive comparison of ASCII

characters, use the casecmp method (see Section 9.1) or convert your strings to the same case with downcase

http://lib.ommolketab.ir
http://lib.ommolketab.ir

or upcase methods before comparing them. (Keep in mind that Ruby's knowledge of upper- and lowercase

letters is limited to the ASCII character set.)

[*] In Ruby 1.8, setting the deprecated global variable $= to true makes the ==, <, and related comparison operators perform case-insensitive

comparisons. You should not do this, however; setting this variable produces a warning message, even if the Ruby interpreter is invoked
without the -w flag. And in Ruby 1.9, $= is no longer supported.

3.2.4. Accessing Characters and Substrings

Perhaps the most important operator supported by String is the square-bracket array-index operator [], which

is used for extracting or altering portions of a string. This operator is quite flexible and can be used with a
number of different operand types. It can also be used on the lefthand side of an assignment, as a way of
altering string content.

In Ruby 1.8, a string is like an array of bytes or 8-bit character codes. The length of this array is given by the
length or size method, and you get or set elements of the array simply by specifying the character number

within square brackets:

s = 'hello'; # Ruby 1.8

s[0] # 104: the ASCII character code for the first character 'h'

s[s.length-1] # 111: the character code of the last character 'o'

s[-1] # 111: another way of accessing the last character

s[-2] # 108: the second-to-last character

s[-s.length] # 104: another way of accessing the first character

s[s.length] # nil: there is no character at that index

Notice that negative array indexes specify a 1-based position from the end of the string. Also notice that Ruby
does not throw an exception if you try to access a character beyond the end of the string; it simply returns nil

instead.

Ruby 1.9 returns single-character strings rather than character codes when you index a single character. Keep
in mind that when working with multibyte strings, with characters encoded using variable numbers of bytes,
random access to characters is less efficient than access to the underlying bytes:

s = 'hello'; # Ruby 1.9

s[0] # 'h': the first character of the string, as a string

s[s.length-1] # 'o': the last character 'o'

s[-1] # 'o': another way of accessing the last character

s[-2] # 'l': the second-to-last character

s[-s.length] # 'h': another way of accessing the first character

s[s.length] # nil: there is no character at that index

To alter individual characters of a string, simply use brackets on the lefthand side of an assignment expression.
In Ruby 1.8, the righthand side may be an ASCII character code or a string. In Ruby 1.9, the righthand side
must be a string. You can use character literals in either version of the language:

s[0] = ?H # Replace first character with a capital H

s[-1] = ?O # Replace last character with a capital O

s[s.length] = ?! # ERROR! Can't assign beyond the end of the string

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The righthand side of an assignment statement like this need not be a character code: it may be any string,
including a multicharacter string or the empty string. Again, this works in both Ruby 1.8 and Ruby 1.9:

s = "hello" # Begin with a greeting

s[-1] = "" # Delete the last character; s is now "hell"

s[-1] = "p!" # Change new last character and add one; s is now "help!"

More often than not, you want to retrieve substrings from a string rather than individual character codes. To do
this, use two comma-separated operands between the square brackets. The first operand specifies an index
(which may be negative), and the second specifies a length (which must be nonnegative). The result is the
substring that begins at the specified index and continues for the specified number of characters:

s = "hello"

s[0,2] # "he"

s[-1,1] # "o": returns a string, not the character code ?o

s[0,0] # "": a zero-length substring is always empty

s[0,10] # "hello": returns all the characters that are available

s[s.length,1] # "": there is an empty string immediately beyond the end

s[s.length+1,1] # nil: it is an error to read past that

s[0,-1] # nil: negative lengths don't make any sense

If you assign a string to a string indexed like this, you replace the specified substring with the new string. If the
righthand side is the empty string, this is a deletion, and if the lefthand side has zero-length, this is an
insertion:

Code View:
s = "hello"

s[0,1] = "H" # Replace first letter with a capital letter

s[s.length,0] = " world" # Append by assigning beyond the end of the string

s[5,0] = "," # Insert a comma, without deleting anything

s[5,6] = "" # Delete with no insertion; s == "Hellod"

Another way to extract, insert, delete, or replace a substring is by indexing a string with a Range object. We'll

explain ranges in detail in Section 3.5 later. For our purposes here, a Range is two integers separated by dots.

When a Range is used to index a string, the return value is the substring whose characters fall within the Range:

s = "hello"

s[2..3] # "ll": characters 2 and 3

s[-3..-1] # "llo": negative indexes work, too

s[0..0] # "h": this Range includes one character index

s[0...0] # "": this Range is empty

s[2..1] # "": this Range is also empty

s[7..10] # nil: this Range is outside the string bounds

s[-2..-1] = "p!" # Replacement: s becomes "help!"

s[0...0] = "Please " # Insertion: s becomes "Please help!"

s[6..10] = "" # Deletion: s becomes "Please!"

Don't confuse string indexing with two comma-separated integers with this form that uses a single Range

object. Although both involve two integers, there is an important difference: the form with the comma specifies

http://lib.ommolketab.ir
http://lib.ommolketab.ir

an index and a length; the form that uses a Range object specifies two indexes.

It is also possible to index a string with a string. When you do this, the return value is the first substring of the
target string that matches the index string, or nil, if no match is found. This form of string indexing is really

only useful on the lefthand side of an assignment statement when you want to replace the matched string with
some other string:

s = "hello" # Start with the word "hello"

while(s["l"]) # While the string contains the substring "l"

 s["l"] = "L"; # Replace first occurrence of "l" with "L"

end # Now we have "heLLo"

Finally, you can index a string using a regular expression. (Regular expression objects are covered in Section
9.2.) The result is the first substring of the string that matches the pattern, and again, this form of string
indexing is most useful when used on the lefthand side of an assignment:

s[/[aeiou]/] = '*' # Replace first vowel with an asterisk

3.2.5. Iterating Strings

In Ruby 1.8, the String class defines an each method that iterates a string line-by-line. The String class

includes the methods of the Enumerable module, and they can be used to process the lines of a string. You can

use the each_byte iterator in Ruby 1.8 to iterate through the bytes of a string, but there is little advantage to

using each_byte over the [] operator because random access to bytes is as quick as sequential access in 1.8.

The situation is quite different in Ruby 1.9, which removes the each method, and in which the String class is no

longer Enumerable. In place of each, Ruby 1.9 defines three clearly named string iterators: each_byte iterates

sequentially through the individual bytes that comprise a string; each_char iterates the characters; and

each_line iterates the lines. If you want to process a string character-by-character, it may be more efficient to

use each_char than to use the [] operator and character indexes:

s = "¥1000"

s.each_char {|x| print "#{x} " } # Prints "¥ 1 0 0 0". Ruby 1.9

0.upto(s.size-1) {|i| print "#{s[i]} "} # Inefficient with multibyte chars

3.2.6. String Encodings and Multibyte Characters

Strings are fundamentally different in Ruby 1.8 and Ruby 1.9:

In Ruby 1.8, strings are a sequence of bytes. When strings are used to represent text (instead of binary
data), each byte of the string is assumed to represent a single ASCII character. In 1.8, the individual
elements of a string are not characters, but numbers-the actual byte value or character encoding.

In Ruby 1.9, on the other hand, strings are true sequences of characters, and those characters need not
be confined to the ASCII character set. In 1.9, the individual elements of a string are
characters-represented as strings of length 1-rather than integer character codes. Every string has an
encoding that specifies the correspondence between the bytes in the string and the characters those bytes
represent. Encodings such as the UTF-8 encoding of Unicode characters use variable numbers of bytes for
each character, and there is no longer a 1-to-1 (nor even a 2-to-1) correspondence between bytes and
characters.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The subsections that follow explain the encoding-related features of strings in Ruby 1.9, and also demonstrate
rudimentary support for multibyte characters in Ruby 1.8 using the jcode library.

3.2.6.1. Multibyte characters in Ruby 1.9

The String class has been rewritten in Ruby 1.9 to be aware of and properly handle multibyte characters.

Although multibyte support is the biggest change in Ruby 1.9, it is not a highly visible change: code that uses
multibyte strings just works. It is worth understanding why it works, however, and this section explains the
details.

If a string contains multibyte characters, then the number of bytes does not correspond to the number of
characters. In Ruby 1.9, the length and size methods return the number of characters in a string, and the new

bytesize method returns the number of bytes:

-*- coding: utf-8 -*- # Specify Unicode UTF-8 characters

This is a string literal containing a multibyte multiplication character

s = "2x2=4"

The string contains 6 bytes which encode 5 characters

s.length # => 5: Characters: '2' 'x' '2' '=' '4'

s.bytesize # => 6: Bytes (hex): 32 c3 97 32 3d 34

Note that the first line in this code is a coding comment that sets the source encoding (see Section 2.4.1) to
UTF-8. Without this comment, the Ruby interpreter would not know how to decode the sequence of bytes in the
string literal into a sequence of characters.

When a string contains characters encoded with varying numbers of bytes, it is no longer possible to map
directly from character index to byte offset in the string. In the string above, for example, the second character
begins at the second byte. But the third character begins at the fourth byte. This means that you cannot assume
that random access to arbitrary characters within a string is a fast operation. When you use the [] operator to

access a character or substring within a multibyte string, the Ruby implementation must internally iterate
sequentially through the string to find the desired character index. In general, therefore, you should try to do
your string processing using sequential algorithms when possible. That is: use the each_char iterator when

possible instead of repeated calls to the [] operator. On the other hand, it is usually not necessary to worry too

much about this. Ruby implementations optimize the cases that can be optimized, and if a string consists
entirely of 1-byte characters, random access to those characters will be efficient. If you want to attempt your
own optimizations, you can use the instance method ascii_only? to determine whether a string consists

entirely of 7-bit ASCII characters.

The Ruby 1.9 String class defines an encoding method that returns the encoding of a string (the return value

is an Encoding object, which is described below):

-*- coding: utf-8 -*-

s = "2x2=4" # Note multibyte multiplication character

s.encoding # => <Encoding: UTF-8>

t = "2+2=4" # All characters are in the ASCII subset of UTF-8

t.encoding # => <Encoding: ASCII-8BIT>

The encoding of a string literal is based on the source encoding of the file it appears within. But its encoding is
not always the same as the source encoding. If a string literal contains only 7-bit ASCII characters, then its
encoding method will return ASCII, even if the source encoding is UTF-8 (a superset of ASCII), for example.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This optimization lets string methods know that all characters in the string are one byte long. Also, if a string
literal contains \u escapes, then its encoding will be UTF-8, even if the source encoding is something different.

ASCII and BINARY encodings

The "ASCII-8BIT" encoding shown earlier is Ruby 1.9's name for the legacy encoding used by Ruby
1.8; it is the ASCII character set with no restrictions on the use of nonprinting and control
characters. In this encoding, one byte always equals one character, and strings can hold binary
data or character data.

Certain Ruby 1.9 methods require you to specify an encoding name (or Encoding object-see

below). You can specify this ASCII encoding as "ASCII-8BIT" or by its alias "BINARY". This may
seem surprising, but it's true: as far as Ruby is concerned, a sequence of bytes with no encoding
("BINARY") is the same as a sequence of 8-bit ASCII characters. Because the "BINARY" encoding
really means "unencoded bytes," you can also specify this encoding by passing nil instead of an

encoding name or Encoding object.

Ruby 1.9 also supports an encoding named "US-ASCII", which is true 7-bit ASCII; it differs from
ASCII-8BIT in that it does not allow any bytes with their 8th bit set.

Certain string operations, such as concatenation and pattern matching, require that two strings (or a string and
a regular expression) have compatible encodings. If you concatenate an ASCII string with a UTF-8 string, for
example, you obtain a UTF-8 string. It is not possible, however, to concatenate a UTF-8 string and an SJIS
string: the encodings are not compatible, and an exception will be raised. You can test whether two strings (or a
string and a regular expression) have compatible encodings by using the class method Encoding.compatible?.

If the encodings of the two arguments are compatible, it returns the one that is the superset of the other. If the
encodings are incompatible, it returns nil.

You can explicitly set the encoding of a string with force_encoding. This is useful if you have a string of bytes

(read from an I/O stream, perhaps) and want to tell Ruby how they should be interpreted as characters. Or, if
you have a string of multibyte characters, but you want to index individual bytes with []:

text = stream.readline.force_encoding("utf-8")

bytes = text.dup.force_encoding(nil) # nil encoding means binary

force_encoding does not make a copy of its receiver; it modifies the encoding of the string and returns the

string. This method does not do any character conversion-the underlying bytes of the string are not changed,
only Ruby's interpretation of them is changed. As shown above, the argument to force_encoding can be the

name of an encoding or nil to specify binary encoding. You can also pass an Encoding object to specify the

encoding.

force_encoding does no validation; it does not check that the underlying bytes of the string represent a valid

sequence of characters in the specified encoding. Use valid_encoding? to perform validation. This instance

method takes no arguments and checks whether the bytes of a string can be interpreted as a valid sequence of
characters using the string's encoding:

s = "\xa4".force_encoding("utf-8") # This is not a valid UTF-8 string

s.valid_encoding? # => false

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The encode method (and the mutating encode! variant) of a string is quite different from force_encoding. It

returns a string that represents the same sequence of characters as its receiver, but using a different encoding.
In order to change the encoding of-or transcode-a string like this, the encode method must alter the

underlying bytes that make up the string. Here is an example:

Code View:
-*- coding: utf-8 -*-

euro1 = "\u20AC" # Start with the Unicode Euro character

puts euro1 # Prints "€"

euro1.encoding # => <Encoding:UTF-8>

euro1.bytesize # => 3

euro2 = euro1.encode("iso-8859-15") # Transcode to Latin-15

puts euro2.inspect # Prints "\xA4"

euro2.encoding # => <Encoding:iso-8859-15>

euro2.bytesize # => 1

euro3 = euro2.encode("utf-8") # Transcode back to UTF-8

euro1 == euro3 # => true

Note that you should not often need to use the encode method. The most common time to transcode strings is

before writing them to a file or sending them across a network connection. And, as we'll see in Section 9.7.2,
Ruby's I/O stream classes support the automatic transcoding of text when it is written out.

If the string that you are calling encode on consists of unencoded bytes, you need to specify the encoding by

which to interpret those bytes before transcoding them to another encoding. Do this by passing two arguments
to encode. The first argument is the desired encoding, and the second argument is the current encoding of the

string. For example:

Interpret a byte as an iso-8859-15 codepoint, and transcode to UTF-8

byte = "\xA4"

char = byte.encode("utf-8", "iso-8859-15")

That is, the following two lines of code have the same effect:

text = bytes.encode(to, from)

text = bytes.dup.force_encoding(from).encode(to)

Character encodings differ not only in their mapping from bytes to characters, but in the set of characters that
they can represent. Unicode (also known as UCS-the Universal Character Set) tries to allow all characters, but
character encodings not based on Unicode can only represent a subset of characters. It is not possible,
therefore, to transcode all UTF-8 strings to EUC-JP (for example); Unicode characters that are neither Latin nor
Japanese cannot be translated.

If the encode or encode! method encounters a character that it cannot transcode, it raises an exception;

Code View:
The iso-8859-1 encoding doesn't have a Euro sign, so this raises an exception

"\u20AC".encode("iso-8859-1")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.2.6.2. The Encoding class

The Encoding class of Ruby 1.9 represents a character encoding. Encoding objects act as opaque identifiers for

an encoding and do not have many methods of their own. The name method returns the name of an encoding.

to_s is a synonym for name, and inspect converts an Encoding object to a string in a more verbose way than

name does.

Ruby defines a constant for each of the built-in encodings it supports, and these are the easiest way to specify a
hardcoded encoding in your program. The predefined constants include at least the following:

Encoding::ASCII_8BIT # Also ::BINARY

Encoding::UTF_8 # UTF-8-encoded Unicode characters

Encoding::EUC_JP # EUC-encoded Japanese

Encoding::SHIFT_JIS # Japanese: also ::SJIS, ::WINDOWS_31J, ::CP932

Note that because these are constants, they must be written in uppercase, and hyphens in the encoding names
must be converted to underscores. Ruby 1.9 also supports the US-ASCII encoding, the European encodings
ISO-8859-1 through ISO-8859-15, and the Unicode UTF-16 and UTF-32 encodings in big-endian and little-
endian variants, but these are dynamically loaded as needed rather than built-in, and constants do not exist for
these encodings until they are used.

If you have an encoding name as a string and want to obtain the corresponding Encoding object, use the

Encoding.find factory method:

encoding = Encoding.find("utf-8")

Using Encoding.find causes the named encoding to be dynamically loaded, if necessary. Encoding.find

accepts encoding names that are in either upper- or lowercase. Call the name method of an Encoding to obtain

the name of the encoding as a string.

If you want a list of available encodings, call Encoding.list, which returns an array of Encoding objects. The

Encoding.list method only lists built-in encodings and any encodings that have already been dynamically

loaded. Calling Encoding.find can cause new encodings to be loaded. These new encodings will be listed by

subsequent calls to Encoding.list.

Use Encoding.default_external to obtain the Encoding object that represents the default external encoding

(see Section 2.4.2). To obtain the encoding for the current locale, call Encoding.locale_charmap and pass the

resulting string to Encoding.find.

Most methods that expect an Encoding object will also accept nil as a synonym for Encoding::BINARY (i.e.,

unencoded bytes). Most methods will also accept an encoding name (such as ascii, binary, utf-8, euc-jp, or

sjis) in place of an Encoding object.

The encodings supported by the encode method for transcoding may be a superset of the encodings supported

by the Encoding class. That is (depending on which encodings are supported in your version and distribution of

Ruby), it may be possible to use encode to transcode a string of characters into a string of bytes that Ruby

cannot interpret as characters. This might be necessary, for example, when communicating with a legacy server
that requires an unusual character encoding. You may pass Encoding objects to the encode method, but when

working with encodings that are not supported by the Encoding class, you will have to specify the encoding

name as a string.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.2.6.3. Multibyte characters in Ruby 1.8

Normally, Ruby 1.8 treats all strings as sequences of 8-bit bytes. There is rudimentary support for multibyte
characters (using the UTF-8, EUC, or SJIS encodings) in the jcode module of the standard library.

To use this library, require the jcode module, and set the global $KCODE variable to the encoding that your

multibyte characters use. (Alternatively, use the -K command-line option when you start the Ruby interpreter.)

The jcode library defines a new jlength method for String objects: it returns the length of the string in

characters rather than in bytes. The existing 1.8 length and size methods are unchanged-they return the

string length in bytes.

The jcode library does not modify the array indexing operator on strings, and does not allow random access to

the characters that comprise a multibyte string. But it does define a new iterator named each_char, which

works like the standard each_byte but passes each character of the string (as a string instead of as a character

code) to the block of code you supply:

$KCODE = "u" # Specify Unicode UTF-8, or start Ruby with -Ku option

require "jcode" # Load multibyte character support

mb = "2\303\2272=4" # This is "2x2=4" with a Unicode multiplication sign

mb.length # => 6: there are 6 bytes in this string

mb.jlength # => 5: but only 5 characters

mb.mbchar? # => 1: position of the first multibyte char, or nil

mb.each_byte do |c| # Iterate through the bytes of the string.

 print c, " " # c is Fixnum

end # Outputs "50 195 151 50 61 52 "

mb.each_char do |c| # Iterate through the characters of the string

 print c, " " # c is a String with jlength 1 and variable length

end # Outputs "2 x 2 = 4 "

The jcode library also modifies several existing String methods, such as chop, delete, and tr, to work with

multibyte strings.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.3. Arrays

An array is a sequence of values that allows values to be accessed by their position, or index, in the sequence.
In Ruby, the first value in an array has index 0. The size and length methods return the number of elements in

an array. The last element of the array is at index size-1. Negative index values count from the end of the

array, so the last element of an array can also be accessed with an index of –1. The second-to-last has an index

of –2, and so on. If you attempt to read an element beyond the end of an array (with an index >= size) or

before the beginning of an array (with an index < -size), Ruby simply returns nil and does not throw an

exception.

Ruby's arrays are untyped and mutable. The elements of an array need not all be of the same class, and they
can be changed at any time. Furthermore, arrays are dynamically resizeable; you can append elements to them
and they grow as needed. If you assign a value to an element beyond the end of the array, the array is
automatically extended with nil elements. (It is an error, however, to assign a value to an element before the

beginning of an array.)

An array literal is a comma-separated list of values, enclosed in square brackets:

[1, 2, 3] # An array that holds three Fixnum objects

[-10...0, 0..10,] # An array of two ranges; trailing commas are allowed

[[1,2],[3,4],[5]] # An array of nested arrays

[x+y, x-y, x*y] # Array elements can be arbitrary expressions

[] # The empty array has size 0

Ruby includes a special-case syntax for expressing array literals whose elements are short strings without
spaces:

words = %w[this is a test] # Same as: ['this', 'is', 'a', 'test']

open = %w| ([{ < | # Same as: ['(', '[', '{', '<']

white = %W(\s \t \r \n) # Same as: ["\s", "\t", "\r", "\n"]

%w and %W introduce an array literal, much like %q and %Q introduce a String literal. In particular, the delimiter

rules for %w and %W are the same as for %q and %Q. Within the delimiters, no quotation marks are required

around the array element strings, and no commas are required between the elements. Array elements are
delimited by whitespace.

You can also create arrays with the Array.new constructor, and this provides options for programmatically

initializing the array elements:

empty = Array.new # []: returns a new empty array

nils = Array.new(3) # [nil, nil, nil]: new array with 3 nil elements

zeros = Array.new(4, 0) # [0, 0, 0, 0]: new array with 4 0 elements

copy = Array.new(nils) # Make a new copy of an existing array

count = Array.new(3) {|i| i+1} # [1,2,3]: 3 elements computed from index

To obtain the value of an array element, use a single integer within square brackets:

a = [0, 1, 4, 9, 16] # Array holds the squares of the indexes

a[0] # First element is 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

a[-1] # Last element is 16

a[-2] # Second to last element is 9

a[a.size-1] # Another way to query the last element

a[-a.size] # Another way to query the first element

a[8] # Querying beyond the end returns nil

a[-8] # Querying before the start returns nil, too

All of the expressions above, except for the last, can also be used on the lefthand side of an assignment:

a[0] = "zero" # a is ["zero", 1, 4, 9, 16]

a[-1] = 1..16 # a is ["zero", 1, 4, 9, 1..16]

a[8] = 64 # a is ["zero", 1, 4, 9, 1..16, nil, nil, nil, 64]

a[-9] = 81 # Error: can't assign before the start of an array

Like strings, arrays can also be indexed with two integers that represent a starting index and a number of
elements, or a Range object. In either case, the expression returns the specified subarray:

a = ('a'..'e').to_a # Range converted to ['a', 'b', 'c', 'd', 'e']

a[0,0] # []: this subarray has zero elements

a[1,1] # ['b']: a one-element array

a[-2,2] # ['d','e']: the last two elements of the array

a[0..2] # ['a', 'b', 'c']: the first three elements

a[-2..-1] # ['d','e']: the last two elements of the array

a[0...-1] # ['a', 'b', 'c', 'd']: all but the last element

When used on the lefthand side of an assignment, a subarray can be replaced by the elements of the array on
the righthand side. This basic operation works for insertions and deletions as well:

a[0,2] = ['A', 'B'] # a becomes ['A', 'B', 'c', 'd', 'e']

a[2...5]=['C', 'D', 'E'] # a becomes ['A', 'B', 'C', 'D', 'E']

a[0,0] = [1,2,3] # Insert elements at the beginning of a

a[0..2] = [] # Delete those elements

a[-1,1] = ['Z'] # Replace last element with another

a[-1,1] = 'Z' # For single elements, the array is optional

a[-2,2] = nil # Delete last 2 elements in 1.8; replace with nil in 1.9

In addition to the square bracket operator for indexing an array, the Array class defines a number of other

useful operators. Use + to concatenate two arrays:

a = [1, 2, 3] + [4, 5] # [1, 2, 3, 4, 5]

a = a + [[6, 7, 8]] # [1, 2, 3, 4, 5, [6, 7, 8]]

a = a + 9 # Error: righthand side must be an array

The - operator subtracts one array from another. It begins by making a copy of its lefthand array, and then

removes any elements from that copy if they appear anywhere in the righthand array:

['a', 'b', 'c', 'b', 'a'] - ['b', 'c', 'd'] # ['a', 'a']

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The + operator creates a new array that contains the elements of both its operands. Use << to append elements

to the end of an existing array:

a = [] # Start with an empty array

a << 1 # a is [1]

a << 2 << 3 # a is [1, 2, 3]

a << [4,5,6] # a is [1, 2, 3, [4, 5, 6]]

Like the String class, Array also uses the multiplication operator for repetition:

a = [0] * 8 # [0, 0, 0, 0, 0, 0, 0, 0]

The Array class borrows the Boolean operators | and & and uses them for union and intersection. |

concatenates its arguments and then removes all duplicate elements from the result. & returns an array that

holds elements that appear in both of the operand arrays. The returned array does not contain any duplicate
elements:

a = [1, 1, 2, 2, 3, 3, 4]

b = [5, 5, 4, 4, 3, 3, 2]

a | b # [1, 2, 3, 4, 5]: duplicates are removed

b | a # [5, 4, 3, 2, 1]: elements are the same, but order is different

a & b # [2, 3, 4]

b & a # [4, 3, 2]

Note that these operators are not transitive: a|b is not the same as b|a, for example. If you ignore the ordering

of the elements, however, and consider the arrays to be unordered sets, then these operators make more
sense. Note also that the algorithm by which union and intersection are performed is not specified, and there
are no guarantees about the order of the elements in the returned arrays.

The Array class defines quite a few useful methods. The only one we'll discuss here is the each iterator, used

for looping through the elements of an array:

a = ('A'..'Z').to_a # Begin with an array of letters

a.each {|x| print x } # Print the alphabet, one letter at a time

Other Array methods you may want to look up include clear, compact!, delete_if, each_index, empty?, fill,

flatten!, include?, index, join, pop, push, reverse, reverse_each, rindex, shift, sort, sort!, uniq!, and

unshift.

We'll see arrays again when we consider parallel assignment in Section 4.5.5 and method invocation in Chapter
6. And we'll explore the Array API in detail in Section 9.5.2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.4. Hashes

A hash is a data structure that maintains a set of objects known as keys, and associates a value with each key.
Hashes are also known as maps because they map keys to values. They are sometimes called associative arrays
because they associate values with each of the keys, and can be thought of as arrays in which the array index
can be any object instead of an integer. An example makes this clearer:

This hash will map the names of digits to the digits themselves

numbers = Hash.new # Create a new, empty, hash object

numbers["one"] = 1 # Map the String "one" to the Fixnum 1

numbers["two"] = 2 # Note that we are using array notation here

numbers["three"] = 3

sum = numbers["one"] + numbers["two"] # Retrieve values like this

This introduction to hashes documents Ruby's hash literal syntax and explains the requirements for an object to
be used as a hash key. More information on the API defined by the Hash class is provided in Section 9.5.3.

3.4.1. Hash Literals

A hash literal is written as a comma-separated list of key/value pairs, enclosed within curly braces. Keys and
values are separated with a two-character "arrow": =>. The Hash object created earlier could also be created

with the following literal:

numbers = { "one" => 1, "two" => 2, "three" => 3 }

In general, Symbol objects work more efficiently as hash keys than strings do:

numbers = { :one => 1, :two => 2, :three => 3 }

Symbols are immutable interned strings, written as colon-prefixed identifiers; they are explained in more detail
in Section 3.6 later in this chapter.

Ruby 1.8 allows commas in place of arrows, but this deprecated syntax is no longer supported in Ruby 1.9:

numbers = { :one, 1, :two, 2, :three, 3 } # Same, but harder to read

Both Ruby 1.8 and Ruby 1.9 allow a single trailing comma at the end of the key/value list:

numbers = { :one => 1, :two => 2, } # Extra comma ignored

Ruby 1.9 supports a very useful and succinct hash literal syntax when the keys are symbols. In this case, the
colon moves to the end of the hash key and replaces the arrow:[*]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[*] The result is a syntax much like that used by JavaScript objects.

numbers = { one: 1, two: 2, three: 3 }

Note that there may not be any space between the hash key identifier and the colon.

3.4.2. Hash Codes, Equality, and Mutable Keys

Ruby's hashes are implemented, unsurprisingly, with a data structure known as a hash table. Objects used as
keys in a hash must have a method named hash that returns a Fixnum hashcode for the key. If two keys are

equal, they must have the same hashcode. Unequal keys may also have the same hashcode, but hash tables
are most efficient when duplicate hashcodes are rare.

The Hash class compares keys for equality with the eql? method. For most Ruby classes, eql? works like the ==

operator (see Section 3.8.5 for details). If you define a new class that overrides the eql? method, you must also

override the hash method, or else instances of your class will not work as keys in a hash. (We'll see examples of

writing a hash method in Chapter 7.)

If you define a class and do not override eql?, then instances of that class are compared for object identity

when used as hash keys. Two distinct instances of your class are distinct hash keys even if they represent the
same content. In this case, the default hash method is appropriate: it returns the unique object_id of the

object.

Note that mutable objects are problematic as hash keys. Changing the content of an object typically changes its
hashcode. If you use an object as a key and then alter that object, the internal hash table becomes corrupted,
and the hash no longer works correctly.

Because strings are mutable but commonly used hash keys, Ruby treats them as a special case and makes
private copies of all strings used as keys. This is the only special case, however; you must be very cautious
when using any other mutable object as a hash key. Consider making a private copy or calling the freeze

method. If you must use mutable hash keys, call the rehash method of the Hash every time you mutate a key.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.5. Ranges

A Range object represents the values between a start value and an end value. Range literals are written by

placing two or three dots between the start and end value. If two dots are used, then the range is inclusive and
the end value is part of the range. If three dots are used, then the range is exclusive and the end value is not
part of the range:

1..10 # The integers 1 through 10, including 10

1.0...10.0 # The numbers between 1.0 and 10.0, excluding 10.0 itself

Test whether a value is included in a range with the include? method (but see below for a discussion of

alternatives):

cold_war = 1945..1989

cold_war.include? birthdate.year

Implicit in the definition of a range is the notion of ordering. If a range is the values between two endpoints,
there obviously must be some way to compare values to those endpoints. In Ruby, this is done with the
comparison operator <=>, which compares its two operands and evaluates to –1, 0, or 1, depending on their

relative order (or equality). Classes such as numbers and strings that have an ordering define the <=> operator.

A value can only be used as a range endpoint if it responds to this operator. The endpoints of a range and the
values "in" the range are typically all of the same class. Technically, however, any value that is compatible with
the <=> operators of the range endpoints can be considered a member of the range.

The primary purpose for ranges is comparison: to be able to determine whether a value is in or out of the
range. An important secondary purpose is iteration: if the class of the endpoints of a range defines a succ

method (for successor), then there is a discrete set of range members, and they can be iterated with each,

step, and Enumerable methods. Consider the range 'a'..'c', for example:

r = 'a'..'c'

r.each {|l| print "[#{l}]"} # Prints "[a][b][c]"

r.step(2) { |l| print "[#{l}]"} # Prints "[a][c]"

r.to_a # => ['a','b','c']: Enumerable defines to_a

The reason this works is that the String class defines a succ method and 'a'.succ is 'b' and 'b'.succ is 'c'.

Ranges that can be iterated like this are discrete ranges. Ranges whose endpoints do not define a succ method

cannot be iterated, and so they can be called continuous. Note that ranges with integer endpoints are discrete,
but floating-point numbers as endpoints are continuous.

Ranges with integer endpoints are the most commonly used in typical Ruby programs. Because they are
discrete, integer ranges can be used to index strings and arrays. They are also a convenient way to represent an
enumerable collection of ascending values.

Notice that the code assigns a range literal to a variable, and then invokes methods on the range through the
variable. If you want to invoke a method directly on a range literal, you must parenthesize the literal, or the
method invocation is actually on the endpoint of the range rather than on the Range object itself:

1..3.to_a # Tries to call to_a on the number 3

(1..3).to_a # => [1,2,3]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.5.1. Testing Membership in a Range

The Range class defines methods for determining whether an arbitrary value is a member of (i.e., is included in)

a range. Before going into detail on these methods, it is necessary to explain that range membership can be
defined in two different ways that are related to the difference between continuous and discrete ranges. A value
x is a member of the range begin..end by the first definition if:

begin <= x <= end

And x is a member of the range begin...end (with three dots) if:

begin <= x < end

All range endpoint values must implement the <=> operator, so this definition of membership works for any

Range object and does not require the endpoints to implement the succ method. We'll call this the continuous

membership test.

The second definition of membership-discrete membership-does depend on succ. It treats a Range

begin..end as a set that includes begin, begin.succ, begin.succ.succ, and so on. By this definition, range

membership is set membership, and a value x is included in a range only if it is a value returned by one of the

succ invocations. Note that testing for discrete membership is potentially a much more expensive operation

than testing for continuous membership.

With that as background, we can describe the Range methods for testing membership. Ruby 1.8 supports two

methods, include? and member?. They are synonyms, and both use the continuous membership test:

r = 0...100 # The range of integers 0 through 99

r.member? 50 # => true: 50 is a member of the range

r.include? 100 # => false: 100 is excluded from the range

r.include? 99.9 # => true: 99.9 is less than 100

The situation is different in Ruby 1.9. That version of the language introduces a new method, cover?, which

works like include? and member? do in Ruby 1.8: it always uses the continuous membership test. include? and

member? are still synonyms in Ruby 1.9. If the endpoints of the range are numbers, these methods use the

continuous membership test, just as they did in Ruby 1.8. If the endpoints are not numeric, however, they
instead use the discrete membership test. We can illustrate these changes with a discrete range of strings (you
may want to use ri to understand how String.succ works):

triples = "AAA".."ZZZ"

triples.include? "ABC" # true; fast in 1.8 and slow in 1.9

triples.include? "ABCD" # true in 1.8, false in 1.9

triples.cover? "ABCD" # true and fast in 1.9

triples.to_a.include? "ABCD" # false and slow in 1.8 and 1.9

In practice, most ranges have numeric endpoints, and the Range API changes between Ruby 1.8 and 1.9 have

little impact.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.6. Symbols

A typical implementation of a Ruby interpreter maintains a symbol table in which it stores the names of all the
classes, methods, and variables it knows about. This allows such an interpreter to avoid most string
comparisons: it refers to method names (for example) by their position in this symbol table. This turns a
relatively expensive string operation into a relatively cheap integer operation.

These symbols are not purely internal to the interpreter; they can also be used by Ruby programs. A Symbol

object refers to a symbol. A symbol literal is written by prefixing an identifier or string with a colon:

:symbol # A Symbol literal

:"symbol" # The same literal

:'another long symbol' # Quotes are useful for symbols with spaces

s = "string"

sym = :"#{s}" # The Symbol :string

Symbols also have a %s literal syntax that allows arbitrary delimiters in the same way that %q and %Q can be

used for string literals:

%s["] # Same as :'"'

Symbols are often used to refer to method names in reflective code. For example, suppose we want to know if
some object has an each method:

o.respond_to? :each

Here's another example. It tests whether a given object responds to a specified method, and, if so, invokes that
method:

name = :size

if o.respond_to? name

 o.send(name)

end

You can convert a String to a Symbol using the intern or to_sym methods. And you can convert a Symbol back

into a String with the to_s method or its alias id2name:

str = "string" # Begin with a string

sym = str.intern # Convert to a symbol

sym = str.to_sym # Another way to do the same thing

str = sym.to_s # Convert back to a string

str = sym.id2name # Another way to do it

Two strings may hold the same content and yet be completely distinct objects. This is never the case with
symbols. Two strings with the same content will both convert to exactly the same Symbol object. Two distinct

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Symbol objects will always have different content.

Whenever you write code that uses strings not for their textual content but as a kind of unique identifier,
consider using symbols instead. Rather than writing a method that expects an argument to be either the string
"AM" or "PM", for example, you could write it to expect the symbol :AM or the symbol :PM. Comparing two

Symbol objects for equality is much faster than comparing two strings for equality. For this reason, symbols are

generally preferred to strings as hash keys.

In Ruby 1.9, the Symbol class defines a number of String methods, such as length, size, the comparison

operators, and even the [] and =~ operators. This makes symbols somewhat interchangeable with strings and

allows their use as a kind of immutable (and not garbage-collected) string.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.7. True, False, and Nil

We saw in Section 2.1.5 that true, false, and nil are keywords in Ruby. true and false are the two Boolean

values, and they represent truth and falsehood, yes and no, on and off. nil is a special value reserved to

indicate the absence of value.

Each of these keywords evaluates to a special object. true evaluates to an object that is a singleton instance of

TrueClass. Likewise, false and nil are singleton instances of FalseClass and NilClass. Note that there is no

Boolean class in Ruby. TrueClass and FalseClass both have Object as their superclass.

If you want to check whether a value is nil, you can simply compare it to nil, or use the method nil?:

o == nil # Is o nil?

o.nil? # Another way to test

Note that true, false, and nil refer to objects, not numbers. false and nil are not the same thing as 0, and

true is not the same thing as 1. When Ruby requires a Boolean value, nil behaves like false, and any value

other than nil or false behaves like true.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.8. Objects

Ruby is a very pure object-oriented language: all values are objects, and there is no distinction between
primitive types and object types as there are in many other languages. In Ruby, all objects inherit from a class
named Object and share the methods defined by that class. This section explains the common features of all

objects in Ruby. It is dense in parts, but it's required reading; the information here is fundamental.

3.8.1. Object References

When we work with objects in Ruby, we are really working with object references. It is not the object itself we
manipulate but a reference to it.[*] When we assign a value to a variable, we are not copying an object "into"
that variable; we are merely storing a reference to an object into that variable. Some code makes this clear:

[*] If you are familiar with C or C++, you can think of a reference as a pointer: the address of the object in memory. Ruby does not use

pointers, however. References in Ruby are opaque and internal to the implementation. There is no way to take the address of a value,

dereference a value, or do pointer arithmetic.

Code View:
s = "Ruby" # Create a String object. Store a reference to it in s.

t = s # Copy the reference to t. s and t both refer to the same object.

t[-1] = "" # Modify the object through the reference in t.

print s # Access the modified object through s. Prints "Rub".

t = "Java" # t now refers to a different object.

print s,t # Prints "RubJava".

When you pass an object to a method in Ruby, it is an object reference that is passed to the method. It is not
the object itself, and it is not a reference to the reference to the object. Another way to say this is that method
arguments are passed by value rather than by reference, but that the values passed are object references.

Because object references are passed to methods, methods can use those references to modify the underlying
object. These modifications are then visible when the method returns.

3.8.1.1. Immediate values

We've said that all values in Ruby are objects and all objects are manipulated by reference. In the reference
implementation, however, Fixnum and Symbol objects are actually "immediate values" rather than references.

Neither of these classes have mutator methods, so Fixnum and Symbol objects are immutable, which means

that there is really no way to tell that they are manipulated by value rather than by reference.

The existence of immediate values should be considered an implementation detail. The only practical difference
between immediate values and reference values is that immediate values cannot have singleton methods
defined on them. (Singleton methods are explained in Section 6.1.4.)

3.8.2. Object Lifetime

The built-in Ruby classes described in this chapter have literal syntaxes, and instances of these classes are
created simply by including their values literally in your code. Objects of other classes need to be explicitly
created, and this is most often done with a method named new:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

myObject = myClass.new

new is a method of the Class class. It allocates memory to hold the new object, then it initializes the state of

that newly allocated "empty" object by invoking its initialize method. The arguments to new are passed

directly on to initialize. Most classes define an initialize method to perform whatever initialization is

necessary for instances.

The new and initialize methods provide the default technique for creating new classes, but classes may also

define other methods, known as "factory methods," that return instances. We'll learn more about new,

initialize, and factory methods in Section 7.4.

Ruby objects never need to be explicitly deallocated, as they do in languages like C and C++. Ruby uses a
technique called garbage collection to automatically destroy objects that are no longer needed. An object
becomes a candidate for garbage collection when it is unreachable- when there are no remaining references to
the object except from other unreachable objects.

The fact that Ruby uses garbage collection means that Ruby programs are less susceptible to memory leaks
than programs written in languages that require objects and memory to be explicitly deallocated and freed. But
garbage collection does not mean that memory leaks are impossible: any code that creates long-lived
references to objects that would otherwise be short-lived can be a source of memory leaks. Consider a hash
used as a cache. If the cache is not pruned using some kind of least-recently-used algorithm, then cached
objects will remain reachable as long as the hash itself is reachable. If the hash is referenced through a global
variable, then it will be reachable as long as the Ruby interpreter is running.

3.8.3. Object Identity

Every object has an object identifier, a Fixnum, that you can obtain with the object_id method. The value

returned by this method is constant and unique for the lifetime of the object. While the object is accessible, it
will always have the same ID, and no other object will share that ID.

The method id is a deprecated synonym for object_id. Ruby 1.8 issues a warning if you use it, and it has been

removed in Ruby 1.9.

__id__ is a valid synonym for object_id. It exists as a fallback, so you can access an object's ID even if the

object_id method has been undefined or overridden.

The Object class implements the hash method to simply return an object's ID.

3.8.4. Object Class and Object Type

There are several ways to determine the class of an object in Ruby. The simplest is simply to ask for it:

o = "test" # This is a value

o.class # Returns an object representing the String class

If you are interested in the class hierarchy of an object, you can ask any class what its superclass is:

o.class # String: o is a String object

o.class.superclass # Object: superclass of String is Object

o.class.superclass.superclass # nil: Object has no superclass

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In Ruby 1.9, Object is no longer the true root of the class hierarchy:

Ruby 1.9 only

Object.superclass # BasicObject: Object has a superclass in 1.9

BasicObject.superclass # nil: BasicObject has no superclass

See Section 7.3 for more on BasicObject.

So a particularly straightforward way to check the class of an object is by direct comparison:

o.class == String # true if is o a String

The instance_of? method does the same thing and is a little more elegant:

o.instance_of? String # true if o is a String

Usually when we test the class of an object, we would also like to know if the object is an instance of any
subclass of that class. To test this, use the is_a? method, or its synonym kind_of?:

x = 1 # This is the value we're working with

x.instance_of? Fixnum # true: is an instance of Fixnum

x.instance_of? Numeric # false: instance_of? doesn't check inheritance

x.is_a? Fixnum # true: x is a Fixnum

x.is_a? Integer # true: x is an Integer

x.is_a? Numeric # true: x is a Numeric

x.is_a? Comparable # true: works with mixin modules, too

x.is_a? Object # true for any value of x

The Class class defines the === operator in such a way that it can be used in place of is_a?:

Numeric === x # true: x is_a Numeric

This idiom is unique to Ruby and is probably less readable than using the more traditional is_a? method.

Every object has a well-defined class in Ruby, and that class never changes during the lifetime of the object. An
object's type, on the other hand, is more fluid. The type of an object is related to its class, but the class is only
part of an object's type. When we talk about the type of an object, we mean the set of behaviors that
characterize the object. Another way to put it is that the type of an object is the set of methods it can respond
to. (This definition becomes recursive because it is not just the name of the methods that matter, but also the
types of arguments that those methods can accept.)

In Ruby programming, we often don't care about the class of an object, we just want to know whether we can
invoke some method on it. Consider, for example, the << operator. Arrays, strings, files, and other I/O-related

classes define this as an append operator. If we are writing a method that produces textual output, we might
write it generically to use this operator. Then our method can be invoked with any argument that implements
<<. We don't care about the class of the argument, just that we can append to it. We can test for this with the

respond_to? method:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

o.respond_to? :"<<" # true if o has an << operator

The shortcoming of this approach is that it only checks the name of a method, not the arguments for that
method. For example, Fixnum and Bignum implement << as a left-shift operator and expect the argument to be

a number instead of a string. Integer objects appear to be "appendable" when we use a respond_to? test, but

they produce an error when our code appends a string. There is no general solution to this problem, but an ad-
hoc remedy, in this case, is to explicitly rule out Numeric objects with the is_a? method:

o.respond_to? :"<<" and not o.is_a? Numeric

Another example of the type-versus-class distinction is the StringIO class (from Ruby's standard library).

StringIO enables reading from and writing to string objects as if they were IO objects. StringIO mimics the IO

AP I -StringIO objects define the same methods that IO objects do. But StringIO is not a subclass of IO. If you

write a method that expects a stream argument, and test the class of the argument with is_a? IO, then your

method won't work with StringIO arguments.

Focusing on types rather than classes leads to a programming style known in Ruby as "duck typing." We'll see
duck typing examples in Chapter 7.

3.8.5. Object Equality

Ruby has a surprising number of ways to compare objects for equality, and it is important to understand how
they work, so you know when to use each method.

3.8.5.1. The equal? method

The equal? method is defined by Object to test whether two values refer to exactly the same object. For any

two distinct objects, this method always returns false:

a = "Ruby" # One reference to one String object

b = c = "Ruby" # Two references to another String object

a.equal?(b) # false: a and b are different objects

b.equal?(c) # true: b and c refer to the same object

By convention, subclasses never override the equal? method.

Another way to determine if two objects are, in fact, the same object is to check their object_id:

a.object_id == b.object_id # Works like a.equal?(b)

3.8.5.2. The == operator

The == operator is the most common way to test for equality. In the Object class, it is simply a synonym for

equal?, and it tests whether two object references are identical. Most classes redefine this operator to allow

distinct instances to be tested for equality:

a = "Ruby" # One String object

b = "Ruby" # A different String object with the same content

a.equal?(b) # false: a and b do not refer to the same object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

a == b # true: but these two distinct objects have equal values

Note that the single equals sign in this code is the assignment operator. It takes two equals signs to test for
equality in Ruby (this is a convention that Ruby shares with many other programming languages).

Most standard Ruby classes define the == operator to implement a reasonable definition of equality. This

includes the Array and Hash classes. Two arrays are equal according to == if they have the same number of

elements, and if their corresponding elements are all equal according to ==. Two hashes are == if they contain

the same number of key/value pairs, and if the keys and values are themselves equal. (Values are compared
with the == operator, but hash keys are compared with the eql? method, described later in this chapter.)

Equality for Java Programmers

If you are a Java programmer, you are used to using the == operator to test if two objects are the

same object, and you are used to using the equals method to test whether two distinct objects

have the same value. Ruby's convention is just about the opposite of Java's.

The Numeric classes perform simple type conversions in their == operators, so that (for example) the Fixnum 1

and the Float 1.0 compare as equal. The == operator of classes, such as String and Array, normally requires

both operands to be of the same class. If the righthand operand defines a to_str or to_ary conversion function

(see Section 3.8.7), then these operators invoke the == operator defined by the righthand operand, and let that

object decide whether it is equal to the lefthand string or array. Thus, it is possible (though not common) to
define classes with string-like or array-like comparison behavior.

!= ("not-equal") is used in Ruby to test for inequality. When Ruby sees !=, it simply uses the == operator and

then inverts the result. This means that a class only needs to define the == operator to define its own notion of

equality. Ruby gives you the != operator for free. In Ruby 1.9, however, classes can explicitly define their own

!= operators.

3.8.5.3. The eql? method

The eql? method is defined by Object as a synonym for equal?. Classes that override it typically use it as a

strict version of == that does no type conversion. For example:

1 == 1.0 # true: Fixnum and Float objects can be ==

1.eql?(1.0) # false: but they are never eql!

The Hash class uses eql? to check whether two hash keys are equal. If two objects are eql?, their hash

methods must also return the same value. Typically, if you create a class and define the == operator, you can

simply write a hash method and define eql? to use ==.

3.8.5.4. The === operator

The === operator is commonly called the "case equality" operator and is used to test whether the target value of

a case statement matches any of the when clauses of that statement. (The case statement is a multiway branch

and is explained in Chapter 5.)

Object defines a default === operator so that it invokes the == operator. For many classes, therefore, case

http://lib.ommolketab.ir
http://lib.ommolketab.ir

equality is the same as == equality. But certain key classes define === differently, and in these cases it is more

of a membership or matching operator. Range defines === to test whether a value falls within the range. Regexp

defines === to test whether a string matches the regular expression. And Class defines === to test whether an

object is an instance of that class. In Ruby 1.9, Symbol defines === to return true if the righthand operand is

the same symbol as the left or if it is a string holding the same text. Examples:

(1..10) === 5 # true: 5 is in the range 1..10

/\d+/ === "123" # true: the string matches the regular expression

String === "s" # true: "s" is an instance of the class String

:s === "s" # true in Ruby 1.9

It is uncommon to see the === operator used explicitly like this. More commonly, its use is simply implicit in a

case statement.

3.8.5.5. The =~ operator

The =~ operator is defined by String and Regexp (and Symbol in Ruby 1.9) to perform pattern matching, and it

isn't really an equality operator at all. But it does have an equals sign in it, so it is listed here for completeness.
Object defines a no-op version of =~ that always returns false. You can define this operator in your own class,

if that class defines some kind of pattern-matching operation or has a notion of approximate equality, for
example. !~ is defined as the inverse of =~. It is definable in Ruby 1.9 but not in Ruby 1.8.

3.8.6. Object Order

Practically every class can define a useful == method for testing its instances for equality. Some classes can also

define an ordering. That is: for any two instances of such a class, the two instances must be equal, or one
instance must be "less than" the other. Numbers are the most obvious classes for which such an ordering is
defined. Strings are also ordered, according to the numeric ordering of the character codes that comprise the
strings. (With the ASCII text, this is a rough kind of case-sensitive alphabetical order.) If a class defines an
ordering, then instances of the class can be compared and sorted.

In Ruby, classes define an ordering by implementing the <=> operator. This operator should return –1 if its left

operand is less than its right operand, 0 if the two operands are equal, and 1 if the left operand is greater than

the right operand. If the two operands cannot be meaningfully compared (if the right operand is of a different
class, for example), then the operator should return nil:

1 <=> 5 # -1

5 <=> 5 # 0

9 <=> 5 # 1

"1" <=> 5 # nil: integers and strings are not comparable

The <=> operator is all that is needed to compare values. But it isn't particularly intuitive. So classes that define

this operator typically also include the Comparable module as a mixin. (Modules and mixins are covered in

Section 7.5.2.) The Comparable mixin defines the following operators in terms of <=>:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

< Less than

<= Less than or equal

== Equal

>= Greater than or equal

> Greater than

Comparable does not define the != operator; Ruby automatically defines that operator as the negation of the ==

operator. In addition to these comparison operators, Comparable also defines a useful comparison method

named between?:

1.between?(0,10) # true: 0 <= 1 <= 10

If the <=> operator returns nil, all the comparison operators derived from it return false. The special Float

value NaN is an example:

nan = 0.0/0.0; # zero divided by zero is not-a-number

nan < 0 # false: it is not less than zero

nan > 0 # false: it is not greater than zero

nan == 0 # false: it is not equal to zero

nan == nan # false: it is not even equal to itself!

nan.equal?(nan) # this is true, of course

Note that defining <=> and including the Comparable module defines a == operator for your class. Some classes

define their own == operator, typically when they can implement this more efficiently than an equality test

based on <=>. It is possible to define classes that implement different notions of equality in their == and <=>

operators. A class might do case-sensitive string comparisons for the == operator, for example, but then do

case-insensitive comparisons for <=>, so that instances of the class would sort more naturally. In general,

though, it is best if <=> returns 0 if and only if == returns true.

3.8.7. Object Conversion

Many Ruby classes define methods that return a representation of the object as a value of a different class. The
to_s method, for obtaining a String representation of an object, is probably the most commonly implemented

and best known of these methods. The subsections that follow describe various categories of conversions.

3.8.7.1. Explicit conversions

Classes define explicit conversion methods for use by application code that needs to convert a value to another
representation. The most common methods in this category are to_s, to_i, to_f, and to_a to convert to

String, Integer, Float, and Array, respectively.

Built-in methods do not typically invoke these methods for you. If you invoke a method that expects a String

and pass an object of some other kind, that method is not expected to convert the argument with to_s. (Values

interpolated into double-quoted strings, however, are automatically converted with to_s.)

to_s is easily the most important of the conversion methods because string representations of objects are so

http://lib.ommolketab.ir
http://lib.ommolketab.ir

commonly used in user interfaces. An important alternative to to_s is the inspect method. to_s is generally

intended to return a human-readable representation of the object, suitable for end users. inspect, on the other

hand, is intended for debugging use, and should return a representation that is helpful to Ruby developers. The
default inspect method, inherited from Object, simply calls to_s.

3.8.7.2. Implicit conversions

Sometimes a class has strong characteristics of some other class. The Ruby Exception class represents an error

or unexpected condition in a program and encapsulates an error message. In Ruby 1.8, Exception objects are

not merely convertible to strings; they are string-like objects and can be treated as if they were strings in many
contexts.[*] For example:

[*] Doing so is discouraged, however, and Ruby 1.9 no longer allows the implicit conversion of Exception to String.

Ruby 1.8 only

e = Exception.new("not really an exception")

msg = "Error: " + e # String concatenation with an Exception

Because Exception objects are string-like, they can be used with the string concatenation operator. This does

not work with most other Ruby classes. The reason that Exception objects can behave like String objects is

that, in Ruby 1.8, Exception implements the implicit conversion method to_str, and the + operator defined by

String invokes this method on its righthand operand.

Other implicit conversion methods are to_int for objects that want to be integer-like, to_ary for objects that

want to be array-like, and to_hash for objects that want to be hash-like. Unfortunately, the circumstances

under which these implicit conversion methods are called are not well documented. Among the built-in classes,
these implicit conversion methods are not commonly implemented, either.

We noted earlier in passing that the == operator can perform a weak kind of type conversion when testing for

equality. The == operators defined by String, Array, and Hash check to see if the righthand operand is of the

same class as the lefthand operand. If so, they compare them. If not, they check to see if the righthand
operand has a to_str, to_ary, or to_hash method. They don't invoke this method, but if it exists, they invoke

the == method of the righthand operand and allow it to decide whether it is equal to the lefthand operand.

In Ruby 1.9, the built-in classes String, Array, Hash, Regexp, and IO all define a class method named

try_convert. These methods convert their argument if it defines an appropriate implicit conversion method, or

they return nil otherwise. Array.try_convert(o) returns o.to_ary if o defines that method; otherwise, it

returns nil. These try_convert methods are convenient if you want to write methods that allow implicit

conversions on their arguments.

3.8.7.3. Conversion functions

The Kernel module defines four conversion methods that behave as global conversion functions. These

functions-Array, Float, Integer, and String-have the same names as the classes that they convert to, and

they are unusual in that they begin with a capital letter.

The Array function attempts to convert its argument to an array by calling to_ary. If that method is not defined

or returns nil, it tries the to_a method. If to_a is not defined or returns nil, the Array function simply returns

a new array containing the argument as its single element.

The Float function converts Numeric arguments to Float objects directly. For any non-Numeric value, it calls

the to_f method.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Integer function converts its argument to a Fixnum or Bignum. If the argument is a Numeric value, it is

converted directly. Floating-point values are truncated rather than rounded. If the argument is a string, it looks
for a radix indicator (a leading 0 for octal, 0x for hexadecimal, or 0b for binary) and converts the string

accordingly. Unlike String.to_i it does not allow nonnumeric trailing characters. For any other kind of

argument, the Integer function first attempts conversion with to_int and then with to_i.

Finally, the String function converts its argument to a string simply by calling its to_s method.

3.8.7.4. Arithmetic operator type coercions

Numeric types define a conversion method named coerce. The intent of this method is to convert the argument

to the same type as the numeric object on which the method is invoked, or to convert both objects to some
more general compatible type. The coerce method always returns an array that holds two numeric values of the

same type. The first element of the array is the converted value of the argument to coerce. The second element

of the returned array is the value (converted, if necessary) on which coerce was invoked:

1.1.coerce(1) # [1.0, 1.1]: coerce Fixnum to Float

require "rational" # Use Rational numbers

r = Rational(1,3) # One third as a Rational number

r.coerce(2) # [Rational(2,1), Rational(1,3)]: Fixnum to Rational

The coerce method is used by the arithmetic operators. The + operator defined by Fixnum doesn't know about

Rational numbers, for example, and if its righthand operand is a Rational value, it doesn't know how to add

it. coerce provides the solution. Numeric operators are written so that if they don't know the type of the

righthand operand, they invoke the coerce method of the righthand operand, passing the lefthand operand as

an argument. Returning to our example of adding a Fixnum and a Rational, the coerce method of Rational

returns an array of two Rational values. Now the + operator defined by Fixnum can simply invoke + on the

values in the array.

3.8.7.5. Boolean type conversions

Boolean values deserve a special mention in the context of type conversion. Ruby is very strict with its Boolean
values: true and false have to_s methods, which return "true" and "false" but define no other conversion

methods. And there is no to_b method to convert other values to Booleans.

In some languages, false is the same thing as 0, or can be converted to and from 0. In Ruby, the values true

and false are their own distinct objects, and there are no implicit conversions that convert other values to true

or false. This is only half the story, however. Ruby's Boolean operators and its conditional and looping

constructs that use Boolean expressions can work with values other than true and false. The rule is simple: in

Boolean expressions, any value other than false or nil behaves like (but is not converted to) true. nil, on the

other hand behaves like false.

Suppose you want to test whether the variable x is nil or not. In some languages, you must explicitly write a

comparison expression that evaluates to true or false:

if x != nil # Expression "x != nil" returns true or false to the if

 puts x # Print x if it is defined

end

This code works in Ruby, but it is more common simply to take advantage of the fact that all values other than
nil and false behave like true:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

if x # If x is non-nil

 puts x # Then print it

end

It is important to remember that values like 0, 0.0, and the empty string "" behave like true in Ruby, which is

surprising if you are used to languages like C or JavaScript.

3.8.8. Copying Objects

The Object class defines two closely related methods for copying objects. Both clone and dup return a shallow

copy of the object on which they are invoked. If the copied object includes one internal state that refers to other
objects, only the object references are copied, not the referenced objects themselves.

If the object being copied defines an initialize_copy method, then clone and dup simply allocate a new,

empty instance of the class and invoke the initialize_copy method on this empty instance. The object to be

copied is passed as an argument, and this "copy constructor" can initialize the copy however it desires. For
example, the initialize_copy method could recursively copy the internal data of an object so that the

resulting object is not a simple shallow copy of the original.

Classes can also override the clone and dup methods directly to produce any kind of copy they desire.

There are two important differences between the clone and dup methods defined by Object. First, clone copies

both the frozen and tainted state (defined shortly) of an object, whereas dup only copies the tainted state;

calling dup on a frozen object returns an unfrozen copy. Second, clone copies any singleton methods of the

object, whereas dup does not.

3.8.9. Marshaling Objects

You can save the state of an object by passing it to the class method Marshal.dump.[*] If you pass an I/O

stream object as the second argument, Marshal.dump writes the state of the object (and, recursively, any

objects it references) to that stream. Otherwise, it simply returns the encoded state as a binary string.

[*] The word "marshal" and its variants are sometimes spelled with two ls: marshall, marshalled, etc. If you spell the word this way, you'll need

to remember that the name of the Ruby class has only a single l.

To restore a marshaled object, pass a string or an I/O stream containing the object to Marshal.load.

Marshaling an object is a very simple way to save its state for later use, and these methods can be used to
provide an automatic file format for Ruby programs. Note, however, that the binary format used by
Marshal.dump and Marshal.load is version-dependent, and newer versions of Ruby are not guaranteed to be

able to read marshaled objects written by older versions of Ruby.

Another use for Marshal.dump and Marshal.load is to create deep copies of objects:

def deepcopy(o)

 Marshal.load(Marshal.dump(o))

end

Note that files and I/O streams, as well as Method and Binding objects, are too dynamic to be marshaled; there

would be no reliable way to restore their state.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

YAML ("YAML Ain't Markup Language") is a commonly used alternative to the Marshal module that dumps

objects to (and loads objects from) a human-readable text format. It is in the standard library, and you must
require 'yaml' to use it.

3.8.10. Freezing Objects

Any object may be frozen by calling its freeze method. A frozen object becomes immutable-none of its

internal state may be changed, and an attempt to call any of its mutator methods fails:

s = "ice" # Strings are mutable objects

s.freeze # Make this string immutable

s.frozen? # true: it has been frozen

s.upcase! # TypeError: can't modify frozen string

s[0] = "ni" # TypeError: can't modify frozen string

Freezing a class object prevents the addition of any methods to that class.

You can check whether an object is frozen with the frozen? method. Once frozen, there is no way to "thaw" an

object. If you copy a frozen object with clone, the copy will also be frozen. If you copy a frozen object with dup,

however, the copy will not be frozen.

3.8.11. Tainting Objects

Web applications must often keep track of data derived from untrusted user input to avoid SQL injection attacks
and similar security risks. Ruby provides a simple solution to this problem: any object may be marked as
tainted by calling its taint method. Once an object is tainted, any objects derived from it will also be tainted.

The taint of an object can be tested with the tainted? method:

s = "untrusted" # Objects are normally untainted

s.taint # Mark this untrusted object as tainted

s.tainted? # true: it is tainted

s.upcase.tainted? # true: derived objects are tainted

s[3,4].tainted? # true: substrings are tainted

User input-such as command-line arguments, environment variables, and strings read with gets- a r e

automatically tainted.

Copies of tainted objects made with clone and dup remain tainted. A tainted object may be untainted with the

untaint method. You should only do this, of course, if you have examined the object and are convinced that it

presents no security risks.

The object tainting mechanism of Ruby is most powerful when used with the global variable $SAFE. When this

variable is set to a value greater than zero, Ruby restricts various built-in methods so that they will not work
with tainted data. See Chapter 10 for further details on the $SAFE variable.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 4. Expressions and Operators

An expression is a chunk of Ruby code that the Ruby interpreter can evaluate to produce a value. Here are some
sample expressions:

2 # A numeric literal

x # A local variable reference

Math.sqrt(2) # A method invocation

x = Math.sqrt(2) # Assignment

x*x # Multiplication with the * operator

As you can see, primary expressions-such as literals, variable references, and method invocations-can be
combined into larger expressions with operators, such as the assignment operator and the multiplication
operator.

Many programming languages distinguish between low-level expressions and higher-level statements, such as
conditionals and loops. In these languages, statements control the flow of a program, but they do not have
values. They are executed, rather than evaluated. In Ruby, there is no clear distinction between statements and
expressions; everything in Ruby, including class and method definitions, can be evaluated as an expression and
will return a value. It is still useful, however, to distinguish syntax typically used as expressions from syntax
typically used as statements. Ruby expressions that affect flow-of-control are documented in Chapter 5. Ruby
expressions that define methods and classes are covered in Chapters Chapter 6 and Chapter 7.

This chapter covers the simpler, more traditional sort of expressions. The simplest expressions are literal
values, which we already documented in Chapter 3. This chapter explains variable and constant references,
method invocations, assignment, and compound expressions created by combining smaller expressions with
operators.

4.1. Literals and Keyword Literals

Literals are values such as 1.0, 'hello world', and [] that are embedded directly into your program text. We

introduced them in Chapter 2 and documented them in detail in Chapter 3.

It is worth noting that many literals, such as numbers, are primary expressions-the simplest possible
expressions not composed of simpler expressions. Other literals, such as array and hash literals and double-
quoted strings that use interpolation, include subexpressions and are therefore not primary expressions.

Certain Ruby keywords are primary expressions and can be considered keyword literals or specialized forms of
variable reference:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

nil Evaluates to the nil value, of class NilClass.

true Evaluates to the singleton instance of class TrueClass, an object that represents the Boolean

value true.

false Evaluates to the singleton instance of class FalseClass, an object that represents the Boolean

value false.

self Evaluates to the current object. (See Chapter 7 for more about self.)

__FILE__ Evaluates to a string that names the file that the Ruby interpreter is executing. This can be
useful in error messages.

__LINE__ Evaluates to an integer that specifies the line number within __FILE__ of the current line of

code.

__ENCODING__ Evaluates to an Encoding object that specifies the encoding of the current file. (Ruby 1.9 only.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 4. Expressions and Operators

An expression is a chunk of Ruby code that the Ruby interpreter can evaluate to produce a value. Here are some
sample expressions:

2 # A numeric literal

x # A local variable reference

Math.sqrt(2) # A method invocation

x = Math.sqrt(2) # Assignment

x*x # Multiplication with the * operator

As you can see, primary expressions-such as literals, variable references, and method invocations-can be
combined into larger expressions with operators, such as the assignment operator and the multiplication
operator.

Many programming languages distinguish between low-level expressions and higher-level statements, such as
conditionals and loops. In these languages, statements control the flow of a program, but they do not have
values. They are executed, rather than evaluated. In Ruby, there is no clear distinction between statements and
expressions; everything in Ruby, including class and method definitions, can be evaluated as an expression and
will return a value. It is still useful, however, to distinguish syntax typically used as expressions from syntax
typically used as statements. Ruby expressions that affect flow-of-control are documented in Chapter 5. Ruby
expressions that define methods and classes are covered in Chapters Chapter 6 and Chapter 7.

This chapter covers the simpler, more traditional sort of expressions. The simplest expressions are literal
values, which we already documented in Chapter 3. This chapter explains variable and constant references,
method invocations, assignment, and compound expressions created by combining smaller expressions with
operators.

4.1. Literals and Keyword Literals

Literals are values such as 1.0, 'hello world', and [] that are embedded directly into your program text. We

introduced them in Chapter 2 and documented them in detail in Chapter 3.

It is worth noting that many literals, such as numbers, are primary expressions-the simplest possible
expressions not composed of simpler expressions. Other literals, such as array and hash literals and double-
quoted strings that use interpolation, include subexpressions and are therefore not primary expressions.

Certain Ruby keywords are primary expressions and can be considered keyword literals or specialized forms of
variable reference:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

nil Evaluates to the nil value, of class NilClass.

true Evaluates to the singleton instance of class TrueClass, an object that represents the Boolean

value true.

false Evaluates to the singleton instance of class FalseClass, an object that represents the Boolean

value false.

self Evaluates to the current object. (See Chapter 7 for more about self.)

__FILE__ Evaluates to a string that names the file that the Ruby interpreter is executing. This can be
useful in error messages.

__LINE__ Evaluates to an integer that specifies the line number within __FILE__ of the current line of

code.

__ENCODING__ Evaluates to an Encoding object that specifies the encoding of the current file. (Ruby 1.9 only.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.2. Variable References

A variable is simply a name for a value. Variables are created and values assigned to them by assignment
expressions, which are covered later in this chapter. When the name of a variable appears in a program
anywhere other than the lefthand side of an assignment, it is a variable reference expression and evaluates to
the value of the variable:

one = 1.0 # This is an assignment expression

one # This variable reference expression evaluates to 1.0

As explained in Chapter 2, there are four kinds of variables in Ruby, and lexical rules govern their names.
Variables that begin with $ are global variables, visible throughout a Ruby program. Variables that begin with @

and @@ are instance variables and class variables, used in object-oriented programming and explained in

Chapter 7. And variables whose names begin with an underscore or a lowercase letter are local variables,
defined only within the current method or block. (See Section 5.4.3 for more about the scope of local variables.)

Variables always have simple, unqualified names. If a . or :: appears in an expression, then that expression is

either a reference to a constant or a method invocation. For example, Math::PI is a reference to a constant,

and the expression item.price is an invocation of the method named price on the value held by the variable

item.

The Ruby interpreter predefines a number of global variables when it starts up. See Chapter 10 for a list of
these variables.

4.2.1. Uninitialized Variables

In general, you should always assign a value to, or initialize, your variables before using them in expressions. In
some circumstances, however, Ruby will allow you to use variables that have not yet been initialized. The rules
are different for different kinds of variables:

Class variables

Class variables must always have a value assigned to them before they are used. Ruby raises a
NameError if you refer to a class variable to which no value has been assigned.

Instance variables

If you refer to an uninitialized instance variable, Ruby returns nil. It is considered bad programming to

rely on this behavior, however. Ruby will issue a warning about the uninitialized variable if you run it with
the -w option.

Global variables

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Uninitialized global variables are like uninitialized instance variables: they evaluate to nil, but cause a

warning when Ruby is run with the -w flag.

Local variables

This case is more complicated than the others because local variables don't have a punctuation character
as a prefix. This means that local variable references look just like method invocation expressions. If the
Ruby interpreter has seen an assignment to a local variable, it knows it is a variable and not a method,
and it can return the value of the variable. If there has been no assignment, then Ruby treats the
expression as a method invocation. If no method by that name exists, Ruby raises a NameError.

In general, therefore, attempting to use a local variable before it has been initialized results in an error.
There is one quirk-a variable comes into existence when the Ruby interpreter sees an assignment
expression for that variable. This is the case even if that assignment is not actually executed. A variable
that exists but has not been assigned a value is given the default value nil. For example:

a = 0.0 if false # This assignment is never executed

print a # Prints nil: the variable exists but is not assigned

print b # NameError: no variable or method named b exists

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.3. Constant References

A constant in Ruby is like a variable, except that its value is supposed to remain constant for the duration of a
program. The Ruby interpreter does not actually enforce the constancy of constants, but it does issue a warning
if a program changes the value of a constant. Lexically, the names of constants look like the names of local
variables, except that they begin with a capital letter. By convention, most constants are written in all
uppercase with underscores to separate words, LIKE_THIS. Ruby class and module names are also constants,

but they are conventionally written using initial capital letters and camel case, LikeThis.

Although constants look like local variables with capital letters, they have the visibility of global variables: they
can be used anywhere in a Ruby program without regard to scope. Unlike global variables, however, constants
can be defined by classes and modules and can therefore have qualified names.

A constant reference is an expression that evaluates to the value of the named constant. The simplest constant
references are primary expressions-they consist simply of the name of the constant:

CM_PER_INCH = 2.54 # Define a constant.

CM_PER_INCH # Refer to the constant. Evaluates to 2.54.

In addition to simple references like this one, constant references can also be compound expressions. In this
case, :: is used to separate the name of the constant from the class or module in which it is defined. The

lefthand side of the :: may be an arbitrary expression that evaluates to a class or module object. (Usually,

however, this expression is a simple constant reference that just names the class or module.) The righthand
side of the :: is the name of a constant defined by the class or module. For example:

Conversions::CM_PER_INCH # Constant defined in the Conversions module

modules[0]::NAME # Constant defined by an element of an array

Modules may be nested, which means that constants may be defined in nested namespaces like this:

Conversions::Area::HECTARES_PER_ACRE

The lefthand side of the :: may be omitted, in which case the constant is looked up in the global scope:

::ARGV # The global constant ARGV

Note that there is not actually a "global scope" for constants. Like global functions, global constants are defined
(and looked up) within the Object class. The expression ::ARGV, therefore, is simply shorthand for

Object::ARGV.

When a constant reference expression is qualified with a ::, Ruby knows exactly where to look up the specified

constant. When there is no qualifying ::, however, the Ruby interpreter must search for an appropriate

definition of the constant. It searches the lexically enclosing scope as well as the inheritance hierarchy of the
enclosing class or module. Complete details are in Section 7.9.

When Ruby evaluates a constant reference expression, it returns the value of the constant, or it raises a
NameError exception if no constant by that name could be found. Note that constants do not exist until a value

http://lib.ommolketab.ir
http://lib.ommolketab.ir

is actually assigned to them. This is unlike variables that can come into existence when the interpreter sees, but
does not execute, an assignment.

The Ruby interpreter predefines some constants when it starts up. See Chapter 10 for a list.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.4. Method Invocations

A method invocation expression has four parts:

An arbitrary expression whose value is the object on which the method is invoked. This expression is
followed by . or :: to separate it from the method name that follows. The expression and separator are

optional; if omitted, the method is invoked on self.

The name of the method being invoked. This is the only required piece of a method invocation expression.

The argument values being passed to the method. The list of arguments may be enclosed in parentheses,
but these are usually optional. (Optional and required parentheses are discussed in detail in Section 6.3.)
If there is more than one argument, they are separated from each other with commas. The number and
type of arguments required depend on the method definition. Some methods expect no arguments.

An optional block of code delimited by curly braces or by a do/end pair. The method may invoke this code

using the yield keyword. This ability to associate arbitrary code with any method invocation is the basis

for Ruby's powerful iterator methods. We'll learn much more about blocks associated with method
invocations in Section 5.3 and Section 5.4.

A method name is usually separated from the object on which it is invoked with a .. :: is also allowed, but it is

rarely used because it can make method invocations look more like constant reference expressions.

When the Ruby interpreter has the name of a method and an object on which it is to be invoked, it finds the
appropriate definition of that named method using a process known as "method lookup" or "method name
resolution." The details are not important here, but they are explained thoroughly in Section 7.8.

The value of a method invocation expression is the value of the last evaluated expression in the body of the
method. We'll have more to say about method definitions, method invocations, and method return values in
Chapter 6. Here, however, are some examples of method invocations:

puts "hello world" # "puts" invoked on self, with one string arg

Math.sqrt(2) # "sqrt" invoked on object Math with one arg

message.length # "length" invoked on object message; no args

a.each {|x| p x } # "each" invoked on object a, with an associated block

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Invoking Global Functions

Look again at this method invocation shown earlier:

puts "hello world"

This is an invocation of the Kernel method puts. Methods defined by Kernel are global functions,

as are any methods defined at the top-level, outside of any classes. Global functions are defined
as private methods of the Object class. We'll learn about private methods in Chapter 7. For now,

you just need to know that private methods are not allowed to be explicitly invoked on a receiver
object-they are always implicitly invoked on self. self is always defined, and no matter what its

value is, that value is an Object. Because global functions are methods of Object, these methods

can always be invoked (implicitly) in any context, regardless of the value of self.

One of the method invocation examples shown earlier was message.length. You may be tempted to think of it

as a variable reference expression, evaluating to the value of the variable length in the object message. This is

not the case, however. Ruby has a very pure object-oriented programming model: Ruby objects may
encapsulate any number of internal instance variables, but they expose only methods to the outside world.
Because the length method expects no arguments and is invoked without optional parentheses, it looks like a

variable reference. In fact, this is intentional. Methods like these are called attribute accessor methods, and we
say that the message object has a length attribute.[12] As we'll see, it is possible for the message object to

define a method named length=. If this method expects a single argument, then it is an attribute setter method

and Ruby invokes it in response to assignment. If such a method is defined, then these two lines of code would
both invoke the same method:

[12] This is not to say that every no-argument method is an attribute accessor. The sort method of an array, for example, has no arguments,

but it cannot be said to return an attribute value.

message.length=(3) # Traditional method invocation

message.length = 3 # Method invocation masquerading as assignment

Now consider the following line of code, assuming that the variable a holds an array:

a[0]

You might again think that this is a special kind of variable reference expression, where the variable in question
is actually an array element. Again, however, this is method invocation. The Ruby interpreter converts the array
access into this:

a.[](0)

The array access becomes an invocation of the method named [] on the array, with the array index as its

argument. This array access syntax is not limited to arrays. Any object is allowed to define a method named [].

When the object is "indexed" with square brackets, any values within the brackets will be passed to the method.
If the [] method is written to expect three arguments, then you should put three comma-separated expressions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

within the square brackets.

Assignment to arrays is also done via method invocation. If the object o defines a method named []=, then the

expression o[x]=y becomes o.[]=(x,y), and the expression o[x,y]=z becomes o.[]=(x,y,z).

We'll see later in this chapter that many of Ruby's operators are defined as methods, and expressions like x+y

are evaluated as x.+(y), where the method name is +. The fact that many of Ruby's operators are defined as

methods means that you can redefine these operators in your own classes.

Now let's consider this very simple expression:

x

If a variable named x exists (that is, if the Ruby interpreter has seen an assignment to x), then this is a variable

reference expression. If no such variable exists, then this is an invocation of the method x, with no arguments,

on self.

The Ruby-reserved word super is a special kind of method invocation expression. This keyword is used when

creating a subclass of another class. By itself, super passes the arguments of the current method to the method

with the same name in the superclass. It can also be used as if it were actually the name of a method and can
be followed by an arbitrary argument list. The super keyword is covered in detail in Section 7.3.3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.5. Assignments

An assignment expression specifies one or more values for one or more lvalues. lvalue is the term for
something that can appear on the lefthand side of an assignment operator. (Values on the righthand side of an
assignment operator are sometimes called rvalues by contrast.) Variables, constants, attributes, and array
elements are lvalues in Ruby. The rules for and the meaning of assignment expressions are somewhat different
for different kinds of lvalues, and each kind is described in detail in this section.

There are three different forms of assignment expressions in Ruby. Simple assignment involves one lvalue, the
= operator, and one rvalue. For example:

x = 1 # Set the lvalue x to the value 1

Abbreviated assignment is a shorthand expression that updates the value of a variable by applying some other
operation (such as addition) to the current value of the variable. Abbreviated assignment uses assignment
operators like += and *= that combine binary operators with an equals sign:

x += 1 # Set the lvalue x to the value x + 1

Finally, parallel assignment is any assignment expression that has more than one lvalue or more than one
rvalue. Here is a simple example:

x,y,z = 1,2,3 # Set x to 1, y to 2 and z to 3

Parallel assignment is more complicated when the number of lvalues is not the same as the number of rvalues
or when there is an array on the right. Complete details follow.

The value of an assignment expression is the value (or an array of the values) assigned. Also, the assignment
operator is "right-associative"-if multiple assignments appear in a single expression, they are evaluated from
right to left. This means that the assignment can be chained to assign the same value to multiple variables:

x = y = 0 # Set x and y to 0

Note that this is not a case of parallel assignment-it is two simple assignments, chained together: y is assigned

the value 0, and then x is assigned the value (also 0) of that first assignment.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Assignment and Side Effects

More important than the value of an assignment expression is the fact that assignments set the
value of a variable (or other lvalue) and thereby affect program state. This effect on program state
is called a side effect of the assignment.

Many expressions have no side effects and do not affect program state. They are idempotent. This
means that the expression may be evaluated over and over again and will return the same value
each time. And it means that evaluating the expression has no effect on the value of other
expressions. Here are some expressions without side effects:

x + y

Math.sqrt(2)

It is important to understand that assignments are not idempotent:

x = 1 # Affects the value of other expressions that use x

x += 1 # Returns a different value each time it is evaluated

Some methods, such as Math.sqrt, are idempotent: they can be invoked without side effects.

Other methods are not, and this largely depends on whether those methods perform assignments
to nonlocal variables.

4.5.1. Assigning to Variables

When we think of assignment, we usually think of variables, and indeed, these are the most common lvalues in
assignment expressions. Recall that Ruby has four kinds of variables: local variables, global variables, instance
variables, and class variables. These are distinguished from each other by the first character in the variable
name. Assignment works the same for all four kinds of variables, so we do not need to distinguish between the
types of variables here.

Keep in mind that the instance variables of Ruby's objects are never visible outside of the object, and variable
names are never qualified with an object name. Consider this assignment:

point.x, point.y = 1, 2

The lvalues in this expression are not variables; they are attributes, and are explained shortly.

Assignment to a variable works as you would expect: the variable is simply set to the specified value. The only
wrinkle has to do with variable declaration and an ambiguity between local variable names and method names.
Ruby has no syntax to explicitly declare a variable: variables simply come into existence when they are
assigned. Also, local variable names and method names look the same-there is no prefix like $ to distinguish

them. Thus, a simple expression such as x could refer to a local variable named x or a method of self named x.

To resolve this ambiguity, Ruby treats an identifier as a local variable if it has seen any previous assignment to
the variable. It does this even if that assignment was never executed. The following code demonstrates:

Code View:
class Ambiguous

 def x; 1; end # A method named "x". Always returns 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 def test

 puts x # No variable has been seen; refers to method above: prints 1

 # The line below is never evaluated, because of the "if false" clause. But

 # the parser sees it and treats x as a variable for the rest of the method.

 x = 0 if false

 puts x # x is a variable, but has never been assigned to: prints nil

 x = 2 # This assignment does get evaluated

 puts x # So now this line prints 2

 end

end

4.5.2. Assigning to Constants

Constants are different from variables in an obvious way: their values are intended to remain constant
throughout the execution of a program. Therefore, there are some special rules for assignment to constants:

Assignment to a constant that already exists causes Ruby to issue a warning. Ruby does execute the
assignment, however, which means that constants are not really constant.

Assignment to constants is not allowed within the body of a method. Ruby assumes that methods are
intended to be invoked more than once; if you could assign to a constant in a method, that method would
issue warnings on every invocation after the first. So, this is simply not allowed.

Unlike variables, constants do not come into existence until the Ruby interpreter actually executes the
assignment expression. A nonevaluated expression like the following does not create a constant:

N = 100 if false

Note that this means a constant is never in an uninitialized state. If a constant exists, then it has a value
assigned to it. A constant will only have the value nil if that is actually the value it was given.

4.5.3. Assigning to Attributes and Array Elements

Assignment to an attribute or array element is actually Ruby shorthand for method invocation. Suppose an
object o has a method named m=: the method name has an equals sign as its last character. Then o.m can be

used as an lvalue in an assignment expression. Suppose, furthermore, that the value v is assigned:

o.m = v

The Ruby interpreter converts this assignment to the following method invocation:

Code View:
o.m=(v) # If we omit the parens and add a space, this looks like assignment!

http://lib.ommolketab.ir
http://lib.ommolketab.ir

That is, it passes the value v to the method m=. That method can do whatever it wants with the value. Typically,

it will check that the value is of the desired type and within the desired range, and it will then store it in an
instance variable of the object. Methods like m= are usually accompanied by a method m, which simply returns

the value most recently passed to m=. We say that m= is a setter method and m is a getter method. When an

object has this pair of methods, we say that it has an attribute m. Attributes are sometimes called "properties" in

other languages. We'll learn more about attributes in Ruby in Section 7.1.5.

Assigning values to array elements is also done by method invocation. If an object o defines a method named

[]= (the method name is just those three punctuation characters) that expects two arguments, then the

expression o[x] = y is actually executed as:

o.[]=(x,y)

If an object has a []= method that expects three arguments, then it can be indexed with two values between

the square brackets. The following two expressions are equivalent in this case:

o[x,y] = z

o.[]=(x,y,z)

4.5.4. Abbreviated Assignment

Abbreviated assignment is a form of assignment that combines assignment with some other operation. It is
used most commonly to increment variables:

x += 1

+= is not a real Ruby operator, and the expression above is simply an abbreviation for:

x = x + 1

Abbreviated assignment cannot be combined with parallel assignment: it only works when there is a single
lvalue on the left and a single value on the right. It should not be used when the lvalue is a constant because it
will reassign the constant and cause a warning. Abbreviated assignment can, however, be used when the lvalue
is an attribute. The following two expressions are equivalent:

o.m += 1

o.m=(o.m()+1)

Abbreviated assignment even works when the lvalue is an array element. These two expressions are equivalent:

o[x] -= 2

o.[]=(x, o.[](x) - 2)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note that this code uses -= instead of +=. As you might expect, the -= pseudooperator subtracts its rvalue from

its lvalue.

In addition to += and -=, there are 11 other pseudooperators that can be used for abbreviated assignment. They

are listed in Table 4-1. Note that these are not true operators themselves, they are simply shorthand for
expressions that use other operators. The meanings of those other operators are described in detail later in this
chapter. Also, as we'll see later, many of these other operators are defined as methods. If a class defines a
method named +, for example, then that changes the meaning of abbreviated assignment with += for all

instances of that class.

Table 4-1. Abbreviated assignment pseudooperators

Assignment Expansion

x += y x = x + y

x -= y x = x - y

x *= y x = x * y

x /= y x = x / y

x %= y x = x % y

x **= y x = x ** y

x &&= y x = x && y

x ||= y x = x || y

x &= y x = x & y

x |= y x = x | y

x ^= y x = x ^ y

x <<= y x = x << y

x >>= y x = x >> y

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The ||= Idiom

As noted at the beginning of this section, the most common use of abbreviated assignment is to
increment a variable with +=. Variables are also commonly decremented with -=. The other

pseudooperators are much less commonly used. One idiom is worth knowing about, however.
Suppose you are writing a method that computes some values, appends them to an array, and
returns the array. You want to allow the user to specify the array that the results should be
appended to. But if the user does not specify the array, you want to create a new, empty array.
You might use this line:

results ||= []

Think about this for a moment. It expands to:

results = results || []

If you know the || operator from other languages, or if you've read ahead to learn about || in

Ruby, then you know that the righthand side of this assignment evaluates to the value of results,

unless that is nil or false. In that case, it evaluates to a new, empty array. This means that the

abbreviated assignment shown here leaves results unchanged, unless it is nil or false, in which

case it assigns a new array.

The abbreviated assignment operator ||= actually behaves slightly differently than the expansion

shown here. If the lvalue of ||= is not nil or false, no assignment is actually performed. If the

lvalue is an attribute or array element, the setter method that performs assignment is not
invoked.

4.5.5. Parallel Assignment

Parallel assignment is any assignment expression that has more than one lvalue, more than one rvalue, or both.
Multiple lvalues and multiple rvalues are separated from each other with commas. lvalues and rvalues may be
prefixed with *, which is sometimes called the splat operator, though it is not a true operator. The meaning of *

is explained later in this section.

Most parallel assignment expressions are straightforward, and it is obvious what they mean. There are some
complicated cases, however, and the following subsections explain all the possibilities.

4.5.5.1. Same number of lvalues and rvalues

Parallel assignment is at its simplest when there are the same number of lvalues and rvalues:

x, y, z = 1, 2, 3 # x=1; y=2; z=3

In this case, the first rvalue is assigned to the first lvalue; the second rvalue is assigned to the second lvalue;
and so on.

These assignments are effectively performed in parallel, not sequentially. For example, the following two lines
are not the same:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

x,y = y,x # Parallel: swap the value of two variables

x = y; y = x # Sequential: both variables have same value

4.5.5.2. One lvalue, multiple rvalues

When there is a single lvalue and more than one rvalue, Ruby creates an array to hold the rvalues and assigns
that array to the lvalue:

x = 1, 2, 3 # x = [1,2,3]

You can place an * before the lvalue without changing the meaning or the return value of this assignment.

If you want to prevent the multiple rvalues from being combined into a single array, follow the lvalue with a
comma. Even with no lvalue after that comma, this makes Ruby behave as if there were multiple lvalues:

x, = 1, 2, 3 # x = 1; other values are discarded

4.5.5.3. Multiple lvalues, single array rvalue

When there are multiple lvalues and only a single rvalue, Ruby attempts to expand the rvalue into a list of
values to assign. If the rvalue is an array, Ruby expands the array so that each element becomes its own
rvalue. If the rvalue is not an array but implements a to_ary method, Ruby invokes that method and then

expands the array it returns:

x, y, z = [1, 2, 3] # Same as x,y,z = 1,2,3

The parallel assignment has been transformed so that there are multiple lvalues and zero (if the expanded array
was empty) or more rvalues. If the number of lvalues and rvalues are the same, then assignment occurs as
described earlier in Section 4.5.5.1. If the numbers are different, then assignment occurs as described next in
Section 4.5.5.4.

We can use the trailing-comma trick described above to transform an ordinary nonparallel assignment into a
parallel assignment that automatically unpacks an array on the right:

x = [1,2] # x becomes [1,2]: this is not parallel assignment

x, = [1,2] # x becomes 1: the trailing comma makes it parallel

4.5.5.4. Different numbers of lvalues and rvalues

If there are more lvalues than rvalues, and no splat operator is involved, then the first rvalue is assigned to the
first lvalue, the second rvalue is assigned to the second lvalue, and so on, until all the rvalues have been
assigned. Next, each of the remaining lvalues is assigned nil, overwriting any existing value for that lvalue:

x, y, z = 1, 2 # x=1; y=2; z=nil

If there are more rvalues than lvalues, and no splat operator is involved, then rvalues are assigned-in
order-to each of the lvalues, and the remaining rvalues are discarded:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

x, y = 1, 2, 3 # x=1; y=2; 3 is not assigned anywhere

4.5.5.5. The splat operator

When an rvalue is preceded by an asterisk, it means that that value is an array (or an array-like object) and
that its elements should each be rvalues. The array elements replace the array in the original rvalue list, and
assignment proceeds as described above:

x, y, z = 1, *[2,3] # Same as x,y,z = 1,2,3

In Ruby 1.8, a splat may only appear before the last rvalue in an assignment. In Ruby 1.9, the list of rvalues in
a parallel assignment may have any number of splats, and they may appear at any position in the list. It is not
legal, however, in either version of the language, to attempt a "double splat" on a nested array:

x,y = **[[1,2]] # SyntaxError!

In Ruby 1.8, array, range, and hash rvalues can be splatted. In Ruby 1.9, array, range, and enumerator (see
Section 5.3.4) rvalues can be splatted. If you apply a splat to a value of some other class, that value simply
expands to itself. You can define your own splattable classes. In Ruby 1.8, define a to_ary method that returns

an array of values. In Ruby 1.9, name the method to_splat instead.

When an lvalue is preceded by an asterisk, it means that all extra rvalues should be placed into an array and
assigned to this lvalue. The value assigned to that lvalue is always an array, and it may have zero, one, or more
elements:

x,*y = 1, 2, 3 # x=1; y=[2,3]

x,*y = 1, 2 # x=1; y=[2]

x,*y = 1 # x=1; y=[]

In Ruby 1.8, a splat may only precede the last lvalue in the list. In Ruby 1.9, the lefthand side of a parallel
assignment may include one splat operator, but it may appear at any position in the list:

Ruby 1.9 only

*x,y = 1, 2, 3 # x=[1,2]; y=3

*x,y = 1, 2 # x=[1]; y=2

*x,y = 1 # x=[]; y=1

Note that splats may appear on both sides of a parallel assignment expression:

x, y, *z = 1, *[2,3,4] # x=1; y=2; z=[3,4].

Finally, recall that earlier we described two simple cases of parallel assignment in which there is a single lvalue
or a single rvalue. Note that both of these cases behave as if there is a splat before the single lvalue or rvalue.
Explicitly including a splat in these cases has no additional effect.

4.5.5.6. Parentheses in parallel assignment

http://lib.ommolketab.ir
http://lib.ommolketab.ir

One of the least-understood features of parallel assignment is that the lefthand side can use parentheses for
"subassignment." If a group of two or more lvalues is enclosed in parentheses, then it is initially treated as a
single lvalue. Once the corresponding rvalue has been determined, the rules of parallel assignment are applied
recursively-that rvalue is assigned to the group of lvalues that was in parentheses. Consider the following
assignment:

x,(y,z) = a, b

This is effectively two assignments executed at the same time:

x = a

y,z = b

But note that the second assignment is itself a parallel assignment. Because we used parentheses on the
lefthand side, a recursive parallel assignment is performed. In order for it to work, b must be a splattable object

such as an array or enumerator.

Here are some concrete examples that should make this clearer. Note that parentheses on the left act to
"unpack" one level of nested array on the right:

x,y,z = 1,[2,3] # No parens: x=1;y=[2,3];z=nil

x,(y,z) = 1,[2,3] # Parens: x=1;y=2;z=3

a,b,c,d = [1,[2,[3,4]]] # No parens: a=1;b=[2,[3,4]];c=d=nil

a,(b,(c,d)) = [1,[2,[3,4]]] # Parens: a=1;b=2;c=3;d=4

4.5.5.7. The value of parallel assignment

The return value of a parallel assignment expression is the array of rvalues (after being augmented by any splat
operators).

Parallel Assignment and Method Invocation

As an aside, note that if a parallel assignment is prefixed with the name of a method, the Ruby
interpreter will interpret the commas as method argument separators rather than as lvalue and
rvalue separators. If you want to test the return value of a parallel assignment, you might write
the following code to print it out:

puts x,y=1,2

This doesn't do what you want, however; Ruby thinks you're invoking the puts method with three

arguments: x, y=1, and 2. Next, you might try putting the parallel assignment within parentheses

for grouping:

puts (x,y=1,2)

This doesn't work, either; the parentheses are interpreted as part of the method invocation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(though Ruby complains about the space between the method name and the opening parenthesis).
To actually accomplish what you want, you must use nested parentheses:

puts((x,y=1,2))

This is one of those strange corner cases in the Ruby grammar that comes as part of the
expressiveness of the grammar. Fortunately, the need for syntax like this rarely arises.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.6. Operators

An operator is a token in the Ruby language that represents an operation (such as addition or comparison) to
be performed on one or more operands. The operands are expressions, and operators allow us to combine these
operand expressions into larger expressions. The numeric literal 2 and the operator +, for example, can be

combined into the expression 2+2. And the following expression combines a numeric literal, a method invocation

expression, and a variable reference expression with the multiplication operator and the less-than operator:

2 * Math.sqrt(2) < limit

Table 4-2 later in this section summarizes each of Ruby's operators, and the sections that follow describe each
one in detail. To fully understand operators, however, you need to understand operator arity, precedence, and
associativity.

The arity of an operator is the number of operands it operates on. Unary operators expect a single operand.
Binary operators expect two operands. Ternary operators (there is only one of these) expect three operands.
The arity of each operator is listed in column N of Table 4-2. Note that the operators + and – have both unary

and binary forms.

The precedence of an operator specifies how "tightly" an operator is bound to its operands, and affects the order
of evaluation of an expression. Consider this expression, for example:

1 + 2 * 3 # => 7

The multiplication operator has higher precedence than the addition operator, so the multiplication is performed
first and the expression evaluates to 7. Table 4-2 is arranged in order from high-precedence operators to low-
precedence operators. Note that there are both high- and low-precedence operators for Boolean AND, OR, and
NOT operations.

Operator precedence only specifies the default order of evaluation for an expression. You can always use
parentheses to group subexpressions and specify your own order of evaluation. For example:

(1 + 2) * 3 # => 9

The associativity of an operator specifies the order of evaluation when the same operator (or operators with the
same precedence) appear sequentially in an expression. Column A of Table 4-2 specifies the associativity of
each operator. The value "L" means that expressions are evaluated from left to right. The value "R" means that
expressions are evaluated from right to left. And the value "N" means that the operator is nonassociative and
cannot be used multiple times in an expression without parentheses to specify the evaluation order.

Most arithmetic operators are left-associative, which means that 10-5-2 is evaluated as (10-5)-2 instead of

10-(5-2). Exponentiation, on the other hand, is right-associative, so 2**3**4 is evaluated as 2**(3**4).

Assignment is another right-associative operator. In the expression a=b=0, the value 0 is first assigned to the

variable b. Then the value of that expression (also 0) is assigned to the variable a.

Ruby implements a number of its operators as methods, allowing classes to define new meanings for those
operators. Column M of Table 4-2 specifies which operators are methods. Operators marked with a "Y" are
implemented with methods and may be redefined, and operators marked with an "N" may not. In general,
classes may define their own arithmetic, ordering, and equality operators, but they may not redefine the various

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Boolean operators. We categorize operators in this chapter according to their most common purpose for the
standard Ruby classes. Other classes may define different meanings for the operators. The + operator, for

example, performs numeric addition and is categorized as an arithmetic operator. But it is also used to
concatenate strings and arrays. A method-based operator is invoked as a method of its lefthand operand (or its
only operand, in the case of unary operators). The righthand operand is passed as an argument to the method.
You can look up a class's definition of any method-based operator as you would look up any other method of a
class. For example, use ri to look up the definition of the * operator for strings:

ri 'String.*'

To define unary + and unary – operators, use method names +@ and -@ to avoid ambiguity with the binary

operators that use the same symbols. The != and !~ operators are defined as the negation of the == and =~

operators. In Ruby 1.9, you can redefine != and !~. In earlier versions of the language, you cannot. Ruby 1.9

also allows the unary ! operator to be redefined.

Table 4-2. Ruby operators, by precedence (high to low), with arity (N), associativity (A), and
definability (M)

Operator(s) N A M Operation

! ~ + 1 R Y Boolean NOT, bitwise complement, unary plus[13]

** 2 R Y Exponentiation

- 1 R Y Unary minus (define with -@)

* / % 2 L Y Multiplication, division, modulo (remainder)

+ - 2 L Y Addition (or concatenation), subtraction

<< >> 2 L Y Bitwise shift-left (or append), bitwise shift-right

& 2 L Y Bitwise AND

| ^ 2 L Y Bitwise OR, bitwise XOR

< <= >= > 2 L Y Ordering

== === != =~ !~ <=> 2 N Y Equality, pattern matching, comparison[14]

&& 2 L N Boolean AND

|| 2 L N Boolean OR

.. ... 2 N N Range creation and Boolean flip-flops

?: 3 R N Conditional

rescue 2 L N Exception-handling modifier

=

**= *= /= %= += -=

<<= >>=

&&= &= ||= |= ^=

2 R N Assignment

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Operator(s) N A M Operation

defined? 1 N N Test variable definition and type

not 1 R N Boolean NOT (low precedence)

and or 2 L N Boolean AND, Boolean OR (low precedence)

if unless while until 2 N N Conditional and loop modifiers

[13] ! may not be redefined prior to Ruby 1.9. Define unary plus with +@.

[14] != and !~ may not be redefined prior to Ruby 1.9.

4.6.1. Unary + and –

The unary minus operator changes the sign of its numeric argument. The unary plus is allowed, but it has no
effect on numeric operands-it simply returns the value of its operand. It is provided for symmetry with unary
minus, and can, of course, be redefined. Note that unary minus has slightly lower precedence than unary plus;
this is described in the next section on the ** operator.

The names of these unary operators as methods are -@ and +@. Use these names when redefining the

operators, invoking the operators as methods, or looking up documentation for the operators. These special
names are necessary to disambiguate the unary plus and minus operators from binary plus and minus.

4.6.2. Exponentiation: **

** performs exponentiation, raising its first argument to the power of the second. Note that you can compute

roots of a number by using a fractional number as the second operand. For example, the cube root of x is

x**(1.0/3.0). Similarly, x**-y is the same as 1/(x**y). The ** operator is right-associative, so x**y**z is the

same thing as x**(y**z). Finally, note that ** has higher precedence than the unary minus operator, so -

1**0.5 is the same thing as -(1**0.5). If you really want to take the square root of -1, you must use

parentheses: (-1)**0.5. (The imaginary result is not-a-number, and the expression evaluates to NaN.)

4.6.3. Arithmetic: +, –, *, /, and %

The operators +, –, *, and / perform addition, subtraction, multiplication, and division on all Numeric classes.

Integer division returns an integer result and discards any remainder. The remainder can be computed with the
modulo operator %. Integer division by zero raises ZeroDivisionError. Floating-point division by zero returns

plus or minus Infinity. Floating-point division of zero by zero returns NaN. See Section 3.1.3 for further details

on Ruby's integer and floating-point arithmetic.

The String class uses the + operator for string concatenation, the * operator for string repetition, and the %

operator for sprintf argument substitution into a string.

The Array class uses + for array concatenation and – for array subtraction. Array uses the * operator in

different ways, depending on the class of the second operand. When an array is "multiplied" by a number, the
result is a new array that repeats the contents of the operand array the specified number of times. But when an
array is multiplied by a string, the result is the same as calling the join method of the array and passing that

string as the argument.

defined? 1 N N Test variable definition and type

not 1 R N Boolean NOT (low precedence)

and or 2 L N Boolean AND, Boolean OR (low precedence)

if unless while until 2 N N Conditional and loop modifiers

[13] ! may not be redefined prior to Ruby 1.9. Define unary plus with +@.

[14] != and !~ may not be redefined prior to Ruby 1.9.

4.6.1. Unary + and –

The unary minus operator changes the sign of its numeric argument. The unary plus is allowed, but it has no
effect on numeric operands-it simply returns the value of its operand. It is provided for symmetry with unary
minus, and can, of course, be redefined. Note that unary minus has slightly lower precedence than unary plus;
this is described in the next section on the ** operator.

The names of these unary operators as methods are -@ and +@. Use these names when redefining the

operators, invoking the operators as methods, or looking up documentation for the operators. These special
names are necessary to disambiguate the unary plus and minus operators from binary plus and minus.

4.6.2. Exponentiation: **

** performs exponentiation, raising its first argument to the power of the second. Note that you can compute

roots of a number by using a fractional number as the second operand. For example, the cube root of x is

x**(1.0/3.0). Similarly, x**-y is the same as 1/(x**y). The ** operator is right-associative, so x**y**z is the

same thing as x**(y**z). Finally, note that ** has higher precedence than the unary minus operator, so -

1**0.5 is the same thing as -(1**0.5). If you really want to take the square root of -1, you must use

parentheses: (-1)**0.5. (The imaginary result is not-a-number, and the expression evaluates to NaN.)

4.6.3. Arithmetic: +, –, *, /, and %

The operators +, –, *, and / perform addition, subtraction, multiplication, and division on all Numeric classes.

Integer division returns an integer result and discards any remainder. The remainder can be computed with the
modulo operator %. Integer division by zero raises ZeroDivisionError. Floating-point division by zero returns

plus or minus Infinity. Floating-point division of zero by zero returns NaN. See Section 3.1.3 for further details

on Ruby's integer and floating-point arithmetic.

The String class uses the + operator for string concatenation, the * operator for string repetition, and the %

operator for sprintf argument substitution into a string.

The Array class uses + for array concatenation and – for array subtraction. Array uses the * operator in

different ways, depending on the class of the second operand. When an array is "multiplied" by a number, the
result is a new array that repeats the contents of the operand array the specified number of times. But when an
array is multiplied by a string, the result is the same as calling the join method of the array and passing that

string as the argument.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.6.4. Shift and Append: << and >>

The Fixnum and Bignum classes define the << and >> operators to shift the bits of the lefthand argument to the

left and to the right. The righthand argument is the number of positions to shift the bits, and negative values
result in a shift in the opposite direction: a left-shift of –2 is the same as a right-shift of 2. High-order bits are

never "shifted off" when a Fixnum is shifted left. If the result of a shift does not fit in a Fixnum, a Bignum value is

returned. Right shifts, however, always discard the low-order bits of the argument.

Shifting a number left by 1 bit is the same as multiplication by 2. Shifting a number right by 1 bit is the same as

integer division by 2. Here are some examples that express numbers in binary notation and then convert their

results back to binary form:

(0b1011 << 1).to_s(2) # => "10110" 11 << 1 => 22

(0b10110 >> 2).to_s(2) # => "101" 22 >> 2 => 5

The << operator is also used as an append operator, and it's probably more common in this form. The String,

Array, and IO classes define it in this way, as do a number of other "appendable" classes from the standard

library, such as Queue and Logger:

message = "hello" # A string

messages = [] # An empty array

message << " world" # Append to the string

messages << message # Append message to the array

STDOUT << message # Print the message to standard output stream

4.6.5. Complement, Union, Intersection: ~, &, |, and ^

Fixnum and Bignum define these operators to perform bitwise NOT, AND, OR, and XOR operations. ~ is a high-

precedence unary operator, and the others are medium-precedence binary operators.

~ changes each 0 bit of its integer operand to a 1, and each 1 bit to a 0, producing the binary 1s-complement of

a number. For any integer x, ~x is the same as -x-1.

& is the bitwise AND operator for two numbers. The bits of the result are set to 1 only if the corresponding bit in

each operand is set to 1. For example:

(0b1010 & 0b1100).to_s(2) # => "1000"

| is the bitwise OR operator for two integers. A bit in the result is 1 if either corresponding bit in the operands is

1. For example:

(0b1010 | 0b1100).to_s(2) # => "1110"

^ is the bitwise XOR (exclusive-OR) for integers. A bit in the result is 1 if one (but not both) of the

corresponding bits in the operands is 1. For example:

(0b1010 ^ 0b1100).to_s(2) # => "110"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Other classes use these operators as well, usually in ways that are compatible with their logical AND, OR, and
NOT meanings. Arrays use & and | for set intersection and union operations. When & is applied to two arrays, it

returns a new array that contains only those elements that appear in the lefthand array AND the righthand
array. When | is applied to two arrays, it returns a new array that contains any elements that appear in either

the lefthand array OR the righthand array. See Section 9.5.2.7 for details and examples.

TrueClass, FalseClass, and NilClass define &, |, and ^ (but not ~), so that they can be used as Boolean

operators. Note, however, that this is rarely the correct thing to do. The Boolean operators && and || (described

later in Section 4.6.8) are intended for Boolean operands, and are more efficient because they do not evaluate
their righthand operand unless its value will affect the result of the operation.

4.6.6. Comparison: <, <=, >, >=, and <=>

Some classes define a natural order for their values. Numbers are ordered by magnitude; strings are ordered
alphabetically; dates are ordered chronologically. The less-than (<), less-than-or-equal-to (<=), greater-than-or-

equal-to (>=), and greater-than (>) operators make assertions about the relative order of two values. They

evaluate to true if the assertion is true, and they evaluate to false otherwise. (And they typically raise an

exception if their arguments are of incomparable types.)

Classes may define the comparison operators individually. It is easier and more common, however, for a class
to define the single <=> operator. This is a general-purpose comparison operator, and its return value indicates

the relative order of the two operands. If the lefthand operand is less than the righthand operand, then <=>

returns –1. If the lefthand operand is greater, it returns +1. If the two operands are equal, the operator returns

0. And if the two operands are not comparable, it returns nil.[*] Once the <=> operator is defined, a class may

simply include the module Comparable, which defines the other comparison operators (including the ==

operator) in terms of <=>.

[*] Some implementations of this operator may return any value less than 0 or any value greater than 0, instead of –1 and +1. If you

implement <=>, your implementation should return –1, 0, or +1. But if you use <=>, you should test for values less than or greater than zero,

rather than assuming that the result will always be –1, 0, or +1.

The Module class deserves special mention: it implements the comparison operators to indicate subclass

relationships (Module is the superclass of Class). For classes A and B, A < B is true if A is a subclass or

descendant of B. In this case, "less than" means "is more specialized than" or "is a narrower type than." As a

mnemonic, note that (as we'll learn in Chapter 7) the < character is also used when declaring a subclass:

Declare class A as a subclass of B

class A < B

end

Module defines > to work like < with its operands reversed. And it defines <= and >= so that they also return

true if the two operands are the same class. The most interesting things about these Module comparison

operators is that Module only defines a partial ordering on its values. Consider the classes String and Numeric.

Both are subclasses of Object, and neither one is a subclass of the other. In this case, when the two operands

are unrelated, the comparison operators return nil instead of true or false:

Code View:
String < Object # true: String is more specialized than Object

Object > Numeric # true: Object is more general than Numeric

Numeric < Integer # false: Numeric is not more specialized than Integer

String < Numeric # nil: String and Numeric are not related

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If a class defines a total ordering on its values, and a < b is not true, then you can be sure that a >= b is true.

But when a class, like Module, defines only a partial ordering, you must not make this assumption.

4.6.7. Equality: ==, !=, =~, !~, and ===

== is the equality operator. It determines whether two values are equal, according to the lefthand operand's

definition of "equal." The != operator is simply the inverse of ==: it calls == and then returns the opposite. You

can redefine != in Ruby 1.9 but not in Ruby 1.8. See Section 3.8.5 for a more detailed discussion of object

equality in Ruby.

=~ is the pattern-matching operator. Object defines this operator so that it always returns false. String

redefines it so that it expects a Regexp as its righthand argument. And Regexp redefines the operator so that it

expects a String as its righthand argument. Both of these operators return nil if the string does not match the

pattern. If the string does match the pattern, the operators return the integer index at which the match begins.
(Note that in Boolean expressions, nil works like false and any integer works like true.)

The !~ operator is the inverse of =~: it calls =~ and returns true if =~ returned nil or false if =~ returned an

integer. You can redefine !~ in Ruby 1.9 but not in Ruby 1.8.

The === operator is the case-equality operator. It is used implicitly by case statements (see Chapter 5). Its

explicit use is much less common than ==. Range, Class, and Regexp define this operator as a kind of

membership or pattern-matching operator. Other classes inherit Object's definition, which simply invokes the

== operator instead. See Section 3.8.5. Note that there is no !== operator; if you want to negate ===, you must

do it yourself.

4.6.8. Boolean Operators: &&, ||, !, and, or, not

Ruby's Boolean operators are built into the language and are not based on methods: classes, for example,
cannot define their own && method. The reason for this is that Boolean operators can be applied to any value

and must behave consistently for any kind of operand. Ruby defines special true and false values but does not

have a Boolean type. For the purposes of all Boolean operators, the values false and nil are considered false.

And every other value, including true, 0, NaN, "", [], and {}, is considered true. Note that ! is an exception;

you can redefine this operator in Ruby 1.9 (but not in Ruby 1.8). Note also that you can define methods named
and, or, and not, but these methods are ordinary methods and do not alter the behavior of the operators with

the same name.

Another reason that Ruby's Boolean operators are a core part of the language rather than redefinable methods
is that the binary operators are "short-circuiting." If the value of the operation is completely determined by the
lefthand operand, then the righthand operand is ignored and is never even evaluated. If the righthand operand
is an expression with side effects (such as assignment, or an invocation of a method with side effects), then that
side effect may or may not occur, based on the value of the lefthand operand.

&& is a Boolean AND operator. It returns a true value if both its left operand AND its right operand are true

values. Otherwise, it returns a false value. Note that this description says "a true value" and "a false value"
instead of "the true value" and "the false value." && is often used in conjunction with comparison operators,

such as == and <, in expressions like this:

x == 0 && y > 1

The comparison and equality operators actually evaluate to the values true and false, and in this case, the &&

http://lib.ommolketab.ir
http://lib.ommolketab.ir

operator is operating on actual Boolean values. But this is not always the case. The operator can also be used
like this:

x && y

In this case, x and y can be anything. The value of the expression is either the value of x or it is the value of y.

If both x and y are true values, then the value of the expression is the value of y. If x is a false value, then the

value of the expression is x. Otherwise, y must be a false value, and the value of the expression is y.

Here's how the && operator actually works. First, it evaluates its lefthand operand. If this operand is nil or

false, then it returns that value and skips the righthand operand altogether. Otherwise, the lefthand operand is

a true value and the overall value of the && operator depends on the value of the righthand operand. In this

case, the operator evaluates its righthand operand and returns that value.

The fact that && may skip its righthand operand can be used to advantage in your code. Consider this

expression:

x && print(x.to_s)

This code prints the value of x as a string, but only if x is not nil or false.[*]

[*] Just because an expression can be written this way doesn't mean that it should be. In Chapter 5, we'll see that this expression is better

written as:

print(x.to_s) if x

The || operator returns the Boolean OR of its operands. It returns a true value if either of its operands is a true

value. If both operands are false values, then it returns a false value. Like &&, the || operator ignores its

righthand operand if its value has no impact on the value of the operation. The || operator works like this: first,

it evaluates its lefthand operand. If this is any value other than nil or false, it simply returns that value.

Otherwise, it evaluates its righthand operand and returns that value.

|| can be used as a conjunction to join multiple comparison or equality expressions:

x < 0 || y < 0 || z < 0 # Are any of the coordinates negative?

In this case, the operands to || will be actual true or false values, and the result will also be true or false.

But || is not restricted to working with true and false. One idiomatic use of || is to return the first non-nil

value in a series of alternatives:

Code View:
If the argument x is nil, then get its value from a hash of user preferences

or from a constant default value.

x = x || preferences[:x] || Defaults::X

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note that && has higher precedence than ||. Consider this expression:

1 || 2 && nil # => 1

The && is performed first, and the value of this expression is 1. If the || was performed first, however, the value

would be nil:

(1 || 2) && nil # => nil

The ! operator performs a unary Boolean NOT. If the operand is nil or false, then the ! operator returns true.

Otherwise, ! returns false.

The ! operator is at the highest precedence. This means that if you want to compute the logical inverse of an

expression that itself uses operators, you must use parentheses:

!(a && b)

Incidentally, one of the principles of Boolean logic allows the expression above to be rewritten as:

!a || !b

The and, or, and not operators are low-precedence versions of &&, ||, and !. One reason to use these variants

is simply that their names are English and this can make your code easier to read. Try reading this line of code,
for example:

if x > 0 and y > 0 and not defined? d then d = Math.sqrt(x*x + y*y) end

Another reason for these alternate versions of the Boolean operators is the fact that they have lower precedence
than the assignment operator. This means that you can write a Boolean expression such as the following that
assigns values to variables until it encounters a false value:

if a = f(x) and b = f(y) and c = f(z) then d = g(a,b,c) end

This expression simply would not work if written with && instead of and.

You should note that and and or have the same precedence (and not is just slightly higher). Because and and

or have the same precedence, and && and || have different precedences, the following two expressions

compute different values:

x || y && nil # && is performed first => x

x or y and nil # evaluated left-to-right => nil

4.6.9. Ranges and Flip-Flops: .. and ...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We've seen .. and ... before in Section 3.5 where they were described as part of the Range literal syntax.

When the start and end points of a range are themselves integer literals, as in 1..10, the Ruby interpreter

creates a literal Range object while parsing. But if the start and end point expressions are anything more

complicated than integer literals, as in x..2*x, then it is not really accurate to call this a Range literal. Instead,

it is a range creation expression. It follows, therefore, that .. and ... are operators rather than just range

literal syntax.

The .. and ... operators are not method-based and cannot be redefined. They have relatively low precedence,

which means that they can usually be used without putting parentheses around the left or right operands:

x+1..x*x

The value of these operators is a Range object. x..y is the same as:

Range.new(x,y)

And x...y is the same as:

Range.new(x,y,true)

4.6.9.1. Boolean flip-flops

When the .. and ... operators are used in a conditional, such as an if statement, or in a loop, such as a while

loop (see Chapter 5 for more about conditionals and loops), they do not create Range objects. Instead, they

create a special kind of Boolean expression called a flip-flop. A flip-flop expression evaluates to true or false,

just as comparison and equality expressions do. The extraordinarily unusual thing about a flip-flop expression,
however, is that its value depends on the value of previous evaluations. This means that a flip-flop expression
has state associated with it; it must remember information about previous evaluations. Because it has state,
you would expect a flip-flop to be an object of some sort. But it isn't-it's a Ruby expression, and the Ruby
interpreter stores the state (just a single Boolean value) it requires in its internal parsed representation of the
expression.

With that background in mind, consider the flip-flop in the following code. Note that the first .. in the code

creates a Range object. The second one creates the flip-flop expression:

(1..10).each {|x| print x if x==3..x==5 }

The flip-flop consists of two Boolean expressions joined with the .. operator, in the context of a conditional or

loop. A flip-flop expression is false unless and until the lefthand expression evaluates to true. Once that

expression has become true, the expression "flips" into a persistent true state. It remains in that state, and

subsequent evaluations return true until the righthand expression evaluates to true. When that happens, the

flip-flop "flops" back to a persistent false state. Subsequent evaluations of the expression return false until

the lefthand expression becomes true again.

In the code example, the flip-flop is evaluated repeatedly, for values of x from 1 to 10. It starts off in the false

state, and evaluates to false when x is 1 and 2. When x==3, the flip-flop flips to true and returns true. It

continues to return true when x is 4 and 5. When x==5, however, the flip-flop flops back to false, and returns

false for the remaining values of x. The result is that this code prints 345.

Flip-flops can be written with either .. or The difference is that when a .. flip-flop flips to true, it returns

http://lib.ommolketab.ir
http://lib.ommolketab.ir

true but also tests its righthand expression to see if it should flop its internal state back to false. The ... form

waits for its next evaluation before testing the righthand expression. Consider these two lines:

Prints "3". Flips and flops back when x==3

(1..10).each {|x| print x if x==3..x>=3 }

Prints "34". Flips when x == 3 and flops when x==4

(1..10).each {|x| print x if x==3...x>=3 } # Prints "34"

Flip-flops are a fairly obscure feature of Ruby and are probably best avoided in your code. They are not unique
to Ruby, however. Ruby inherits this feature from Perl, which in turn inherits them from the Unix text-
processing tools sed and awk.[*] Flip-flops were originally intended for matching the lines of a text file between
a start pattern and an end pattern. This continues to be a useful way to use them. The following simple Ruby
program demonstrates a flip-flop. It reads a text file line-by-line and prints any line that contains the text
"TODO". It then continues printing lines until it reads a blank line:

[*] .. creates an awk-style flip-flop, and ... creates a sed-style flip-flop.

Code View:
ARGF.each do |line| # For each line of standard in or of named files

 print line if line=~/TODO/..line=~/^$/ # Print lines when flip-flop is true

end

It is difficult to formally describe the precise behavior of a flip-flop. It is easier to understand flip-flops by
studying code that behaves in an equivalent way. The following function behaves like the flip-flop x==3..x==5.

It hardcodes the lefthand and righthand conditions into the function itself, and it uses a global variable to store
the state of the flip-flop:

Code View:
$state = false # Global storage for flip-flop state

def flipflop(x) # Test value of x against flip-flop

 if !$state # If saved state is false

 result = (x == 3) # Result is value of lefthand operand

 if result # If that result is true

 $state = !(x == 5) # Then saved state is not of the righthand operand

 end

 result # Return result

 else # Otherwise, if saved state is true

 $state = !(x == 5) # Then save the inverse of the righthand operand

 true # And return true without testing lefthand

 end

end

With this flip-flop function defined, we can write the following code, which prints 345 just like our earlier

example:

(1..10).each {|x| print x if flipflop(x) }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following function simulates the behavior of the three-dot flip-flop x==3...x>=3:

$state2 = false

def flipflop2(x)

 if !$state2

 $state2 = (x == 3)

 else

 $state2 = !(x >= 3)

 true

 end

end

Now try it out

(1..10).each {|x| print x if x==3...x>=3 } # Prints "34"

(1..10).each {|x| print x if flipflop2(x) } # Prints "34"

4.6.10. Conditional: ?:

The ?: operator is known as the conditional operator. It is the only ternary operator (three operands) in Ruby.

The first operand appears before the question mark. The second operand appears between the question mark
and the colon. And the third operand appears after the colon.

The ?: operator always evaluates its first operand. If the first operand is anything other than false or nil, the

value of the expression is the value of the second operand. Otherwise, if the first operand is false or nil, then

the value of the expression is the value of the third operand. In either case, one of the operands is never
evaluated (which matters if it includes side effects like assignment). Here is an example use of this operator:

"You have #{n} #{n==1 ? 'message' : 'messages'}"

As you can see, the ?: operator acts like a compact if/then/else statement. (Ruby's if conditional is

described in Chapter 5.) The first operand is the condition that is being tested, like the expression after the if.

The second operand is like the code that follows the then. And the third operand is like the code that follows the

else. The difference between the ?: operator and the if statement, of course, is that the if statement allows

arbitrary amounts of code in its then and else clauses, whereas the ?: operator allows only single expressions.

The ?: operator has fairly low precedence, which means that it is usually not necessary to put parentheses

around the operands. If the first operand uses the defined? operator, or if the second and third operands

perform assignments, then parentheses are necessary. Remember that Ruby allows method names to end with
a question mark. If the first operand of the ?: operator ends with an identifier, you must put parentheses

around the first operand or include a disambiguating space between that operand and the question mark. If you
don't do this, the Ruby interpreter thinks that the question mark of the operator is part of the previous
identifier. For example:

x==3?y:z # This is legal

3==x?y:z # Syntax error: x? is interpreted as a method name

(3==x)?y:z # Okay: parentheses fix the problem

3==x ?y:z # Spaces also resolve the problem

The question mark must appear on the same line as the first argument. In Ruby 1.8, the colon must appear on
the same line as the second argument. In Ruby 1.9, however, a newline is allowed before the colon. You must

http://lib.ommolketab.ir
http://lib.ommolketab.ir

follow the colon by a space in this case, however, so it doesn't appear to introduce a symbol literal.

Table 4-2 (earlier in this chapter) says that the ?: operator is right-associative. If the operator is used twice in

the same expression, the rightmost one is grouped:

a ? b : c ? d : e # This expression...

a ? b : (c ? d : e) # is evaluated like this..

(a ? b : c) ? d : e # NOT like this

This kind of ambiguity is actually fairly rare with the ?: operator. The following expression uses three conditional

operators to compute the maximum value of three variables. No parentheses are required (although spaces are
required before the question marks), as there is only one possible way to parse the statement:

max = x>y ? x>z ? x : z : y>z ? y : z

max = x>y ? (x>z ? x : z) : (y>z ? y : z) # With explicit parentheses

4.6.11. Assignment Operators

You've already read about assignment expressions in Section 4.5. It is worth noting here a few points about the
assignment operators used in those expressions. First, the value of an assignment expression is the value (or an
array of the values) that appears on the righthand side of the assignment operator. Second, assignment
operators are right-associative. Points one and two together are what make expressions like this one work:

x = y = z = 0 # Assign zero to variables x, y, and z

x = (y = (z = 0)) # This equivalent expression shows order of evaluation

Third, note that assignment has very low precedence. Precedence rules mean that just about anything that
follows an assignment operator will be evaluated before the assignment is performed. The main exceptions are
the and, or, and not operators.

Finally, note that although assignment operators cannot be defined as methods, the compound assignment
operators like += use redefinable operators like +. Redefining the + operator does not affect the assignment

performed by the += operator, but it does affect the addition performed by that operator.

4.6.12. The defined? Operator

defined? is a unary operator that tests whether its operand is defined or not. Normally, using an undefined

variable or method raises an exception. When the expression on the right of the defined? operator uses an

undefined variable or method (including operators defined as methods), defined? simply returns nil. Similarly,

defined? returns nil if the operand is an expression that uses yield or super in an inappropriate context (i.e.,

when there is no block to yield to, or no superclass method to invoke). It is important to understand that the
expression that is the operand to defined? is not actually evaluated; it is simply checked to see whether it

could be evaluated without error. Here is a typical use of the defined? operator:

Compute f(x), but only if f and x are both defined

y = f(x) if defined? f(x)

If the operand is defined, the defined? operator returns a string. The content of this returned string is usually

unimportant; what matters is that it is a true value-neither nil nor false. It is possible, however, to inspect

the value returned by this operator to learn something about the type of the expression on the righthand side.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 4-3 lists the possible return values of this operator.

Table 4-3. Return values of the defined? operator

Operand expression type Return value

Reference to defined local variable "local-variable"

Reference to defined block local variable (Ruby 1.8 only) "local-variable(in-

block)"

Reference to defined global variable "global-variable"

Special regular expression global variables, $&, $+, $`, $', and $1 to $9, when defined

following a successful match (Ruby 1.8 only)

Name of variable, as a
string

Reference to defined constant "constant"

Reference to defined instance variable "instance-variable"

Reference to defined class variable "class variable"

(note no hyphen)

nil "nil" (note this is a

string)

true, false "true", "false"

self "self"

yield when there is a block to yield to (see also Kernel method block_given?) "yield"

super when in context where it is allowed "super"

Assignment (assignment is not actually performed) "assignment"

Method invocation, including operators defined as methods (method is not actually
invoked and need not have correct number of arguments; see also
Object.respond_to?)

"method"

Any other valid expression, including literals and built-in operators "expression"

Any expression that uses an undefined variable or method name, or that uses yield

or super where they are not allowed

nil

The defined? operator has very low precedence. If you want to test whether two variables are defined, use and

instead of &&:

defined? a and defined? b # This works

defined? a && defined? b # Evaluated as: defined?((a && defined? b))

4.6.13. Statement Modifiers

rescue, if, unless, while, and until are conditional, looping, and exception-handling statements that affect

the flow-of-control of a Ruby program. They can also be used as statement modifiers, in code like this:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

print x if x

In this modifier form, they can be considered operators in which the value of the righthand expression affects
the execution of the lefthand expression. (Or, in the case of the rescue modifier, the exception status of the

lefthand expression affects the execution of the righthand operand.)

It is not particularly useful to describe these keywords as operfators. They are documented, in both their
statement and expression modifier form, in Chapter 5. The keywords are listed in Table 4-2 simply to show
their precedence relative to other operators. Note that they all have very low precedence, but that the rescue

statement modifier has higher precedence than assignment.

4.6.14. Nonoperators

Most of Ruby's operators are written using punctuation characters. Ruby's grammar also uses a number of
punctuation characters that are not operators. Although we've seen (or will see) much of this nonoperator
punctuation elsewhere in this book, let's review it here:

()

Parentheses are an optional part of method definition and invocation syntax. It is better to think of
method invocation as a special kind of expression than to think of () as a method-invocation operator.

Parentheses are also used for grouping to affect the order of evaluation of subexpressions.

[]

Square brackets are used in array literals and for querying and setting array and hash values. In that
context, they are syntactic sugar for method invocation and behave somewhat like redefinable operators
with arbitrary arity. See Section 4.4 and Section 4.5.3.

{}

Curly braces are an alternative to do/end in blocks, and are also used in hash literals. In neither case do

they act as operators.

. and ::

. and :: are used in qualified names, separating the name of a method from the object on which it is

invoked, or the name of a constant from the module in which it is defined. These are not operators
because the righthand side is not a value but an identifier.

;, ,, and =>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

These punctuation characters are separators rather than operators. The semicolon (;) is used to separate

statements on the same line; the comma (,) is used to separate method arguments and the elements of

array and hash literals; and the arrow (=>) is used to separate hash keys from hash values in hash

literals.

:

A colon is used to prefix symbol literals and is also used in Ruby 1.9 hash syntax.

*, &, and <

These punctuation characters are operators in some contexts, but they are also used in ways that are not
operators. Putting * before an array in an assignment or method invocation expression expands or

unpacks the array into its individual elements. Although it is sometimes known as the splat operator, it is
not really an operator; *a cannot stand alone as an expression.

& can be used in a method declaration before the name of the last method argument, and this causes any

block passed to the method to be assigned to that argument. (See Chapter 6.) It can also be used in
method invocation to pass a proc to a method as if it were a block.

< is used in class definitions to specify the superclass of class.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 5. Statements and Control Structures

Consider the following Ruby program. It adds two numbers passed to it on the command line and prints the
sum:

x = ARGV[0].to_f # Convert first argument to a number

y = ARGV[1].to_f # Convert second argument to a number

sum = x + y # Add the arguments

puts sum # Print the sum

This is a simple program that consists primarily of variable assignment and method invocations. What makes it
particularly simple is its purely sequential execution. The four lines of code are executed one after the other
without branching or repetition. It is a rare program that can be this simple. This chapter introduces Ruby's
control structures, which alter the sequential execution, or flow-of-control, of a program. We cover:

Conditionals

Loops

Iterators and blocks

Flow-altering statements like return and break

Exceptions

The special-case BEGIN and END statements

The esoteric control structures known as fibers and continuations

5.1. Conditionals

The most common control structure, in any programming language, is the conditional. This is a way of telling
the computer to conditionally execute some code: to execute it only if some condition is satisfied. The condition
is an expression-if it evaluates to any value other than false or nil, then the condition is satisfied.

Ruby has a rich vocabulary for expressing conditionals. The syntax choices are described in the subsections that
follow. When writing Ruby code, you can choose the one that seems most elegant for the task at hand.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.1.1. if

The most straightforward of the conditionals is if. In its simplest form, it looks like this:

if expression

 code

end

The code between if and end is executed if (and only if) the expression evaluates to something other than

false or nil. The code must be separated from the expression with a newline or semicolon or the keyword

then.[18] Here are two ways to write the same simple conditional:

[18] Ruby 1.8 also allows a colon, but this syntax is no longer legal in 1.9.

If x is less than 10, increment it

if x < 10 # newline separator

 x += 1

end

if x < 10 then x += 1 end # then separator

You can also use then as the separator token, and follow it with a newline. Doing so makes your code robust; it

will work even if the newline is subsequently removed:

if x < 10 then

 x += 1

end

Programmers who are used to C, or languages whose syntax is derived from C, should note two important
things about Ruby's if statement:

Parentheses are not required (and typically not used) around the conditional expression. The newline,
semicolon, or then keyword serves to delimit the expression instead.

The end keyword is required, even when the code to be conditionally executed consists of a single

statement. The modifier form of if, described below, provides a way to write simple conditionals without

the end keyword.

5.1.1.1. else

An if statement may include an else clause to specify code to be executed if the condition is not true:

if expression

 code

else

 code

http://lib.ommolketab.ir
http://lib.ommolketab.ir

end

The code between the if and else is executed if expression evaluates to anything other than false or nil.

Otherwise (if expression is false or nil), the code between the else and end is executed. As in the simple

form of if, the expression must be separated from the code that follows it by a newline, a semicolon, or the

keyword then. The else and end keywords fully delimit the second chunk of code, and no newlines or additional

delimiters are required.

Here is an example of a conditional that includes an else clause:

if data # If the array exists

 data << x # then append a value to it.

else # Otherwise...

 data = [x] # create a new array that holds the value.

end # This is the end of the conditional.

5.1.1.2. elsif

If you want to test more than one condition within a conditional, you can add one or more elsif clauses

between an if and an else. elsif is a shortened form of "else if." Note that there is only one e in elsif. A

conditional using elsif looks like this:

if expression1

 code1

elsif expression2

 code2

 .

 .

 .

elsif expressionN

 codeN

else

 code

end

If expression1 evaluates to anything other than false or nil, then code1 is executed. Otherwise, expression2

is evaluated. If it is anything other than false or nil, then code2 is executed. This process continues until an

expression evaluates to something other than false or nil, or until all elsif clauses have been tested. If the

expression associated with the last elsif clause is false or nil, and the elsif clause is followed by an else

clause, then the code between else and end is executed. If no else clause is present, then no code is executed

at all.

elsif is like if: the expression must be separated from the code by a newline, a semicolon, or a then keyword.

Here is an example of a multiway conditional using elsif:

if x == 1

 name = "one"

elsif x == 2

 name = "two"

elsif x == 3 then name = "three"

elsif x == 4; name = "four"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

else

 name = "many"

end

5.1.1.3. Return value

In most languages, the if conditional is a statement. In Ruby, however, everything is an expression, even the

control structures that are commonly called statements. The return value of an if "statement" (i.e., the value

that results from evaluating an if expression) is the value of the last expression in the code that was executed,

or nil if no block of code was executed.

The fact that if statements return a value means that, for example, the multiway conditional shown previously

can be elegantly rewritten as follows:

name = if x == 1 then "one"

 elsif x == 2 then "two"

 elsif x == 3 then "three"

 elsif x == 4 then "four"

 else "many"

 end

5.1.2. if As a Modifier

When if is used in its normal statement form, Ruby's grammar requires that it be terminated with the end

keyword. For simple, single-line conditionals, this is somewhat awkward. This is just a parsing problem, and the
solution is to use the if keyword itself as the delimiter that separates the code to be executed from the

conditional expression. Instead of writing:

if expression then code end

we can simply write:

code if expression

When used in this form, if is known as a statement (or expression) modifier. If you're a Perl programmer, you

may be accustomed to this syntax. If not, please note that the code to execute comes first, and the expression
follows. For example:

puts message if message # Output message, if it is defined

This syntax places more emphasis on the code to be executed, and less emphasis on the condition under which
it will be executed. Using this syntax can make your code more readable when the condition is a trivial one or
when the condition is almost always true.

Even though the condition is written last, it is evaluated first. If it evaluates to anything other than false or

nil, then the code is evaluated, and its value is used as the return value of the modified expression. Otherwise,

the code is not executed, and the return value of the modified expression is nil. Obviously, this syntax does not

allow any kind of else clause.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To use if as a modifier, it must follow the modified statement or expression immediately, with no intervening

line break. Inserting a newline into the previous example turns it into an unmodified method invocation followed
by an incomplete if statement:

puts message # Unconditional

if message # Incomplete!

The if modifier has very low precedence and binds more loosely than the assignment operator. Be sure you

know just what expression you are modifying when you use it. For example, the following two lines of code are
different:

y = x.invert if x.respond_to? :invert

y = (x.invert if x.respond_to? :invert)

In the first line, the modifier applies to the assignment expression. If x does not have a method named invert,

then nothing happens at all, and the value of y is not modified. In the second line, the if modifier applies only

to the method call. If x does not have an invert method, then the modified expression evaluates to nil, and

this is the value that is assigned to y.

An if modifier binds to the single nearest expression. If you want to modify more than one expression, you can

use parentheses or a begin statement for grouping. But this approach is problematic because readers don't

know that the code is part of a conditional until they reach the bottom. Also, using an if modifier in this way

gives up the conciseness that is the primary benefit of this syntax. When more than one line of code is involved,
you should typically use a traditional if statement rather than an if modifier. Compare the following three side-

by-side alternatives:

if expression begin (

 line1 line1 line1

 line2 line2 line2

end end if expression) end if expression

Note that an expression modified with an if clause is itself an expression that can be modified. It is therefore

possible to attach multiple if modifiers to an expression:

Output message if message exists and the output method is defined

puts message if message if defined? puts

Repeating an if modifier like this is hard to read, however, and it makes more sense to combine the two

conditions into a single expression:

puts message if message and defined? puts

5.1.3. unless

unless, as a statement or a modifier, is the opposite of if: it executes code only if an associated expression

evaluates to false or nil. Its syntax is just like if, except that elsif clauses are not allowed:

single-way unless statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

unless condition

 code

end

two-way unless statement

unless condition

 code

else

 code

end

unless modifier

code unless condition

The unless statement, like the if statement, requires that the condition and the code are separated by a

newline, a semicolon, or the then keyword. Also like if, unless statements are expressions and return the

value of the code they execute, or nil if they execute nothing:

Call the to_s method on object o, unless o is nil

s = unless o.nil? # newline separator

 o.to_s

end

s = unless o.nil? then o.to_s end # then separator

For single-line conditionals like this, the modifier form of unless is usually clearer:

s = o.to_s unless o.nil?

Ruby has no equivalent of the elsif clause for an unless conditional. You can still write a multiway unless

statement, however, if you're willing to be a little more verbose:

unless x == 0

 puts "x is not 0"

else

 unless y == 0

 puts "y is not 0"

 else

 unless z == 0

 puts "z is not 0"

 else

 puts "all are 0"

 end

 end

end

5.1.4. case

The case statement is a multiway conditional. There are two forms of this statement. The simple (and

infrequently used) form is nothing more than an alternative syntax for if/elsif/else. These two side-by-side

expressions are equivalent:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

name = case name = if x == 1 then "one"

 when x == 1 then "one" elsif x == 2 then "two"

 when x == 2 then "two" elsif x == 3 then "three"

 when x == 3 then "three" elsif x == 4 then "four"

 when x == 4 then "four" else "many"

 else "many" end

 end

As you can see from this code, the case statement returns a value, just as the if statement does. As with the

if statement, the then keyword following the when clauses can be replaced with a newline or semicolon:[*]

[*] Ruby 1.8 also allows a colon in place of then, as it does for the if statement. But this syntax is no longer allowed in Ruby 1.9.

case

when x == 1

 "one"

when x == 2

 "two"

when x == 3

 "three"

end

The case statement tests each of its when expressions in the order they are written until it finds one that

evaluates to true. If it finds one, it evaluates the statements that come between that when and the following

when, else, or end. The last expression evaluated becomes the return value of the case statement. Once a when

clause that evaluates to true has been found, no other when clauses are considered.

The else clause of a case statement is optional, but if it appears, it must come at the end of the statement,

after all when clauses. If no when clause is true, and there is an else clause, then the code between else and

end is executed. The value of the last expression evaluated in this code becomes the value of the case

statement. If no when clause is true and there is no else clause, then no code is executed and the value of the

case statement is nil.

A when clause within a case statement may have more than one (comma-separated) expression associated with

it. If any one of these expressions evaluates to true, then the code associated with that when is executed. In

this simple form of the case statement, the commas aren't particularly useful and act just like the || operator:

case

when x == 1, y == 0 then "x is one or y is zero" # Obscure syntax

when x == 2 || y == 1 then "x is two or y is one" # Easier to understand

end

All the case examples we've seen so far demonstrate the simpler, less common form of the statement. case is

really more powerful than this. Notice that in most of the examples, the left side of each when clause expression

is the same. In the common form of case, we factor this repeated lefthand expression of the when clause and

associate it with the case itself:

name = case x

 when 1 # Just the value to compare to x

 "one"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 when 2 then "two" # Then keyword instead of newline

 when 3; "three" # Semicolon instead of newline

 else "many" # Optional else clause at end

 end

In this form of the case statement, the expression associated with the case is evaluated once, and then it's

compared to the values obtained by evaluating the when expression. The comparisons are performed in the

order in which the when clauses are written, and the code associated with the first matching when is executed. If

no match is found, the code associated with the else clause (if there is one) is executed. The return value of

this form of the case statement is the same as the return value of the simpler form: the value of the last

expression evaluated, or nil if no when or else matches.

The important thing to understand about the case statement is how the values of the when clauses are

compared to the expression that follows the case keyword. This comparison is done using the === operator.

This operator is invoked on the value of the when expression and is passed the value of the case expression.

Therefore, the case statement above is equivalent to the following (except that x is only evaluated once in the

code above):

name = case

 when 1 === x then "one"

 when 2 === x then "two"

 when 3 === x then "three"

 else "many"

 end

=== is the case equality operator. For many classes, such as the Fixnum class used earlier, the === operator

behaves just the same as ==. But certain classes define this operator in interesting ways. The Class class

defines === so that it tests whether the righthand operand is an instance of the class named by the lefthand

operand. Range defines this operator to test whether the value on the right falls within the range on the left.

Regexp defines it so that it tests whether the text on the right matches the pattern on the left. In Ruby 1.9,

Symbol defines === so that it tests for symbol or string equality. With these definitions of case equality, we are

able to write interesting case statements like the following:

Code View:
Take different actions depending on the class of x

puts case x

 when String then "string"

 when Numeric then "number"

 when TrueClass, FalseClass then "boolean"

 else "other"

 end

Compute 2006 U.S. income tax using case and Range objects

tax = case income

 when 0..7550

 income * 0.1

 when 7550..30650

 755 + (income-7550)*0.15

 when 30650..74200

 4220 + (income-30655)*0.25

 when 74200..154800

 15107.5 + (income-74201)*0.28

 when 154800..336550

 37675.5 + (income-154800)*0.33

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 else

 97653 + (income-336550)*0.35

 end

Get user's input and process it, ignoring comments and exiting

when the user enters the word "quit"

while line=gets.chomp do # Loop, asking the user for input each time

 case line

 when /^\s*#/ # If input looks like a comment...

 next # skip to the next line.

 when /^quit$/i # If input is "quit" (case insensitive)...

 break # exit the loop.

 else # Otherwise...

 puts line.reverse # reverse the user's input and print it.

 end

end

A when clause can have more than one expression associated with it. Multiple expressions are separated by

commas, and the === operator is invoked on each one. That is, it is possible to trigger the same block of code

with more than one value:

def hasValue?(x) # Define a method named hasValue?

 case x # Multiway conditional based on value of x

 when nil, [], "", 0 # if nil===x || []===x || ""===x || 0===x then

 false # method return value is false

 else # Otherwise

 true # method return value is true

 end

end

case versus switch

Java programmers and others accustomed to C-derived language syntax are familiar with a
multiway conditional switch statement, which is similar to Ruby's case statement. There are,

however, a number of important differences:

In Java and related languages, the name of the statement is switch and its clauses are

labeled with case and default. Ruby uses case as the name of the statement, and when and

else for the clauses.

The switch statement of other languages simply transfers control to the start of the

appropriate case. From there, control continues and can "fall through" to other cases, until it
reaches the end of the switch statement or encounters a break or return statement. This

fall-through behavior allows multiple case clauses to refer to the same block of code. In

Ruby, this same purpose is served by allowing multiple comma-separated expressions to be
associated with each when clause. Ruby's case statement never allows fall-through.

In Java and most compiled languages with C-like syntax, the expressions associated with

http://lib.ommolketab.ir
http://lib.ommolketab.ir

each case label must be compile-time constants rather than arbitrary runtime expressions.

This often allows the compiler to implement the switch statement using a very fast lookup

table. There is no such restriction on Ruby's case statement, and its performance is

equivalent to using an if statement with repeated elsif clauses.

5.1.5. The ?: Operator

The conditional operator ?:, described earlier in Section 4.6.10, behaves much like an if statement, with ?

replacing then and : replacing else. It provides a succinct way to express conditionals:

def how_many_messages(n) # Handle singular/plural

 "You have " + n.to_s + (n==1 ? " message." : " messages.")

end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 5. Statements and Control Structures

Consider the following Ruby program. It adds two numbers passed to it on the command line and prints the
sum:

x = ARGV[0].to_f # Convert first argument to a number

y = ARGV[1].to_f # Convert second argument to a number

sum = x + y # Add the arguments

puts sum # Print the sum

This is a simple program that consists primarily of variable assignment and method invocations. What makes it
particularly simple is its purely sequential execution. The four lines of code are executed one after the other
without branching or repetition. It is a rare program that can be this simple. This chapter introduces Ruby's
control structures, which alter the sequential execution, or flow-of-control, of a program. We cover:

Conditionals

Loops

Iterators and blocks

Flow-altering statements like return and break

Exceptions

The special-case BEGIN and END statements

The esoteric control structures known as fibers and continuations

5.1. Conditionals

The most common control structure, in any programming language, is the conditional. This is a way of telling
the computer to conditionally execute some code: to execute it only if some condition is satisfied. The condition
is an expression-if it evaluates to any value other than false or nil, then the condition is satisfied.

Ruby has a rich vocabulary for expressing conditionals. The syntax choices are described in the subsections that
follow. When writing Ruby code, you can choose the one that seems most elegant for the task at hand.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.1.1. if

The most straightforward of the conditionals is if. In its simplest form, it looks like this:

if expression

 code

end

The code between if and end is executed if (and only if) the expression evaluates to something other than

false or nil. The code must be separated from the expression with a newline or semicolon or the keyword

then.[18] Here are two ways to write the same simple conditional:

[18] Ruby 1.8 also allows a colon, but this syntax is no longer legal in 1.9.

If x is less than 10, increment it

if x < 10 # newline separator

 x += 1

end

if x < 10 then x += 1 end # then separator

You can also use then as the separator token, and follow it with a newline. Doing so makes your code robust; it

will work even if the newline is subsequently removed:

if x < 10 then

 x += 1

end

Programmers who are used to C, or languages whose syntax is derived from C, should note two important
things about Ruby's if statement:

Parentheses are not required (and typically not used) around the conditional expression. The newline,
semicolon, or then keyword serves to delimit the expression instead.

The end keyword is required, even when the code to be conditionally executed consists of a single

statement. The modifier form of if, described below, provides a way to write simple conditionals without

the end keyword.

5.1.1.1. else

An if statement may include an else clause to specify code to be executed if the condition is not true:

if expression

 code

else

 code

http://lib.ommolketab.ir
http://lib.ommolketab.ir

end

The code between the if and else is executed if expression evaluates to anything other than false or nil.

Otherwise (if expression is false or nil), the code between the else and end is executed. As in the simple

form of if, the expression must be separated from the code that follows it by a newline, a semicolon, or the

keyword then. The else and end keywords fully delimit the second chunk of code, and no newlines or additional

delimiters are required.

Here is an example of a conditional that includes an else clause:

if data # If the array exists

 data << x # then append a value to it.

else # Otherwise...

 data = [x] # create a new array that holds the value.

end # This is the end of the conditional.

5.1.1.2. elsif

If you want to test more than one condition within a conditional, you can add one or more elsif clauses

between an if and an else. elsif is a shortened form of "else if." Note that there is only one e in elsif. A

conditional using elsif looks like this:

if expression1

 code1

elsif expression2

 code2

 .

 .

 .

elsif expressionN

 codeN

else

 code

end

If expression1 evaluates to anything other than false or nil, then code1 is executed. Otherwise, expression2

is evaluated. If it is anything other than false or nil, then code2 is executed. This process continues until an

expression evaluates to something other than false or nil, or until all elsif clauses have been tested. If the

expression associated with the last elsif clause is false or nil, and the elsif clause is followed by an else

clause, then the code between else and end is executed. If no else clause is present, then no code is executed

at all.

elsif is like if: the expression must be separated from the code by a newline, a semicolon, or a then keyword.

Here is an example of a multiway conditional using elsif:

if x == 1

 name = "one"

elsif x == 2

 name = "two"

elsif x == 3 then name = "three"

elsif x == 4; name = "four"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

else

 name = "many"

end

5.1.1.3. Return value

In most languages, the if conditional is a statement. In Ruby, however, everything is an expression, even the

control structures that are commonly called statements. The return value of an if "statement" (i.e., the value

that results from evaluating an if expression) is the value of the last expression in the code that was executed,

or nil if no block of code was executed.

The fact that if statements return a value means that, for example, the multiway conditional shown previously

can be elegantly rewritten as follows:

name = if x == 1 then "one"

 elsif x == 2 then "two"

 elsif x == 3 then "three"

 elsif x == 4 then "four"

 else "many"

 end

5.1.2. if As a Modifier

When if is used in its normal statement form, Ruby's grammar requires that it be terminated with the end

keyword. For simple, single-line conditionals, this is somewhat awkward. This is just a parsing problem, and the
solution is to use the if keyword itself as the delimiter that separates the code to be executed from the

conditional expression. Instead of writing:

if expression then code end

we can simply write:

code if expression

When used in this form, if is known as a statement (or expression) modifier. If you're a Perl programmer, you

may be accustomed to this syntax. If not, please note that the code to execute comes first, and the expression
follows. For example:

puts message if message # Output message, if it is defined

This syntax places more emphasis on the code to be executed, and less emphasis on the condition under which
it will be executed. Using this syntax can make your code more readable when the condition is a trivial one or
when the condition is almost always true.

Even though the condition is written last, it is evaluated first. If it evaluates to anything other than false or

nil, then the code is evaluated, and its value is used as the return value of the modified expression. Otherwise,

the code is not executed, and the return value of the modified expression is nil. Obviously, this syntax does not

allow any kind of else clause.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To use if as a modifier, it must follow the modified statement or expression immediately, with no intervening

line break. Inserting a newline into the previous example turns it into an unmodified method invocation followed
by an incomplete if statement:

puts message # Unconditional

if message # Incomplete!

The if modifier has very low precedence and binds more loosely than the assignment operator. Be sure you

know just what expression you are modifying when you use it. For example, the following two lines of code are
different:

y = x.invert if x.respond_to? :invert

y = (x.invert if x.respond_to? :invert)

In the first line, the modifier applies to the assignment expression. If x does not have a method named invert,

then nothing happens at all, and the value of y is not modified. In the second line, the if modifier applies only

to the method call. If x does not have an invert method, then the modified expression evaluates to nil, and

this is the value that is assigned to y.

An if modifier binds to the single nearest expression. If you want to modify more than one expression, you can

use parentheses or a begin statement for grouping. But this approach is problematic because readers don't

know that the code is part of a conditional until they reach the bottom. Also, using an if modifier in this way

gives up the conciseness that is the primary benefit of this syntax. When more than one line of code is involved,
you should typically use a traditional if statement rather than an if modifier. Compare the following three side-

by-side alternatives:

if expression begin (

 line1 line1 line1

 line2 line2 line2

end end if expression) end if expression

Note that an expression modified with an if clause is itself an expression that can be modified. It is therefore

possible to attach multiple if modifiers to an expression:

Output message if message exists and the output method is defined

puts message if message if defined? puts

Repeating an if modifier like this is hard to read, however, and it makes more sense to combine the two

conditions into a single expression:

puts message if message and defined? puts

5.1.3. unless

unless, as a statement or a modifier, is the opposite of if: it executes code only if an associated expression

evaluates to false or nil. Its syntax is just like if, except that elsif clauses are not allowed:

single-way unless statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

unless condition

 code

end

two-way unless statement

unless condition

 code

else

 code

end

unless modifier

code unless condition

The unless statement, like the if statement, requires that the condition and the code are separated by a

newline, a semicolon, or the then keyword. Also like if, unless statements are expressions and return the

value of the code they execute, or nil if they execute nothing:

Call the to_s method on object o, unless o is nil

s = unless o.nil? # newline separator

 o.to_s

end

s = unless o.nil? then o.to_s end # then separator

For single-line conditionals like this, the modifier form of unless is usually clearer:

s = o.to_s unless o.nil?

Ruby has no equivalent of the elsif clause for an unless conditional. You can still write a multiway unless

statement, however, if you're willing to be a little more verbose:

unless x == 0

 puts "x is not 0"

else

 unless y == 0

 puts "y is not 0"

 else

 unless z == 0

 puts "z is not 0"

 else

 puts "all are 0"

 end

 end

end

5.1.4. case

The case statement is a multiway conditional. There are two forms of this statement. The simple (and

infrequently used) form is nothing more than an alternative syntax for if/elsif/else. These two side-by-side

expressions are equivalent:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

name = case name = if x == 1 then "one"

 when x == 1 then "one" elsif x == 2 then "two"

 when x == 2 then "two" elsif x == 3 then "three"

 when x == 3 then "three" elsif x == 4 then "four"

 when x == 4 then "four" else "many"

 else "many" end

 end

As you can see from this code, the case statement returns a value, just as the if statement does. As with the

if statement, the then keyword following the when clauses can be replaced with a newline or semicolon:[*]

[*] Ruby 1.8 also allows a colon in place of then, as it does for the if statement. But this syntax is no longer allowed in Ruby 1.9.

case

when x == 1

 "one"

when x == 2

 "two"

when x == 3

 "three"

end

The case statement tests each of its when expressions in the order they are written until it finds one that

evaluates to true. If it finds one, it evaluates the statements that come between that when and the following

when, else, or end. The last expression evaluated becomes the return value of the case statement. Once a when

clause that evaluates to true has been found, no other when clauses are considered.

The else clause of a case statement is optional, but if it appears, it must come at the end of the statement,

after all when clauses. If no when clause is true, and there is an else clause, then the code between else and

end is executed. The value of the last expression evaluated in this code becomes the value of the case

statement. If no when clause is true and there is no else clause, then no code is executed and the value of the

case statement is nil.

A when clause within a case statement may have more than one (comma-separated) expression associated with

it. If any one of these expressions evaluates to true, then the code associated with that when is executed. In

this simple form of the case statement, the commas aren't particularly useful and act just like the || operator:

case

when x == 1, y == 0 then "x is one or y is zero" # Obscure syntax

when x == 2 || y == 1 then "x is two or y is one" # Easier to understand

end

All the case examples we've seen so far demonstrate the simpler, less common form of the statement. case is

really more powerful than this. Notice that in most of the examples, the left side of each when clause expression

is the same. In the common form of case, we factor this repeated lefthand expression of the when clause and

associate it with the case itself:

name = case x

 when 1 # Just the value to compare to x

 "one"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 when 2 then "two" # Then keyword instead of newline

 when 3; "three" # Semicolon instead of newline

 else "many" # Optional else clause at end

 end

In this form of the case statement, the expression associated with the case is evaluated once, and then it's

compared to the values obtained by evaluating the when expression. The comparisons are performed in the

order in which the when clauses are written, and the code associated with the first matching when is executed. If

no match is found, the code associated with the else clause (if there is one) is executed. The return value of

this form of the case statement is the same as the return value of the simpler form: the value of the last

expression evaluated, or nil if no when or else matches.

The important thing to understand about the case statement is how the values of the when clauses are

compared to the expression that follows the case keyword. This comparison is done using the === operator.

This operator is invoked on the value of the when expression and is passed the value of the case expression.

Therefore, the case statement above is equivalent to the following (except that x is only evaluated once in the

code above):

name = case

 when 1 === x then "one"

 when 2 === x then "two"

 when 3 === x then "three"

 else "many"

 end

=== is the case equality operator. For many classes, such as the Fixnum class used earlier, the === operator

behaves just the same as ==. But certain classes define this operator in interesting ways. The Class class

defines === so that it tests whether the righthand operand is an instance of the class named by the lefthand

operand. Range defines this operator to test whether the value on the right falls within the range on the left.

Regexp defines it so that it tests whether the text on the right matches the pattern on the left. In Ruby 1.9,

Symbol defines === so that it tests for symbol or string equality. With these definitions of case equality, we are

able to write interesting case statements like the following:

Code View:
Take different actions depending on the class of x

puts case x

 when String then "string"

 when Numeric then "number"

 when TrueClass, FalseClass then "boolean"

 else "other"

 end

Compute 2006 U.S. income tax using case and Range objects

tax = case income

 when 0..7550

 income * 0.1

 when 7550..30650

 755 + (income-7550)*0.15

 when 30650..74200

 4220 + (income-30655)*0.25

 when 74200..154800

 15107.5 + (income-74201)*0.28

 when 154800..336550

 37675.5 + (income-154800)*0.33

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 else

 97653 + (income-336550)*0.35

 end

Get user's input and process it, ignoring comments and exiting

when the user enters the word "quit"

while line=gets.chomp do # Loop, asking the user for input each time

 case line

 when /^\s*#/ # If input looks like a comment...

 next # skip to the next line.

 when /^quit$/i # If input is "quit" (case insensitive)...

 break # exit the loop.

 else # Otherwise...

 puts line.reverse # reverse the user's input and print it.

 end

end

A when clause can have more than one expression associated with it. Multiple expressions are separated by

commas, and the === operator is invoked on each one. That is, it is possible to trigger the same block of code

with more than one value:

def hasValue?(x) # Define a method named hasValue?

 case x # Multiway conditional based on value of x

 when nil, [], "", 0 # if nil===x || []===x || ""===x || 0===x then

 false # method return value is false

 else # Otherwise

 true # method return value is true

 end

end

case versus switch

Java programmers and others accustomed to C-derived language syntax are familiar with a
multiway conditional switch statement, which is similar to Ruby's case statement. There are,

however, a number of important differences:

In Java and related languages, the name of the statement is switch and its clauses are

labeled with case and default. Ruby uses case as the name of the statement, and when and

else for the clauses.

The switch statement of other languages simply transfers control to the start of the

appropriate case. From there, control continues and can "fall through" to other cases, until it
reaches the end of the switch statement or encounters a break or return statement. This

fall-through behavior allows multiple case clauses to refer to the same block of code. In

Ruby, this same purpose is served by allowing multiple comma-separated expressions to be
associated with each when clause. Ruby's case statement never allows fall-through.

In Java and most compiled languages with C-like syntax, the expressions associated with

http://lib.ommolketab.ir
http://lib.ommolketab.ir

each case label must be compile-time constants rather than arbitrary runtime expressions.

This often allows the compiler to implement the switch statement using a very fast lookup

table. There is no such restriction on Ruby's case statement, and its performance is

equivalent to using an if statement with repeated elsif clauses.

5.1.5. The ?: Operator

The conditional operator ?:, described earlier in Section 4.6.10, behaves much like an if statement, with ?

replacing then and : replacing else. It provides a succinct way to express conditionals:

def how_many_messages(n) # Handle singular/plural

 "You have " + n.to_s + (n==1 ? " message." : " messages.")

end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.2. Loops

This section documents Ruby's simple looping statements: while, until, and for. Ruby also includes the ability

to define custom looping constructs known as iterators. Iterators (see Section 5.3) are probably more
commonly used than Ruby's built-in looping statements; they are documented in later in this chapter.

5.2.1. while and until

Ruby's basic looping statements are while and until. They execute a chunk of code while a certain condition is

true, or until the condition becomes true. For example:

x = 10 # Initialize a loop counter variable

while x >= 0 do # Loop while x is greater than or equal to 0

 puts x # Print out the value of x

 x = x - 1 # Subtract 1 from x

end # The loop ends here

Count back up to 10 using an until loop

x = 0 # Start at 0 (instead of -1)

until x > 10 do # Loop until x is greater than 10

 puts x

 x = x + 1

end # Loop ends here

The loop condition is the Boolean expression that appears between the while or until and do keywords. The

loop body is the Ruby code that appears between the do and the end keyword. The while loop evaluates its

condition. If the value is anything other than false or nil, it executes its body, and then loops to evaluate its

condition again. In this way, the body is executed repeatedly, zero or more times, while the condition remains
true (or, more strictly, non-false and non-nil).

The until loop is the reverse. The condition is tested and the body is executed if the condition evaluates to

false or nil. This means that the body is executed zero or more times while the condition is false or nil.

Note that any until loop can be converted to a while simply by negating the condition. Most programmers are

familiar with while loops, but many have not used until loops before. For this reason, you may want to use

while loops except when until truly improves the clarity of your code.

The do keyword in a while or until loop is like the then keyword in an if statement: it may be omitted

altogether as long as a newline (or semicolon) appears between the loop condition and the loop body.[*]

[*] In Ruby 1.8, a colon may be used in place of the do keyword. This is no longer allowed in Ruby 1.9.

5.2.2. while and until As Modifiers

If the body of a loop is a single Ruby expression, you can express that loop in a particularly compact form by
using while or until as a modifier after the expression. For example:

Code View:
x = 0 # Initialize loop variable

puts x = x + 1 while x < 10 # Output and increment in a single expression

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This modifier syntax uses the while keyword itself to separate the loop body from the loop condition, and

avoids the need for the do (or newline) and end keywords. Contrast this code with the more traditional while

loop written on a single line:

x = 0

while x < 10 do puts x = x + 1 end

until can be used as a modifier just as while can be:

a = [1,2,3] # Initialize an array

puts a.pop until a.empty? # Pop elements from array until empty

Note that when while and until are used as modifiers, they must appear on the same line as the loop body

that they modify. If there is a newline between the loop body and the while or until keyword, the Ruby

interpreter will treat the loop body as an unmodified expression and the while or until as the beginning of a

regular loop.

When while and until are used as modifiers for a single Ruby expression, the loop condition is tested first,

even though it is written after the loop body. The loop body is executed zero or more times, just as if it were
formatted as a regular while or until loop.

There is a special-case exception to this rule. When the expression being evaluated is a compound expression
delimited by begin and end keywords, then the body is executed first before the condition is tested:

x = 10 # Initialize loop variable

begin # Start a compound expression: executed at least once

 puts x # output x

 x = x - 1 # decrement x

end until x == 0 # End compound expression and modify it with a loop

This results in a construct much like the do/while loop of C, C++, and Java. Despite its similarity to the

do/while loop of other languages, this special-case behavior of loop modifiers with the begin statement is

counterintuitive and its use is discouraged. Future releases of Ruby may forbid the use of while and until

modifiers with begin/end.

Note that if you group multiple statements with parentheses and apply an until modifier to that grouped
expression, you do not get this special case behavior:

x = 0 # Initialize loop variable

(# Start a compound expression: may be executed 0 times

 puts x # output x

 x = x - 1 # decrement x

) until x == 0 # End compound expression and modify it with a loop

5.2.3. The for/in Loop

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The for loop, or for/in loop, iterates through the elements of an enumerable object (such as an array). On

each iteration, it assigns an element to a specified loop variable and then executes the body of the loop. A for

loop looks like this:

for var in collection do

 body

end

var is a variable or a comma-separated list of variables. collection is any object that has an each iterator

method. Arrays and hashes define the each method, and many other Ruby objects do, too. The for/in loop

calls the each method of the specified object. As that iterator yields values, the for loop assigns each value (or

each set of values) to the specified variable (or variables) and then executes the code in body. As with the

while and until loops, the do keyword is optional and may be replaced with a newline or semicolon.

Here are some sample for loops:

Print the elements in an array

array = [1,2,3,4,5]

for element in array

 puts element

end

Print the keys and values in a hash

hash = {:a=>1, :b=>2, :c=>3}

for key,value in hash

 puts "#{key} => #{value}"

end

The loop variable or variables of a for loop are not local to the loop; they remain defined even after the loop

exits. Similarly, new variables defined within the body of the loop continue to exist after the loop exits.

The fact that the for loop depends on the each iterator method implies that for loops are much like iterators.

For example, the for loop shown above for enumerating the keys and values of a hash could also be written

with an explicit use of the each iterator:

hash = {:a=>1, :b=>2, :c=>3}

hash.each do |key,value|

 puts "#{key} => #{value}"

end

The only difference between the for version of the loop and the each version is that the block of code that

follows an iterator does define a new variable scope. Details are in the discussion of iterators later in this
chapter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.3. Iterators and Enumerable Objects

Although while, until, and for loops are a core part of the Ruby language, it is probably more common to

write loops using special methods known as iterators. Iterators are one of the most noteworthy features of
Ruby, and examples such as the following are common in introductory Ruby tutorials:

3.times { puts "thank you!" } # Express gratitude three times

data.each {|x| puts x } # Print each element x of data

[1,2,3].map {|x| x*x } # Compute squares of array elements

factorial = 1 # Compute the factorial of n

2.upto(n) {|x| factorial *= x }

The times, each, map, and upto methods are all iterators, and they interact with the block of code that follows

them. The complex control structure behind this is yield. The yield statement temporarily returns control from

the iterator method to the method that invoked the iterator. Specifically, control flow goes from the iterator to
the block of code associated with the invocation of the iterator. When the end of the block is reached, the
iterator method regains control and execution resumes at the first statement following the yield. In order to

implement some kind of looping construct, an iterator method will typically invoke the yield statement multiple

times. Figure 5-1 illustrates this complex flow of control. Blocks and yield are described in detail in Section 5.4

below; for now, we focus on the iteration itself rather than the control structure that enables it.

Figure 5-1. An iterator yielding to its invoking method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As you can see from the previous examples, blocks may be parameterized. Vertical bars at the start of a block
are like parentheses in a method definition-they hold a list of parameter names. The yield statement is like a

method invocation; it is followed by zero or more expressions whose values are assigned to the block
parameters.

Iterators that Don't Iterate

We use the term iterator in this book to mean any method that uses the yield statement. They do

not actually have to serve an iteration or looping function.[*] The tap method defined (in Ruby 1.9)

by the Object class is an example. It invokes the associated block once, passing the receiver as

the only argument. Then it returns the receiver. It is handy for "tapping into" a method chain, as
in the following code which uses tap to output debugging messages:

chars = "hello world".tap {|x| puts "original object: #{x.inspect}"}

 .each_char .tap {|x| puts "each_char returns: #{x.inspect}"}

 .to_a .tap {|x| puts "to_a returns: #{x.inspect}"}

 .map {|c| c.succ } .tap {|x| puts "map returns: #{x.inspect}" }

 .sort .tap {|x| puts "sort returns: #{x.inspect}"}

Another common function for iterators is automatic resource deallocation. The File.open method

can be used as an iterator, for example. It opens the named file, creating a File object to

represent it. If no block is associated with the invocation, it simply returns the File object and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

leaves the responsibility for closing the file with the calling code. If there is a block associated with
the File.open call, however, it passes the new File object to that block and then automatically

closes the file when the block returns. This ensures that files will always be closed and frees
programmers from this housekeeping detail. In this case, when a block is associated with the call
to File.open, the return value of method is not a File object but whatever value the block

returned.

[*] Within the Japanese Ruby community, the term "iterator" has fallen out of use because it implies an iteration that is not actually required. A

phrase like "method that expects an associated block" is verbose but more precise.

5.3.1. Numeric Iterators

The core Ruby API provides a number of standard iterators. The Kernel method loop behaves like an infinite

loop, running its associated block repeatedly until the block executes a return, break, or other statement that

exits from the loop.

The Integer class defines three commonly used iterators. The upto method invokes its associated block once for

each integer between the integer on which it is invoked and the integer which is passed as an argument. For
example:

4.upto(6) {|x| print x} # => prints "456"

As you can see, upto yields each integer to the associated block, and it includes both the starting point and the

end point in the iteration. In general, n.upto(m) runs its block m-n+1 times.

The downto method is just like upto but iterates from a larger number down to a smaller number.

When the Integer.times method is invoked on the integer n, it invokes its block n times, passing values 0

through n-1 on successive iterations. For example:

3.times {|x| print x } # => prints "012"

In general, n.times is equivalent to 0.upto(n-1).

If you want to do a numeric iteration using floating-point numbers, you can use the more complex step method

defined by the Numeric class. The following iterator, for example, starts at 0 and iterates in steps of 0.1 until it

reaches Math::PI:

0.step(Math::PI, 0.1) {|x| puts Math.sin(x) }

5.3.2. Enumerable Objects

Array, Hash, Range, and a number of other classes define an each iterator that passes each element of the

collection to the associated block. This is perhaps the most commonly used iterator in Ruby; as we saw earlier,
the for loop only works for iterating over objects that have each methods. Examples of each iterators:

[1,2,3].each {|x| print x } # => prints "123"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(1..3).each {|x| print x } # => prints "123" Same as 1.upto(3)

The each iterator is not only for traditional "data structure" classes. Ruby's IO class defines an each iterator that

yields lines of text read from the Input/Output object. Thus, you can process the lines of a file in Ruby with

code like this:

File.open(filename) do |f| # Open named file, pass as f

 f.each {|line| print line } # Print each line in f

end # End block and close file

Most classes that define an each method also include the Enumerable module, which defines a number of more

specialized iterators that are implemented on top of the each method. One such useful iterator is

each_with_index, which allows us to add line numbering to the previous example:

File.open(filename) do |f|

 f.each_with_index do |line,number|

 print "#{number}: #{line}"

 end

end

Some of the most commonly used Enumerable iterators are the rhyming methods collect, select, reject,

and inject. The collect method (also known as map) executes its associated block for each element of the

enumerable object, and collects the return values of the blocks into an array:

squares = [1,2,3].collect {|x| x*x} # => [1,4,9]

The select method invokes the associated block for each element in the enumerable object, and returns an

array of elements for which the block returns a value other than false or nil. For example:

evens = (1..10).select {|x| x%2 == 0} # => [2,4,6,8,10]

The reject method is simply the opposite of select; it returns an array of elements for which the block returns

nil or false. For example:

odds = (1..10).reject {|x| x%2 == 0} # => [1,3,5,7,9]

The inject method is a little more complicated than the others. It invokes the associated block with two

arguments. The first argument is an accumulated value of some sort from previous iterations. The second
argument is the next element of the enumerable object. The return value of the block becomes the first block
argument for the next iteration, or becomes the return value of the iterator after the last iteration. The initial
value of the accumulator variable is either the argument to inject, if there is one, or the first element of the

enumerable object. (In this case, the block is invoked just once for the first two elements.) Examples make
inject more clear:

data = [2, 5, 3, 4]

sum = data.inject {|sum, x| sum + x } # => 14 (2+5+3+4)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

floatprod = data.inject(1.0) {|p,x| p*x } # => 120.0 (1.0*2*5*3*4)

max = data.inject {|m,x| m>x ? m : x } # => 5 (largest element)

See Section 9.5.1 for further details on the Enumerable module and its iterators.

5.3.3. Writing Custom Iterators

The defining feature of an iterator method is that it invokes a block of code associated with the method
invocation. You do this with the yield statement. The following method is a trivial iterator that just invokes its

block twice:

def twice

 yield

 yield

end

To pass argument values to the block, follow the yield statement with a comma-separated list of expressions.

As with method invocation, the argument values may optionally be enclosed in parentheses. The following
simple iterator shows a use of yield:

This method expects a block. It generates n values of the form

m*i + c, for i from 0..n-1, and yields them, one at a time,

to the associated block.

def sequence(n, m, c)

 i = 0

 while(i < n) # Loop n times

 yield m*i + c # Invoke the block, and pass a value to it

 i += 1 # Increment i each time

 end

end

Here is an invocation of that method, with a block.

It prints the values 1, 6, and 11

sequence(3, 5, 1) {|y| puts y }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Nomenclature: yield and Iterators

Depending on your programming background, you may find the terms "yield" and "iterator"
confusing. The sequence method shown earlier is a fairly clear example of why yield has the

name it does. After computing each number in the sequence, the method yields control (and yields
the computed number) to the block, so that the block can work with it. It is not always this clear,
however; in some code it may seem as if it is the block that is yielding a result back to the method
that invoked it.

A method such as sequence that expects a block and invokes it multiple times is called an iterator

because it looks and behaves like a loop. This may be confusing if you are used to languages like
Java in which iterators are objects. In Java, the client code that uses the iterator is in control and
"pulls" values from the iterator when it needs them. In Ruby, the iterator method is in control and
"pushes" values to the block that wants them.

This nomenclature issue is related to the distinction between "internal iterators" and "external
iterators," which is discussed later in this section.

Here is another example of a Ruby iterator; it passes two arguments to its block. It is worth noticing that the
implementation of this iterator uses another iterator internally:

Generate n points evenly spaced around the circumference of a

circle of radius r centered at (0,0). Yield the x and y coordinates

of each point to the associated block.

def circle(r,n)

 n.times do |i| # Notice that this method is implemented with a block

 angle = Math::PI * 2 * i / n

 yield r*Math.cos(angle), r*Math.sin(angle)

 end

end

This invocation of the iterator prints:

(1.00, 0.00) (0.00, 1.00) (-1.00, 0.00) (-0.00, -1.00)

circle(1,4) {|x,y| printf "(%.2f, %.2f) ", x, y }

Using the yield keyword really is a lot like invoking a method. (See Chapter 6 for complete details on method

invocation.) Parentheses around the arguments are optional. You can use * to expand an array into individual

arguments. yield even allows you to pass a hash literal without the curly braces around it. Unlike a method

invocation, however, a yield expression may not be followed by a block. You cannot pass a block to a block.

If a method is invoked without a block, it is an error for that method to yield, because there is nothing to yield

to. Sometimes you want to write a method that yields to a block if one is provided but takes some default action
(other than raising an error) if invoked with no block. To do this, use block_given? to determine whether there

is a block associated with the invocation. block_given?, and its synonym iterator?, are Kernel methods, so

they act like global functions. Here is an example:

Return an array with n elements of the form m*i+c

If a block is given, also yield each element to the block

def sequence(n, m, c)

 i, s = 0, [] # Initialize variables

 while(i < n) # Loop n times

 y = m*i + c # Compute value

 yield y if block_given? # Yield, if block

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 s << y # Store the value

 i += 1

 end

 s # Return the array of values

end

5.3.4. Enumerators

An enumerator is an Enumerable object whose purpose is to enumerate some other object. To use enumerators

in Ruby 1.8, you must require 'enumerator'. In Ruby 1.9, enumerators are built-in and no require is

necessary. (As we'll see later, the built-in enumerators of Ruby 1.9 have substantially more functionality than
that provided by the enumerator library of Ruby 1.8.)

Enumerators are of class Enumerable::Enumerator. Although this class can be instantiated directly with new,

this is not how enumerators are typically created. Instead, use to_enum or its synonym enum_for, which are

methods of Object. With no arguments, to_enum returns an enumerator whose each method simply calls the

each method of the target object. Suppose you have an array and a method that expects an enumerable object.

You don't want to pass the array object itself, because it is mutable, and you don't trust the method not to
modify it. Instead of making a defensive deep copy of the array, just call to_enum on it, and pass the resulting

enumerator instead of the array itself. In effect, you're creating an enumerable but immutable proxy object for
your array:

Call this method with an Enumerator instead of a mutable array.

This is a useful defensive strategy to avoid bugs.

process(data.to_enum) # Instead of just process(data)

You can also pass arguments to to_enum, although the enum_for synonym seems more natural in this case. The

first argument should be a symbol that identifies an iterator method. The each method of the resulting

Enumerator will invoke the named method of the original object. Any remaining arguments to enum_for will be

passed to that named method. In Ruby 1.9, the String class is not Enumerable, but it defines three iterator

methods: each_char, each_byte, and each_line. Suppose we want to use an Enumerable method, such as

map, and we want it to be based on the each_char iterator. We do this by creating an enumerator:

s = "hello"

s.enum_for(:each_char).map {|c| c.succ } # => ["i", "f", "m", "m", "p"]

In Ruby 1.9, it is usually not even necessary to use to_enum or enum_for explicitly as we did in the previous

examples. This is because the built-in iterator methods of Ruby 1.9 (which include the numeric iterators times,

upto, downto, and step, as well as each and related methods of Enumerable) automatically return an

enumerator when invoked with no block. So, to pass an array enumerator to a method rather than the array
itself, you can simply call the each method:

process(data.each_char) # Instead of just process(data)

This syntax is even more natural if we use the chars alias[*] in place of each_char. To map the characters of a

string to an array of characters, for example, just use .chars.map:

[*] chars was omitted from Ruby 1.9.0, but this oversight was corrected shortly after the initial release.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

"hello".chars.map {|c| c.succ } # => ["i", "f", "m", "m", "p"]

Here are some other examples that rely on enumerator objects returned by iterator methods. Note that it is not
just iterator methods defined by Enumerable that can return enumerator objects; numeric iterators like times

and upto do the same:

enumerator = 3.times # An enumerator object

enumerator.each {|x| print x } # Prints "012"

downto returns an enumerator with a select method

10.downto(1).select {|x| x%2==0} # => [10,8,6,4,2]

each_byte iterator returns an enumerator with a to_a method

"hello".each_byte.to_a # => [104, 101, 108, 108, 111]

You can duplicate this behavior in your own iterator methods by returning self.to_enum when no block is

supplied. Here, for example, is a version of the twice iterator shown earlier that can return an enumerator if no

block is provided:

def twice

 if block_given?

 yield

 yield

 else

 self.to_enum(:twice)

 end

end

In Ruby 1.9, enumerator objects define a with_index method that is not available in the Ruby 1.8 enumerator

module. with_index simply returns a new enumerator that adds an index parameter to the iteration. For

example, the following returns an enumerator that yields the characters of a string and their index within the
string:

enumerator = s.each_char.with_index

Finally, keep in mind that enumerators, in both Ruby 1.8 and 1.9, are Enumerable objects that can be used with

the for loop. For example:

for line, number in text.each_line.with_index

 print "#{number+1}: #{line}"

end

5.3.5. External Iterators

Our discussion of enumerators has focused on their use as Enumerable proxy objects. In Ruby 1.9, however,

enumerators have another very important use: they are external iterators. You can use an enumerator to loop
through the elements of a collection by repeatedly calling the next method. When there are no more elements,

this method raises a StopIteration exception:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

iterator = 9.downto(1) # An enumerator as external iterator

begin # So we can use rescue below

 print iterator.next while true # Call the next method repeatedly

rescue StopIteration # When there are no more values

 puts "...blastoff!" # An expected, nonexceptional condition

end

Internal versus External Iterators

The "gang of four" define and contrast internal and external iterators quite clearly in their design
patterns book:[*]

A fundamental issue is deciding which party controls the iteration, the iterator or the client
that uses the iterator. When the client controls the iteration, the iterator is called an
external iterator, and when the iterator controls it, the iterator is an internal iterator.
Clients that use an external iterator must advance the traversal and request the next
element explicitly from the iterator. In contrast, the client hands an internal iterator an
operation to perform, and the iterator applies that operation to every element....

External iterators are more flexible than internal iterators. It's easy to compare two
collections for equality with an external iterator, for example, but it's practically impossible
with internal iterators…. But on the other hand, internal iterators are easier to use, because
they define the iteration logic for you.

In Ruby, iterator methods like each are internal iterators; they control the iteration and "push"

values to the block of code associated with the method invocation. Enumerators have an each

method for internal iteration, but in Ruby 1.9 and later, they also work as external iterators-client
code can sequentially "pull" values from an enumerator with next.

[*] Design Patterns: Elements of Reusable Object-Oriented Software, by Gamma, Helm, Johnson, and Vlissides (Addison-Wesley).

External iterators are quite simple to use: just call next each time you want another element. When there are

no more elements left, next will raise a StopIteration exception. This may seem unusual-an exception is

raised for an expected termination condition rather than an unexpected and exceptional event. (StopIteration

is a descendant of StandardError and IndexError; note that it is one of the only exception classes that does

not have the word "error" in its name.) Ruby follows Python in this external iteration technique. By treating loop
termination as an exception, it makes your looping logic extremely simple; there is no need to check the return
value of next for a special end-of-iteration value, and there is no need to call some kind of next? predicate

before calling next.

To simplify looping with external iterators, the Kernel.loop method includes (in Ruby 1.9) an implicit rescue

clause and exits cleanly when StopIteration is raised. Thus, the countdown code shown earlier could more

easily be written like this:

iterator = 9.downto(1)

loop do # Loop until StopIteration is raised

 print iterator.next # Print next item

end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

puts "...blastoff!"

Many external iterators can be restarted by calling the rewind method. Note, however, that rewind is not

effective for all enumerators. If an enumerator is based on an object like a File which reads lines sequentially,

calling rewind will not restart the iteration from the beginning. In general, if new invocations of each on the

underlying Enumerable object do not restart the iteration from the beginning, then calling rewind will not

restart it either.

Once an external iteration has started (i.e., after next has been called for the first time), an enumerator cannot

be cloned or duplicated. It is typically possible to clone an enumerator before next is called, or after

StopIteration has been raised or rewind is called.

Normally, enumerators with next methods are created from Enumerable objects that have an each method. If,

for some reason, you define a class that provides a next method for external iteration instead of an each

method for internal iteration, you can easily implement each in terms of next. In fact, turning an externally

iterable class that implements next into an Enumerable class is as simple as mixing in (with include- s e e

Section 7.5) a module like this:

module Iterable

 include Enumerable # Define iterators on top of each

 def each # And define each on top of next

 loop { yield self.next }

 end

end

Another way to use an external iterator is to pass it to an internal iterator method like this one:

def iterate(iterator)

 loop { yield iterator.next }

end

iterate(9.downto(1)) {|x| print x }

The earlier quote from Design Patterns alluded to one of the key features of external iterators: they solve the
parallel iteration problem. Suppose you have two Enumerable collections and need to iterate their elements in

pairs: the first elements of each collection, then the second elements, and so on. Without an external iterator,
you must convert one of the collections to an array (with the to_a method defined by Enumerable) so that you

can access its elements while iterating the other collection with each.

Example 5-1 shows the implementation of three iterator methods. All three accept an arbitrary number of
Enumerable objects and iterate them in different ways. One is a simple sequential iteration using only internal

iterators; the other two are parallel iterations and can only be done using the external iteration features of
enumerators.

Example 5-1. Parallel iteration with external iterators

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Code View:
Call the each method of each collection in turn.

This is not a parallel iteration and does not require enumerators.

def sequence(*enumerables, &block)

 enumerables.each do |enumerable|

 enumerable.each(&block)

 end

end

Iterate the specified collections, interleaving their elements.

This can't be done efficiently without external iterators.

Note the use of the uncommon else clause in begin/rescue.

def interleave(*enumerables)

 # Convert enumerable collections to an array of enumerators.

 enumerators = enumerables.map {|e| e.to_enum }

 # Loop until we don't have any more enumerators.

 until enumerators.empty?

 begin

 e = enumerators.shift # Take the first enumerator

 yield e.next # Get its next and pass to the block

 rescue StopIteration # If no more elements, do nothing

 else # If no exception occurred

 enumerators << e # Put the enumerator back

 end

 end

end

Iterate the specified collections, yielding tuples of values,

one value from each of the collections. See also Enumerable.zip.

def bundle(*enumerables)

 enumerators = enumerables.map {|e| e.to_enum }

 loop { yield enumerators.map {|e| e.next} }

end

Examples of how these iterator methods work

a,b,c = [1,2,3], 4..6, 'a'..'e'

sequence(a,b,c) {|x| print x} # prints "123456abcde"

interleave(a,b,c) {|x| print x} # prints "14a25b36cde"

bundle(a,b,c) {|x| print x} # '[1, 4, "a"][2, 5, "b"][3, 6, "c"]'

The bundle method of Example 5-1 is similar to the Enumerable.zip method. In Ruby 1.8, zip must first

convert its Enumerable arguments to arrays and then use those arrays while iterating through the Enumerable

object it is called on. In Ruby 1.9, however, the zip method can use external iterators. This makes it (typically)

more efficient in space and time, and also allows it to work with unbounded collections that could not be
converted into an array of finite size.

5.3.6. Iteration and Concurrent Modification

In general, Ruby's core collection of classes iterate over live objects rather than private copies or "snapshots" of
those objects, and they make no attempt to detect or prevent concurrent modification to the collection while it
is being iterated. If you call the each method of an array, for example, and the block associated with that

invocation calls the shift method of the same array, the results of the iteration may be surprising:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

a = [1,2,3,4,5]

a.each {|x| puts "#{x},#{a.shift}" } # prints "1,1\n3,2\n5,3"

You may see similarly surprising behavior if one thread modifies a collection while another thread is iterating it.
One way to avoid this is to make a defensive copy of the collection before iterating it. The following code, for
example, adds a method each_in_snapshot to the Enumerable module:

module Enumerable

 def each_in_snapshot &block

 snapshot = self.dup # Make a private copy of the Enumerable object

 snapshot.each &block # And iterate on the copy

 end

end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.4. Blocks

The use of blocks is fundamental to the use of iterators. In the previous section, we focused on iterators as a
kind of looping construct. Blocks were implicit to our discussion but were not the subject of it. Now we turn our
attention to the block themselves. The subsections that follow explain:

The syntax for associating a block with a method invocation

The "return value" of a block

The scope of variables in blocks

The difference between block parameters and method parameters

5.4.1. Block Syntax

Blocks may not stand alone; they are only legal following a method invocation. You can, however, place a block
after any method invocation; if the method is not an iterator and never invokes the block with yield, the block

will be silently ignored. Blocks are delimited with curly braces or with do and end keywords. The opening curly

brace or the do keyword must be on the same line as the method invocation, or else Ruby interprets the line

terminator as a statement terminator and invokes the method without the block:

Print the numbers 1 to 10

1.upto(10) {|x| puts x } # Invocation and block on one line with braces

1.upto(10) do |x| # Block delimited with do/end

 puts x

end

1.upto(10) # No block specified

 {|x| puts x } # Syntax error: block not after an invocation

One common convention is to use curly braces when a block fits on a single line, and to use do and end when

the block extends over multiple lines.This is not completely a matter of convention, however; the Ruby parser
binds { tightly to the token that precedes it. If you omit the parentheses around method arguments and use

curly brace delimiters for a block, then the block will be associated with the last method argument rather than
the method itself, which is probably not what you want. To avoid this case, put parentheses around the
arguments or delimit the block with do and end:

1.upto(3) {|x| puts x } # Parens and curly braces work

1.upto 3 do |x| puts x end # No parens, block delimited with do/end

1.upto 3 {|x| puts x } # Syntax Error: trying to pass a block to 3!

Blocks can be parameterized, just as methods can. Block parameters are separated with commas and delimited
with a pair of vertical bar (|) characters, but they are otherwise much like method parameters:

The Hash.each iterator passes two arguments to its block

http://lib.ommolketab.ir
http://lib.ommolketab.ir

hash.each do |key, value| # For each (key,value) pair in the hash

 puts "#{key}: #{value}" # Print the key and the value

end # End of the block

It is a common convention to write the block parameters on the same line as the method invocation and the
opening brace or do keyword, but this is not required by the syntax.

5.4.2. The Value of a Block

In the iterator examples shown so far in this chapter, the iterator method has yielded values to its associated
block but has ignored the value returned by the block. This is not always the case, however. Consider the
Array.sort method. If you associate a block with an invocation of this method, it will yield pairs of elements to

the block, and it is the block's job to sort them. The block's return value (–1, 0, or 1) indicates the ordering of

the two arguments. The "return value" of the block is available to the iterator method as the value of the yield

statement.

The "return value" of a block is simply the value of the last expression evaluated in the block. So, to sort an
array of words from longest to shortest, we could write:

The block takes two words and "returns" their relative order

words.sort! {|x,y| y <=> x }

We've been placing the phrase "return value" in quotes for a very important reason: you should not normally
use the return keyword to return from a block. A return inside a block causes the containing method (not the

iterator method that yields to the block, but the method that the block is part of) to return. There are, of
course, times when this is exactly what you want to do. But don't use return if you just want to return from a

block to the method that called yield. If you need to force a block to return to the invoking method before it

reaches the last expression, or if you want to return more than one value, you can use next instead of return.

(return, next, and the related statement break are explained in detail in Section 5.5.) Here is an example that

uses next to return from the block:

array.collect do |x|

 next 0 if x == nil # Return prematurely if x is nil

 next x, x*x # Return two values

end

Note that it is not particularly common to use next in this way, and the code above is easily rewritten without

it:

array.collect do |x|

 if x == nil

 0

 else

 [x, x*x]

 end

end

5.4.3. Blocks and Variable Scope

Blocks define a new variable scope: variables created within a block exist only within that block and are

http://lib.ommolketab.ir
http://lib.ommolketab.ir

undefined outside of the block. Be cautious, however; the local variables in a method are available to any blocks
within that method. So if a block assigns a value to a variable that is already defined outside of the block, this
does not create a new block-local variable but instead assigns a new value to the already-existing variable.
Sometimes, this is exactly the behavior we want:

total = 0

data.each {|x| total += x } # Sum the elements of the data array

puts total # Print out that sum

Sometimes, however, we do not want to alter variables in the enclosing scope, but we do so inadvertently. This
problem is a particular concern for block parameters in Ruby 1.8. In Ruby 1.8, if a block parameter shares the
name of an existing variable, then invocations of the block simply assign a value to that existing variable rather
than creating a new block-local variable. The following code, for example, is problematic because it uses the
same identifier i as the block parameter for two nested blocks:

1.upto(10) do |i| # 10 rows

 1.upto(10) do |i| # Each has 10 columns

 print "#{i} " # Print column number

 end

 print " ==> Row #{i}\n" # Try to print row number, but get column number

end

Ruby 1.9 is different: block parameters are always local to their block, and invocations of the block never assign
values to existing variables. If Ruby 1.9 is invoked with the -w flag, it will warn you if a block parameter has the

same name as an existing variable. This helps you avoid writing code that runs differently in 1.8 and 1.9.

Ruby 1.9 is different in another important way, too. Block syntax has been extended to allow you to declare
block-local variables that are guaranteed to be local, even if a variable by the same name already exists in the
enclosing scope. To do this, follow the list of block parameters with a semicolon and a comma-separated list of
block local variables. Here is an example:

x = y = 0 # local variables

1.upto(4) do |x;y| # x and y are local to block

 # x and y "shadow" the outer variables

 y = x + 1 # Use y as a scratch variable

 puts y*y # Prints 4, 9, 16, 25

end

[x,y] # => [0,0]: block does not alter these

In this code, x is a block parameter: it gets a value when the block is invoked with yield. y is a block-local

variable. It does not receive any value from a yield invocation, but it has the value nil until the block actually

assigns some other value to it. The point of declaring these block-local variables is to guarantee that you will
not inadvertently clobber the value of some existing variable. (This might happen if a block is cut-and-pasted
from one method to another, for example.) If you invoke Ruby 1.9 with the -w option, it will warn you if a block-

local variable shadows an existing variable.

Blocks can have more than one parameter and more than one local variable, of course. Here is a block with two
parameters and three local variables:

hash.each {|key,value; i,j,k| ... }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.4.4. Passing Arguments to a Block

We've said previously that the parameters to a block are much like the parameters to a method. They are not
strictly the same, however. The argument values that follow a yield keyword are assigned to block parameters

following rules that are closer to the rules for variable assignment than to the rules for method invocation. Thus,
when an iterator executes yield k,v to invoke a block declared with parameters |key, value|, it is equivalent

to this assignment statement:

key,value = k,v

The Hash.each_pair iterator yields a key/value pair like this:[*]

[*] The Ruby 1.8 each_pair yields two separate values to the block. In Ruby 1.9, the each_pair iterator is a synonym for each and passes a

single array argument, as will be explained shortly. The code shown here, however, works correctly in both versions.

{:one=>1}.each_pair {|key,value| ... } # key=:one, value=1

In Ruby 1.8, it is even more clear that block invocation uses variable assignment. Recall that in Ruby 1.8
parameters are only local to the block if they are not already in use as local variables of the containing method.
If they are already local variables, then they are simply assigned to. In fact, Ruby 1.8 allows any kind of
variable to be used as a block parameter, including global variables and instance variables:

{:one=>1}.each_pair {|$key, @value| ... } # No longer works in Ruby 1.9

This iterator sets the global variable $key to :one and sets the instance variable @value to 1. As already noted,

Ruby 1.9 makes block parameters local to the block. This also means that block parameters can no longer be
global or instance variables.

The Hash.each iterator yields key/value pairs as two elements of a single array. It is very common, however, to

see code like this:

hash.each {|k,v| ... } # key and value assigned to params k and v

This also works by parallel assignment. The yielded value, a two-element array, is assigned to the variables k

and v:

k,v = [key, value]

By the rules of parallel assignment (see Section 4.5.5), a single array on the right is expanded to and its
elements assigned to the multiple variables on the left.

Block invocation does not work exactly like parallel assignment. Imagine an iterator that passes two values to
its block. By the rules of parallel assignment, we might expect be able to declare a block with a single
parameter and have the two values automatically filled into an array for us. But it does not work that way:

def two; yield 1,2; end # An iterator that yields two values

http://lib.ommolketab.ir
http://lib.ommolketab.ir

two {|x| p x } # Ruby 1.8: warns and prints [1,2],

two {|x| p x } # Ruby 1.9: prints 1, no warning

two {|*x| p x } # Either version: prints [1,2]; no warning

two {|x,| p x } # Either version: prints 1; no warning

In Ruby 1.8, multiple arguments are packed into an array when there is a single block parameter, but this is
deprecated and generates a warning message. In Ruby 1.9, the first value yielded is assigned to the block
parameter and the second value is silently discarded. If we want multiple yielded values to be packed into an
array and assigned to a single block parameter, we must explicitly indicate this by prefixing the parameter with
an *, exactly as we'd do in a method declaration. (See Chapter 6 for a thorough discussion of method

parameters and method declaration.) Also note that we can explicitly discard the second yielded value by
declaring a block parameter list that ends with a comma, as if to say: "There is another parameter, but it is
unused and I can't be bothered to pick a name for it."

Although block invocation does not behave like parallel assignment in this case, it does not behave like method
invocation, either. If we declare a method with one argument and then pass two arguments to it, Ruby doesn't
just print a warning, it raises an error.

In Ruby 1.8, only the last block parameter may have an * prefix. Ruby 1.9 lifts this restriction and allows any

one block parameter, regardless of its position in the list, to have an * prefix:

def five; yield 1,2,3,4,5; end # Yield 5 values

five do |head, *body, tail| # Extra values go into body array

 print head, body, tail # Prints "1[2,3,4]5"

end

The yield statement allows bare hashes as the last argument value, just as method invocations (see Section

6.4.4) do. That is, if the last argument to yield is a hash literal, you may omit the curly braces. Because it is

not common for iterators to yield hashes, we have to contrive an example to demonstrate this:

def hashiter; yield :a=>1, :b=>2; end # Note no curly braces

hashiter {|hash| puts hash[:a] } # Prints 1

In Ruby 1.9, the final block parameter may be prefixed with & to indicate that it is to receive any block

associated with the invocation of the block. Recall, however, that a yield invocation may not have a block

associated with it. We'll learn in Chapter 6 that a block can be converted into a Proc, and blocks can be

associated with Proc invocations. The following code example should make sense once you have read Chapter

6:

This Proc expects a block

printer = lambda {|&b| puts b.call } # Print value returned by b

printer.call { "hi" } # Pass a block to the block!

An important difference between block parameters and method parameters is that block parameters are not
allowed to have default values assigned as method parameters are. That is, it is not legal to write this:

[1,2,3].each {|x,y=10| print x*y } # SyntaxError!

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Ruby 1.9 defines a new syntax for creating Proc objects and this new syntax does allow argument defaults.

Details will have to wait until you've read about Proc objects in Chapter 6, but this code can be rewritten as

follows:

[1,2,3].each &->(x,y=10) { print x*y } # Prints "102030"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.5. Altering Control Flow

In addition to conditionals, loops, and iterators, Ruby supports a number of statements that alter the flow-of-
control in a Ruby program. These statements are:

return

Causes a method to exit and return a value to its caller.

break

Causes a loop (or iterator) to exit.

next

Causes a loop (or iterator) to skip the rest of the current iteration and move on to the next iteration.

redo

Restarts a loop or iterator from the beginning.

retry

Restarts an iterator, reevaluating the entire expression. The retry keyword can also be used in exception

handling, as we'll see later in the chapter.

throw/catch

A very general control structure that is named like and works like an exception propagation and handling
mechanism. throw and catch are not Ruby's primary exception mechanism (that would be raise and

rescue, described later in this chapter). Instead, they are used as a kind of multilevel or labeled break.

The subsections that follow describe each of these statements in detail.

5.5.1. return

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The return statement causes the enclosing method to return to its caller. If you know C, Java, or a related

language, you probably already have an intuitive understanding of the return statement. Don't skip this

section, however, because the behavior of return within a block may not be intuitive to you.

return may optionally be followed by an expression, or a comma-separated list of expressions. If there is no

expression, then the return value of the method is nil. If there is one expression, then the value of that

expression becomes the return value of the method. If there is more than one expression after the return

keyword, then the return value of the method is an array containing the values of those expressions.

Note that most methods do not require the return statement. When flow-of-control reaches the end of a

method, the method automatically returns to its caller. The return value in this case is the value of the last
expression in the method. Most Ruby programmers omit return when it is not necessary. Instead of writing

return x as the last line of a method, they would simply write x.

return is useful if you want to return from a method prematurely, or if you want to return more than one value.

For example:

Return two copies of x, if x is not nil

def double(x)

 return nil if x == nil # Return prematurely

 return x, x.dup # Return multiple values

end

When first learning about Ruby blocks, it is natural to think of them as some kind of nested function or mini-
method. And if you think of them this way, you might expect return simply to cause the block to return to the

iterator that yielded to it. But blocks are not methods, and the return keyword does not work this way. In fact,

return is remarkably consistent; it always causes the enclosing method to return, regardless of how deeply

nested within blocks it is.[*]

[*] We'll see an exception when we consider lambdas in Section 6.5.5.1. A lambda is a kind of a function created from a block, and the
behavior of return within a lambda is different from its behavior in an ordinary block.

Note that the enclosing method is not the same thing as the invoking method. When the return statement is

used in a block, it does not just cause the block to return. And it does not just cause the iterator that invokes
the block to return. return always causes the enclosing method to return. The enclosing method, also called the

lexically enclosing method, is the method that the block appears inside of when you look at the source code.
Figure 5-2 illustrates the behavior of the return statement in a block.

Figure 5-2. The return statement in a block

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following code defines a method that uses return to return from inside a block:

Return the index of the first occurrence of target within array or nil

Note that this code just duplicates the Array.index method

def find(array, target)

 array.each_with_index do |element,index|

 return index if (element == target) # return from find

 end

 nil # If we didn't find the element, return nil

end

The return statement in this code does not just cause the block to return to the iterator that invoked it. And it

does not just cause the each_with_index iterator to return. It causes the find method to return a value to its

caller.

5.5.2. break

When used within a loop, the break statement transfers control out of the loop to the first expression following

the loop. Readers who know C, Java, or a similar language will already be familiar with the use of break in a

loop:

while(line = gets.chop) # A loop starts here

 break if line == "quit" # If this break statement is executed...

 puts eval(line)

end

puts "Good bye" # ...then control is transferred here

When used in a block, break transfers control out of the block, out of the iterator that invoked the block, and to

the first expression following the invocation of the iterator. For example:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

f.each do |line| # Iterate over the lines in file f

 break if line == "quit\n" # If this break statement is executed...

 puts eval(line)

end

puts "Good bye" # ...then control is transferred here

As you can see, using break inside a block is lexically the same as using it inside a loop. If you consider the call

stack, however, break in a block is more complicated because it forces the iterator method that the block is

associated with to return. Figure 5-3 illustrates this.

Figure 5-3. The break statement in a block

Note that unlike return, break never causes the lexically enclosing method to return. break can only appear

within a lexically enclosing loop or within a block. Using it in any other context causes a LocalJumpError.

5.5.2.1. break with a value

Recall that all syntactic constructs in Ruby are expressions, and all can have a value. The break statement can

specify a value for the loop or iterator it is breaking out of. The break keyword may be followed by an

expression or a comma-separated list of expressions. If break is used with no expression, then the value of the

loop expression, or the return value of the iterator method, is nil. If break is used with a single expression,

then the value of that expression becomes the value of the loop expression or the return value of the iterator.
And if break is used with multiple expressions, then the values of those expressions are placed into an array,

and that array becomes the value of the loop expression or the return value of the iterator.

By contrast, a while loop that terminates normally with no break always has a value of nil. The return value of

an iterator that terminates normally is defined by the iterator method. Many iterators, such as times and each,

simply return the object on which they were invoked.

5.5.3. next

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The next statement causes a loop or iterator to end the current iteration and begin the next. C and Java

programmers know this control structure by the name continue. Here is next in a loop:

while(line = gets.chop) # A loop starts here

 next if line[0,1] == "#" # If this line is a comment, go on to the next

 puts eval(line)

 # Control goes here when the next statement is executed

end

When next is used within a block, it causes the block to exit immediately, returning control to the iterator

method, which may then begin a new iteration by invoking the block again:

f.each do |line| # Iterate over the lines in file f

 next if line[0,1] == "#" # If this line is a comment, go to the next

 puts eval(line)

 # Control goes here when the next statement is executed

end

Using next in a block is lexically the same as using it in a while, until, or for/in loop. When you consider the

calling sequence, however, the block case is more complicated, as Figure 5-4 illustrates.

Figure 5-4. The next statement in a block

next, break, and return

It is instructive to contrast Figure 5-4 with Figures Figure 5-2 and Figure 5-3. The next statement

causes a block to return to the iterator method that invoked it. The break statement causes the

block to return to its iterator and the iterator to return to the enclosing method. And the return

statement causes the block to return to the iterator, the iterator to return to the enclosing
method, and the enclosing method to return to its caller.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

next may only be used within a loop or a block; it raises a LocalJumpError when used in any other context.

5.5.3.1. next and block value

Like the return and break keywords, next may be used alone, or it may be followed by an expression or a

comma-separated list of expressions. When next is used in a loop, any values following next are ignored. In a

block, however, the expression or expressions become the "return value" of the yield statement that invoked

the block. If next is not followed by an expression, then the value of the yield is nil. If next is followed by

one expression, then the value of that expression becomes the value of the yield. And if next is followed by a

list of expressions, then the value of the yield is an array of the value of those expressions.

In our earlier discussion of the return statement, we were careful to explain that blocks are not functions, and

that the return statement does not make a block return to the iterator that invoked it. As you can see, this is

exactly what the next statement does. Here is code where you might use it in this way:

squareroots = data.collect do |x|

 next 0 if x < 0 # Return 0 for negative values

 Math.sqrt(x)

end

Normally, the value of a yield expression is the value of the last expression in the block. As with the return

statement, it is not often necessary to explicitly use next to specify a value. This code could also have been

written like this, for example:

squareroots = data.collect do |x|

 if (x < 0) then 0 else Math.sqrt(x) end

end

5.5.4. redo

The redo statement restarts the current iteration of a loop or iterator. This is not the same thing as next. next

transfers control to the end of a loop or block so that the next iteration can begin, whereas redo transfers

control back to the top of the loop or block so that the iteration can start over. If you come to Ruby from C-like
languages, then redo is probably a new control structure for you.

redo transfers control to the first expression in the body of the loop or in a block. It does not retest the loop

condition, and it does not fetch the next element from an iterator. The following while loop would normally

terminate after three iterations, but a redo statement makes it iterate four times:

i = 0

while(i < 3) # Prints "0123" instead of "012"

 # Control returns here when redo is executed

 print i

 i += 1

 redo if i == 3

end

redo is not a commonly used statement, and many examples, like this one, are contrived. One use, however, is

to recover from input errors when prompting a user for input. The following code uses redo within a block for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

this purpose:

Code View:
puts "Please enter the first word you think of"

words = %w(apple banana cherry) # shorthand for ["apple", "banana", "cherry"]

response = words.collect do |word|

 # Control returns here when redo is executed

 print word + "> " # Prompt the user

 response = gets.chop # Get a response

 if response.size == 0 # If user entered nothing

 word.upcase! # Emphasize the prompt with uppercase

 redo # And skip to the top of the block

 end

 response # Return the response

end

5.5.5. retry

The retry statement is normally used in a rescue clause to reexecute a block of code that raised an exception.

This is described in Section 5.6.3.5. In Ruby 1.8, however, retry has another use: it restarts an iterator-based

iteration (or any method invocation) from the beginning. This use of the retry statement is extremely rare, and

it has been removed from the language in Ruby 1.9. It should, therefore, be considered a deprecated language
feature and should not be used in new code.

In a block, the retry statement does not just redo the current invocation of the block; it causes the block and

the iterator method to exit and then reevaluates the iterator expression to restart the iteration. Consider the
following code:

n = 10

n.times do |x| # Iterate n times from 0 to n–1

 print x # Print iteration number

 if x == 9 # If we've reached 9

 n -= 1 # Decrement n (we won't reach 9 the next time!)

 retry # Restart the iteration

 end

end

The code uses retry to restart the iterator, but it is careful to avoid an infinite loop. On the first invocation, it

prints the numbers 0123456789 and then restarts. On the second invocation, it prints the numbers 012345678

and does not restart.

The magic of the retry statement is that it does not retry the iterator in exactly the same way each time. It

completely reevaluates the iterator expression, which means that the arguments to the iterator (and even the
object on which it is invoked) may be different each time the iterator is retried. If you are not used to highly
dynamic languages like Ruby, this reevaluation may seem counterintuitive to you.

The retry statement is not restricted to use in blocks; it always just reevaluates the nearest containing method

invocation. This means that it can be used (prior to Ruby 1.9) to write iterators like the following that works like
a while loop:

Code View:
This method behaves like a while loop: if x is non-nil and non-false,

invoke the block and then retry to restart the loop and test the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

condition again. This method is slightly different than a true while loop:

you can use C-style curly braces to delimit the loop body. And

variables used only within the body of the loop remain local to the block.

def repeat_while(x)

 if x # If the condition was not nil or false

 yield # Run the body of the loop

 retry # Retry and re-evaluate loop condition

 end

end

5.5.6. throw and catch

throw and catch are Kernel methods that define a control structure that can be thought of as a multilevel

break. throw doesn't just break out of the current loop or block but can actually transfer out any number of

levels, causing the block defined with a catch to exit. The catch need not even be in the same method as the

throw. It can be in the calling method, or somewhere even further up the call stack.

Languages like Java and JavaScript allow loops to be named or labeled with an arbitrary prefix. When this is
done, a control structure known as a "labeled break" causes the named loop to exit. Ruby's catch method

defines a labeled block of code, and Ruby's throw method causes that block to exit. But throw and catch are

much more general than a labeled break. For one, it can be used with any kind of statement and is not

restricted to loops. More profoundly, a throw can propagate up the call stack to cause a block in an invoking

method to exit.

If you are familiar with languages like Java and JavaScript, then you probably recognize throw and catch as the

keywords those languages use for raising and handling exceptions. Ruby does exceptions differently, using
raise and rescue, which we'll learn about later in this chapter. But the parallel to exceptions is intentional.

Calling throw is very much like raising an exception. And the way a throw propagates out through the lexical

scope and then up the call stack is very much the same as the way an exception propagates out and up. (We'll
see much more about exception propagation later in the chapter.) Despite the similarity to exceptions, it is best
to consider throw and catch as a general-purpose (if perhaps infrequently used) control structure rather than

an exception mechanism. If you want to signal an error or exceptional condition, use raise instead of throw.

The following code demonstrates how throw and catch can be used to "break out" of nested loops:

Code View:
for matrix in data do # Process a deeply nested data structure.

 catch :missing_data do # Label this statement so we can break out.

 for row in matrix do

 for value in row do

 throw :missing_data unless value # Break out of two loops at once.

 # Otherwise, do some actual data processing here.

 end

 end

 end

 # We end up here after the nested loops finish processing each matrix.

 # We also get here if :missing_data is thrown.

end

Note that the catch method takes a symbol argument and a block. It executes the block and returns when the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

block exits or when the specified symbol is thrown. throw also expects a symbol as its argument and causes the

corresponding catch invocation to return. If no catch call matches the symbol passed to throw, then a

NameError exception is raised. Both catch and throw can be invoked with string arguments instead of symbols.

These are converted internally to symbols.

One of the features of throw and catch is that they work even when the throw and catch are in different

methods. We could refactor this code to put the innermost loop into a separate method, and the control flow
would still work correctly.

If throw is never called, a catch invocation returns the value of the last expression in its block. If throw is

called, then the return value of the corresponding catch is, by default, nil. You can, however, specify an

arbitrary return value for catch by passing a second argument to throw. The return value of catch can help you

distinguish normal completion of the block from abnormal completion with throw, and this allows you to write

code that does any special processing necessary to respond to the throw.

throw and catch are not commonly used in practice. If you find yourself using catch and throw within the same

method, consider refactoring the catch into a separate method definition and replacing the throw with a

return.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.6. Exceptions and Exception Handling

An exception is an object that represents some kind of exceptional condition; it indicates that something has
gone wrong. This could be a programming error-attempting to divide by zero, attempting to invoke a method
on an object that does not define the method, or passing an invalid argument to a method. Or it could be the
result from some kind of external condition-making a network request when the network is down, or trying to
create an object when the system is out of memory.

When one of these errors or conditions occurs, an exception is raised (or thrown). By default, Ruby programs
terminate when an exception occurs. But it is possible to declare exception handlers. An exception handler is a
block of code that is executed if an exception occurs during the execution of some other block of code. In this
sense, exceptions are a kind of control statement. Raising an exception transfers the flow-of-control to
exception handling code. This is like using the break statement to exit from a loop. As we'll see, though,

exceptions are quite different from the break statement; they may transfer control out of many enclosing blocks

and even up the call stack in order to reach the exception handler.

Ruby uses the Kernel method raise to raise exceptions, and uses a rescue clause to handle exceptions.

Exceptions raised by raise are instances of the Exception class or one of its many subclasses. The throw and

catch methods described earlier in this chapter are not intended to signal and handle exceptions, but a symbol

thrown by throw propagates in the same way that an exception raised by raise does. Exception objects,

exception propagation, the raise method, and the rescue clause are described in detail in the subsections that

follow.

5.6.1. Exception Classes and Exception Objects

Exception objects are instances of the Exception class or one of its subclasses. Numerous subclasses exist.

These subclasses do not typically define new methods or new behavior, but they allow exceptions to be
categorized by type. The class hierarchy is illustrated in Figure 5-5.

Figure 5-5. The Ruby Exception Class Hierarchy
Code View:
Object

 +--Exception

 +--NoMemoryError

 +--ScriptError

 | +--LoadError

 | +--NotImplementedError

 | +--SyntaxError

 +--SecurityError # Was a StandardError in 1.8

 +--SignalException

 | +--Interrupt

 +--SystemExit

 +--SystemStackError # Was a StandardError in 1.8

 +--StandardError

 +--ArgumentError

 +--FiberError # New in 1.9

 +--IOError

 | +--EOFError

 +--IndexError

 | +--KeyError # New in 1.9

 | +--StopIteration # New in 1.9

 +--LocalJumpError

 +--NameError

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 | +--NoMethodError

 +--RangeError

 | +--FloatDomainError

 +--RegexpError

 +--RuntimeError

 +--SystemCallError

 +--ThreadError

 +--TypeError

 +--ZeroDivisionError

You don't need to be familiar with each of these exception subclasses. Their names tell you what they are used
for. It is important to note that most of these subclasses extend a class known as StandardError. These are

the "normal" exceptions that typical Ruby programs try to handle. The other exceptions represent lower-level,
more serious, or less recoverable conditions, and normal Ruby programs do not typically attempt to handle
them.

If you use ri to find documentation for these exception classes, you'll find that most of them are undocumented.
This is in part because most of them add no new methods to those defined by the base Exception class. The

important thing to know about a given exception class is when it can be raised. This is typically documented by
the methods that raise the exception rather than by the exception class itself.

5.6.1.1. The methods of exception objects

The Exception class defines two methods that return details about the exception. The message method returns

a string that may provide human-readable details about what went wrong. If a Ruby program exits with an
unhandled exception, this message will typically be displayed to the end user, but the primary purpose of this
message is to aid a programmer in diagnosing the problem.

The other important method of exception objects is backtrace. This method returns an array of strings that

represents the call stack at the point that the exception was raised. Each element of the array is a string of the
form:

filename : linenumber in methodname

The first element of the array specifies the position at which the exception was raised; the second element
specifies the position at which the method that raised the exception was called; the third element specifies the
position at which that method was called; and so on. (The Kernel method caller returns a stack trace in this

same format; you can try it out in irb.) Exception objects are typically created by the raise method. When this

is done, the raise method sets the stack trace of the exception appropriately. If you create your own exception

object, you can set the stack trace to whatever you want with the set_backtrace method.

5.6.1.2. Creating exception objects

Exception objects are typically created by the raise method, as we'll see below. However, you can create your

own objects with the normal new method, or with another class method named exception. Both accept a single

optional string argument. If specified, the string becomes the value of the message method.

5.6.1.3. Defining new exception classes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you are defining a module of Ruby code, it is often appropriate to define your own subclass of StandardError

for exceptions that are specific to your module. This may be a trivial, one-line subclass:

class MyError < StandardError; end

5.6.2. Raising Exceptions with raise

The Kernel method raise raises an exception. fail is a synonym that is sometimes used when the expectation

is that the exception will cause the program to exit. There are several ways to invoke raise:

If raise is called with no arguments, it creates a new RuntimeError object (with no message) and raises

it. Or, if raise is used with no arguments inside a rescue clause, it simply re-raises the exception that

was being handled.

If raise is called with a single Exception object as its argument, it raises that exception. Despite its

simplicity, this is not actually a common way to use raise.

If raise is called with a single string argument, it creates a new RuntimeError exception object, with the

specified string as its message, and raises that exception. This is a very common way to use raise.

If the first argument to raise is an object that has an exception method, then raise invokes that

method and raises the Exception object that it returns. The Exception class defines an exception

method, so you can specify the class object for any kind of exception as the first argument to raise.

raise accepts a string as its optional second argument. If a string is specified, it is passed to the

exception method of the first argument. This string is intended for use as the exception message.

raise also accepts an optional third argument. An array of strings may be specified here, and they will be

used as the backtrace for the exception object. If this third argument is not specified, raise sets the

backtrace of the exception itself (using the Kernel method caller).

The following code defines a simple method that raises an exception if invoked with a parameter whose value is
invalid:

Code View:
def factorial(n) # Define a factorial method with argument n

 raise "bad argument" if n < 1 # Raise an exception for bad n

 return 1 if n == 1 # factorial(1) is 1

 n * factorial(n-1) # Compute other factorials recursively

end

This method invokes raise with a single string argument. These are some equivalent ways to raise the same

exception:

raise RuntimeError, "bad argument" if n < 1

raise RuntimeError.new("bad argument") if n < 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

raise RuntimeError.exception("bad argument") if n < 1

In this example, an exception of class ArgumentError is probably more appropriate than RuntimeError:

raise ArgumentError if n < 1

And a more detailed error message would be helpful:

raise ArgumentError, "Expected argument >= 1. Got #{n}" if n < 1

The intent of the exception we're raising here is to point out a problem with the invocation of the factorial

method, not with the code inside the method. The exception raised by the code here will have a backtrace
whose first element identifies where raise was called. The second element of the array will actually identify the

code that called factorial with the bad argument. If we want to point directly to the problem code, we can

provide a custom stack trace as the third argument to raise with the Kernel method caller:

if n < 1

 raise ArgumentError, "Expected argument >= 1. Got #{n}", caller

end

Note that the factorial method checks whether its argument is in the correct range, but it does not check

whether it is of the right type. We might add more careful error-checking by adding the following as the first line
of the method:

raise TypeError, "Integer argument expected" if not n.is_a? Integer

On the other hand, notice what happens if we pass a string argument to the factorial method as it is written

above. Ruby compares the argument n to the integer 1 with the < operator. If the argument is a string, the

comparison makes no sense, and it fails by raising a TypeError. If the argument is an instance of some class

that does not define the < operator, then we get a NoMethodError instead.

The point here is that exceptions can occur even if we do not call raise in our own code. It is important,

therefore, to know how to handle exceptions, even if we never raise them ourselves. Handling exceptions is
covered in the next section.

5.6.3. Handling Exceptions with rescue

raise is a Kernel method. A rescue clause, by contrast, is a fundamental part of the Ruby language. rescue is

not a statement in its own right, but rather a clause that can be attached to other Ruby statements. Most
commonly, a rescue clause is attached to a begin statement. The begin statement exists simply to delimit the

block of code within which exceptions are to be handled. A begin statement with a rescue clause looks like this:

begin

 # Any number of Ruby statements go here.

 # Usually, they are executed without exceptions and

 # execution continues after the end statement.

rescue

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 # This is the rescue clause; exception-handling code goes here.

 # If an exception is raised by the code above, or propagates up

 # from one of the methods called above, then execution jumps here.

end

5.6.3.1. Naming the exception object

In a rescue clause, the global variable $! refers to the Exception object that is being handled. The exclamation

mark is a mnemonic: an exception is kind of like an exclamation. If your program includes the line:

require 'English'

then you can use the global variable $ERROR_INFO instead.

A better alternative to $! or $ERROR_INFO is to specify a variable name for the exception object in the rescue

clause itself:

rescue => ex

The statements of this rescue clause can now use the variable ex to refer to the Exception object that

describes the exception. For example:

begin # Handle exceptions in this block

 x = factorial(-1) # Note illegal argument

rescue => ex # Store exception in variable ex

 puts "#{ex.class}: #{ex.message}" # Handle exception by printing message

end # End the begin/rescue block

Note that a rescue clause does not define a new variable scope, and a variable named in the rescue clause is

visible even after the end of the rescue clause. If you use a variable in a rescue clause, then an exception

object may be visible after the rescue is complete, even when $! is no longer set.

5.6.3.2. Handling exceptions by type

The rescue clauses shown here handle any exception that is a StandardError (or subclass) and ignore any

Exception object that is not a StandardError. If you want to handle nonstandard exceptions outside the

StandardError hierarchy, or if you want to handle only specific types of exceptions, you must include one or

more exception classes in the rescue clause. Here's how you would write a rescue clause that would handle any

kind of exception:

rescue Exception

Here's how you would write a rescue clause to handle an ArgumentError and assign the exception object to the

variable e:

rescue ArgumentError => e

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recall that the factorial method we defined earlier can raise ArgumentError or TypeError. Here's how we

would write a rescue clause to handle exceptions of either of these types and assign the exception object to the

variable error:

rescue ArgumentError, TypeError => error

Here, finally, we see the syntax of the rescue clause at its most general. The rescue keyword is followed by

zero or more comma-separated expressions, each of which must evaluate to a class object that represents the
Expression class or a subclass. These expressions are optionally followed by => and a variable name.

Now suppose we want to handle both ArgumentError and TypeError, but we want to handle these two

exceptions in different ways. We might use a case statement to run different code based on the class of the

exception object. It is more elegant, however, to simply use multiple rescue clauses. A begin statement can

have zero or more of them:

begin

 x = factorial(1)

rescue ArgumentError => ex

 puts "Try again with a value >= 1"

rescue TypeError => ex

 puts "Try again with an integer"

end

Note that the Ruby interpreter attempts to match exceptions to rescue clauses in the order they are written.

Therefore, you should list your most specific exception subclasses first and follow these with more general
types. If you want to handle EOFError differently than IOError, for example, be sure to put the rescue clause

for EOFError first or the IOError code will handle it. If you want a "catch-all" rescue clause that handles any

exception not handled by previous clauses, use rescue Exception as the last rescue clause.

5.6.3.3. Propagation of exceptions

Now that we've introduced rescue clauses, we can explain in more detail the propagation of exceptions. When

an exception is raised, control is immediately transferred outward and upward until a suitable rescue clause is

found to handle the exception. When the raise method executes, the Ruby interpreter looks to see whether the

containing block has a rescue clause associated with it. If not (or if the rescue clause is not declared to handle

that kind of exception), then the interpreter looks at the containing block of the containing block. If there is no
suitable rescue clause anywhere in the method that called raise, then the method itself exits.

When a method exits because of an exception, it is not the same thing as a normal return. The method does not
have a return value, and the exception object continues propagating from the site of the method invocation. The
exception propagates outward through the enclosing blocks, looking for a rescue clause declared to handle it.

And if no such clause is found, then this method returns to its caller. This continues up the call stack. If no
exception handler is ever located, then the Ruby interpreter prints the exception message and backtrace and
exits. For a concrete example, consider the following code:

Code View:
def explode # This method raises a RuntimeError 10% of the time

 raise "bam!" if rand(10) == 0

end

def risky

 begin # This block

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 10.times do # contains another block

 explode # that might raise an exception.

 end # No rescue clause here, so propagate out.

 rescue TypeError # This rescue clause cannot handle a RuntimeError..

 puts $! # so skip it and propagate out.

 end

 "hello" # This is the normal return value, if no exception occurs.

end # No rescue clause here, so propagate up to caller.

def defuse

 begin # The following code may fail with an exception.

 puts risky # Try to invoke print the return value.

 rescue RuntimeError => e # If we get an exception

 puts e.message # print the error message instead.

 end

end

defuse

An exception is raised in the method explode. That method has no rescue clause, so the exception propagates

out to its caller, a method named risky. risky has a rescue clause, but it is only declared to handle TypeError

exceptions, not RuntimeError exceptions. The exception propagates out through the lexical blocks of risky and

then propagates up to the caller, a method named defuse. defuse has a rescue clause for RuntimeError

exceptions, so control is transferred to this rescue clause and the exception stops propagating.

Note that this code includes the use of an iterator (the Integer.times method) with an associated block. For

simplicity, we said that the exception simply propagated outward through this lexical block. The truth is that
blocks behave more like method invocations for the purposes of exception propagation. The exception
propagates from the block up to the iterator that invoked the block. Predefined looping iterators like
Integer.times do no exception handling of their own, so the exception propagates up the call stack from the

times iterator to the risky method that invoked it.

5.6.3.4. Exceptions during exception handling

If an exception occurs during the execution of a rescue clause, the exception that was originally being handled

is discarded, and the new exception propagates from the point at which it was raised. Note that this new
exception cannot be handled by rescue clauses that follow the one in which it occurred.

5.6.3.5. retry in a rescue clause

When the retry statement is used within a rescue clause, it reruns the block of code to which the rescue is

attached. When an exception is caused by a transient failure, such as an overloaded server, it might make sense
to handle the exception by simply trying again. Many other exceptions, however, reflect programming errors
(TypeError, ZeroDivisionError) or nontransient failures (EOFError or NoMemoryError). retry is not a suitable

handling technique for these exceptions.

Here is a simple example that uses retry in an attempt to wait for a network failure to be resolved. It tries to

read the contents of a URL, and retries upon failure. It never tries more than four times in all, and it uses
"exponential backoff" to increase the wait time between attempts:

require 'open-uri'

tries = 0 # How many times have we tried to read the URL

http://lib.ommolketab.ir
http://lib.ommolketab.ir

begin # This is where a retry begins

 tries += 1 # Try to print out the contents of a URL

 open('http://www.example.com/') {|f| puts f.readlines }

rescue OpenURI::HTTPError => e # If we get an HTTP error

 puts e.message # Print the error message

 if (tries < 4) # If we haven't tried 4 times yet...

 sleep(2**tries) # Wait for 2, 4, or 8 seconds

 retry # And then try again!

 end

end

5.6.4. The else Clause

A begin statement may include an else clause after its rescue clauses. You might guess that the else clause is

a catch-all rescue: that it handles any exception that does not match a previous rescue clause. This is not what

else is for. The else clause is an alternative to the rescue clauses; it is used if none of the rescue clauses are

needed. That is, the code in an else clause is executed if the code in the body of the begin statement runs to

completion without exceptions.

Putting code in an else clause is a lot like simply tacking it on to the end of the begin clause. The only

difference is that when you use an else clause, any exceptions raised by that clause are not handled by the

rescue statements.

The use of an else clause is not particularly common in Ruby, but they can be stylistically useful to emphasize

the difference between normal completion of a block of code and exceptional completion of a block of code.

Note that it does not make sense to use an else clause without one or more rescue clauses. The Ruby

interpreter allows it but issues a warning. No rescue clause may appear after an else clause.

Finally, note that the code in an else clause is only executed if the code in the begin clause runs to completion

and "falls off" the end. If an exception occurs, then the else clause will obviously not be executed. But break,

return, next, and similar statements in the begin clause may also prevent the execution of the else clause.

5.6.5. The ensure Clause

A begin statement may have one final clause. The optional ensure clause, if it appears, must come after all

rescue and else clauses. It may also be used by itself without any rescue or else clauses.

The ensure clause contains code that always runs, no matter what happens with the code following begin:

If that code runs to completion, then control jumps to the else clause-if there is one-and then to the

ensure clause.

If the code executes a return statement, then the execution skips the else clause and jumps directly to

the ensure clause before returning.

If the code following begin raises an exception, then control jumps to the appropriate rescue clause, and

then to the ensure clause.

If there is no rescue clause, or if no rescue clause can handle the exception, then control jumps directly

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to the ensure clause. The code in the ensure clause is executed before the exception propagates out to

containing blocks or up the call stack.

The purpose of the ensure clause is to ensure that housekeeping details such as closing files, disconnecting

database connections, and committing or aborting transactions get taken care of. It is a powerful control
structure, and you should use it whenever you allocate a resource (such as a file handle or database connection)
to ensure that proper deallocation or cleanup occurs.

Note that ensure clauses complicate the propagation of exceptions. In our earlier explanation, we omitted any

discussion of ensure clauses. When an exception propagates, it does not simply jump magically from the point

where it is raised to the point where it is handled. There really is a propagation process. The Ruby interpreter
searches out through containing blocks and up through the call stack. At each begin statement, it looks for a

rescue clause that can handle the exception. And it looks for associated ensure clauses, and executes all of

them that it passes through.

An ensure clause can cancel the propagation of an exception by initiating some other transfer of control. If an

ensure clause raises a new exception, then that new exception propagates in place of the original. If an ensure

clause includes a return statement, then exception propagation stops, and the containing method returns.

Control statements such as break and next have similar effects: exception propagation is abandoned, and the

specified control transfer takes place.

An ensure clause also complicates the idea of a method return value. Although ensure clauses are usually used

to ensure that code will run even if an exception occurs, they also work to ensure that code will be run before a
method returns. If the body of a begin statement includes a return statement, the code in the ensure clause

will be run before the method can actually return to its caller. Furthermore, if an ensure clause contains a

return statement of its own, it will change the return value of the method. The following code, for example,

returns the value 2:

begin

 return 1 # Skip to the ensure clause before returning to caller

ensure

 return 2 # Replace the return value with this new value

end

Note that an ensure clause does not alter the return value of a method unless it explicitly uses a return

statement. The following method, for example, returns 1, not 2:

def test

 begin return 1 ensure 2 end

end

If a begin statement does not propagate an exception, then the value of the statement is the value of the last

expression evaluated in the begin, rescue, or else clauses. The code in the ensure clause is guaranteed to run,

but it does not affect the value of the begin statement.

5.6.6. rescue with Method, Class, and Module Definitions

Throughout this discussion of exception handling, we have described the rescue, else, and ensure keywords as

clauses of a begin statement. In fact, they can also be used as clauses of the def statement (defines a

method), the class statement (defines a class), and the module statement (defines a module). Method

definitions are covered in Chapter 6; class and module definitions are covered in Chapter 7.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following code is a sketch of a method definition with rescue, else, and ensure clauses:

def method_name(x)

 # The body of the method goes here.

 # Usually, the method body runs to completion without exceptions

 # and returns to its caller normally.

rescue

 # Exception-handling code goes here.

 # If an exception is raised within the body of the method, or if

 # one of the methods it calls raises an exception, then control

 # jumps to this block.

else

 # If no exceptions occur in the body of the method

 # then the code in this clause is executed.

ensure

 # The code in this clause is executed no matter what happens in the

 # body of the method. It is run if the method runs to completion, if

 # it throws an exception, or if it executes a return statement.

end

5.6.7. rescue As a Statement Modifier

In addition to its use as a clause, rescue can also be used as a statement modifier. Any statement can be

followed by the keyword rescue and another statement. If the first statement raises an exception, the second

statement is executed instead. For example:

Compute factorial of x, or use 0 if the method raises an exception

y = factorial(x) rescue 0

This is equivalent to:

y = begin

 factorial(x)

 rescue

 0

 end

The advantage of the statement modifier syntax is that the begin and end keywords are not required. When

used in this way, rescue must be used alone, with no exception class names and no variable name. A rescue

modifier handles any StandardError exception but does not handle exceptions of other types. Unlike if and

while modifiers, the rescue modifier has higher precedence (see Table 4-2 in the previous chapter) than

assignment operators. This means that it applies only to the righthand side of an assignment (like the example
above) rather than to the assignment expression as a whole.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.7. BEGIN and END

BEGIN and END are reserved words in Ruby that declare code to be executed at the very beginning and very end

of a Ruby program. (Note that BEGIN and END in capital letters are completely different from begin and end in

lowercase.) If there is more than one BEGIN statement in a program, they are executed in the order in which

the interpreter encounters them. If there is more than one END statement, they are executed in the reverse of

the order in which they are encountered-that is, the first one is executed last. These statements are not
commonly used in Ruby. They are inherited from Perl, which in turn inherited them from the awk text-
processing language.

BEGIN and END must be followed by an open curly brace, any amount of Ruby code, and a close curly brace. The

curly braces are required; do and end are not allowed here. For example:

BEGIN {

 # Global initialization code goes here

}

END {

 # Global shutdown code goes here

}

The BEGIN and END statements are different from each other in subtle ways. BEGIN statements are executed

before anything else, including any surrounding code. This means that they define a local variable scope that is
completely separate from the surrounding code. It only really makes sense to put BEGIN statements in top-level

code; a BEGIN within a conditional or loop will be executed without regard for the conditions that surround it.

Consider this code:

if (false)

 BEGIN {

 puts "if"; # This will be printed

 a = 4; # This variable only defined here

 }

else

 BEGIN { puts "else" } # Also printed

end

10.times {BEGIN { puts "loop" }} # Only printed once

The code associated with all three BEGIN statements will be executed once, and only once, regardless of the

context in which it appears. Variables defined within BEGIN blocks will not be visible outside the block, and no

variables outside the block will have been defined yet.

END statements are different. They are executed during normal program execution, so they share local variables

with the surrounding code. If an END statement is within a conditional that is not executed, then the code

associated with it is never registered for execution at program termination. If an END statement is within a loop

and is executed more than once, then the code associated with it is still only registered once:

a = 4;

if (true)

 END { # This END is executed

 puts "if"; # This code is registered

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 puts a # The variable is visible; prints "4"

 }

else

 END { puts "else" } # This is not executed

end

10.times {END { puts "loop" }} # Only executed once

The Kernel method at_exit provides an alternative to the END statement; it registers a block of code to be

executed just before the interpreter exits. As with END blocks, the code associated with the first at_exit call will

be executed last. If the at_exit method is called multiple times within a loop, then the block associated with it

will be executed multiple times when the interpreter exits.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.8. Threads, Fibers, and Continuations

This section introduces threads, which are Ruby's control structure for concurrent execution, and also two more
esoteric control structures, called fibers and continuations.

5.8.1. Threads for Concurrency

A thread of execution is a sequence of Ruby statements that run (or appear to run) in parallel with the main
sequence of statements that the interpreter is running. Threads are represented by Thread objects, but they

can also be thought of as control structures for concurrency. Concurrent programming in Ruby is covered in
detail in Section 9.9. This section is just a simple overview that shows how to create threads.

Ruby's use of blocks makes it very easy to create new threads. Simply call Thread.new and associate a block

with it. A new thread of execution will be created and will start running the code in the block. Meanwhile, the
original thread will return from the Thread.new call and will continue with the following statement. The newly

created thread will exit when the block exits. The return value of the block becomes available through the value

method of the Thread object. (If you call this method before the thread has completed, the caller will block until

the thread returns a value.)

The following code shows how you might use threads to read the contents of multiple files in parallel:

This method expects an array of filenames.

It returns an array of strings holding the content of the named files.

The method creates one thread for each named file.

def readfiles(filenames)

 # Create an array of threads from the array of filenames.

 # Each thread starts reading a file.

 threads = filenames.map do |f|

 Thread.new { File.read(f) }

 end

 # Now create an array of file contents by calling the value

 # method of each thread. This method blocks, if necessary,

 # until the thread exits with a value.

 threads.map {|t| t.value }

end

See Section 9.9 for much more about threads and concurrency in Ruby.

5.8.2. Fibers for Coroutines

Ruby 1.9 introduces a control structure known as a fiber and represented by an object of class Fiber. The name

"fiber" has been used elsewhere for a kind of lightweight thread, but Ruby's fibers are better described as
coroutines or, more accurately, semicoroutines. The most common use for coroutines is to implement
generators: objects that can compute a partial result, yield the result back to the caller, and save the state of
the computation so that the caller can resume that computation to obtain the next result. In Ruby, the Fiber

class is used to enable the automatic conversion of internal iterators, such as the each method, into

enumerators or external iterators.

Note that fibers are an advanced and relatively obscure control structure; the majority of Ruby programmers
will never need to use the Fiber class directly. If you have never programed with coroutines or generators

before, you may find them difficult to understand at first. If so, study the examples carefully and try out some

http://lib.ommolketab.ir
http://lib.ommolketab.ir

examples of your own.

A fiber has a body of code like a thread does. Create a fiber with Fiber.new, and associate a block with it to

specify the code that the fiber is to run. Unlike a thread, the body of a fiber does not start executing right away.
To run a fiber, call the resume method of the Fiber object that represents it. The first time resume is called on a

fiber, control is transferred to the beginning of the fiber body. That fiber then runs until it reaches the end of the
body, or until it executes the class method Fiber.yield. The Fiber.yield method transfers control back to the

caller and makes the call to resume return. It also saves the state of the fiber, so that the next call to resume

makes the fiber pick up where it left off. Here is a simple example:

f = Fiber.new { # Line 1: Create a new fiber

 puts "Fiber says Hello" # Line 2:

 Fiber.yield # Line 3: goto line 9

 puts "Fiber says Goodbye" # Line 4:

} # Line 5: goto line 11

 # Line 6:

puts "Caller says Hello" # Line 7:

f.resume # Line 8: goto line 2

puts "Caller says Goodbye" # Line 9:

f.resume # Line 10: goto line 4

 # Line 11:

The body of the fiber does not run when it is first created, so this code creates a fiber but does not produce any
output until it reaches line 7. The resume and Fiber.yield calls then transfer control back and forth so that the

messages from the fiber and the caller are interleaved. The code produces the following output:

Caller says Hello

Fiber says Hello

Caller says Goodbye

Fiber says Goodbye

It is worth noting here that the "yielding" performed by Fiber.yield is completely different than the yielding

performed by the yield statement. Fiber.yield yields control from the current fiber back to the caller that

invoked it. The yield statement, on the other hand, yields control from an iterator method to the block

associated with the method.

5.8.2.1. Fiber arguments and return values

Fibers and their callers can exchange data through the arguments and return values of resume and yield. The

arguments to the first call to resume are passed to the block associated with the fiber: they become the values

of the block parameters. On subsequent calls, the arguments to resume become the return value of

Fiber.yield. Conversely, any arguments to Fiber.yield become the return value of resume. And when the

block exits, the value of the last expression evaluated also becomes the return value of resume. The following

code demonstrates this:

Code View:
f = Fiber.new do |message|

 puts "Caller said: #{message}"

 message2 = Fiber.yield("Hello") # "Hello" returned by first resume

 puts "Caller said: #{message2}"

 "Fine" # "Fine" returned by second resume

end

response = f.resume("Hello") # "Hello" passed to block

http://lib.ommolketab.ir
http://lib.ommolketab.ir

puts "Fiber said: #{response}"

response2 = f.resume("How are you?") # "How are you?" returned by Fiber.yield

puts "Fiber said: #{response2}"

The caller passes two messages to the fiber, and the fiber returns two responses to the caller. It prints:

Caller said: Hello

Fiber said: Hello

Caller said: How are you?

Fiber said: Fine

In the caller's code, the messages are always arguments to resume, and the responses are always the return

value of that method. In the body of the fiber, all messages but the first are received as the return value of
Fiber.yield, and all responses but the last are passed as arguments to Fiber.yield. The first message is

received through block parameters, and the last response is the return value of the block itself.

5.8.2.2. Implementing generators with fibers

The fiber examples shown so far have not been terribly realistic. Here we demonstrate some more typical uses.
First, we write a Fibonacci number generator-a Fiber object that returns successive members of the Fibonacci

sequence on each call to resume:

Return a Fiber to compute Fibonacci numbers

def fibonacci_generator(x0,y0) # Base the sequence on x0,y0

 Fiber.new do

 x,y = x0, y0 # Initialize x and y

 loop do # This fiber runs forever

 Fiber.yield y # Yield the next number in the sequence

 x,y = y,x+y # Update x and y

 end

 end

end

g = fibonacci_generator(0,1) # Create a generator

10.times { print g.resume, " " } # And use it

The code above prints the first 10 Fibonacci numbers:

1 1 2 3 5 8 13 21 34 55

Because Fiber is a confusing control structure, we might prefer to hide its API when writing generators. Here is

another version of a Fibonacci number generator. It defines its own class and implements the same next and

rewind API that enumerators do:

class FibonacciGenerator

 def initialize

 @x,@y = 0,1

 @fiber = Fiber.new do

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 loop do

 @x,@y = @y, @x+@y

 Fiber.yield @x

 end

 end

 end

 def next # Return the next Fibonacci number

 @fiber.resume

 end

 def rewind # Restart the sequence

 @x,@y = 0,1

 end

end

g = FibonacciGenerator.new # Create a generator

10.times { print g.next, " " } # Print first 10 numbers

g.rewind; puts # Start over, on a new line

10.times { print g.next, " " } # Print the first 10 again

Note that we can make this FibonacciGenerator class Enumerable by including the Enumerable module and

adding the following each method (which we first used in Section 5.3.5):

def each

 loop { yield self.next }

end

Conversely, suppose we have an Enumerable object and want to make an enumerator-style generator out of it.

We can use this class:

Code View:
class Generator

 def initialize(enumerable)

 @enumerable = enumerable # Remember the enumerable object

 create_fiber # Create a fiber to enumerate it

 end

 def next # Return the next element

 @fiber.resume # by resuming the fiber

 end

 def rewind # Start the enumeration over

 create_fiber # by creating a new fiber

 end

 private

 def create_fiber # Create the fiber that does the enumeration

 @fiber = Fiber.new do # Create a new fiber

 @enumerable.each do |x| # Use the each method

 Fiber.yield(x) # But pause during enumeration to return values

 end

 raise StopIteration # Raise this when we're out of values

 end

 end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

end

g = Generator.new(1..10) # Create a generator from an Enumerable like this

loop { print g.next } # And use it like an enumerator like this

g.rewind # Start over like this

g = (1..10).to_enum # The to_enum method does the same thing

loop { print g.next }

Although it is useful to study the implementation of this Generator class, the class itself doesn't provide any

functionality over that provided by the to_enum method.

5.8.2.3. Advanced fiber features

The fiber module in the standard library enables additional, more powerful features of the fibers. To use these

features, you must:

require 'fiber'

However, you should avoid using these additional features wherever possible, because:

They are not supported by all implementations. JRuby, for example, cannot support them on current Java
VMs.

They are so powerful that misusing them can crash the Ruby VM.

The core features of the Fiber class implement semicoroutines. These are not true coroutines because there is

a fundamental asymmetry between the caller and the fiber: the caller uses resume and the fiber uses yield. If

you require the fiber library, however, the Fiber class gets a transfer method that allows any fiber to

transfer control to any other fiber. Here is an example in which two fibers use the transfer method to pass

control (and values) back and forth:

require 'fiber'

f = g = nil

f = Fiber.new {|x| # 1:

 puts "f1: #{x}" # 2: print "f1: 1"

 x = g.transfer(x+1) # 3: pass 2 to line 8

 puts "f2: #{x}" # 4: print "f2: 3"

 x = g.transfer(x+1) # 5: return 4 to line 10

 puts "f3: #{x}" # 6: print "f3: 5"

 x + 1 # 7: return 6 to line 13

}

g = Fiber.new {|x| # 8:

 puts "g1: #{x}" # 9: print "g1: 2"

 x = f.transfer(x+1) #10: return 3 to line 3

 puts "g2: #{x}" #11: print "g2: 4"

 x = f.transfer(x+1) #12: return 5 to line 5

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

puts f.transfer(1) #13: pass 1 to line 1

This code produces the following output:

f1: 1

g1: 2

f2: 3

g2: 4

f3: 5

6

You will probably never need to use this transfer method, but its existence helps explain the name "fiber."

Fibers can be thought of as independent paths of execution within a single thread of execution. Unlike threads,
however, there is no scheduler to transfer control among fibers; fibers must explicitly schedule themselves with
transfer.

In addition to the transfer method, the fiber library also defines an instance method alive?, to determine if

the body of a fiber is still running, and a class method current, to return the Fiber object that currently has

control.

5.8.3. Continuations

A continuation is another complex and obscure control structure that most programmers will never need to use.
A continuation takes the form of the Kernel method callcc and the Continuation object. Continuations are

part of the core platform in Ruby 1.8, but they have been replaced by fibers and moved to the standard library
in Ruby 1.9. To use them in Ruby 1.9, you must explicitly require them with:

require 'continuation'

Implementation difficulties prevent other implementations of Ruby (such as JRuby, the Java-based
implementation) from supporting continuations. Because they are no longer well supported, continuations
should be considered a curiosity, and new Ruby code should not use them. If you have Ruby 1.8 code that relies
on continuations, you may be able to convert it to use fibers in Ruby 1.9.

The Kernel method callcc executes its block, passing a newly created Continuation object as the only

argument. The Continuation object has a call method, which makes the callcc invocation return to its caller.

The value passed to call becomes the return value of the callcc invocation. In this sense, callcc is like

catch, and the call method of the Continuation object is like throw.

Continuations are different, however, because the Continuation object can be saved into a variable outside of

the callcc block. The call method of this object may be called repeatedly, and causes control to jump to the

first statement following the callcc invocation.

The following code demonstrates how continuations can be used to define a method that works like the goto

statement in the BASIC programming language:

Global hash for mapping line numbers (or symbols) to continuations

$lines = {}

Create a continuation and map it to the specified line number

def line(symbol)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 callcc {|c| $lines[symbol] = c }

end

Look up the continuation associated with the number, and jump there

def goto(symbol)

 $lines[symbol].call

end

Now we can pretend we're programming in BASIC

i = 0

line 10 # Declare this spot to be line 10

puts i += 1

goto 10 if i < 5 # Jump back to line 10 if the condition is met

line 20 # Declare this spot to be line 20

puts i -= 1

goto 20 if i > 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 6. Methods, Procs, Lambdas, and Closures

A method is a named block of parameterized code associated with one or more objects. A method invocation
specifies the method name, the object on which it is to be invoked (sometimes called the receiver), and zero or
more argument values that are assigned to the named method parameters. The value of the last expression
evaluated in the method becomes the value of the method invocation expression.

Many languages distinguish between functions, which have no associated object, and methods, which are
invoked on a receiver object. Because Ruby is a purely object-oriented language, all methods are true methods
and are associated with at least one object. We have not covered class definitions in Ruby yet, so the example
methods defined in this chapter look like global functions with no associated object. In fact, Ruby implicitly
defines and invokes them as private methods of the Object class.

Methods are a fundamental part of Ruby's syntax, but they are not values that Ruby programs can operate on.
That is, Ruby's methods are not objects in the way that strings, numbers, and arrays are. It is possible,
however, to obtain a Method object that represents a given method, and we can invoke methods indirectly

through Method objects.

Methods are not Ruby's only form of parameterized executable code. Blocks, which we introduced in Section
5.4, are executable chunks of code and may have parameters. Unlike methods, blocks do not have names, and
they can only be invoked indirectly through an iterator method.

Blocks, like methods, are not objects that Ruby can manipulate. But it's possible to create an object that
represents a block, and this is actually done with some frequency in Ruby programs. A Proc object represents a

block. Like a Method object, we can execute the code of a block through the Proc that represents it. There are

two varieties of Proc objects, called procs and lambdas, which have slightly different behavior. Both procs and

lambdas are functions rather than methods invoked on an object. An important feature of procs and lambdas is
that they are closures: they retain access to the local variables that were in scope when they were defined, even
when the proc or lambda is invoked from a different scope.

Methods have a rich and fairly complex syntax in Ruby, and the first four sections of this chapter are dedicated
to them. We begin by explaining how to define simple methods, and then follow this introductory section with
three more advanced sections covering methods names, method parentheses, and method parameters. Note
that method invocation is a kind of expression, covered earlier in Section 4.4. Further details on method
invocation are provided throughout the first four sections of this chapter.

After covering methods, we turn our attention to procs and lambdas, explaining how to create and invoke them,
and also detailing the somewhat subtle differences between them. A separate section covers the use of procs
and lambdas as closures. This is followed by a section on the Method object, which actually behaves much like a

lambda. The chapter ends with an advanced exploration of functional programming in Ruby.

6.1. Defining Simple Methods

You've seen many method invocations in examples throughout this book, and method invocation syntax was
described in detail in Section 4.4. Now we turn to the syntax for defining methods. This section explains method
definition basics. It is followed by three more sections that cover method names, method parentheses, and
method arguments in more detail. These additional sections explain more advanced material and are relevant to
both method definition and method invocation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Methods are defined with the def keyword. This is followed by the method name and an optional list of

parameter names in parentheses. The Ruby code that constitutes the method body follows the parameter list,
and the end of the method is marked with the end keyword. Parameter names can be used as variables within

the method body, and the values of these named parameters come from the arguments to a method invocation.
Here is an example method:

Define a method named 'factorial' with a single parameter 'n'

def factorial(n)

 if n < 1 # Test the argument value for validity

 raise "argument must be > 0"

 elsif n == 1 # If the argument is 1

 1 # then the value of the method invocation is 1

 else # Otherwise, the factorial of n is n times

 n * factorial(n-1) # the factorial of n-1

 end

end

This code defines a method named factorial. The method has a single parameter named n. The identifier n is

used as a variable within the body of the method. This is a recursive method, so the body of the method
includes an invocation of the method. The invocation is simply the name of the method followed by the
argument value in parentheses.

6.1.1. Method Return Value

Methods may terminate normally or abnormally. Abnormal termination occurs when the method raises an
exception. The factorial method shown earlier terminates abnormally if we pass it an argument less than 1. If

a method terminates normally, then the value of the method invocation expression is the value of the last
expression evaluated within the method body. In the factorial method, that last expression will either be 1 or

n*factorial(n-1).

The return keyword is used to force a return prior to the end of the method. If an expression follows the

return keyword, then the value of that expression is returned. If no expression follows, then the return value is

nil. In the following variant of the factorial method, the return keyword is required:

def factorial(n)

 raise "bad argument" if n < 1

 return 1 if n == 1

 n * factorial(n-1)

end

We could also use return on the last line of this method body to emphasize that this expression is the method's

return value. In common practice, however, return is omitted where it is not required.

Ruby methods may return more than one value. To do this, use an explicit return statement, and separate the

values to be returned with commas:

Convert the Cartesian point (x,y) to polar (magnitude, angle) coordinates

def polar(x,y)

 return Math.hypot(y,x), Math.atan2(y,x)

end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When there is more than one return value, the values are collected into an array, and the array becomes the
single return value of the method. Instead of using the return statement with multiple values, we can simply

create an array of values ourselves:

Convert polar coordinates to Cartesian coordinates

def cartesian(magnitude, angle)

 [magnitude*Math.cos(angle), magnitude*Math.sin(angle)]

end

Methods of this form are typically intended for use with parallel assignment (see Section 4.5.5) so that each
return value is assigned to a separate variable:

distance, theta = polar(x,y)

x,y = cartesian(distance,theta)

6.1.2. Methods and Exception Handling

A def statement that defines a method may include exception-handling code in the form of rescue, else, and

ensure clauses, just as a begin statement can. These exception-handling clauses go after the end of the

method body but before the end of the def statement. In short methods, it can be particularly tidy to associate

your rescue clauses with the def statement. This also means you don't have to use a begin statement and the

extra level of indentation that comes with it. See Section 5.6.6 for further details.

6.1.3. Invoking a Method on an Object

Methods are always invoked on an object. (This object is sometimes called the receiver in a reference to an
object-oriented paradigm in which methods are called "messages" and are "sent to" receiver objects.) Within
the body of a method, the keyword self refers to the object on which the method was invoked. If we don't

specify an object when invoking a method, then the method is implicitly invoked on self.

You'll learn how to define methods for classes of objects in Chapter 7. Notice, however, that you've already
seen examples of invoking methods on objects, in code like this:

first = text.index(pattern)

Like most object-oriented languages, Ruby uses . to separate the object from the method to be invoked on it.

This code passes the value of the variable pattern to the method named index of the object stored in the

variable text, and stores the return value in the variable first.

6.1.4. Defining Singleton Methods

The methods we've defined so far are all global methods. If we place a def statement like the ones shown

earlier inside a class statement, then the methods that are defined are instance methods of the class; these

methods are defined on all objects that are instances of the class. (Classes and instance methods are explained
in Chapter 7.)

It is also possible, however, to use the def statement to define a method on a single specified object. Simply

follow the def keyword with an expression that evaluates to an object. This expression should be followed by a

period and the name of the method to be defined. The resulting method is known as a singleton method
because it is available only on a single object:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

o = "message" # A string is an object

def o.printme # Define a singleton method for this object

 puts self

end

o.printme # Invoke the singleton

Class methods (covered in Chapter 7) such as Math.sin and File.delete are actually singleton methods. Math

is a constant that refers to a Module object, and File is a constant that refers to a Class object. These two

objects have singleton methods named sin and delete, respectively.

Ruby implementations typically treat Fixnum and Symbol values as immediate values rather than as true object

references. (See Section 3.8.1.1.) For this reason, singleton methods may not be defined on Fixnum and Symbol

objects. For consistency, singletons are also prohibited on other Numeric objects.

6.1.5. Undefining Methods

Methods are defined with the def statement and may be undefined with the undef statement:

def sum(x,y); x+y; end # Define a method

puts sum(1,2) # Use it

undef sum # And undefine it

In this code, the def statement defines a global method, and undef undefines it. undef also works within

classes (which are the subject of Chapter 7) to undefine the instance methods of the class. Interestingly, undef

can be used to undefine inherited methods, without affecting the definition of the method in the class from
which it is inherited. Suppose class A defines a method m, and class B is a subclass of A and therefore inherits m.

(Subclasses and inheritance are also explained in Chapter 7.) If you don't want to allow instances of class B to

be able to invoke m, you can use undef m within the body of the subclass.

undef is not a commonly used statement. In practice, it is much more common to redefine a method with a new

def statement than it is to undefine or delete the method.

Note that the undef statement must be followed by a single identifier that specifies the method name. It cannot

be used to undefine a singleton method in the way that def can be used to define such a method.

Within a class or module, you can also use undef_method (a private method of Module) to undefine methods.

Pass a symbol representing the name of the method to be undefined.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 6. Methods, Procs, Lambdas, and Closures

A method is a named block of parameterized code associated with one or more objects. A method invocation
specifies the method name, the object on which it is to be invoked (sometimes called the receiver), and zero or
more argument values that are assigned to the named method parameters. The value of the last expression
evaluated in the method becomes the value of the method invocation expression.

Many languages distinguish between functions, which have no associated object, and methods, which are
invoked on a receiver object. Because Ruby is a purely object-oriented language, all methods are true methods
and are associated with at least one object. We have not covered class definitions in Ruby yet, so the example
methods defined in this chapter look like global functions with no associated object. In fact, Ruby implicitly
defines and invokes them as private methods of the Object class.

Methods are a fundamental part of Ruby's syntax, but they are not values that Ruby programs can operate on.
That is, Ruby's methods are not objects in the way that strings, numbers, and arrays are. It is possible,
however, to obtain a Method object that represents a given method, and we can invoke methods indirectly

through Method objects.

Methods are not Ruby's only form of parameterized executable code. Blocks, which we introduced in Section
5.4, are executable chunks of code and may have parameters. Unlike methods, blocks do not have names, and
they can only be invoked indirectly through an iterator method.

Blocks, like methods, are not objects that Ruby can manipulate. But it's possible to create an object that
represents a block, and this is actually done with some frequency in Ruby programs. A Proc object represents a

block. Like a Method object, we can execute the code of a block through the Proc that represents it. There are

two varieties of Proc objects, called procs and lambdas, which have slightly different behavior. Both procs and

lambdas are functions rather than methods invoked on an object. An important feature of procs and lambdas is
that they are closures: they retain access to the local variables that were in scope when they were defined, even
when the proc or lambda is invoked from a different scope.

Methods have a rich and fairly complex syntax in Ruby, and the first four sections of this chapter are dedicated
to them. We begin by explaining how to define simple methods, and then follow this introductory section with
three more advanced sections covering methods names, method parentheses, and method parameters. Note
that method invocation is a kind of expression, covered earlier in Section 4.4. Further details on method
invocation are provided throughout the first four sections of this chapter.

After covering methods, we turn our attention to procs and lambdas, explaining how to create and invoke them,
and also detailing the somewhat subtle differences between them. A separate section covers the use of procs
and lambdas as closures. This is followed by a section on the Method object, which actually behaves much like a

lambda. The chapter ends with an advanced exploration of functional programming in Ruby.

6.1. Defining Simple Methods

You've seen many method invocations in examples throughout this book, and method invocation syntax was
described in detail in Section 4.4. Now we turn to the syntax for defining methods. This section explains method
definition basics. It is followed by three more sections that cover method names, method parentheses, and
method arguments in more detail. These additional sections explain more advanced material and are relevant to
both method definition and method invocation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Methods are defined with the def keyword. This is followed by the method name and an optional list of

parameter names in parentheses. The Ruby code that constitutes the method body follows the parameter list,
and the end of the method is marked with the end keyword. Parameter names can be used as variables within

the method body, and the values of these named parameters come from the arguments to a method invocation.
Here is an example method:

Define a method named 'factorial' with a single parameter 'n'

def factorial(n)

 if n < 1 # Test the argument value for validity

 raise "argument must be > 0"

 elsif n == 1 # If the argument is 1

 1 # then the value of the method invocation is 1

 else # Otherwise, the factorial of n is n times

 n * factorial(n-1) # the factorial of n-1

 end

end

This code defines a method named factorial. The method has a single parameter named n. The identifier n is

used as a variable within the body of the method. This is a recursive method, so the body of the method
includes an invocation of the method. The invocation is simply the name of the method followed by the
argument value in parentheses.

6.1.1. Method Return Value

Methods may terminate normally or abnormally. Abnormal termination occurs when the method raises an
exception. The factorial method shown earlier terminates abnormally if we pass it an argument less than 1. If

a method terminates normally, then the value of the method invocation expression is the value of the last
expression evaluated within the method body. In the factorial method, that last expression will either be 1 or

n*factorial(n-1).

The return keyword is used to force a return prior to the end of the method. If an expression follows the

return keyword, then the value of that expression is returned. If no expression follows, then the return value is

nil. In the following variant of the factorial method, the return keyword is required:

def factorial(n)

 raise "bad argument" if n < 1

 return 1 if n == 1

 n * factorial(n-1)

end

We could also use return on the last line of this method body to emphasize that this expression is the method's

return value. In common practice, however, return is omitted where it is not required.

Ruby methods may return more than one value. To do this, use an explicit return statement, and separate the

values to be returned with commas:

Convert the Cartesian point (x,y) to polar (magnitude, angle) coordinates

def polar(x,y)

 return Math.hypot(y,x), Math.atan2(y,x)

end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When there is more than one return value, the values are collected into an array, and the array becomes the
single return value of the method. Instead of using the return statement with multiple values, we can simply

create an array of values ourselves:

Convert polar coordinates to Cartesian coordinates

def cartesian(magnitude, angle)

 [magnitude*Math.cos(angle), magnitude*Math.sin(angle)]

end

Methods of this form are typically intended for use with parallel assignment (see Section 4.5.5) so that each
return value is assigned to a separate variable:

distance, theta = polar(x,y)

x,y = cartesian(distance,theta)

6.1.2. Methods and Exception Handling

A def statement that defines a method may include exception-handling code in the form of rescue, else, and

ensure clauses, just as a begin statement can. These exception-handling clauses go after the end of the

method body but before the end of the def statement. In short methods, it can be particularly tidy to associate

your rescue clauses with the def statement. This also means you don't have to use a begin statement and the

extra level of indentation that comes with it. See Section 5.6.6 for further details.

6.1.3. Invoking a Method on an Object

Methods are always invoked on an object. (This object is sometimes called the receiver in a reference to an
object-oriented paradigm in which methods are called "messages" and are "sent to" receiver objects.) Within
the body of a method, the keyword self refers to the object on which the method was invoked. If we don't

specify an object when invoking a method, then the method is implicitly invoked on self.

You'll learn how to define methods for classes of objects in Chapter 7. Notice, however, that you've already
seen examples of invoking methods on objects, in code like this:

first = text.index(pattern)

Like most object-oriented languages, Ruby uses . to separate the object from the method to be invoked on it.

This code passes the value of the variable pattern to the method named index of the object stored in the

variable text, and stores the return value in the variable first.

6.1.4. Defining Singleton Methods

The methods we've defined so far are all global methods. If we place a def statement like the ones shown

earlier inside a class statement, then the methods that are defined are instance methods of the class; these

methods are defined on all objects that are instances of the class. (Classes and instance methods are explained
in Chapter 7.)

It is also possible, however, to use the def statement to define a method on a single specified object. Simply

follow the def keyword with an expression that evaluates to an object. This expression should be followed by a

period and the name of the method to be defined. The resulting method is known as a singleton method
because it is available only on a single object:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

o = "message" # A string is an object

def o.printme # Define a singleton method for this object

 puts self

end

o.printme # Invoke the singleton

Class methods (covered in Chapter 7) such as Math.sin and File.delete are actually singleton methods. Math

is a constant that refers to a Module object, and File is a constant that refers to a Class object. These two

objects have singleton methods named sin and delete, respectively.

Ruby implementations typically treat Fixnum and Symbol values as immediate values rather than as true object

references. (See Section 3.8.1.1.) For this reason, singleton methods may not be defined on Fixnum and Symbol

objects. For consistency, singletons are also prohibited on other Numeric objects.

6.1.5. Undefining Methods

Methods are defined with the def statement and may be undefined with the undef statement:

def sum(x,y); x+y; end # Define a method

puts sum(1,2) # Use it

undef sum # And undefine it

In this code, the def statement defines a global method, and undef undefines it. undef also works within

classes (which are the subject of Chapter 7) to undefine the instance methods of the class. Interestingly, undef

can be used to undefine inherited methods, without affecting the definition of the method in the class from
which it is inherited. Suppose class A defines a method m, and class B is a subclass of A and therefore inherits m.

(Subclasses and inheritance are also explained in Chapter 7.) If you don't want to allow instances of class B to

be able to invoke m, you can use undef m within the body of the subclass.

undef is not a commonly used statement. In practice, it is much more common to redefine a method with a new

def statement than it is to undefine or delete the method.

Note that the undef statement must be followed by a single identifier that specifies the method name. It cannot

be used to undefine a singleton method in the way that def can be used to define such a method.

Within a class or module, you can also use undef_method (a private method of Module) to undefine methods.

Pass a symbol representing the name of the method to be undefined.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.2. Method Names

By convention, method names begin with a lowercase letter. (Method names can begin with a capital letter, but
that makes them look like constants.) When a method name is longer than one word, the usual convention is to
separate the words with underscores like_this rather than using mixed case likeThis.

Method Name Resolution

This section describes the names you give to methods when you define them. A related topic is
method name resolution: how does the Ruby interpreter find the definition of the method named
in a method invocation expression? The answer to that question must wait until we've discussed
classes in Ruby. It is covered in Section 7.8.

Method names may (but are not required to) end with an equals sign, a question mark, or an exclamation point.
An equals sign suffix signifies that the method is a setter that can be invoked using assignment syntax. Setter
methods are described in Section 4.5.3 and additional examples are provided in Section 7.1.5. The question
mark and exclamation point suffixes have no special meaning to the Ruby interpreter, but they are allowed
because they enable two extraordinarily useful naming conventions.

The first convention is that any method whose name ends with a question mark returns a value that answers
the question posed by the method invocation. The empty? method of an array, for example, returns true if the

array has no elements. Methods like these are called predicates and. Predicates typically return one of the
Boolean values true or false, but this is not required, as any value other than false or nil works like true

when a Boolean value is required. (The Numeric method nonzero?, for example, returns nil if the number it is

invoked on is zero, and just returns the number otherwise.)

The second convention is that any method whose name ends with an exclamation mark should be used with
caution. The Array object, for example, has a sort method that makes a copy of the array, and then sorts that

copy. It also has a sort! method that sorts the array in place. The exclamation mark indicates that you need to

be more careful when using that version of the method.

Often, methods that end with an exclamation mark are mutators, which alter the internal state of an object. But
this is not always the case; there are many mutators that do not end with an exclamation mark, and a number
of nonmutators that do. Mutating methods (such as Array.fill) that do not have a nonmutating variant do not

typically have an exclamation point.

Consider the global function exit: it makes the Ruby program stop running in a controlled way. There is also a

variant named exit! that aborts the program immediately without running any END blocks or shutdown hooks

registered with at_exit. exit! isn't a mutator; it's the "dangerous" variant of the exit method and is flagged

with ! to remind a programmer using it to be careful.

6.2.1. Operator Methods

Many of Ruby's operators, such as +, *, and even the array index operator [], are implemented with methods

that you can define in your own classes. You define an operator by defining a method with the same "name" as
the operator. (The only exceptions are the unary plus and minus operators, which use method names +@ and -

@.) Ruby allows you to do this even though the method name is all punctuation. You might end up with a

method definition like this:

def +(other) # Define binary plus operator: x+y is x.+(y)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 self.concatenate(other)

end

Table 4-2 in Chapter 4 specifies which of Ruby's operators are defined as methods. These operators are the only
punctuation-based method names that you can use: you can't invent new operators or define methods whose
names consist of other sequences of punctuation characters. There are additional examples of defining method-
based operators in Section 7.1.6.

Methods that define a unary operator are passed no arguments. Methods that define binary operators are
passed one argument and should operate on self and the argument. The array access operators [] and []=

are special because they can be invoked with any number of arguments. For []=, the last argument is always

the value being assigned.

6.2.2. Method Aliases

It is not uncommon for methods in Ruby to have more than one name. The language has a keyword alias that

serves to define a new name for an existing method. Use it like this:

alias aka also_known_as # alias new_name existing_name

After executing this statement, the identifier aka will refer to the same method thats also_known_as does.

Method aliasing is one of the things that makes Ruby an expressive and natural language. When there are
multiple names for a method, you can choose the one that seems most natural in your code. The Range class,
for example, defines a method for testing whether a value falls within the range. You can call this method with
the name include? or with the name member?. If you are treating a range as a kind of set, the name member?

may be the most natural choice.

A more practical reason for aliasing methods is to insert new functionality into a method. The following is a
common idiom for augmenting existing methods:

Code View:
def hello # A nice simple method

 puts "Hello World" # Suppose we want to augment it...

end

alias original_hello hello # Give the method a backup name

def hello # Now we define a new method with the old name

 puts "Your attention please" # That does some stuff

 original_hello # Then calls the original method

 puts "This has been a test" # Then does some more stuff

end

In this code, we're working on global methods. It is more common to use alias with the instance methods of a

class. (We'll learn about this in Chapter 7.) In this situation, alias must be used within the class whose

method is to be renamed. Classes in Ruby can be "reopened" (again, this is discussed in Chapter 7)-which
means that your code can take an existing class, 'open' it with a class statement, and then use alias as shown

in the example to augment or alter the existing methods of that class. This is called "alias chaining" and is
covered in detail in Section 8.11.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Aliasing Is Not Overloading

A Ruby method may have two names, but two methods cannot share a single name. In statically
typed languages, methods can be distinguished by the number and type of their arguments, and
two or more methods may share the same name as long as they expect different numbers or
types of arguments. This kind of overloading is not possible in Ruby.

On the other hand, method overloading is not really necessary in Ruby. Methods can accept
arguments of any class and can be written to do different things based on the type of the
arguments they are passed. Also (as we'll see later), Ruby's method arguments can be declared
with default values, and these arguments may be omitted form method invocations. This allows a
single method to be invoked with differing numbers of arguments.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.3. Methods and Parentheses

Ruby allows parentheses to be omitted from most method invocations. In simple cases, this results in clean-
looking code. In complex cases, however, it causes syntactic ambiguities and confusing corner cases. We'll
consider these in the sections that follow.

6.3.1. Optional Parentheses

Parentheses are omitted from method invocations in many common Ruby idioms. The following two lines of
code, for example, are equivalent:

puts "Hello World"

puts("Hello World")

In the first line, puts looks like a keyword, statement, or command built in to the language. The equivalent

second line demonstrates that it is simply the invocation of a global method, with the parentheses omitted.
Although the second form is clearer, the first form is more concise, more commonly used, and arguably more
natural.

Next, consider this code:

greeting = "Hello"

size = greeting.length

If you are accustomed to other object-oriented languages, you may think that length is a property, field, or

variable of string objects. Ruby is strongly object oriented, however, and its objects are fully encapsulated; the
only way to interact with them is by invoking their methods. In this code, greeting.length is a method

invocation. The length method expects no arguments and is invoked without parentheses. The following code is

equivalent:

size = greeting.length()

Including the optional parentheses emphasizes that a method invocation is occurring. Omitting the parentheses
in method invocations with no arguments gives the illusion of property access, and is a very common practice.

Parentheses are very commonly omitted when there are zero or one arguments to the invoked method.
Although it is less common, the parentheses may be omitted even when there are multiple arguments, as in the
following code:

x = 3 # x is a number

x.between? 1,5 # same as x.between?(1,5)

Parentheses may also be omitted around the parameter list in method definitions, though it is hard to argue
that this makes your code clearer or more readable. The following code, for example, defines a method that
returns the sum of its arguments:

def sum x, y

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 x+y

end

6.3.2. Required Parentheses

Some code is ambiguous if the parentheses are omitted, and here Ruby requires that you include them. The
most common case is nested method invocations of the form f g x, y. In Ruby, invocations of that form mean

f(g(x,y)). Ruby 1.8 issues a warning, however, because the code could also be interpreted as f(g(x),y). The

warning has been removed in Ruby 1.9. The following code, using the sum method defined above, prints 4, but

issues a warning in Ruby 1.8:

puts sum 2, 2

To remove the warning, rewrite the code with parentheses around the arguments:

puts sum(2,2)

Note that using parentheses around the outer method invocation does not resolve the ambiguity:

puts(sum 2,2) # Does this mean puts(sum(2,2)) or puts(sum(2), 2)?

An expression involving nested function calls is only ambiguous when there is more than one argument. The
Ruby interpreter can only interpret the following code in one way:

puts factorial x # This can only mean puts(factorial(x))

Despite the lack of ambiguity here, Ruby 1.8 still issues a warning if you omit the parentheses around the x.

Sometimes omitting parentheses is a true syntax error rather than a simple warning. The following expressions,
for example, are completely ambiguous without parentheses, and Ruby doesn't even attempt to guess what you
mean:

Code View:
puts 4, sum 2,2 # Error: does the second comma go with the 1st or 2nd method?

[sum 2,2] # Error: two array elements or one?

There is another wrinkle that arises from the fact that parentheses are optional. When you do use parentheses
in a method invocation, the opening parenthesis must immediately follow the method name, with no intervening
space. This is because parentheses do double-duty: they can be used around an argument list in a method
invocation, and they can be used for grouping expressions. Consider the following two expressions, which differ
only by a single space:

square(2+2)*2 # square(4)*2 = 16*2 = 32

square (2+2)*2 # square(4*2) = square(8) = 64

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In the first expression, the parentheses represent method invocation. In the second, they represent expression
grouping. To reduce the potential for confusion, you should always use parentheses around a method invocation
if any of the arguments use parentheses. The second expression would be written more clearly as:

square((2+2)*2)

We'll end this discussion of parentheses with one final twist. Recall that the following expression is ambiguous
and causes a warning:

puts(sum 2,2) # Does this mean puts(sum(2,2)) or puts(sum(2), 2)?

The best way to resolve this ambiguity is to put parentheses around the arguments to the sum method. Another

way is to add a space between puts and the opening parenthesis:

puts (sum 2,2)

Adding the space converts the method invocation parentheses into expression grouping parentheses. Because
these parentheses group a subexpression, the comma can no longer be interpreted as an argument delimiter for
the puts invocation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.4. Method Arguments

Simple method declarations include a comma-separated list of argument names (in optional parentheses) after
the method name. But there is much more to Ruby's method arguments. The subsections that follow explain:

How to declare an argument that has a default value, so that the argument can be omitted when the
method is invoked

How to declare a method that accepts any number of arguments

How to simulate named method arguments with special syntax for passing a hash to a method

How to declare a method so that the block associated with an invocation of the method is treated as a
method argument

6.4.1. Parameter Defaults

When you define a method, you can specify default values for some or all of the parameters. If you do this, then
your method may be invoked with fewer argument values than the declared number of parameters. If
arguments are omitted, then the default value of the parameter is used in its place. Specify a default value by
following the parameter name with an equals sign and a value:

def prefix(s, len=1)

 s[0,len]

end

This method declares two parameters, but the second one has a default. This means that we can invoke it with
either one argument or two:

prefix("Ruby", 3) # => "Rub"

prefix("Ruby") # => "R"

Argument defaults need not be constants: they may be arbitrary expressions, and can be referred to instance
variables and to previous parameters in the parameter list. For example:

Return the last character of s or the substring from index to the end

def suffix(s, index=s.size-1)

 s[index, s.size-index]

end

Parameter defaults are evaluated when a method is invoked rather than when it is parsed. In the following
method, the default value [] produces a new empty array on each invocation, rather than reusing a single array

created when the method is defined:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Append the value x to the array a, return a.

If no array is specified, start with an empty one.

def append(x, a=[])

 a << x

end

In Ruby 1.8, method parameters with default values must appear after all ordinary parameters in the parameter
list. Ruby 1.9 relaxes this restriction and allows ordinary parameters to appear after parameters with defaults. It
still requires all parameters with defaults to be adjacent in the parameter list-you can't declare two parameters
with default values with an ordinary parameter between them, for example. When a method has more than one
parameter with a default value, and you invoke the method with an argument for some, but not all, of these
parameters, they are filled in from left to right. Suppose a method has two parameters, and both of those
parameters have defaults. You can invoke this method with zero, one, or two arguments. If you specify one
argument, it is assigned to the first parameter and the second parameter uses its default value. There is no
way, however, to specify a value for the second parameter and use the default value of the first parameter.

6.4.2. Variable-Length Argument Lists and Arrays

Sometimes we want to write methods that can accept an arbitrary number of arguments. To do this, we put an
* before one of the method's parameters. Within the body of the method, this parameter will refer to an array

that contains the zero or more arguments passed at that position. For example:

Return the largest of the one or more arguments passed

def max(first, *rest)

 # Assume that the required first argument is the largest

 max = first

 # Now loop through each of the optional arguments looking for bigger ones

 rest.each {|x| max = x if x > max }

 # Return the largest one we found

 max

end

The max method requires at least one argument, but it may accept any number of additional arguments. The

first argument is available through the first parameter. Any additional arguments are stored in the rest array.

We can invoke max like this:

max(1) # first=1, rest=[]

max(1,2) # first=1, rest=[2]

max(1,2,3) # first=1, rest=[2,3]

Note that in Ruby, all Enumerable objects automatically have a max method, so the method defined here is not

particularly useful.

No more than one parameter may be prefixed with an *. In Ruby 1.8, this parameter must appear after all

ordinary parameters and after all parameters with defaults specified. It should be the last parameter of the
method, unless the method also has a parameter with an & prefix (see below). In Ruby 1.9, a parameter with an

* prefix must still appear after any parameters with defaults specified, but it may be followed by additional

ordinary parameters. It must also still appear before any &-prefixed parameter.

6.4.2.1. Passing arrays to methods

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We've seen how * can be used in a method declaration to cause multiple arguments to be gathered or coalesced

into a single array. It can also be used in a method invocation to scatter, expand, or explode the elements of an
array (or range or enumerator) so that each element becomes a separate method argument. The * is

sometimes called the splat operator, although it is not a true operator. We've seen it used before in the
discussion of parallel assignment in Section 4.5.5.

Suppose we wanted to find the maximum value in an array (and that we didn't know that Ruby arrays have a
built-in max method!). We could pass the elements of the array to the max method (defined earlier) like this:

data = [3, 2, 1]

m = max(*data) # first = 3, rest=[2,1] => 3

Consider what happens without the *:

m = max(data) # first = [3,2,1], rest=[] => [3,2,1]

In this case, we're passing an array as the first and only argument, and our max method returns that first

argument without performing any comparisons on it.

The * can also be used with methods that return arrays to expand those arrays for use in another method

invocation. Consider the polar and cartesian methods defined earlier in this chapter:

Convert the point (x,y) to Polar coordinates, then back to Cartesian

x,y = cartesian(*polar(x, y))

In Ruby 1.9, enumerators are splattable objects. To find the largest letter in a string, for example, we could
write:

max(*"hello world".each_char) # => 'w'

6.4.3. Mapping Arguments to Parameters

When a method definition includes parameters with default values or a parameter prefixed with an *, the

assignment of argument values to parameters during method invocation gets a little bit tricky.

In Ruby 1.8, the position of the special parameters is restricted so that argument values are assigned to
parameters from left to right. The first arguments are assigned to the ordinary parameters. If there are any
remaining arguments, they are assigned to the parameters that have defaults. And if there are still more
arguments, they are assigned to the array argument.

Ruby 1.9 has to be more clever about the way it maps arguments to parameters because the order of the
parameters is no longer constrained. Suppose we have a method that is declared with o ordinary parameters, d

parameters with default values, and one array parameter prefixed with *. Now assume that we invoke this

method with a arguments.

If a is less than o, an ArgumentError is raised; we have not supplied the minimum required number of

arguments.

If a is greater than or equal to o and less than or equal to o+d, then the leftmost a–o parameters with defaults

will have arguments assigned to them. The remaining (to the right) o+d–a parameters with defaults will not

http://lib.ommolketab.ir
http://lib.ommolketab.ir

have arguments assigned to them, and will just use their default values.

If a is greater than o+d, then the array parameter whose name is prefixed with an * will have a–o–d arguments

stored in it; otherwise, it will be empty.

Once these calculations are performed, the arguments are mapped to parameters from left to right, assigning
the appropriate number of arguments to each parameter.

6.4.4. Hashes for Named Arguments

When a method requires more than two or three arguments, it can be difficult for the programmer invoking the
method to remember the proper order for those arguments. Some languages allow you to write method
invocations that explicitly specify a parameter name for each argument that is passed. Ruby does not support
this method invocation syntax, but it can be approximated if you write a method that expects a hash as its
argument or as one of its arguments:

This method returns an array a of n numbers. For any index i, 0 <= i < n,

the value of element a[i] is m*i+c. Arguments n, m, and c are passed

as keys in a hash, so that it is not necessary to remember their order.

def sequence(args)

 # Extract the arguments from the hash.

 # Note the use of the || operator to specify defaults used

 # if the hash does not define a key that we are interested in.

 n = args[:n] || 0

 m = args[:m] || 1

 c = args[:c] || 0

 a = [] # Start with an empty array

 n.times {|i| a << m*i+c } # Calculate the value of each array element

 a # Return the array

end

You might invoke this method with a hash literal argument like this:

sequence({:n=>3, :m=>5}) # => [0, 5, 10]

In order to better support this style of programming, Ruby allows you to omit the curly braces around the hash
literal if it is the last argument to the method (or if the only argument that follows it is a block argument,
prefixed with &). A hash without braces is sometimes called a bare hash, and when we use one it looks like we

are passing separate named arguments, which we can reorder however we like:

sequence(:m=>3, :n=>5) # => [0, 3, 6, 9, 12]

As with other ruby methods, we can omit the parentheses, too:

Ruby 1.9 hash syntax

sequence c:1, m:3, n:5 # => [1, 4, 7, 10, 13]

If you omit the parentheses, then you must omit the curly braces. If curly braces follow the method name
outside of parentheses, Ruby thinks you're passing a block to the method:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

sequence {:m=>3, :n=>5} # Syntax error!

6.4.5. Block Arguments

Recall from Section 5.3 that a block is a chunk of Ruby code associated with a method invocation, and that an
iterator is a method that expects a block. Any method invocation may be followed by a block, and any method
that has a block associated with it may invoke the code in that block with the yield statement. To refresh your

memory, the following code is a block-oriented variant on the sequence method developed earlier in the

chapter:

Generate a sequence of n numbers m*i + c and pass them to the block

def sequence2(n, m, c)

 i = 0

 while(i < n) # loop n times

 yield i*m + c # pass next element of the sequence to the block

 i += 1

 end

end

Here is how you might use this version of the method

sequence2(5, 2, 2) {|x| puts x } # Print numbers 2, 4, 6, 8, 10

One of the features of blocks is their anonymity. They are not passed to the method in a traditional sense, they
have no name, and they are invoked with a keyword rather than with a method. If you prefer more explicit
control over a block (so that you can pass it on to some other method, for example), add a final argument to
your method, and prefix the argument name with an ampersand.[*] If you do this, then that argument will refer
to the block-if any-that is passed to the method. The value of the argument will be a Proc object, and instead

of using yield, you invoke the call method of the Proc:

[*] We use the term "block argument" instead of "block parameter" for method parameters prefixed with &. This is because the phrase "block

parameter" refers to the parameter list (such as |x|) of the block itself.

def sequence3(n, m, c, &b) # Explicit argument to get block as a Proc

 i = 0

 while(i < n)

 b.call(i*m + c) # Invoke the Proc with its call method

 i += 1

 end

end

Note that the block is still passed outside of the parentheses

sequence3(5, 2, 2) {|x| puts x }

Notice that using the ampersand in this way changes only the method definition. The method invocation
remains the same. We end up with the block argument being declared inside the parentheses of the method
definition, but the block itself is still specified outside the parentheses of the method invocation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Passing Proc Objects Explicitly

If you create your own Proc object (we'll see how to do this later in the chapter) and want to pass

it explicitly to a method, you can do this as you would pass any other value-a Proc is an object

like any other. In this case, you should not use an ampersand in the method definition:

This version expects an explicitly-created Proc object, not a block

def sequence4(n, m, c, b) # No ampersand used for argument b

 i = 0

 while(i < n)

 b.call(i*m + c) # Proc is called explicitly

 i += 1

 end

end

p = Proc.new {|x| puts x } # Explicitly create a Proc object

sequence4(5, 2, 2, p) # And pass it as an ordinary argument

Twice before in this chapter, we've said that a special kind of parameter must be the last one in the parameter
list. Block arguments prefixed with ampersands must really be the last one. Because blocks are passed
unusually in method invocations, named block arguments are different and do not interfere with array or hash
parameters in which the brackets and braces have been omitted. The following two methods are legal, for
example:

def sequence5(args, &b) # Pass arguments as a hash and follow with a block

 n, m, c = args[:n], args[:m], args[:c]

 i = 0

 while(i < n)

 b.call(i*m + c)

 i += 1

 end

end

Expects one or more arguments, followed by a block

def max(first, *rest, &block)

 max = first

 rest.each {|x| max = x if x > max }

 block.call(max)

 max

end

These methods work fine, but notice that you can avoid the complexity of these cases by simply leaving your
blocks anonymous and calling them with yield.

It is also worth noting that the yield statement still works in a method defined with an & parameter. Even if the

block has been converted to a Proc object and passed as an argument, it can still be invoked as an anonymous

block, as if the block argument was not there.

6.4.5.1. Using & in method invocation

We saw earlier that you can use * in a method definition to specify that multiple arguments should be packed

into an array, and that you can use * in a method invocation to specify that an array should be unpacked so that

http://lib.ommolketab.ir
http://lib.ommolketab.ir

its elements become separate arguments. & can also be used in definitions and invocations. We've just seen

that & in a method definition allows an ordinary block associated with a method invocation to be used as a

named Proc object inside the method. When & is used before a Proc object in a method invocation, it treats the

Proc as if it was an ordinary block following the invocation.

Consider the following code which sums the contents of two arrays:

Code View:
a, b = [1,2,3], [4,5] # Start with some data.

sum = a.inject(0) {|total,x| total+x } # => 6. Sum elements of a.

sum = b.inject(sum) {|total,x| total+x } # => 15. Add the elements of b in.

We described the inject iterator earlier in Section 5.3.2. If you don't remember, you can look up its

documentation with ri Enumerable.inject. The important thing to notice about this example is that the two

blocks are identical. Rather than having the Ruby interpreter parse the same block twice, we can create a Proc

to represent the block, and use the single Proc object twice:

a, b = [1,2,3], [4,5] # Start with some data.

summation = Proc.new {|total,x| total+x } # A Proc object for summations.

sum = a.inject(0, &summation) # => 6

sum = b.inject(sum, &summation) # => 15

If you use & in a method invocation, it must appear before the last argument in the invocation. Blocks can be

associated with any method call, even when the method is not expecting a block, and never uses yield. In the

same way, any method invocation may have an & argument as its last argument.

In a method invocation an & typically appears before a Proc object. But it is actually allowed before any object

with a to_proc method. The Method class (covered later in this chapter) has such a method, so Method objects

can be passed to iterators just as Proc objects can.

In Ruby 1.9, the Symbol class defines a to_proc method, allowing symbols to be prefixed with & and passed to

iterators. When a symbol is passed like this, it is assumed to be the name of a method. The Proc object

returned by the to_proc method invokes the named method of its first argument, passing any remaining

arguments to that named method. The canonical case is this: given an array of strings, create a new array of
those strings, converted to uppercase. Symbol.to_proc allows us to accomplish this elegantly as follows:

Code View:
words = ['and', 'but', 'car'] # An array of words

uppercase = words.map &:upcase # Convert to uppercase with String.upcase

upper = words.map {|w| w.upcase } # This is the equivalent code with a block

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.5. Procs and Lambdas

Blocks are syntactic structures in Ruby; they are not objects, and cannot be manipulated as objects. It is
possible, however, to create an object that represents a block. Depending on how the object is created, it is
called a proc or a lambda. Procs have block-like behavior and lambdas have method-like behavior. Both,
however, are instances of class Proc.

The subsections that follow explain:

How to create Proc objects in both proc and lambda forms

How to invoke Proc objects

How to determine how many arguments a Proc expects

How to determine if two Proc objects are the same

How procs and lambdas differ from each other

6.5.1. Creating Procs

We've already seen one way to crfate a Proc object: by associating a block with a method that is defined with

an ampersand-prefixed block argument. There is nothing preventing such a method from returning the Proc

object for use outside the method:

This method creates a proc from a block

def makeproc(&p) # Convert associated block to a Proc and store in p

 p # Return the Proc object

end

With a makeproc method like this defined, we can create a Proc object for ourselves:

adder = makeproc {|x,y| x+y }

The variable adder now refers to a Proc object. Proc objects created in this way are procs, not lambdas. All

Proc objects have a call method that, when invoked, runs the code contained by the block from which the proc

was created. For example:

sum = adder.call(2,2) # => 4

In addition to being invoked, Proc objects can be passed to methods, stored in data structures and otherwise

manipulated like any other Ruby object.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As well as creating procs by method invocation, there are three methods that create Proc objects (both procs

and lambdas) in Ruby. These methods are commonly used, and it is not actually necessary to define a makeproc

method like the one shown earlier. In addition to these Proc-creation methods, Ruby 1.9 also supports a new

literal syntax for defining lambdas. The subsections that follow discuss the methods Proc.new, lambda, and

proc, and also explain the Ruby 1.9 lambda literal syntax.

6.5.1.1. Proc.new

We've already seen Proc.new used in some of the previous examples in this chapter. This is the normal new

method that most classes support, and it's the most obvious way to create a new instance of the Proc class.

Proc.new expects no arguments, and returns a Proc object that is a proc (not a lambda). When you invoke

Proc.new with an associated block, it returns a proc that represents the block. For example:

p = Proc.new {|x,y| x+y }

If Proc.new is invoked without a block from within a method that does have an associated block, then it returns

a proc representing the block associated with the containing method. Using Proc.new in this way provides an

alternative to using an ampersand-prefixed block argument in a method definition. The following two methods
are equivalent, for example:

def invoke(&b) def invoke

 b.call Proc.new.call

end end

6.5.1.2. Kernel.lambda

Another technique for creating Proc objects is with the lambda method. lambda is a method of the Kernel

module, so it behaves like a global function. As its name suggests, the Proc object returned by this method is a

lambda rather than a proc. lambda expects no arguments, but there must be a block associated with the

invocation:

is_positive = lambda {|x| x > 0 }

Lambda History

Lambdas and the lambda method are so named in reference to lambda calculus, a branch of

mathematical logic that has been applied to functional programming languages. Lisp also uses the
term "lambda" to refer to functions that can be manipulated as objects.

6.5.1.3. Kernel.proc

In Ruby 1.8, the global proc method is a synonym for lambda. Despite its name, it returns a lambda, not a

proc. Ruby 1.9 fixes this; in that version of the language, proc is a synonym for Proc.new.

Because of this ambiguity, you should never use proc in Ruby 1.8 code. The behavior of your code might

change if the interpreter was upgraded to a newer version. If you are using Ruby 1.9 code and are confident
that it will never be run with a Ruby 1.8 interpreter, you can safely use proc as a more elegant shorthand for

Proc.new.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.5.1.4. Lambda Literals

Ruby 1.9 supports an entirely new syntax for defining lambdas as literals. We'll begin with a Ruby 1.8 lambda,
created with the lambda method:

succ = lambda {|x| x+1}

In Ruby 1.9, we can convert this to a literal as follows:

Replace the method name lambda with the punctuation ->.

Move the list of arguments outside of and just before the curly braces.

Change the argument list delimiters from || to ().

With these changes, we get a Ruby 1.9 lambda literal:

succ = ->(x){ x+1 }

succ now holds a Proc object, which we can use just like any other:

succ.call(2) # => 3

The introduction of this syntax into Ruby was controversial, and it takes some getting used to. Note that the
arrow characters -> are different from those used in hash literals. A lambda literal uses an arrow made with a

hyphen, whereas a hash literal uses an arrow made with an equals sign.

As with blocks in Ruby 1.9, the argument list of a lambda literal may include the declaration of block-local
variables that are guaranteed not to overwrite variables with the same name in the enclosing scope. Simply
follow the parameter list with a semicolon and a list of local variables:

This lambda takes 2 args and declares 3 local vars

f = ->(x,y; i,j,k) { ... }

One benefit of this new lambda syntax over the traditional block-based lambda creation methods is that the
Ruby 1.9 syntax allows lambdas to be declared with argument defaults, just as methods can be:

zoom = ->(x,y,factor=2) { [x*factor, y*factor] }

As with method declarations, the parentheses in lambda literals are optional, because the parameter list and
local variable lists are completely delimited by the ->, ;, and {. We could rewrite the three lambdas above like

this:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

succ = ->x { x+1 }

f = -> x,y; i,j,k { ... }

zoom = ->x,y,factor=2 { [x*factor, y*factor] }

Lambda parameters and local variables are optional, of course, and a lambda literal can omit this altogether.
The minimal lambda, which takes no arguments and returns nil, is the following:

->{}

One benefit of this new syntax is its succinctness. It can be helpful when you want to pass a lambda as an
argument to a method or to another lambda:

def compose(f,g) # Compose 2 lambdas

 ->(x) { f.call(g.call(x)) }

end

succOfSquare = compose(->x{x+1}, ->x{x*x})

succOfSquare.call(4) # => 17: Computes (4*4)+1

Lambda literals create Proc objects and are not the same thing as blocks. If you want to pass a lambda literal

to a method that expects a block, prefix the literal with &, just as you would with any other Proc object. Here is

how we might sort an array of numbers into descending order using both a block and a lambda literal:

data.sort {|a,b| b-a } # The block version

data.sort &->(a,b){ b-a } # The lambda literal version

In this case, as you can see, regular block syntax is simpler.

6.5.2. Invoking Procs and Lambdas

Procs and lambdas are objects, not methods, and they cannot be invoked in the same way that methods are. If
p refers to a Proc object, you cannot invoke p as a method. But because p is an object, you can invoke a

method of p. We've already mentioned that the Proc class defines a method named call. Invoking this method

executes the code in the original block. The arguments you pass to the call method become arguments to the

block, and the return value of the block becomes the return value of the call method:

f = Proc.new {|x,y| 1.0/(1.0/x + 1.0/y) }

z = f.call(x,y)

The Proc class also defines the array access operator to work the same way as call. This means that you can

invoke a proc or lambda using a syntax that is like method invocation, where parentheses have been replaced
with square brackets. The proc invocation above, for example, could be replaced with this code:

z = f[x,y]

Ruby 1.9 offers an additional way to invoke a Proc object; as an alternative to square brackets, you can use

http://lib.ommolketab.ir
http://lib.ommolketab.ir

parentheses prefixed with a period:

z = f.(x,y)

.() looks like a method invocation missing the method name. This is not an operator that can be defined, but

rather is syntactic-sugar that invokes the call method. It can be used with any object that defines a call

method and is not limited to Proc objects.

6.5.3. The Arity of a Proc

The arity of a proc or lambda is the number of arguments it expects. (The word is derived from the "ary" suffix
of unary, binary, ternary, etc.) Proc objects have an arity method that returns the number of arguments they

expect. For example:

lambda{||}.arity # => 0. No arguments expected

lambda{|x| x}.arity # => 1. One argument expected

lambda{|x,y| x+y}.arity # => 2. Two arguments expected

The notion of arity gets confusing when a Proc accepts an arbitrary number of arguments in an *-prefixed final

argument. When a Proc allows optional arguments, the arity method returns a negative number of the form -

n-1. A return value of this form indicates that the Proc requires n arguments, but it may optionally take

additional arguments as well. -n-1 is known as the one's-complement of n, and you can invert it with the ~

operator. So if arity returns a negative number m, then ~m (or -m-1) gives you the number of required

arguments:

Code View:
lambda {|*args|}.arity # => -1. ~-1 = -(-1)-1 = 0 arguments required

lambda {|first, *rest|}.arity # => -2. ~-2 = -(-2)-1 = 1 argument required

There is one final wrinkle to the arity method. In Ruby 1.8, a Proc declared without any argument clause at all

(that is, without any || characters) may be invoked with any number of arguments (and these arguments are

ignored). The arity method returns –1 to indicate that there are no required arguments. This has changed in

Ruby 1.9: a Proc declared like this has an arity of 0. If it is a lambda, then it is an error to invoke it with any

arguments:

puts lambda {}.arity # –1 in Ruby 1.8; 0 in Ruby 1.9

6.5.4. Proc Equality

The Proc class defines an == method to determine whether two Proc objects are equal. It is important to

understand, however, that merely having the same source code is not enough to make two procs or lambdas
equal to each other:

lambda {|x| x*x } == lambda {|x| x*x } # => false

The == method only returns true if one Proc is a clone or duplicate of the other:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

p = lambda {|x| x*x }

q = p.dup

p == q # => true: the two procs are equal

p.object_id == q.object_id # => false: they are not the same object

6.5.5. How Lambdas Differ from Procs

A proc is the object form of a block, and it behaves like a block. A lambda has slightly modified behavior and
behaves more like a method than a block. Calling a proc is like yielding to a block, whereas calling a lambda is
like invoking a method. In Ruby 1.9, you can determine whether a Proc object is a proc or a lambda with the

instance method lambda?. This predicate returns true for lambdas and false for procs. The subsections that

follow explain the differences between procs and lambdas in detail.

6.5.5.1. Return in blocks, procs, and lambdas

Recall from Chapter 5 that the return statement returns from the lexically enclosing method, even when the

statement is contained within a block. The return statement in a block does not just return from the block to

the invoking iterator, it returns from the method that invoked the iterator. For example:

def test

 puts "entering method"

 1.times { puts "entering block"; return } # Makes test method return

 puts "exiting method" # This line is never executed

end

test

A proc is like a block, so if you call a proc that executes a return statement, it attempts to return from the

method that encloses the block that was converted to the proc. For example:

def test

 puts "entering method"

 p = Proc.new { puts "entering proc"; return }

 p.call # Invoking the proc makes method return

 puts "exiting method" # This line is never executed

end

test

Using a return statement in a proc is tricky, however, because procs are often passed around between

methods. By the time a proc is invoked, the lexically enclosing method may already have returned:

Code View:
def procBuilder(message) # Create and return a proc

 Proc.new { puts message; return } # return returns from procBuilder

 # but procBuilder has already returned here!

end

def test

 puts "entering method"

 p = procBuilder("entering proc")

 p.call # Prints "entering proc" and raises LocalJumpError!

 puts "exiting method" # This line is never executed

http://lib.ommolketab.ir
http://lib.ommolketab.ir

end

test

By converting a block into an object, we are able to pass that object around and use it "out of context." If we do
this, we run the risk of returning from a method that has already returned, as was the case here. When this
happens, Ruby raises a LocalJumpError.

The fix for this contrived example is to remove the unnecessary return statement, of course. But a return

statement is not always unnecessary, and another fix is to use a lambda instead of a proc. As we said earlier,
lambdas work more like methods than blocks. A return statement in a lambda, therefore, returns from the

lambda itself, not from the method that surrounds the creation site of the lambda:

Code View:
def test

 puts "entering method"

 p = lambda { puts "entering lambda"; return }

 p.call # Invoking the lambda does not make the method return

 puts "exiting method" # This line *is* executed now

end

test

The fact that return in a lambda only returns from the lambda itself means that we never have to worry about

LocalJumpError:

def lambdaBuilder(message) # Create and return a lambda

 lambda { puts message; return } # return returns from the lambda

end

def test

 puts "entering method"

 l = lambdaBuilder("entering lambda")

 l.call # Prints "entering lambda"

 puts "exiting method" # This line is executed

end

test

6.5.5.2. Break in blocks, procs and lambdas

Figure 5-3 illustrated the behavior of the break statement in a block; it causes the block to return to its iterator

and the iterator to return to the method that invoked it. Because procs work like blocks, we expect break to do

the same thing in a proc. We can't easily test this, however. When we create a proc with Proc.new, Proc.new is

the iterator that break would return from. And by the time we can invoke the proc object, the iterator has

already returned. So it never makes sense to have a top-level break statement in a proc created with

Proc.new:

Code View:
def test

 puts "entering test method"

 proc = Proc.new { puts "entering proc"; break }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 proc.call # LocalJumpError: iterator has already returned

 puts "exiting test method"

end

test

If we create a proc object with an & argument to the iterator method, then we can invoke it and make the

iterator return:

def iterator(&proc)

 puts "entering iterator"

 proc.call # invoke the proc

 puts "exiting iterator" # Never executed if the proc breaks

end

def test

 iterator { puts "entering proc"; break }

end

test

Lambdas are method-like, so putting a break statement at the top-level of a lambda, without an enclosing loop

or iteration to break out of, doesn't actually make any sense! We might expect the following code to fail
because there is nothing to break out of in the lambda. In fact, the top-level break just acts like a return:

def test

 puts "entering test method"

 lambda = lambda { puts "entering lambda"; break; puts "exiting lambda" }

 lambda.call

 puts "exiting test method"

end

test

6.5.5.3. Other control-flow statements

A top-level next statement works the same in a block, proc, or lambda: it causes the yield statement or call

method that invoked the block, proc, or lambda to return. If next is followed by an expression, then the value

of that expression becomes the return value of the block, proc, or lambda.

redo also works the same in procs and lambdas: it transfers control back to the beginning of the proc or

lambda.

retry is never allowed in procs or lambdas: using it always results in a LocalJumpError.

raise behaves the same in blocks, procs, and lambdas. Exceptions always propagate up the call stack. If a

block, proc, or lambda raises an exception and there is no local rescue clause, the exception first propagates to

the method that invoked the block with yield or that invoked the proc or lambda with call.

6.5.5.4. Argument passing to procs and lambdas

Invoking a block with yield is similar to, but not the same as, invoking a method. There are differences in the

way argument values in the invocation are assigned to the argument variables declared in the block or method.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The yield statement uses yield semantics, whereas method invocation uses invocation semantics. Yield

semantics are similar to parallel assignment and are described in Section 5.4.4. As you might expect, invoking a
proc uses yield semantics and invoking a lambda uses invocation semantics:

p = Proc.new {|x,y| print x,y }

p.call(1) # x,y=1: nil used for missing rvalue: Prints 1nil

p.call(1,2) # x,y=1,2: 2 lvalues, 2 rvalues: Prints 12

p.call(1,2,3) # x,y=1,2,3: extra rvalue discarded: Prints 12

p.call([1,2]) # x,y=[1,2]: array automatically unpacked: Prints 12

This code demonstrates that the call method of a proc handles the arguments it receives flexibly: silently

discarding extras, silently adding nil for omitted arguments, and even unpacking arrays. (Or, not demonstrated

here, packing multiple arguments into a single array when the proc expects only a single argument.)

Lambdas are not flexible in this way; like methods, they must be invoked with precisely the number of
arguments they are declared with:

l = lambda {|x,y| print x,y }

l.call(1,2) # This works

l.call(1) # Wrong number of arguments

l.call(1,2,3) # Wrong number of arguments

l.call([1,2]) # Wrong number of arguments

l.call(*[1,2]) # Works: explicit splat to unpack the array

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.6. Closures

In Ruby, procs and lambdas are closures. The term "closure" comes from the early days of computer science; it
refers to an object that is both an invocable function and a variable binding for that function. When you create a
proc or a lambda, the resulting Proc object holds not just the executable block but also bindings for all the

variables used by the block.

You already know that blocks can use local variables and method arguments that are defined outside the block.
In the following code, for example, the block associated with the collect iterator uses the method argument n:

multiply each element of the data array by n

def multiply(data, n)

 data.collect {|x| x*n }

end

puts multiply([1,2,3], 2) # Prints 2,4,6

What is more interesting, and possibly even surprising, is that if the block were turned into a proc or lambda, it
could access n even after the method to which it is an argument had returned. The following code

demonstrates:

Return a lambda that retains or "closes over" the argument n

def multiplier(n)

 lambda {|data| data.collect{|x| x*n } }

end

doubler = multiplier(2) # Get a lambda that knows how to double

puts doubler.call([1,2,3]) # Prints 2,4,6

The multiplier method returns a lambda. Because this lambda is used outside of the scope in which it is

defined, we call it a closure; it encapsulates or "closes over" (or just retains) the binding for the method
argument n.

6.6.1. Closures and Shared Variables

It is important to understand that a closure does not just retain the value of the variables it refers to-it retains
the actual variables and extends their lifetime. Another way to say this is that the variables used in a lambda or
proc are not statically bound when the lambda or proc is created. Instead, the bindings are dynamic, and the
values of the variables are looked up when the lambda or proc is executed.

As an example, the following code defines a method that returns two lambdas. Because the lambdas are defined
in the same scope, they share access to the variables in that scope. When one lambda alters the value of a
shared variable, the new value is available to the other lambda:

Code View:
Return a pair of lambdas that share access to a local variable.

def accessor_pair(initialValue=nil)

 value = initialValue # A local variable shared by the returned lambdas.

 getter = lambda { value } # Return value of local variable.

 setter = lambda {|x| value = x } # Change value of local variable.

 return getter,setter # Return pair of lambdas to caller.

end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

getX, setX = accessor_pair(0) # Create accessor lambdas for initial value 0.

puts getX[] # Prints 0. Note square brackets instead of call.

setX[10] # Change the value through one closure.

puts getX[] # Prints 10. The change is visible through the other.

The fact that lambdas created in the same scope share access to variables can be a feature or a source of bugs.
Any time you have a method that returns more than one closure, you should pay particular attention to the
variables they use. Consider the following code:

Return an array of lambdas that multiply by the arguments

def multipliers(*args)

 x = nil

 args.map {|x| lambda {|y| x*y }}

end

double,triple = multipliers(2,3)

puts double.call(2) # Prints 6 in Ruby 1.8

This multipliers method uses the map iterator and a block to return an array of lambdas (created inside the

block). In Ruby 1.8, block arguments are not always local to the block (see Section 5.4.3), and so all of the
lambdas that are created end up sharing access to x, which is a local variable of the multipliers method. As

noted above, closures don't capture the current value of the variable: they capture the variable itself. Each of
the lambdas created here share the variable x. That variable has only one value, and all of the returned lambdas

use that same value. That is why the lambda we name double ends up tripling its argument instead of doubling

it.

In this particular code, the issue goes away in Ruby 1.9 because block arguments are always block-local in that
version of the language. Still, you can get yourself in trouble any time you create lambdas within a loop and use
a loop variables (such as an array index) within the lambda.

6.6.2. Closures and Bindings

The Proc class defines a method named binding. Calling this method on a proc or lambda returns a Binding

object that represents the bindings in effect for that closure.

More About Bindings

We've been discussing the bindings of a closure as if they were simply a mapping from variable
names to variable values. In fact, bindings involve more than just variables. They hold all the
information necessary to execute a method, such as the value of self, and the block, if any, that

would be invoked by a yield.

A Binding object doesn't have interesting methods of its own, but it can be used as the second argument to the

global eval function (see Section 8.2), providing a context in which to evaluate a string of Ruby code. In Ruby

1.9, Binding has its own eval method, which you may prefer to use. (Use ri to learn more about Kernel.eval

and Binding.eval.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The use of a Binding object and the eval method gives us a back door through which we can manipulate the

behavior of a closure. Take another look at this code from earlier:

Return a lambda that retains or "closes over" the argument n

def multiplier(n)

 lambda {|data| data.collect{|x| x*n } }

end

doubler = multiplier(2) # Get a lambda that knows how to double

puts doubler.call([1,2,3]) # Prints 2,4,6

Now suppose we want to alter the behavior of doubler:

eval("n=3", doubler.binding) # Or doubler.binding.eval("n=3") in Ruby 1.9

puts doubler.call([1,2,3]) # Now this prints 3,6,9!

As a shortcut, the eval method allows you to pass a Proc object directly instead of passing the Binding object

of the Proc. So we could replace the eval invocation above with:

eval("n=3", doubler)

Bindings are not only a feature of closures. The Kernel.binding method returns a Binding object that

represents the bindings in effect at whatever point you happen to call it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.7. Method Objects

Ruby's methods and blocks are executable language constructs, but they are not objects. Procs and lambdas are
object versions of blocks; they can be executed and also manipulated as data. Ruby has powerful
metaprogramming (or reflection) capabilities, and methods can actually be represented as instances of the
Method class. (Metaprogramming is covered in Chapter 8, but Method objects are introduced here.) You should

note that invoking a method through a Method object is less efficient than invoking it directly. Method objects

are not typically used as often as lambdas and procs.

The Object class defines a method named method. Pass it a method name, as a string or a symbol, and it

returns a Method object representing the named method of the receiver (or throws a NameError if there is no

such method). For example:

m = 0.method(:succ) # A Method representing the succ method of Fixnum 0

In Ruby 1.9, you can also use public_method to obtain a Method object. It works like method does but ignores

protected and private methods (see Section 7.2).

The Method class is not a subclass of Proc, but it behaves much like it. Method objects are invoked with the

call method (or the [] operator), just as Proc objects are. And Method defines an arity method just like the

arity method of Proc. To invoke the Method m:

puts m.call # Same as puts 0.succ. Or use puts m[].

Invoking a method through a Method object does not change the invocation semantics, nor does it alter the

meaning of control-flow statements such as return and break. The call method of a Method object uses

method-invocation semantics, not yield semantics. Method objects, therefore, behave more like lambdas than

like procs.

Method objects work very much like Proc objects and can usually be used in place of them. When a true Proc is

required, you can use Method.to_proc to convert a Method to a Proc. This is why Method objects can be

prefixed with an ampersand and passed to a method in place of a block. For example:

def square(x); x*x; end

puts (1..10).map(&method(:square))

Defining Methods with Procs

In addition to obtaining a Method object that represents a method and converting it to a Proc, we

can also go in the other direction. The define_method method (of Module) expects a Symbol as an

argument, and creates a method with that name using the associated block as the method body.
Instead of using a block, you can also pass a Proc or a Method object as the second argument.

One important difference between Method objects and Proc objects is that Method objects are not closures.

Ruby's methods are intended to be completely self-contained, and they never have access to local variables

http://lib.ommolketab.ir
http://lib.ommolketab.ir

outside of their own scope. The only binding retained by a Method object, therefore, is the value of self- t h e

object on which the method is to be invoked.

In Ruby 1.9, the Method class defines three methods that are not available in 1.8: name returns the name of the

method as a string; owner returns the class in which the method was defined; and receiver returns the object

to which the method is bound. For any method object m, m.receiver.class must be equal to or a subclass of

m.owner.

6.7.1. Unbound Method Objects

In addition to the Method class, Ruby also defines an UnboundMethod class. As its name suggests, an

UnboundMethod object represents a method, without a binding to the object on which it is to be invoked.

Because an UnboundMethod is unbound, it cannot be invoked, and the UnboundMethod class does not define a

call or [] method.

To obtain an UnboundMethod object, use the instance_method method of any class or module:

unbound_plus = Fixnum.instance_method("+")

In Ruby 1.9, you can also use public_instance_method to obtain an UnboundMethod object. It works like

instance_method does, but it ignores protected and private methods (see Section 7.2).

In order to invoke an unbound method, you must first bind it to an object using the bind method:

plus_2 = unbound_plus.bind(2) # Bind the method to the object 2

The bind method returns a Method object, which can be invoked with its call method:

sum = plus_2.call(2) # => 4

Another way to obtain an UnboundMethod object is with the unbind method of the Method class:

plus_3 = plus_2.unbind.bind(3)

In Ruby 1.9, UnboundMethod has name and owner methods that work just as they do for the Method class.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.8. Functional Programming

Ruby is not a functional programming language in the way that languages like Lisp and Haskell are, but Ruby's
blocks, procs, and lambdas lend themselves nicely to a functional programming style. Any time you use a block
with an Enumerable iterator like map or inject, you're programming in a functional style. Here are examples

using the map and inject iterators:

Compute the average and standard deviation of an array of numbers

mean = a.inject {|x,y| x+y } / a.size

sumOfSquares = a.map{|x| (x-mean)**2 }.inject{|x,y| x+y }

standardDeviation = Math.sqrt(sumOfSquares/(a.size-1))

If the functional programming style is attractive to you, it is easy to add features to Ruby's built-in classes to
facilitate functional programming. The rest of this chapter explores some possibilities for working with functions.
The code in this section is dense and is presented as a mind-expanding exploration, not as a prescription for
good programming style. In particular, redefining operators as heavily as the code in the next section does is
likely to result in programs that are difficult for others to read and maintain!

This is advanced material and the code that follows assumes familiarity with Chapter 7. You may, therefore,
want to skip the rest of this chapter the first time through the book.

6.8.1. Applying a Function to an Enumerable

mapand inject are two of the most important iterators defined by Enumerable. Each expects a block. If we are

to write programs in a function-centric way, we might like methods on our functions that allow us to apply those
functions to a specified Enumerable object:

Code View:
This module defines methods and operators for functional programming.

module Functional

 # Apply this function to each element of the specified Enumerable,

 # returning an array of results. This is the reverse of Enumerable.map.

 # Use | as an operator alias. Read "|" as "over" or "applied over".

 #

 # Example:

 # a = [[1,2],[3,4]]

 # sum = lambda {|x,y| x+y}

 # sums = sum|a # => [3,7]

 def apply(enum)

 enum.map &self

 end

 alias | apply

 # Use this function to "reduce" an enumerable to a single quantity.

 # This is the inverse of Enumerable.inject.

 # Use <= as an operator alias.

 # Mnemonic: <= looks like a needle for injections

 # Example:

 # data = [1,2,3,4]

 # sum = lambda {|x,y| x+y}

 # total = sum<=data # => 10

 def reduce(enum)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 enum.inject &self

 end

 alias <= reduce

end

Add these functional programming methods to Proc and Method classes.

class Proc; include Functional; end

class Method; include Functional; end

Notice that we define methods in a module named Functional, and then we include this module into both the

Proc and Method classes. In this way, apply and reduce work for both proc and method objects. Most of the

methods that follow also define methods in this Functional module, so that they work for both Proc and

Method.

With apply and reduce defined as above, we could refactor our statistical computations as follows:

sum = lambda {|x,y| x+y } # A function to add two numbers

mean = (sum<=a)/a.size # Or sum.reduce(a) or a.inject(&sum)

deviation = lambda {|x| x-mean } # Function to compute difference from mean

square = lambda {|x| x*x } # Function to square a number

standardDeviation = Math.sqrt((sum<=square|(deviation|a))/(a.size-1))

Notice that the last line is succinct but that all the nonstandard operators make it hard to read. Also notice that
the | operator is left-associative, even when we define it ourselves. The syntax, therefore, for applying multiple

functions to an Enumerable requires parentheses. That is, we must write square|(deviation|a) instead of

square|deviation|a.

6.8.2. Composing Functions

If we have two functions f and g, we sometimes want to define a new function h which is f(g()), or f composed

with g. We can write a method that performs function composition automatically, as follows:

Code View:
module Functional

 # Return a new lambda that computes self[f[args]].

 # Use * as an operator alias for compose.

 # Examples, using the * alias for this method.

 #

 # f = lambda {|x| x*x }

 # g = lambda {|x| x+1 }

 # (f*g)[2] # => 9

 # (g*f)[2] # => 5

 #

 # def polar(x,y)

 # [Math.hypot(y,x), Math.atan2(y,x)]

 # end

 # def cartesian(magnitude, angle)

 # [magnitude*Math.cos(angle), magnitude*Math.sin(angle)]

 # end

 # p,c = method :polar, method :cartesian

 # (c*p)[3,4] # => [3,4]

 #

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 def compose(f)

 if self.respond_to?(:arity) && self.arity == 1

 lambda {|*args| self[f[*args]] }

 else

 lambda {|*args| self[*f[*args]] }

 end

 end

 # * is the natural operator for function composition.

 alias * compose

end

The example code in the comment demonstrates the use of compose with Method objects as well as lambdas.

We can use this new * function composition operator to slightly simplify our computation of standard deviation.

Using the same definitions of the lambdas sum, square, and deviation, the computation becomes:

standardDeviation = Math.sqrt((sum<=square*deviation|a)/(a.size-1))

The difference is that we compose square and deviation into a single function before applying it to the array a.

6.8.3. Partially Applying Functions

In functional programming, partial application is the process of taking a function and a partial set of argument
values and producing a new function that is equivalent to the original function with the specified arguments
fixed. For example:

product = lambda {|x, y| x*y } # A function of two arguments

double = lambda {|x| product(2,x) } # Apply one argument

Partial application can be simplified with appropriate methods (and operators) in our Functional module:

Code View:
module Functional

 #

 # Return a lambda equivalent to this one with one or more initial

 # arguments applied. When only a single argument

 # is being specified, the >> alias may be simpler to use.

 # Example:

 # product = lambda {|x,y| x*y}

 # doubler = lambda >> 2

 #

 def apply_head(*first)

 lambda {|*rest| self[*first.concat(rest)]}

 end

 #

 # Return a lambda equivalent to this one with one or more final arguments

 # applied. When only a single argument is being specified,

 # the << alias may be simpler.

 # Example:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 # difference = lambda {|x,y| x-y }

 # decrement = difference << 1

 #

 def apply_tail(*last)

 lambda {|*rest| self[*rest.concat(last)]}

 end

 # Here are operator alternatives for these methods. The angle brackets

 # point to the side on which the argument is shifted in.

 alias >> apply_head # g = f >> 2 -- set first arg to 2

 alias << apply_tail # g = f << 2 -- set last arg to 2

end

Using these methods and operators, we can define our double function simply as product>>2. We can use

partial application to make our standard deviation computation somewhat more abstract, by building our
deviation function from a more general-purpose difference function:

difference = lambda {|x,y| x-y } # Compute difference of two numbers

deviation = difference<<mean # Apply second argument

6.8.4. Memoizing Functions

Memoization is a functional programming term for caching the results of a function invocation. If a function
always returns the same value when passed the same arguments, if there is reason to believe that the same
arguments will be used repeatedly, and if the computation it performs is somewhat expensive, then
memoization may be a useful optimization. We can automate memoization for Proc and Method objects with the

following method:

module Functional

 #

 # Return a new lambda that caches the results of this function and

 # only calls the function when new arguments are supplied.

 #

 def memoize

 cache = {} # An empty cache. The lambda captures this in its closure.

 lambda {|*args|

 # notice that the hash key is the entire array of arguments!

 unless cache.has_key?(args) # If no cached result for these args

 cache[args] = self[*args] # Compute and cache the result

 end

 cache[args] # Return result from cache

 }

 end

 # A (probably unnecessary) unary + operator for memoization

 # Mnemonic: the + operator means "improved"

 alias +@ memoize # cached_f = +f

end

Here's how we might use the memoize method or the unary + operator:

A memoized recursive factorial function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

factorial = lambda {|x| return 1 if x==0; x*factorial[x-1]; }.memoize

Or, using the unary operator syntax

factorial = +lambda {|x| return 1 if x==0; x*factorial[x-1]; }

Note that the factorial function here is a recursive function. It calls the memoized version of itself, which

produces optimal caching. It would not work as well if you defined a recursive nonmemoized version of the
function and then defined a distinct memoized version of that:

factorial = lambda {|x| return 1 if x==0; x*factorial[x-1]; }

cached_factorial = +factorial # Recursive calls aren't cached!

6.8.5. Symbols, Methods, and Procs

There is a close relationship between the Symbol, Method, and Proc classes. We've already seen the method

method, which takes a Symbol argument and returns a Method object.

Ruby 1.9 adds a useful to_proc method to the Symbol class. This method allows a symbol to be prefixed with &

and passed as a block to an iterator. The symbol is assumed to name a method. When the Proc created with

this to_proc method is invoked, it calls the named method of its first argument, passing any remaining

arguments to that named method. Here's how you might use it:

Increment an array of integers with the Fixnum.succ method

[1,2,3].map(&:succ) # => [2,3,4]

Without Symbol.to_proc, we'd have to be slightly more verbose:

[1,2,3].map {|n| n.succ }

Symbol.to_proc was originally devised as an extension for Ruby 1.8, and it is typically implemented like this:

class Symbol

 def to_proc

 lambda {|receiver, *args| receiver.send(self, *args)}

 end

end

This implementation uses the send method (see Section 8.4.3) to invoke a method named by a symbol. We

could also do it like this:

class Symbol

 def to_proc

 lambda {|receiver, *args| receiver.method(self)[*args]}

 end

end

In addition to to_proc, we can define some related and possibly useful utilities. Let's start with the Module

class:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

class Module

 # Access instance methods with array notation. Returns UnboundMethod,

 alias [] instance_method

end

Here, we're simply defining a shorthand for the instance_method method of the Module class. Recall that that

method returns an UnboundMethod object, that cannot be invoked until bound to a particular instance of its

class. Here's an example using this new notation (notice the appeal of indexing a class with the names of its
methods!):

String[:reverse].bind("hello").call # => "olleh"

Binding an unbound method can also be made simpler with a bit of the same syntactic sugar:

class UnboundMethod

 # Allow [] as an alternative to bind.

 alias [] bind

end

With this alias in place, and using the existing [] alias for calling a method, this code becomes:

String[:reverse]["hello"][] # => "olleh"

The first pair of brackets indexes the method, the second pair binds it, and the third pair calls it.

Next, if we're going to use the [] operator for looking up the instance methods of a class, how about using []=

for defining instance methods:

class Module

 # Define a instance method with name sym and body f.

 # Example: String[:backwards] = lambda { reverse }

 def []=(sym, f)

 self.instance_eval { define_method(sym, f) }

 end

end

The definition of this []= operator may be confusing-this is advanced Ruby. define_method is a private

method of Module. We use instance_eval (a public method of Object) to run a block (including the invocation

of a private method) as if it were inside the module on which the method is being defined. We'll see
instance_eval and define_method again in Chapter 8.

Let's use this new []= operator to define a new Enumerable.average method:

Enumerable[:average] = lambda do

 sum, n = 0.0, 0

 self.each {|x| sum += x; n += 1 }

 if n == 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 nil

 else

 sum/n

 end

end

We've used the [] and []= operators here to get and set instance methods of a class or module. We can do

something similar for the singleton methods of an object (which include the class methods of a class or
module). Any object can have a singleton method, but it doesn't make sense to define an [] operator on the

Object class, as so many subclasses define that operator. For singleton methods, therefore, we could take the

opposite approach and define operators on the Symbol class:

Code View:
#

Add [] and []= operators to the Symbol class for accessing and setting

singleton methods of objects. Read : as "method" and [] as "of".

So :m[o] reads "method m of o".

#

class Symbol

 # Return the Method of obj named by this symbol. This may be a singleton

 # method of obj (such as a class method) or an instance method defined

 # by obj.class or inherited from a superclass.

 # Examples:

 # creator = :new[Object] # Class method Object.new

 # doubler = :*[2] # * method of Fixnum 2

 #

 def [](obj)

 obj.method(self)

 end

 # Define a singleton method on object o, using Proc or Method f as its body.

 # This symbol is used as the name of the method.

 # Examples:

 #

 # :singleton[o] = lambda { puts "this is a singleton method of o" }

 # :class_method[String] = lambda { puts "this is a class method" }

 #

 # Note that you can't create instance methods this way. See Module.[]=

 #

 def []=(o,f)

 # We can't use self in the block below, as it is evaluated in the

 # context of a different object. So we have to assign self to a variable.

 sym = self

 # This is the object we define singleton methods on.

 eigenclass = (class << o; self end)

 # define_method is private, so we have to use instance_eval to execute it.

 eigenclass.instance_eval { define_method(sym, f) }

 end

end

With this Symbol.[] method defined, along with the Functional module described previously, we can write

clever (and unreadable) code like this:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

dashes = :*['-'] # Method * of '-'

puts dashes[10] # Prints "----------"

y = (:+[1]*:*[2])[x] # Another way to write y = 2*x + 1

The definition of []= for Symbol is like that of []= for Module, in that it uses instance_eval to invoke the

define_method method. The difference is that singleton methods are not defined within a class, as instance

methods are, but in the eigenclass of the object. We'll encounter the eigenclass again in Chapter 7.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 7. Classes and Modules

Ruby is an object-oriented language in a very pure sense: every value in Ruby is (or at least behaves like) an
object. Every object is an instance of a class. A class defines a set of methods that an object responds to.
Classes may extend or subclass other classes, and inherit or override the methods of their superclass. Classes
can also include-or inherit methods from-modules.

Ruby's objects are strictly encapsulated: their state can be accessed only through the methods they define. The
instance variables manipulated by those methods cannot be directly accessed from outside of the object. It is
possible to define getter and setter accessor methods that appear to access object state directly. These pairs of
accessor methods are known as attributes and are distinct from instance variables. The methods defined by a
class may have "public," "protected," or "private" visibility, which affects how and where they may be invoked.

In contrast to the strict encapsulation of object state, Ruby's classes are very open. Any Ruby program can add
methods to existing classes, and it is even possible to add "singleton methods" to individual objects.

Much of Ruby's OO architecture is part of the core language. Other parts, such as the creation of attributes and
the declaration of method visibility, are done with methods rather than true language keywords. This chapter
begins with an extended tutorial that demonstrates how to define a class and add methods to it. This tutorial is
followed by sections on more advanced topics, including:

Method visibility

Subclassing and inheritance

Object creation and initialization

Modules, both as namespaces and as includable "mixins"

Singleton methods and the eigenclass

The method name resolution algorithm

The constant name resolution algorithm

7.1. Defining a Simple Class

We begin our coverage of classes with an extended tutorial that develops a class named Point to represent a

geometric point with X and Y coordinates. The subsections that follow demonstrate how to:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Define a new class

Create instances of that class

Write an initializer method for the class

Add attribute accessor methods to the class

Define operators for the class

Define an iterator method and make the class Enumerable

Override important Object methods such as to_s, ==, hash, and <=>

Define class methods, class variables, class instance variables, and constants

7.1.1. Creating the Class

Classes are created in Ruby with the class keyword:

class Point

end

Like most Ruby constructs, a class definition is delimited with an end. In addition to defining a new class, the

class keyword creates a new constant to refer to the class. The class name and the constant name are the

same, so all class names must begin with a capital letter.

Within the body of a class, but outside of any instance methods defined by the class, the self keyword refers

to the class being defined.

Like most statements in Ruby, class is an expression. The value of a class expression is the value of the last

expression within the class body. Typically, the last expression within a class is a def statement that defines a

method. The value of a def statement is always nil.

7.1.2. Instantiating a Point

Even though we haven't put anything in our Point class yet, we can still instantiate it:

p = Point.new

The constant Point holds a class object that represents our new class. All class objects have a method named

new that creates a new instance.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We can't do anything very interesting with the newly created Point object we've stored in the local variable p,

because we haven't yet defined any methods for the class. We can, however, ask the new object what kind of
object it is:

p.class # => Point

p.is_a? Point # => true

7.1.3. Initializing a Point

When we create new Point objects, we want to initialize them with two numbers that represent their X and Y

coordinates. In many object-oriented languages, this is done with a "constructor." In Ruby, it is done with an
initialize method:

class Point

 def initialize(x,y)

 @x, @y = x, y

 end

end

This is only three new lines of code, but there are a couple of important things to point out here. We explained
the def keyword in detail in Chapter 6. But that chapter focused on defining global functions that could be used

from anywhere. When def is used like this with an unqualified method name inside of a class definition, it

defines an instance method for the class. An instance method is a method that is invoked on an instance of the
class. When an instance method is called, the value of self is an instance of the class in which the method is

defined.

The next point to understand is that the initialize method has a special purpose in Ruby. The new method of

the class object creates a new instance object, and then it automatically invokes the initialize method on

that instance. Whatever arguments you passed to new are passed on to initialize. Because our initialize

method expects two arguments, we must now supply two values when we invoke Point.new:

p = Point.new(0,0)

In addition to being automatically invoked by Point.new, the initialize method is automatically made

private. An object can call initialize on itself, but you cannot explicitly call initialize on p to reinitialize its

state.

Now, let's look at the body of the initialize method. It takes the two values we've passed it, stored in local

variables x and y, and assigns them to instance variables @x and @y. Instance variables always begin with @, and

they always "belong to" whatever object self refers to. Each instance of our Point class has its own copy of

these two variables, which hold its own X and Y coordinates.

Instance Variable Encapsulation

The instance variables of an object can only be accessed by the instance methods of that object.
Code that is not inside an instance method cannot read or set the value of an instance variable
(unless it uses one of the reflective techniques that are described in Chapter 8).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Finally, a caution for programmers who are used to Java and related languages. In statically typed languages,
you must declare your variables, including instance variables. You know that Ruby variables don't need to be
declared, but you might still feel that you have to write something like this:

Incorrect code!

class Point

 @x = 0 # Create instance variable @x and assign a default. WRONG!

 @y = 0 # Create instance variable @y and assign a default. WRONG!

 def initialize(x,y)

 @x, @y = x, y # Now initialize previously created @x and @y.

 end

end

This code does not do at all what a Java programmer expects. Instance variables are always resolved in the
context of self. When the initialize method is invoked, self holds an instance of the Point class. But the

code outside of that method is executed as part of the definition of the Point class. When those first two

assignments are executed, self refers to the Point class itself, not to an instance of the class. The @x and @y

variables inside the initialize method are completely different from those outside it.

7.1.4. Defining a to_s Method

Just about any class you define should have a to_s instance method to return a string representation of the

object. This ability proves invaluable when debugging. Here's how we might do this for Point:

class Point

 def initialize(x,y)

 @x, @y = x, y

 end

 def to_s # Return a String that represents this point

 "(#@x,#@y)" # Just interpolate the instance variables into a string

 end

end

With this new method defined, we can create points and print them out:

p = new Point(1,2) # Create a new Point object

puts p # Displays "(1,2)"

7.1.5. Accessors and Attributes

Our Point class uses two instance variables. As we've noted, however, the value of these variables are only

accessible to other instance methods. If we want users of the Point class to be able to use the X and Y

coordinates of a point, we've got to provide accessor methods that return the value of the variables:

class Point

 def initialize(x,y)

 @x, @y = x, y

 end

 def x # The accessor (or getter) method for @x

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 @x

 end

 def y # The accessor method for @y

 @y

 end

end

With these methods defined, we can write code like this:

p = Point.new(1,2)

q = Point.new(p.x*2, p.y*3)

The expressions p.x and p.y may look like variable references, but they are, in fact, method invocations

without parentheses.

If we wanted our Point class to be mutable (which is probably not a good idea), we would also add setter

methods to set the value of the instance variables:

class MutablePoint

 def initialize(x,y); @x, @y = x, y; end

 def x; @x; end # The getter method for @x

 def y; @y; end # The getter method for @y

 def x=(value) # The setter method for @x

 @x = value

 end

 def y=(value) # The setter method for @y

 @y = value

 end

end

Recall that assignment expressions can be used to invoke setter methods like these. So with these methods
defined, we can write:

p = Point.new(1,1)

p.x = 0

p.y = 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using Setters Inside a Class

Once you've defined a setter method like x= for your class, you might be tempted to use it within

other instance methods of your class. That is, instead of writing @x=2, you might write x=2,

intending to invoke x=(2) implicitly on self. It doesn't work, of course; x=2 simply creates a new

local variable.

This is a not-uncommon mistake for novices who are just learning about setter methods and
assignment in Ruby. The rule is that assignment expressions will only invoke a setter method
when invoked through an object. If you want to use a setter from within the class that defines it,
invoke it explicitly through self. For example: self.x=2.

This combination of instance variable with trivial getter and setter methods is so common that Ruby provides a
way to automate it. The attr_reader and attr_accessor methods are defined by the Module class. All classes

are modules, (the Class class is a subclass of Module) so you can invoke these method inside any class

definition. Both methods take any number of symbols naming attributes. attr_reader creates trivial getter

methods for the instance variables with the same name. attr_accessor creates getter and setter methods.

Thus, if we were defining a mutable Point class, we could write:

class Point

 attr_accessor :x, :y # Define accessor methods for our instance variables

end

And if we were defining an immutable version of the class, we'd write:

class Point

 attr_reader :x, :y # Define reader methods for our instance variables

end

Each of these methods can accept an attribute name or names as a string rather than as a symbol. The
accepted style is to use symbols, but we can also write code like this:

attr_reader "x", "y"

attr is a similar method with a shorter name but with behavior that differs in Ruby 1.8 and Ruby 1.9. In 1.8,

attr can define only a single attribute at a time. With a single symbol argument, it defines a getter method. If

the symbol is followed by the value true, then it defines a setter method as well:

attr :x # Define a trivial getter method x for @x

attr :y, true # Define getter and setter methods for @y

In Ruby 1.9, attr can be used as it is in 1.8, or it can be used as a synonym for attr_reader.

The attr, attr_reader, and attr_accessor methods create instance methods for us. This is an example of

metaprogramming, and the ability to do it is a powerful feature of Ruby. There are more examples of
metaprogramming in Chapter 8. Note that attr and its related methods are invoked within a class definition

but outside of any method definitions. They are only executed once, when the class is being defined. There are

http://lib.ommolketab.ir
http://lib.ommolketab.ir

no efficiency concerns here: the getter and setter methods they create are just as fast as handcoded ones.
Remember that these methods are only able to create trivial getters and setters that map directly to the value
of an instance variable with the same name. If you need more complicated accessors, such as setters that set a
differently named variable, or getters that return a value computed from two different variables, then you'll
have to define those yourself.

7.1.6. Defining Operators

We'd like the + operator to perform vector addition of two Point objects, the * operator to multiply a Point by

a scalar, and the unary – operator to do the equivalent of multiplying by –1. Method-based operators such as +

are simply methods with punctuation for names. Because there are unary and binary forms of the – operator,

Ruby uses the method name –@ for unary minus. Here is a version of the Point class with mathematical

operators defined:

class Point

 attr_reader :x, :y # Define accessor methods for our instance variables

 def initialize(x,y)

 @x,@y = x, y

 end

 def +(other) # Define + to do vector addition

 Point.new(@x + other.x, @y + other.y)

 end

 def -@ # Define unary minus to negate both coordinates

 Point.new(-@x, -@y)

 end

 def *(scalar) # Define * to perform scalar multiplication

 Point.new(@x*scalar, @y*scalar)

 end

end

Take a look at the body of the + method. It is able to use the @x instance variable of self-the object that the

method is invoked on. But it cannot access @x in the other Point object. Ruby simply does not have a syntax for

this; all instance variable references implicitly use self. Our + method, therefore, is dependent on the x and y

getter methods. (We'll see later that it is possible to restrict the visibility of methods so that objects of the same
class can use each other's methods, but code outside the class cannot use them.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Type Checking and Duck Typing

Our + method does not do any type checking; it simply assumes that it has been passed a suitable

object. It is fairly common in Ruby programming to be loose about the definition of "suitable." In
the case of our + method, any object that has methods named x and y will do, as long as those

methods expect no arguments and return a number of some sort. We don't care if the argument
actually is a point, as long as it looks and behaves like a point. This approach is sometimes called
"duck typing," after the adage "if it walks like a duck and quacks like a duck, it must be a duck."

If we pass an object to + that is not suitable, Ruby will raise an exception. Attempting to add 3 to

a point, for example, results in this error message:

NoMethodError: undefined method `x' for 3:Fixnum

 from ./point.rb:37:in `+'

Translated, this tells us that the Fixnum 3 does not have a method named x, and that this error

arose in the + method of the Point class. This is all the information we need to figure out the

source of the problem, but it is somewhat obscure. Checking the class of method arguments may
make it easier to debug code that uses that method. Here is a version of the method with class
verification:

def +(other)

 raise TypeError, "Point argument expected" unless other.is_a? Point

 Point.new(@x + other.x, @y + other.y)

end

Here is a looser version of type checking that provides improved error messages but still allows
duck typing:

def +(other)

 raise TypeError, "Point-like argument expected" unless

 other.respond_to? :x and other.respond_to? :y

 Point.new(@x + other.x, @y + other.y)

end

Note that this version of the method still assumes that the x and y methods return numbers. We'd

get an obscure error message if one of these methods returned a string, for example.

Another approach to type checking occurs after the fact. We can simply handle any exceptions that
occur during execution of the method and raise a more appropriate exception of our own:

def +(other) # Assume that other looks like a Point

 Point.new(@x + other.x, @y + other.y)

rescue # If anything goes wrong above

 raise TypeError, # Then raise our own exception

 "Point addition with an argument that does not quack like a Point!"

end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note that our * method expects a numeric operand, not a Point. If p is point, then we can write p*2. As our

class is written, however, we cannot write 2*p. That second expression invokes the * method of the Integer

class, which doesn't know how to work with Point objects. Because the Integer class doesn't know how to

multiply by a Point, it asks the point for help by calling its coerce method. (See Section 3.8.7.4 for more

details.) If we want the expression 2*p to return the same result as p*2, we can define a coerce method:

If we try passing a Point to the * method of an Integer, it will call

this method on the Point and then will try to multiply the elements of

the array. Instead of doing type conversion, we switch the order of

the operands, so that we invoke the * method defined above.

def coerce(other)

 [self, other]

end

7.1.7. Array and Hash Access with []

Ruby uses square brackets for array and hash access, and allows any class to define a [] method and use these

brackets itself. Let's define a [] method for our class to allow Point objects to be treated as read-only arrays of

length 2, or as read-only hashes with keys :x and :y:

Define [] method to allow a Point to look like an array or

a hash with keys :x and :y

def [](index)

 case index

 when 0, -2: @x # Index 0 (or -2) is the X coordinate

 when 1, -1: @y # Index 1 (or -1) is the Y coordinate

 when :x, "x": @x # Hash keys as symbol or string for X

 when :y, "y": @y # Hash keys as symbol or string for Y

 else nil # Arrays and hashes just return nil on bad indexes

 end

end

7.1.8. Enumerating Coordinates

If a Point object can behave like an array with two elements, then perhaps we ought to be able to iterate

through those elements as we can with a true array. Here is a definition of the each iterator for our Point class.

Because a Point always has exactly two elements, our iterator doesn't have to loop; it can simply call yield

twice:

This iterator passes the X coordinate to the associated block, and then

passes the Y coordinate, and then returns. It allows us to enumerate

a point as if it were an array with two elements. This each method is

required by the Enumerable module.

def each

 yield @x

 yield @y

end

With this iterator defined, we can write code like this:

p = Point.new(1,2)

p.each {|x| print x } # Prints "12"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

More importantly, defining the each iterator allows us to mix in the methods of the Enumerable module, all of

which are defined in terms of each. Our class gains over 20 iterators by adding a single line:

include Enumerable

If we do this, then we can write interesting code like this:

Is the point P at the origin?

p.all? {|x| x == 0 } # True if the block is true for all elements

7.1.9. Point Equality

As our class is currently defined, two distinct Point instances are never equal to each other, even if their X and

Y coordinates are the same. To remedy this, we must provide an implementation of the == operator. (You may

want to reread Section 3.8.5 in Chapter 3 to refresh your memory about Ruby's various notions of equality.)

Here is an == method for Point:

def ==(o) # Is self == o?

 if o.is_a? Point # If o is a Point object

 @x==o.x && @y==o.y # then compare the fields.

 elsif # If o is not a Point

 false # then, by definition, self != o.

 end

end

Duck Typing and Equality

The + operator we defined earlier did no type checking at all: it works with any argument object

with x and y methods that return numbers. This == method is implemented differently; instead of

allowing duck typing, it requires that the argument is a Point. This is an implementation choice.

The implementation of == above chooses to define equality so that an object cannot be equal to a

Point unless it is itself a Point.

Implementations may be stricter or more liberal than this. The implementation above uses the
is_a? predicate to test the class of the argument. This allows an instance of a subclass of Point to

be equal to a Point. A stricter implementation would use instance_of? to disallow subclass

instances. Similarly, the implementation above uses == to compare the X and Y coordinates. For

numbers, the == operator allows type conversion, which means that the point (1,1) is equal to

(1.0,1.0). This is probably as it should be, but a stricter definition of equality could use eql? to

compare the coordinates.

A more liberal definition of equality would support duck typing. Some caution is required, however.
Our == method should not raise a NoMethodError if the argument object does not have x and y

methods. Instead, it should simply return false:

def ==(o) # Is self == o?

 @x == o.x && @y == o.y # Assume o has proper x and y methods

rescue # If that assumption fails

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 false # Then self != o

end

Recall from Section 3.8.5 that Ruby objects also define an eql? method for testing equality. By default, the

eql? method, like the == operator, tests object identity rather than equality of object content. Often, we want

eql? to work just like the == operator, and we can accomplish this with an alias:

class Point

 alias eql? ==

end

On the other hand, there are two reasons we might want eql? to be different from ==. First, some classes

define eql? to perform a stricter comparison than ==. In Numeric and its subclasses, for example, == allows type

conversion and eql? does not. If we believe that the users of our Point class might want to be able to compare

instances in two different ways, then we might follow this example. Because points are just two numbers, it
would make sense to follow the example set by Numeric here. Our eql? method would look much like the ==

method, but it would use eql? to compare point coordinates instead of ==:

def eql?(o)

 if o.instance_of? Point

 @x.eql?(o.x) && @y.eql?(o.y)

 elsif

 false

 end

end

As an aside, note that this is the right approach for any classes that implement collections (sets, lists, trees) of
arbitrary objects. The == operator should compare the members of the collection using their == operators, and

the eql? method should compare the members using their eql? methods.

The second reason to implement an eql? method that is different from the == operator is if you want instances

of your class to behave specially when used as a hash key. The Hash class uses eql? to compare hash keys (but

not values). If you leave eql? undefined, then hashes will compare instances of your class by object identity.

This means that if you associate a value with a key p, you will only be able to retrieve that value with the exact

same object p. An object q won't work, even if p == q. Mutable objects do not work well as hash keys, but

leaving eql? undefined neatly sidesteps the problem. (See Section 3.4.2 for more on hashes and mutable keys.)

Because eql? is used for hashes, you must never implement this method by itself. If you define an eql?

method, you must also define a hash method to compute a hashcode for your object. If two objects are equal

according to eql?, then their hash methods must return the same value. (Two unequal objects may return the

same hashcode, but you should avoid this to the extent possible.)

Implementing optimal hash methods can be very tricky. Fortunately, there is a simple way to compute perfectly

adequate hashcodes for just about any class: simply combine the hashcodes of all the objects referenced by
your class. (More precisely: combine the hashcodes of all the objects compared by your eql? method.) The trick

is to combine the hashcodes in the proper way. The following hash method is not a good one:

def hash

 @x.hash + @y.hash

end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The problem with this method is that it returns the same hashcode for the point (1,0) as it does for the point

(0,1). This is legal, but it leads to poor performance when points are used as hash keys. Instead, we should

mix things up a bit:

def hash

 code = 17

 code = 37*code + @x.hash

 code = 37*code + @y.hash

 # Add lines like this for each significant instance variable

 code # Return the resulting code

end

This general-purpose hashcode recipe should be suitable for most Ruby classes. It, and its constants 17 and 37,

are adapted from the book Effective Java by Joshua Bloch (Prentice Hall).

7.1.10. Ordering Points

Suppose we wish to define an ordering for Point objects so that we can compare them and sort them. There

are a number of ways to order points, but we'll chose to arrange them based on their distance from the origin.
This distance (or magnitude) is computed by the Pythagorean theorem: the square root of the sum of the
squares of the X and Y coordinates.

To define this ordering for Point objects, we need only define the <=> operator (see Section 4.6.6) and include

the Comparable module. Doing this mixes in implementations of the equality and relational operators that are

based on our implementation of the general <=> operator we defined. The <=> operator should compare self to

the object it is passed. If self is less than that object (closer to the origin, in this case), it should return –1. If

the two objects are equal, it should return 0. And if self is greater than the argument object, the method

should return 1. (The method should return nil if the argument object and self are of incomparable types.)

The following code is our implementation of <=>. There are two things to note about it. First, it doesn't bother

with the Math.sqrt method and instead simply compares the sum of the squares of the coordinates. Second,

after computing the sums of the squares, it simply delegates to the <=> operator of the Float class:

include Comparable # Mix in methods from the Comparable module.

Define an ordering for points based on their distance from the origin.

This method is required by the Comparable module.

def <=>(other)

 return nil unless other.instance_of? Point

 @x**2 + @y**2 <=> other.x**2 + other.y**2

end

Note that the Comparable module defines an == method that uses our definition of <=>. Our distance-based

comparison operator results in an == method that considers the points (1,0) and (0,1) to be equal. Because

our Point class explicitly defines its own == method, however, the == method of Comparable is never invoked.

Ideally, the == and <=> operators should have consistent definitions of equality. This was not possible in our

Point class, and we end up with operators that allow the following:

p,q = Point.new(1,0), Point.new(0,1)

p == q # => false: p is not equal to q

p < q # => false: p is not less than q

http://lib.ommolketab.ir
http://lib.ommolketab.ir

p > q # => false: p is not greater than q

Finally, It is worth noting here that the Enumerable module defines several methods, such as sort, min, and

max, that only work if the objects being enumerated define the <=> operator.

7.1.11. A Mutable Point

The Point class we've been developing is immutable: once a point object has been created, there is no public

API to change the X and Y coordinates of that point. This is probably as it should be. But let's detour and
investigate some methods we might add if we wanted points to be mutable.

First of all, we'd need x= and y= setter methods to allow the X and Y coordinates to be set directly. We could

define these methods explicitly, or simply change our attr_reader line to attr_accessor:

attr_accessor :x, :y

Next, we'd like an alternative to the + operator for when we want to add the coordinates of point q to the

coordinates of point p, and modify point p rather than creating and returning a new Point object. We'll call this

method add!, with the exclamation mark indicating that it alters the internal state of the object on which it is

invoked:

def add!(p) # Add p to self, return modified self

 @x += p.x

 @y += p.y

 self

end

When defining a mutator method, we normally only add an exclamation mark to the name if there is a
nonmutating version of the same method. In this case, the name add! makes sense if we also define an add

method that returns a new object, rather than altering its receiver. A nonmutating version of a mutator method
is often written simply by creating a copy of self and invoking the mutator on the copied object:

def add(p) # A nonmutating version of add!

 q = self.dup # Make a copy of self

 q.add!(p) # Invoke the mutating method on the copy

end

In this trivial example, our add method works just like the + operator we've already defined, and it's not really

necessary. So if we don't define a nonmutating add, we should consider dropping the exclamation mark from

add! and allowing the name of the method itself ("add" instead of "plus") to indicate that it is a mutator.

7.1.12. Quick and Easy Mutable Classes

If you want a mutable Point class, one way to create it is with Struct. Struct is a core Ruby class that

generates other classes. These generated classes have accessor methods for the named fields you specify.
There are two ways to create a new class with Struct.new:

Struct.new("Point", :x, :y) # Creates new class Struct::Point

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Point = Struct.new(:x, :y) # Creates new class, assigns to Point

Naming Anonymous Classes

The second line in the code relies on a curious fact about Ruby classes: if you assign an unnamed
class object to a constant, the name of that constant becomes the name of a class. You can
observe this same behavior if you use the Class.new constructor:

C = Class.new # A new class with no body, assigned to a constant

c = C.new # Create an instance of the class

c.class.to_s # => "C": constant name becomes class name

Once a class has been created with Struct.new, you can use it like any other class. Its new method will expect

values for each of the named fields you specify, and its instance methods provide read and write accessors for
those fields:

p = Point.new(1,2) # => #<struct Point x=1, y=2>

p.x # => 1

p.y # => 2

p.x = 3 # => 3

p.x # => 3

Structs also define the [] and []= operators for array and hash-style indexing, and even provide each and

each_pair iterators for looping through the values held in an instance of the struct:

p[:x] = 4 # => 4: same as p.x =

p[:x] # => 4: same as p.x

p[1] # => 2: same as p.y

p.each {|c| print c} # prints "42"

p.each_pair {|n,c| print n,c } # prints "x4y2"

Struct-based classes have a working == operator, can be used as hash keys (though caution is necessary

because they are mutable), and even define a helpful to_s method:

q = Point.new(4,2)

q == p # => true

h = {q => 1} # Create a hash using q as a key

h[p] # => 1: extract value using p as key

q.to_s # => "#<struct Point x=4, y=2>"

A Point class defined as a struct does not have point-specific methods like add! or the <=> operator defined

earlier in this chapter. There is no reason we can't add them, though. Ruby class definitions are not static. Any
class (including classes defined with Struct.new) can be "opened" and have methods added to it. Here's a

Point class initially defined as a Struct, with point-specific methods added:

Point = Struct.new(:x, :y) # Create new class, assign to Point

http://lib.ommolketab.ir
http://lib.ommolketab.ir

class Point # Open Point class for new methods

 def add!(other) # Define an add! method

 self.x += other.x

 self.y += other.y

 self

 end

 include Comparable # Include a module for the class

 def <=>(other) # Define the <=> operator

 return nil unless other.instance_of? Point

 self.x**2 + self.y**2 <=> other.x**2 + other.y**2

 end

end

As noted at the beginning of this section, the Struct class is designed to create mutable classes. With just a bit

of work, however, we can make a Struct-based class immutable:

Point = Struct.new(:x, :y) # Define mutable class

class Point # Open the class

 undef x=,y=,[]= # Undefine mutator methods

end

7.1.13. A Class Method

Let's take another approach to adding Point objects together. Instead of invoking an instance method of one

point and passing another point to that method, let's write a method named sum that takes any number of

Point objects, adds them together, and returns a new Point. This method is not an instance method invoked

on a Point object. Rather, it is a class method, invoked through the Point class itself. We might invoke the sum

method like this:

total = Point.sum(p1, p2, p3) # p1, p2 and p3 are Point objects

Keep in mind that the expression Point refers to a Class object that represents our point class. To define a

class method for the Point class, what we are really doing is defining a singleton method of the Point object.

(We covered singleton methods in Section 6.1.4.) To define a singleton method, use the def statement as

usual, but specify the object on which the method is to be defined as well as the name of the method. Our class
method sum is defined like this:

Code View:
class Point

 attr_reader :x, :y # Define accessor methods for our instance variables

 def Point.sum(*points) # Return the sum of an arbitrary number of points

 x = y = 0

 points.each {|p| x += p.x; y += p.y }

 Point.new(x,y)

 end

 # ...the rest of class omitted here...

end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This definition of the class method names the class explicitly, and mirrors the syntax used to invoke the
method. Class methods can also be defined using self instead of the class name. Thus, this method could also

be written like this:

def self.sum(*points) # Return the sum of an arbitrary number of points

 x = y = 0

 points.each {|p| x += p.x; y += p.y }

 Point.new(x,y)

end

Using self instead of Point makes the code slightly less clear, but it's an application of the DRY (Don't Repeat

Yourself) principle. If you use self instead of the class name, you can change the name of a class without

having to edit the definition of its class methods.

There is yet another technique for defining class methods. Though it is less clear than the previously shown
technique, it can be handy when defining multiple class methods, and you are likely to see it used in existing
code:

Open up the Point object so we can add methods to it

class << Point # Syntax for adding methods to a single object

 def sum(*points) # This is the class method Point.sum

 x = y = 0

 points.each {|p| x += p.x; y += p.y }

 Point.new(x,y)

 end

 # Other class methods can be defined here

end

This technique can also be used inside the class definition, where we can use self instead of repeating the class

name:

class Point

 # Instance methods go here

 class << self

 # Class methods go here

 end

end

We'll learn more about this syntax in Section 7.7.

7.1.14. Constants

Many classes can benefit from the definition of some associated constants. Here are some constants that might
be useful for our Point class:

class Point

 def initialize(x,y) # Initialize method

 @x,@y = x, y

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 end

 ORIGIN = Point.new(0,0)

 UNIT_X = Point.new(1,0)

 UNIT_Y = Point.new(0,1)

 # Rest of class definition goes here

end

Inside the class definition, these constants can be referred to by their unqualified names. Outside the definition,
they must be prefixed by the name of the class, of course:

Point::UNIT_X + Point::UNIT_Y # => (1,1)

Note that because our constants in this example refer to instances of the class, we cannot define the constants
until after we've defined the initialize method of the class. Also, keep in mind that it is perfectly legal to

define constants in the Point class from outside the class:

Point::NEGATIVE_UNIT_X = Point.new(-1,0)

7.1.15. Class Variables

Class variables are visible to, and shared by, the class methods and the instance methods of a class, and also by
the class definition itself. Like instance variables, class variables are encapsulated; they can be used by the
implementation of a class, but they are not visible to the users of a class. Class variables have names that begin
with @@.

There is no real need to use class variables in our Point class, but for the purposes of this tutorial, let's suppose

that we want to collect data about the number of Point objects that are created and their average coordinates.

Here's how we might write the code:

class Point

 # Initialize our class variables in the class definition itself

 @@n = 0 # How many points have been created

 @@totalX = 0 # The sum of all X coordinates

 @@totalY = 0 # The sum of all Y coordinates

 def initialize(x,y) # Initialize method

 @x,@y = x, y # Sets initial values for instance variables

 # Use the class variables in this instance method to collect data

 @@n += 1 # Keep track of how many Points have been created

 @@totalX += x # Add these coordinates to the totals

 @@totalY += y

 end

 # A class method to report the data we collected

 def self.report

 # Here we use the class variables in a class method

 puts "Number of points created: #@@n"

 puts "Average X coordinate: #{@@totalX.to_f/@@n}"

 puts "Average Y coordinate: #{@@totalY.to_f/@@n}"

 end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

end

The thing to notice about this code is that class variables are used in instance methods, class methods, and in
the class definition itself, outside of any method. Class variables are fundamentally different than instance
variables. We've seen that instance variables are always evaluated in reference to self. That is why an instance

variable reference in a class definition or class method is completely different from an instance variable
reference in an instance method. Class variables, on the other hand, are always evaluated in reference to the
class object created by the enclosing class definition statement.

7.1.16. Class Instance Variables

Classes are objects and can have instance variables just as other objects can. The instance variables of a
class-often called class instance variables-are not the same as class variables. But they are similar enough
that they can often be used instead of class variables.

An instance variable used inside a class definition but outside an instance method definition is a class instance

variable. Like class variables, class instance variables are associated with the class rather than with any
particular instance of the class. A disadvantage of class instance variables is that they cannot be used within
instance methods as class variables can. Another disadvantage is the potential for confusing them with ordinary
instance variables. Without the distinctive punctuation prefixes, it may be more difficult to remember whether a
variable is associated with instances or with the class object.

One of the most important advantages of class instance variables over class variables has to do with the
confusing behavior of class variables when subclassing an existing class. We'll return to this point later in the
chapter.

Let's port our statistics-gathering version of the Point class to use class instance variables instead of class

variables. The only difficulty is that because class instance variables cannot be used from instance methods, we
must move the statistics gathering code out of the initialize method (which is an instance method) and into

the new class method used to create points:

Code View:
class Point

 # Initialize our class instance variables in the class definition itself

 @n = 0 # How many points have been created

 @totalX = 0 # The sum of all X coordinates

 @totalY = 0 # The sum of all Y coordinates

 def initialize(x,y) # Initialize method

 @x,@y = x, y # Sets initial values for instance variables

 end

 def self.new(x,y) # Class method to create new Point objects

 # Use the class instance variables in this class method to collect data

 @n += 1 # Keep track of how many Points have been created

 @totalX += x # Add these coordinates to the totals

 @totalY += y

 super # Invoke the real definition of new to create a Point

 # More about super later in the chapter

 end

 # A class method to report the data we collected

 def self.report

 # Here we use the class instance variables in a class method

 puts "Number of points created: #@n"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 puts "Average X coordinate: #{@totalX.to_f/@n}"

 puts "Average Y coordinate: #{@totalY.to_f/@n}"

 end

end

Because class instance variables are just instance variables of class objects, we can use attr, attr_reader, and

attr_accessor to create accessor methods for them. The trick, however, is to invoke these metaprogramming

methods in the right context. Recall that one way to define class methods uses the syntax class << self. This

same syntax allows us to define attribute accessor methods for class instance variables:

class << self

 attr_accessor :n, :totalX, :totalY

end

With these accessors defined, we can refer to our raw data as Point.n, Point.totalX, and Point.totalY.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 7. Classes and Modules

Ruby is an object-oriented language in a very pure sense: every value in Ruby is (or at least behaves like) an
object. Every object is an instance of a class. A class defines a set of methods that an object responds to.
Classes may extend or subclass other classes, and inherit or override the methods of their superclass. Classes
can also include-or inherit methods from-modules.

Ruby's objects are strictly encapsulated: their state can be accessed only through the methods they define. The
instance variables manipulated by those methods cannot be directly accessed from outside of the object. It is
possible to define getter and setter accessor methods that appear to access object state directly. These pairs of
accessor methods are known as attributes and are distinct from instance variables. The methods defined by a
class may have "public," "protected," or "private" visibility, which affects how and where they may be invoked.

In contrast to the strict encapsulation of object state, Ruby's classes are very open. Any Ruby program can add
methods to existing classes, and it is even possible to add "singleton methods" to individual objects.

Much of Ruby's OO architecture is part of the core language. Other parts, such as the creation of attributes and
the declaration of method visibility, are done with methods rather than true language keywords. This chapter
begins with an extended tutorial that demonstrates how to define a class and add methods to it. This tutorial is
followed by sections on more advanced topics, including:

Method visibility

Subclassing and inheritance

Object creation and initialization

Modules, both as namespaces and as includable "mixins"

Singleton methods and the eigenclass

The method name resolution algorithm

The constant name resolution algorithm

7.1. Defining a Simple Class

We begin our coverage of classes with an extended tutorial that develops a class named Point to represent a

geometric point with X and Y coordinates. The subsections that follow demonstrate how to:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Define a new class

Create instances of that class

Write an initializer method for the class

Add attribute accessor methods to the class

Define operators for the class

Define an iterator method and make the class Enumerable

Override important Object methods such as to_s, ==, hash, and <=>

Define class methods, class variables, class instance variables, and constants

7.1.1. Creating the Class

Classes are created in Ruby with the class keyword:

class Point

end

Like most Ruby constructs, a class definition is delimited with an end. In addition to defining a new class, the

class keyword creates a new constant to refer to the class. The class name and the constant name are the

same, so all class names must begin with a capital letter.

Within the body of a class, but outside of any instance methods defined by the class, the self keyword refers

to the class being defined.

Like most statements in Ruby, class is an expression. The value of a class expression is the value of the last

expression within the class body. Typically, the last expression within a class is a def statement that defines a

method. The value of a def statement is always nil.

7.1.2. Instantiating a Point

Even though we haven't put anything in our Point class yet, we can still instantiate it:

p = Point.new

The constant Point holds a class object that represents our new class. All class objects have a method named

new that creates a new instance.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We can't do anything very interesting with the newly created Point object we've stored in the local variable p,

because we haven't yet defined any methods for the class. We can, however, ask the new object what kind of
object it is:

p.class # => Point

p.is_a? Point # => true

7.1.3. Initializing a Point

When we create new Point objects, we want to initialize them with two numbers that represent their X and Y

coordinates. In many object-oriented languages, this is done with a "constructor." In Ruby, it is done with an
initialize method:

class Point

 def initialize(x,y)

 @x, @y = x, y

 end

end

This is only three new lines of code, but there are a couple of important things to point out here. We explained
the def keyword in detail in Chapter 6. But that chapter focused on defining global functions that could be used

from anywhere. When def is used like this with an unqualified method name inside of a class definition, it

defines an instance method for the class. An instance method is a method that is invoked on an instance of the
class. When an instance method is called, the value of self is an instance of the class in which the method is

defined.

The next point to understand is that the initialize method has a special purpose in Ruby. The new method of

the class object creates a new instance object, and then it automatically invokes the initialize method on

that instance. Whatever arguments you passed to new are passed on to initialize. Because our initialize

method expects two arguments, we must now supply two values when we invoke Point.new:

p = Point.new(0,0)

In addition to being automatically invoked by Point.new, the initialize method is automatically made

private. An object can call initialize on itself, but you cannot explicitly call initialize on p to reinitialize its

state.

Now, let's look at the body of the initialize method. It takes the two values we've passed it, stored in local

variables x and y, and assigns them to instance variables @x and @y. Instance variables always begin with @, and

they always "belong to" whatever object self refers to. Each instance of our Point class has its own copy of

these two variables, which hold its own X and Y coordinates.

Instance Variable Encapsulation

The instance variables of an object can only be accessed by the instance methods of that object.
Code that is not inside an instance method cannot read or set the value of an instance variable
(unless it uses one of the reflective techniques that are described in Chapter 8).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Finally, a caution for programmers who are used to Java and related languages. In statically typed languages,
you must declare your variables, including instance variables. You know that Ruby variables don't need to be
declared, but you might still feel that you have to write something like this:

Incorrect code!

class Point

 @x = 0 # Create instance variable @x and assign a default. WRONG!

 @y = 0 # Create instance variable @y and assign a default. WRONG!

 def initialize(x,y)

 @x, @y = x, y # Now initialize previously created @x and @y.

 end

end

This code does not do at all what a Java programmer expects. Instance variables are always resolved in the
context of self. When the initialize method is invoked, self holds an instance of the Point class. But the

code outside of that method is executed as part of the definition of the Point class. When those first two

assignments are executed, self refers to the Point class itself, not to an instance of the class. The @x and @y

variables inside the initialize method are completely different from those outside it.

7.1.4. Defining a to_s Method

Just about any class you define should have a to_s instance method to return a string representation of the

object. This ability proves invaluable when debugging. Here's how we might do this for Point:

class Point

 def initialize(x,y)

 @x, @y = x, y

 end

 def to_s # Return a String that represents this point

 "(#@x,#@y)" # Just interpolate the instance variables into a string

 end

end

With this new method defined, we can create points and print them out:

p = new Point(1,2) # Create a new Point object

puts p # Displays "(1,2)"

7.1.5. Accessors and Attributes

Our Point class uses two instance variables. As we've noted, however, the value of these variables are only

accessible to other instance methods. If we want users of the Point class to be able to use the X and Y

coordinates of a point, we've got to provide accessor methods that return the value of the variables:

class Point

 def initialize(x,y)

 @x, @y = x, y

 end

 def x # The accessor (or getter) method for @x

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 @x

 end

 def y # The accessor method for @y

 @y

 end

end

With these methods defined, we can write code like this:

p = Point.new(1,2)

q = Point.new(p.x*2, p.y*3)

The expressions p.x and p.y may look like variable references, but they are, in fact, method invocations

without parentheses.

If we wanted our Point class to be mutable (which is probably not a good idea), we would also add setter

methods to set the value of the instance variables:

class MutablePoint

 def initialize(x,y); @x, @y = x, y; end

 def x; @x; end # The getter method for @x

 def y; @y; end # The getter method for @y

 def x=(value) # The setter method for @x

 @x = value

 end

 def y=(value) # The setter method for @y

 @y = value

 end

end

Recall that assignment expressions can be used to invoke setter methods like these. So with these methods
defined, we can write:

p = Point.new(1,1)

p.x = 0

p.y = 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using Setters Inside a Class

Once you've defined a setter method like x= for your class, you might be tempted to use it within

other instance methods of your class. That is, instead of writing @x=2, you might write x=2,

intending to invoke x=(2) implicitly on self. It doesn't work, of course; x=2 simply creates a new

local variable.

This is a not-uncommon mistake for novices who are just learning about setter methods and
assignment in Ruby. The rule is that assignment expressions will only invoke a setter method
when invoked through an object. If you want to use a setter from within the class that defines it,
invoke it explicitly through self. For example: self.x=2.

This combination of instance variable with trivial getter and setter methods is so common that Ruby provides a
way to automate it. The attr_reader and attr_accessor methods are defined by the Module class. All classes

are modules, (the Class class is a subclass of Module) so you can invoke these method inside any class

definition. Both methods take any number of symbols naming attributes. attr_reader creates trivial getter

methods for the instance variables with the same name. attr_accessor creates getter and setter methods.

Thus, if we were defining a mutable Point class, we could write:

class Point

 attr_accessor :x, :y # Define accessor methods for our instance variables

end

And if we were defining an immutable version of the class, we'd write:

class Point

 attr_reader :x, :y # Define reader methods for our instance variables

end

Each of these methods can accept an attribute name or names as a string rather than as a symbol. The
accepted style is to use symbols, but we can also write code like this:

attr_reader "x", "y"

attr is a similar method with a shorter name but with behavior that differs in Ruby 1.8 and Ruby 1.9. In 1.8,

attr can define only a single attribute at a time. With a single symbol argument, it defines a getter method. If

the symbol is followed by the value true, then it defines a setter method as well:

attr :x # Define a trivial getter method x for @x

attr :y, true # Define getter and setter methods for @y

In Ruby 1.9, attr can be used as it is in 1.8, or it can be used as a synonym for attr_reader.

The attr, attr_reader, and attr_accessor methods create instance methods for us. This is an example of

metaprogramming, and the ability to do it is a powerful feature of Ruby. There are more examples of
metaprogramming in Chapter 8. Note that attr and its related methods are invoked within a class definition

but outside of any method definitions. They are only executed once, when the class is being defined. There are

http://lib.ommolketab.ir
http://lib.ommolketab.ir

no efficiency concerns here: the getter and setter methods they create are just as fast as handcoded ones.
Remember that these methods are only able to create trivial getters and setters that map directly to the value
of an instance variable with the same name. If you need more complicated accessors, such as setters that set a
differently named variable, or getters that return a value computed from two different variables, then you'll
have to define those yourself.

7.1.6. Defining Operators

We'd like the + operator to perform vector addition of two Point objects, the * operator to multiply a Point by

a scalar, and the unary – operator to do the equivalent of multiplying by –1. Method-based operators such as +

are simply methods with punctuation for names. Because there are unary and binary forms of the – operator,

Ruby uses the method name –@ for unary minus. Here is a version of the Point class with mathematical

operators defined:

class Point

 attr_reader :x, :y # Define accessor methods for our instance variables

 def initialize(x,y)

 @x,@y = x, y

 end

 def +(other) # Define + to do vector addition

 Point.new(@x + other.x, @y + other.y)

 end

 def -@ # Define unary minus to negate both coordinates

 Point.new(-@x, -@y)

 end

 def *(scalar) # Define * to perform scalar multiplication

 Point.new(@x*scalar, @y*scalar)

 end

end

Take a look at the body of the + method. It is able to use the @x instance variable of self-the object that the

method is invoked on. But it cannot access @x in the other Point object. Ruby simply does not have a syntax for

this; all instance variable references implicitly use self. Our + method, therefore, is dependent on the x and y

getter methods. (We'll see later that it is possible to restrict the visibility of methods so that objects of the same
class can use each other's methods, but code outside the class cannot use them.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Type Checking and Duck Typing

Our + method does not do any type checking; it simply assumes that it has been passed a suitable

object. It is fairly common in Ruby programming to be loose about the definition of "suitable." In
the case of our + method, any object that has methods named x and y will do, as long as those

methods expect no arguments and return a number of some sort. We don't care if the argument
actually is a point, as long as it looks and behaves like a point. This approach is sometimes called
"duck typing," after the adage "if it walks like a duck and quacks like a duck, it must be a duck."

If we pass an object to + that is not suitable, Ruby will raise an exception. Attempting to add 3 to

a point, for example, results in this error message:

NoMethodError: undefined method `x' for 3:Fixnum

 from ./point.rb:37:in `+'

Translated, this tells us that the Fixnum 3 does not have a method named x, and that this error

arose in the + method of the Point class. This is all the information we need to figure out the

source of the problem, but it is somewhat obscure. Checking the class of method arguments may
make it easier to debug code that uses that method. Here is a version of the method with class
verification:

def +(other)

 raise TypeError, "Point argument expected" unless other.is_a? Point

 Point.new(@x + other.x, @y + other.y)

end

Here is a looser version of type checking that provides improved error messages but still allows
duck typing:

def +(other)

 raise TypeError, "Point-like argument expected" unless

 other.respond_to? :x and other.respond_to? :y

 Point.new(@x + other.x, @y + other.y)

end

Note that this version of the method still assumes that the x and y methods return numbers. We'd

get an obscure error message if one of these methods returned a string, for example.

Another approach to type checking occurs after the fact. We can simply handle any exceptions that
occur during execution of the method and raise a more appropriate exception of our own:

def +(other) # Assume that other looks like a Point

 Point.new(@x + other.x, @y + other.y)

rescue # If anything goes wrong above

 raise TypeError, # Then raise our own exception

 "Point addition with an argument that does not quack like a Point!"

end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note that our * method expects a numeric operand, not a Point. If p is point, then we can write p*2. As our

class is written, however, we cannot write 2*p. That second expression invokes the * method of the Integer

class, which doesn't know how to work with Point objects. Because the Integer class doesn't know how to

multiply by a Point, it asks the point for help by calling its coerce method. (See Section 3.8.7.4 for more

details.) If we want the expression 2*p to return the same result as p*2, we can define a coerce method:

If we try passing a Point to the * method of an Integer, it will call

this method on the Point and then will try to multiply the elements of

the array. Instead of doing type conversion, we switch the order of

the operands, so that we invoke the * method defined above.

def coerce(other)

 [self, other]

end

7.1.7. Array and Hash Access with []

Ruby uses square brackets for array and hash access, and allows any class to define a [] method and use these

brackets itself. Let's define a [] method for our class to allow Point objects to be treated as read-only arrays of

length 2, or as read-only hashes with keys :x and :y:

Define [] method to allow a Point to look like an array or

a hash with keys :x and :y

def [](index)

 case index

 when 0, -2: @x # Index 0 (or -2) is the X coordinate

 when 1, -1: @y # Index 1 (or -1) is the Y coordinate

 when :x, "x": @x # Hash keys as symbol or string for X

 when :y, "y": @y # Hash keys as symbol or string for Y

 else nil # Arrays and hashes just return nil on bad indexes

 end

end

7.1.8. Enumerating Coordinates

If a Point object can behave like an array with two elements, then perhaps we ought to be able to iterate

through those elements as we can with a true array. Here is a definition of the each iterator for our Point class.

Because a Point always has exactly two elements, our iterator doesn't have to loop; it can simply call yield

twice:

This iterator passes the X coordinate to the associated block, and then

passes the Y coordinate, and then returns. It allows us to enumerate

a point as if it were an array with two elements. This each method is

required by the Enumerable module.

def each

 yield @x

 yield @y

end

With this iterator defined, we can write code like this:

p = Point.new(1,2)

p.each {|x| print x } # Prints "12"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

More importantly, defining the each iterator allows us to mix in the methods of the Enumerable module, all of

which are defined in terms of each. Our class gains over 20 iterators by adding a single line:

include Enumerable

If we do this, then we can write interesting code like this:

Is the point P at the origin?

p.all? {|x| x == 0 } # True if the block is true for all elements

7.1.9. Point Equality

As our class is currently defined, two distinct Point instances are never equal to each other, even if their X and

Y coordinates are the same. To remedy this, we must provide an implementation of the == operator. (You may

want to reread Section 3.8.5 in Chapter 3 to refresh your memory about Ruby's various notions of equality.)

Here is an == method for Point:

def ==(o) # Is self == o?

 if o.is_a? Point # If o is a Point object

 @x==o.x && @y==o.y # then compare the fields.

 elsif # If o is not a Point

 false # then, by definition, self != o.

 end

end

Duck Typing and Equality

The + operator we defined earlier did no type checking at all: it works with any argument object

with x and y methods that return numbers. This == method is implemented differently; instead of

allowing duck typing, it requires that the argument is a Point. This is an implementation choice.

The implementation of == above chooses to define equality so that an object cannot be equal to a

Point unless it is itself a Point.

Implementations may be stricter or more liberal than this. The implementation above uses the
is_a? predicate to test the class of the argument. This allows an instance of a subclass of Point to

be equal to a Point. A stricter implementation would use instance_of? to disallow subclass

instances. Similarly, the implementation above uses == to compare the X and Y coordinates. For

numbers, the == operator allows type conversion, which means that the point (1,1) is equal to

(1.0,1.0). This is probably as it should be, but a stricter definition of equality could use eql? to

compare the coordinates.

A more liberal definition of equality would support duck typing. Some caution is required, however.
Our == method should not raise a NoMethodError if the argument object does not have x and y

methods. Instead, it should simply return false:

def ==(o) # Is self == o?

 @x == o.x && @y == o.y # Assume o has proper x and y methods

rescue # If that assumption fails

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 false # Then self != o

end

Recall from Section 3.8.5 that Ruby objects also define an eql? method for testing equality. By default, the

eql? method, like the == operator, tests object identity rather than equality of object content. Often, we want

eql? to work just like the == operator, and we can accomplish this with an alias:

class Point

 alias eql? ==

end

On the other hand, there are two reasons we might want eql? to be different from ==. First, some classes

define eql? to perform a stricter comparison than ==. In Numeric and its subclasses, for example, == allows type

conversion and eql? does not. If we believe that the users of our Point class might want to be able to compare

instances in two different ways, then we might follow this example. Because points are just two numbers, it
would make sense to follow the example set by Numeric here. Our eql? method would look much like the ==

method, but it would use eql? to compare point coordinates instead of ==:

def eql?(o)

 if o.instance_of? Point

 @x.eql?(o.x) && @y.eql?(o.y)

 elsif

 false

 end

end

As an aside, note that this is the right approach for any classes that implement collections (sets, lists, trees) of
arbitrary objects. The == operator should compare the members of the collection using their == operators, and

the eql? method should compare the members using their eql? methods.

The second reason to implement an eql? method that is different from the == operator is if you want instances

of your class to behave specially when used as a hash key. The Hash class uses eql? to compare hash keys (but

not values). If you leave eql? undefined, then hashes will compare instances of your class by object identity.

This means that if you associate a value with a key p, you will only be able to retrieve that value with the exact

same object p. An object q won't work, even if p == q. Mutable objects do not work well as hash keys, but

leaving eql? undefined neatly sidesteps the problem. (See Section 3.4.2 for more on hashes and mutable keys.)

Because eql? is used for hashes, you must never implement this method by itself. If you define an eql?

method, you must also define a hash method to compute a hashcode for your object. If two objects are equal

according to eql?, then their hash methods must return the same value. (Two unequal objects may return the

same hashcode, but you should avoid this to the extent possible.)

Implementing optimal hash methods can be very tricky. Fortunately, there is a simple way to compute perfectly

adequate hashcodes for just about any class: simply combine the hashcodes of all the objects referenced by
your class. (More precisely: combine the hashcodes of all the objects compared by your eql? method.) The trick

is to combine the hashcodes in the proper way. The following hash method is not a good one:

def hash

 @x.hash + @y.hash

end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The problem with this method is that it returns the same hashcode for the point (1,0) as it does for the point

(0,1). This is legal, but it leads to poor performance when points are used as hash keys. Instead, we should

mix things up a bit:

def hash

 code = 17

 code = 37*code + @x.hash

 code = 37*code + @y.hash

 # Add lines like this for each significant instance variable

 code # Return the resulting code

end

This general-purpose hashcode recipe should be suitable for most Ruby classes. It, and its constants 17 and 37,

are adapted from the book Effective Java by Joshua Bloch (Prentice Hall).

7.1.10. Ordering Points

Suppose we wish to define an ordering for Point objects so that we can compare them and sort them. There

are a number of ways to order points, but we'll chose to arrange them based on their distance from the origin.
This distance (or magnitude) is computed by the Pythagorean theorem: the square root of the sum of the
squares of the X and Y coordinates.

To define this ordering for Point objects, we need only define the <=> operator (see Section 4.6.6) and include

the Comparable module. Doing this mixes in implementations of the equality and relational operators that are

based on our implementation of the general <=> operator we defined. The <=> operator should compare self to

the object it is passed. If self is less than that object (closer to the origin, in this case), it should return –1. If

the two objects are equal, it should return 0. And if self is greater than the argument object, the method

should return 1. (The method should return nil if the argument object and self are of incomparable types.)

The following code is our implementation of <=>. There are two things to note about it. First, it doesn't bother

with the Math.sqrt method and instead simply compares the sum of the squares of the coordinates. Second,

after computing the sums of the squares, it simply delegates to the <=> operator of the Float class:

include Comparable # Mix in methods from the Comparable module.

Define an ordering for points based on their distance from the origin.

This method is required by the Comparable module.

def <=>(other)

 return nil unless other.instance_of? Point

 @x**2 + @y**2 <=> other.x**2 + other.y**2

end

Note that the Comparable module defines an == method that uses our definition of <=>. Our distance-based

comparison operator results in an == method that considers the points (1,0) and (0,1) to be equal. Because

our Point class explicitly defines its own == method, however, the == method of Comparable is never invoked.

Ideally, the == and <=> operators should have consistent definitions of equality. This was not possible in our

Point class, and we end up with operators that allow the following:

p,q = Point.new(1,0), Point.new(0,1)

p == q # => false: p is not equal to q

p < q # => false: p is not less than q

http://lib.ommolketab.ir
http://lib.ommolketab.ir

p > q # => false: p is not greater than q

Finally, It is worth noting here that the Enumerable module defines several methods, such as sort, min, and

max, that only work if the objects being enumerated define the <=> operator.

7.1.11. A Mutable Point

The Point class we've been developing is immutable: once a point object has been created, there is no public

API to change the X and Y coordinates of that point. This is probably as it should be. But let's detour and
investigate some methods we might add if we wanted points to be mutable.

First of all, we'd need x= and y= setter methods to allow the X and Y coordinates to be set directly. We could

define these methods explicitly, or simply change our attr_reader line to attr_accessor:

attr_accessor :x, :y

Next, we'd like an alternative to the + operator for when we want to add the coordinates of point q to the

coordinates of point p, and modify point p rather than creating and returning a new Point object. We'll call this

method add!, with the exclamation mark indicating that it alters the internal state of the object on which it is

invoked:

def add!(p) # Add p to self, return modified self

 @x += p.x

 @y += p.y

 self

end

When defining a mutator method, we normally only add an exclamation mark to the name if there is a
nonmutating version of the same method. In this case, the name add! makes sense if we also define an add

method that returns a new object, rather than altering its receiver. A nonmutating version of a mutator method
is often written simply by creating a copy of self and invoking the mutator on the copied object:

def add(p) # A nonmutating version of add!

 q = self.dup # Make a copy of self

 q.add!(p) # Invoke the mutating method on the copy

end

In this trivial example, our add method works just like the + operator we've already defined, and it's not really

necessary. So if we don't define a nonmutating add, we should consider dropping the exclamation mark from

add! and allowing the name of the method itself ("add" instead of "plus") to indicate that it is a mutator.

7.1.12. Quick and Easy Mutable Classes

If you want a mutable Point class, one way to create it is with Struct. Struct is a core Ruby class that

generates other classes. These generated classes have accessor methods for the named fields you specify.
There are two ways to create a new class with Struct.new:

Struct.new("Point", :x, :y) # Creates new class Struct::Point

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Point = Struct.new(:x, :y) # Creates new class, assigns to Point

Naming Anonymous Classes

The second line in the code relies on a curious fact about Ruby classes: if you assign an unnamed
class object to a constant, the name of that constant becomes the name of a class. You can
observe this same behavior if you use the Class.new constructor:

C = Class.new # A new class with no body, assigned to a constant

c = C.new # Create an instance of the class

c.class.to_s # => "C": constant name becomes class name

Once a class has been created with Struct.new, you can use it like any other class. Its new method will expect

values for each of the named fields you specify, and its instance methods provide read and write accessors for
those fields:

p = Point.new(1,2) # => #<struct Point x=1, y=2>

p.x # => 1

p.y # => 2

p.x = 3 # => 3

p.x # => 3

Structs also define the [] and []= operators for array and hash-style indexing, and even provide each and

each_pair iterators for looping through the values held in an instance of the struct:

p[:x] = 4 # => 4: same as p.x =

p[:x] # => 4: same as p.x

p[1] # => 2: same as p.y

p.each {|c| print c} # prints "42"

p.each_pair {|n,c| print n,c } # prints "x4y2"

Struct-based classes have a working == operator, can be used as hash keys (though caution is necessary

because they are mutable), and even define a helpful to_s method:

q = Point.new(4,2)

q == p # => true

h = {q => 1} # Create a hash using q as a key

h[p] # => 1: extract value using p as key

q.to_s # => "#<struct Point x=4, y=2>"

A Point class defined as a struct does not have point-specific methods like add! or the <=> operator defined

earlier in this chapter. There is no reason we can't add them, though. Ruby class definitions are not static. Any
class (including classes defined with Struct.new) can be "opened" and have methods added to it. Here's a

Point class initially defined as a Struct, with point-specific methods added:

Point = Struct.new(:x, :y) # Create new class, assign to Point

http://lib.ommolketab.ir
http://lib.ommolketab.ir

class Point # Open Point class for new methods

 def add!(other) # Define an add! method

 self.x += other.x

 self.y += other.y

 self

 end

 include Comparable # Include a module for the class

 def <=>(other) # Define the <=> operator

 return nil unless other.instance_of? Point

 self.x**2 + self.y**2 <=> other.x**2 + other.y**2

 end

end

As noted at the beginning of this section, the Struct class is designed to create mutable classes. With just a bit

of work, however, we can make a Struct-based class immutable:

Point = Struct.new(:x, :y) # Define mutable class

class Point # Open the class

 undef x=,y=,[]= # Undefine mutator methods

end

7.1.13. A Class Method

Let's take another approach to adding Point objects together. Instead of invoking an instance method of one

point and passing another point to that method, let's write a method named sum that takes any number of

Point objects, adds them together, and returns a new Point. This method is not an instance method invoked

on a Point object. Rather, it is a class method, invoked through the Point class itself. We might invoke the sum

method like this:

total = Point.sum(p1, p2, p3) # p1, p2 and p3 are Point objects

Keep in mind that the expression Point refers to a Class object that represents our point class. To define a

class method for the Point class, what we are really doing is defining a singleton method of the Point object.

(We covered singleton methods in Section 6.1.4.) To define a singleton method, use the def statement as

usual, but specify the object on which the method is to be defined as well as the name of the method. Our class
method sum is defined like this:

Code View:
class Point

 attr_reader :x, :y # Define accessor methods for our instance variables

 def Point.sum(*points) # Return the sum of an arbitrary number of points

 x = y = 0

 points.each {|p| x += p.x; y += p.y }

 Point.new(x,y)

 end

 # ...the rest of class omitted here...

end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This definition of the class method names the class explicitly, and mirrors the syntax used to invoke the
method. Class methods can also be defined using self instead of the class name. Thus, this method could also

be written like this:

def self.sum(*points) # Return the sum of an arbitrary number of points

 x = y = 0

 points.each {|p| x += p.x; y += p.y }

 Point.new(x,y)

end

Using self instead of Point makes the code slightly less clear, but it's an application of the DRY (Don't Repeat

Yourself) principle. If you use self instead of the class name, you can change the name of a class without

having to edit the definition of its class methods.

There is yet another technique for defining class methods. Though it is less clear than the previously shown
technique, it can be handy when defining multiple class methods, and you are likely to see it used in existing
code:

Open up the Point object so we can add methods to it

class << Point # Syntax for adding methods to a single object

 def sum(*points) # This is the class method Point.sum

 x = y = 0

 points.each {|p| x += p.x; y += p.y }

 Point.new(x,y)

 end

 # Other class methods can be defined here

end

This technique can also be used inside the class definition, where we can use self instead of repeating the class

name:

class Point

 # Instance methods go here

 class << self

 # Class methods go here

 end

end

We'll learn more about this syntax in Section 7.7.

7.1.14. Constants

Many classes can benefit from the definition of some associated constants. Here are some constants that might
be useful for our Point class:

class Point

 def initialize(x,y) # Initialize method

 @x,@y = x, y

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 end

 ORIGIN = Point.new(0,0)

 UNIT_X = Point.new(1,0)

 UNIT_Y = Point.new(0,1)

 # Rest of class definition goes here

end

Inside the class definition, these constants can be referred to by their unqualified names. Outside the definition,
they must be prefixed by the name of the class, of course:

Point::UNIT_X + Point::UNIT_Y # => (1,1)

Note that because our constants in this example refer to instances of the class, we cannot define the constants
until after we've defined the initialize method of the class. Also, keep in mind that it is perfectly legal to

define constants in the Point class from outside the class:

Point::NEGATIVE_UNIT_X = Point.new(-1,0)

7.1.15. Class Variables

Class variables are visible to, and shared by, the class methods and the instance methods of a class, and also by
the class definition itself. Like instance variables, class variables are encapsulated; they can be used by the
implementation of a class, but they are not visible to the users of a class. Class variables have names that begin
with @@.

There is no real need to use class variables in our Point class, but for the purposes of this tutorial, let's suppose

that we want to collect data about the number of Point objects that are created and their average coordinates.

Here's how we might write the code:

class Point

 # Initialize our class variables in the class definition itself

 @@n = 0 # How many points have been created

 @@totalX = 0 # The sum of all X coordinates

 @@totalY = 0 # The sum of all Y coordinates

 def initialize(x,y) # Initialize method

 @x,@y = x, y # Sets initial values for instance variables

 # Use the class variables in this instance method to collect data

 @@n += 1 # Keep track of how many Points have been created

 @@totalX += x # Add these coordinates to the totals

 @@totalY += y

 end

 # A class method to report the data we collected

 def self.report

 # Here we use the class variables in a class method

 puts "Number of points created: #@@n"

 puts "Average X coordinate: #{@@totalX.to_f/@@n}"

 puts "Average Y coordinate: #{@@totalY.to_f/@@n}"

 end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

end

The thing to notice about this code is that class variables are used in instance methods, class methods, and in
the class definition itself, outside of any method. Class variables are fundamentally different than instance
variables. We've seen that instance variables are always evaluated in reference to self. That is why an instance

variable reference in a class definition or class method is completely different from an instance variable
reference in an instance method. Class variables, on the other hand, are always evaluated in reference to the
class object created by the enclosing class definition statement.

7.1.16. Class Instance Variables

Classes are objects and can have instance variables just as other objects can. The instance variables of a
class-often called class instance variables-are not the same as class variables. But they are similar enough
that they can often be used instead of class variables.

An instance variable used inside a class definition but outside an instance method definition is a class instance

variable. Like class variables, class instance variables are associated with the class rather than with any
particular instance of the class. A disadvantage of class instance variables is that they cannot be used within
instance methods as class variables can. Another disadvantage is the potential for confusing them with ordinary
instance variables. Without the distinctive punctuation prefixes, it may be more difficult to remember whether a
variable is associated with instances or with the class object.

One of the most important advantages of class instance variables over class variables has to do with the
confusing behavior of class variables when subclassing an existing class. We'll return to this point later in the
chapter.

Let's port our statistics-gathering version of the Point class to use class instance variables instead of class

variables. The only difficulty is that because class instance variables cannot be used from instance methods, we
must move the statistics gathering code out of the initialize method (which is an instance method) and into

the new class method used to create points:

Code View:
class Point

 # Initialize our class instance variables in the class definition itself

 @n = 0 # How many points have been created

 @totalX = 0 # The sum of all X coordinates

 @totalY = 0 # The sum of all Y coordinates

 def initialize(x,y) # Initialize method

 @x,@y = x, y # Sets initial values for instance variables

 end

 def self.new(x,y) # Class method to create new Point objects

 # Use the class instance variables in this class method to collect data

 @n += 1 # Keep track of how many Points have been created

 @totalX += x # Add these coordinates to the totals

 @totalY += y

 super # Invoke the real definition of new to create a Point

 # More about super later in the chapter

 end

 # A class method to report the data we collected

 def self.report

 # Here we use the class instance variables in a class method

 puts "Number of points created: #@n"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 puts "Average X coordinate: #{@totalX.to_f/@n}"

 puts "Average Y coordinate: #{@totalY.to_f/@n}"

 end

end

Because class instance variables are just instance variables of class objects, we can use attr, attr_reader, and

attr_accessor to create accessor methods for them. The trick, however, is to invoke these metaprogramming

methods in the right context. Recall that one way to define class methods uses the syntax class << self. This

same syntax allows us to define attribute accessor methods for class instance variables:

class << self

 attr_accessor :n, :totalX, :totalY

end

With these accessors defined, we can refer to our raw data as Point.n, Point.totalX, and Point.totalY.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.2. Method Visibility: Public, Protected, Private

Instance methods may be public, private, or protected. If you've programmed with other object-oriented
languages, you may already be familiar with these terms. Pay attention anyway, because these words have a
somewhat different meaning in Ruby than they do in other languages.

Methods are normally public unless they are explicitly declared to be private or protected. One exception is the
initialize method, which is always implicitly private. Another exception is any "global" method declared

outside of a class definition-those methods are defined as private instance methods of Object. A public method

can be invoked from anywhere-there are no restrictions on its use.

A private method is internal to the implementation of a class, and it can only be called by other instance
methods of the class (or, as we'll see later, its subclasses). Private methods are implicitly invoked on self, and

may not be explicitly invoked on an object. If m is a private method, then you must invoke it in functional style

as m. You cannot write o.m or even self.m.

A protected method is like a private method in that it can only be invoked from within the implementation of a
class or its subclasses. It differs from a private method in that it may be explicitly invoked on any instance of
the class, and it is not restricted to implicit invocation on self. A protected method can be used, for example,

to define an accessor that allows instances of a class to share internal state with each other, but does not allow
users of the class to access that state.

Protected methods are the least commonly defined and also the most difficult to understand. The rule about
when a protected method can be invoked can be more formally described as follows: a protected method
defined by a class C may be invoked on an object o by a method in an object p if and only if the classes of o and

p are both subclasses of, or equal to, the class C.

Method visibility is declared with three methods named public, private, and protected. These are instance

methods of the Module class. All classes are modules, and inside a class definition (but outside method

definitions), self refers to class being defined. Thus, public, private, and protected may be used bare as if

they were keywords of the language. In fact, however, they are method invocations on self. There are two

ways to invoke these methods. With no arguments, they specify that all subsequent method definitions will have
the specified visibility. A class might use them like this:

class Point

 # public methods go here

 # The following methods are protected

 protected

 # protected methods go here

 # The following methods are private

 private

 # private methods go here

end

The methods may also be invoked with the names of one or more methods (as symbols or strings) as
arguments. When invoked like this, they alter the visibility of the named methods. In this usage, the visibility
declaration must come after the definition of the method. One approach is to declare all private and protected
methods at once, at the end of a class. Another approach is to declare the visibility of each private or protected
method immediately after it is defined. Here, for example, is a class with a private utility method and a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

protected accessor method:

class Widget

 def x # Accessor method for @x

 @x

 end

 protected :x # Make it protected

 def utility_method # Define a method

 nil

 end

 private :utility_method # And make it private

end

Remember that public, private, and protected apply only to methods in Ruby. Instance and class variables

are encapsulated and effectively private, and constants are effectively public. There is no way to make an
instance variable accessible from outside a class (except by defining an accessor method, of course). And there
is no way to define a constant that is inaccessible to outside use.

Occasionally, it is useful to specify that a class method should be private. If your class defines factory methods,
for example, you might want to make the new method private. To do this, use the private_class_method

method, specifying one or more method names as symbols:

private_class_method :new

You can make a private class method public again with public_class_method. Neither method can be invoked

without arguments in the way that public, protected, and private can be.

Ruby is, by design, a very open language. The ability to specify that some methods are private and protected
encourages good programming style, and prevents inadvertent use of methods that are not part of the public
API of a class. It is important to understand, however, that Ruby's metaprogramming capabilities make it trivial
to invoke private and protected methods and even to access encapsulated instance variables. To invoke the
private utility method defined in the previous code, you can use the send method, or you can use

instance_eval to evaluate a block in the context of the object:

w = Widget.new # Create a Widget

w.send :utility_method # Invoke private method!

w.instance_eval { utility_method } # Another way to invoke it

w.instance_eval { @x } # Read instance variable of w

If you want to invoke a method by name, but you don't want to inadvertently invoke a private method that you
don't know about, you can (in Ruby 1.9) use public_send instead of send. It works like send, but does not

invoke private methods when called with an explicit receiver. public_send is covered in Chapter 8, as are send

and instance_eval.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.3. Subclassing and Inheritance

Most object-oriented programming languages, including Ruby, provide a subclassing mechanism that allows us
to create new classes whose behavior is based on, but modified from, the behavior of an existing class. We'll
begin this discussion of subclassing with definitions of basic terminology. If you've programmed in Java, C++, or
a similar language, you are probably already familiar with these terms.

When we define a class, we may specify that it extends-or inherits from-another class, known as the
superclass. If we define a class Ruby that extends a class Gem, we say that Ruby is a subclass of Gem, and that

Gem is the superclass of Ruby. If you do not specify a superclass when you define a class, then your class

implicitly extends Object. A class may have any number of subclasses, and every class has a single superclass

except Object, which has none.

The fact that classes may have multiple subclasses but only a single superclass means that they can be
arranged in a tree structure, which we call the Ruby class hierarchy. The Object class is the root of this

hierarchy, and every class inherits directly or indirectly from it. The descendants of a class are the subclasses of
the class plus the subclasses of the subclasses, and so on recursively. The ancestors of a class are the
superclass, plus the superclass of the superclass, and so on up to Object. Figure 5-5 in Chapter 5 illustrates the

portion of the Ruby class hierarchy that includes Exception and all of its descendants. In that figure, you can

see that the ancestors of EOFError are IOError, StandardError, Exception, and Object.

BasicObject in Ruby 1.9

In Ruby 1.9, Object is no longer the root of the class hierarchy. A new class named BasicObject

serves that purpose, and Object is a subclass of BasicObject. BasicObject is a very simple class,

with almost no methods of its own, and it is useful as the superclass of delegating wrapper classes
(like the one shown in Example 8-5 in Chapter 8).

When you create a class in Ruby 1.9, you still extend Object unless you explicitly specify the

superclass, and most programmers will never need to use or extend BasicObject.

The syntax for extending a class is simple. Just add a < character and the name of the superclass to your class

statement. For example:

class Point3D < Point # Define class Point3D as a subclass of Point

end

We'll flesh out this three-dimensional Point class in the subsections that follow, showing how methods are

inherited from the superclass, and how to override or augment the inherited methods to define new behavior for
the subclass.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Subclassing a Struct

Earlier in this chapter, we saw how to use Struct.new to automatically generate simple classes. It

is also possible to subclass a struct-based class, so that methods other than the automatically
generated ones can be added:

class Point3D < Struct.new("Point3D", :x, :y, :z)

 # Superclass struct gives us accessor methods, ==, to_s, etc.

 # Add point-specific methods here

end

7.3.1. Inheriting Methods

The Point3D class we have defined is a trivial subclass of Point. It declares itself an extension of Point, but

there is no class body, so it adds nothing to that class. A Point3D object is effectively the same thing as a Point

object. One of the only observable differences is in the value returned by the class method:

p2 = Point.new(1,2)

p3 = Point3D.new(1,2)

print p2.to_s, p2.class # prints "(1,2)Point"

print p3.to_s, p3.class # prints "(1,2)Point3D"

The value returned by the class method is different, but what's more striking about this example is what is the

same. Our Point3D object has inherited the to_s method defined by Point. It has also inherited the

initialize method-this is what allows us to create a Point3D object with the same new call that we use to

create a Point object.[*] There is another example of method inheritance in this code: both Point and Point3D

inherit the class method from Object.

[*] If you're a Java programmer, this may be surprising to you. Java classes define special constructor methods for initialization, and those
methods are not inherited. In Ruby, initialize is an ordinary method and is inherited like any other.

7.3.2. Overriding Methods

When we define a new class, we add new behavior to it by defining new methods. Just as importantly, however,
we can customize the inherited behavior of the class by redefining inherited methods.

For example, the Object class defines a to_s method to convert an object to a string in a very generic way:

o = Object.new

puts o.to_s # Prints something like "#<Object:0xb7f7fce4>"

When we defined a to_s method in the Point class, we were overriding the to_s method inherited from Object.

One of the important things to understand about object-oriented programming and subclassing is that when
methods are invoked, they are looked up dynamically so that the appropriate definition or redefinition of the
method is found. That is, method invocations are not bound statically at the time they are parsed, but rather,
are looked up at the time they are executed. Here is an example to demonstrate this important point:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Greet the World

class WorldGreeter

 def greet # Display a greeting

 puts "#{greeting} #{who}"

 end

 def greeting # What greeting to use

 "Hello"

 end

 def who # Who to greet

 "World"

 end

end

Greet the world in Spanish

class SpanishWorldGreeter < WorldGreeter

 def greeting # Override the greeting

 "Hola"

 end

end

We call a method defined in WorldGreeter, which calls the overridden

version of greeting in SpanishWorldGreeter, and prints "Hola World"

SpanishWorldGreeter.new.greet

If you've done object-oriented programming before, the behavior of this program is probably obvious and trivial
to you. But if you're new to it, it may be profound. We call the greet method inherited from WorldGreeter. This

greet method calls the greeting method. At the time that greet was defined, the greeting method returned

"Hello". But we've subclassed WorldGreeter, and the object we're calling greet on has a new definition of

greeting. When we invoke greeting, Ruby looks up the appropriate definition of that method for the object it

is being invoked on, and we end up with a proper Spanish greeting rather than an English one. This runtime
lookup of the appropriate definition of a method is called method name resolution, and is described in detail in
Section 7.8 at the end of this chapter.

Notice that it is also perfectly reasonable to define an abstract class that invokes certain undefined "abstract"
methods, which are left for subclasses to define. The opposite of abstract is concrete. A class that extends an
abstract class is concrete if it defines all of the abstract methods of its ancestors. For example:

This class is abstract; it doesn't define greeting or who

No special syntax is required: any class that invokes methods that are

intended for a subclass to implement is abstract.

class AbstractGreeter

 def greet

 puts "#{greeting} #{who}"

 end

end

A concrete subclass

class WorldGreeter < AbstractGreeter

 def greeting; "Hello"; end

 def who; "World"; end

end

WorldGreeter.new.greet # Displays "Hello World"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.3.2.1. Overriding private methods

Private methods cannot be invoked from outside the class that defines them. But they are inherited by
subclasses. This means that subclasses can invoke them and can override them.

Be careful when you subclass a class that you did not write yourself. Classes often use private methods as
internal helper methods. They are not part of the public API of the class and are not intended to be visible. If
you haven't read the source code of the class, you won't even know the names of the private methods it defines
for its own use. If you happen to define a method (whatever its visibility) in your subclass that has the same
name as a private method in the superclass, you will have inadvertently overridden the superclass's internal
utility method, and this will almost certainly cause unintended behavior.

The upshot is that, in Ruby, you should only subclass when you are familiar with the implementation of the
superclass. If you only want to depend on the public API of a class and not on its implementation, then you
should extend the functionality of the class by encapsulating and delegating to it, not by inheriting from it.

7.3.3. Augmenting Behavior by Chaining

Sometimes when we override a method, we don't want to replace it altogether, we just want to augment its
behavior by adding some new code. In order to do this, we need a way to invoke the overridden method from
the overriding method. This is known as chaining, and it is accomplished with the keyword super.

super works like a special method invocation: it invokes a method with the same name as the current one, in

the superclass of the current class. (Note that the superclass need not define that method itself-it can inherit it
from one of its ancestors.) You may specify arguments for super just as you would for a normal method

invocation. One common and important place for method chaining is the initialize method of a class. Here is

how we might write the initialize method of our Point3D class:

Code View:
class Point3D < Point

 def initialize(x,y,z)

 # Pass our first two arguments along to the superclass initialize method

 super(x,y)

 # And deal with the third argument ourself

 @z = z;

 end

end

If you use super as a bare keyword-with no arguments and no parentheses-then all of the arguments that

were passed to the current method are passed to the superclass method. Note, however, that it's the current
values of the method parameters that are passed to the superclass method. If the method has modified the
values in its parameter variables, then the modified values are passed to the invocation of the superclass
method.

As with normal method invocations, the parentheses around super arguments are optional. Because a bare

super has special meaning, however, you must explicitly use a pair of empty parentheses if you want to pass

zero arguments from a method that itself has one or more arguments.

7.3.4. Inheritance of Class Methods

Class methods may be inherited and overridden just as instance methods can be. If our Point class defines a

class method sum, then our Point3D subclass inherits that method. That is, if Point3D does not define its own

http://lib.ommolketab.ir
http://lib.ommolketab.ir

class method named sum, then the expression Point3D.sum invokes the same method as the expression

Point.sum.

As a stylistic matter, it is preferable to invoke class methods through the class object on which they are defined.
A code maintainer seeing an expression Point3D.sum would go looking for a definition of the sum method in the

Point3D class, and he might have a hard time finding it in the Point class. When invoking a class method with

an explicit receiver, you should avoid relying on inheritance-always invoke the class method through the class
that defines it.[*]

[*] The Class.new method is an exception-it is inherited by and invoked on just about every new class we define.

Within the body of a class method, you may invoke the other class methods of the class without an explicit
receiver-they are invoked implicitly on self, and the value of self in a class method is the class on which it

was invoked. It is here, inside the body of a class method, that the inheritance of class methods is useful: it
allows you to implicitly invoke a class method even when that class method is defined by a superclass.

Finally, note that class methods can use super just as instance methods can to invoke the same-named method

in the superclass.

7.3.5. Inheritance and Instance Variables

Instance variables often appear to be inherited in Ruby. Consider this code, for example:

class Point3D < Point

 def initialize(x,y,z)

 super(x,y)

 @z = z;

 end

 def to_s

 "(#@x, #@y, #@z)" # Variables @x and @y inherited?

 end

end

The to_s method in Point3D references the @x and @y variables from the superclass Point. This code works as

you probably expect it to:

Point3D.new(1,2,3).to_s # => "(1, 2, 3)"

Because this code behaves as expected, you may be tempted to say that these variables are inherited. That is
not how Ruby works, though. All Ruby objects have a set of instance variables. These are not defined by the
object's class-they are simply created when a value is assigned to them. Because instance variables are not
defined by a class, they are unrelated to subclassing and the inheritance mechanism.

In this code, Point3D defines an initialize method that chains to the initialize method of its superclass.

The chained method assigns values to the variables @x and @y, which makes those variables come into existence

for a particular instance of Point3D.

Programmers coming from Java-or from other strongly typed languages in which a class defines a set of fields
for its instances-may find that this takes some getting used to. Really, though, it is quite simple: Ruby's
instance variables are not inherited and have nothing to do with the inheritance mechanism. The reason that

http://lib.ommolketab.ir
http://lib.ommolketab.ir

they sometimes appear to be inherited is that instance variables are created by the methods that first assign
values to them, and those methods are often inherited or chained.

There is an important corollary. Because instance variables have nothing to do with inheritance, it follows that
an instance variable used by a subclass cannot "shadow" an instance variable in the superclass. If a subclass
uses an instance variable with the same name as a variable used by one of its ancestors, it will overwrite the
value of its ancestor's variable. This can be done intentionally, to alter the behavior of the ancestor, or it can be
done inadvertently. In the latter case, it is almost certain to cause bugs. As with the inheritance of private
methods described earlier, this is another reason why it is only safe to extend Ruby classes when you are
familiar with (and in control of) the implementation of the superclass.

Finally, recall that class instance variables are simply instance variables of the Class object that represents a

class. As such, they are not inherited. Furthermore, the Point and Point3D objects (we're talking about the

Class objects themselves, not the classes they represent) are both just instances of Class. There is no

relationship between them, and no way that one could inherit variables from the other.

7.3.6. Inheritance and Class Variables

Class variables are shared by a class and all of its subclasses. If a class A defines a variable @@a, then subclass B

can use that variable. Although this may appear, superficially, to be inheritance, is it actually something
different.

The difference becomes clear when we think about setting the value of a class variable. If a subclass assigns a
value to a class variable already in use by a superclass, it does not create its own private copy of the class
variable, but instead alters the value seen by the superclass. It also alters the shared value seen by all other
subclasses of the superclass. Ruby 1.8 prints a warning about this if you run it with -w. Ruby 1.9 does not issue

this warning.

If a class uses class variables, then any subclass can alter the behavior of the class and all its descendants by
changing the value of the shared class variable. This is a strong argument for the use of class instance variables
instead of class variables.

The following code demonstrates the sharing of class variables. It outputs 123:

class A

 @@value = 1 # A class variable

 def A.value; @@value; end # An accessor method for it

end

print A.value # Display value of A's class variable

class B < A; @@value = 2; end # Subclass alters shared class variable

print A.value # Superclass sees altered value

class C < A; @@value = 3; end # Another alters shared variable again

print B.value # 1st subclass sees value from 2nd subclass

7.3.7. Inheritance of Constants

Constants are inherited and can be overridden, much like instance methods can. There is, however, a very
important difference between the inheritance of methods and the inheritance of constants.

Our Point3D class can use the ORIGIN constant defined by its Point superclass, for example. Although the

clearest style is to qualify constants with their defining class, Point3D could also refer to this constant with an

unqualified ORIGIN or even as Point3D::ORIGIN.

Where inheritance of constants becomes interesting is when a class like Point3D redefines a constant. A three-

dimensional point class probably wants a constant named ORIGIN to refer to a three-dimensional point, so

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Point3D is likely to include a line like this:

ORIGIN = Point3D.new(0,0,0)

As you know, Ruby issues a warning when a constant is redefined. In this case, however, this is a newly created
constant. We now have two constants Point::ORIGIN and Point3D::ORIGIN.

The important difference between constants and methods is that constants are looked up in the lexical scope of
the place they are used before they are looked up in the inheritance hierarchy (Section 7.9 has details). This
means that if Point3D inherits methods that use the constant ORIGIN, the behavior of those inherited methods

will not change when Point3D defines its own version of ORIGIN.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.4. Object Creation and Initialization

Objects are typically created in Ruby by calling the new method of their class. This section explains exactly how

that works, and it also explains other mechanisms (such as cloning and unmarshaling) that create objects. Each
subsection explains how you can customize the initialization of the newly created objects.

7.4.1. new, allocate, and initialize

Every class inherits the class method new. This method has two jobs: it must allocate a new object-actually

bring the object into existence-and it must initialize the object. It delegates these two jobs to the allocate

and initialize methods, respectively. If the new method were actually written in Ruby, it would look

something like this:

Code View:
def new(*args)

 o = self.allocate # Create a new object of this class

 o.initialize(*args) # Call the object's initialize method with our args

 o # Return new object; ignore return value of initialize

end

allocate is an instance method of Class, and it is inherited by all class objects. Its purpose is to create a new

instance of the class. You can call this method yourself to create uninitialized instances of a class. But don't try
to override it; Ruby always invokes this method directly, ignoring any overriding versions you may have
defined.

initialize is an instance method. Most classes need one, and every class that extends a class other than

Object should use super to chain to the initialize method of the superclass. The usual job of the initialize

method is to create instance variables for the object and set them to their initial values. Typically, the value of
these instance variables are derived from the arguments that the client code passed to new and that new passed

to initialize. initialize does not need to return the initialized object. In fact, the return value of

initialize is ignored. Ruby implicitly makes the initialize method private, which means that you cannot

explicitly invoke it on an object.

Class::new and Class#new

Class defines two methods named new. One, Class#new, is an instance method, and the other,

Class::new, is a class method (we use the disambiguating naming convention of the ri tool here).

The first is the instance method that we've been describing here; it is inherited by all class objects,
becoming a class method of the class, and is used to create and initialize new instances.

The class method Class::new is the Class class' own version of the method, and it can be used to

create new classes.

7.4.2. Factory Methods

It is often useful to allow instances of a class to be initialized in more than one way. You can often do this by

http://lib.ommolketab.ir
http://lib.ommolketab.ir

providing parameter defaults on the initialize method. With an initialize method defined as follows, for

example, you can invoke new with either two or three arguments:

class Point

 # Initialize a Point with two or three coordinates

 def initialize(x, y, z=nil)

 @x,@y,@z = x, y, z

 end

end

Sometimes, however, parameter defaults are not enough, and we need to write factory methods other than new

for creating instances of our class. Suppose that we want to be able to initialize Point objects using either

Cartesian or polar coordinates:

class Point

 # Define an initialize method as usual...

 def initialize(x,y) # Expects Cartesian coordinates

 @x,@y = x,y

 end

 # But make the factory method new private

 private_class_method :new

 def Point.cartesian(x,y) # Factory method for Cartesian coordinates

 new(x,y) # We can still call new from other class methods

 end

 def Point.polar(r, theta) # Factory method for polar coordinates

 new(r*Math.cos(theta), r*Math.sin(theta))

 end

end

This code still relies on new and initialize, but it makes new private, so that users of the Point class can't call

it directly. Instead, they must use one of the custom factory methods.

7.4.3. dup, clone, and initialize_copy

Another way that new objects come into existence is as a result of the dup and clone methods (see Section

3.8.8). These methods allocate a new instance of the class of the object on which they are invoked. They then
copy all the instance variables and the taintedness of the receiver object to the newly allocated object. clone

takes this copying a step further than dup-it also copies singleton methods of the receiver object and freezes

the copy object if the original is frozen.

If a class defines a method named initialize_copy, then clone and dup will invoke that method on the copied

object after copying the instance variables from the original. (clone calls initialize_copy before freezing the

copy object, so that initialize_copy is still allowed to modify it.) The initialize_copy method is passed the

original object as an argument and has the opportunity to make any changes it desires to the copied object. It
cannot create its own copy object, however; the return value of initialize_copy is ignored. Like initialize,

Ruby ensures that initialize_copy is always private.

When clone and dup copy instance variables from the original object to the copy, they copy references to the

values of those variables; they do not copy the actual values. In other words, these methods perform a shallow
copy. And this is one reason that many classes might want to alter the behavior of these methods. Here is code

http://lib.ommolketab.ir
http://lib.ommolketab.ir

that defines an initialize_copy method to do a deeper copy of internal state:

class Point # A point in n-space

 def initialize(*coords) # Accept an arbitrary # of coordinates

 @coords = coords # Store the coordinates in an array

 end

 def initialize_copy(orig) # If someone copies this Point object

 @coords = @coords.dup # Make a copy of the coordinates array, too

 end

end

The class shown here stores its internal state in an array. Without an initialize_copy method, if an object

were copied using clone or dup, the copied object would refer to the same array of state that the original object

did. Mutations performed on the copy would affect the state of the original. As this is not the behavior we want,
we must define initialize_copy to create a copy of the array as well.

Some classes, such as those that define enumerated types, may want to strictly limit the number of instances
that exist. Classes like these need to make their new method private and also probably want to prevent copies

from being made. The following code demonstrates one way to do that:

Code View:
class Season

 NAMES = %w{ Spring Summer Autumn Winter } # Array of season names

 INSTANCES = [] # Array of Season objects

 def initialize(n) # The state of a season is just its

 @n = n # index in the NAMES and INSTANCES arrays

 end

 def to_s # Return the name of a season

 NAMES[@n]

 end

 # This code creates instances of this class to represent the seasons

 # and defines constants to refer to those instances.

 # Note that we must do this after initialize is defined.

 NAMES.each_with_index do |name,index|

 instance = new(index) # Create a new instance

 INSTANCES[index] = instance # Save it in an array of instances

 const_set name, instance # Define a constant to refer to it

 end

 # Now that we have created all the instances we'll ever need, we must

 # prevent any other instances from being created

 private_class_method :new,:allocate # Make the factory methods private

 private :dup, :clone # Make copying methods private

end

This code involves some metaprogramming techniques that will make more sense after you have read Chapter
8. The main point of the code is the line at the end that makes the dup and clone methods private.

Another technique to prevent copying of objects is to use undef to simply remove the clone and dup methods.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Yet another approach is to redefine the clone and dup methods so that they raise an exception with an error

message that specifically says that copies are not permitted. Such an error message might be helpful to
programmers who are using your class.

7.4.4. marshal_dump and marshal_load

A third way that objects are created is when Marshal.load is called to re-create objects previously marshaled

(or "serialized") with Marshal.dump. Marshal.dump saves the class of an object and recursively marshals the

value of each of its instance variables. This works well-most objects can be saved and restored using these two
methods.

Some classes need to alter the way marshaling (and unmarshaling) is done. One reason is to provide a more
compact representation of an object's state. Another reason is to avoid saving volatile data, such as the
contents of a cache that would just need to be cleared when the object was unmarshaled. You can customize
the way an object is marshaled by defining a marshal_dump instance method in the class; it should return a

different object (such as a string or an array of selected instance variable values) to be marshaled in place of
the receiver object.

If you define a custom marshal_dump method, you must define a matching marshal_load method, of course.

marshal_load will be invoked on a newly allocated (with allocate) but uninitialized instance of the class. It will

be passed a reconstituted copy of the object returned by marshal_dump, and it must initialize the state of the

receiver object based on the state of the object it is passed.

As an example, let's return to the multidimensional Point class we started earlier. If we add the constraint that

all coordinates are integers, then we can shave a few bytes off the size of the marshaled object by packing the
array of integer coordinates into a string (you may want to use ri to read about Array.pack to help you

understand this code):

class Point # A point in n-space

 def initialize(*coords) # Accept an arbitrary # of coordinates

 @coords = coords # Store the coordinates in an array

 end

 def marshal_dump # Pack coords into a string and marshal that

 @coords.pack("w*")

 end

 def marshal_load(s) # Unpack coords from unmarshaled string

 @coords = s.unpack("w*") # and use them to initialize the object

 end

end

If you are writing a class-such as the Season class shown previously-for which you have disabled the clone

and dup methods, you will also need to implement custom marshaling methods because dumping and loading

an object is an easy way to create a copy of it. You can prevent marshaling completely by defining
marshal_dump and marshal_load methods that raise an exception, but that is rather heavy-handed. A more

elegant solution is to customize the unmarshaling so that Marshal.load returns an existing object rather than

creating a copy.

To accomplish this, we must define a different pair of custom marshaling methods because the return value of
marshal_load is ignored. _dump is an instance method that must return the state of the object as a string. The

matching _load method is a class method that accepts the string returned by _dump and returns an object.

_load is allowed to create a new object or return a reference to an existing one.

To allow marshaling, but prevent copying, of Season objects, we add these methods to the class:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

class Season

 # We want to allow Season objects to be marshaled, but we don't

 # want new instances to be created when they are unmarshaled.

 def _dump(limit) # Custom marshaling method

 @n.to_s # Return index as a string

 end

 def self._load(s) # Custom unmarshaling method

 INSTANCES[Integer(s)] # Return an existing instance

 end

end

7.4.5. The Singleton Pattern

A singleton is a class that has only a single instance. Singletons can be used to store global program state
within an object-oriented framework and can be useful alternatives to class methods and class variables.

Singleton Terminology

This section discusses the "Singleton Pattern," a well-known design pattern in object-oriented
programming. In Ruby, we have to be careful with the term "singleton" because it is overloaded. A
method added to a single object rather than to a class of objects is known as a singleton method
(see Section 6.1.4). The implicit class object to which such singleton methods are added is
sometimes called a singleton class (though this book uses the term eigenclass instead; see Section
7.7).

Properly implementing a singleton requires a number of the tricks shown earlier. The new and allocate

methods must be made private, dup and clone must be prevented from making copies, and so on. Fortunately,

the Singleton module in the standard library does this work for us; just require 'singleton' and then

include Singleton into your class. This defines a class method named instance, which takes no arguments and

returns the single instance of the class. Define an initialize method to perform initialization of the single

instance of the class. Note, however, that no arguments will be passed to this method.

As an example, let's return to the Point class with which we started this chapter and revisit the problem of

collecting point creation statistics. Instead of storing those statistics in class variables of the Point class itself,

we'll use a singleton instance of a PointStats class:

require 'singleton' # Singleton module is not built-in

class PointStats # Define a class

 include Singleton # Make it a singleton

 def initialize # A normal initialization method

 @n, @totalX, @totalY = 0, 0.0, 0.0

 end

 def record(point) # Record a new point

 @n += 1

 @totalX += point.x

 @totalY += point.y

 end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 def report # Report point statistics

 puts "Number of points created: #@n"

 puts "Average X coordinate: #{@totalX/@n}"

 puts "Average Y coordinate: #{@totalY/@n}"

 end

end

With a class like this in place, we might write the initialize method for our Point class like this:

def initialize(x,y)

 @x,@y = x,y

 PointStats.instance.record(self)

end

The Singleton module automatically creates the instance class method for us, and we invoke the regular

instance method record on that singleton instance. Similarly, when we want to query the point statistics, we

write:

PointStats.instance.report

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.5. Modules

Like a class, a module is a named group of methods, constants, and class variables. Modules are defined much
like classes are, but the module keyword is used in place of the class keyword. Unlike a class, however, a

module cannot be instantiated, and it cannot be subclassed. Modules stand alone; there is no "module
hierarchy" of inheritance.

Modules are used as namespaces and as mixins. The subsections that follow explain these two uses.

Just as a class object is an instance of the Class class, a module object is an instance of the Module class.

Class is a subclass of Module. This means that all classes are modules, but not all modules are classes. Classes

can be used as namespaces, just as modules can. Classes cannot, however, be used as mixins.

7.5.1. Modules as Namespaces

Modules are a good way to group related methods when object-oriented programming is not necessary.
Suppose, for example, you were writing methods to encode and decode binary data to and from text using the
Base64 encoding. There is no need for special encoder and decoder objects, so there is no reason to define a
class here. All we need are two methods: one to encode and one to decode. We could define just two global
methods:

def base64_encode

end

def base64_decode

end

To prevent namespace collisions with other encoding and decoding methods, we've given our method names the
base64 prefix. This solution works, but most programmers prefer to avoid adding methods to the global

namespace when possible. A better solution, therefore, is to define the two methods within a Base64 module:

module Base64

 def self.encode

 end

 def self.decode

 end

end

Note that we define our methods with a self. prefix, which makes them "class methods" of the module. We

could also explicitly reuse the module name and define the methods like this:

module Base64

 def Base64.encode

 end

 def Base64.decode

 end

end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Defining the methods this way is more repetitive, but it more closely mirrors the invocation syntax of these
methods:

This is how we invoke the methods of the Base64 module

text = Base64.encode(data)

data = Base64.decode(text)

Note that module names must begin with a capital letter, just as class names do. Defining a module creates a
constant with the same name as the module. The value of this constant is the Module object that represents the

module.

Modules may also contain constants. Our Base64 implementation would likely use a constant to hold a string of
the 64 characters used as digits in Base64:

module Base64

 DIGITS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' \

 'abcdefghijklmnopqrstuvwxyz' \

 '0123456789+/'

end

Outside the Base64 module, this constant can be referred to as Base64::DIGITS. Inside the module, our encode

and decode methods can refer to it by its simple name DIGITS. If the two methods had some need to share

nonconstant data, they could use a class variable (with a @@ prefix), just as they could if they were defined in a

class.

7.5.1.1. Nested namespaces

Modules, including classes, may be nested. This creates nested namespaces but has no other effect: a class or
module nested within another has no special access to the class or module it is nested within. To continue with
our Base64 example, let's suppose that we wanted to define special classes for encoding and decoding. Because
the Encoder and Decoder classes are still related to each other, we'll nest them within a module:

Code View:
module Base64

 DIGITS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'

 class Encoder

 def encode

 end

 end

 class Decoder

 def decode

 end

 end

 # A utility function for use by both classes

 def Base64.helper

 end

end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

By structuring our code this way, we've defined two new classes, Base64::Encoder and Base64::Decoder.

Inside the Base64 module, the two classes can refer to each other by their unqualified names, without the

Base64 prefix. And each of the classes can use the DIGITS constant without a prefix.

On the other hand, consider the Base64.helper utility function. The nested Encoder and Decoder classes have

no special access to the methods of the containing module, and they must refer to this helper method by its
fully qualified name: Base64.helper.

Because classes are modules, they too can be nested. Nesting one class within another only affects the
namespace of the inner class; it does not give that class any special access to the methods or variables of the
outer class. If your implementation of a class requires a helper class, a proxy class, or some other class that is
not part of a public API, you may want to consider nesting that internal class within the class that uses it. This
keeps the namespace tidy but does not actually make the nested class private in any way.

See Section 7.9 for an explanation of how constant names are resolved when modules are nested.

7.5.2. Modules As Mixins

The second use of modules is more powerful than the first. If a module defines instance methods instead of the
class methods, those instance methods can be mixed in to other classes. Enumerable and Comparable are well-

known examples of mixin modules. Enumerable defines useful iterators that are implemented in terms of an

each iterator. Enumerable doesn't define the each method itself, but any class that defines it can mix in the

Enumerable module to instantly add many useful iterators. Comparable is similar; it defines comparison

operators in terms of the general-purpose comparator <=>. If your class defines <=>, you can mix in

Comparable to get <, <=, == >, >=, and between? for free.

To mix a module into a class, use include. include is usually used as if it were a language keyword:

class Point

 include Comparable

end

In fact, it is a private instance method of Module, implicitly invoked on self-the class into which the module is

being included. In method form, this code would be:

class Point

 include(Comparable)

end

Because include is a private method, it must be invoked as a function, and we cannot write

self.include(Comparable). The include method accepts any number of Module objects to mix in, so a class

that defines each and <=> might include the line:

include Enumerable, Comparable

The inclusion of a module affects the type-checking method is_a? and the switch-equality operator ===. For

example, String mixes in the Comparable module and, in Ruby 1.8, also mixes in the Enumerable module:

"text".is_a? Comparable # => true

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Enumerable === "text" # => true in Ruby 1.8, false in 1.9

Note that instanceof? only checks the class of its receiver, not superclasses or modules, so the following is

false:

"text".instance_of? Comparable # => false

Although every class is a module, the include method does not allow a class to be included within another

class. The arguments to include must be modules declared with module, not classes.

It is legal, however, to include one module into another. Doing this simply makes the instance methods of the
included modules into instance methods of the including module. As an example, consider this code from
Chapter 5:

module Iterable # Classes that define next can include this module

 include Enumerable # Define iterators on top of each

 def each # And define each on top of next

 loop { yield self.next }

 end

end

The normal way to mix in a module is with the Module.include method. Another way is with Object.extend.

This method makes the instance methods of the specified module or modules into singleton methods of the
receiver object. (And if the receiver object is a Class instance, then the methods of the receiver become class

methods of that class.) Here is an example:

countdown = Object.new # A plain old object

def countdown.each # The each iterator as a singleton method

 yield 3

 yield 2

 yield 1

end

countdown.extend(Enumerable) # Now the object has all Enumerable methods

print countdown.sort # Prints "[1, 2, 3]"

7.5.3. Includable Namespace Modules

It is possible to define modules that define a namespace but still allow their methods to be mixed in. The Math

module works like this:

Math.sin(0) # => 0.0: Math is a namespace

include 'Math' # The Math namespace can be included

sin(0) # => 0.0: Now we have easy access to the functions

The Kernel module also works like this: we can invoke its methods through the Kernel namespace, or as

private methods of Object, into which it is included.

If you want to create a module like Math or Kernel, define your methods as instance methods of the module.

Then use module_function to convert those methods to "module functions." module_function is a private

http://lib.ommolketab.ir
http://lib.ommolketab.ir

instance method of Module, much like the public, protected, and private methods. It accepts any number of

method names (as symbols or strings) as arguments. The primary effect of calling module_function is that it

makes class method copies of the specified methods. A secondary effect is that it makes the instance methods
private (we'll have more to say about this shortly).

Like the public, protected, and private methods, the module_function method can also be invoked with no

arguments. When invoked in this way, any instance methods subsequently defined in the module will be module
functions: they will become public class methods and private instance methods. Once you have invoked
module_function with no arguments, it remains in effect for the rest of the module definition-so if you want to

define methods that are not module functions, define those first.

It may seem surprising at first that module_function makes the instance methods of a module private. The

reason to do this is not really for access control, as obviously the methods are also available publicly through
the module's namespace. Instead, the methods are made private to restrict them to function-style invocation
without an explicit receiver. (The reason that these are called module functions instead of module methods is
that they must be invoked in functional style.) Forcing included module functions to be invoked without a
receiver makes it less likely that they'll be mistaken for true instance methods. Suppose we're defining a class
whose methods perform a lot of trigonometry. For our own convenience, we include the Math module. Then we

can invoke the sin method as a function instead of calling Math.sin. The sin method is implicitly invoked on

self, but we don't actually expect it to do anything to self.

When defining a module function, you should avoid using self, because the value of self will depend on how it

is invoked. It is certainly possible to define a module function that behaves differently depending on how it is
invoked. But if you are going to do that, then it makes more sense to simply define one class method and one
instance method.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.6. Loading and Requiring Modules

Ruby programs may be broken up into multiple files, and the most natural way to partition a program is to place
each nontrivial class or module into a separate file. These separate files can then be reassembled into a single
program (and, if well-designed, can be reused by other programs) using require or load. These are global

functions defined in Kernel, but are used like language keywords. The same require method is also used for

loading files from the standard library.

load and require serve similar purposes, though require is much more commonly used than load. Both

functions can load and execute a specified file of Ruby source code. If the file to load is specified with an
absolute path, or is relative to ~ (the user's home directory), then that specific file is loaded. Usually, however,

the file is specified as a relative path, and load and require search for it relative to the directories of Ruby's

load path (details on the load path appear below).

Despite these overall similarities, there are important differences between load and require:

In addition to loading source code, require can also load binary extensions to Ruby. Binary extensions

are, of course, implementation-dependent, but in C-based implementations, they typically take the form
of shared library files with extensions like .so or .dll.

load expects a complete filename including an extension. require is usually passed a library name, with

no extension, rather than a filename. In that case, it searches for a file that has the library name as its
base name and an appropriate source or native library extension. If a directory contains both an .rb
source file and a binary extension file, require will load the source file instead of the binary file.

load can load the same file multiple times. require tries to prevent multiple loads of the same file.

(require can be fooled, however, if you use two different, but equivalent, paths to the same library file. In

Ruby 1.9, require expands relative paths to absolute paths, which makes it somewhat harder to fool.)

require keeps track of the files that have been loaded by appending them to the global array $" (also

known as $LOADED_FEATURES). load does not do this.

load loads the specified file at the current $SAFE level. require loads the specified library with $SAFE set

to 0, even if the code that called require has a higher value for that variable. See Section 10.5 for more

on $SAFE and Ruby's security system. (Note that if $SAFE is set to a value higher than 0, require will

refuse to load any file with a tainted filename or from a world-writable directory. In theory, therefore, it
should be safe for require to load files with a reduced $SAFE level.)

The subsections that follow provide further details about the behavior of load and require.

7.6.1. The Load Path

Ruby's load path is an array that you can access using either of the global variables $LOAD_PATH or $:. (The

mnemonic for this global is that colons are used as path separator characters on Unix-like operating systems.)
Each element of the array is the name of a directory that Ruby will search for files to load. Directories at the
start of the array are searched before directories at the end of the array. The elements of $LOAD_PATH must be

strings in Ruby 1.8, but in Ruby 1.9, they may be strings or any object that has a to_path method that returns

a string.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The default value of $LOAD_PATH depends on your implementation of Ruby, on the operating system it is running

on, and even on where in your filesystem you installed it. Here is a typical value for Ruby 1.8, obtained with
ruby -e 'puts $:':

/usr/lib/site_ruby/1.8

/usr/lib/site_ruby/1.8/i386-linux

/usr/lib/site_ruby

/usr/lib/ruby/1.8

/usr/lib/ruby/1.8/i386-linux

.

The /usr/lib/ruby/1.8/ directory is where the Ruby standard library is installed. The /usr/lib/ruby/1.8/i386-linux/
directory holds Linux binary extensions for the standard library. The site_ruby directories in the path are for
site-specific libraries that you have installed. Note that site-specific directories are searched first, which means
that you can override the standard library with files installed here. The current working directory "." is at the
end of the search path. This is the directory from which a user invokes your Ruby program; it is not the same as
the directory in which your Ruby program is installed.

In Ruby 1.9, the default load path is more complicated. Here is a typical value:

/usr/local/lib/ruby/gems/1.9/gems/rake-0.7.3/lib

/usr/local/lib/ruby/gems/1.9/gems/rake-0.7.3/bin

/usr/local/lib/ruby/site_ruby/1.9

/usr/local/lib/ruby/site_ruby/1.9/i686-linux

/usr/local/lib/ruby/site_ruby

/usr/local/lib/ruby/vendor_ruby/1.9

/usr/local/lib/ruby/vendor_ruby/1.9/i686-linux

/usr/local/lib/ruby/vendor_ruby

/usr/local/lib/ruby/1.9

/usr/local/lib/ruby/1.9/i686-linux

.

One minor load path change in Ruby 1.9 is the inclusion of vendor_ruby directories that are searched after
site_ruby and before the standard library. These are intended for customizations provided by operating system
vendors.

The more significant load path change in Ruby 1.9 is the inclusion of RubyGems installation directories. In the
path shown here, the first two directories searched are for the rake package installed with the gem command of
the RubyGems package management system. There is only one gem installed in this example, but if you have
many gems on your system, your default load path may become quite long. (When running programs that do
not use gems, you may get a minor speed boost by invoking Ruby with the --disable-gems command-line

option, which prevents these directories from being added to the load path.) If more than one version of a gem
is installed, the version with the highest version number is included in the default load path. Use the
Kernel.gem method to alter this default.

RubyGems is built into Ruby 1.9: the gem command is distributed with Ruby and can be used to install new
packages whose installation directories are automatically added to the default load path. In Ruby 1.8,
RubyGems must be installed separately (though some distributions of Ruby 1.8 may automatically bundle it),
and gem installation directories are never added to the load path. Instead, Ruby 1.8 programs require the
rubygems module. Doing this replaces the default require method with a new version that knows where to look

for installed gems. See Section 1.2.5 for more on RubyGems.

You can add new directories to the start of Ruby's search path with the –I command-line option to the Ruby

interpreter. Use multiple –I options to specify multiple directories, or use a single –I and separate multiple

http://lib.ommolketab.ir
http://lib.ommolketab.ir

directories from each other with colons (or semicolons on Windows).

Ruby programs can also modify their own load path by altering the contents of the $LOAD_PATH array. Here are

some examples:

Remove the current directory from the load path

$:.pop if $:.last == '.'

Add the installation directory for the current program to

the beginning of the load path

$LOAD_PATH.unshift File.expand_path($PROGRAM_NAME)

Add the value of an environment variable to the end of the path

$LOAD_PATH << ENV['MY_LIBRARY_DIRECTORY']

Finally, keep in mind that you can bypass the load path entirely by passing absolute filenames (that begin with /
or ~) to load or require.

7.6.2. Executing Loaded Code

loadandrequireexecute the code in the specified file immediately. Calling these methods is not, however,

equivalent to simply replacing the call to load or require with the code contained by the file.[*]

[*] To put this another way for C programmers: load and require are different from C's #include directive. Passing a file of loaded code to

the global eval function is closer to including it directly in a file: eval(File.read(filename)). But even this is not the same, as eval does

not set local variables.

Files loaded with load or require are executed in a new top-level scope that is different from the one in which

load or require was invoked. The loaded file can see all global variables and constants that have been defined

at the time it is loaded, but it does not have access to the local scope from which the load was initiated. The
implications of this include the following:

The local variables defined in the scope from which load or require is invoked are not visible to the

loaded file.

Any local variables created by the loaded file are discarded once the load is complete; they are never
visible outside the file in which they are defined.

At the start of the loaded file, the value of self is always the main object, just as it is when the Ruby

interpreter starts running. That is, invoking load or require within a method invocation does not

propagate the receiver object to the loaded file.

The current module nesting is ignored within the loaded file. You cannot, for example, open a class and
then load a file of method definitions. The file will be processed in a top-level scope, not inside any class
or module.

7.6.2.1. Wrapped loads

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The load method has an infrequently used feature that we did not describe earlier. If called with a second

argument that is anything other than nil or false, then it "wraps" the specified file and loads it into an

anonymous module. This means that the loaded file cannot affect the global namespace; any constants
(including classes and modules) it defines are trapped within the anonymous module. You can use wrapped
loads as a security precaution (or as a way to minimize bugs caused by namespace collisions). We'll see in
Section 10.5 that when Ruby is running untrusted code in a "sandbox," that code is not allowed to call require

and can use load only for wrapped loads.

When a file is loaded into an anonymous module, it can still set global variables, and the variables it sets will be
visible to the code that loaded it. Suppose you write a file util.rb that defines a Util module of useful utility

methods. If you want those methods to be accessible even if your file is loaded wrapped, you might add the
following line to the end of the file:

$Util = Util # Store a reference to this module in a global variable

Now, the code that loads util.rb into an anonymous namespace can access the utility functions through the
global $Util instead of the constant Util.

In Ruby 1.8, it is even possible to pass the anonymous module itself back to the loading code:

if Module.nesting.size > 0 # If we're loaded into a wrapper module

 $wrapper = Module.nesting[0] # Pass the module back to the loading code

end

See Section 8.1.1 for more on Module.nesting.

7.6.3. Autoloading Modules

The autoload methods of Kernel and Module allow lazy loading of files on an as-needed basis. The global

autoload function allows you to register the name of an undefined constant (typically a class or module name)

and a name of the library that defines it. When that constant is first referenced, the named library is loaded
using require. For example:

Require 'socket' if and when the TCPSocket is first used

autoload :TCPSocket, "socket"

The Module class defines its own version of autoload to work with constants nested within another module.

Use autoload? or Module.autoload? to test whether a reference to a constant will cause a file to be loaded.

This method expects a symbol argument. If a file will be loaded when the constant named by the symbol is
referenced, then autoload? returns the name of the file. Otherwise (if no autoload was requested, or if the file

has already been loaded), autoload? returns nil.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.7. Singleton Methods and the Eigenclass

We learned in Chapter 6 that it is possible to define singleton methods-methods that are defined for only a
single object rather than a class of objects. To define a singleton method sum on an object Point, we'd write:

def Point.sum

 # Method body goes here

end

As noted earlier in this chapter, the class methods of a class are nothing more than singleton methods on the
Class instance that represents that class.

The singleton methods of an object are not defined by the class of that object. But they are methods and they
must be associated with a class of some sort. The singleton methods of an object are instance methods of the
anonymous eigenclass associated with that object. "Eigen" is a German word meaning (roughly) "self," "own,"
"particular to," or "characteristic of." The eigenclass is also called the singleton class or (less commonly) the
metaclass. The term "eigenclass" is not uniformly accepted within the Ruby community, but it is the term we'll
use in this book.

Ruby defines a syntax for opening the eigenclass of an object and adding methods to it. This provides an
alternative to defining singleton methods one by one; we can instead define any number of instance methods of
the eigenclass. To open the eigenclass of the object o, use class << o. For example, we can define class

methods of Point like this:

class << Point

 def class_method1 # This is an instance method of the eigenclass.

 end # It is also a class method of Point.

 def class_method2

 end

end

If you open the eigenclass of a class object within the definition of a class itself, then you can use self instead

of repeating the name of the class. To repeat an example from earlier in this chapter:

class Point

 # instance methods go here

 class << self

 # class methods go here as instance methods of the eigenclass

 end

end

Be careful with your syntax. Note that there is considerable difference between the following three lines:

class Point # Create or open the class Point

class Point3D < Point # Create a subclass of Point

class << Point # Open the eigenclass of the object Point

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In general, it is clearer to define class methods as individual singleton methods without explicitly opening the
eigenclass.

When you open the eigenclass of an object, self refers to the eigenclass object. The idiom for obtaining the

eigenclass of an object o is therefore:

eigenclass = class << o; self; end

We can formalize this into a method of Object, so that we can ask for the eigenclass of any object:

class Object

 def eigenclass

 class << self; self; end

 end

end

Unless you are doing sophisticated metaprogramming with Ruby, you are unlikely to really need an eigenclass

utility function like the one shown here. It is worth understanding eigenclasses, however, because you'll
occasionally see them used in existing code, and because they're an important part of Ruby's method name
resolution algorithm, which we describe next.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.8. Method Lookup

When Ruby evaluates a method invocation expression, it must first figure out which method is to be invoked.
The process for doing this is called method lookup or method name resolution. For the method invocation
expression o.m, Ruby performs name resolution with the following steps:

First, it checks the eigenclass of o for singleton methods named m.1.

If no method m is found in the eigenclass, Ruby searches the class of o for an instance method named m.2.

If no method m is found in the class, Ruby searches the instance methods of any modules included by the

class of o. If that class includes more than one module, then they are searched in the reverse of the order

in which they were included. That is, the most recently included module is searched first.

3.

If no instance method m is found in the class of o or in its modules, then the search moves up the

inheritance hierarchy to the superclass. Steps 2 and 3 are repeated for each class in the inheritance
hierarchy until each ancestor class and its included modules have been searched.

4.

If no method named m is found after completing the search, then a method named method_missing is

invoked instead. In order to find an appropriate definition of this method, the name resolution algorithm
starts over at step 1. The Kernel module provides a default implementation of method_missing, so this

second pass of name resolution is guaranteed to succeed. The method_missing method is covered in more

detail in Section 8.4.5.

5.

Let's consider a concrete example of this algorithm. Suppose we have the following code:

message = "hello"

message.world

We want to invoke a method named world on the String instance "hello". Name resolution proceeds as

follows:

Check the eigenclass for singleton methods. There aren't any in this case.1.

Check the String class. There is no instance method named world.2.

Check the Comparable and Enumerable modules of the String class for an instance method named world.

Neither module defines such a method.

3.

Check the superclass of String, which is Object. The Object class does not define a method named4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

world, either.

4.

Check the Kernel module included by Object. The world method is not found here either, so we now

switch to looking for a method named method_missing.

5.

Look for method_missing in each of the spots above (the eigenclass of the String object, the String

class, the Comparable and Enumerable modules, the Object class, and the Kernel module). The first

definition of method_missing we find is in the Kernel module, so this is the method we invoke. What it

does is raise an exception:

NoMethodError: undefined method `world' for "hello":String

6.

This may seem like it requires Ruby to perform an exhaustive search every time it invokes a method. In typical
implementations, however, successful method lookups will be cached so that subsequent lookups of the same
name (with no intervening method definitions) will be very quick.

7.8.1. Class Method Lookup

The name resolution algorithm for class methods is exactly the same as it is for instance methods, but there is a
twist. Let's start with a simple case, without the twist. Here is a class C that defines no class methods of its

own:

class C

end

Remember that after we define a class like this, the constant C refers to an object that is an instance of Class.

Any class methods we define are simply singleton methods of the object C.

Once we have defined a class C, we are likely to write a method invocation expression involving the class

method new:

c = C.new

To resolve the method new, Ruby first looks for singleton methods in the eigenclass of the object C. Our class

does not have any class methods, so nothing is found there. After searching the eigenclass, the name resolution
algorithm searches the class object of C. The class of C is Class, so Ruby next looks for methods in Class, and it

finds an instance method named new there.

You read that right. The method name resolution algorithm for the class method C.new ends up locating the

instance method Class.new. The distinction between instance methods and class methods is a useful one to

draw in the object-oriented programming paradigm, but the truth is that in Ruby-where classes are
represented by objects-the distinction is somewhat artificial. Every method invocation, whether instance
method or class method, has a receiver object and a method name. The name resolution algorithm finds the
appropriate method definition for that object. Our object C is an instance of class Class, so we can of course

invoke the instance methods of Class through C. Furthermore, Class inherits the instance methods of Module,

Object, and Kernel, so those inherited methods are also available as methods of C. The only reason we call

these "class methods" is that our object C happens to be a class.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Our class method C.new is found as an instance method of Class. If it had not been found there, however, the

name resolution algorithm would have continued just as it would have for an instance method. After searching
Class unsuccessfully, we would have looked at modules (Class doesn't include any) and then at the superclass

Module. Next, we would search the modules of Module (there aren't any), and finally the superclass of Module,

Object, and its module Kernel.

The twist mentioned at the beginning of this section has to do with the fact that class methods are inherited just
like instance methods are. Let's define a class method Integer.parse to use as an example:

def Integer.parse(text)

 text.to_i

end

Because Fixnum is a subclass of Integer, we can invoke this method with an expression like this:

n = Fixnum.parse("1")

From the description of the method name resolution algorithm that we've seen previously, we know that Ruby
would first search the eigenclass of Fixnum for singleton methods. Next, it would search for instance methods of

Class, Module, Object, and Kernel. So where does it find the parse method? A class method of Integer is just

a singleton method of the Integer object, which means that it is defined by the eigenclass of Integer. So how

does this eigenclass of Integer get involved in the name resolution algorithm?

Class objects are special: they have superclasses. The eigenclasses of class objects are also special: they have
superclasses, too. The eigenclass of an ordinary object stands alone and has no superclass. Let's use the names
Fixnum' and Integer' to refer to the eigenclasses of Fixnum and Integer. The superclass of Fixnum' is

Integer'.

With that twist in mind, we can now more fully explain the method name resolution algorithm and say that
when Ruby searches for singleton methods in the eigenclass of an object, it also searches the superclass (and
all ancestors) of the eigenclass as well. So when looking for a class method of Fixnum, Ruby first checks the

singleton methods of Fixnum, Integer, Numeric, and Object, and then checks the instance methods of Class,

Module, Object, and Kernel.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.9. Constant Lookup

When a constant is referenced without any qualifying namespace, the Ruby interpreter must find the
appropriate definition of the constant. To do so, it uses a name resolution algorithm, just as it does to find
method definitions. However, constants are resolved much differently than methods.

Ruby first attempts to resolve a constant reference in the lexical scope of the reference. This means that it first
checks the class or module that encloses the constant reference to see if that class or module defines the
constant. If not, it checks the next enclosing class or module. This continues until there are no more enclosing
classes or modules. Note that top-level or "global" constants are not considered part of the lexical scope and are
not considered during this part of constant lookup. The class method Module.nesting returns the list of classes

and modules that are searched in this step, in the order they are searched.

If no constant definition is found in the lexically enclosing scope, Ruby next tries to resolve the constant in the
inheritance hierarchy by checking the ancestors of the class or module that referred to the constant. The
ancestors method of the containing class or module returns the list of classes and modules searched in this

step.

If no constant definition is found in the inheritance hierarchy, then top-level constant definitions are checked.

If no definition can be found for the desired constant, then the const_missing method-if there is one-of the

containing class or module is called and given the opportunity to provide a value for the constant. This
const_missing hook is covered in Chapter 8, and Example 8-3 illustrates its use.

There are a few points about this constant lookup algorithm that are worth noting in more detail:

Constants defined in enclosing modules are found in preference to constants defined in included modules.

The modules included by a class are searched before the superclass of the class.

The Object class is part of the inheritance hierarchy of all classes. Top-level constants, defined outside of

any class or module, are like top-level methods: they are implicitly defined in Object. When a top-level

constant is referenced from within a class, therefore, it is resolved during the search of the inheritance
hierarchy. If the constant is referenced within a module definition, however, an explicit check of Object is

needed after searching the ancestors of the module.

The Kernel module is an ancestor of Object. This means that constants defined in Kernel behave like

top-level constants but can be overridden by true top-level constants, that are defined in Object.

Example 7-1 defines and resolves constants in six different scopes and demonstrates the constant name lookup
algorithm described previously.

Example 7-1. Constant name resolution

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Code View:
module Kernel

 # Constants defined in Kernel

 A = B = C = D = E = F = "defined in kernel"

end

Top-level or "global" constants defined in Object

A = B = C = D = E = "defined at toplevel"

class Super

 # Constants defined in a superclass

 A = B = C = D = "defined in superclass"

end

module Included

 # Constants defined in an included module

 A = B = C = "defined in included module"

end

module Enclosing

 # Constants defined in an enclosing module

 A = B = "defined in enclosing module"

 class Local < Super

 include Included

 # Locally defined constant

 A = "defined locally"

 # The list of modules searched, in the order searched

 # [Enclosing::Local, Enclosing, Included, Super, Object, Kernel]

 search = (Module.nesting + self.ancestors + Object.ancestors).uniq

 puts A # Prints "defined locally"

 puts B # Prints "defined in enclosing module"

 puts C # Prints "defined in included module"

 puts D # Prints "defined in superclass"

 puts E # Prints "defined at toplevel"

 puts F # Prints "defined in kernel"

 end

end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 8. Reflection and Metaprogramming

We've seen that Ruby is a very dynamic language; you can insert new methods into classes at runtime, create
aliases for existing methods, and even define methods on individual objects. In addition, it has a rich API for
reflection. Reflection, also called introspection, simply means that a program can examine its state and its
structure. A Ruby program can, for example, obtain the list of methods defined by the Hash class, query the

value of a named instance variable within a specified object, or iterate through all Regexp objects currently

defined by the interpreter. The reflection API actually goes further and allows a program to alter its state and
structure. A Ruby program can dynamically set named variables, invoke named methods, and even define new
classes and new methods.

Ruby's reflection API-along with its generally dynamic nature, its blocks-and-iterators control structures, and
its parentheses-optional syntax-makes it an ideal language for metaprogramming. Loosely defined,
metaprogramming is writing programs (or frameworks) that help you write programs. To put it another way,
metaprogramming is a set of techniques for extending Ruby's syntax in ways that make programming easier.
Metaprogramming is closely tied to the idea of writing domain-specific languages, or DSLs. DSLs in Ruby
typically use method invocations and blocks as if they were keywords in a task-specific extension to the
language.

This chapter starts with several sections that introduce Ruby's reflection API. This API is surprisingly rich and
consists of quite a few methods. These methods are defined, for the most part, by Kernel, Object, and Module.

As you read these introductory sections, keep in mind that reflection is not, by itself, metaprogramming.
Metaprogramming typically extends the syntax or the behavior of Ruby in some way, and often involves more
than one kind of reflection. After introducing Ruby's core reflection API, this chapter moves on to demonstrate,
by example, common metaprogramming techniques that use that API.

Note that this chapter covers advanced topics. You can be a productive Ruby programmer without ever reading
this chapter. You may find it helpful to read the remaining chapters of this book first, and then return to this
chapter. Consider this chapter a kind of final exam: if you understand the examples (particularly the longer ones
at the end), then you have mastered Ruby!

8.1. Types, Classes, and Modules

The most commonly used reflective methods are those for determining the type of an object-what class it is an
instance of and what methods it responds to. We introduced most of these important methods early in this book
in Section 3.8.4. To review:

o.class

Returns the class of an object o.

c.superclass

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Returns the superclass of a class c.

o.instance_of? c

Determines whether the object o.class == c.

o.is_a? c

Determines whether o is an instance of c, or of any of its subclasses. If c is a module, this method tests

whether o.class (or any of its ancestors) includes the module.

o.kind_of? c

kind_of? is a synonym for is_a?.

c === o

For any class or module c, determines if o.is_a?(c).

o.respond_to? name

Determines whether the object o has a public or protected method with the specified name. Passes true

as the second argument to check private methods as well.

8.1.1. Ancestry and Modules

In addition to these methods that you've already seen, there are a few related reflective methods for
determining the ancestors of a class or module and for determining which modules are included by a class or
module. These methods are easy to understand when demonstrated:

Code View:
module A; end # Empty module

module B; include A; end; # Module B includes A

class C; include B; end; # Class C includes module B

C < B # => true: C includes B

B < A # => true: B includes A

C < A # => true

Fixnum < Integer # => true: all fixnums are integers

Integer <Comparable # => true: integers are comparable

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Integer < Fixnum # => false: not all integers are fixnums

String < Numeric # => nil: strings are not numbers

A.ancestors # => [A]

B.ancestors # => [B, A]

C.ancestors # => [C, B, A, Object, Kernel]

String.ancestors # => [String, Enumerable, Comparable, Object, Kernel]

 # Note: in Ruby 1.9 String is no longer Enumerable

C.include?(B) # => true

C.include?(A) # => true

B.include?(A) # => true

A.include?(A) # => false

A.include?(B) # => false

A.included_modules # => []

B.included_modules # => [A]

C.included_modules # => [B, A, Kernel]

This code demonstrates include?, which is a public instance method defined by the Module class. But it also

features two invocations of the include method (without the question mark), which is a private instance

method of Module. As a private method, it can only be invoked implicitly on self, which restricts its usage to

the body of a class or module definition. This use of the method include as if it were a keyword is a

metaprogramming example in Ruby's core syntax.

A method related to the private include method is the public Object.extend. This method extends an object

by making the instance methods of each of the specified modules into singleton methods of the object:

module Greeter; def hi; "hello"; end; end # A silly module

s = "string object"

s.extend(Greeter) # Add hi as a singleton method to s

s.hi # => "hello"

String.extend(Greeter) # Add hi as a class method of String

String.hi # => "hello"

The class method Module.nesting is not related to module inclusion or ancestry; instead, it returns an array

that specifies the nesting of modules at the current location. Module.nesting[0] is the current class or module,

Module.nesting[1] is the containing class or module, and so on:

module M

 class C

 Module.nesting # => [M::C, M]

 end

end

8.1.2. Defining Classes and Modules

Classes and modules are instances of the Class and Module classes. As such, you can create them dynamically:

M = Module.new # Define a new module M

C = Class.new # Define a new class C

http://lib.ommolketab.ir
http://lib.ommolketab.ir

D = Class.new(C) { # Define a subclass of C

 include M # that includes module M

}

D.to_s # => "D": class gets constant name by magic

One nice feature of Ruby is that when a dynamically created anonymous module or class is assigned to a
constant, the name of that constant is used as the name of the module or class (and is returned by its name and

to_s methods).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 8. Reflection and Metaprogramming

We've seen that Ruby is a very dynamic language; you can insert new methods into classes at runtime, create
aliases for existing methods, and even define methods on individual objects. In addition, it has a rich API for
reflection. Reflection, also called introspection, simply means that a program can examine its state and its
structure. A Ruby program can, for example, obtain the list of methods defined by the Hash class, query the

value of a named instance variable within a specified object, or iterate through all Regexp objects currently

defined by the interpreter. The reflection API actually goes further and allows a program to alter its state and
structure. A Ruby program can dynamically set named variables, invoke named methods, and even define new
classes and new methods.

Ruby's reflection API-along with its generally dynamic nature, its blocks-and-iterators control structures, and
its parentheses-optional syntax-makes it an ideal language for metaprogramming. Loosely defined,
metaprogramming is writing programs (or frameworks) that help you write programs. To put it another way,
metaprogramming is a set of techniques for extending Ruby's syntax in ways that make programming easier.
Metaprogramming is closely tied to the idea of writing domain-specific languages, or DSLs. DSLs in Ruby
typically use method invocations and blocks as if they were keywords in a task-specific extension to the
language.

This chapter starts with several sections that introduce Ruby's reflection API. This API is surprisingly rich and
consists of quite a few methods. These methods are defined, for the most part, by Kernel, Object, and Module.

As you read these introductory sections, keep in mind that reflection is not, by itself, metaprogramming.
Metaprogramming typically extends the syntax or the behavior of Ruby in some way, and often involves more
than one kind of reflection. After introducing Ruby's core reflection API, this chapter moves on to demonstrate,
by example, common metaprogramming techniques that use that API.

Note that this chapter covers advanced topics. You can be a productive Ruby programmer without ever reading
this chapter. You may find it helpful to read the remaining chapters of this book first, and then return to this
chapter. Consider this chapter a kind of final exam: if you understand the examples (particularly the longer ones
at the end), then you have mastered Ruby!

8.1. Types, Classes, and Modules

The most commonly used reflective methods are those for determining the type of an object-what class it is an
instance of and what methods it responds to. We introduced most of these important methods early in this book
in Section 3.8.4. To review:

o.class

Returns the class of an object o.

c.superclass

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Returns the superclass of a class c.

o.instance_of? c

Determines whether the object o.class == c.

o.is_a? c

Determines whether o is an instance of c, or of any of its subclasses. If c is a module, this method tests

whether o.class (or any of its ancestors) includes the module.

o.kind_of? c

kind_of? is a synonym for is_a?.

c === o

For any class or module c, determines if o.is_a?(c).

o.respond_to? name

Determines whether the object o has a public or protected method with the specified name. Passes true

as the second argument to check private methods as well.

8.1.1. Ancestry and Modules

In addition to these methods that you've already seen, there are a few related reflective methods for
determining the ancestors of a class or module and for determining which modules are included by a class or
module. These methods are easy to understand when demonstrated:

Code View:
module A; end # Empty module

module B; include A; end; # Module B includes A

class C; include B; end; # Class C includes module B

C < B # => true: C includes B

B < A # => true: B includes A

C < A # => true

Fixnum < Integer # => true: all fixnums are integers

Integer <Comparable # => true: integers are comparable

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Integer < Fixnum # => false: not all integers are fixnums

String < Numeric # => nil: strings are not numbers

A.ancestors # => [A]

B.ancestors # => [B, A]

C.ancestors # => [C, B, A, Object, Kernel]

String.ancestors # => [String, Enumerable, Comparable, Object, Kernel]

 # Note: in Ruby 1.9 String is no longer Enumerable

C.include?(B) # => true

C.include?(A) # => true

B.include?(A) # => true

A.include?(A) # => false

A.include?(B) # => false

A.included_modules # => []

B.included_modules # => [A]

C.included_modules # => [B, A, Kernel]

This code demonstrates include?, which is a public instance method defined by the Module class. But it also

features two invocations of the include method (without the question mark), which is a private instance

method of Module. As a private method, it can only be invoked implicitly on self, which restricts its usage to

the body of a class or module definition. This use of the method include as if it were a keyword is a

metaprogramming example in Ruby's core syntax.

A method related to the private include method is the public Object.extend. This method extends an object

by making the instance methods of each of the specified modules into singleton methods of the object:

module Greeter; def hi; "hello"; end; end # A silly module

s = "string object"

s.extend(Greeter) # Add hi as a singleton method to s

s.hi # => "hello"

String.extend(Greeter) # Add hi as a class method of String

String.hi # => "hello"

The class method Module.nesting is not related to module inclusion or ancestry; instead, it returns an array

that specifies the nesting of modules at the current location. Module.nesting[0] is the current class or module,

Module.nesting[1] is the containing class or module, and so on:

module M

 class C

 Module.nesting # => [M::C, M]

 end

end

8.1.2. Defining Classes and Modules

Classes and modules are instances of the Class and Module classes. As such, you can create them dynamically:

M = Module.new # Define a new module M

C = Class.new # Define a new class C

http://lib.ommolketab.ir
http://lib.ommolketab.ir

D = Class.new(C) { # Define a subclass of C

 include M # that includes module M

}

D.to_s # => "D": class gets constant name by magic

One nice feature of Ruby is that when a dynamically created anonymous module or class is assigned to a
constant, the name of that constant is used as the name of the module or class (and is returned by its name and

to_s methods).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.2. Evaluating Strings and Blocks

One of the most powerful and straightforward reflective features of Ruby is its eval method. If your Ruby

program can generate a string of valid Ruby code, the Kernel.eval method can evaluate that code:

x = 1

eval "x + 1" # => 2

eval is a very powerful function, but unless you are actually writing a shell program (like irb) that executes lines

of Ruby code entered by a user you are unlikely to really need it. (And in a networked context, it is almost never
safe to call eval on text received from a user, as it could contain malicious code.) Inexperienced programmers

sometimes end up using eval as a crutch. If you find yourself using it in your code, see if there isn't a way to

avoid it. Having said that, there are some more useful ways to use eval and eval-like methods.

8.2.1. Bindings and eval

A Binding object represents the state of Ruby's variable bindings at some moment. The Kernel.binding object

returns the bindings in effect at the location of the call. You may pass a Binding object as the second argument

to eval, and the string you specify will be evaluated in the context of those bindings. If, for example, we define

an instance method that returns a Binding object that represents the variable bindings inside an object, then

we can use those bindings to query and set the instance variables of that object. We might accomplish this as
follows:

class Object # Open Object to add a new method

 def bindings # Note plural on this method

 binding # This is the predefined Kernel method

 end

end

class Test # A simple class with an instance variable

 def initialize(x); @x = x; end

end

t = Test.new(10) # Create a test object

eval("@x", t.bindings) # => 10: We've peeked inside t

Note that it is not actually necessary to define an Object.bindings method of this sort to peek at the instance

variables of an object. Several other methods described shortly offer easier ways to query (and set) the value of
the instance variables of an object.

As described in Section 6.6.2, the Proc object defines a public binding method that returns a Binding object

representing the variable bindings in effect for the body of that Proc. Furthermore, the eval method allows you

to pass a Proc object instead of a Binding object as the second argument.

Ruby 1.9 defines an eval method on Binding objects, so instead of passing a Binding as the second argument

to the global eval, you can instead invoke the eval method on a Binding. Which one you choose is purely a

stylistic matter; the two techniques are equivalent.

8.2.2. instance_eval and class_eval

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Object class defines a method named instance_eval, and the Module class defines a method named

class_eval. (module_eval is a synonym for class_eval.) Both of these methods evaluate Ruby code, like eval

does, but there are two important differences. The first difference is that they evaluate the code in the context
of the specified object or in the context of the specified module-the object or module is the value of self while

the code is being evaluated. Here are some examples:

o.instance_eval("@x") # Return the value of o's instance variable @x

Define an instance method len of String to return string length

String.class_eval("def len; size; end")

Here's another way to do that

The quoted code behaves just as if it was inside "class String" and "end"

String.class_eval("alias len size")

Use instance_eval to define class method String.empty

Note that quotes within quotes get a little tricky...

String.instance_eval("def empty; ''; end")

Note the subtle but crucial difference between instance_eval and class_eval when the code being evaluated

contains a method definition. instance_eval defines singleton methods of the object (and this results in class

methods when it is called on a class object). class_eval defines regular instance methods.

The second important difference between these two methods and the global eval is that instance_eval and

class_eval can accept a block of code to evaluate. When passed a block instead of a string, the code in the

block is executed in the appropriate context. Here, therefore, are alternatives to the previously shown
invocations:

o.instance_eval { @x }

String.class_eval {

 def len

 size

 end

}

String.class_eval { alias len size }

String.instance_eval { def empty; ""; end }

8.2.3. instance_exec and class_exec

Ruby 1.9 defines two more evaluation methods: instance_exec and class_exec (and its alias, module_exec).

These methods evaluate a block (but not a string) of code in the context of the receiver object, as
instance_eval and class_eval do. The difference is that the exec methods accept arguments and pass them

to the block. Thus, the block of code is evaluated in the context of the specified object, with parameters whose
values come from outside the object.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.3. Variables and Constants

Kernel, Object, and Moduledefine reflective methods for listing the names (as strings) of all defined global

variables, currently defined local variables, all instance variables of an object, all class variables of a class or
module, and all constants of a class or module:

global_variables # => ["$DEBUG", "$SAFE", ...]

x = 1 # Define a local variable

local_variables # => ["x"]

Define a simple class

class Point

 def initialize(x,y); @x,@y = x,y; end # Define instance variables

 @@classvar = 1 # Define a class variable

 ORIGIN = Point.new(0,0) # Define a constant

end

Point::ORIGIN.instance_variables # => ["@y", "@x"]

Point.class_variables # => ["@@classvar"]

Point.constants # => ["ORIGIN"]

The global_variables, instance_variables, class_variables, and constants methods return arrays of

strings in Ruby 1.8 and arrays of symbols in Ruby 1.9. The local_variables method returns an array of strings

in both versions of the language.

8.3.1. Querying, Setting, and Testing Variables

In addition to listing defined variables and constants, Ruby Object and Module also define reflective methods

for querying, setting, and removing instance variables, class variables, and constants. There are no special
purpose methods for querying or setting local variables or global variables, but you can use the eval method for

this purpose:

x = 1

varname = "x"

eval(varname) # => 1

eval("varname = '$g'") # Set varname to "$g"

eval("#{varname} = x") # Set $g to 1

eval(varname) # => 1

Note that eval evaluates its code in a temporary scope. eval can alter the value of instance variables that

already exist. But any new instance variables it defines are local to the invocation of eval and cease to exist

when it returns. (It is as if the evaluated code is run in the body of a block-variables local to a block do not
exist outside the block.)

You can query, set, and test the existence of instance variables on any object and of class variables and
constants on any class or module:

o = Object.new

o.instance_variable_set(:@x, 0) # Note required @ prefix

o.instance_variable_get(:@x) # => 0

o.instance_variable_defined?(:@x) # => true

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Object.class_variable_set(:@@x, 1) # Private in Ruby 1.8

Object.class_variable_get(:@@x) # Private in Ruby 1.8

Object.class_variable_defined?(:@@x) # => true; Ruby 1.9 and later

Math.const_set(:EPI, Math::E*Math::PI)

Math.const_get(:EPI) # => 8.53973422267357

Math.const_defined? :EPI # => true

In Ruby 1.9, you can pass false as the second argument to const_get and const_defined? to specify that

these methods should only look at the current class or module and should not consider inherited constants.

The methods for querying and setting class variables are private in Ruby 1.8. In that version, you can invoke
them with class_eval:

String.class_eval { class_variable_set(:@@x, 1) } # Set @@x in String

String.class_eval { class_variable_get(:@@x) } # => 1

Object and Module define private methods for undefining instance variables, class variables, and constants.

They all return the value of the removed variable or constant. Because these methods are private, you can't
invoke them directly on an object, class, or module, and you must use an eval method or the send method

(described later in this chapter):

o.instance_eval { remove_instance_variable :@x }

String.class_eval { remove_class_variable(:@@x) }

Math.send :remove_const, :EPI # Use send to invoke private method

The const_missing method of a module is invoked, if there is one, when a reference is made to an undefined

constant. You can define this method to return the value of the named constant. (This feature can be used, for
example, to implement an autoload facility in which classes or modules are loaded on demand.) Here is a
simpler example:

def Symbol.const_missing(name)

 name # Return the constant name as a symbol

end

Symbol::Test # => :Test: undefined constant evaluates to a Symbol

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.4. Methods

The Object and Module classes define a number of methods for listing, querying, invoking, and defining

methods. We'll consider each category in turn.

8.4.1. Listing and Testing For Methods

Object defines methods for listing the names of methods defined on the object. These methods return arrays of

methods names. Those name are strings in Ruby 1.8 and symbols in Ruby 1.9:

o = "a string"

o.methods # => [names of all public methods]

o.public_methods # => the same thing

o.public_methods(false) # Exclude inherited methods

o.protected_methods # => []: there aren't any

o.private_methods # => array of all private methods

o.private_methods(false) # Exclude inherited private methods

def o.single; 1; end # Define a singleton method

o.singleton_methods # => ["single"] (or [:single] in 1.9)

It is also possible to query a class for the methods it defines rather than querying an instance of the class. The
following methods are defined by Module. Like the Object methods, they return arrays of strings in Ruby 1.8

and arrays of symbols in 1.9:

String.instance_methods == "s".public_methods # => true

String.instance_methods(false) == "s".public_methods(false) # => true

String.public_instance_methods == String.instance_methods # => true

String.protected_instance_methods # => []

String.private_instance_methods(false) # => ["initialize_copy",

 # "initialize"]

Recall that the class methods of a class or module are singleton methods of the Class or Module object. So to

list class methods, use Object.singleton_methods:

Math.singleton_methods # => ["acos", "log10", "atan2", ...]

In addition to these listing methods, the Module class defines some predicates for testing whether a specified

class or module defines a named instance method:

String.public_method_defined? :reverse # => true

String.protected_method_defined? :reverse # => false

String.private_method_defined? :initialize # => true

String.method_defined? :upcase! # => true

Module.method_defined? checks whether the named method is defined as a public or protected method. It

serves essentially the same purpose as Object.respond_to?. In Ruby 1.9, you can pass false as the second

argument to specify that inherited methods should not be considered.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.4.2. Obtaining Method Objects

To query a specific named method, call method on any object or instance_method on any module. The former

returns a callable Method object bound to the receiver, and the latter returns an UnboundMethod. In Ruby 1.9,

you can limit your search to public methods by calling public_method and public_instance_method. We

covered these methods and the objects they return in Section 6.7:

"s".method(:reverse) # => Method object

String.instance_method(:reverse) # => UnboundMethod object

8.4.3. Invoking Methods

As noted earlier, and in Section 6.7, you can use the method method of any object to obtain a Method object

that represents a named method of that object. Method objects have a call method just like Proc objects do;

you can use it to invoke the method.

Usually, it is simpler to invoke a named method of a specified object with send:

"hello".send :upcase # => "HELLO": invoke an instance method

Math.send(:sin, Math::PI/2) # => 1.0: invoke a class method

send invokes on its receiver the method named by its first argument, passing any remaining arguments to that

method. The name "send" derives from the object-oriented idiom in which invoking a method is called "sending
a message" to an object.

send can invoke any named method of an object, including private and protected methods. We saw send used

earlier to invoke the private method remove_const of a Module object. Because global functions are really

private methods of Object, we can use send to invoke these methods on any object (though this is not anything

that we'd ever actually want to do):

"hello".send :puts, "world" # prints "world"

Ruby 1.9 defines public_send as an alternative to send. This method works like send, but will only invoke

public methods, not private or protected methods:

"hello".public_send :puts, "world" # raises NoMethodError

send is a very fundamental method of Object, but it has a common name that might be overridden in

subclasses. Therefore, Ruby defines __send__ as a synonym, and issues a warning if you attempt to delete or

redefine __send__.

8.4.4. Defining, Undefining, and Aliasing Methods

If you want to define a new instance method of a class or module, use define_method. This instance method of

Module takes the name of the new method (as a Symbol) as its first argument. The body of the method is

provided either by a Method object passed as the second argument or by a block. It is important to understand

that define_method is private. You must be inside the class or module you want to use it on in order to call it:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Add an instance method named m to class c with body b

def add_method(c, m, &b)

 c.class_eval {

 define_method(m, &b)

 }

end

add_method(String, :greet) { "Hello, " + self }

"world".greet # => "Hello, world"

Defining Attribute Accessor Methods

The attr_reader and attr_accessor methods (see Section 7.1.5) also define new methods for a

class. Like define_method, these are private methods of Module and can easily be implemented in

terms of define_method. These method-creation methods are an excellent example of how

define_method is useful. Notice that because these methods are intended to be used inside a

class definition, they are not hampered by the fact that define_method is private.

To define a class method (or any singleton method) with define_method, invoke it on the eigenclass:

def add_class_method(c, m, &b)

 eigenclass = class << c; self; end

 eigenclass.class_eval {

 define_method(m, &b)

 }

end

add_class_method(String, :greet) {|name| "Hello, " + name }

String.greet("world") # => "Hello, world"

In Ruby 1.9, you can more easily use define_singleton_method, which is a method of Object:

String.define_singleton_method(:greet) {|name| "Hello, " + name }

One shortcoming of define_method is that it does not allow you to specify a method body that expects a block.

If you need to dynamically create a method that accepts a block, you will need to use the def statement with

class_eval. And if the method you are creating is sufficiently dynamic, you may not be able to pass a block to

class_eval and will instead have to specify the method definition as a string to be evaluated. We'll see

examples of this later in the chapter.

To create a synonym or an alias for an existing method, you can normally use the alias statement:

alias plus + # Make "plus" a synonym for the + operator

When programming dynamically, however, you sometimes need to use alias_method instead. Like

http://lib.ommolketab.ir
http://lib.ommolketab.ir

define_method, alias_method is a private method of Module. As a method, it can accept two arbitrary

expressions as its arguments, rather than requiring two identifiers to be hardcoded in your source code. (As a
method, it also requires a comma between its arguments.) alias_method is often used for alias chaining

existing methods. Here is a simple example; we'll see more later in the chapter:

Create an alias for the method m in the class (or module) c

def backup(c, m, prefix="original")

 n = :"#{prefix}_#{m}" # Compute the alias

 c.class_eval { # Because alias_method is private

 alias_method n, m # Make n an alias for m

 }

end

backup(String, :reverse)

"test".original_reverse # => "tset"

As we learned in Section 6.1.5, you can use the undef statement to undefine a method. This works only if you

can express the name of a method as a hardcoded identifier in your program. If you need to dynamically delete
a method whose name has been computed by your program, you have two choices: remove_method or

undef_method. Both are private methods of Module. remove_method removes the definition of the method from

the current class. If there is a version defined by a superclass, that version will now be inherited. undef_method

is more severe; it prevents any invocation of the specified method through an instance of the class, even if
there is an inherited version of that method.

If you define a class and want to prevent any dynamic alterations to it, simply invoke the freeze method of the

class. Once frozen, a class cannot be altered.

8.4.5. Handling Undefined Methods

When the method name resolution algorithm (see Section 7.8) fails to find a method, it looks up a method
named method_missing instead. When this method is invoked, the first argument is a symbol that names the

method that could not be found. This symbol is followed by all the arguments that were to be passed to the
original method. If there is a block associated with the method invocation, that block is passed to
method_missing as well.

The default implementation of method_missing, in the Kernel module, simply raises a NoMethodError. This

exception, if uncaught, causes the program to exit with an error message, which is what you would normally
expect to happen when you try to invoke a method that does not exist.

Defining your own method_missing method for a class allows you an opportunity to handle any kind of

invocation on instances of the class. The method_missing hook is one of the most powerful of Ruby's dynamic

capabilities, and one of the most commonly used metaprogramming techniques. We'll see examples of its use
later in this chapter. For now, the following example code adds a method_missing method to the Hash class. It

allows us to query or set the value of any named key as if the key were the name of a method:

class Hash

 # Allow hash values to be queried and set as if they were attributes.

 # We simulate attribute getters and setters for any key.

 def method_missing(key, *args)

 text = key.to_s

 if text[-1,1] == "=" # If key ends with = set a value

 self[text.chop.to_sym] = args[0] # Strip = from key

 else # Otherwise...

 self[key] # ...just return the key value

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 end

 end

end

h = {} # Create an empty hash object

h.one = 1 # Same as h[:one] = 1

puts h.one # Prints 1. Same as puts h[:one]

8.4.6. Setting Method Visibility

Section 7.2 introduced public, protected, and private. These look like language keywords but are actually

private instance methods defined by Module. These methods are usually used as a static part of a class

definition. But, with class_eval, they can also be used dynamically:

String.class_eval { private :reverse }

"hello".reverse # NoMethodError: private method 'reverse'

private_class_method and public_class_method are similar, except that they operate on class methods and

are themselves public:

Make all Math methods private

Now we have to include Math in order to invoke its methods

Math.private_class_method *Math.singleton_methods

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.5. Hooks

Module, Class, and Objectimplement several callback methods, or hooks. These methods are not defined by

default, but if you define them for a module, class, or object, then they will be invoked when certain events
occur. This gives you an opportunity to extend Ruby's behavior when classes are subclassed, when modules are
included, or when methods are defined. Hook methods (except for some deprecated ones not described here)
have names that end in "ed."

When a new class is defined, Ruby invokes the class method inherited on the superclass of the new class,

passing the new class object as the argument. This allows classes to add behavior to or enforce constraints on
their descendants. Recall that class methods are inherited, so that the an inherited method will be invoked if it

is defined by any of the ancestors of the new class. Define Object.inherited to receive notification of all new

classes that are defined:

def Object.inherited(c)

 puts "class #{c} < #{self}"

end

When a module is included into a class or into another module, the included class method of the included

module is invoked with the class or module object into which it was included as an argument. This gives the
included module an opportunity to augment or alter the class in whatever way it wants-it effectively allows a
module to define its own meaning for include. In addition to adding methods to the class into which it is

included, a module with an included method might also alter the existing methods of that class, for example:

module Final # A class that includes Final can't be subclassed

 def self.included(c) # When included in class c

 c.instance_eval do # Define a class method of c

 def inherited(sub) # To detect subclasses

 raise Exception, # And abort with an exception

 "Attempt to create subclass #{sub} of Final class #{self}"

 end

 end

 end

end

Similarly, if a module defines a class method named extended, that method will be invoked any time the

module is used to extend an object (with Object.extend). The argument to the extended method will be the

object that was extended, of course, and the extended method can take whatever actions it wants on that

object.

In addition to hooks for tracking classes and the modules they include, there are also hooks for tracking the
methods of classes and modules and the singleton methods of arbitrary objects. Define a class method named
method_added for any class or module and it will be invoked when an instance method is defined for that class

or module:

def String.method_added(name)

 puts "New instance method #{name} added to String"

end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note that the method_added class method is inherited by subclasses of the class on which it is defined. But no

class argument is passed to the hook, so there is no way to tell whether the named method was added to the
class that defines method_added or whether it was added to a subclass of that class. A workaround for this

problem is to define an inherited hook on any class that defines a method_added hook. The inherited method

can then define a method_added method for each subclass.

When a singleton method is defined for any object, the method singleton_method_added is invoked on that

object, passing the name of the new method. Remember that for classes, singleton methods are class methods:

def String.singleton_method_added(name)

 puts "New class method #{name} added to String"

end

Interestingly, Ruby invokes this singleton_method_added hook when the hook method itself is first defined.

Here is another use of the hook. In this case, singleton_method_added is defined as an instance method of any

class that includes a module. It is notified of any singleton methods added to instances of that class:

Including this module in a class prevents instances of that class

from having singleton methods added to them. Any singleton methods added

are immediately removed again.

module Strict

 def singleton_method_added(name)

 STDERR.puts "Warning: singleton #{name} added to a Strict object"

 eigenclass = class << self; self; end

 eigenclass.class_eval { remove_method name }

 end

end

In addition to method_added and singleton_method_added, there are hooks for tracking when instance

methods and singleton methods are removed or undefined. When an instance method is removed or undefined
on a class or module, the class methods method_removed and method_undefined are invoked on that module.

When a singleton method is removed or undefined on an object, the methods singleton_method_removed and

singleton_method_undefined are invoked on that object.

Finally, note that the method_missing and const_missing methods documented elsewhere in this chapter also

behave like hook methods.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.6. Tracing

Ruby defines a number of features for tracing the execution of a program. These are mainly useful for
debugging code and printing informative error messages. Two of the simplest features are actual language
keywords: __FILE__ and __LINE__. These keyword expressions always evaluate to the name of the file and the

line number within that file on which they appear, and they allow an error message to specify the exact location
at which it was generated:

STDERR.puts "#{__FILE__}:#{__LINE__): invalid data"

As an aside, note that the methods Kernel.eval, Object.instance_eval, and Module.class_eval all accept a

filename (or other string) and a line number as their final two arguments. If you are evaluating code that you
have extracted from a file of some sort, you can use these arguments to specify the values of __FILE__ and

__LINE__ for the evaluation.

You have undoubtedly noticed that when an exception is raised and not handled, the error message printed to
the console contains filename and line number information. This information is based on __FILE__ and

__LINE__, of course. Every Exception object has a backtrace associated with it that shows exactly where it was

raised, where the method that raised the exception was invoked, where that method was invoked, and so on.
The Exception.backtrace method returns an array of strings containing this information. The first element of

this array is the location at which the exception occurred, and each subsequent element is one stack frame
higher.

You needn't raise an exception to obtain a current stack trace, however. The Kernel.caller method returns the

current state of the call stack in the same form as Exception.backtrace. With no argument, caller returns a

stack trace whose first element is the method that invoked the method that calls caller. That is, caller[0]

specifies the location from which the current method was invoked. You can also invoke caller with an

argument that specifies how many stack frames to drop from the start of the backtrace. The default is 1, and
caller(0)[0] specifies the location at which the caller method is invoked. This means, for example, that

caller[0] is the same thing as caller(0)[1] and that caller(2) is the same as caller[1..-1].

Stack traces returned by Exception.backtrace and Kernel.caller also include method names. Prior to Ruby

1.9, you must parse the stack trace strings to extract method names. In Ruby 1.9, however, you can obtain the
name (as a symbol) of the currently executing method with Kernel.__method__ or its synonym,

Kernel.__callee__. __method__ is useful in conjunction with __FILE__ and __LINE__:

raise "Assertion failed in #{__method__} at #{__FILE__}:#{__LINE__}"

Note that __method__ returns the name by which a method was originally defined, even if the method was

invoked through an alias.

Instead of simply printing the filename and number at which an error occurs, you can take it one step further
and display the actual line of code. If your program defines a global constant named SCRIPT_LINES__ and sets

it equal to a hash, then the require and load methods add an entry to this hash for each file they load. The

hash keys are filenames and the values associated with those keys are arrays that contain the lines of those
files. If you want to include the main file (rather than just the files it requires) in the hash, initialize it like this:

SCRIPT_LINES__ = {__FILE__ => File.readlines(__FILE__)}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you do this, then you can obtain the current line of source code anywhere in your program with this
expression:

SCRIPT_LINES__[__FILE__][__LINE__-1]

Ruby allows you to trace assignments to global variables with Kernel.trace_var. Pass this method a symbol

that names a global variable and a string or block of code. When the value of the named variable changes, the
string will be evaluated or the block will be invoked. When a block is specified, the new value of the variable is
passed as an argument. To stop tracing the variable, call Kernel.untrace_var. In the following example, note

the use of caller[1] to determine the program location at which the variable tracing block was invoked:

Print a message every time $SAFE changes

trace_var(:$SAFE) {|v|

 puts "$SAFE set to #{v} at #{caller[1]}"

}

The final tracing method is Kernel.set_trace_func, which registers a Proc to be invoked after every line of a

Ruby program. set_trace_func is useful if you want to write a debugger module that allows line-by-line

stepping through a program, but we won't cover it in any detail here.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.7. ObjectSpace and GC

The ObjectSpace module defines a handful of low-level methods that can be occasionally useful for debugging

or metaprogramming. The most notable method is each_object, an iterator that can yield every object (or

every instance of a specified class) that the interpreter knows about:

Print out a list of all known classes

ObjectSpace.each_object(Class) {|c| puts c }

ObjectSpace._id2ref is the inverse of Object.object_id: it takes an object ID as its argument and returns

the corresponding object, or raises a RangeError if there is no object with that ID.

ObjectSpace.define_finalizer allows the registration of a Proc or a block of code to be invoked when a

specified object is garbage collected. You must be careful when registering such a finalizer, however, as the
finalizer block is not allowed to use the garbage collected object. Any values required to finalize the object must
be captured in the scope of the finalizer block, so that they are available without dereferencing the object. Use
ObjectSpace.undefine_finalizer to delete all finalizer blocks registered for an object.

The final ObjectSpace method is ObjectSpace.garbage_collect, which forces Ruby's garbage collector to run.

Garbage collection functionality is also available through the GC module. GC.start is a synonym for

ObjectSpace.garbage_collect. Garbage collection can be temporarily disabled with GC.disable, and it can be

enabled again with GC.enable.

The combination of the _id2ref and define_finalizer methods allows the definition of "weak reference"

objects, which hold a reference to a value without preventing the value from being garbage collected if they
become otherwise unreachable. See the WeakRef class in the standard library (in lib/weakref.rb) for an example.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.8. Custom Control Structures

Ruby's use of blocks, coupled with its parentheses-optional syntax, make it very easy to define iterator methods
that look like and behave like control structures. The loop method of Kernel is a simple example. In this

section we develop three more examples. The examples here use Ruby's threading API; you may need to read
Section 9.9 to understand all the details.

8.8.1. Delaying and Repeating Execution: after and every

Example 8-1 defines global methods named after and every. Each takes a numeric argument that represents a

number of seconds and should have a block associated with it. after creates a new thread and returns the

Thread object immediately. The newly created thread sleeps for the specified number of seconds and then calls

(with no arguments) the block you provided. every is similar, but it calls the block repeatedly, sleeping the

specified number of seconds between calls. The second argument to every is a value to pass to the first

invocation of the block. The return value of each invocation becomes the value passed for the next invocation.
The block associated with every can use break to prevent any future invocations.

Here is some example code that uses after and every:

require 'afterevery'

1.upto(5) {|i| after i { puts i} } # Slowly print the numbers 1 to 5

sleep(5) # Wait five seconds

every 1, 6 do |count| # Now slowly print 6 to 10

 puts count

 break if count == 10

 count + 1 # The next value of count

end

sleep(6) # Give the above time to run

The sleep call at the end of this code prevents the example program from exiting before the thread created by

every can complete its count. With that example of how after and every are used, we are now ready to

present their implementation. Remember to consult Section 9.9 if you don't understand Thread.new.

Example 8-1. The after and every methods

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Code View:
#

Define Kernel methods after and every for deferring blocks of code.

Examples:

#

after 1 { puts "done" }

every 60 { redraw_clock }

#

Both methods return Thread objects. Call kill on the returned objects

to cancel the execution of the code.

#

Note that this is a very naive implementation. A more robust

implementation would use a single global timer thread for all tasks,

would allow a way to retrieve the value of a deferred block, and would

provide a way to wait for all pending tasks to complete.

#

Execute block after sleeping the specified number of seconds.

def after(seconds, &block)

 Thread.new do # In a new thread...

 sleep(seconds) # First sleep

 block.call # Then call the block

 end # Return the Thread object right away

end

Repeatedly sleep and then execute the block.

Pass value to the block on the first invocation.

On subsequent invocations, pass the value of the previous invocation.

def every(seconds, value=nil, &block)

 Thread.new do # In a new thread...

 loop do # Loop forever (or until break in block)

 sleep(seconds) # Sleep

 value = block.call(value) # And invoke block

 end # Then repeat..

 end # every returns the Thread

end

8.8.2. Thread Safety with Synchronized Blocks

When writing programs that use multiple threads, it is important that two threads do not attempt to modify the
same object at the same time. One way to do this is to place the code that must be made thread-safe in a block
associated with a call to the synchronize method of a Mutex object. Again, this is discussed in detail in Section

9.9. In Example 8-2 we take this a step further, and emulate Java's synchronized keyword with a global

method named synchronized. This synchronized method expects a single object argument and a block. It

obtains a Mutex associated with the object, and uses Mutex.synchronize to invoke the block. The tricky part is

that Ruby's object, unlike Java's objects, do not have a Mutex associated with them. So Example 8-2 also

defines an instance method named mutex in Object. Interestingly, the implementation of this mutex method

uses synchronized in its new keyword-style form!

Example 8-2. Simple synchronized blocks

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Code View:
require 'thread' # Ruby 1.8 keeps Mutex in this library

Obtain the Mutex associated with the object o, and then evaluate

the block under the protection of that Mutex.

This works like the synchronized keyword of Java.

def synchronized(o)

 o.mutex.synchronize { yield }

end

Object.mutex does not actually exist. We've got to define it.

This method returns a unique Mutex for every object, and

always returns the same Mutex for any particular object.

It creates Mutexes lazily, which requires synchronization for

thread safety.

class Object

 # Return the Mutex for this object, creating it if necessary.

 # The tricky part is making sure that two threads don't call

 # this at the same time and end up creating two different mutexes.

 def mutex

 # If this object already has a mutex, just return it

 return @__mutex if @__mutex

 # Otherwise, we've got to create a mutex for the object.

 # To do this safely we've got to synchronize on our class object.

 synchronized(self.class) {

 # Check again: by the time we enter this synchronized block,

 # some other thread might have already created the mutex.

 @__mutex = @__mutex || Mutex.new

 }

 # The return value is @__mutex

 end

end

The Object.mutex method defined above needs to lock the class

if the object doesn't have a Mutex yet. If the class doesn't have

its own Mutex yet, then the class of the class (the Class object)

will be locked. In order to prevent infinite recursion, we must

ensure that the Class object has a mutex.

Class.instance_eval { @__mutex = Mutex.new }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.9. Missing Methods and Missing Constants

The method_missing method is a key part of Ruby's method lookup algorithm (see Section 7.8) and provides a

powerful way to catch and handle arbitrary invocations on an object. The const_missing method of Module

performs a similar function for the constant lookup algorithm and allows us to compute or lazily initialize
constants on the fly. The examples that follow demonstrate both of these methods.

8.9.1. Unicode Codepoint Constants with const_missing

Example 8-3 defines a Unicode module that appears to define a constant (a UTF-8 encoded string) for every

Unicode codepoint from U+0000 to U+10FFFF. The only practical way to support this many constants is to use

the const_missing method. The code makes the assumption that if a constant is referenced once, it is likely to

be used again, so the const_missing method calls Module.const_set to define a real constant to refer to each

value it computes.

Example 8-3. Unicode codepoint constants with const_missing

Code View:
This module provides constants that define the UTF-8 strings for

all Unicode codepoints. It uses const_missing to define them lazily.

Examples:

copyright = Unicode::U00A9

euro = Unicode::U20AC

infinity = Unicode::U221E

module Unicode

 # This method allows us to define Unicode codepoint constants lazily.

 def self.const_missing(name) # Undefined constant passed as a symbol

 # Check that the constant name is of the right form.

 # Capital U followed by a hex number between 0000 and 10FFFF.

 if name.to_s =~ /^U([0-9a-fA-F]{4,5}|10[0-9a-fA-F]{4})$/

 # $1 is the matched hexadecimal number. Convert to an integer.

 codepoint = $1.to_i(16)

 # Convert the number to a UTF-8 string with the magic of Array.pack.

 utf8 = [codepoint].pack("U")

 # Make the UTF-8 string immutable.

 utf8.freeze

 # Define a real constant for faster lookup next time, and return

 # the UTF-8 text for this time.

 const_set(name, utf8)

 else

 # Raise an error for constants of the wrong form.

 raise NameError, "Uninitialized constant: Unicode::#{name}"

 end

 end

end

8.9.2. Tracing Method Invocations with method_missing

Earlier in this chapter, we demonstrated an extension to the Hash class using method_missing. Now, in Example

8-4, we demonstrate the use of method_missing to delegate arbitrary calls on one object to another object. In

http://lib.ommolketab.ir
http://lib.ommolketab.ir

this example, we do this in order to output tracing messages for the object.

Example 8-4 defines an Object.trace instance method and a TracedObject class. The trace method returns

an instance of TracedObject that uses method_missing to catch invocations, trace them, and delegate them to

the object being traced. You might use it like this:

a = [1,2,3].trace("a")

a.reverse

puts a[2]

puts a.fetch(3)

This produces the following tracing output:

Invoking: a.reverse() at trace1.rb:66

Returning: [3, 2, 1] from a.reverse to trace1.rb:66

Invoking: a.fetch(3) at trace1.rb:67

Raising: IndexError:index 3 out of array from a.fetch

Notice that in addition to demonstrating method_missing, Example 8-4 also demonstrates

Module.instance_methods, Module.undef_method, and Kernel.caller.

Example 8-4. Tracing method invocations with method_missing

Code View:
Call the trace method of any object to obtain a new object that

behaves just like the original, but which traces all method calls

on that object. If tracing more than one object, specify a name to

appear in the output. By default, messages will be sent to STDERR,

but you can specify any stream (or any object that accepts strings

as arguments to <<).

class Object

 def trace(name="", stream=STDERR)

 # Return a TracedObject that traces and delegates everything else to us.

 TracedObject.new(self, name, stream)

 end

end

This class uses method_missing to trace method invocations and

then delegate them to some other object. It deletes most of its own

instance methods so that they don't get in the way of method_missing.

Note that only methods invoked through the TracedObject will be traced.

If the delegate object calls methods on itself, those invocations

will not be traced.

class TracedObject

 # Undefine all of our noncritical public instance methods.

 # Note the use of Module.instance_methods and Module.undef_method.

 instance_methods.each do |m|

 m = m.to_sym # Ruby 1.8 returns strings, instead of symbols

 next if m == :object_id || m == :__id__ || m == :__send__

 undef_method m

 end

 # Initialize this TracedObject instance.

 def initialize(o, name, stream)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 @o = o # The object we delegate to

 @n = name # The object name to appear in tracing messages

 @trace = stream # Where those tracing messages are sent

 end

 # This is the key method of TracedObject. It is invoked for just

 # about any method invocation on a TracedObject.

 def method_missing(*args, &block)

 m = args.shift # First arg is the name of the method

 begin

 # Trace the invocation of the method.

 arglist = args.map {|a| a.inspect}.join(', ')

 @trace << "Invoking: #{@n}.#{m}(#{arglist}) at #{caller[0]}\n"

 # Invoke the method on our delegate object and get the return value.

 r = @o.send m, *args, &block

 # Trace a normal return of the method.

 @trace << "Returning: #{r.inspect} from #{@n}.#{m} to #{caller[0]}\n"

 # Return whatever value the delegate object returned.

 r

 rescue Exception => e

 # Trace an abnormal return from the method.

 @trace << "Raising: #{e.class}:#{e} from #{@n}.#{m}\n"

 # And re-raise whatever exception the delegate object raised.

 raise

 end

 end

 # Return the object we delegate to.

 def __delegate

 @o

 end

end

8.9.3. Synchronized Objects by Delegation

In Example 8-2, we saw a global method synchronized, which accepts an object and executes a block under

the protection of the Mutex associated with that object. Most of the example consisted of the implementation of

the Object.mutex method. The synchronized method was trivial:

def synchronized(o)

 o.mutex.synchronize { yield }

end

Example 8-5 modifies this method so that, when invoked without a block, it returns a SynchronizedObject

wrapper around the object. SynchronizedObject is a delegating wrapper class based on method_missing. It is

much like the TracedObject class of Example 8-4, but it is written as a subclass of Ruby 1.9's BasicObject, so

there is no need to explicitly delete the instance methods of Object. Note that the code in this example does not
stand alone; it requires the Object.mutex method defined earlier.

Example 8-5. Synchronizing methods with method_missing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

def synchronized(o)

 if block_given?

 o.mutex.synchronize { yield }

 else

 SynchronizedObject.new(o)

 end

end

A delegating wrapper class using method_missing for thread safety

Instead of extending Object and deleting our methods we just extend

BasicObject, which is defined in Ruby 1.9. BasicObject does not

inherit from Object or Kernel, so the methods of a BasicObject cannot

invoke any top-level methods: they are just not there.

class SynchronizedObject < BasicObject

 def initialize(o); @delegate = o; end

 def __delegate; @delegate; end

 def method_missing(*args, &block)

 @delegate.mutex.synchronize {

 @delegate.send *args, &block

 }

 end

end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.10. Dynamically Creating Methods

One important metaprogramming technique is the use of methods that create methods. The attr_reader and

attr_accessor methods (see Section 7.1.5) are examples. These private instance methods of Module are used

like keywords within class definitions. They accept attribute names as their arguments, and dynamically create
methods with those names. The examples that follow are variants on these attribute accessor creation methods
and demonstrate two different ways to dynamically create methods like this.

8.10.1. Defining Methods with class_eval

Example 8-6defines private instance methods of Module named readonly and readwrite. These methods work

like attr_reader and attr_accessor do, and they are here to demonstrate how those methods are

implemented. The implementation is actually quite simple: readonly and readwrite first build a string of Ruby

code containing the def statements required to define appropriate accessor methods. Next, they evaluate that

string of code using class_eval (described earlier in the chapter). Using class_eval like this incurs the slight

overhead of parsing the string of code. The benefit, however, is that the methods we define need not use any
reflective APIs themselves; they can query or set the value of an instance variable directly.

Example 8-6. Attribute methods with class_eval

Code View:
class Module

 private # The methods that follow are both private

 # This method works like attr_reader, but has a shorter name

 def readonly(*syms)

 return if syms.size == 0 # If no arguments, do nothing

 code = "" # Start with an empty string of code

 # Generate a string of Ruby code to define attribute reader methods.

 # Notice how the symbol is interpolated into the string of code.

 syms.each do |s| # For each symbol

 code << "def #{s}; @#{s}; end\n" # The method definition

 end

 # Finally, class_eval the generated code to create instance methods.

 class_eval code

 end

 # This method works like attr_accessor, but has a shorter name.

 def readwrite(*syms)

 return if syms.size == 0

 code = ""

 syms.each do |s|

 code << "def #{s}; @#{s} end\n"

 code << "def #{s}=(value); @#{s} = value; end\n"

 end

 class_eval code

 end

end

8.10.2. Defining Methods with define_method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 8-7 is a different take on attribute accessors. The attributes method is something like the readwrite

method defined in Example 8-6. Instead of taking any number of attribute names as arguments, it expects a
single hash object. This hash should have attribute names as its keys, and should map those attribute names to
the default values for the attributes. The class_attrs method works like attributes, but defines class

attributes rather than instance attributes.

Remember that Ruby allows the curly braces to be omitted around hash literals when they are the final
argument in a method invocation. So the attributes method might be invoked with code like this:

class Point

 attributes :x => 0, :y => 0

end

In Ruby 1.9, we can use the more succinct hash syntax:

class Point

 attributes x:0, y:0

end

This is another example that leverages Ruby's flexible syntax to create methods that behave like language
keywords.

The implementation of the attributes method in Example 8-7 is quite a bit different than that of the

readwrite method in Example 8-6. Instead of defining a string of Ruby code and evaluating it with class_eval,

the attributes method defines the body of the attribute accessors in a block and defines the methods using

define_method. Because this method definition technique does not allow us to interpolate identifiers directly

into the method body, we must rely on reflective methods such as instance_variable_get. Because of this,

the accessors defined with attributes are likely to be less efficient than those defined with readwrite.

An interesting point about the attributes method is that it does not explicitly store the default values for the

attributes in a class variable of any kind. Instead, the default value for each attribute is captured by the scope
of the block used to define the method. (See Section 6.6 for more about closures like this.)

The class_attrs method defines class attributes very simply: it invokes attributes on the eigenclass of the

class. This means that the resulting methods use class instance variables (see Section 7.1.16) instead of regular
class variables.

Example 8-7. Attribute methods with define_method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Code View:
class Module

 # This method defines attribute reader and writer methods for named

 # attributes, but expects a hash argument mapping attribute names to

 # default values. The generated attribute reader methods return the

 # default value if the instance variable has not yet been defined.

 def attributes(hash)

 hash.each_pair do |symbol, default| # For each attribute/default pair

 getter = symbol # Name of the getter method

 setter = :"#{symbol}=" # Name of the setter method

 variable = :"@#{symbol}" # Name of the instance variable

 define_method getter do # Define the getter method

 if instance_variable_defined? variable

 instance_variable_get variable # Return variable, if defined

 else

 default # Otherwise return default

 end

 end

 define_method setter do |value| # Define setter method

 instance_variable_set variable, # Set the instance variable

 value # To the argument value

 end

 end

 end

 # This method works like attributes, but defines class methods instead

 # by invoking attributes on the eigenclass instead of on self.

 # Note that the defined methods use class instance variables

 # instead of regular class variables.

 def class_attrs(hash)

 eigenclass = class << self; self; end

 eigenclass.class_eval { attributes(hash) }

 end

 # Both methods are private

 private :attributes, :class_attrs

end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.11. Alias Chaining

As we've seen, metaprogramming in Ruby often involves the dynamic definition of methods. Just as common is
the dynamic modification of methods. Methods are modified with a technique we'll call alias chaining.[30] It
works like this:

[30] It has also been called monkey patching, but since that term was originally used with derision, we avoid it here. The term duck punching is

sometimes used as a humorous alternative.

First, create an alias for the method to be modified. This alias provides a name for the unmodified version
of the method.

Next, define a new version of the method. This new version should call the unmodified version through the
alias, but it can add whatever functionality is needed before and after it does that.

Note that these steps can be applied repeatedly (as long as a different alias is used each time), creating a chain
of methods and aliases.

This section includes three alias chaining examples. The first performs the alias chaining statically; i.e., using
regular alias and def statements. The second and third examples are more dynamic; they alias chain

arbitrarily named methods using alias_method, define_method, and class_eval.

8.11.1. Tracing Files Loaded and Classes Defined

Example 8-8 is code that keeps track of all files loaded and all classes defined in a program. When the program
exits, it prints a report. You can use this code to "instrument" an existing program so that you better
understand what it is doing. One way to use this code is to insert this line at the beginning of the program:

require 'classtrace'

An easier solution, however, is to use the -r option to your Ruby interpreter:

ruby -rclasstrace my_program.rb --traceout /tmp/trace

The -r option loads the specified library before it starts running the program. See Section 10.1 for more on the

Ruby interpreter's command-line arguments.

Example 8-8 uses static alias chaining to trace all invocations of the Kernel.require and Kernel.load

methods. It defines an Object.inherited hook to track definitions of new classes. And it uses Kernel.at_exit

to execute a block of code when the program terminates. (The END statement described in Section 5.7 would

work here as well.) Besides alias chaining require and load and defining Object.inherited, the only

modification to the global namespace made by this code is the definition of a module named ClassTrace. All

state required for tracing is stored in constants within this module, so that we don't pollute the namespace with
global variables.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 8-8. Tracing files loaded and classes defined

Code View:
We define this module to hold the global state we require, so that

we don't alter the global namespace any more than necessary.

module ClassTrace

 # This array holds our list of files loaded and classes defined.

 # Each element is a subarray holding the class defined or the

 # file loaded and the stack frame where it was defined or loaded.

 T = [] # Array to hold the files loaded

 # Now define the constant OUT to specify where tracing output goes.

 # This defaults to STDERR, but can also come from command-line arguments

 if x = ARGV.index("--traceout") # If argument exists

 OUT = File.open(ARGV[x+1], "w") # Open the specified file

 ARGV[x,2] = nil # And remove the arguments

 else

 OUT = STDERR # Otherwise default to STDERR

 end

end

Alias chaining step 1: define aliases for the original methods

alias original_require require

alias original_load load

Alias chaining step 2: define new versions of the methods

def require(file)

 ClassTrace::T << [file,caller[0]] # Remember what was loaded where

 original_require(file) # Invoke the original method

end

def load(*args)

 ClassTrace::T << [args[0],caller[0]] # Remember what was loaded where

 original_load(*args) # Invoke the original method

end

This hook method is invoked each time a new class is defined

def Object.inherited(c)

 ClassTrace::T << [c,caller[0]] # Remember what was defined where

end

Kernel.at_exit registers a block to be run when the program exits

We use it to report the file and class data we collected

at_exit {

 o = ClassTrace::OUT

 o.puts "="*60

 o.puts "Files Loaded and Classes Defined:"

 o.puts "="*60

 ClassTrace::T.each do |what,where|

 if what.is_a? Class # Report class (with hierarchy) defined

 o.puts "Defined: #{what.ancestors.join('<-')} at #{where}"

 else # Report file loaded

 o.puts "Loaded: #{what} at #{where}"

 end

 end

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.11.2. Chaining Methods for Thread Safety

Two earlier examples in this chapter have involved thread safety. Example 8-2 defined a synchronized method

(based on an Object.mutex method) that executed a block under the protection of a Mutex object. Then,

Example 8-5 redefined the synchronized method so that when it was invoked without a block, it would return a

SynchronizedObject wrapper around an object, protecting access to any methods invoked through that

wrapper object. Now, in Example 8-9, we augment the synchronized method again so that when it is invoked

within a class or module definition, it alias chains the named methods to add synchronization.

The alias chaining is done by our method Module.synchronize_method, which in turn uses a helper method

Module.create_alias to define an appropriate alias for any given method (including operator methods like +).

After defining these new Module methods, Example 8-9 redefines the synchronized method again. When the

method is invoked within a class or a module, it calls synchronize_method on each of the symbols it is passed.

Interestingly, however, it can also be called with no arguments; when used this way, it adds synchronization to
whatever instance method is defined next. (It uses the method_added hook to receive notifications when a new

method is added.) Note that the code in this example depends on the Object.mutex method of Example 8-2

and the SynchronizedObject class of Example 8-5.

Example 8-9. Alias chaining for thread safety

Code View:
Define a Module.synchronize_method that alias chains instance methods

so they synchronize on the instance before running.

class Module

 # This is a helper function for alias chaining.

 # Given a method name (as a string or symbol) and a prefix, create

 # a unique alias for the method, and return the name of the alias

 # as a symbol. Any punctuation characters in the original method name

 # will be converted to numbers so that operators can be aliased.

 def create_alias(original, prefix="alias")

 # Stick the prefix on the original name and convert punctuation

 aka = "#{prefix}_#{original}"

 aka.gsub!(/([\=\|\&\+\-*\/\^\!\?\~\%\<\>\[\]])/) {

 num = $1[0] # Ruby 1.8 character -> ordinal

 num = num.ord if num.is_a? String # Ruby 1.9 character -> ordinal

 '_' + num.to_s

 }

 # Keep appending underscores until we get a name that is not in use

 aka += "_" while method_defined? aka or private_method_defined? aka

 aka = aka.to_sym # Convert the alias name to a symbol

 alias_method aka, original # Actually create the alias

 aka # Return the alias name

 end

 # Alias chain the named method to add synchronization

 def synchronize_method(m)

 # First, make an alias for the unsynchronized version of the method.

 aka = create_alias(m, "unsync")

 # Now redefine the original to invoke the alias in a synchronized block.

 # We want the defined method to be able to accept blocks, so we

 # can't use define_method, and must instead evaluate a string with

 # class_eval. Note that everything between %Q{ and the matching }

 # is a double-quoted string, not a block.

 class_eval %Q{

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 def #{m}(*args, &block)

 synchronized(self) { #{aka}(*args, &block) }

 end

 }

 end

end

This global synchronized method can now be used in three different ways.

def synchronized(*args)

 # Case 1: with one argument and a block, synchronize on the object

 # and execute the block

 if args.size == 1 && block_given?

 args[0].mutex.synchronize { yield }

 # Case two: with one argument that is not a symbol and no block

 # return a SynchronizedObject wrapper

 elsif args.size == 1 and not args[0].is_a? Symbol and not block_given?

 SynchronizedObject.new(args[0])

 # Case three: when invoked on a module with no block, alias chain the

 # named methods to add synchronization. Or, if there are no arguments,

 # then alias chain the next method defined.

 elsif self.is_a? Module and not block_given?

 if (args.size > 0) # Synchronize the named methods

 args.each {|m| self.synchronize_method(m) }

 else

 # If no methods are specified synchronize the next method defined

 eigenclass = class<<self; self; end

 eigenclass.class_eval do # Use eigenclass to define class methods

 # Define method_added for notification when next method is defined

 define_method :method_added do |name|

 # First remove this hook method

 eigenclass.class_eval { remove_method :method_added }

 # Next, synchronize the method that was just added

 self.synchronize_method name

 end

 end

 end

 # Case 4: any other invocation is an error

 else

 raise ArgumentError, "Invalid arguments to synchronize()"

 end

end

8.11.3. Chaining Methods for Tracing

Example 8-10 is a variant on Example 8-4 that supports tracing of named methods of an object. Example 8-4
used delegation and method_missing to define an Object.trace method that would return a traced wrapper

object. This version uses chaining to alter methods of an object in place. It defines trace! and untrace! to

chain and unchain named methods of an object.

The interesting thing about this example is that it does its chaining in a different way from Example 8-9; it
simply defines singleton methods on the object and uses super within the singleton to chain to the original

instance method definition. No method aliases are created.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 8-10. Chaining with singleton methods for tracing

Code View:
Define trace! and untrace! instance methods for all objects.

trace! "chains" the named methods by defining singleton methods

that add tracing functionality and then use super to call the original.

untrace! deletes the singleton methods to remove tracing.

class Object

 # Trace the specified methods, sending output to STDERR.

 def trace!(*methods)

 @_traced = @_traced || [] # Remember the set of traced methods

 # If no methods were specified, use all public methods defined

 # directly (not inherited) by the class of this object

 methods = public_methods(false) if methods.size == 0

 methods.map! {|m| m.to_sym } # Convert any strings to symbols

 methods -= @_traced # Remove methods that are already traced

 return if methods.empty? # Return early if there is nothing to do

 @_traced |= methods # Add methods to set of traced methods

 # Trace the fact that we're starting to trace these methods

 STDERR << "Tracing #{methods.join(', ')} on #{object_id}\n"

 # Singleton methods are defined in the eigenclass

 eigenclass = class << self; self; end

 methods.each do |m| # For each method m

 # Define a traced singleton version of the method m.

 # Output tracing information and use super to invoke the

 # instance method that it is tracing.

 # We want the defined methods to be able to accept blocks, so we

 # can't use define_method, and must instead evaluate a string.

 # Note that everything between %Q{ and the matching } is a

 # double-quoted string, not a block. Also note that there are

 # two levels of string interpolations here. #{} is interpolated

 # when the singleton method is defined. And \#{} is interpolated

 # when the singleton method is invoked.

 eigenclass.class_eval %Q{

 def #{m}(*args, &block)

 begin

 STDERR << "Entering: #{m}(\#{args.join(', ')})\n"

 result = super

 STDERR << "Exiting: #{m} with \#{result}\n"

 result

 rescue

 STDERR << "Aborting: #{m}: \#{$!.class}: \#{$!.message}"

 raise

 end

 end

 }

 end

 end

 # Untrace the specified methods or all traced methods

 def untrace!(*methods)

 if methods.size == 0 # If no methods specified untrace

 methods = @_traced # all currently traced methods

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 STDERR << "Untracing all methods on #{object_id}\n"

 else # Otherwise, untrace

 methods.map! {|m| m.to_sym } # Convert string to symbols

 methods &= @_traced # all specified methods that are traced

 STDERR << "Untracing #{methods.join(', ')} on #{object_id}\n"

 end

 @_traced -= methods # Remove them from our set of traced methods

 # Remove the traced singleton methods from the eigenclass

 # Note that we class_eval a block here, not a string

 (class << self; self; end).class_eval do

 methods.each do |m|

 remove_method m # undef_method would not work correctly

 end

 end

 # If no methods are traced anymore, remove our instance var

 if @_traced.empty?

 remove_instance_variable :@_traced

 end

 end

end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.12. Domain-Specific Languages

The goal of metaprogramming in Ruby is often the creation of domain-specific languages, or DSLs. A DSL is just
an extension of Ruby's syntax (with methods that look like keywords) or API that allows you to solve a problem
or represent data more naturally than you could otherwise. For our examples, we'll take the problem domain to
be the output of XML formatted data, and we'll define two DSLs-one very simple and one more clever-to
tackle this problem.[*]

[*] For a fully realized solution to this problem, see Jim Weirich's Builder API at http://builder.rubyforge.org.

8.12.1. Simple XML Output with method_missing

We begin with a simple class named XML for generating XML output. Here's an example of how the XML can be

used:

pagetitle = "Test Page for XML.generate"

XML.generate(STDOUT) do

 html do

 head do

 title { pagetitle }

 comment "This is a test"

 end

 body do

 h1(:style => "font-family:sans-serif") { pagetitle }

 ul :type=>"square" do

 li { Time.now }

 li { RUBY_VERSION }

 end

 end

 end

end

This code doesn't look like XML, and it only sort of looks like Ruby. Here's the output it generates (with some
line breaks added for legibility):

<html><head>

<title>Test Page for XML.generate</title>

<!-- This is a test -->

</head><body>

<h1 style='font-family:sans-serif'>Test Page for XML.generate</h1>

<ul type='square'>

2007-08-19 16:19:58 -0700

1.9.0

</body></html>

To implement this class and the XML generation syntax it supports, we rely on:

Ruby's block structure

http://builder.rubyforge.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Ruby's parentheses-optional method invocations

Ruby's syntax for passing hash literals to methods without curly braces

The method_missing method

Example 8-11 shows the implementation for this simple DSL.

Example 8-11. A simple DSL for generating XML output

Code View:
class XML

 # Create an instance of this class, specifying a stream or object to

 # hold the output. This can be any object that responds to <<(String).

 def initialize(out)

 @out = out # Remember where to send our output

 end

 # Output the specified object as CDATA, return nil.

 def content(text)

 @out << text.to_s

 nil

 end

 # Output the specified object as a comment, return nil.

 def comment(text)

 @out << "<!-- #{text} -->"

 nil

 end

 # Output a tag with the specified name and attributes.

 # If there is a block invoke it to output or return content.

 # Return nil.

 def tag(tagname, attributes={})

 # Output the tag name

 @out << "<#{tagname}"

 # Output the attributes

 attributes.each {|attr,value| @out << " #{attr}='#{value}'" }

 if block_given?

 # This block has content

 @out << '>' # End the opening tag

 content = yield # Invoke the block to output or return content

 if content # If any content returned

 @out << content.to_s # Output it as a string

 end

 @out << "</#{tagname}>" # Close the tag

 else

 # Otherwise, this is an empty tag, so just close it.

 @out << '/>'

 end

 nil # Tags output themselves, so they don't return any content

 end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 # The code below is what changes this from an ordinary class into a DSL.

 # First: any unknown method is treated as the name of a tag.

 alias method_missing tag

 # Second: run a block in a new instance of the class.

 def self.generate(out, &block)

 XML.new(out).instance_eval(&block)

 end

end

8.12.2. Validated XML Output with Method Generation

The XML class of Example 8-11 is helpful for generating well-formed XML, but it does no error checking to ensure

that the output is valid according to any particular XML grammar. In the next example, Example 8-12, we add
some simple error checking (though not nearly enough to ensure complete validity-that would require a much
longer example). This example is really two DSLs in one. The first is a DSL for defining an XML grammar: a set
of tags and the allowed attributes for each tag. You use it like this:

class HTMLForm < XMLGrammar

 element :form, :action => REQ,

 :method => "GET",

 :enctype => "application/x-www-form-urlencoded",

 :name => OPT

 element :input, :type => "text", :name => OPT, :value => OPT,

 :maxlength => OPT, :size => OPT, :src => OPT,

 :checked => BOOL, :disabled => BOOL, :readonly => BOOL

 element :textarea, :rows => REQ, :cols => REQ, :name => OPT,

 :disabled => BOOL, :readonly => BOOL

 element :button, :name => OPT, :value => OPT,

 :type => "submit", :disabled => OPT

end

This first DSL is defined by the class method XMLGrammar.element. You use it by subclassing XMLGrammar to

create a new class. The element method expects the name of a tag as its first argument and a hash of legal

attributes as the second argument. The keys of the hash are attribute names. These names may map to default
values for the attribute, to the constant REQ for required attributes, or to the constant OPT for optional

attributes. Calling element generates a method with the specified name in the subclass you are defining.

The subclass of XMLGrammar you define is the second DSL, and you can use it to generate XML output that is

valid according to the rules you specified. The XMLGrammar class does not have a method_missing method so it

won't allow you to use a tag that is not part of the grammar. And the tag method for outputting tags performs

error checking on your attributes. Use the generated grammar subclass like the XML class of Example 8-11:

HTMLForm.generate(STDOUT) do

 comment "This is a simple HTML form"

 form :name => "registration",

 :action => "http://www.example.com/register.cgi" do

 content "Name:"

 input :name => "name"

 content "Address:"

 textarea :name => "address", :rows=>6, :cols=>40 do

 "Please enter your mailing address here"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 end

 button { "Submit" }

 end

end

Example 8-12 shows the implementation of the XMLGrammar class.

Example 8-12. A DSL for validated XML output

Code View:
class XMLGrammar

 # Create an instance of this class, specifying a stream or object to

 # hold the output. This can be any object that responds to <<(String).

 def initialize(out)

 @out = out # Remember where to send our output

 end

 # Invoke the block in an instance that outputs to the specified stream.

 def self.generate(out, &block)

 new(out).instance_eval(&block)

 end

 # Define an allowed element (or tag) in the grammar.

 # This class method is the grammar-specification DSL

 # and defines the methods that constitute the XML-output DSL.

 def self.element(tagname, attributes={})

 @allowed_attributes ||= {}

 @allowed_attributes[tagname] = attributes

 class_eval %Q{

 def #{tagname}(attributes={}, &block)

 tag(:#{tagname},attributes,&block)

 end

 }

 end

 # These are constants used when defining attribute values.

 OPT = :opt # for optional attributes

 REQ = :req # for required attributes

 BOOL = :bool # for attributes whose value is their own name

 def self.allowed_attributes

 @allowed_attributes

 end

 # Output the specified object as CDATA, return nil.

 def content(text)

 @out << text.to_s

 nil

 end

 # Output the specified object as a comment, return nil.

 def comment(text)

 @out << "<!-- #{text} -->"

 nil

 end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 # Output a tag with the specified name and attribute.

 # If there is a block, invoke it to output or return content.

 # Return nil.

 def tag(tagname, attributes={})

 # Output the tag name

 @out << "<#{tagname}"

 # Get the allowed attributes for this tag.

 allowed = self.class.allowed_attributes[tagname]

 # First, make sure that each of the attributes is allowed.

 # Assuming they are allowed, output all of the specified ones.

 attributes.each_pair do |key,value|

 raise "unknown attribute: #{key}" unless allowed.include?(key)

 @out << " #{key}='#{value}'"

 end

 # Now look through the allowed attributes, checking for

 # required attributes that were omitted and for attributes with

 # default values that we can output.

 allowed.each_pair do |key,value|

 # If this attribute was already output, do nothing.

 next if attributes.has_key? key

 if (value == REQ)

 raise "required attribute '#{key}' missing in <#{tagname}>"

 elsif value.is_a? String

 @out << " #{key}='#{value}'"

 end

 end

 if block_given?

 # This block has content

 @out << '>' # End the opening tag

 content = yield # Invoke the block to output or return content

 if content # If any content returned

 @out << content.to_s # Output it as a string

 end

 @out << "</#{tagname}>" # Close the tag

 else

 # Otherwise, this is an empty tag, so just close it.

 @out << '/>'

 end

 nil # Tags output themselves, so they don't return any content.

 end

end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 9. The Ruby Platform

Ruby's core library defines a rich and powerful API that serves as a platform on which to create your programs.
It is well worth your time to study and master this API, particularly the key classes such as String, Array, Hash,

Enumerable, and IO. If you aren't familiar with the methods defined by these classes, you may end up spending

time reinventing functionality that is already provided for you.

This chapter documents those methods. It is not a comprehensive API reference, but attempts to illustrate, with
short code snippets, the use of the important methods of all the important core classes and modules, and a few
of the most commonly used classes from the standard library. The aim is to familiarize you with the broad range
of existing methods, so that when you need one of them, you will remember that it exists and will be able to
find its documentation with ri.

This is a long chapter, broken down into sections that cover the following:

Strings and text processing

Regular expressions

Numbers and math

Dates and times

The Enumerable module and the Array, Hash and Set collections

Input/output and files

Networking

Threads and concurrency

You'll find that the code early in the chapter takes the form of one-line snippets demonstrating individual
methods. Toward the end, however, when documenting networking and threads, the examples become longer
and demonstrate how to accomplish common tasks like creating a network client or using threads to
concurrently process the items in a collection.

9.1. Strings

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 3explained Ruby's string literal syntax, as well as the String operators for concatenation (+), appends

(<<), repetition (*), and indexing ([]). In this section we expand on that coverage by demonstrating the named

methods of the String class. The subsections that follow this API overview cover specific areas in more detail.

We begin with methods that provide named alternatives to some of the operators documented in Chapter 3:

Code View:
s = "hello"

s.concat(" world") # Synonym for <<. Mutating append to s. Returns new s.

s.insert(5, " there") # Same as s[5] = " there". Alters s. Returns new s.

s.slice(0,5) # Same as s[0,5]. Returns a substring.

s.slice!(5,6) # Deletion. Same as s[5,6]="". Returns deleted substring.

s.eql?("hello world") # True. Same as ==.

There are several methods for querying the length of a string:

s.length # => 5: counts characters in 1.9, bytes in 1.8

s.size # => 5: size is a synonym

s.bytesize # => 5: length in bytes; Ruby 1.9 only

s.empty? # => false

"".empty? # => true

String methods for searching a string and for replacing content include the following. We'll revisit some of these
when we consider regular expressions later in this section:

Code View:
s = "hello"

Finding the position of a substring or pattern match

s.index('l') # => 2: index of first l in string

s.index(?l) # => 2: works with character codes as well

s.index(/l+/) # => 2: works with regular expressions, too

s.index('l',3) # => 3: index of first l in string at or after position 3

s.index('Ruby') # => nil: search string not found

s.rindex('l') # => 3: index of rightmost l in string

s.rindex('l',2) # => 2: index of rightmost l in string at or before 2

Checking for prefixes and suffixes: Ruby 1.9 and later

s.start_with? "hell" # => true. Note singular "start" not "starts"

s.end_with? "bells" # => false

Testing for presence of substring

s.include?("ll") # => true: "hello" includes "ll"

s.include?(?H) # => false: "hello" does not include character H

Pattern matching with regular expressions

s =~ /[aeiou]{2}/ # => nil: no double vowels in "hello"

s.match(/[aeiou]/) {|m| m.to_s} # => "e": return first vowel

Splitting a string into substrings based on a delimiter string or pattern

"this is it".split # => ["this", "is", "it"]: split on spaces by default

"hello".split('l') # => ["he", "", "o"]

"1, 2,3".split(/,\s*/) # => ["1","2","3"]: comma and optional space delimiter

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Split a string into two parts plus a delimiter. Ruby 1.9 only.

These methods always return arrays of 3 strings:

"banana".partition("an") # => ["b", "an", "ana"]

"banana".rpartition("an") # => ["ban", "an", "a"]: start from right

"a123b".partition(/\d+/) # => ["a", "123", "b"]: works with Regexps, too

Search and replace the first (sub, sub!) or all (gsub, gsub!)

occurrences of the specified string or pattern.

More about sub and gsub when we cover regular expressions later.

s.sub("l", "L") # => "heLlo": Just replace first occurrence

s.gsub("l", "L") # => "heLLo": Replace all occurrences

s.sub!(/(.)(.)/, '\2\1') # => "ehllo": Match and swap first 2 letters

s.sub!(/(.)(.)/, "\\2\\1") # => "hello": Double backslashes for double quotes

sub and gsub can also compute a replacement string with a block

Match the first letter of each word and capitalize it

"hello world".gsub(/\b./) {|match| match.upcase } # => "Hello World"

The last line of this example uses the upcase method to convert a string to uppercase. The String class defines

a number of methods for working with case (but it does not define methods for testing the case or category of a
character):

Code View:
Case modification methods

s = "world" # These methods work with ASCII characters only

s.upcase # => "WORLD"

s.upcase! # => "WORLD"; alter s in place

s.downcase # => "world"

s.capitalize # => "World": first letter upper, rest lower

s.capitalize! # => "World": alter s in place

s.swapcase # => "wORLD": alter case of each letter

Case insensitive comparison. (ASCII text only)

casecmp works like <=> and returns -1 for less, 0 for equal, +1 for greater

"world".casecmp("WORLD") # => 0

"a".casecmp("B") # => -1 (<=> returns 1 in this case)

String defines a number of useful methods for adding and removing whitespace. Most exist in mutating (end

with !) and nonmutating versions:

Code View:
s = "hello\r\n" # A string with a line terminator

s.chomp! # => "hello": remove one line terminator from end

s.chomp # => "hello": no line terminator so no change

s.chomp! # => nil: return of nil indicates no change made

s.chomp("o") # => "hell": remove "o" from end

$/ = ";" # Set global record separator $/ to semicolon

"hello;".chomp # => "hello": now chomp removes semicolons and end

chop removes trailing character or line terminator (\n, \r, or \r\n)

s = "hello\n"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

s.chop! # => "hello": line terminator removed. s modified.

s.chop # => "hell": last character removed. s not modified.

"".chop # => "": no characters to remove

"".chop! # => nil: nothing changed

Strip all whitespace (including \t, \r, \n) from left, right, or both

strip!, lstrip! and rstrip! modify the string in place.

s = "\t hello \n" # Whitespace at beginning and end

s.strip # => "hello"

s.lstrip # => "hello \n"

s.rstrip # => "\t hello"

Left-justify, right-justify, or center a string in a field n-characters wide.

There are no mutator versions of these methods. See also printf method.

s = "x"

s.ljust(3) # => "x "

s.rjust(3) # => " x"

s.center(3) # => " x "

s.center(5, '-') # => "--x--": padding other than space are allowed

s.center(7, '-=') # => "-=-x-=-": multicharacter padding allowed

Strings may be enumerated byte-by-byte or line-by-line with the each_byte and each_line iterators. In Ruby

1.8, the each method is a synonym for each_line, and the String class includes Enumerable. Avoid using each

and its related iterators because Ruby 1.9 removes the each method and no longer makes strings Enumerable.

Ruby 1.9 (and the jcode library in Ruby 1.8) adds an each_char iterator and enables character-by-character

enumeration of strings:

s = "A\nB" # Three ASCII characters on two lines

s.each_byte {|b| print b, " " } # Prints "65 10 66 "

s.each_line {|l| print l.chomp} # Prints "AB"

Sequentially iterate characters as 1-character strings

Works in Ruby 1.9, or in 1.8 with the jcode library:

s.each_char { |c| print c, " " } # Prints "A \n B "

Enumerate each character as a 1-character string

This does not work for multibyte strings in 1.8

It works (inefficiently) for multibyte strings in 1.9:

0.upto(s.length-1) {|n| print s[n,1], " "}

In Ruby 1.9, bytes, lines, and chars are aliases

s.bytes.to_a # => [65,10,66]: alias for each_byte

s.lines.to_a # => ["A\n","B"]: alias for each_line

s.chars.to_a # => ["A", "\n", "B"] alias for each_char

String defines a number of methods for parsing numbers from strings, and for converting strings to symbols:

"10".to_i # => 10: convert string to integer

"10".to_i(2) # => 2: argument is radix: between base-2 and base-36

"10x".to_i # => 10: nonnumeric suffix is ignored. Same for oct, hex

" 10".to_i # => 10: leading whitespace ignored

"ten".to_i # => 0: does not raise exception on bad input

"10".oct # => 8: parse string as base-8 integer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

"10".hex # => 16: parse string as hexadecimal integer

"0xff".hex # => 255: hex numbers may begin with 0x prefix

" 1.1 dozen".to_f # => 1.1: parse leading floating-point number

"6.02e23".to_f # => 6.02e+23: exponential notation supported

"one".to_sym # => :one -- string to symbol conversion

"two".intern # => :two -- intern is a synonym for to_sym

Finally, here are some miscellaneous String methods:

Code View:
Increment a string:

"a".succ # => "b": the successor of "a". Also, succ!

"aaz".next # => "aba": next is a synonym. Also, next!

"a".upto("e") {|c| print c } # Prints "abcde. upto iterator based on succ.

Reverse a string:

"hello".reverse # => "olleh". Also reverse!

Debugging

"hello\n".dump # => "\"hello\\n\"": Escape special characters

"hello\n".inspect # Works much like dump

Translation from one set of characters to another

"hello".tr("aeiou", "AEIOU") # => "hEllO": capitalize vowels. Also tr!

"hello".tr("aeiou", " ") # => "h ll ": convert vowels to spaces

"bead".tr_s("aeiou", " ") # => "b d": convert and remove duplicates

Checksums

"hello".sum # => 532: weak 16-bit checksum

"hello".sum(8) # => 20: 8 bit checksum instead of 16 bit

"hello".crypt("ab") # => "abl0JrMf6tlhw": one way cryptographic checksum

 # Pass two alphanumeric characters as "salt"

 # The result may be platform-dependent

Counting letters, deleting letters, and removing duplicates

"hello".count('aeiou') # => 2: count lowercase vowels

"hello".delete('aeiou') # => "hll": delete lowercase vowels. Also delete!

"hello".squeeze('a-z') # => "helo": remove runs of letters. Also squeeze!

When there is more than one argument, take the intersection.

Arguments that begin with ^ are negated.

"hello".count('a-z', '^aeiou') # => 3: count lowercase consonants

"hello".delete('a-z', '^aeiou') # => "eo: delete lowercase consonants

9.1.1. Formatting Text

As you know, Ruby's double-quoted string literals allow arbitrary Ruby expressions to be interpolated into
strings. For example:

n, animal = 2, "mice"

"#{n+1} blind #{animal}" # => '3 blind mice'

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This string-literal interpolation syntax was documented in Chapter 3. Ruby also supports another technique for
interpolating values into strings: the String class defines a format operator %, and the Kernel module defines

global printf and sprintf methods. These methods and the % operator are very much like the printf function

popularized by the C programming language. One advantage of printf-style formatting over regular string

literal interpolation is that it allows precise control over field widths, which makes it useful for ASCII report
generation. Another advantage is that it allows you to specify the number of significant digits to display in
floating-point numbers, which is useful in scientific (and sometimes financial) applications. Finally, printf-style

formatting decouples the values to be formatted from the string into which they are interpolated. This can be
helpful for internationalization and localization of applications.

Examples using the % operator follow. See Kernel.sprintf for complete documentation of the formatting

directives used by these methods:

Code View:
Alternatives to the interpolation above

printf('%d blind %s', n+1, animal) # Prints '3 blind mice', returns nil

sprintf('%d blind %s', n+1, animal) # => '3 blind mice'

'%d blind %s' % [n+1, animal] # Use array on right if more than one argument

Formatting numbers

'%d' % 10 # => '10': %d for decimal integers

'%x' % 10 # => 'a': hexadecimal integers

'%X' % 10 # => 'A': uppercase hexadecimal integers

'%o' % 10 # => '12': octal integers

'%f' % 1234.567 # => '1234.567000': full-length floating-point numbers

'%e' % 1234.567 # => '1.234567e+03': force exponential notation

'%E' % 1234.567 # => '1.234567e+03': exponential with uppercase E

'%g' % 1234.567 # => '1234.57': six significant digits

'%g' % 1.23456E12 # => '1.23456e+12': Use %f or %e depending on magnitude

Field width

'%5s' % '<<<' # ' <<<': right-justify in field five characters wide

'%-5s' % '>>>' # '>>> ': left-justify in field five characters wide

'%5d' % 123 # ' 123': field is five characters wide

'%05d' % 123 # '00123': pad with zeros in field five characters wide

Precision

'%.2f' % 123.456 # '123.46': two digits after decimal place

'%.2e' % 123.456 # '1.23e+02': two digits after decimal = three significant digits

'%.6e' % 123.456 # '1.234560e+02': note added zero

'%.4g' % 123.456 # '123.5': four significant digits

Field and precision combined

'%6.4g' % 123.456 # ' 123.5': four significant digits in field six chars wide

'%3s' % 'ruby' # 'ruby': string argument exceeds field width

'%3.3s' % 'ruby' # 'rub': precision forces truncation of string

Multiple arguments to be formatted

args = ['Syntax Error', 'test.rb', 20] # An array of arguments

"%s: in '%s' line %d" % args # => "Syntax Error: in 'test.rb' line 20"

Same args, interpolated in different order! Good for internationalization.

"%2$s:%3$d: %1$s" % args # => "test.rb:20: Syntax Error"

9.1.2. Packing and Unpacking Binary Strings

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Ruby's strings can hold binary data as well as textual data. A pair of methods, Array.pack and String.unpack,

can be helpful if you are working with binary file formats or binary network protocols. Use Array.pack to

encode the elements of an array into a binary string. And use String.unpack to decode a binary string,

extracting values from it and returning those values in an array. Both the encoding and decoding operations are
under the control of a format string where letters specify the datatype and encoding and numbers specify the
number of repetitions. The creation of these format strings is fairly arcane, and you can find a complete list of
letter codes in the documentation for Array.pack and String.unpack. Here are some simple examples:

Code View:
a = [1,2,3,4,5,6,7,8,9,10] # An array of 10 integers

b = a.pack('i10') # Pack 10 4-byte integers (i) into binary string b

c = b.unpack('i*') # Decode all (*) the 4-byte integers from b

c == a # => true

m = 'hello world' # A message to encode

data = [m.size, m] # Length first, then the bytes

template = 'Sa*' # Unsigned short, any number of ASCII chars

b = data.pack(template) # => "\v\000hello world"

b.unpack(template) # => [11, "hello world"]

9.1.3. Strings and Encodings

The String methods encoding, encode, encode!, and force_encoding and the Encoding class were described

in Section 3.2.6. You may want to reread that section now if you will be writing programs using Unicode or other
multibyte character encodings.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 9. The Ruby Platform

Ruby's core library defines a rich and powerful API that serves as a platform on which to create your programs.
It is well worth your time to study and master this API, particularly the key classes such as String, Array, Hash,

Enumerable, and IO. If you aren't familiar with the methods defined by these classes, you may end up spending

time reinventing functionality that is already provided for you.

This chapter documents those methods. It is not a comprehensive API reference, but attempts to illustrate, with
short code snippets, the use of the important methods of all the important core classes and modules, and a few
of the most commonly used classes from the standard library. The aim is to familiarize you with the broad range
of existing methods, so that when you need one of them, you will remember that it exists and will be able to
find its documentation with ri.

This is a long chapter, broken down into sections that cover the following:

Strings and text processing

Regular expressions

Numbers and math

Dates and times

The Enumerable module and the Array, Hash and Set collections

Input/output and files

Networking

Threads and concurrency

You'll find that the code early in the chapter takes the form of one-line snippets demonstrating individual
methods. Toward the end, however, when documenting networking and threads, the examples become longer
and demonstrate how to accomplish common tasks like creating a network client or using threads to
concurrently process the items in a collection.

9.1. Strings

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 3explained Ruby's string literal syntax, as well as the String operators for concatenation (+), appends

(<<), repetition (*), and indexing ([]). In this section we expand on that coverage by demonstrating the named

methods of the String class. The subsections that follow this API overview cover specific areas in more detail.

We begin with methods that provide named alternatives to some of the operators documented in Chapter 3:

Code View:
s = "hello"

s.concat(" world") # Synonym for <<. Mutating append to s. Returns new s.

s.insert(5, " there") # Same as s[5] = " there". Alters s. Returns new s.

s.slice(0,5) # Same as s[0,5]. Returns a substring.

s.slice!(5,6) # Deletion. Same as s[5,6]="". Returns deleted substring.

s.eql?("hello world") # True. Same as ==.

There are several methods for querying the length of a string:

s.length # => 5: counts characters in 1.9, bytes in 1.8

s.size # => 5: size is a synonym

s.bytesize # => 5: length in bytes; Ruby 1.9 only

s.empty? # => false

"".empty? # => true

String methods for searching a string and for replacing content include the following. We'll revisit some of these
when we consider regular expressions later in this section:

Code View:
s = "hello"

Finding the position of a substring or pattern match

s.index('l') # => 2: index of first l in string

s.index(?l) # => 2: works with character codes as well

s.index(/l+/) # => 2: works with regular expressions, too

s.index('l',3) # => 3: index of first l in string at or after position 3

s.index('Ruby') # => nil: search string not found

s.rindex('l') # => 3: index of rightmost l in string

s.rindex('l',2) # => 2: index of rightmost l in string at or before 2

Checking for prefixes and suffixes: Ruby 1.9 and later

s.start_with? "hell" # => true. Note singular "start" not "starts"

s.end_with? "bells" # => false

Testing for presence of substring

s.include?("ll") # => true: "hello" includes "ll"

s.include?(?H) # => false: "hello" does not include character H

Pattern matching with regular expressions

s =~ /[aeiou]{2}/ # => nil: no double vowels in "hello"

s.match(/[aeiou]/) {|m| m.to_s} # => "e": return first vowel

Splitting a string into substrings based on a delimiter string or pattern

"this is it".split # => ["this", "is", "it"]: split on spaces by default

"hello".split('l') # => ["he", "", "o"]

"1, 2,3".split(/,\s*/) # => ["1","2","3"]: comma and optional space delimiter

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Split a string into two parts plus a delimiter. Ruby 1.9 only.

These methods always return arrays of 3 strings:

"banana".partition("an") # => ["b", "an", "ana"]

"banana".rpartition("an") # => ["ban", "an", "a"]: start from right

"a123b".partition(/\d+/) # => ["a", "123", "b"]: works with Regexps, too

Search and replace the first (sub, sub!) or all (gsub, gsub!)

occurrences of the specified string or pattern.

More about sub and gsub when we cover regular expressions later.

s.sub("l", "L") # => "heLlo": Just replace first occurrence

s.gsub("l", "L") # => "heLLo": Replace all occurrences

s.sub!(/(.)(.)/, '\2\1') # => "ehllo": Match and swap first 2 letters

s.sub!(/(.)(.)/, "\\2\\1") # => "hello": Double backslashes for double quotes

sub and gsub can also compute a replacement string with a block

Match the first letter of each word and capitalize it

"hello world".gsub(/\b./) {|match| match.upcase } # => "Hello World"

The last line of this example uses the upcase method to convert a string to uppercase. The String class defines

a number of methods for working with case (but it does not define methods for testing the case or category of a
character):

Code View:
Case modification methods

s = "world" # These methods work with ASCII characters only

s.upcase # => "WORLD"

s.upcase! # => "WORLD"; alter s in place

s.downcase # => "world"

s.capitalize # => "World": first letter upper, rest lower

s.capitalize! # => "World": alter s in place

s.swapcase # => "wORLD": alter case of each letter

Case insensitive comparison. (ASCII text only)

casecmp works like <=> and returns -1 for less, 0 for equal, +1 for greater

"world".casecmp("WORLD") # => 0

"a".casecmp("B") # => -1 (<=> returns 1 in this case)

String defines a number of useful methods for adding and removing whitespace. Most exist in mutating (end

with !) and nonmutating versions:

Code View:
s = "hello\r\n" # A string with a line terminator

s.chomp! # => "hello": remove one line terminator from end

s.chomp # => "hello": no line terminator so no change

s.chomp! # => nil: return of nil indicates no change made

s.chomp("o") # => "hell": remove "o" from end

$/ = ";" # Set global record separator $/ to semicolon

"hello;".chomp # => "hello": now chomp removes semicolons and end

chop removes trailing character or line terminator (\n, \r, or \r\n)

s = "hello\n"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

s.chop! # => "hello": line terminator removed. s modified.

s.chop # => "hell": last character removed. s not modified.

"".chop # => "": no characters to remove

"".chop! # => nil: nothing changed

Strip all whitespace (including \t, \r, \n) from left, right, or both

strip!, lstrip! and rstrip! modify the string in place.

s = "\t hello \n" # Whitespace at beginning and end

s.strip # => "hello"

s.lstrip # => "hello \n"

s.rstrip # => "\t hello"

Left-justify, right-justify, or center a string in a field n-characters wide.

There are no mutator versions of these methods. See also printf method.

s = "x"

s.ljust(3) # => "x "

s.rjust(3) # => " x"

s.center(3) # => " x "

s.center(5, '-') # => "--x--": padding other than space are allowed

s.center(7, '-=') # => "-=-x-=-": multicharacter padding allowed

Strings may be enumerated byte-by-byte or line-by-line with the each_byte and each_line iterators. In Ruby

1.8, the each method is a synonym for each_line, and the String class includes Enumerable. Avoid using each

and its related iterators because Ruby 1.9 removes the each method and no longer makes strings Enumerable.

Ruby 1.9 (and the jcode library in Ruby 1.8) adds an each_char iterator and enables character-by-character

enumeration of strings:

s = "A\nB" # Three ASCII characters on two lines

s.each_byte {|b| print b, " " } # Prints "65 10 66 "

s.each_line {|l| print l.chomp} # Prints "AB"

Sequentially iterate characters as 1-character strings

Works in Ruby 1.9, or in 1.8 with the jcode library:

s.each_char { |c| print c, " " } # Prints "A \n B "

Enumerate each character as a 1-character string

This does not work for multibyte strings in 1.8

It works (inefficiently) for multibyte strings in 1.9:

0.upto(s.length-1) {|n| print s[n,1], " "}

In Ruby 1.9, bytes, lines, and chars are aliases

s.bytes.to_a # => [65,10,66]: alias for each_byte

s.lines.to_a # => ["A\n","B"]: alias for each_line

s.chars.to_a # => ["A", "\n", "B"] alias for each_char

String defines a number of methods for parsing numbers from strings, and for converting strings to symbols:

"10".to_i # => 10: convert string to integer

"10".to_i(2) # => 2: argument is radix: between base-2 and base-36

"10x".to_i # => 10: nonnumeric suffix is ignored. Same for oct, hex

" 10".to_i # => 10: leading whitespace ignored

"ten".to_i # => 0: does not raise exception on bad input

"10".oct # => 8: parse string as base-8 integer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

"10".hex # => 16: parse string as hexadecimal integer

"0xff".hex # => 255: hex numbers may begin with 0x prefix

" 1.1 dozen".to_f # => 1.1: parse leading floating-point number

"6.02e23".to_f # => 6.02e+23: exponential notation supported

"one".to_sym # => :one -- string to symbol conversion

"two".intern # => :two -- intern is a synonym for to_sym

Finally, here are some miscellaneous String methods:

Code View:
Increment a string:

"a".succ # => "b": the successor of "a". Also, succ!

"aaz".next # => "aba": next is a synonym. Also, next!

"a".upto("e") {|c| print c } # Prints "abcde. upto iterator based on succ.

Reverse a string:

"hello".reverse # => "olleh". Also reverse!

Debugging

"hello\n".dump # => "\"hello\\n\"": Escape special characters

"hello\n".inspect # Works much like dump

Translation from one set of characters to another

"hello".tr("aeiou", "AEIOU") # => "hEllO": capitalize vowels. Also tr!

"hello".tr("aeiou", " ") # => "h ll ": convert vowels to spaces

"bead".tr_s("aeiou", " ") # => "b d": convert and remove duplicates

Checksums

"hello".sum # => 532: weak 16-bit checksum

"hello".sum(8) # => 20: 8 bit checksum instead of 16 bit

"hello".crypt("ab") # => "abl0JrMf6tlhw": one way cryptographic checksum

 # Pass two alphanumeric characters as "salt"

 # The result may be platform-dependent

Counting letters, deleting letters, and removing duplicates

"hello".count('aeiou') # => 2: count lowercase vowels

"hello".delete('aeiou') # => "hll": delete lowercase vowels. Also delete!

"hello".squeeze('a-z') # => "helo": remove runs of letters. Also squeeze!

When there is more than one argument, take the intersection.

Arguments that begin with ^ are negated.

"hello".count('a-z', '^aeiou') # => 3: count lowercase consonants

"hello".delete('a-z', '^aeiou') # => "eo: delete lowercase consonants

9.1.1. Formatting Text

As you know, Ruby's double-quoted string literals allow arbitrary Ruby expressions to be interpolated into
strings. For example:

n, animal = 2, "mice"

"#{n+1} blind #{animal}" # => '3 blind mice'

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This string-literal interpolation syntax was documented in Chapter 3. Ruby also supports another technique for
interpolating values into strings: the String class defines a format operator %, and the Kernel module defines

global printf and sprintf methods. These methods and the % operator are very much like the printf function

popularized by the C programming language. One advantage of printf-style formatting over regular string

literal interpolation is that it allows precise control over field widths, which makes it useful for ASCII report
generation. Another advantage is that it allows you to specify the number of significant digits to display in
floating-point numbers, which is useful in scientific (and sometimes financial) applications. Finally, printf-style

formatting decouples the values to be formatted from the string into which they are interpolated. This can be
helpful for internationalization and localization of applications.

Examples using the % operator follow. See Kernel.sprintf for complete documentation of the formatting

directives used by these methods:

Code View:
Alternatives to the interpolation above

printf('%d blind %s', n+1, animal) # Prints '3 blind mice', returns nil

sprintf('%d blind %s', n+1, animal) # => '3 blind mice'

'%d blind %s' % [n+1, animal] # Use array on right if more than one argument

Formatting numbers

'%d' % 10 # => '10': %d for decimal integers

'%x' % 10 # => 'a': hexadecimal integers

'%X' % 10 # => 'A': uppercase hexadecimal integers

'%o' % 10 # => '12': octal integers

'%f' % 1234.567 # => '1234.567000': full-length floating-point numbers

'%e' % 1234.567 # => '1.234567e+03': force exponential notation

'%E' % 1234.567 # => '1.234567e+03': exponential with uppercase E

'%g' % 1234.567 # => '1234.57': six significant digits

'%g' % 1.23456E12 # => '1.23456e+12': Use %f or %e depending on magnitude

Field width

'%5s' % '<<<' # ' <<<': right-justify in field five characters wide

'%-5s' % '>>>' # '>>> ': left-justify in field five characters wide

'%5d' % 123 # ' 123': field is five characters wide

'%05d' % 123 # '00123': pad with zeros in field five characters wide

Precision

'%.2f' % 123.456 # '123.46': two digits after decimal place

'%.2e' % 123.456 # '1.23e+02': two digits after decimal = three significant digits

'%.6e' % 123.456 # '1.234560e+02': note added zero

'%.4g' % 123.456 # '123.5': four significant digits

Field and precision combined

'%6.4g' % 123.456 # ' 123.5': four significant digits in field six chars wide

'%3s' % 'ruby' # 'ruby': string argument exceeds field width

'%3.3s' % 'ruby' # 'rub': precision forces truncation of string

Multiple arguments to be formatted

args = ['Syntax Error', 'test.rb', 20] # An array of arguments

"%s: in '%s' line %d" % args # => "Syntax Error: in 'test.rb' line 20"

Same args, interpolated in different order! Good for internationalization.

"%2$s:%3$d: %1$s" % args # => "test.rb:20: Syntax Error"

9.1.2. Packing and Unpacking Binary Strings

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Ruby's strings can hold binary data as well as textual data. A pair of methods, Array.pack and String.unpack,

can be helpful if you are working with binary file formats or binary network protocols. Use Array.pack to

encode the elements of an array into a binary string. And use String.unpack to decode a binary string,

extracting values from it and returning those values in an array. Both the encoding and decoding operations are
under the control of a format string where letters specify the datatype and encoding and numbers specify the
number of repetitions. The creation of these format strings is fairly arcane, and you can find a complete list of
letter codes in the documentation for Array.pack and String.unpack. Here are some simple examples:

Code View:
a = [1,2,3,4,5,6,7,8,9,10] # An array of 10 integers

b = a.pack('i10') # Pack 10 4-byte integers (i) into binary string b

c = b.unpack('i*') # Decode all (*) the 4-byte integers from b

c == a # => true

m = 'hello world' # A message to encode

data = [m.size, m] # Length first, then the bytes

template = 'Sa*' # Unsigned short, any number of ASCII chars

b = data.pack(template) # => "\v\000hello world"

b.unpack(template) # => [11, "hello world"]

9.1.3. Strings and Encodings

The String methods encoding, encode, encode!, and force_encoding and the Encoding class were described

in Section 3.2.6. You may want to reread that section now if you will be writing programs using Unicode or other
multibyte character encodings.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.2. Regular Expressions

A regular expression (also known as a regexp or regex) describes a textual pattern. Ruby's Regexp class[*]

implements regular expressions, and both Regexp and String define pattern matching methods and operators.

Like most languages that support regular expressions, Ruby's Regexp syntax follows closely (but not precisely)

the syntax of Perl 5.

[*] JavaScript programmers should note that the Ruby class has a lowercase e, unlike the JavaScript RegExp class.

9.2.1. Regexp Literals

Regular expression literals are delimited by forward slash characters:

/Ruby?/ # Matches the text "Rub" followed by an optional "y"

The closing slash character isn't a true delimiter because a regular expression literal may be followed by one or
more optional flag characters that specify additional information about the how pattern matching is to be done.
For example:

/ruby?/i # Case-insensitive: matches "ruby" or "RUB", etc.

/./mu # Matches Unicode characters in Multiline mode

The allowed modifier characters are shown in Table 9-1.

Table 9-1. Regular expression modifier characters

Modifier Description

i Ignore case when matching text.

m The pattern is to be matched against multiline text, so treat newline as an ordinary character: allow
. to match newlines.

x Extended syntax: allow whitespace and comments in regexp.

o Perform #{} interpolations only once, the first time the regexp literal is evaluated.

u,e,s,n Interpret the regexp as Unicode (UTF-8), EUC, SJIS, or ASCII. If none of these modifiers is
specified, the regular expression is assumed to use the source encoding.

Like string literals delimited with %Q, Ruby allows you to begin your regular expressions with %r followed by a

delimiter of your choice. This is useful when the pattern you are describing contains a lot of forward slash
characters that you don't want to escape:

%r|/| # Matches a single slash character, no escape required

%r[</(.*)>]i # Flag characters are allowed with this syntax, too

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Regular expression syntax gives special meaning to the characters (), [], {}, ., ?, +, *, |, ^, and $. If you want

to describe a pattern that includes one of these characters literally, use a backslash to escape it. If you want to
describe a pattern that includes a backslash, double the backslash:

/\(\)/ # Matches open and close parentheses

/\\/ # Matches a single backslash

Regular expression literals behave like double-quoted string literals and can include escape characters such as
\n, \t, and (in Ruby 1.9) \u (see Table 3-1 in Chapter 3 for a complete list of escape sequences):

money = /[$\u20AC\u{a3}\u{a5}]/ # match dollar,euro,pound, or yen sign

Also like double-quoted string literals, Regexp literals allow the interpolation of arbitrary Ruby expressions with
the #{} syntax:

prefix = ","

/#{prefix}\t/ # Matches a comma followed by an ASCII TAB character

Note that interpolation is done early, before the content of the regular expression is parsed. This means that
any special characters in the interpolated expression become part of the regular expression syntax.
Interpolation is normally done anew each time a regular expression literal is evaluated. If you use the o

modifier, however, this interpolation is only performed once, the first time the code is parsed. The behavior of
the o modifier is best demonstrated by example:

[1,2].map{|x| /#{x}/} # => [/1/, /2/]

[1,2].map{|x| /#{x}/o} # => [/1/, /1/]

9.2.2. Regexp Factory Methods

As an alternative to regexp literals, you can also create regular expressions with Regexp.new, or its synonym,

Regexp.compile:

Regexp.new("Ruby?") # /Ruby?/

Regexp.new("ruby?", Regexp::IGNORECASE) # /ruby?/i

Regexp.compile(".", Regexp::MULTILINE, "u") # /./mu

Use the Regexp.escape to escape special regular expression characters in a string before passing them to the

Regexp constructor:

pattern = "[a-z]+" # One or more letters

suffix = Regexp.escape("()") # Treat these characters literally

r = Regexp.new(pattern + suffix) # /[a-z]+\(\)/

In Ruby 1.9, the factory method Regexp.union creates a pattern that is the "union" of any number of strings or

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Regexp objects. (That is, the resulting pattern matches any of the strings matched by its constituent patterns.)

Pass any number of arguments or a single array of strings and patterns. This factory method is good for
creating patterns that match any word in a list of words. Strings passed to Regexp.union are automatically

escaped, unlike those passed to new and compile:

Match any one of five language names.

pattern = Regexp.union("Ruby", "Perl", "Python", /Java(Script)?/)

Match empty parens, brackets, or braces. Escaping is automatic:

Regexp.union("()", "[]", "{}") # => /\(\)|\[\]|\{\}/

9.2.3. Regular Expression Syntax

Many programming languages support regular expressions, using the syntax popularized by Perl. This book does
not include a complete discussion of that syntax, but the following examples walk you through the elements of
regular expression grammar. The tutorial is followed by Table 9-2, which summarizes the syntax. The tutorial's
focus is on Ruby 1.8 regular expression syntax, but some of the features available only in Ruby 1.9 are
demonstrated as well. For book-length coverage of regular expressions, see Mastering Regular Expressions by
Jeffrey E. F. Friedl (O'Reilly).

Code View:
Literal characters

/ruby/ # Match "ruby". Most characters simply match themselves.

/¥/ # Matches Yen sign. Multibyte characters are suported

 # in Ruby 1.9 and Ruby 1.8.

Character classes

/[Rr]uby/ # Match "Ruby" or "ruby"

/rub[ye]/ # Match "ruby" or "rube"

/[aeiou]/ # Match any one lowercase vowel

/[0-9]/ # Match any digit; same as /[0123456789]/

/[a-z]/ # Match any lowercase ASCII letter

/[A-Z]/ # Match any uppercase ASCII letter

/[a-zA-Z0-9]/ # Match any of the above

/[^aeiou]/ # Match anything other than a lowercase vowel

/[^0-9] # Match anything other than a digit

Special character classes

/./ # Match any character except newline

/./m # In multiline mode . matches newline, too

/\d/ # Match a digit /[0-9]/

/\D/ # Match a nondigit: /[^0-9]/

/\s/ # Match a whitespace character: /[\t\r\n\f]/

/\S/ # Match nonwhitespace: /[^ \t\r\n\f]/

/\w/ # Match a single word character: /[A-Za-z0-9_]/

/\W/ # Match a nonword character: /[^A-Za-z0-9_]/

Repetition

/ruby?/ # Match "rub" or "ruby": the y is optional

/ruby*/ # Match "rub" plus 0 or more ys

/ruby+/ # Match "rub" plus 1 or more ys

/\d{3}/ # Match exactly 3 digits

/\d{3,}/ # Match 3 or more digits

/\d{3,5}/ # Match 3, 4, or 5 digits

Nongreedy repetition: match the smallest number of repetitions

/<.*>/ # Greedy repetition: matches "<ruby>perl>"

/<.*?>/ # Nongreedy: matches "<ruby>" in "<ruby>perl>"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 # Also nongreedy: ??, +?, and {n,m}?

Grouping with parentheses

/\D\d+/ # No group: + repeats \d

/(\D\d)+/ # Grouped: + repeats \D\d pair

/([Rr]uby(,)?)+/ # Match "Ruby", "Ruby, ruby, ruby", etc.

Backreferences: matching a previously matched group again

/([Rr])uby&\1ails/ # Match ruby&rails or Ruby&Rails

/(['"])[^\1]*\1/ # Single or double-quoted string

 # \1 matches whatever the 1st group matched

 # \2 matches whatever the 2nd group matched, etc.

Named groups and backreferences in Ruby 1.9: match a 4-letter palindrome

/(?<first>\w)(?<second>\w)\k<second>\k<first>/

/(?'first'\w)(?'second'\w)\k'second'\k'first'/ # Alternate syntax

Alternatives

/ruby|rube/ # Match "ruby" or "rube"

/rub(y|le))/ # Match "ruby" or "ruble"

/ruby(!+|\?)/ # "ruby" followed by one or more ! or one ?

Anchors: specifying match position

/^Ruby/ # Match "Ruby" at the start of a string or internal line

/Ruby$/ # Match "Ruby" at the end of a string or line

/\ARuby/ # Match "Ruby" at the start of a string

/Ruby\Z/ # Match "Ruby" at the end of a string

/\bRuby\b/ # Match "Ruby" at a word boundary

/\brub\B/ # \B is nonword boundary:

 # match "rub" in "rube" and "ruby" but not alone

/Ruby(?=!)/ # Match "Ruby", if followed by an exclamation point

/Ruby(?!!)/ # Match "Ruby", if not followed by an exclamation point

Special syntax with parentheses

/R(?#comment)/ # Matches "R". All the rest is a comment

/R(?i)uby/ # Case-insensitive while matching "uby"

/R(?i:uby)/ # Same thing

/rub(?:y|le))/ # Group only without creating \1 backreference

The x option allows comments and ignores whitespace

/ # This is not a Ruby comment. It is a literal part

 # of the regular expression, but is ignored.

 R # Match a single letter R

 (uby)+ # Followed by one or more "uby"s

 \ # Use backslash for a nonignored space

/x # Closing delimiter. Don't forget the x option!

Table 9-2 summarizes the syntax rules demonstrated by this code.

Table 9-2. Regular expression syntax

Syntax Matches

Character classes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Syntax Matches

. Matches any single character except newline. Using m option allows it to match newline

as well.

[...] Matches any single character in brackets.

[^...] Matches any single character not in brackets.

\w Matches word characters.

\W Matches nonword characters.

\s Matches whitespace. Equivalent to [\t\n\r\f].

\S Matches nonwhitespace.

\d Matches digits. Equivalent to [0–9].

\D Matches nondigits.

Sequences,
alternatives,
groups, and
references

ab Matches expression a followed by expression b.

a | b Matches either expression a or expression b.

(re) Grouping: groups re into a single syntactic unit that can be used with *, +, ?, |, and so

on. Also "captures" the text that matches re for later use.

(?: re) Groups as with (), but does not capture the matched text.

(?< name > re) Groups a subexpression and captures the text that matches re as with (), and also

labels the subexpression with name. Ruby 1.9.

(?' name ' re) A named capture, as above. Single quotes may optionally replace angle brackets around
name. Ruby 1.9.

\1...\9 Matches the same text that matched the nth grouped subexpression.

\10... Matches the same text that matched the nth grouped subexpression if there are that

many previous subexpressions. Otherwise, matches the character with the specified
octal encoding.

\k< name > Matches the same text that matched the named capturing group name.

\g< n > Matches group n again. n can be a group name or a group number. Contrast \g, which

rematches or reexecutes the specified group, with an ordinary back reference that tries
to match the same text that matched the first time. Ruby 1.9.

Repetition By default, repetition is "greedy"-as many occurrences as possible are matched. For
"reluctant" matching, follow a * , + , ? , or {} quantifier with a ? . This will match as few

occurrences as possible while still allowing the rest of the expression to match. In Ruby
1.9, follow a quantifier with a + for "possessive" (nonbacktracking) behavior.

re * Matches zero or more occurrences of re.

. Matches any single character except newline. Using m option allows it to match newline

as well.

[...] Matches any single character in brackets.

[^...] Matches any single character not in brackets.

\w Matches word characters.

\W Matches nonword characters.

\s Matches whitespace. Equivalent to [\t\n\r\f].

\S Matches nonwhitespace.

\d Matches digits. Equivalent to [0–9].

\D Matches nondigits.

Sequences,
alternatives,
groups, and
references

ab Matches expression a followed by expression b.

a | b Matches either expression a or expression b.

(re) Grouping: groups re into a single syntactic unit that can be used with *, +, ?, |, and so

on. Also "captures" the text that matches re for later use.

(?: re) Groups as with (), but does not capture the matched text.

(?< name > re) Groups a subexpression and captures the text that matches re as with (), and also

labels the subexpression with name. Ruby 1.9.

(?' name ' re) A named capture, as above. Single quotes may optionally replace angle brackets around
name. Ruby 1.9.

\1...\9 Matches the same text that matched the nth grouped subexpression.

\10... Matches the same text that matched the nth grouped subexpression if there are that

many previous subexpressions. Otherwise, matches the character with the specified
octal encoding.

\k< name > Matches the same text that matched the named capturing group name.

\g< n > Matches group n again. n can be a group name or a group number. Contrast \g, which

rematches or reexecutes the specified group, with an ordinary back reference that tries
to match the same text that matched the first time. Ruby 1.9.

Repetition By default, repetition is "greedy"-as many occurrences as possible are matched. For
"reluctant" matching, follow a * , + , ? , or {} quantifier with a ? . This will match as few

occurrences as possible while still allowing the rest of the expression to match. In Ruby
1.9, follow a quantifier with a + for "possessive" (nonbacktracking) behavior.

re * Matches zero or more occurrences of re.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Syntax Matches

re + Matches one or more occurrences of re.

re ? Optional: matches zero or one occurrence of re.

re { n } Matches exactly n occurrences of re.

re { n ,} Matches n or more occurrences of re.

re { n , m } Matches at least n and at most m occurrences of re.

Anchors Anchors do not match characters but instead match the zero-width positions between
characters, "anchoring" the match to a position at which a specific condition holds.

^ Matches beginning of line.

$ Matches end of line.

\A Matches beginning of string.

\Z Matches end of string. If string ends with a newline, it matches just before newline.

\z Matches end of string.

\G Matches point where last match finished.

\b Matches word boundaries when outside brackets. Matches backspace (0x08) when

inside brackets.

\B Matches nonword boundaries.

(?= re) Positive lookahead assertion: ensures that the following characters match re, but

doesn't include those characters in the matched text.

(?! re) Negative lookahead assertion: ensures that the following characters do not match re.

(?<= re) Positive lookbehind assertion: ensures that the preceeding characters match re, but

doesn't include those characters in the matched text. Ruby 1.9.

(?<! re) Negative lookbehind assertion: ensures that the preceeding characters do not match re.

Ruby 1.9.

Miscellaneous

(? onflags -

offflags)

Doesn't match anything, but turns on the flags specified by onflags, and turns off the

flags specified by offflags. These two strings are combinations in any order of the

modifier letters i, m, and x. Flag settings specified in this way take effect at the point

that they appear in the expression and persist until the end of the expression, or until
the end of the parenthesized group of which they are a part, or until overridden by
another flag setting expression.

(? onflags -

offflags : x)

Matches x, applying the specified flags to this subexpression only. This is a noncapturing

group, like (?:...), with the addition of flags.

(?#...) Comment: all text within parentheses is ignored.

9.2.4. Pattern Matching with Regular Expressions

re + Matches one or more occurrences of re.

re ? Optional: matches zero or one occurrence of re.

re { n } Matches exactly n occurrences of re.

re { n ,} Matches n or more occurrences of re.

re { n , m } Matches at least n and at most m occurrences of re.

Anchors Anchors do not match characters but instead match the zero-width positions between
characters, "anchoring" the match to a position at which a specific condition holds.

^ Matches beginning of line.

$ Matches end of line.

\A Matches beginning of string.

\Z Matches end of string. If string ends with a newline, it matches just before newline.

\z Matches end of string.

\G Matches point where last match finished.

\b Matches word boundaries when outside brackets. Matches backspace (0x08) when

inside brackets.

\B Matches nonword boundaries.

(?= re) Positive lookahead assertion: ensures that the following characters match re, but

doesn't include those characters in the matched text.

(?! re) Negative lookahead assertion: ensures that the following characters do not match re.

(?<= re) Positive lookbehind assertion: ensures that the preceeding characters match re, but

doesn't include those characters in the matched text. Ruby 1.9.

(?<! re) Negative lookbehind assertion: ensures that the preceeding characters do not match re.

Ruby 1.9.

Miscellaneous

(? onflags -

offflags)

Doesn't match anything, but turns on the flags specified by onflags, and turns off the

flags specified by offflags. These two strings are combinations in any order of the

modifier letters i, m, and x. Flag settings specified in this way take effect at the point

that they appear in the expression and persist until the end of the expression, or until
the end of the parenthesized group of which they are a part, or until overridden by
another flag setting expression.

(? onflags -

offflags : x)

Matches x, applying the specified flags to this subexpression only. This is a noncapturing

group, like (?:...), with the addition of flags.

(?#...) Comment: all text within parentheses is ignored.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Syntax Matches

(?> re) Matches re independently of the rest of the expression, without considering whether the

match causes the rest of the expression to fail to match. Useful to optimize certain
complex regular expressions. The parentheses do not capture the matched text.

9.2.4. Pattern Matching with Regular Expressions

=~ is Ruby's basic pattern-matching operator. One operand must be a regular expression and one must be a

string. (It is implemented equivalently by both Regexp and String, so it doesn't matter whether the regular

expression is on the left or the right.) The =~ operator checks its string operand to see if it, or any substring,

matches the pattern specified by the regular expression. If a match is found, the operator returns the string
index at which the first match begins. Otherwise, it returns nil:

pattern = /Ruby?/i # Match "Rub" or "Ruby", case-insensitive

pattern =~ "backrub" # Returns 4.

"rub ruby" =~ pattern # 0

pattern =~ "r" # nil

After using the =~ operator, we may be interested in things other than the position at which the matched text

begins. After any successful (non-nil) match, the global variable $~ holds a MatchData object which contains

complete information about the match:

"hello" =~ /e\w{2}/ # 1: Match an e followed by 2 word characters

$~.string # "hello": the complete string

$~.to_s # "ell": the portion that matched

$~.pre_match # "h": the portion before the match

$~.post_match # "o": the portion after the match

$~ is a special thread-local and method-local variable. Two threads running concurrently will see distinct values

of this variable. And a method that uses the =~ operator does not alter the value of $~ seen by the calling

method. We'll have more to say about $~ and related global variables later. An object-oriented alternative to

this magical and somewhat cryptic variable is Regexp.last_match. Invoking this method with no arguments

returns the same value as a reference to $~.

A MatchData object is more powerful when the Regexp that was matched contains subexpressions in

parentheses. In this case, the MatchData object can tell us the text (and the starting and ending offsets of that

text) that matched each subexpression:

This is a pattern with three subpatterns

pattern = /(Ruby|Perl)(\s+)(rocks|sucks)!/

text = "Ruby\trocks!" # Text that matches the pattern

pattern =~ text # => 0: pattern matches at the first character

data = Regexp.last_match # => Get match details

data.size # => 4: MatchData objects behave like arrays

data[0] # => "Ruby\trocks!": the complete matched text

data[1] # => "Ruby": text matching first subpattern

data[2] # => "\t": text matching second subpattern

data[3] # => "rocks": text matching third subpattern

data[1,2] # => ["Ruby", "\t"]

data[1..3] # => ["Ruby", "\t", "rocks"]

data.values_at(1,3) # => ["Ruby", "rocks"]: only selected indexes

(?> re) Matches re independently of the rest of the expression, without considering whether the

match causes the rest of the expression to fail to match. Useful to optimize certain
complex regular expressions. The parentheses do not capture the matched text.

9.2.4. Pattern Matching with Regular Expressions

=~ is Ruby's basic pattern-matching operator. One operand must be a regular expression and one must be a

string. (It is implemented equivalently by both Regexp and String, so it doesn't matter whether the regular

expression is on the left or the right.) The =~ operator checks its string operand to see if it, or any substring,

matches the pattern specified by the regular expression. If a match is found, the operator returns the string
index at which the first match begins. Otherwise, it returns nil:

pattern = /Ruby?/i # Match "Rub" or "Ruby", case-insensitive

pattern =~ "backrub" # Returns 4.

"rub ruby" =~ pattern # 0

pattern =~ "r" # nil

After using the =~ operator, we may be interested in things other than the position at which the matched text

begins. After any successful (non-nil) match, the global variable $~ holds a MatchData object which contains

complete information about the match:

"hello" =~ /e\w{2}/ # 1: Match an e followed by 2 word characters

$~.string # "hello": the complete string

$~.to_s # "ell": the portion that matched

$~.pre_match # "h": the portion before the match

$~.post_match # "o": the portion after the match

$~ is a special thread-local and method-local variable. Two threads running concurrently will see distinct values

of this variable. And a method that uses the =~ operator does not alter the value of $~ seen by the calling

method. We'll have more to say about $~ and related global variables later. An object-oriented alternative to

this magical and somewhat cryptic variable is Regexp.last_match. Invoking this method with no arguments

returns the same value as a reference to $~.

A MatchData object is more powerful when the Regexp that was matched contains subexpressions in

parentheses. In this case, the MatchData object can tell us the text (and the starting and ending offsets of that

text) that matched each subexpression:

This is a pattern with three subpatterns

pattern = /(Ruby|Perl)(\s+)(rocks|sucks)!/

text = "Ruby\trocks!" # Text that matches the pattern

pattern =~ text # => 0: pattern matches at the first character

data = Regexp.last_match # => Get match details

data.size # => 4: MatchData objects behave like arrays

data[0] # => "Ruby\trocks!": the complete matched text

data[1] # => "Ruby": text matching first subpattern

data[2] # => "\t": text matching second subpattern

data[3] # => "rocks": text matching third subpattern

data[1,2] # => ["Ruby", "\t"]

data[1..3] # => ["Ruby", "\t", "rocks"]

data.values_at(1,3) # => ["Ruby", "rocks"]: only selected indexes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

data.captures # => ["Ruby", "\t", "rocks"]: only subpatterns

Regexp.last_match(3) # => "rocks": same as Regexp.last_match[3]

Start and end positions of matches

data.begin(0) # => 0: start index of entire match

data.begin(2) # => 4: start index of second subpattern

data.end(2) # => 5: end index of second subpattern

data.offset(3) # => [5,10]: start and end of third subpattern

In Ruby 1.9, if a pattern includes named captures, then a MatchData obtained from that pattern can be used

like a hash, with the names of capturing groups (as strings or symbols) as keys. For example:

Ruby 1.9 only

pattern = /(?<lang>Ruby|Perl) (?<ver>\d(\.\d)+) (?<review>rocks|sucks)!/

if (pattern =~ "Ruby 1.9.1 rocks!")

 $~[:lang] # => "Ruby"

 $~[:ver] # => "1.9.1"

 $~["review"] # => "rocks"

 $~.offset(:ver) # => [5,10] start and end offsets of version number

end

Names of capturing groups and a map of group names to group numbers

pattern.names # => ["lang", "ver", "review"]

pattern.named_captures # => {"lang"=>[1],"ver"=>[2],"review"=>[3]}

Named Captures and Local Variables

In Ruby 1.9, if a regular expression containing named captures appears literally on the lefthand
side of the =~ operator, then the names of the capturing groups are taken to be local variables,

and the text that matches is assigned to those variables. If the match fails, then the variables are
assigned nil. Here is an example:

Ruby 1.9 only

if /(?<lang>\w+) (?<ver>\d+\.(\d+)+) (?<review>\w+)/ =~ "Ruby 1.9 rules!"

 lang # => "Ruby"

 ver # => "1.9"

 review # => "rules"

end

This is magical behavior, but it only occurs when a regular expression appears literally in your
code. If a pattern is stored in a variable or a constant or is returned by a method, or if the pattern
appears on the righthand side, then the =~ operator does not perform this special local variable

assignment. If Ruby is invoked with the -w option, then it issues a warning if the =~ operator

overwrites a variable that is already defined.

In addition to the =~ operator, the Regexp and String classes also define a match method. This method is like

the match operator, except that instead of returning the index at which a match is found, it returns the
MatchData object, or nil if no matching text is found. Use it like this:

if data = pattern.match(text) # Or: data = text.match(pattern)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 handle_match(data)

end

In Ruby 1.9, you can also associate a block with a call to match. If no match is found, the block is ignored, and

match returns nil. If a match is found, however, the MatchData object is passed to the block, and the match

method returns whatever the block returns. So in Ruby 1.9, this code can be more succinctly written like this:

pattern.match(text) {|data| handle_match(data) }

Another change in Ruby 1.9 is that the match methods optionally accept an integer as the second argument to

specify the starting position of the search.

9.2.4.1. Global variables for match data

Ruby adopts Perl's regular expression syntax and, like Perl, sets special global variables after each match. If you
are a Perl programmer, you may find these special variables useful. If you are a not a Perl programmer, you
may find them unreadable! Table 9-3 summarizes these variables. The variables listed in the second column are
aliases that are available if you require 'English'.

Table 9-3. Special global regular expression variables

Global English Alternative

$~ $LAST_MATCH_INFO Regexp.last_match

$& $MATCH Regexp.last_match[0]

$` $PREMATCH Regexp.last_match.pre_match

$' $POSTMATCH Regexp.last_match.post_match

$1 none Regexp.last_match[1]

$2, etc. none Regexp.last_match[2], etc.

$+ $LAST_PAREN_MATCH Regexp.last_match[-1]

$~ is the most important of the variables listed in Table 9-3. All the others are derived from it. If you set $~ to a

MatchData object, the values of the other special globals change. The other global variables are read-only and

cannot be set directly. Finally, it is important to remember that $~ and the variables derived from it are all

thread-local and method-local. This means that two Ruby threads can perform matches at the same time
without interfering with each other and it means that the value of these variables, as seen by your code, will not
change when your code calls a method that performs a pattern match.

9.2.4.2. Pattern matching with strings

The String class defines a number of methods that accept Regexp arguments. If you index a string with a

regular expression, then the portion of the string that matches the pattern is returned. If the Regexp is followed

by an integer, then the corresponding element of the MatchData is returned:

"ruby123"[/\d+/] # "123"

"ruby123"[/([a-z]+)(\d+)/,1] # "ruby"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

"ruby123"[/([a-z]+)(\d+)/,2] # "123"

The slice method is a synonym for the string index operator []. The slice! variant returns the same value as

slice but also has the side effect of deleting the returned substring from the string:

r = "ruby123"

r.slice!(/\d+/) # Returns "123", changes r to "ruby"

The split method splits a string into an array of substrings, using a string or regular expression as its

delimiter:

Code View:
s = "one, two, three"

s.split # ["one,","two,","three"]: whitespace delimiter by default

s.split(", ") # ["one","two","three"]: hardcoded delimiter

s.split(/\s*,\s*/) # ["one","two","three"]: space is optional around comma

The index method searches a string for a character, substring, or pattern, and returns the start index. With a

Regexp argument, it works much like the =~ operator, but it also allows a second argument that specifies the

character position at which to begin the search. This allows you to find matches other than the first:

text = "hello world"

pattern = /l/

first = text.index(pattern) # 2: first match starts at char 2

n = Regexp.last_match.end(0) # 3: end position of first match

second = text.index(pattern, n) # 3: search again from there

last = text.rindex(pattern) # 9: rindex searches backward from end

9.2.4.3. Search and replace

Some of the most important String methods that use regular expressions are sub (for substitute) and gsub (for

global substitute), and their in-place variants sub! and gsub!. All of these methods perform a search-and-

replace operation using a Regexp pattern. sub and sub! replace the first occurrence of the pattern. gsub and

gsub! replace all occurrences. sub and gsub return a new string, leaving the original unmodified. sub! and

gsub! modify the string on which they are called. If any modifications are made to the string, these mutator

methods return the modified string. If no modifications are made, they return nil (which makes the methods

suitable for use in if statements and while loops):

phone = gets # Read a phone number

phone.sub!(/#.*$/, "") # Delete Ruby-style comments

phone.gsub!(/\D/, "") # Remove anything other than digits

These search-and-replace methods do not require the use of regular expressions; you can also use an ordinary
string as the text to be replaced:

text.gsub!("rails", "Rails") # Change "rails" to "Rails" throughout

http://lib.ommolketab.ir
http://lib.ommolketab.ir

However, regular expressions really are more flexible. If you want to capitalize "rails" without modifying "grails",
for example, use a Regexp:

text.gsub!(/\brails\b/, "Rails") # Capitalize the word "Rails" throughout

The reason that the search-and-replace methods are covered in this subsection on their own is that the
replacement does not need to be an ordinary string of text. Suppose you want a replacement string that
depends on the details of the match found. The search-and-replace methods process the replacement string
before performing replacements. If the string contains a backslash followed by a single digit, then that digit is
used as an index into the $~ object, and the text from the MatchData object is used in place of the backslash

and the digit. For example, if the string contains the escape sequence \0, the entire matched text is used. If the

replacement string contains \1, then the text that matches the first subexpression is used in the replacement.

The following code does a case-insensitive search for the word "ruby" and puts HTML bold tags around it,
preserving the word's capitalization:

text.gsub(/\bruby\b/i, '\0')

Note that if you use a double-quoted replacement string, you must double the backslash character.

You might be tempted to try the same thing using normal double-quoted string interpolation:

text.gsub(/\bruby\b/i, "#{$&}")

This does not work, however, because in this case the interpolation is performed on the string literal before it is
passed to gsub. This is before the pattern has been matched, so variables like $& are undefined or hold values

from a previous match.

In Ruby 1.9, you can refer to named capturing groups using the \k named backreference syntax:

Strip pairs of quotes from a string

re = /(?<quote>['"])(?<body>[^'"]*)\k<quote>/

puts "These are 'quotes'".gsub(re, '\k<body>')

Replacement strings can also refer to text other than that matched by capturing groups. Use \&, \`, \', and \+

to substitute in the value of $&, $`, $', and $+.

Instead of using a static replacement string, the search-and-replace methods can also be called with a block of
code that computes the replacement string dynamically. The argument to the block is the text that matched the
pattern:

Use consistent capitalization for the names of programming languages

text = "RUBY Java perl PyThOn" # Text to modify

lang = /ruby|java|perl|python/i # Pattern to match

text.gsub!(lang) {|l| l.capitalize } # Fix capitalization

Within the block of code, you can use $~ and the related global variables listed earlier in Table 9-3:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

pattern = /(['"])([^\1]*)\1/ # Single- or double-quoted string

text.gsub!(pattern) do

 if ($1 == '"') # If it was a double-quoted string

 "'#$2'" # replace with single-quoted

 else # Otherwise, if single-quoted

 "\"#$2\"" # replace with double-quoted

 end

end

9.2.4.4. Regular expression encoding

In Ruby 1.9, Regexp objects have an encoding method just like strings do. You can explicitly specify the

encoding of a regular expression with modifiers: u for UTF-8, s for SJIS, e for EUC-JP, and n for none. You can

also explicitly specify UTF-8 encoding by including a \u escape in the regular expression. If you don't explicitly

specify an encoding, then the source encoding is used. But if all the characters in the regexp are ASCII, then
ASCII is used, even if the source encoding is some superset of ASCII.

Ruby 1.9 pattern-matching operations raise an exception if you attempt to match a pattern and a string that
have incompatible encodings. The fixed_encoding? method returns true if a Regexp has an encoding other

than ASCII. If fixed_encoding? returns false, then it is safe to use that pattern to match against any string

whose encoding is ASCII or a superset of ASCII.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.3. Numbers and Math

Chapter 3 covered the various Numeric subclasses in Ruby, explained how to write numeric literals in Ruby, and

documented Ruby's integer and floating-point arithmetic. Here we expand on that chapter to cover numeric APIs
and other math-related classes.

9.3.1. Numeric Methods

Numericand its subclasses define a number of useful predicates for determining the class or testing the value of

a number. Some of these predicates work only for Float values, and some work only for Integer values:

Code View:
General Predicates

0.zero? # => true (is this number zero?)

1.0.zero? # => false

0.0.nonzero? # => nil (works like false)

1.nonzero? # => 1 (works like true)

1.integer? # => true

1.0.integer? # => false

1.scalar? # => false: not a complex number. Ruby 1.9.

1.0.scalar? # => false: not a complex number. Ruby 1.9.

Complex(1,2).scalar? # => true: a complex number. requires 'complex'.

Integer predicates

0.even? # => true (Ruby 1.9)

0.odd? # => false

Float predicates

ZERO, INF, NAN = 0.0, 1.0/0.0, 0.0/0.0 # Constants for testing

ZERO.finite? # => true: is this number finite?

INF.finite? # => false

NAN.finite? # => false

ZERO.infinite? # => nil: is this number infinite? Positive or negative?

INF.infinite? # => 1

-INF.infinite? # => -1

NAN.infinite? # => nil

ZERO.nan? # => false: is this number not-a-number?

INF.nan? # => false

NAN.nan? # => true

The Float class defines a methods for rounding numbers. Most of these methods are also defined by Numeric,

so they can be used with numbers of any type:

Rounding methods

1.1.ceil # => 2: ceiling: smallest integer >= its argument

-1.1.ceil # => -1: ceiling: smallest integer >= its argument

1.9.floor # => 1: floor: largest integer <= its argument

-1.9.floor # => -2: floor: largest integer <= its argument

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.1.round # => 1: round to nearest integer

0.5.round # => 1: round toward infinity when halfway between integers

-0.5.round # => -1: or round toward negative infinity

1.1.truncate # => 1: chop off fractional part: round toward zero

-1.1.to_i # => -1: synonym for truncate

Float also defines a few other methods and constants of interest:

Code View:
Absolute value and sign

-2.0.abs # => 2.0: absolute value

-2.0<=>0.0 # => -1: use <=> operator to compute sign of a number

Constants

Float::MAX # => 1.79769313486232e+308: may be platform dependent

Float::MIN # => 2.2250738585072e-308

Float::EPSILON # => 2.22044604925031e-16: difference between adjacent floats

9.3.2. The Math Module

The Math module defines constants PI and E, and methods for trigonometry and logarithms, plus a few

miscellaneous methods. The methods of Math are "module functions" (see Section 7.5.3), which means that

they can be invoked through the Math namespace or included and invoked as if they were global functions. Here

are some examples:

Code View:
Constants

Math::PI # => 3.14159265358979

Math::E # => 2.71828182845905

Roots

Math.sqrt(25.0) # => 5.0: square root

27.0**(1.0/3.0) # => 3.0: cube root computed with ** operator

Logarithms

Math.log10(100.0) # => 2.0: base-10 logarithm

Math.log(Math::E**3) # => 3.0: natural (base-e) logarithm

Math.log2(8) # => 3.0: base-2 logarithm. Ruby 1.9 and later.

Math.log(16, 4) # => 2.0: 2nd arg to log() is the base. Ruby 1.9.

Math.exp(2) # => 7.38905609893065": same as Math::E**2

Trigonometry

include Math # Save typing: we can now omit Math prefix.

sin(PI/2) # => 1.0: sine. Argument is in radians, not degrees.

cos(0) # => 1.0: cosine.

tan(PI/4) # => 1.0: tangent.

asin(1.0)/PI # => 0.5: arcsine. See also acos and atan.

sinh(0) # => 0.0: hyperbolic sine. Also cosh, tanh.

asinh(1.0) # => 0.0: inverse sinh. Also acosh, atanh.

Convert cartesian point (x,y) to polar coordinates (theta, r)

theta = atan2(y,x) # Angle between X axis and line (0,0)-(x,y)

r = hypot(x,y) # Hypotenuse: sqrt(x**2 + y**2)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Decompose float x into fraction f and exponent e, such that x = f*2**e

f,e = frexp(1024.0) # => [0.5, 11]

x = ldexp(f, e) # => 1024: compute x = f*2**e

Error function

erf(0.0) # => 0.0: error function

erfc(0.0) # => 1.0: 1-erf(x): complementary error function

9.3.3. Decimal Arithmetic

The BigDecimal class from the standard library is a useful alternative to Float, particularly for financial

computations where you want to avoid the rounding error inherent in the use of a binary floating-point
arithmetic (see Section 3.1.4). BigDecimal objects can have an unlimited number of significant digits and

practically unlimited size (exponents over 1 billion are supported). Most importantly, they use decimal
arithmetic and offer precise control over rounding modes. Here is example BigDecimal code:

require "bigdecimal" # Load standard library

dime = BigDecimal("0.1") # Pass a string to constructor, not a Float

4*dime-3*dime == dime # true with BigDecimal, but false if we use Float

Compute monthly interest payments on a mortgage with BigDecimal.

Use "Banker's Rounding" mode, and limit computations to 20 digits

BigDecimal.mode(BigDecimal::ROUND_MODE, BigDecimal::ROUND_HALF_EVEN)

BigDecimal.limit(20)

principal = BigDecimal("200000") # Always pass strings to constructor

apr = BigDecimal("6.5") # Annual percentage rate interest

years = 30 # Term of mortgage in years

payments = years*12 # 12 monthly payments in a year

interest = apr/100/12 # Convert APR to monthly fraction

x = (interest+1)**payments # Note exponentiation with BigDecimal

monthly = (principal * interest * x)/(x-1) # Compute monthly payment

monthly = monthly.round(2) # Round to two decimal places

monthly = monthly.to_s("f") # Convert to human-readable string

Use ri for more details on the BigDecimal API, and for complete documentation see the file

ext/bigdecimal/bigdecimal_en.html in the Ruby source distribution.

9.3.4. Complex Numbers

You can represent and manipulate complex numbers (the sum of a real number and an imaginary number) with
the Complex class from the standard library. Like the BigDecimal class, the Complex class defines all the normal

arithmetic operators, and even redefines the methods of the Math module so they work with complex numbers.

Here are some examples:

require "complex" # Complex is part of the standard library

c = Complex(0.5,-0.2) # .5-.2i.

z = Complex.new(0.0, 0.0) # Complex.new also works, but is not required

10.times { z = z*z + c } # Iteration for computing Julia set fractals

magnitude = z.abs # Magnitude of a complex number

x = Math.sin(z) # Trig functions work with Complex numbers

Math.sqrt(-1.0).to_s # => "1.0i": square root of -1

Math.sqrt(-1.0)==Complex::I # => true

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.3.5. Rational Numbers

The Rational class from the standard library represents rational numbers (the quotient of two integers). It

defines arithmetic operators for rational numbers. It works best with the mathn library, which redefines integer

division to produce rationals. The mathn library also does a number of other things to "unify" Ruby arithmetic

and make the Integer, Rational, and Complex classes work well together:

Code View:
require "rational" # Load the library

penny = Rational(1, 100) # A penny is 1/100th

require "mathn" # Makes integer division produce Rational values

nickel = 5/100

dime = 10/100

quarter = 1/4

change = 2*quarter + 3*penny # Rational result: 53/100

(1/2 * 1/3).to_s # "1/6": mathn prints Rationals as fractions

9.3.6. Vectors and Matrices

The matrix library defines Matrix and Vector classes to represent matrices and vectors of numbers as well as

operators to perform arithmetic on them. A discussion of linear algebra is well beyond the scope of this book,
but the following example code uses the Vector class to represent a two-dimensional point, and uses 2 x 2

Matrix objects to represent scaling and rotation transformations of the point:

require "matrix"

Represent the point (1,1) as the vector [1,1]

unit = Vector[1,1]

The identity transformation matrix

identity = Matrix.identity(2) # 2x2 matrix

identity*unit == unit # true: no transformation

This matrix scales a point by sx,sy

sx,sy = 2.0, 3.0;

scale = Matrix[[sx,0], [0, sy]]

scale*unit # => [2.0, 3.0]: scaled point

This matrix rotates counterclockwise around the origin

theta = Math::PI/2 # 90 degrees

rotate = Matrix[[Math.cos(theta), -Math.sin(theta)],

 [Math.sin(theta), Math.cos(theta)]]

rotate*unit # [-1.0, 1.0]: 90 degree rotation

Two transformations in one

scale * (rotate*unit) # [-2.0, 3.0]

9.3.7. Random Numbers

Random numbers are generated in Ruby with the global Kernel.rand function. With no arguments, it returns a

pseudorandom Float greater than or equal to 0.0 and less than 1.0. With an integer argument max, it returns

http://lib.ommolketab.ir
http://lib.ommolketab.ir

a pseudorandom integer greater than or equal to 0 and less than max. For example:

rand # => 0.964395196505186

rand # => 0.390523655919935

rand(100) # => 81

rand(100) # => 32

If you need a repeatable sequence of pseudorandom numbers (for testing, perhaps), seed the random number
generator with a known value:

srand(0) # Known seed

[rand(100),rand(100)] # => [44,47]: pseudorandom sequence

srand(0) # Reset the seed to repeat the sequence

[rand(100),rand(100)] # => [44,47]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.4. Dates and Times

The Time class represents dates and times. It is a thin layer over the system date and time functionality

provided by the operating system. On some platforms, therefore, this class may be unable to represent dates
before 1970 or after 2038. The Date and DateTime classes in the standard date library are not constrained in

this way, but are not demonstrated here:

Code View:
Creating Time objects

Time.now # Returns a time object that represents the current time

Time.new # A synonym for Time.now

Time.local(2007, 7, 8) # July 8, 2007

Time.local(2007, 7, 8, 9, 10) # July 8, 2007, 09:10am, local time

Time.utc(2007, 7, 8, 9, 10) # July 8, 2007, 09:10 UTC

Time.gm(2007, 7, 8, 9, 10, 11) # July 8, 2007, 09:10:11 GMT (same as UTC)

One microsecond before the new millennium began in London

We'll use this Time object in many examples below.

t = Time.utc(2000, 12, 31, 23, 59, 59, 999999)

Components of a Time

t.year # => 2000

t.month # => 12: December

t.day # => 31

t.wday # => 0: day of week: 0 is Sunday

t.yday # => 366: day of year: 2000 was a leap year

t.hour # => 23: 24-hour clock

t.min # => 59

t.sec # => 59

t.usec # => 999999: microseconds, not milliseconds

t.zone # => "UTC": timezone name

Get all components in an array that holds

[sec,min,hour,day,month,year,wday,yday,isdst,zone]

Note that we lose microseconds

values = t.to_a # => [59, 59, 23, 31, 12, 2000, 0, 366, false, "UTC"]

Arrays of this form can be passed to Time.local and Time.utc

values[5] += 1 # Increment the year

Time.utc(*values) # => Mon Dec 31 23:59:59 UTC 2001

Timezones and daylight savings time

t.zone # => "UTC": return the timezone

t.utc? # => true: t is in UTC time zone

t.utc_offset # => 0: UTC is 0 seconds offset from UTC

t.localtime # Convert to local timezone. Mutates the Time object!

t.zone # => "PST" (or whatever your timezone is)

t.utc? # => false

t.utc_offset # => -28800: 8 hours before UTC

t.gmtime # Convert back to UTC. Another mutator.

t.getlocal # Return a new Time object in local zone

t.getutc # Return a new Time object in UTC

t.isdst # => false: UTC does not have DST. Note no ?.

t.getlocal.isdst # => false: no daylight savings time in winter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Weekday predicates: Ruby 1.9

t.sunday? # => true

t.monday? # => false

t.tuesday? # etc.

Formatting Times and Dates

t.to_s # => "Sun Dec 31 23:59:59 UTC 2000": Ruby 1.8

t.to_s # => "2000-12-31 23:59:59 UTC": Ruby 1.9 uses ISO-8601

t.ctime # => "Sun Dec 31 23:59:59 2000": another basic format

strftime interpolates date and time components into a template string

Locale-independent formatting

t.strftime("%Y-%m-%d %H:%M:%S") # => "2000-12-31 23:59:59": ISO-8601 format

t.strftime("%H:%M") # => "23:59": 24-hour time

t.strftime("%I:%M %p") # => "11:59 PM": 12-hour clock

Locale-dependent formats

t.strftime("%A, %B %d") # => "Sunday, December 31"

t.strftime("%a, %b %d %y") # => "Sun, Dec 31 00": 2-digit year

t.strftime("%x") # => "12/31/00": locale-dependent format

t.strftime("%X") # => "23:59:59"

t.strftime("%c") # same as ctime

Parsing Times and Dates

require 'parsedate' # A versatile date/time parsing library

include ParseDate # Include parsedate() as a global function

datestring = "2001-01-01"

values = parsedate(datestring) # [2001, 1, 1, nil, nil, nil, nil, nil]

t = Time.local(*values) # => Mon Jan 01 00:00:00 -0800 2001

s = t.ctime # => "Mon Jan 1 00:00:00 2001"

Time.local(*parsedate(s))==t # => true

s = "2001-01-01 00:00:00-0500" # midnight in New York

v = parsedate(s) # => [2001, 1, 1, 0, 0, 0, "-0500", nil]

t = Time.local(*v) # Loses time zone information!

Time arithmetic

now = Time.now # Current time

past = now - 10 # 10 seconds ago. Time - number => Time

future = now + 10 # 10 seconds from now Time + number => Time

future - now # => 10 Time - Time => number of seconds

Time comparisons

past <=> future # => -1

past < future # => true

now >= future # => false

now == now # => true

Helper methods for working with time units other than seconds

class Numeric

 # Convert time intervals to seconds

 def milliseconds; self/1000.0; end

 def seconds; self; end

 def minutes; self*60; end

 def hours; self*60*60; end

 def days; self*60*60*24; end

 def weeks; self*60*60*24*7; end

 # Convert seconds to other intervals

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 def to_milliseconds; self*1000; end

 def to_seconds; self; end

 def to_minutes; self/60.0; end

 def to_hours; self/(60*60.0); end

 def to_days; self/(60*60*24.0); end

 def to_weeks; self/(60*60*24*7.0); end

end

expires = now + 10.days # 10 days from now

expires - now # => 864000.0 seconds

(expires - now).to_hours # => 240.0 hours

Time represented internally as seconds since the (platform-dependent) epoch

t = Time.now.to_i # => 1184036194 seconds since epoch

Time.at(t) # => seconds since epoch to Time object

t = Time.now.to_f # => 1184036322.90872: includes 908720 microseconds

Time.at(0) # => Wed Dec 31 16:00:00 -0800 1969: epoch in local time

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.5. Collections

This section documents Ruby's collection classes. A collection is any class that represents a collection of values.
Array and Hash are the key collection classes in Ruby, and the standard library adds a Set class. Each of these

collection classes mixes in the Enumerable module, which means that Enumerable methods are universal

collection methods.

9.5.1. Enumerable Objects

The Enumerable module is a mixin that implements a number of useful methods on top of the each iterator. The

Array, Hash, and Set classes described below all include Enumerable and therefore implement all of the

methods described here. Range and IO are other noteworthy enumerable classes. Enumerable was covered

briefly in Section 5.3.2. This section provides more detailed coverage.

Note that some enumerable classes have a natural enumeration order that their each method follows. Arrays,

for example, enumerate their elements in order of increasing array index. Range enumerates in ascending order.

And IO objects enumerate lines of text in the order in which they are read from the underlying file or socket. In

Ruby 1.9, Hash and Set (which is based on Hash) enumerate their elements in the order in which they were

inserted. Prior to Ruby 1.9, however, these classes enumerate their elements in what is essentially an arbitrary
order.

Many Enumerable methods return a processed version of the enumerable collection or a selected subcollection

of its elements. Usually, if an Enumerable method returns a collection (rather than a single value selected from

a collection), the collection is an Array. This is not always the case, however. The Hash class overrides the

reject method so that it returns a Hash object instead of an array, for example. Whatever the precise return

value, it is certain that a collection returned by an Enumerable method will itself be enumerable.

9.5.1.1. Iterating and converting collections

By definition, any Enumerable object must have an each iterator. Enumerable provides a simple variant

each_with_index, which yields an element of the collection and an integer. For arrays, the integer is the array

index. For IO objects, the integer is the line number (starting at 0). For other objects, the integer is what the

array index would be if the collection was converted to an array:

(5..7).each {|x| print x } # Prints "567"

(5..7).each_with_index {|x,i| print x,i } # Prints "506172"

In Ruby 1.9, Enumerable defines cycle, which iterates repeatedly through the elements of the collection,

looping forever until the block you provide explicitly terminates the iteration with break or return or by raising

an exception. During its first pass through the Enumerable object, cycle saves the elements into an array and

then subsequently iterates from the array. This means that after the first pass through the collection,
modifications to that collection do not affect the behavior of cycle.

each_sliceand each_cons are iterators that yield subarrays of a collection. They are available in Ruby 1.8 with

require 'enumerator' and are part of the core library in Ruby 1.9. each_slice(n) iterates the enumerable

values in "slices" of size n:

(1..10).each_slice(4) {|x| print x } # Prints "[1,2,3,4][5,6,7,8][9,10]"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

each_cons is similar to each_slice, but it uses a "sliding window" on the enumerable collection:

(1..5).each_cons(3) {|x| print x } # Prints "[1,2,3][2,3,4][3,4,5]"

The collect method applies a block to each element of a collection and collects the return values of the block

into a new array. map is a synonym; it maps the elements of a collection to the elements of an array by applying

a block to each element:

data = [1,2,3,4] # An enumerable collection

roots = data.collect {|x| Math.sqrt(x)} # Collect roots of our data

words = %w[hello world] # Another collection

upper = words.map {|x| x.upcase } # Map to uppercase

The zip method interleaves the elements of one enumerable collection with the elements of zero or more other

collections, and yields an array of elements (one from each collection) to the associated block. If no block is
provided, the return value is an array of arrays in Ruby 1.8 or an enumerator object in Ruby 1.9 (calling to_a

on the enumerator object generates the array of arrays that would have been returned in 1.8):

(1..3).zip([4,5,6]) {|x| print x.inspect } # Prints "[1,4][2,5][3,6]"

(1..3).zip([4,5,6],[7,8]) {|x| print x} # Prints "14725836"

(1..3).zip('a'..'c') {|x,y| print x,y } # Prints "1a2b3c"

Enumerable defines a to_a method (and a synonym entries) that converts any enumerable collection into an

array. to_a is included in this section because the conversion obviously involves iterating the collection. The

elements of the resulting array appear in whatever order the each iterator yields them:

(1..3).to_a # => [1,2,3]

(1..3).entries # => [1,2,3]

If you require 'set', all Enumerable objects gain a to_set conversion method as well. Sets are described in

detail in Section 9.5.4:

require 'set'

(1..3).to_set # => #<Set: {1, 2, 3}>

9.5.1.2. Enumerators and external iterators

Enumerators and their use as external iterators are fully documented in Section 5.3.4 and Section 5.3.5. This
section is just a brief recap, with examples, of the detailed descriptions in Chapter 5.

Enumerators are of class Enumerable::Enumerator, which has a surprisingly small number of methods for such

a powerful iteration construct. Enumerators are primarily a feature of Ruby 1.9 but some enumerator
functionality is available in Ruby 1.8 by requiring the enumerator library. Create an Enumerator with to_enum or

its alias enum_for, or simply by calling an iterator method without the block it expects:

e = [1..10].to_enum # Uses Range.each

e = "test".enum_for(:each_byte) # Uses String.each_byte

e = "test".each_byte # Uses String.each_byte

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Enumerator objects are Enumerable objects with an each method that is based on some other iterator method

of some other object. In addition to being Enumerable proxy objects, an enumerator also behaves as an

external iterator. To obtain the elements of a collection using an external iterator, simply call next repeatedly

until it raises StopIteration. The Kernel.loop iterator rescues StopIteration for you. After next raises

StopIteration, a subsequent call will typically begin a new iteration, assuming the underlying iterator method

allows repeated iterations (iterators reading from a file don't allow that, for example). If repeated iterations are
possible, you can restart an external iterator before StopIteration has been raised by calling rewind:

"Ruby".each_char.max # => "y"; Enumerable method of Enumerator

iter = "Ruby".each_char # Create an Enumerator

loop { print iter.next } # Prints "Ruby"; use it as external iterator

print iter.next # Prints "R": iterator restarts automatically

iter.rewind # Force it to restart now

print iter.next # Prints "R" again

Given any enumerator e, you can obtain a new enumerator with e.with_index. As the name implies, this new

enumerator yields an index (or iteration number) along with whatever value the original iterator would yield:

Print "0:R\n1:u\n2:b\n3:y\n"

"Ruby".each_char.with_index.each {|c,i| puts "#{i}:#{c} }

The Enumerable::Enumerator class defines a to_splat method, which means that you can prefix an

enumerator with an asterisk to "expand" it into individual values for method invocation or parallel assignment.

9.5.1.3. Sorting collections

One of the most important methods of Enumerable is sort. It converts the enumerable collection to an array

and sorts the elements of that array. By default, the sort is done according to the <=> method of the elements.

If a block is provided, however, then it is passed pairs of elements and should return –1, 0, or +1 to indicate

their relative order:

w = Set['apple','Beet','carrot'] # A set of words to sort

w.sort # ['Beet','apple','carrot']: alphabetical

w.sort {|a,b| b<=>a } # ['carrot','apple','Beet']: reverse

w.sort {|a,b| a.casecmp(b) } # ['apple','Beet','carrot']: ignore case

w.sort {|a,b| b.size<=>a.size} # ['carrot','apple','Beet']: reverse length

If the block you associate with sort must do substantial computation in order to perform its comparison, then it

is more efficient to use sort_by instead. The block associated with sort_by will be called once for each element

in the collection, and should return a numeric "sort key" for that element. The collection will then be sorted by
ascending order of the sort key. This way, a sort key is only computed once for each element, rather than twice
for each comparison:

Case-insensitive sort

words = ['carrot', 'Beet', 'apple']

words.sort_by {|x| x.downcase} # => ['apple', 'Beet', 'carrot']

9.5.1.4. Searching collections

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Enumerable defines several methods for searching for single elements within a collection. include? and its

synonym member? search for an element equal to (using ==) their argument:

primes = Set[2, 3, 5, 7]

primes.include? 2 # => true

primes.member? 1 # => false

The find method, and its synonym detect, apply the associated block to each element of the collection in turn.

If the block returns anything other than false or nil, then find returns that element and stops iterating. If the

block always returns nil or false, then find returns nil:

Find the first subarray that includes the number 1

data = [[1,2], [0,1], [7,8]]

data.find {|x| x.include? 1} # => [1,2]

data.detect {|x| x.include? 3} # => nil: no such element

In Ruby 1.9, the find_index method works like find but returns the index of the matching element rather than

the element itself. Like find, it returns nil if no match is found:

data.find_index {|x| x.include? 1} # => 0: the first element matches

data.find_index {|x| x.include? 3} # => nil: no such element

Note that the return value of find_index is not terribly useful for collections like hashes and sets that do not

use numeric indexes.

Enumerable defines other searching methods that return a collection of matches rather than a single match. We

cover these methods in the next section.

9.5.1.5. Selecting subcollections

The select method selects and returns elements of a collection for which a block returns a non-nil, non-false

value. A synonym for this method is find_all; it works like the find method but returns an array of all

matching elements:

(1..8).select {|x| x%2==0} # => [2,4,6,8]: select even elements

(1..8).find_all {|x| x%2==1} # => [1,3,5,7]: find all odd elements

reject is the opposite of select; the elements in the returned array are those for which the block returns

false or nil.

primes = [2,3,5,7]

primes.reject {|x| x%2==0} # => [3,5,7]: reject the even ones

If you want both to select and reject elements of a collection, use partition. It returns an array of two arrays.

The first subarray holds elements for which the block is true, and the second subarray holds elements for which
the block is false:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(1..8).partition {|x| x%2==0} # => [[2, 4, 6, 8], [1, 3, 5, 7]]

The group_by method of Ruby 1.9 is a generalization of partition. Rather than treating the block as a

predicate and returning two groups, group_by takes the return value of the block and uses it as a hash key. It

maps that key to an array of all collection elements for which the block returned that value. For example:

Group programming languages by their first letter

langs = %w[java perl python ruby]

groups = langs.group_by {|lang| lang[0] }

groups # => {"j"=>["java"], "p"=>["perl", "python"], "r"=>["ruby"]}

grep returns an array of elements that match the argument value, determining matching with the case equality

operator (===) of the argument. When used with a regular expression argument, this method works like the

Unix command-line utility grep. If a block is associated with the call, it is used to process matching elements, as
if collect or map were called on the results of grep:

langs = %w[java perl python ruby]

langs.grep(/^p/) # => [perl, python]: start with 'p'

langs.grep(/^p/) {|x| x.capitalize} # => [Perl, Python]: fix caps

data = [1, 17, 3.0, 4]

ints = data.grep(Integer) # => [1, 17, 4]: only integers

small = ints.grep(0..9) # [1,4]: only in range

In Ruby 1.9, the selection methods described previously are augmented by first, take, drop, take_while, and

drop_while. first returns the first element of an Enumerable object, or, given an integer argument n, an array

containing the first n elements. take and drop expect an integer argument. take behaves just like first; it

returns an array of the first n elements of the Enumerable receiver object. drop does the opposite; it returns an

array of all elements of the Enumerable except for the first n:

p (1..5).first(2) # => [1,2]

p (1..5).take(3) # => [1,2,3]

p (1..5).drop(3) # => [4,5]

take_while and drop_while expect a block instead of an integer argument. take_while passes elements of the

Enumerable object to the block in turn, until the block returns false or nil for the first time. Then it returns an

array of the previous elements for which the block returned true. drop also passes elements to the block in turn

until the block returns false or nil for the first time. Then, however, it returns an array containing the element

for which the block returned false and all subsequent elements:

[1,2,3,nil,4].take_while {|x| x } # => [1,2,3]: take until nil

[nil, 1, 2].drop_while {|x| !x } # => [1,2]: drop leading nils

9.5.1.6. Reducing collections

Sometimes we want to reduce an enumerable collection to a single value that captures some property of the
collection. min and max are methods that perform a reduction, returning the smallest or largest element of the

collection (assuming that the elements are mutually comparable with <=>):

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[10, 100, 1].min # => 1

['a','c','b'].max # => 'c'

[10, 'a', []].min # => ArgumentError: elements not comparable

min and max can take a block like sort can, to compare two elements. In Ruby 1.9, it is easier to use min_by

and max_by instead:

langs = %w[java perl python ruby] # Which has the longest name?

langs.max {|a,b| a.size <=> b.size } # => "python": block compares 2

langs.max_by {|word| word.length } # => "python": Ruby 1.9 only

Ruby 1.9 also defines minmax and minmax_by, which compute both the minimum and maximum value of a

collection and return them as a two-element array [min,max]:

(1..100).minmax # => [1,100] min, max as numbers

(1..100).minmax_by {|n| n.to_s } # => [1,99] min, max as strings

any? and all? are predicates that also perform reductions. They apply a predicate block to elements of the

collection. all? returns true if the predicate is true (that is, not nil and not false) for all elements of the

collection. any? returns true if the predicate is true for any one of the elements. In Ruby 1.9, none? returns

true only if the predicate never returns a true value. Also in 1.9, one? returns true only if the predicate returns

a true value for one, and only one, element of the collection. Invoked without blocks, these methods simply test
the elements of the collection themselves:

c = -2..2

c.all? {|x| x>0} # => false: not all values are > 0

c.any? {|x| x>0} # => true: some values are > 0

c.none? {|x| x>2} # => true: no values are > 2

c.one? {|x| x>0} # => false: more than one value is > 0

c.one? {|x| x>2} # => false: no values are > 2

c.one? {|x| x==2} # => true: one value == 2

[1, 2, 3].all? # => true: no values are nil or false

[nil, false].any? # => false: no true values

[].none? # => true: no non-false, non-nil values

Another Ruby 1.9 addition is the count method: it returns the number of elements in the collection that equal a

specified value, or the number for which an associated block returns true:

a = [1,1,2,3,5,8]

a.count(1) # => 2: two elements equal 1

a.count {|x| x % 2 == 1} # => 4: four elements are odd

Finally, inject is a general purpose method for reducing a collection. Ruby 1.9 defines reduce as an alias for

inject. The block associated with a call to inject expects two arguments. The first is an accumulated value;

the second is an element from the collection. The accumulated value for the first iteration is the argument
passed to inject. The block return value on one iteration becomes the accumulated value for the next iteration.

The return value after the last iteration becomes the return value of inject. Here are some examples:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

How many negative numbers?

(-2..10).inject(0) {|num, x| x<0 ? num+1 : num } # => 2

Sum of word lengths

%w[pea queue are].inject(0) {|total, word| total + word.length } # => 11

If no argument is passed to inject, then the first time the block is invoked, it is passed the first two elements

of the collection. (Or, if there is only one element in the collection, inject simply returns that element.) This

form of inject is useful for a number of common operations:

sum = (1..5).inject {|total,x| total + x} # => 15

prod = (1..5).inject {|total,x| total * x} # => 120

max = [1,3,2].inject {|m,x| m>x ? m : x} # => 3

[1].inject {|total,x| total + x} # => 1: block never called

In Ruby 1.9, you can pass a symbol that names a method (or operator) to inject instead of specifying a block.

Each element in the collection will be passed to the named method of the accumulated value, and its result will
become the new accumulated value. It is common to use the reduce synonym when invoking the method with a

symbol in this way:

sum = (1..5).reduce(:+) # => 15

prod = (1..5).reduce(:*) # => 120

letters = ('a'..'e').reduce("-", :concat) # => "-abcde"

9.5.2. Arrays

Arrays are probably the most fundamental and commonly used data structure in Ruby programming. We
covered array literals and indexing operators in Section 3.3. This section builds on that earlier one,
demonstrating the rich API implemented by the Array class.

9.5.2.1. Creating arrays

Arrays can be created with array literals, or with the classmethod Array.new or the class operator Array.[].

Examples:

[1,2,3] # Basic array literal

[] # An empty array

[] # Arrays are mutable: this empty array is different

%w[a b c] # => ['a', 'b', 'c']: array of words

Array[1,2,3] # => [1,2,3]: just like an array literal

Creating arrays with the new() method

empty = Array.new # []: returns a new empty array

nils = Array.new(3) # [nil, nil, nil]: three nil elements

copy = Array.new(nils) # Make a new copy of an existing array

zeros = Array.new(4, 0) # [0, 0, 0, 0]: four 0 elements

count = Array.new(3){|i| i+1} # [1,2,3]: three elements computed by block

Be careful with repeated objects

a=Array.new(3,'a') # => ['a','a','a']: three references to the same string

a[0].upcase! # Capitalize the first element of the array

a # => ['A','A','A']: they are all the same string!

http://lib.ommolketab.ir
http://lib.ommolketab.ir

a=Array.new(3){'b'} # => ['b','b','b']: three distinct string objects

a[0].upcase!; # Capitalize the first one

a # => ['B','b','b']: the others are still lowercase

In addition to the Array factory methods, a number of other classes define to_a methods that return arrays. In

particular, any Enumerable object, such as a Range or Hash, can be converted to an array with to_a. Also, array

operators, such as +, and many array methods, such as slice, create and return new arrays rather than

altering the receiving array in place.

9.5.2.2. Array size and elements

The following code shows how to determine the length of an array, and demonstrates a variety of ways to
extract elements and subarrays from an array:

Code View:
Array length

[1,2,3].length # => 3

[].size # => 0: synonym for length

[].empty? # => true

[nil].empty? # => false

[1,2,nil].nitems # => 2: number of non-nil elements

[1,2,3].nitems {|x| x>2} # => 1: # of elts matching block (Ruby 1.9)

Indexing single elements

a = %w[a b c d] # => ['a', 'b', 'c', 'd']

a[0] # => 'a': first element

a[-1] # => 'd': last element

a[a.size-1] # => 'd': last element

a[-a.size-1] # => 'a': first element

a[5] # => nil: no such element

a[-5] # => nil: no such element

a.at(2) # => 'c': just like [] for single integer argument

a.fetch(1) # => 'b': also like [] and at

a.fetch(-1) # => 'd': works with negative args

a.fetch(5) # => IndexError!: does not allow out-of-bounds

a.fetch(-5) # => IndexError!: does not allow out-of-bounds

a.fetch(5, 0) # => 0: return 2nd arg when out-of-bounds

a.fetch(5){|x|x*x} # => 25: compute value when out-of-bounds

a.first # => 'a': the first element

a.last # => 'd': the last element

a.choice # Ruby 1.9: return one element at random

Indexing subarrays

a[0,2] # => ['a','b']: two elements, starting at 0

a[0..2] # => ['a','b','c']: elements with index in range

a[0...2] # => ['a','b']: three dots instead of two

a[1,1] # => ['b']: single element, as an array

a[-2,2] # => ['c','d']: last two elements

a[4,2] # => []: empty array right at the end

a[5,1] # => nil: nothing beyond that

a.slice(0..1) # => ['a','b']: slice is synonym for []

a.first(3) # => ['a','b','c']: first three elements

a.last(1) # => ['d']: last element as an array

Extracting arbitrary values

a.values_at(0,2) # => ['a','c']

http://lib.ommolketab.ir
http://lib.ommolketab.ir

a.values_at(4, 3, 2, 1) # => [nil, 'd','c','b']

a.values_at(0, 2..3, -1) # => ['a','c','d','d']

a.values_at(0..2,1..3) # => ['a','b','c','b','c','d']

9.5.2.3. Altering array elements

The following code demonstrates how to change the value of individual array elements, insert values into an
array, delete values from an array, and replace values with other values:

Code View:
a = [1,2,3] # Start with this array

Changing the value of elements

a[0] = 0 # Alter an existing element: a is [0,2,3]

a[-1] = 4 # Alter the last element: a is [0,2,4]

a[1] = nil # Set the 2nd element to nil: a is [0,nil,4]

Appending to an array

a = [1,2,3] # Start over with this array

a[3] = 4 # Add a fourth element to it: a is [1,2,3,4]

a[5] = 6 # We can skip elements: a is [1,2,3,4,nil,6]

a << 7 # => [1,2,3,4,nil,6,7]

a << 8 << 9 # => [1,2,3,4,nil,6,7,8,9] operator is chainable

a = [1,2,3] # Start over with short array

a + a # => [1,2,3,1,2,3]: + concatenates into new array

a.concat([4,5]) # => [1,2,3,4,5]: alter a in place: note no !

Inserting elements with insert

a = ['a', 'b', 'c']

a.insert(1, 1, 2) # a now holds ['a',1,2,'b','c']. Like a[1,0] = [1,2]

Removing (and returning) individual elements by index

a = [1,2,3,4,5,6]

a.delete_at(4) # => 5: a is now [1,2,3,4,6]

a.delete_at(-1) # => 6: a is now [1,2,3,4]

a.delete_at(4) # => nil: a is unchanged

Removing elements by value

a.delete(4) # => 4: a is [1,2,3]

a[1] = 1 # a is now [1,1,3]

a.delete(1) # => 1: a is now [3]: both 1s removed

a = [1,2,3]

a.delete_if {|x| x%2==1} # Remove odd values: a is now [2]

a.reject! {|x| x%2==0} # Like delete_if: a is now []

Removing elements and subarrays with slice!

a = [1,2,3,4,5,6,7,8]

a.slice!(0) # => 1: remove element 0: a is [2,3,4,5,6,7,8]

a.slice!(-1,1) # => [8]: remove subarray at end: a is [2,3,4,5,6,7]

a.slice!(2..3) # => [4,5]: works with ranges: a is [2,3,6,7]

a.slice!(4,2) # => []: empty array just past end: a unchanged

a.slice!(5,2) # => nil: a now holds [2,3,6,7,nil]!

Replacing subarrays with []=

To delete, assign an empty array

To insert, assign to a zero-width slice

a = ('a'..'e').to_a # => ['a','b','c','d','e']

http://lib.ommolketab.ir
http://lib.ommolketab.ir

a[0,2] = ['A','B'] # a now holds ['A', 'B', 'c', 'd', 'e']

a[2...5]=['C','D','E'] # a now holds ['A', 'B', 'C', 'D', 'E']

a[0,0] = [1,2,3] # Insert elements at the beginning of a

a[0..2] = [] # Delete those elements

a[-1,1] = ['Z'] # Replace last element with another

a[-1,1] = 'Z' # For single elements, the array is optional

a[1,4] = nil # Ruby 1.9: a now holds ['A',nil]

 # Ruby 1.8: a now holds ['A']: nil works like []

Other methods

a = [4,5]

a.replace([1,2,3]) # a now holds [1,2,3]: a copy of its argument

a.fill(0) # a now holds [0,0,0]

a.fill(nil,1,3) # a now holds [0,nil,nil,nil]

a.fill('a',2..4) # a now holds [0,nil,'a','a','a']

a[3].upcase! # a now holds [0,nil,'A','A','A']

a.fill(2..4) { 'b' } # a now holds [0,nil,'b','b','b']

a[3].upcase! # a now holds [0,nil,'b','B','b']

a.compact # => [0,'b','B','b']: copy with nils removed

a.compact! # Remove nils in place: a now holds [0,'b','B','b']

a.clear # a now holds []

9.5.2.4. Iterating, searching, and sorting arrays

Array mixes in the Enumerable module, so all of the Enumerable iterators are available. In addition, the Array

class defines some important iterators and related searching and sorting methods of its own:

Code View:
a = ['a','b','c']

a.each {| elt| print elt } # The basic each iterator prints "abc"

a.reverse_each {|e| print e} # Array-specific: prints "cba"

a.cycle {|e| print e } # Ruby 1.9: prints "abcabcabc..." forever

a.each_index {|i| print i} # Array-specific: prints "012"

a.each_with_index{|e,i| print e,i} # Enumerable: prints "a0b1c2"

a.map {|x| x.upcase} # Enumerable: returns ['A','B','C']

a.map! {|x| x.upcase} # Array-specific: alters a in place

a.collect! {|x| x.downcase!} # collect! is synonym for map!

Searching methods

a = %w[h e l l o]

a.include?('e') # => true

a.include?('w') # => false

a.index('l') # => 2: index of first match

a.index('L') # => nil: no match found

a.rindex('l') # => 3: search backwards

a.index {|c| c =~ /[aeiou]/} # => 1: index of first vowel. Ruby 1.9.

a.rindex {|c| c =~ /[aeiou]/} # => 4: index of last vowel. Ruby 1.9.

Sorting

a.sort # => %w[e h l l o]: copy a and sort the copy

a.sort! # Sort in place: a now holds ['e','h','l','l','o']

a = [1,2,3,4,5] # A new array to sort into evens and odds

a.sort! {|a,b| a%2 <=> b%2} # Compare elements modulo 2

Shuffling arrays: the opposite of sorting; Ruby 1.9 only

a = [1,2,3] # Start ordered

http://lib.ommolketab.ir
http://lib.ommolketab.ir

puts a.shuffle # Shuffle randomly. E.g.: [3,1,2]. Also shuffle!

9.5.2.5. Array comparison

Two arrays are equal if and only if they have the same number of elements, the elements have the same
values, and they appear in the same order. The == method tests the equality of its elements with ==, and the

eql? method tests the equality of its elements by calling eql? on them. In most cases, these two equality-

testing methods return the same result.

The Array class is not Comparable, but it does implement the <=> operator and defines an ordering for arrays.

This ordering is analogous to string ordering, and arrays of character codes are sorted in the same way that the
corresponding String objects are. Arrays are compared element-by-element from index 0. If any pair of

elements is not equal, then the array-comparison method returns the same value as the element comparison
did. If all pairs of elements are equal, and the two arrays have the same length, then the arrays are equal and
<=> returns 0. Otherwise, one of the arrays is a prefix of the other. In this case, the longer array is greater than

the shorter array. Note that the empty array [] is a prefix of every other array and is always less than any

nonempty array. Also, if a pair of array elements is incomparable (if one is a number and one is a string, for
example), then <=> returns nil rather than returning –1, 0, or +1:

[1,2] <=> [4,5] # => -1 because 1 < 4

[1,2] <=> [0,0,0] # => +1 because 1 > 0

[1,2] <=> [1,2,3] # => -1 because first array is shorter

[1,2] <=> [1,2] # => 0: they are equal

[1,2] <=> [] # => +1 [] always less than a nonempty array

9.5.2.6. Arrays as stacks and queues

The push and pop add and remove elements from the end of an array. They allow you to use an array as a last-

on-first-off stack:

a = []

a.push(1) # => [1]: a is now [1]

a.push(2,3) # => [1,2,3]: a is now [1,2,3]

a.pop # => 3: a is now [1,2]

a.pop # => 2: a is now [1]

a.pop # => 1: a is now []

a.pop # => nil: a is still []

shift is like pop, but it removes and returns the first element of an array instead of the last element. unshift

is like push, but it adds elements at the beginning of the array instead of the end. You can use push and shift

to implement a first-in-first-out queue:

a = []

a.push(1) # => [1]: a is [1]

a.push(2) # => [1,2]: a is [1,2]

a.shift # => 1: a is [2]

a.push(3) # => [2,3]: a is [2,3]

a.shift # => 2: a is [3]

a.shift # => 3: a is []

a.shift # => nil: a is []

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.5.2.7. Arrays as sets

The Array class implements the &, |, and - operators to perform set-like intersection, union, and difference

operations. Furthermore, it defines include? to test for the presence (membership) of a value in an array. It

even defines uniq and uniq! to remove duplicate values from an array (sets don't allow duplicates). Array is

not an efficient set implementation (for that, see the Set class in the standard library), but it may be convenient

to use it to represent small sets:

[1,3,5] & [1,2,3] # => [1,3]: set intersection

[1,1,3,5] & [1,2,3] # => [1,3]: duplicates removed

[1,3,5] | [2,4,6] # => [1,3,5,2,4,6]: set union

[1,3,5,5] | [2,4,6,6] # => [1,3,5,2,4,6]: duplicates removed

[1,2,3] - [2,3] # => [1]: set difference

[1,1,2,2,3,3] - [2, 3] # => [1,1]: not all duplicates removed

small = 0..10.to_a # A set of small numbers

even = 0..50.map {|x| x*2} # A set of even numbers

smalleven = small & even # Set intersection

smalleven.include?(8) # => true: test for set membership

[1, 1, nil, nil].uniq # => [1, nil]: remove dups. Also uniq!

Note that the & and | - operators do not specify the order of the elements in the arrays they return. Only use

these operators if your array truly represents an unordered set of values.

In Ruby 1.9, the Array class defines set combinatorics methods for computing permutations, combinations, and

Cartesian products:

Code View:
a = [1,2,3]

Iterate all possible 2-element subarrays (order matters)

a.permutation(2) {|x| print x } # Prints "[1,2][1,3][2,1][2,3][3,1][3,2]"

Iterate all possible 2-element subsets (order does not matter)

a.combination(2) {|x| print x } # Prints "[1, 2][1, 3][2, 3]"

Return the Cartesian product of the two sets

a.product(['a','b']) # => [[1,"a"],[1,"b"],[2,"a"],[2,"b"],[3,"a"],[3,"b"]]

[1,2].product([3,4],[5,6]) # => [[1,3,5],[1,3,6],[1,4,5],[1,4,6], etc...]

9.5.2.8. Associative array methods

The assoc and rassoc methods allow you to treat an array as an associative array or hash. For this to work, the

array must be an array of arrays, typically like this:

[[key1, value1], [key2, value2], [key3, value3], ...]

The Hash class defines methods that convert a hash to a nested array of this form. The assoc methods looks for

a nested array whose first element matches the supplied argument. It returns the first matching nested array.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The rassoc method does the same thing, but returns the first nested array whose second element matches:

h = { :a => 1, :b => 2} # Start with a hash

a = h.to_a # => [[:b,2], [:a,1]]: associative array

a.assoc(:a) # => [:a,1]: subarray for key :a

a.assoc(:b).last # => 2: value for key :b

a.rassoc(1) # => [:a,1]: subarray for value 1

a.rassoc(2).first # => :b: key for value 2

a.assoc(:c) # => nil

a.transpose # => [[:a, :b], [1, 2]]: swap rows and cols

9.5.2.9. Miscellaneous array methods

Array defines a few miscellaneous methods that do not fit in any of the previous categories:

Conversion to strings

[1,2,3].join # => "123": convert elements to string and join

[1,2,3].join(", ") # => "1, 2, 3": optional delimiter

[1,2,3].to_s # => "[1, 2, 3]" in Ruby 1.9

[1,2,3].to_s # => "123" in Ruby 1.8

[1,2,3].inspect # => "[1, 2, 3]": better for debugging in 1.8

Binary conversion with pack. See also String.unpack.

[1,2,3,4].pack("CCCC") # => "\001\002\003\004"

[1,2].pack('s2') # => "\001\000\002\000"

[1234].pack("i") # => "\322\004\000\000"

Other methods

[0,1]*3 # => [0,1,0,1,0,1]: * operator repeats

[1, [2, [3]]].flatten # => [1,2,3]: recursively flatten; also flatten!

[1, [2, [3]]].flatten(1) # => [1,2,[3]]: specify # of levels; Ruby 1.9

[1,2,3].reverse # => [3,2,1]: also reverse!

a=[1,2,3].zip([:a,:b,:c]) # => [[1,:a],[2,:b],[3,:c]]: Enumerable method

a.transpose # => [[1,2,3],[:a,:b,:c]]: swap rows/cols

9.5.3. Hashes

Hashes were introduced in Section 3.4, which explained hash literal syntax and the [] and []= operators for

retrieving and storing key/value pairs in a hash. This section covers the Hash API in more detail. Hashes use the

same square-bracket operators as arrays do, and you'll notice that many Hash methods are similar to Array

methods.

9.5.3.1. Creating hashes

Hashes can be created with literals, the Hash.new method, or the [] operator of the Hash class itself:

{ :one => 1, :two => 2 } # Basic hash literal syntax

{ :one, 1, :two, 2 } # Same, with deprecated Ruby 1.8 syntax

{ one: 1, two: 2 } # Same, Ruby 1.9 syntax. Keys are symbols.

{} # A new, empty, Hash object

Hash.new # => {}: creates empty hash

Hash[:one, 1, :two, 2] # => {one:1, two:2}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recall from Section 6.4.4 that you can omit the curly braces around a hash literal that is the final argument in a
method invocation:

puts :a=>1, :b=>2 # Curly braces omitted in invocation

puts a:1, b:2 # Ruby 1.9 syntax works too

9.5.3.2. Indexing hashes and testing membership

Hashes are very efficient at looking up the value associated with a given key. It is also possible (though not
efficient) to find a key with which a value is associated. Note, however, that many keys can map to the same
value, and in this case, the key returned is arbitrary:

h = { :one => 1, :two => 2 }

h[:one] # => 1: find value associated with a key

h[:three] # => nil: the key does not exist in the hash

h.assoc :one # => [:one, 1]: find key/value pair. Ruby 1.9.

h.index 1 # => :one: search for key associated with a value

h.index 4 # => nil: no mapping to this value exists

h.rassoc 2 # => [:two, 2]: key/value pair matching value. Ruby 1.9.

Hash defines several synonymous methods for testing membership:

h = { :a => 1, :b => 2 }

Checking for the presence of keys in a hash: fast

h.key?(:a) # true: :a is a key in h

h.has_key?(:b) # true: has_key? is a synonym for key?

h.include?(:c) # false: include? is another synonym

h.member?(:d) # false: member? is yet another synonym

Checking for the presence of values: slow

h.value?(1) # true: 1 is a value in h

h.has_value?(3) # false: has_value? is a synonym for value?

The fetch method is an alternative to [] when querying values in a hash. It provides options for handling the

case where a key does not exist in the hash:

h = { :a => 1, :b => 2 }

h.fetch(:a) # => 1: works like [] for existing keys

h.fetch(:c) # Raises IndexError for nonexistent key

h.fetch(:c, 33) # => 33: uses specified value if key is not found

h.fetch(:c) {|k| k.to_s } # => "c": calls block if key not found

If you want to extract more than one value from a hash at once, use values_at:

h = { :a => 1, :b => 2, :c => 3 }

h.values_at(:c) # => [3]: values returned in an array

h.values_at(:a, :b) # => [1, 2]: pass any # of args

h.values_at(:d, :d, :a) # => [nil, nil, 1]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can extract keys and values selected by a block with the select method:

h = { :a => 1, :b => 2, :c => 3 }

h.select {|k,v| v % 2 == 0 } # => [:b,2] Ruby 1.8

h.select {|k,v| v % 2 == 0 } # => {:b=>2} Ruby 1.9

This method overrides Enumerable.select. In Ruby 1.8, select returns an array of key/value pairs. It has

been modified in Ruby 1.9 so that it returns a hash of the selected keys and values instead.

9.5.3.3. Storing keys and values in a hash

Associate a value with a key in a hash with the []= operator or its synonym, the store method:

h = {} # Start with an empty hash

h[:a] = 1 # Map :a=>1. h is now {:a=>1}

h.store(:b,2) # More verbose: h is now {:a=>1, :b=>2}

To replace all the key/value pairs in a hash with copies of the pairs from another hash, use replace:

Replace all of the pairs in h with those from another hash

h.replace({1=>:a, 2=>;b} # h is now equal to the argument hash

The merge, merge!, and update methods allow you to merge the mappings from two hashes:

Merge hashes h and j into new hash k.

If h and j share keys, use values from j

k = h.merge(j)

{:a=>1,:b=>2}.merge(:a=>3,:c=>3) # => {:a=>3,:b=>2,:c=>3}

h.merge!(j) # Modifies h in place.

If there is a block, use it to decide which value to use

h.merge!(j) {|key,h,j| h } # Use value from h

h.merge(j) {|key,h,j| (h+j)/2 } # Use average of two values

update is a synonym for merge!

h = {a:1,b:2} # Using Ruby 1.9 syntax and omitting braces

h.update(b:4,c:9) {|key,old,new| old } # h is now {a:1, b:2, c:9}

h.update(b:4,c:9) # h is now {a:1, b:4, c:9}

9.5.3.4. Removing hash entries

You can't remove a key from a hash simply by mapping it to nil. Instead, use the delete method:

h = {:a=>1, :b=>2}

h[:a] = nil # h now holds {:a=> nil, :b=>2 }

h.include? :a # => true

h.delete :b # => 2: returns deleted value: h now holds {:a=>nil}

h.include? :b # => false

h.delete :b # => nil: key not found

Invoke block if key not found

http://lib.ommolketab.ir
http://lib.ommolketab.ir

h.delete(:b) {|k| raise IndexError, k.to_s } # IndexError!

You can delete multiple key/value pairs from a hash using the delete_if and reject! iterators (and the reject

iterator which operates on a copy of its receiver). Note that reject overrides the Enumerable method by the

same name and returns a hash rather than an array:

h = {:a=>1, :b=>2, :c=>3, :d=>"four"}

h.reject! {|k,v| v.is_a? String } # => {:a=>1, :b=>2, :c=>3 }

h.delete_if {|k,v| k.to_s < 'b' } # => {:b=>2, :c=>3 }

h.reject! {|k,v| k.to_s < 'b' } # => nil: no change

h.delete_if {|k,v| k.to_s < 'b' } # => {:b=>2, :c=>3 }: unchanged hash

h.reject {|k,v| true } # => {}: h is unchanged

Finally, you can remove all key/value pairs from a hash with the clear method. This method does not end with

an exclamation mark, but it alters its receiver in place:

h.clear # h is now {}

9.5.3.5. Arrays from hashes

Hash defines methods for extracting hash data into arrays:

h = { :a=>1, :b=>2, :c=>3 }

Size of hash: number of key/value pairs

h.length # => 3

h.size # => 3: size is a synonym for length

h.empty? # => false

{}.empty? # => true

h.keys # => [:b, :c, :a]: array of keys

h.values # => [2,3,1]: array of values

h.to_a # => [[:b,2],[:c,3],[:a,1]]: array of pairs

h.flatten # => [:b, 2, :c, 3, :a, 1]: flattened array. Ruby 1.9

h.sort # => [[:a,1],[:b,2],[:c,3]]: sorted array of pairs

h.sort {|a,b| a[1]<=>b[1] } # Sort pairs by value instead of key

9.5.3.6. Hash iterators

It is not usually necessary to extract hash keys, values, or pairs as an array, because the Hash class is

Enumerable and defines other useful iterators as well. In Ruby 1.8, Hash objects make no guarantees about the

order in which their values are iterated. In Ruby 1.9, however, hash elements are iterated in their insertion
order, and that is the order shown in the following examples:

h = { :a=>1, :b=>2, :c=>3 }

The each() iterator iterates [key,value] pairs

h.each {|pair| print pair } # Prints "[:a, 1][:b, 2][:c, 3]"

It also works with two block arguments

h.each do |key, value|

 print "#{key}:#{value} " # Prints "a:1 b:2 c:3"

end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Iterate over keys or values or both

h.each_key {|k| print k } # Prints "abc"

h.each_value {|v| print v } # Prints "123"

h.each_pair {|k,v| print k,v } # Prints "a1b2c3". Like each

The each iterator yields an array containing the key and value. Block invocation syntax allows this array to be

automatically expanded into separate key and value parameters. In Ruby 1.8, the each_pair iterator yields the

key and value as two separate values (which may have a slight performance advantage). In Ruby 1.9,
each_pair is simply a synonym for each.

Although it is not an iterator, the shift method can be used to iterate through the key/value pairs of a hash.

Like the array method of the same name, it removes and returns one element (one [key,value] array in this

case) from the hash:

h = { :a=> 1, :b=>2 }

print h.shift[1] while not h.empty? # Prints "12"

9.5.3.7. Default values

Normally, if you query the value of a key with which no value has been associated, the hash returns nil:

empty = {}

empty["one"] # nil

You can alter this behavior, however, by specifying a default value for the hash:

empty = Hash.new(-1) # Specify a default value when creating hash

empty["one"] # => -1

empty.default = -2 # Change the default value to something else

empty["two"] # => -2

empty.default # => -2: return the default value

Instead of providing a single default value, you can provide a block of code to compute values for keys that do
not have an associated value:

If the key is not defined, return the successor of the key.

plus1 = Hash.new {|hash, key| key.succ }

plus1[1] # 2

plus1["one"] # "onf": see String.succ

plus1.default_proc # Returns the Proc that computes defaults

plus1.default(10) # => 11: default returned for key 10

When using a default block like this, it is common to associate the computed value with the key, so that the
computation does not need to be redone if the key is queried again. This is an easy-to-implement form of lazy
evaluation (and it explains why the default block is passed the hash object itself along with the key):

This lazily initialized hash maps integers to their factorials

fact = Hash.new {|h,k| h[k] = if k > 1: k*h[k-1] else 1 end }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

fact # {}: it starts off empty

fact[4] # 24: 4! is 24

fact # {1=>1, 2=>2, 3=>6, 4=>24}: the hash now has entries

Note that setting the default property of a hash overrides any block passed to the Hash.new constructor.

If you are not interested in default values for a hash, or if you want to override them with your own default, use
the fetch method to retrieve values instead of using square brackets. fetch was covered earlier:

fact.fetch(5) # IndexError: key not found

9.5.3.8. Hashcodes, key equality, and mutable keys

In order for an object to be used as a hash key, it must have a hash method that returns an integer "hashcode"

for the object. Classes that do not define their own eql? method can simply use the hash method they inherit

from Object. If you define an eql? method for testing object equality, however, you must define a

corresponding hash method. If two distinct objects are considered equal, their hash methods must return the

same value. Ideally, two objects that are not equal should have different hashcodes. This topic was covered in
Section 3.4.2, and Section 7.1.9 includes an example hash implementation.

Normally, hashes use eql? to test equality of hash keys. In Ruby 1.9, however, you can call

compare_by_identity on a Hash object to force it to compare keys with equal? instead. If you do this, the

hash will also use object_id as the hashcode for any object. Note that compare_by_identity is an instance

method that affects only the Hash object it is called on. Once called, there is no way to revert a hash to its

normal equality testing behavior. Use the compare_by_identity? predicate to determine whether a given hash

is testing for equality or identity. Remember that two symbol literals with the same characters evaluate to the
same object, but two string literals with the same characters evaluate to different objects. So symbol literals
can be used as keys in hashes that compare by identity, but string literals cannot.

As noted in Section 3.4.2, you must be careful any time you use a mutable object as a hash key. (Strings are a
special case: the Hash class makes a private internal copy of string keys.) If you do use mutable keys and

mutate one of them, you must call rehash on the Hash object in order to ensure that it works right:

key = {:a=>1} # This hash will be a key in another hash!

h = { key => 2 } # This hash has a mutable key

h[key] # => 2: get value associated with key

key.clear # Mutate the key

h[key] # => nil: no value found for mutated key

h.rehash # Fix up the hash after mutation

h[key] # => 2: now the value is found again

9.5.3.9. Miscellaneous hash methods

The invert method does not fit into any of the previous categories. invert swaps keys and values in a hash:

h = {:a=>1, :b=>2}

h.invert # => {1=>:a, 2=>:b}: swap keys and values

As was the case for Array, the Hash.to_s method is not very useful in Ruby 1.8, and you may prefer to use

inspect to convert to a string in hash literal form. In Ruby 1.9, to_s and inspect are the same:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

{:a=>1, :b=>2}.to_s # => "a1b2" in Ruby 1.8; "{:a=>1, :b=>2}" in 1.9

{:a=>1, :b=>2}.inspect # => "{:a=>1, :b=>2}" for both versions

9.5.4. Sets

A set is simply a collection of values, without duplicates. Unlike an array, the elements of a set have no order. A
hash can be considered a set of key/value pairs. Conversely, a set can be implemented using a hash in which
set elements are stored as keys and values are ignored. A sorted set is a set that imposes an ordering on its
elements (but does not allow random access to them as an array does). A characteristic feature of set
implementations is that they feature fast membership testing, insertion, and deletion operations.

Ruby does not offer a built-in set type, but the standard library includes the Set and SortedSet classes, which

you can use if you first:

require 'set'

The Set API is similar in many ways to the Array and Hash APIs. A number of Set methods and operators

accept any Enumerable object as their argument.

SortedSet

The SortedSet class inherits from Set and does not define any new methods of its own; it simply

guarantees that the elements of the set will be iterated (or printed or converted to arrays) in
sorted order. SortedSet does not allow you to provide a custom block to compare set elements,

and requires that all set elements are mutually comparable according to their default <=>

operator. Because the SortedSet API is no different than the basic Set API, it will not be covered

here.

9.5.4.1. Creating sets

Because Set is not a core Ruby class, there is no literal syntax for creating sets. The set library adds a to_set

method to the Enumerable module, and a set can be created from any enumerable object with this method:

(1..5).to_set # => #<Set: {5, 1, 2, 3, 4}>

[1,2,3].to_set # => #<Set: {1, 2, 3}>

Alternatively, any enumerable object can be passed to Set.new. If a block is provided, it is used (as with the

map iterator) to preprocess the enumerated values before adding them to the set:

Set.new(1..5) # => #<Set: {5, 1, 2, 3, 4}>

Set.new([1,2,3]) # => #<Set: {1, 2, 3}>

Set.new([1,2,3]) {|x| x+1} # => #<Set: {2, 3, 4}>

If you prefer to enumerate the members of your set without first placing them in an array or other enumerable
object, use the [] operator of the Set class:

Set["cow", "pig", "hen"] # => #<Set: {"cow", "pig", "hen"}>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.5.4.2. Testing, comparing, and combining Sets

The most common operation on sets is usually membership testing:

s = Set.new(1..3) # => #<Set: {1, 2, 3}>

s.include? 1 # => true

s.member? 0 # => false: member? is a synonym

It is also possible to test sets for membership in other sets. A set S is a subset of T if all the elements of S are
also elements of T. We can also say that T is a superset of S. If two sets are equal, then they are both subsets
and supersets of each other. S is a proper subset of T if it is a subset of T but not equal to T. In this case, T is a
proper superset of S:

s = Set[2, 3, 5]

t = Set[2, 3, 5, 7]

s.subset? t # => true

t.subset? s # => false

s.proper_subset? t # => true

t.superset? s # => true

t.proper_superset? s # => true

s.subset? s # => true

s.proper_subset? s # => false

Set defines the same size methods as Array and Hash do:

s = Set[2, 3, 5]

s.length # => 3

s.size # => 3: a synonym for length

s.empty? # => false

Set.new.empty? # => true

New sets can be created by combining two existing sets. There are several ways this can be done, and Set

defines the operators &, |, –, and ^ (plus named method aliases) to represent them:

Here are two simple sets

primes = Set[2, 3, 5, 7]

odds = Set[1, 3, 5, 7, 9]

The intersection is the set of values that appear in both

primes & odds # => #<Set: {5, 7, 3}>

primes.intersection(odds) # this is an explicitly named alias

The union is the set of values that appear in either

primes | odds # => #<Set: {5, 1, 7, 2, 3, 9}>

primes.union(odds) # an explicitly named alias

a-b: is the elements of a except for those also in b

primes-odds # => #<Set: {2}>

odds-primes # => #<Set: {1, 9}>

primes.difference(odds) # A named method alias

http://lib.ommolketab.ir
http://lib.ommolketab.ir

a^b is the set of values that appear in one set but not both: (a|b)-(a&b)

primes ^ odds # => #<Set: {1, 2, 9}>

The Set class also defines mutating variants of some of these methods; we'll consider them shortly.

9.5.4.3. Adding and deleting set elements

This section describes methods that add or remove elements from a set. They are mutator methods that modify
the receiver set in place rather than returning a modified copy and leaving the original unchanged. Because
these methods do not exist in nonmutating versions, they do not have an exclamation point suffix.

The << operator adds a single element to a set:

s = Set[] # start with an empty set

s << 1 # => #<Set: {1}>

s.add 2 # => #<Set: {1, 2}>: add is a synonym for <<

s << 3 << 4 << 5 # => #<Set: {5, 1, 2, 3, 4}>: can be chained

s.add 3 # => #<Set: {5, 1, 2, 3, 4}>: value unchanged

s.add? 6 # => #<Set: {5, 6, 1, 2, 3, 4}>

s.add? 3 # => nil: the set was not changed

To add more than one value to a set, use the merge method, which can take any enumerable object as its

argument. merge is effectively a mutating version of the union method:

s = (1..3).to_set # => #<Set: {1, 2, 3}>

s.merge(2..5) # => #<Set: {5, 1, 2, 3, 4}>

To remove a single element from a set, use delete or delete?, which are analogous to add and add? but do

not have an operator equivalent:

s = (1..3).to_set # => #<Set: {1, 2, 3}>

s.delete 1 # => #<Set: {2, 3}>

s.delete 1 # => #<Set: {2, 3}>: unchanged

s.delete? 1 # => nil: returns nil when no change

s.delete? 2 # => #<Set: {3}>: otherwise returns set

Remove multiple values from a set at once with subtract. The argument to this method can be any enumerable

object, and the method acts as a mutating version of the difference method:

s = (1..3).to_set # => #<Set: {1, 2, 3}>

s.subtract(2..10) # => #<Set: {1}>

To selectively delete elements from a set, use delete_if or reject!. Just as with the Array and Hash classes,

these two methods are equivalent except for their return value when the set is unmodified. delete_if always

returns the receiver set. reject! returns the receiver set if it was modified, or nil if no values were removed

from it:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

primes = Set[2, 3, 5, 7] # set of prime numbers

primes.delete_if {|x| x%2==1} # => #<Set: {2}>: remove odds

primes.delete_if {|x| x%2==1} # => #<Set: {2}>: unchanged

primes.reject! {|x| x%2==1} # => nil: unchanged

Do an in-place intersection like this:

s = (1..5).to_set

t = (4..8).to_set

s.reject! {|x| not t.include? x} # => #<Set: {5, 4}>

Finally, the clear and replace methods work just as they do for arrays and hashes:

s = Set.new(1..3) # Initial set

s.replace(3..4) # Replace all elements. Argument is any enumerable

s.clear # => #<Set: {}>

s.empty? # => true

9.5.4.4. Set iterators

Sets are Enumerable, and the Set class defines an each iterator that yields each of the set elements once. In

Ruby 1.9, Set behaves like the Hash class on which it is implemented and iterates elements in the order in

which they were inserted. Prior to Ruby 1.9 the iteration order is arbitrary. For SortedSet, the elements are

yielded in their ascending sorted order. In addition, the map! iterator transforms each element of the set with a

block, altering the set in place. collect! is a synonym:

s = Set[1, 2, 3, 4, 5] # => #<Set: {5, 1, 2, 3, 4}>

s.each {|x| print x } # prints "51234": arbitrary order before Ruby 1.9

s.map! {|x| x*x } # => #<Set: {16, 1, 25, 9, 4}>

s.collect! {|x| x/2 } # => #<Set: {0, 12, 2, 8, 4}>

9.5.4.5. Miscellaneous set methods

Set defines powerful methods for partitioning sets into subsets and for flattening sets of subsets into single

larger sets. In addition, it defines a few mundane methods that we will cover first:

s = (1..3).to_set

s.to_a # => [1, 2, 3]

s.to_s # => "#<Set:0xb7e8f938>": not useful

s.inspect # => "#<Set: {1, 2, 3}>": useful

s == Set[3,2,1] # => true: uses eql? to compare set elements

The classify method expects a block and yields each set element to that block in turn. The return value is a

hash that maps block return values to sets of elements that returned that value:

Classify set elements as even or odd

s = (0..3).to_set # => #<Set: {0, 1, 2, 3}>

s.classify {|x| x%2} # => {0=>#<Set: {0, 2}>, 1=>#<Set: {1, 3}>}

The divide method is similar but returns a set of subsets rather than hash mapping values to subsets:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

s.divide {|x| x%2} # => #<Set: {#<Set: {0, 2}>, #<Set: {1, 3}>}>

divide works completely differently if the associated block expects two arguments. In this case, the block

should return true if the two values belong in the same subset, and false otherwise:

s = %w[ant ape cow hen hog].to_set # A set of words

s.divide {|x,y| x[0] == y[0]} # Divide into subsets by first letter

=> #<Set:{#<Set:{"hog", "hen"}>, #<Set:{"cow"}>, #<Set:{"ape", "ant"}>}>

If you have a set of sets (which may themselves include sets, recursively), you can flatten it, effectively merging
(by union) all the contained sets with the flatten method, or the flatten! method, which performs the

operation in place:

s = %w[ant ape cow hen hog].to_set # A set of words

t = s.divide {|x,y| x[0] == y[0]} # Divide it into subsets

t.flatten! # Flatten the subsets

t == s # => true

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.6. Files and Directories

The File class defines quite a few class methods for working with files as entries in a filesystem: methods for

testing the size or existence of a named file, for example, and methods for separating a filename from the
directory name that precedes it. These are class methods and they do not operate on File objects; instead,

filenames are specified as strings. Similarly, the Dir class defines class methods for working with and reading

filenames from filesystem directories. The subsections that follow demonstrate how to:

Work with and manipulate filenames and directory names

List directories

Test files to determine their type, size, modification time, and other attributes

Delete, rename, and perform similar operations on files and directories

Note that the methods described here query and manipulate files, but do not read or write file content. Reading
and writing files is covered in Section 9.7.

Specifying Filenames in Ruby 1.9

Many of the file and directory methods described in this section expect one or more arguments
that name files. Normally, you specify filenames and directory paths as strings. In Ruby 1.9, you
can also use nonstring objects if they have a to_path method that returns a string.

9.6.1. File and Directory Names

The class methods of the File and Dir classes operate on files and directories specified by name. Ruby uses

Unix-style filenames with / as the directory separator character. You can use the forward slash character in your

filenames, even when using Ruby on a Windows platform. On Windows, Ruby can also handle filenames that use
the backslash character and that include drive letter prefixes. The constant File::SEPARATOR should be '/' in

all implementations. File::ALT_SEPARATOR is '\' on Windows, and is nil on other platforms.

The File class defines some methods for manipulating filenames:

full = '/home/matz/bin/ruby.exe'

file=File.basename(full) # => 'ruby.exe': just the local filename

File.basename(full, '.exe') # => 'ruby': with extension stripped

dir=File.dirname(full) # => '/home/matz/bin': no / at end

File.dirname(file) # => '.': current directory

File.split(full) # => ['/home/matz/bin', 'ruby.exe']

File.extname(full) # => '.exe'

File.extname(file) # => '.exe'

File.extname(dir) # => ''

File.join('home','matz') # => 'home/matz': relative

File.join('','home','matz') # => '/home/matz': absolute

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The File.expand_path method converts a relative path to a fully qualified path. If the optional second

argument is supplied, it is first prepended as a directory to the first argument. The result is then converted to
an absolute path. If it begins with a Unix-style ~, the directory is relative to the current user or specified user's

home directory. Otherwise, the directory is resolved relative to the current working directory (see Dir.chdir

below to change the working directory):

Dir.chdir("/usr/bin") # Current working directory is "/usr/bin"

File.expand_path("ruby") # => "/usr/bin/ruby"

File.expand_path("~/ruby") # => "/home/david/ruby"

File.expand_path("~matz/ruby") # => "/home/matz/ruby"

File.expand_path("ruby", "/usr/local/bin") # => "/usr/local/bin/ruby"

File.expand_path("ruby", "../local/bin") # => "/usr/local/bin/ruby"

File.expand_path("ruby", "~/bin") # => "/home/david/bin/ruby"

The File.identical? method tests whether two filenames refer to the same file. This might be because the

names are the same, but it is a more useful method when the names differ. Two different names might refer to
the same file if one is a relative filename and the other is absolute, for example. One might include ".." to go

up a level and then down again. Or, two different names might refer to the same file if one name is a symbolic
link or shortcut (or hard link on platforms that support it) to the other. Note, however, that File.identical?

only returns true if the two names refer to the same file and that file actually exists. Also note that

File.identical? does not expand the ~ character for home directories the way that File.expand_path does:

File.identical?("ruby", "ruby") # => true if the file exists

File.identical?("ruby", "/usr/bin/ruby") # => true if CWD is /usr/bin

File.identical?("ruby", "../bin/ruby") # => true if CWD is /usr/bin

File.identical?("ruby", "ruby1.9") # => true if there is a link

Finally, File.fnmatch tests whether a filename matches a specified pattern. The pattern is not a regular

expression, but is like the file-matching patterns used in shells. "?" matches a single character. "*" matches any

number of characters. And "**" matches any number of directory levels. Characters in square brackets are

alternatives, as in regular expressions. fnmatch does not allow alternatives in curly braces (as the Dir.glob

method described below does). fnmatch should usually be invoked with a third argument of

File::FNM_PATHNAME, which prevents "*" from matching "/". Add File::FNM_DOTMATCH if you want "hidden"

files and directories whose names begin with "." to match. Only a few examples of fnmatch are given here. Use

ri File.fnmatch for complete details. Note that File.fnmatch? is a synonym:

File.fnmatch("*.rb", "hello.rb") # => true

File.fnmatch("*.[ch]", "ruby.c") # => true

File.fnmatch("*.[ch]", "ruby.h") # => true

File.fnmatch("?.txt", "ab.txt") # => false

flags = File::FNM_PATHNAME | File::FNM_DOTMATCH

File.fnmatch("lib/*.rb", "lib/a.rb", flags) # => true

File.fnmatch("lib/*.rb", "lib/a/b.rb", flags) # => false

File.fnmatch("lib/**/*.rb", "lib/a.rb", flags) # => true

File.fnmatch("lib/**/*.rb", "lib/a/b.rb", flags) # => true

9.6.2. Listing Directories

The easiest way to list the contents of a directory is with the Dir.entries method or the Dir.foreach iterator:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Get the names of all files in the config/ directory

filenames = Dir.entries("config") # Get names as an array

Dir.foreach("config") {|filename| ... } # Iterate names

The names returned by these methods are not guaranteed to be in any particular order, and (on Unix-like
platforms) include "." (the current directory) and ".." (the parent directory). To obtain a list of files that match

a given pattern, use the Dir.[] operator:

Dir['*.data'] # Files with the "data" extension

Dir['ruby.*'] # Any filename beginning with "ruby."

Dir['?'] # Any single-character filename

Dir['*.[ch]'] # Any file that ends with .c or .h

Dir['*.{java,rb}'] # Any file that ends with .java or .rb

Dir['*/*.rb'] # Any Ruby program in any direct sub-directory

Dir['**/*.rb'] # Any Ruby program in any descendant directory

A more powerful alternative to Dir[] is Dir.glob. (The verb "glob" is an old Unix term for filename matching in

a shell.) By default, this method works like Dir[], but if passed a block, it yields the matching filenames one at

a time rather than returning an array. Also, the glob method accepts an optional second argument. If you pass

the constant File::FNM_DOTMATCH (see File.fnmatch previously) as this second argument, then the result will

include files whose names begin with "." (on Unix systems, these files are hidden and are not returned by

default):

Code View:
Dir.glob('*.rb') {|f| ... } # Iterate all Ruby files

Dir.glob('*') # Does not include names beginning with '.'

Dir.glob('*',File::FNM_DOTMATCH) # Include . files, just like Dir.entries

The directory listing methods shown here, and all File and Dir methods that resolve relative pathnames, do so

relative to the "current working directory," which is a value global to the Ruby interpreter process. Query and
set the CWD with the getwd and chdir methods:

puts Dir.getwd # Print current working directory

Dir.chdir("..") # Change CWD to the parent directory

Dir.chdir("../sibling") # Change again to a sibling directory

Dir.chdir("/home") # Change to an absolute directory

Dir.chdir # Change to user's home directory

home = Dir.pwd # pwd is an alias for getwd

If you pass a block to the chdir method, the directory will be restored to its original value when the block exits.

Note, however, that while the directory change is limited in duration, it is still global in scope and affects other
threads. Two threads may not call Dir.chdir with a block at the same time.

9.6.3. Testing Files

File defines a slew of methods to obtain metadata about a named file or directory. Many of the methods return

low-level information that is OS-dependent. Only the most portable and broadly useful are demonstrated here.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Use ri on the File and File::Stat classes for a complete list of methods.

The following simple methods return basic information about a file. Most are predicates that return true or

false:

f = "/usr/bin/ruby" # A filename for the examples below

File existence and types.

File.exist?(f) # Does the named file exist? Also: File.exists?

File.file?(f) # Is it an existing file?

File.directory?(f) # Or is it an existing directory?

File.symlink?(f) # Either way, is it a symbolic link?

File size methods. Use File.truncate to set file size.

File.size(f) # File size in bytes.

File.size?(f) # Size in bytes or nil if empty file.

File.zero?(f) # True if file is empty.

File permissions. Use File.chmod to set permissions (system dependent).

File.readable?(f) # Can we read the file?

File.writable?(f) # Can we write the file? No "e" in "writable"

File.executable?(f) # Can we execute the file?

File.world_readable?(f) # Can everybody read it? Ruby 1.9.

File.world_writable?(f) # Can everybody write it? Ruby 1.9.

File times/dates. Use File.utime to set the times.

File.mtime(f) # => Last modification time as a Time object

File.atime(f) # => Last access time as a Time object

Another way to determine the type (file, directory, symbolic link, etc.) of a filename is with ftype, which returns

a string that names the type. Assume that /usr/bin/ruby is a symbolic link (or shortcut) to /usr/bin/ruby1.9:

File.ftype("/usr/bin/ruby") # => "link"

File.ftype("/usr/bin/ruby1.9") # => "file"

File.ftype("/usr/lib/ruby") # => "directory"

File.ftype("/usr/bin/ruby3.0") # SystemCallError: No such file or directory

If you are interested in multiple pieces of information about a file, it may be more efficient to call stat or lstat.

(stat follows symbolic links; lstat returns information about the link itself.) These methods return a

File::Stat object, which has instance methods with the same names (but without arguments) as the class

methods of File. The efficiency of using stat is that Ruby only has to make one call to the OS to obtain all file

metadata. Your Ruby program can then obtain that information from the File::Stat object as it needs it:

s = File.stat("/usr/bin/ruby")

s.file? # => true

s.directory? # => false

s.ftype # => "file"

s.readable? # => true

s.writable? # => false

s.executable? # => true

s.size # => 5492

s.atime # => Mon Jul 23 13:20:37 -0700 2007

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Use ri on File::Stat for a full list of its methods. One final general-purpose file testing method is Kernel.test.

It exists for historical compatibility with the Unix shell command test. The test method is largely obviated by

the class methods of the File class, but you may see it used in existing Ruby scripts. Use ri for complete

details:

Testing single files

test ?e, "/usr/bin/ruby" # File.exist?("/usr/bin/ruby")

test ?f, "/usr/bin/ruby" # File.file?("/usr/bin/ruby")

test ?d, "/usr/bin/ruby" # File.directory?("/usr/bin/ruby")

test ?r, "/usr/bin/ruby" # File.readable?("/usr/bin/ruby")

test ?w, "/usr/bin/ruby" # File.writeable?("/usr/bin/ruby")

test ?M, "/usr/bin/ruby" # File.mtime("/usr/bin/ruby")

test ?s, "/usr/bin/ruby" # File.size?("/usr/bin/ruby")

Comparing two files f and g

test ?-, f, g # File.identical(f,g)

test ?<, f, g # File(f).mtime < File(g).mtime

test ?>, f, g # File(f).mtime > File(g).mtime

test ?=, f, g # File(f).mtime == File(g).mtime

9.6.4. Creating, Deleting, and Renaming Files and Directories

The File class does not define any special methods for creating a file. To create one, simply open it for writing,

write zero or more bytes, and close it again. If you don't want to clobber an existing file, open it in append
mode:

Create (or overwrite) a file named "test"

File.open("test", "w") {}

Create (but do not clobber) a file named "test"

File.open("test", "a") {}

To change the name of a file, use File.rename:

File.rename("test", "test.old") # Current name, then new name

To create a symbolic link to a file, use File.symlink:

File.symlink("test.old", "oldtest") # Link target, link name

On systems that support it, you can create a "hard link" with File.link:

File.link("test.old", "test2") # Link target, link name

Finally, to delete a file or link, use File.delete, or its synonym File.unlink:

File.delete("test2") # May also be called with multiple args

File.unlink("oldtest") # to delete multiple named files

http://lib.ommolketab.ir
http://lib.ommolketab.ir

On systems that support it, use File.truncate to truncate a file to a specified number (possibly zero) of bytes.

Use File.utime to set the access and modification times of a file. And use the platform-dependent method

File.chmod to change the permissions of a file:

f = "log.messages" # Filename

atime = mtime = Time.now # New access and modify times

File.truncate(f, 0) # Erase all existing content

File.utime(atime, mtime, f) # Change times

File.chmod(0600, f) # Unix permissions -rw-------; note octal arg

To create a new directory, use Dir.mkdir. To delete a directory, use Dir.rmdir or one of its synonyms,

Dir.delete or Dir.unlink. The directory must be empty before it can be deleted:

Dir.mkdir("temp") # Create a directory

File.open("temp/f", "w") {} # Create a file in it

File.open("temp/g", "w") {} # Create another one

File.delete(*Dir["temp/*"]) # Delete all files in the directory

Dir.rmdir("temp") # Delete the directory

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.7. Input/Output

An IO object is a stream: a readable source of bytes or characters or a writable sink for bytes or characters. The

File class is a subclass of IO. IO objects also represent the "standard input" and "standard output" streams

used to read from and write to the console. The stringio module in the standard library allows us to create a

stream wrapper around a string object. Finally, the socket objects used in networking (described later in this
chapter) are also IO objects.

9.7.1. Opening Streams

Before we can perform input or output, we must have an IO object to read from or write to. The IO class defines

factory methods new, open, popen, and pipe, but these are low-level methods with operating system

dependencies, and they are not documented here. The subsections that follow describe more common ways to
obtain IO objects. (And Section 9.8 includes examples that create IO objects that communicate across the

network.)

9.7.1.1. Opening files

One of the most common kinds of IO is the reading and writing of files. The File class defines some utility

methods (described below) that read the entire contents of a file with one call. Often, however, you will instead
open a file to obtain a File object and then use IO methods to read from or write to the file.

Use File.open (or File.new) to open a file. The first argument is the name of the file. This is usually specified

as a string, but in Ruby 1.9, you can use any object with a to_path method. Filenames are interpreted relative

to the current working directory unless they are specified with an absolute path. Use forward slash characters to
separate directories-Ruby automatically converts them into backslashes on Windows. The second argument to
File.open is a short string that specifies how the file should be opened:

f = File.open("data.txt", "r") # Open file data.txt for reading

out = File.open("out.txt", "w") # Open file out.txt for writing

The second argument to File.open is a string that specifies the "file mode." It must begin with one of the

values in the following table. Add "b" to the mode string to prevent automatic line terminator conversion on

Windows platforms. For text files, you may add the name of a character encoding to the mode string. For binary
files, you should add ":binary" to the string. This is explained in Section 9.7.2.

Mode Description

"r" Open for reading. The default mode.

"r+" Open for reading and writing. Start at beginning of file. Fail if file does not exist.

"w" Open for writing. Create a new file or truncate an existing one.

"w+" Like "w", but allows reading of the file as well.

"a" Open for writing, but append to the end of the file if it already exists.

"a+" Like "a", but allows reads also.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

File.open (but not File.new) may be followed by a block. If a block is provided, then File.open doesn't return

the File object but instead passes it to the block, and automatically closes it when the block exits. The return

value of the block becomes the return value of File.open:

File.open("log.txt", "a") do |log| # Open for appending

 log.puts("INFO: Logging a message") # Output to the file

end # Automatically closed

9.7.1.2. Kernel.open

The Kernel method open works like File.open but is more flexible. If the filename begins with |, it is treated

as an operating system command, and the returned stream is used for reading from and writing to that
command process. This is platform-dependent, of course:

How long has the server been up?

uptime = open("|uptime") {|f| f.gets }

If the open-uri library has been loaded, then open can also be used to read from http and ftp URLs as if they

were files:

require "open-uri" # Required library

f = open("http://www.davidflanagan.com/") # Webpage as a file

webpage = f.read # Read it as one big string

f.close # Don't forget to close!

In Ruby 1.9, if the argument to open has a method named to_open, then that method is called and should

return an opened IO object.

9.7.1.3. StringIO

Another way to obtain an IO object is to use the stringio library to read from or write to a string:

require "stringio"

input = StringIO.open("now is the time") # Read from this string

buffer = ""

output = StringIO.open(buffer, "w") # Write into buffer

The StringIO class is not a subclass of IO, but it defines many of the same methods as IO does, and duck

typing usually allows us to use a StringIO object in place of an IO object.

9.7.1.4. Predefined streams

Ruby predefines a number of streams that can be used without being created or opened. The global constants
STDIN, STDOUT, and STDERR are the standard input stream, the standard output stream, and the standard error

stream, respectively. By default, these streams are connected to the user's console or a terminal window of
some sort. Depending on how your Ruby script is invoked, they may instead use a file, or even another process,
as a source of input or a destination for output. Any Ruby program can read from standard input and write to
standard output (for normal program output) or standard error (for error messages that should be seen even if
the standard output is redirected to a file). The global variables $stdin, $stdout, and $stderr are initially set

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to the same values as the stream constants. Global functions like print and puts write to $stdout by default. If

a script alters the value of this global variable, it will change the behavior of those methods. The true "standard
output" will still be available through STDOUT, however.

Another predefined stream is ARGF, or $<. This stream has special behavior intended to make it simple to write

scripts that read the files specified on the command line or from standard input. If there are command-line
arguments to the Ruby script (in the ARGV or $* array), then the ARGF stream acts as if those files had been

concatenated together and the single resulting file opened for reading. In order for this to work properly, a Ruby
script that accepts command-line options other than filenames must first process those options and remove
them from the ARGV array. If the ARGV array is empty, then ARGF is the same as STDIN. (See Section 10.3.1 for

further details about the ARGF stream.)

Finally, the DATA stream is designed for reading text that appears after the end of your Ruby script. This works

only if your script includes the token __END__ on a line by itself. That token marks the end of the program text.

Any lines after the token may be read with the DATA stream.

9.7.2. Streams and Encodings

One of the most significant changes in Ruby 1.9 is support for multibyte character encodings. We saw in Section
3.2 that there were many changes to the String class. There are similar changes to the IO class.

In Ruby 1.9, every stream can have two encodings associated with it. These are known as the external and
internal encodings, and are returned by the external_encoding and internal_encoding methods of an IO

object. The external encoding is the encoding of the text as stored in the file. The internal encoding is the
encoding used to represent the text within Ruby. If the external encoding is also the desired internal encoding,
there is no need to specify an internal encoding: strings read from the stream will have the external encoding
associated with them (as by the String method force_encoding). If, on the other hand, you'd like the internal

representation of the text to be different than the external representation, you can specify an internal encoding
and Ruby will transcode from the external to the internal when reading and to the external when writing.

Specify the encoding of any IO object (including pipes and network sockets) with the set_encoding method.

With two arguments, it specifies an external encoding and an internal encoding. You can also specify two
encodings with a single string argument, which consists of two encoding names separated by a colon. Normally,
however, a single argument specifies just an external encoding. The arguments can be strings or Encoding

objects. The external encoding is always specified first, followed, optionally, by an internal encoding. For
example:

f.set_encoding("iso-8859-1", "utf-8") # Latin-1, transcoded to UTF-8

f.set_encoding("iso-8859-1:utf-8") # Same as above

f.set_encoding(Encoding::UTF-8) # UTF-8 text

set_encoding works for any kind of IO object. For files, however, it is often easiest to specify encoding when

you open the file. You can do this by appending the encoding names to the file mode string. For example:

Code View:
in = File.open("data.txt", "r:utf-8"); # Read UTF-8 text

out = File.open("log", "a:utf-8"); # Write UTF-8 text

in = File.open("data.txt", "r:iso8859-1:utf-8"); # Latin-1 transcoded to UTF-8

Note that it is not usually necessary to specify two encodings for a stream that is to be used for output. In that
case, the internal encoding is specified by the String objects that are written to the stream.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you specify no encoding at all, then Ruby defaults to the default external encoding (see Section 2.4.2) when
reading from files, and defaults to no encoding (i.e., the ASCII-8BIT/BINARY encoding) when writing to files or
when reading or writing from pipes and sockets.

The default external encoding is, by default, derived from the user's locale settings and is often a multibyte
encoding. In order to read binary data from a file, therefore, you must explicitly specify that you want
unencoded bytes, or you'll get characters in the default external encoding. To do this, open a file with mode
"r:binary", or pass Encoding::BINARY to set_encoding after opening the file:

File.open("data", "r:binary") # Open a file for reading binary data

On Windows, you should open binary files with mode "rb:binary" or call binmode on the stream. This disables

the automatic newline conversion performed by Windows, and is only necessary on that platform.

Not every stream-reading method honors the encoding of a stream. Some lower-level reading methods take an
argument that specifies the number of bytes to read. By their nature, these methods return unencoded strings
of bytes rather than strings of text. The methods that do not specify a length to read do honor the encoding.

9.7.3. Reading from a Stream

The IO class defines a number of methods for reading from streams. They work only if the stream is readable, of

course. You can read from STDIN, ARGF, and DATA, but not from STDOUT or STDERR. Files and StringIO objects

are opened for reading by default, unless you explicitly open them for writing only.

9.7.3.1. Reading lines

IO defines a number of ways to read lines from a stream:

lines = ARGF.readlines # Read all input, return an array of lines

line = DATA.readline # Read one line from stream

print l while l = DATA.gets # Read until gets returns nil, at EOF

DATA.each {|line| print line } # Iterate lines from stream until EOF

DATA.each_line # An alias for each

DATA.lines # An enumerator for each_line: Ruby 1.9

Here are some important notes on these line-reading methods. First, the readline and the gets method differ

only in their handling of EOF (end-of-file: the condition that occurs when there is no more to read from a
stream). gets returns nil if it is invoked on a stream at EOF. readline instead raises an EOFError. If you do

not know how many lines to expect, use gets. If you expect another line (and it is an error if it is not there),

then use readline. You can check whether a stream is already at EOF with the eof? method.

Second, gets and readline implicitly set the global variable $_ to the line of text they return. A number of

global methods, such as print, use $_ if they are not explicitly passed an argument. Therefore, the while loop

in the code above could be written more succinctly as:

print while DATA.gets

Relying on $_ is useful for short scripts, but in longer programs, it is better style to explicitly use variables to

store the lines of input you've read.

Third, these methods are typically used for text (instead of binary) streams, and a "line" is defined as a
sequence of bytes up to and including the default line terminator (newline on most platforms). The lines

http://lib.ommolketab.ir
http://lib.ommolketab.ir

returned by these methods include the line terminator (although the last line in a file may not have one). Use
String.chomp! to strip it off. The special global variable $/ holds the line terminator. You can set $/ to alter the

default behavior of all the line-reading methods, or you can simply pass an alternate separator to any of the
methods (including the each iterator). You might do this when reading comma-separated fields from a file, for

example, or when reading a binary file that has some kind of "record separator" character. There are two special
cases for the line terminator. If you specify nil, then the line-reading methods keep reading until EOF and

return the entire contents of the stream as a single line. If you specify the empty string "" as the line
terminator, then the line-reading methods read a paragraph at a time, looking for a blank line as the separator.

In Ruby 1.9, gets and readline accept an optional integer as the first argument or as the second after a

separator string. If specified, this integer specifies the maximum number of bytes to read from the stream. This
limit argument exists to prevent accidental reads of unexpectedly long lines, and these methods are exceptions
to the previously cited rule; they return encoded character strings despite the fact that they have a limit
argument measured in bytes.

Finally, the line-reading methods gets, readline, and the each iterator (and its each_line alias) keep track of

the number of lines they've read. You can query the line number of the most recently read line with the lineno

method, and you can set that line number with lineno= accessor. Note that lineno does not actually count the

number of newlines in a file. It counts the number of times line-reading methods have been called, and may
return different results if you use different line separator characters:

DATA.lineno = 0 # Start from line 0, even though data is at end of file

DATA.readline # Read one line of data

DATA.lineno # => 1

$. # => 1: magic global variable, implicitly set

9.7.3.2. Reading entire files

IO defines three class methods for reading files without ever opening an IO stream. IO.read reads an entire file

(or a portion of a file) and returns it as a single string. IO.readlines reads an entire named file into an array of

lines. And IO.foreach iterates over the lines of a named file. None of these class methods requires you to

instantiate an IO object:

data = IO.read("data") # Read and return the entire file

data = IO.read("data", 4, 2) # Read 4 bytes starting at byte 2

data = IO.read("data", nil, 6) # Read from byte 6 to end-of-file

Read lines into an array

words = IO.readlines("/usr/share/dict/words")

Read lines one at a time and initialize a hash

words = {}

IO.foreach("/usr/share/dict/words") {|w| words[w] = true}

Although these class methods are defined by the IO class, they operate on named files, and it is also common to

see them invoked as class methods of File: File.read, File.readlines, and File.foreach.

The IO class also defines an instance method named read, which is similar to the class method with the same

name; with no arguments it reads text until the end of the stream and returns it as an encoded string:

An alternative to text = File.read("data.txt")

f = File.open("data.txt") # Open a file

text = f.read # Read its contents as text

f.close # Close the file

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The IO.read instance method can also be used with arguments to read a specified number of bytes from the

stream. That use is described in the next section.

9.7.3.3. Reading bytes and characters

The IO class also defines methods for reading a stream one or more bytes or characters at a time, but these

methods have changed substantially between Ruby 1.8 and Ruby 1.9 because Ruby's definition of a character
has changed.

In Ruby 1.8, bytes and characters are the same thing, and the getc and readchar methods read a single byte

and return it as a Fixnum. Like gets, getc returns nil at EOF. And like readline, readchar raises EOFError if

it is called at EOF.

In Ruby 1.9, getc and readchar have been modified to return a string of length 1 instead of a Fixnum. When

reading from a stream with a multibyte encoding, these methods read as many bytes as necessary to read a
complete character. If you want to read a string a byte at a time in Ruby 1.9, use the new methods getbyte

and readbyte. getbyte is like getc and gets: it returns nil at EOF. And readbyte is like readchar and

readline: it raises EOFError.

Programs (like parsers) that read a stream one character at a time sometimes need to push a single character
back into the stream's buffer, so that it will be returned by the next read call. They can do this with ungetc. This

method expects a Fixnum in Ruby 1.8 and a single character string in Ruby 1.9. The character pushed back will

be returned by the next call to getc or readchar:

f = File.open("data", "r:binary") # Open data file for binary reads

c = f.getc # Read the first byte as an integer

f.ungetc(c) # Push that byte back

c = f.readchar # Read it back again

Another way to read the bytes of a stream is with the each_byte iterator. This method passes each byte of a

stream to the associated block:

f.each_byte {|b| ... } # Iterate through remaining bytes

f.bytes # An enumerator for each_byte: Ruby 1.9

If you want to read more than one byte at a time, you have a choice of five methods, each with slightly different
behavior:

readbytes(n)

Read exactly n bytes and return them as a string. Block, if necessary, until n bytes arrive. Raise EOFError

if EOF occurs before n bytes are available.

readpartial(n, buffer=nil)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Read between 1 and n bytes and return them as a new binary string, or, if a String object is passed as

the second argument, store them in that string (overwriting whatever text it contains). If one or more
bytes are available for reading, this method returns them (up to a maximum of n) immediately. It blocks

only if no bytes are available. This method raises EOFError if called when the stream is at EOF.

read(n=nil, buffer=nil)

Read n bytes (or fewer, if EOF is reached), blocking if necessary, until the bytes are ready. The bytes are

returned as a binary string. If the second argument is an existing String object, then the bytes are

stored in that object (replacing any existing content) and the string is returned. If the stream is at EOF
and n is specified, it returns nil. If called at EOF and n is omitted or is nil, then it returns the empty

string "".

If n is nil or is omitted, then this method reads the rest of the stream and returns it as an encoded

character string rather than an unencoded byte string.

read_nonblock(n, buffer=nil)

Read the bytes (up to a maximum of n) that are currently available for reading, and return them as a

string, using the buffer string if it is specified. This method does not block. If there is no data ready to

be read on the stream (this might occur with a networking socket or with STDIN, for example) this
method raises a SystemCallError. If called at EOF, this method raises EOFError.

This method is new in Ruby 1.9. (Ruby 1.9 also defines other nonblocking IO methods, but they are low-

level and are not covered here.)

sysread(n)

This method works like readbytes but operates at a lower level without buffering. Do not mix calls to

sysread with any other line- or byte-reading methods; they are incompatible.

Here is some example code you might use when reading a binary file:

Code View:
f = File.open("data.bin", "rb:binary") # No newline conversion, no encoding

magic = f.readbytes(4) # First four bytes identify filetype

exit unless magic == "INTS" # Magic number spells "INTS" (ASCII)

bytes = f.read # Read the rest of the file

 # Encoding is binary, so this is a byte string

data = bytes.unpack("i*") # Convert bytes to an array of integers

9.7.4. Writing to a Stream

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The IO methods for writing to a stream mirror those for reading. The STDOUT and STDERR streams are writable,

as are files opened in any mode other than "r" or "rb".

IO defines a single putc method for writing single bytes or characters to a stream. This method accepts either a

byte value or a single-character string as its argument, and therefore has not changed between Ruby 1.8 and
1.9:

o = STDOUT

Single-character output

o.putc(65) # Write single byte 65 (capital A)

o.putc("B") # Write single byte 66 (capital B)

o.putc("CD") # Write just the first byte of the string

The IO class defines a number of other methods for writing arbitrary strings. These methods differ from each

other in the number of arguments they accept and whether or not line terminators are added. Recall that in
Ruby 1.9, textual output is transcoded to the external encoding of the stream, if one was specified:

o = STDOUT

String output

o << x # Output x.to_s

o << x << y # May be chained: output x.to_s + y.to_s

o.print # Output $_ + $\

o.print s # Output s.to_s + $\

o.print s,t # Output s.to_s + t.to_s + $\

o.printf fmt,*args # Outputs fmt%[args]

o.puts # Output newline

o.puts x # Output x.to_s.chomp plus newline

o.puts x,y # Output x.to_s.chomp, newline, y.to_s.chomp, newline

o.puts [x,y] # Same as above

o.write s # Output s.to_s, returns s.to_s.length

o.syswrite s # Low-level version of write

Output streams are appendable, like strings and arrays are, and you can write values to them with the <<

operator. puts is one of the most common output methods. It converts each of its arguments to a string, and

writes each one to the stream. If the string does not already end with a newline character, it adds one. If any of
the arguments to puts is an array, the array is recursively expanded, and each element is printed on its own

line as if it were passed directly as an argument to puts. The print method converts its arguments to strings,

and outputs them to the stream. If the global field separator $, has been changed from its default value of nil,

then that value is output between each of the arguments to print. If the output record separator $/ has been

changed from its default value of nil, then that value is output after all arguments are printed.

The printf method expects a format string as its first argument, and interpolates the values of any additional

arguments into that format string using the String % operator. It then outputs the interpolated string with no

newline or record separator.

write simply outputs its single argument as << does, and returns the number of bytes written. Finally,

syswrite is a low-level, unbuffered, nontranscoding version of write. If you use syswrite, you must use that

method exclusively, and not mix it with any other writing methods.

9.7.5. Random Access Methods

Some streams, such as those that represent network sockets, or user input at the console, are sequential
streams: once you have read or written from them, you cannot go back. Other streams, such as those that read

http://lib.ommolketab.ir
http://lib.ommolketab.ir

from or write to files or strings, allow random access with the methods described here. If you attempt to use
these methods on a stream that does not allow random access, they will raise a SystemCallException:

f = File.open("test.txt")

f.pos # => 0: return the current position in bytes

f.pos = 10 # skip to position 10

f.tell # => 10: a synonym for pos

f.rewind # go back to position 0, reset lineno to 0, also

f.seek(10, IO::SEEK_SET) # Skip to absolute position 10

f.seek(10, IO::SEEK_CUR) # Skip 10 bytes from current position

f.seek(-10, IO::SEEK_END) # Skip to 10 bytes from end

f.seek(0, IO::SEEK_END) # Skip to very end of file

f.eof? # => true: we're at the end

If you use sysread or syswrite in your program, then use sysseek instead of seek for random access. sysseek

is like seek except that it returns the new file position after each call:

pos = f.sysseek(0, IO::SEEK_CUR) # Get current position

f.sysseek(0, IO::SEEK_SET) # Rewind stream

f.sysseek(pos, IO::SEEK_SET) # Return to original position

9.7.6. Closing, Flushing, and Testing Streams

When you are done reading from or writing to a stream, you must close it with the close method. This flushes

any buffered input or output, and also frees up operating system resources. A number of stream-opening
methods allow you to associate a block with them. They pass the open stream to the block, and automatically
close the stream when the block exits. Managing streams in this way ensures that they are properly closed even
when exceptions are raised:

File.open("test.txt") do |f|

 # Use stream f here

 # Value of this block becomes return value of the open method

end # f is automatically closed for us here

The alternative to using a block is to use an ensure clause of your own:

begin

 f = File.open("test.txt")

 # use stream f here

ensure

 f.close if f

end

Network sockets are implemented using IO objects that have separate read and write streams internally. You

can use close_read and close_write to close these internal streams individually. Although files can be opened

for reading and writing at the same time, you cannot use close_read and close_write on those IO objects.

Ruby's output methods (except syswrite) buffer output for efficiency. The output buffer is flushed at

reasonable times, such as when a newline is output or when data is read from a corresponding input stream.
There are times, however, when you may need to explicitly flush the output buffer to force output to be sent
right away:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

out.print 'wait>' # Display a prompt

out.flush # Manually flush output buffer to OS

sleep(1) # Prompt appears before we go to sleep

out.sync = true # Automatically flush buffer after every write

out.sync = false # Don't automatically flush

out.sync # Return current sync mode

out.fsync # Flush output buffer and ask OS to flush its buffers

 # Returns nil if unsupported on current platform

IO defines several predicates for testing the state of a stream:

f.eof? # true if stream is at EOF

f.closed? # true if stream has been closed

f.tty? # true if stream is interactive

The only one of these methods that needs explanation is tty?. This method, and its alias isatty (with no

question mark), returns true if the stream is connected to an interactive device such as a terminal window or a

keyboard with (presumably) a human at it. They return false if the stream is a noninteractive one, such as a

file, pipe, or socket. A program can use tty? to avoid prompting a user for input if STDIN has actually been

redirected and is coming from a file, for example.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.8. Networking

Ruby's networking capabilities are provided by the standard library rather than by core classes. For this reason,
the subsections that follow do not attempt to enumerate each available class or method. Instead, they
demonstrate how to accomplish common networking tasks with simple examples. Use ri for more complete
documentation.

At the lowest level, networking is accomplished with sockets, which are a kind of IO object. Once you have a

socket opened, you can read data from, or write data to, another computer just as if you were reading from or
writing to a file. The socket class hierarchy is somewhat confusing, but the details are not important in the
following examples. Internet clients use the TCPSocket class, and Internet servers use the TCPServer class

(also a socket). All socket classes are part of the standard library, so to use them in your Ruby program, you
must first write:

require 'socket'

9.8.1. A Very Simple Client

To write Internet client applications, use the TCPSocket class. Obtain a TCPSocket instance with the

TCPSocket.open class method, or with its synonym TCPSocket.new. Pass the name of the host to connect to as

the first argument and the port as the second argument. (The port should be an integer between 1 and 65535,
specified as a Fixnum or String object. Different internet protocols use different ports. Web servers use port 80

by default, for example. You may also pass the name of an Internet service, such as "http", as a string, in place
of a port number, but this is not well documented and may be system dependent.)

Once you have a socket open, you can read from it like any IO object. When done, remember to close it, as you

would close a file. The following code is a very simple client that connects to a given host and port, reads any
available data from the socket, and then exits:

require 'socket' # Sockets are in standard library

host, port = ARGV # Host and port from command line

s = TCPSocket.open(host, port) # Open a socket to host and port

while line = s.gets # Read lines from the socket

 puts line.chop # And print with platform line terminator

end

s.close # Close the socket when done

Like File.open, the TCPSocket.open method can be invoked with a block. In that form, it passes the open

socket to the block and automatically closes the socket when the block returns. So we can also write this code
like this:

require 'socket'

host, port = ARGV

TCPSocket.open(host, port) do |s| # Use block form of open

 while line = s.gets

 puts line.chop

 end

end # Socket automatically closed

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This client code for use with services like the old-style (and now defunct) Unix "daytime" service. With services
like these, the client doesn't make a query; the client simply connects and the server sends a response. If you
can't find an Internet host running a server to test the client with, don't despair-the next section shows how to
write an equally simple time server.

9.8.2. A Very Simple Server

To write Internet servers, we use the TCPServer class. In essence, a TCPServer object is a factory for

TCPSocket objects. Call TCPServer.open to specify a port for your service and create a TCPServer object. Next,

call the accept method of the returned TCPServer object. This method waits until a client connects to the port

you specified, and then returns a TCPSocket object that represents the connection to that client.

The following code shows how we might write a simple time server. It listens for connections on port 2000.
When a client connects to that port, it sends the current time to the client and closes the socket, thereby
terminating the connection with the client:

require 'socket' # Get sockets from stdlib

server = TCPServer.open(2000) # Socket to listen on port 2000

loop { # Infinite loop: servers run forever

 client = server.accept # Wait for a client to connect

 client.puts(Time.now.ctime) # Send the time to the client

 client.close # Disconnect from the client

}

To test this code, run it in the background or in another terminal window. Then, run the simple client code from
above with a command like this:

ruby client.rb localhost 2000

9.8.3. Datagrams

Most Internet protocols are implemented using TCPSocket and TCPServer, as shown earlier. A lower-overhead

alternative is to use UDP datagrams, with the UDPSocket class. UDP allows computers to send individual packets

of data to other computers, without the overhead of establishing a persistent connection. The following client
and server code demonstrate: the client sends a datagram containing a string of text to a specified host and
port. The server, which should be running on that host and listening on that port, receives the text, converts it
to uppercase (not much of a service, I know), and sends it back in a second datagram.

The client code is first. Note that although UDPSocket objects are IO objects, datagrams are pretty different

from other IO streams. For this reason, we avoid using IO methods and use the lower-level sending and

receiving methods of UDPSocket. The second argument to the send method specifies flags. It is required, even

though we are not setting any flags. The argument to recvfrom specifies the maximum amount of data we are

interested in receiving. In this case, we limit our client and server to transferring 1 kilobyte:

require 'socket' # Standard library

host, port, request = ARGV # Get args from command line

ds = UDPSocket.new # Create datagram socket

ds.connect(host, port) # Connect to the port on the host

ds.send(request, 0) # Send the request text

response,address = ds.recvfrom(1024) # Wait for a response (1kb max)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

puts response # Print the response

The server code uses the UDPSocket class just as the client code does-there is no special UDPServer class for

datagram-based servers. Instead of calling connect to connect the socket, our server calls bind to tell the

socket what port to listen on. The server then uses send and recvfrom, just as the client does, but in the

opposite order. It calls recvfrom to wait until it receives a datagram on the specified port. When that happens,

it converts the text it receives to uppercase and sends it back. An important point to notice is that the recvfrom

method returns two values. The first is the received data. The second is an array containing information about
where that data came from. We extract host and port information from that array and use it to send the
response back to the client:

require 'socket' # Standard library

port = ARGV[0] # The port to listen on

ds = UDPSocket.new # Create new socket

ds.bind(nil, port) # Make it listen on the port

loop do # Loop forever

 request,address=ds.recvfrom(1024) # Wait to receive something

 response = request.upcase # Convert request text to uppercase

 clientaddr = address[3] # What ip address sent the request?

 clientname = address[2] # What is the host name?

 clientport = address[1] # What port was it sent from

 ds.send(response, 0, # Send the response back...

 clientaddr, clientport) # ...where it came from

 # Log the client connection

 puts "Connection from: #{clientname} #{clientaddr} #{clientport}"

end

9.8.4. A More Complex Client

The following code is a more fully developed Internet client in the style of telnet. It connects to the specified
host and port and then loops, reading a line of input from the console, sending it to the server, and then reading
and printing the server's response. It demonstrates how to determine the local and remote addresses of the
network connection, adds exception handling, and uses the IO methods read_nonblock and readpartial

described earlier in this chapter. The code is well-commented and should be self-explanatory:

Code View:
require 'socket' # Sockets from standard library

host, port = ARGV # Network host and port on command line

begin # Begin for exception handling

 # Give the user some feedback while connecting.

 STDOUT.print "Connecting..." # Say what we're doing

 STDOUT.flush # Make it visible right away

 s = TCPSocket.open(host, port) # Connect

 STDOUT.puts "done" # And say we did it

 # Now display information about the connection.

 local, peer = s.addr, s.peeraddr

 STDOUT.print "Connected to #{peer[2]}:#{peer[1]}"

 STDOUT.puts " using local port #{local[1]}"

 # Wait just a bit, to see if the server sends any initial message.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 begin

 sleep(0.5) # Wait half a second

 msg = s.read_nonblock(4096) # Read whatever is ready

 STDOUT.puts msg.chop # And display it

 rescue SystemCallError

 # If nothing was ready to read, just ignore the exception.

 end

 # Now begin a loop of client/server interaction.

 loop do

 STDOUT.print '> ' # Display prompt for local input

 STDOUT.flush # Make sure the prompt is visible

 local = STDIN.gets # Read line from the console

 break if !local # Quit if no input from console

 s.puts(local) # Send the line to the server

 s.flush # Force it out

 # Read the server's response and print out.

 # The server may send more than one line, so use readpartial

 # to read whatever it sends (as long as it all arrives in one chunk).

 response = s.readpartial(4096) # Read server's response

 puts(response.chop) # Display response to user

 end

rescue # If anything goes wrong

 puts $! # Display the exception to the user

ensure # And no matter what happens

 s.close if s # Don't forget to close the socket

end

9.8.5. A Multiplexing Server

The simple time server shown earlier in this section never maintained a connection with any client-it would
simply tell the client the time and disconnect. Many more sophisticated servers maintain a connection, and in
order to be useful, they must allow multiple clients to connect and interact at the same time. One way to do this
is with threads-each client runs in its own thread. We'll see an example of a multithreaded server later in this
chapter. The alternative that we'll consider here is to write a multiplexing server using the Kernel.select

method.

When a server has multiple clients connected, it cannot call a blocking method like gets on the socket of any

one client. If it blocks waiting for input from one client, it won't be able to receive input from other clients or
accept connections from new clients. The select method solves this problem; it allows us to block on a whole

array of IO objects, and returns when there is activity on any one of those objects. The return value of select is

an array of arrays of IO objects. The first element of the array is the array of streams (sockets, in this case) that

have data to be read (or a connection to be accepted).

With that explanation of select, you should be able to understand the following server code. The service it

implements is trivial-it simply reverses each line of client input and sends it back. It is the mechanism for
handling multiple connections that is interesting. Note that we use select to monitor both the TCPServer object

and each of the client TCPSocket objects. Also note that the server handles the case where a client asks to

disconnect as well as the case where the client disconnects unexpectedly:

Code View:
This server reads a line of input from a client, reverses

the line and sends it back. If the client sends the string "quit"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

it disconnects. It uses Kernel.select to handle multiple sessions.

require 'socket'

server = TCPServer.open(2000) # Listen on port 2000

sockets = [server] # An array of sockets we'll monitor

log = STDOUT # Send log messages to standard out

while true # Servers loop forever

 ready = select(sockets) # Wait for a socket to be ready

 readable = ready[0] # These sockets are readable

 readable.each do |socket| # Loop through readable sockets

 if socket == server # If the server socket is ready

 client = server.accept # Accept a new client

 sockets << client # Add it to the set of sockets

 # Tell the client what and where it has connected.

 client.puts "Reversal service v0.01 running on #{Socket.gethostname}"

 # And log the fact that the client connected

 log.puts "Accepted connection from #{client.peeraddr[2]}"

 else # Otherwise, a client is ready

 input = socket.gets # Read input from the client

 # If no input, the client has disconnected

 if !input

 log.puts "Client on #{socket.peeraddr[2]} disconnected."

 sockets.delete(socket) # Stop monitoring this socket

 socket.close # Close it

 next # And go on to the next

 end

 input.chop! # Trim client's input

 if (input == "quit") # If the client asks to quit

 socket.puts("Bye!"); # Say goodbye

 log.puts "Closing connection to #{socket.peeraddr[2]}"

 sockets.delete(socket) # Stop monitoring the socket

 socket.close # Terminate the session

 else # Otherwise, client is not quitting

 socket.puts(input.reverse) # So reverse input and send it back

 end

 end

 end

end

9.8.6. Fetching Web Pages

We can use the socket library to implement any Internet protocol. Here, for example, is code to fetch the
content of a web page:

require 'socket' # We need sockets

host = 'www.example.com' # The web server

port = 80 # Default HTTP port

path = "/index.html" # The file we want

This is the HTTP request we send to fetch a file

request = "GET #{path} HTTP/1.0\r\n\r\n"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

socket = TCPSocket.open(host,port) # Connect to server

socket.print(request) # Send request

response = socket.read # Read complete response

Split response at first blank line into headers and body

headers,body = response.split("\r\n\r\n", 2)

print body # And display it

HTTP is a complex protocol, and the simple code above only really handles straightforward cases. You might
prefer to use a prebuilt library like Net::HTTP for working with HTTP. Here is code that does the equivalent of

the previous code:

require 'net/http' # The library we need

host = 'www.example.com' # The web server

path = '/index.html' # The file we want

http = Net::HTTP.new(host) # Create a connection

headers, body = http.get(path) # Request the file

if headers.code == "200" # Check the status code

 # NOTE: code is not a number!

 print body # Print body if we got it

else # Otherwise

 puts "#{headers.code} #{headers.message}" # Display error message

end

Similar libraries exist for working with the FTP, SMTP, POP, and IMAP protocols. Details of those standard
libraries are beyond the scope of this book.

Finally, recall that the open-uri library described earlier in the chapter makes fetching a web page even easier:

require 'open-uri'

open("http://www.example.com/index.html") {|f|

 puts f.read

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.9. Threads and Concurrency

Traditional programs have a single "thread of execution": the statements or instructions that comprise the
program are executed sequentially until the program terminates. A multithreaded program has more than one
thread of execution. Within each thread, statements are executed sequentially, but the threads themselves may
be executed in parallel-on a multicore CPU, for example. Often (on single-core, single-CPU machines, for
instance), multiple threads are not actually executed in parallel, but parallelism is simulated by interleaving the
execution of the threads.

Programs such as image processing software that perform a lot of calculations are said to be compute-bound.
They can only benefit from multithreading if there are actually multiple CPUs to run computations in parallel.
Most programs are not fully compute-bound, however. Many, such as web browsers, spend most of their time
waiting for network or file I/O. Programs like these are said to be IO-bound. IO-bound programs can be usefully
multithreaded even when there is only a single CPU available. A web browser might render an image in one
thread while another thread is waiting for the next image to be downloaded from the network.

Ruby makes it easy to write multi-threaded programs with the Thread class. To start a new thread, just

associate a block with a call to Thread.new. A new thread will be created to execute the code in the block, and

the original thread will return from Thread.new immediately and resume execution with the next statement:

Thread #1 is running here

Thread.new {

 # Thread #2 runs this code

}

Thread #1 runs this code

We'll begin our coverage of threads by explaining Ruby's thread model and API in some detail. These
introductory sections explain things such as thread lifecycle, thread scheduling, and thread states. With that
introductory material as prerequisite, we move on to present example code and to cover advanced topics such
as thread synchronization.

Finally, it is worth noting that Ruby programs can also achieve concurrency at the level of the operating system
process by running external executables or by forking new copies of the Ruby interpreter. Doing this is
operating system-dependent, however, and is covered only briefly in Chapter 10. For further information, use ri
to look up the methods Kernel.system, Kernel.exec, Kernel.fork, IO.popen, and the module Process.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Threads and Platform Dependencies

Different operating systems implement threads differently. And different Ruby implementations
layer Ruby threads on top of operating system threads differently. The standard C implementation
of Ruby 1.8, for example, uses only a single native thread and runs all Ruby threads within that
one native thread. This means that in Ruby 1.8 threads are very lightweight, but that they never
run in parallel, even on multicore CPUs.

Ruby 1.9 is different: it allocates a native thread for each Ruby thread. But because some of the C
libraries used in this implementation are not themselves thread-safe, Ruby 1.9 is very
conservative and never allows more than one of its native threads to run at the same time. (This
restriction may be relaxed in later releases of 1.9, if the C code can be made thread-safe.)

JRuby, the Java implementation of Ruby, maps each Ruby thread to a Java thread. But the
implementation and behavior of Java threads depends, in turn, on the implementation of the Java
virtual machine. Modern Java implementations typically implement Java threads as native threads
and allow true parallel processing on multicore CPUs.

9.9.1. Thread Lifecycle

As described above, new threads are created with Thread.new. You can also use the synonyms Thread.start

and Thread.fork. There is no need to start a thread after creating it; it begins running automatically when CPU

resources become available. The value of the Thread.new invocation is a Thread object. The Thread class

defines a number of methods to query and manipulate the thread while it is running.

A thread runs the code in the block associated with the call to Thread.new and then it stops running. The value

of the last expression in that block is the value of the thread, and can be obtained by calling the value method

of the Thread object. If the thread has run to completion, then the value returns the thread's value right away.

Otherwise, the value method blocks and does not return until the thread has completed.

The class method Thread.current returns the Thread object that represents the current thread. This allows

threads to manipulate themselves. The class method Thread.main returns the Thread object that represents

the main thread-this is the initial thread of execution that began when the Ruby program was started.

9.9.1.1. The main thread

The main thread is special: the Ruby interpreter stops running when the main thread is done. It does this even
if the main thread has created other threads that are still running. You must ensure, therefore, that your main
thread does not end while other threads are still running. One way to do this is to write your main thread in the
form of an infinite loop. Another way is to explicitly wait for the threads you care about to complete. We've
already mentioned that you can call the value method of a thread to wait for it to finish. If you don't care about

the value of your threads, you can wait with the join method instead.

The following method waits until all threads, other than the main thread and the current thread (which may be
the same thing), have exited:

Wait for all threads (other than the current thread and

main thread) to stop running.

Assumes that no new threads are started while waiting.

def join_all

 main = Thread.main # The main thread

 current = Thread.current # The current thread

 all = Thread.list # All threads still running

 # Now call join on each thread

 all.each {|t| t.join unless t == current or t == main }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

end

9.9.1.2. Threads and unhandled exceptions

If an exception is raised in the main thread, and is not handled anywhere, the Ruby interpreter prints a
message and exits. In threads other than the main thread, unhandled exceptions cause the thread to stop
running. By default, however, this does not cause the interpreter to print a message or exit. If a thread t exits

because of an unhandled exception, and another thread s calls t.join or t.value, then the exception that

occurred in t is raised in the thread s.

If you would like any unhandled exception in any thread to cause the interpreter to exit, use the class method
Thread.abort_on_exception=:

Thread.abort_on_exception = true

If you want an unhandled exception in one particular thread to cause the interpreter to exit, use the instance
method by the same name:

t = Thread.new { ... }

t.abort_on_exception = true

9.9.2. Threads and Variables

One of the key features of threads is that they can share access to variables. Because threads are defined by
blocks, they have access to whatever variables (local variables, instance variables, global variables, and so on)
are in the scope of the block:

x = 0

t1 = Thread.new do

 # This thread can query and set the variable x

end

t2 = Thread.new do

 # This thread and also query and set x

 # And it can query and set t1 and t2 as well.

end

When two or more threads read and write the same variables concurrently, they must be careful that they do so
correctly. We'll have more to say about this when we consider thread synchronization below.

9.9.2.1. Thread-private variables

Variables defined within the block of a thread are private to that thread and are not visible to any other thread.
This is simply a consequence of Ruby's variable scoping rules.

We often want a thread to have its own private copy of a variable so that its behavior does not change if the
value of that variable changes. Consider the following code, which attempts to create three threads that print
(respectively) the numbers 1, 2, and 3:

n = 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

while n <= 3

 Thread.new { puts n }

 n += 1

end

In some circumstances, in some implementations, this code might work as expected and print the numbers 1, 2,

and 3. In other circumstances or in other implementations, it might not. It is perfectly possible (if newly created

threads do not run right away) for the code to print 4, 4, and 4, for example. Each thread reads a shared copy of

the variable n, and the value of that variable changes as the loop executes. The value printed by the thread

depends on when that thread runs in relation to the parent thread.

To solve this problem, we pass the current value of n to the Thread.new method, and assign the current value

of that variable to a block parameter. Block parameters are private to the block (but see Section 5.4.3 for
cautions), and this private value is not shared between threads:

n = 1

while n <= 3

 # Get a private copy of the current value of n in x

 Thread.new(n) {|x| puts x }

 n += 1

end

Note that another way to solve this problem is to use an iterator instead of a while loop. In this case, the value

of n is private to the outer block and never changes during the execution of that block:

1.upto(3) {|n| Thread.new { puts n }}

9.9.2.2. Thread-local variables

Certain of Ruby's special global variables are thread-local: they may have different values in different threads.
$SAFE (see Section 10.5) and $~ (see Table 9-3) are examples. This means that if two threads are performing

regular expression matching concurrently, they will see different values of $~, and performing a match in one

thread will not interfere with the results of a match performed in another thread.

The Thread class provides hash-like behavior. It defines [] and []= instance methods that allow you to

associate arbitrary values with any symbol. (If you use a string instead, it will be converted to a symbol. Unlike
true hashes, the Thread class only allows symbols as keys.) The values associated with these symbols behave

like thread-local variables. They are not private like block-local variables because any thread can look up a
value in any other thread. But they are not shared variables either, since each thread can have its own copy.

As an example, suppose that we've created threads to download files from a web server. The main thread might
want to monitor the progress of the download. To enable this, each thread might do the following:

Thread.current[:progress] = bytes_received

The main thread could then determine the total bytes downloaded with code like this:

total = 0

download_threads.each {|t| total += t[:progress] }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Along with [] and []=, Thread also defines a key? method to test whether a given key exists for a thread. The

keys method returns an array of symbols representing the defined keys for the thread. This code could be

better written as follows, so that it works for threads that have not yet started running and have not defined the
:progress key yet:

total = 0

download_threads.each {|t| total += t[:progress] if t.key?(:progress)}

9.9.3. Thread Scheduling

Ruby interpreters often have more threads to run than there are CPUs available to run them. When true parallel
processing is not possible, it is simulated by sharing a CPU among threads. The process for sharing a CPU
among threads is called thread scheduling. Depending on the implementation and platform, thread scheduling
may be done by the Ruby interpreter, or it may be handled by the underlying operating system.

9.9.3.1. Thread priorities

The first factor that affects thread scheduling is thread priority: high-priority threads are scheduled before low-
priority threads. More precisely, a thread will only get CPU time if there are no higher-priority threads waiting to
run.

Set and query the priority of a Ruby Thread object with priority= and priority. Note that there is no way to

set the priority of a thread before it starts running. A thread can, however, raise or lower its own priority as the
first action it takes.

A newly created thread starts at the same priority as the thread that created it. The main thread starts off at
priority 0.

Like many aspects of threading, thread priorities are dependent on the implementation of Ruby and on the
underlying operating system. Under Linux, for example, nonprivileged threads cannot have their priorities raised
or lowered. So in Ruby 1.9 (which uses native threads) on Linux, the thread priority setting is ignored.

9.9.3.2. Thread preemption and Thread.pass

When multiple threads of the same priority need to share the CPU, it is up to the thread scheduler to decide
when, and for how long, each thread runs. Some schedulers are preempting, which means that they allow a
thread to run only for a fixed amount of time before allowing another thread of the same priority to run. Other
schedulers are not preempting: once a thread starts running, it keeps running unless it sleeps, blocks for I/O, or
a higher-priority thread wakes up.

If a long-running compute-bound thread (i.e., one that does not ever block for I/O) is running on a
nonpreempting scheduler, it will "starve" other threads of the same priority, and they will never get a chance to
run. To avoid this issue, long-running compute-bound threads should periodically call Thread.pass to ask the

scheduler to yield the CPU to another thread.

9.9.4. Thread States

A Ruby thread may be in one of five possible states. The two most interesting states are for live threads: a
thread that is alive is runnable or sleeping. A runnable thread is one that is currently running, or that is ready
and eligible to run the next time there are CPU resources for it. A sleeping thread is one that is sleeping (see
Kernel.sleep), that is waiting for I/O, or that has stopped itself (see Thread.stop below). Threads typically go

back and forth between the runnable and sleeping states.

There are two thread states for threads that are no longer alive. A terminated thread has either terminated

http://lib.ommolketab.ir
http://lib.ommolketab.ir

normally or has terminated abnormally with an exception.

Finally, there is one transitional state. A thread that has been killed (see Thread.kill below) but that has not

yet terminated is said to be aborting.

9.9.4.1. Querying thread state

The Thread class defines several instance methods for testing the status of a thread. alive? returns true if a

thread is runnable or sleeping. stop? returns true if a thread is in any state other than runnable. Finally, the

status method returns the state of the thread. There are five possible return values corresponding to the five

possible states as shown in the following table.

Thread state Return value

Runnable "run"

Sleeping "sleep"

Aborting "aborting"

Terminated normally false

Terminated with exception nil

9.9.4.2. Altering state: pausing, waking, and killing threads

Threads are created in the runnable state, and are eligible to run right away. A thread can pause itself-enter
the sleeping state-by calling Thread.stop. This is a class method that operates on the current thread-there is

no equivalent instance method, so one thread cannot force another thread to pause. Calling Thread.stop is

effectively the same thing as calling Kernel.sleep with no argument: the thread pauses forever (or until woken

up, as explained below).

Threads also temporarily enter the sleeping state if they call Kernel.sleep with an argument. In this case, they

automatically wake up and reenter the runnable state after (approximately) the specified number of seconds
pass. Calling blocking IO methods may also cause a thread to sleep until the IO operation completes-in fact, it

is the inherent latency of IO operations that makes threading worthwhile even on single-CPU systems.

A thread that has paused itself with Thread.stop or Kernel.sleep can be started again (even if the sleep time

has not expired yet) with the instance methods wakeup and run. Both methods switch the thread from the

sleeping state to the runnable state. The run method also invokes the thread scheduler. This causes the current

thread to yield the CPU, and may cause the newly awoken thread to start running right away. The wakeup

method wakes the specified thread without yielding the CPU.

A thread can switch itself from the runnable state to one of the terminated states simply by exiting its block or
by raising an exception. Another way for a thread to terminate normally is by calling Thread.exit. Note that

any ensure clauses are processed before a thread exits in this way.

A thread can forcibly terminate another thread by invoking the instance method kill on the thread to be

terminated. terminate and exit are synonyms for kill. These methods put the killed thread into the

terminated normally state. The killed thread runs any ensure clauses before it actually dies. The kill! method

(and its synonyms terminate! and exit!) terminate a thread but do not allow any ensure clauses to run.

The thread termination methods described so far all force a thread to the terminated normally state. You can
raise an exception within another thread with the instance method raise. If the thread cannot handle the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

exception you have imposed on it, it will enter the terminated with exception state. The threads ensure clauses
are processed as they would normally be during the course of exception propagation.

Killing a thread is a dangerous thing to do unless you have some way of knowing that the thread is not in the
middle of altering the shared state of your system. Killing a thread with one of the ! methods is even more

dangerous because the killed thread may leave files, sockets, or other resources open. If a thread must be able
to exit upon command, it is better to have it periodically check the state of a flag variable and terminate itself
safely and gracefully if or when the flag becomes set.

9.9.5. Listing Threads and Thread Groups

The Thread.list method returns an array of Thread objects representing all live (running or sleeping) threads.

When a thread exits, it is removed from this array.

Every thread other than the main thread is created by some other thread. Threads could, therefore, be
organized into a tree structure, with every thread having a parent and a set of children. The Thread class does

not maintain this information, however: threads are usually considered autonomous rather than subordinate to
the thread that created them.

If you want to impose some order onto a subset of threads, you can create a ThreadGroup object and add

threads to it:

group = ThreadGroup.new

3.times {|n| group.add(Thread.new { do_task(n) }}

New threads are initially placed in the group to which their parent belongs. Use the instance method group to

query the ThreadGroup to which a thread belongs. And use the list method of ThreadGroup to obtain an array

of threads in a group. Like the class method Thread.list, the instance method ThreadGroup.list returns only

threads that have not terminated yet. You can use this list method to define methods that operate on all

threads in a group. Such a method might lower the priority of all threads in the group, for example.

The feature of the ThreadGroup class that makes it more useful than a simple array of threads is its enclose

method. Once a thread group has been enclosed, threads may not be removed from it and new threads cannot
be added to it. The threads in the group may create new threads, and these new threads will become members
of the group. An enclosed ThreadGroup is useful when you run untrusted Ruby code under the $SAFE variable

(see Section 10.5) and want to keep track of any threads spawned by that code.

9.9.6. Threading Examples

Now that we've explained Ruby's thread model and thread API, we'll take a look at some actual examples of
multithreaded code.

9.9.6.1. Reading files concurrently

The most common use of Ruby's threads is in programs that are IO-bound. They allow programs to keep busy
even while waiting for input from the user, the filesystem, or the network. The following code, for example,
defines a method conread (for concurrent read) that takes an array of filenames and returns a hash mapping

those names to the contents of those files. It uses threads to read those files concurrently, and is really
intended for use with the open-uri module, which allows HTTP and FTP URLs to be opened with Kernel.open

and read as if they were files:

Read files concurrently. Use with the "open-uri" module to fetch URLs.

Pass an array of filenames. Returns a hash mapping filenames to content.

def conread(filenames)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 h = {} # Empty hash of results

 # Create one thread for each file

 filenames.each do |filename| # For each named file

 h[filename] = Thread.new do # Create a thread, map to filename

 open(filename) {|f| f.read } # Open and read the file

 end # Thread value is file contents

 end

 # Iterate through the hash, waiting for each thread to complete.

 # Replace the thread in the hash with its value (the file contents)

 h.each_pair do |filename, thread|

 begin

 h[filename] = thread.value # Map filename to file contents

 rescue

 h[filename] = $! # Or to the exception raised

 end

 end

end

9.9.6.2. A Multithreaded Server

Another, almost canonical, use case for threads is for writing servers that can communicate with more than one
client at a time. We saw how to do this using multiplexing with Kernel.select, but a somewhat simpler

(though possibly less scalable) solution uses threads:

require 'socket'

This method expects a socket connected to a client.

It reads lines from the client, reverses them and sends them back.

Multiple threads may run this method at the same time.

def handle_client(c)

 while true

 input = c.gets.chop # Read a line of input from the client

 break if !input # Exit if no more input

 break if input=="quit" # or if the client asks to.

 c.puts(input.reverse) # Otherwise, respond to client.

 c.flush # Force our output out

 end

 c.close # Close the client socket

end

server = TCPServer.open(2000) # Listen on port 2000

while true # Servers loop forever

 client = server.accept # Wait for a client to connect

 Thread.start(client) do |c| # Start a new thread

 handle_client(c) # And handle the client on that thread

 end

end

9.9.6.3. Concurrent iterators

Although IO-bound tasks are the typical use case for Ruby's threads, they are not restricted to that use. The
following code adds a method conmap (for concurrent map) to the Enumerable module. It works like map but

http://lib.ommolketab.ir
http://lib.ommolketab.ir

processes each element of the input array using a separate thread:

module Enumerable # Open the Enumerable module

 def conmap(&block) # Define a new method that expects a block

 threads = [] # Start with an empty array of threads

 self.each do |item| # For each enumerable item

 # Invoke the block in a new thread, and remember the thread

 threads << Thread.new { block.call(item) }

 end

 # Now map the array of threads to their values

 threads.map {|t| t.value } # And return the array of values

 end

end

And here's a similar concurrent version of the each iterator:

module Enumerable

 def concurrently

 map {|item| Thread.new { yield item }}.each {|t| t.join }

 end

end

The code is succinct and challenging: if you can make sense of it, you are well on your way to mastery of Ruby
syntax and Ruby iterators.

Recall that in Ruby 1.9, standard iterators that are not passed a block return an enumerator object. This means
that given the concurrently method defined earlier and a Hash object h, we can write:

h.each_pair.concurrently {|*pair| process(pair)}

9.9.7. Thread Exclusion and Deadlock

If two threads share access to the same data, and at least one of the threads modifies that data, you must take
special care to ensure that no thread can ever see the data in an inconsistent state. This is called thread
exclusion. A couple of examples will explain why it is necessary.

First, suppose that two threads are processing files and each thread increments a shared variable in order to
keep track of the total number of files processed. The problem is that incrementing a variable is not an atomic
operation. That means that it does not happen in a single step: to increment a variable, a Ruby program must
read its value, add 1, and then store the new value back into the variable. Suppose that our counter is at 100,

and imagine the following interleaved execution of the two threads. The first thread reads the value 100, but

before it can add 1, the scheduler stops running the first thread and allows the second thread to run. Now the

second thread reads the value 100, adds 1, and stores 101 back into the counter variable. This second thread

now starts to read a new file, which causes it to block and allows the first thread to resume. The first thread
now adds 1 to 100 and stores the result. Both threads have incremented the counter, but its value is 101 instead

of 102.

Another classic example of the need for thread exclusion involves an electronic banking application. Suppose
one thread is processing a transfer of money from a savings account to a checking account, and another thread
is generating monthly reports to be sent out to customers. Without proper exclusion, the report-generation
thread might read the customers' account data after funds had been subtracted from savings but before they
had been added to checking.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We resolve problems like these by using a cooperative locking mechanism. Each thread that wants to access
shared data must first lock that data. The lock is represented by a Mutex (short for "mutual exclusion") object.

To lock a Mutex, you call its lock method. When you're done reading or altering the shared data, you call the

unlock method of the Mutex. The lock method blocks when called on a Mutex that's already locked, and it does

not return until the caller has successfully obtained a lock. If each thread that accesses the shared data locks
and unlocks the Mutex correctly, no thread will see the data in an inconsistent state and we won't have

problems like those we've described.

Mutex is a core class in Ruby 1.9 and is part of the standard thread library in Ruby 1.8. Instead of using the

lock and unlock methods explicitly, it is more common to use the synchronize method and associate a block

with it. synchronize locks the Mutex, runs the code in the block, and then unlocks the Mutex in an ensure

clause so that exceptions are properly handled. Here is a simple model of our bank account example, using a
Mutex object to synchronize thread access to shared account data:

require 'thread' # For Mutex class in Ruby 1.8

A BankAccount has a name, a checking amount, and a savings amount.

class BankAccount

 def init(name, checking, savings)

 @name,@checking,@savings = name,checking,savings

 @lock = Mutex.new # For thread safety

 end

 # Lock account and transfer money from savings to checking

 def transfer_from_savings(x)

 @lock.synchronize {

 @savings -= x

 @checking += x

 }

 end

 # Lock account and report current balances

 def report

 @lock.synchronize {

 "#@name\nChecking: #@checking\nSavings: #@savings"

 }

 end

end

9.9.7.1. Deadlock

When we start using Mutex objects for thread exclusion we must be careful to avoid deadlock. Deadlock is the

condition that occurs when all threads are waiting to acquire a resource held by another thread. Because all
threads are blocked, they cannot release the locks they hold. And because they cannot release the locks, no
other thread can acquire those locks.

A classic deadlock scenario involves two threads and two Mutex objects. Thread 1 locks Mutex 1 and then

attempts to lock Mutex 2. Meanwhile, thread 2 locks Mutex 2 and then attempts to lock Mutex 1. Neither thread

can acquire the lock it needs, and neither thread can release the lock the other one needs, so both threads
block forever:

Classic deadlock: two threads and two locks

require 'thread'

m,n = Mutex.new, Mutex.new

t = Thread.new {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 m.lock

 puts "Thread t locked Mutex m"

 sleep 1

 puts "Thread t waiting to lock Mutex n"

 n.lock

}

s = Thread.new {

 n.lock

 puts "Thread s locked Mutex n"

 sleep 1

 puts "Thread s waiting to lock Mutex m"

 m.lock

}

t.join

s.join

The way to avoid this kind of deadlock is to always lock resources in the same order. If the second thread locked
m before locking n, then deadlock would not occur.

Note that deadlock is possible even without using Mutex objects. Calling join on a thread that calls

Thread.stop will deadlock both threads, unless there is a third thread that can awaken the stopped thread.

Bear in mind that some Ruby implementations can detect simple deadlocks like these and abort with an error,
but this is not guaranteed.

9.9.8. Queue and SizedQueue

The standard thread library defines the Queue and SizedQueue data structures specifically for concurrent

programming. They implement thread-safe FIFO queues and are intended for a producer/consumer model of
programming. Under this model, one thread produces values of some sort and places them on a queue with the
enq (enqueue) method or its synonym push. Another thread "consumes" these values, removing them from the

queue with the deq (dequeue) method as needed. (The pop and shift methods are synonyms for deq.)

The key features of Queue that make it suitable for concurrent programming is that the deq method blocks if the

queue is empty and waits until the producer thread adds a value to the queue. The Queue and SizedQueue

classes implement the same basic API, but the SizedQueue variant has a maximum size. If the queue is already

at its maximum size, then the method for adding a value to the queue will block until the consumer thread
removes a value from the queue.

As with Ruby's other collection classes, you can determine the number of elements in a queue with size or

length, and you can determine if a queue is empty with empty?. Specify the maximum size of a SizedQueue

when you call SizedQueue.new. After creating a SizedQueue, you can query and alter its maximum size with

max and max=.

Earlier in this chapter, we saw how to add a concurrent map method to the Enumerable module. We now define

a method that combines a concurrent map with a concurrent inject. It creates a thread for each element of the

enumerable collection and uses that thread to apply a mapping Proc. The value returned by that Proc is

enqueued on a Queue object. One final thread acts as a consumer; it removes values from the queue and passes

them to the injection Proc as they become available.

We call this concurrent injection method conject, and you could use it like this to concurrently compute the

sum of the squares of the values in an array. Note that a sequential algorithm would almost certainly be faster
for a simple sum-of-squares example like this:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

a = [-2,-1,0,1,2]

mapper = lambda {|x| x*x } # Compute squares

injector = lambda {|total,x| total+x } # Compute sum

a.conject(0, mapper, injector) # => 10

The code for this conject method is as follows-note the use of a Queue object and its enq and deq methods:

Code View:
module Enumerable

 # Concurrent inject: expects an initial value and two Procs

 def conject(initial, mapper, injector)

 # Use a Queue to pass values from mapping threads to injector thread

 q = Queue.new

 count = 0 # How many items?

 each do |item| # For each item

 Thread.new do # Create a new thread

 q.enq(mapper[item]) # Map and enqueue mapped value

 end

 count += 1 # Count items

 end

 t = Thread.new do # Create injector thread

 x = initial # Start with specified initial value

 while(count > 0) # Loop once for each item

 x = injector[x,q.deq] # Dequeue value and inject

 count -= 1 # Count down

 end

 x # Thread value is injected value

 end

 t.value # Wait for injector thread and return its value

 end

end

9.9.9. Condition Variables and Queues

There is something important to notice about the Queue class: the deq method can block. Normally, we only

think of blocking as happening with IO methods (or when calling join on a thread or lock on a Mutex). In

multithreaded programming, however, it is sometimes necessary to have a thread wait for some condition
(outside of the control of that thread) to become true. In the case of the Queue class, the condition is the

nonempty status of the queue: if the queue is empty, then a consumer thread must wait until a producer thread
calls enq and makes the queue nonempty.

Making a thread wait until some other thread tells it that it can go again is accomplished most cleanly with a
ConditionVariable. Like Queue, ConditionVariable is part of the standard thread library. Create a

ConditionVariable with ConditionVariable.new. Make a thread wait on the condition with the wait method.

Wake one waiting thread with signal. Wake all waiting threads with broadcast. There is one slightly tricky part

to the use of condition variables: in order to make things work correctly, the waiting thread must pass a locked
Mutex object to the wait method. This mutex will be temporarily unlocked while the thread waits, and it will be

locked again when the thread wakes up.

We conclude our coverage of threads with a utility class that is sometimes useful in multithreaded programs. It

http://lib.ommolketab.ir
http://lib.ommolketab.ir

is called Exchanger, and it allows two threads to swap arbitrary values. Suppose we have threads t1 and t2 and

an Exchanger object e. t1 calls e.exchange(1). This method then blocks (using a ConditionVariable, of

course) until t2 calls e.exchange(2). This second thread does not block, it simply returns 1-the value passed

by t1. Now that the second thread has called exchange, t1 wakes up again and returns 2 from the exchange

method.

The Exchanger implementation shown here is somewhat complex, but it demonstrates a typical use of the

ConditionVariable class. One interesting feature of this code is that it uses two Mutex objects. One of them is

used to synchronize access to the exchange method and is passed to the wait method of the condition variable.

The other Mutex is used to determine whether the calling thread is the first or the second thread to invoke

exchange. Instead of using lock with this Mutex, this class uses the nonblocking try_lock method. If

@first.try_lock returns true, then the calling thread is the first thread. Otherwise, it is the second thread:

Code View:
require 'thread'

class Exchanger

 def initialize

 # These variables will hold the two values to be exchanged.

 @first_value = @second_value = nil

 # This Mutex protects access to the exchange method.

 @lock = Mutex.new

 # This Mutex allows us to determine whether we're the first or

 # second thread to call exchange.

 @first = Mutex.new

 # This ConditionVariable allows the first thread to wait for

 # the arrival of the second thread.

 @second = ConditionVariable.new

 end

 # Exchange this value for the value passed by the other thread.

 def exchange(value)

 @lock.synchronize do # Only one thread can call this method at a time

 if @first.try_lock # We are the first thread

 @first_value = value # Store the first thread's argument

 # Now wait until the second thread arrives.

 # This temporarily unlocks the Mutex while we wait, so

 # that the second thread can call this method, too

 @second.wait(@lock) # Wait for second thread

 @first.unlock # Get ready for the next exchange

 @second_value # Return the second thread's value

 else # Otherwise, we're the second thread

 @second_value = value # Store the second value

 @second.signal # Tell the first thread we're here

 @first_value # Return the first thread's value

 end

 end

 end

end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 10. The Ruby Environment

This chapter is a catch-all for Ruby programming topics that have not been discussed elsewhere. Most of the
features covered here have to do with the interface between Ruby and the operating system on which it is
running. As such, some of these features are OS-dependent. Similarly, many of the features may be
implementation dependent: not every Ruby interpreter will implement them in the same way. Topics covered
include:

The Ruby interpreter's command-line arguments and environment variables.

The top-level execution environment: global functions, variables, and constants.

Shortcuts for text processing scripts: global functions, variables, and interpreter options, usually inspired
by the Perl programming language, that make it possible to write short but powerful Ruby programs for
processing text files.

OS commands: running shell commands and invoking executables in the underlying operating system.
These are features that allow Ruby to be used as a scripting or "glue" language.

Security: how to reduce the risk of SQL injection and similar attacks on with Ruby's tainting mechanism,
and how to "sandbox" untrusted Ruby code with $SAFE execution levels.

10.1. Invoking the Ruby Interpreter

The standard C-based Ruby implementation is invoked from the command line like this:

ruby [options] [--] program [arguments]

options is zero or more command-line arguments that affect the operation of the interpreter. The legal

arguments are described shortly.

program is the name of the file that holds the Ruby program to be run. If the name of the program begins with a

hyphen, precede it with -- to force it to be treated as a program name rather than as an option. If you use a

single hyphen as the program name, or omit program and arguments altogether, the interpreter will read

program text from standard input.

Finally, arguments is any number of additional tokens on the command line. These tokens become the elements

of the ARGV array.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The subsections that follow describe the options supported by the standard C-based Ruby implementation. Note
that you may set the RUBYOPT environment variable to include any of the -W, -w, -v, -d, -I, -r, and -K options.

These will automatically be applied to every invocation of the interpreter, as if they were specified on the
command line.

10.1.1. Common Options

The following options are probably the most commonly used. Most Ruby implementations can be expected to
support these options or to provide a work-alike alternative:

-w

This option enables warnings about deprecated or problematic code and sets $VERBOSE to true. Many

Ruby programmers use this option routinely to ensure that their code is clean.

-e script

This option runs the Ruby code in script. If more than one -e option is specified, their associated scripts

are treated as separate lines of code. Also, if one or more -e option is specified, the interpreter does not

load or run any program specified on the command line.

To enable succinct one-liner scripts, Ruby code specified with the -e option may use the Regexp matching

shortcut explained later in this chapter.

-I path

This option adds the directories in path to the beginning of the global $LOAD_PATH array. This specifies

directories to be searched by the load and require methods (but does not affect the loading of the

program specified on the command line).

Multiple -I options may appear in the command line and each may list one or more directories. If

multiple directories are specified with a single -I option, they should be separated from each other with :

on Unix and Unix-like systems and with ; on Windows systems.

-r library

This option loads the specified library before running the specified program. This option works as if the

first line of the program were:

require 'library'

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The space between the -r and the name of the library is optional and often omitted.

-rubygems

This frequently used command-line argument is not a true option but simply a clever application of the -r

option. It loads the module named ubygems (with no r) from the standard library. Conveniently, the

ubygems module simply loads the real rubygems module. Ruby 1.9 can load installed gems without this

module, so this option is only necessary in Ruby 1.8.

--disable-gems

This Ruby 1.9 option prevents the addition of gem installation directories to the default load path. If you
have many gems installed, and you are running a program that does not use those gems (or a program
that explicitly manages its own dependencies with the gem method), you may find that your program

startup time is reduced with this option.

-d

--debug

These options set the global variables $DEBUG and $VERBOSE to true. Your program, or library code, used

by your program may print debugging output or take other action when these variables are set.

-h

This option displays a list of interpreter options and exits.

10.1.2. Warnings and Information Options

The following options control the type or the amount of information the Ruby interpreter displays:

-W

-W2

--verbose

http://lib.ommolketab.ir
http://lib.ommolketab.ir

These are all synonyms for -w: they enable verbose warnings and set $VERBOSE to true.

-W0

This option suppresses all warnings.

-v

This option prints the Ruby version number. If no program is specified, it exits rather than reading a
program from standard input. If a program is specified, run it as if --verbose (or -w) had been specified.

--version

--copyright

--help

These options print Ruby version number, copyright information, or command-line help and exit. --help

is a synonym for -h. --version differs from -v in that it never runs a specified program.

10.1.3. Encoding Options

The following options are used to specify the default external encoding of the Ruby process and the default
source encoding for files that do not specify their own encoding with a coding comment. If none of these options
is specified, then the default external encoding is derived from the locale and the default source encoding is
ASCII (see Section 2.4 for more on source encoding and default external encoding):

-K code

In Ruby 1.8, this option specifies the source encoding of the script and sets the global variable $KCODE. In

Ruby 1.9, it sets the default external encoding of the Ruby process and specifies a default source
encoding.

Specify a code of a, A, n, or N for ASCII; u or U for Unicode; e or E for EUC-JP; and s or S for SJIS. (EUC-

JP and SJIS are common Japanese encodings.)

-E encoding

http://lib.ommolketab.ir
http://lib.ommolketab.ir

--encoding= encoding

These options are like -K but allow the encoding to be specified by name rather than by a one-letter

abbreviation.

10.1.4. Text Processing Options

The following options alter Ruby's default text processing behavior, or are helpful when writing one-line scripts
with the -e option:

-0 xxx

This option is the digit 0, not the letter O. xxx should be between zero and three octal digits. When

specified, these digits are the ASCII code of the input record separator character and set the $/ variable.

This defines "a line" for gets and similar methods. -0 by itself sets $/ to character code 0. -00 is special;

it puts Ruby into "paragraph mode" in which lines are separated by two adjacent newline characters.

-a

This option automatically splits each line of input into fields and stores the fields in $F. This option only

works with -n or -p looping options and adds the code $F = $_.split at the start of each iteration. See

also -F.

-F fieldsep

This option sets the input field separator $; to fieldsep. This affects the behavior of split when called

with no arguments. See -a.

fieldsep may be a single character or an arbitrary regular expression, without the delimiting slashes.

Depending on your shell, you may need to quote or double the backslashes in any regular expression
specified on the command line.

-i [ext]

This option edits the files specified on the command line in place. Lines are read from the files specified
on the command line, and output goes back to those same files. If ext is specified, a backup copy of the

files is made, adding ext to the filename.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

-l

This option makes the output record separator $\ the same as the input record separator $/ (see -0), so

that that line ending is automatically added to text output with print. This option is intended for use with

-p or -n. When used with one of those options, it automatically calls chop to remove the input record

separator from each line of input.

-n

This option runs the program as if it were enclosed in the following loop:

while gets # Read a line of input into $_

 $F = split if $-a # Split $_ into fields if -a was specified

 chop! if $-l # Chop line ending off $_ if -l was specified

 # Program text here

end

This option works in Ruby 1.9 even though the global functions chop! and split are no longer available in that

version of the language.

This option is often used with -e. See also -p.

-p

This option runs the program as if it were written in the following loop:

while gets # Read a line of input into $_

 $F = split if $-a # Split $_ into fields if -a was specified

 chop! if $-l # Chop line ending off $_ if -l was specified

 # Program text here

 print # Output $_ (adding $/ if -l was specified)

end

This option works in Ruby 1.9 even though the global functions chop! and split are no longer available in that

version of the language.

This option is often used with -e. See also -n.

10.1.5. Miscellaneous Options

The following options don't fit into any of the previous categories:

-c

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This option parses the program and report any syntax errors, but does not run it.

-C dir

-X dir

These options change the current directory to dir before running the program.

-s

When this option is specified, the interpreter preprocesses any arguments that appear after the program
name and begin with a hyphen. For arguments of the form -x=y, it sets $x to y. For arguments of the

form -x, it sets $x to true. The preprocessed arguments are removed from ARGV.

-S

This option looks for the specified program file relative to the path specified in the RUBY_PATH

environment variable. If it is not found there, it looks for it relative to the PATH environment variable. And

if it is still not found, it looks for it normally.

-T n

This option sets $SAFE to n, or to 1 if n is omitted. See Section 10.5 for more.

-x [dir]

This option extracts Ruby source from the program file by discarding any lines before the first that starts
#!ruby. For compatibility with the capital -X option, this option also allows a directory to be specified.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 10. The Ruby Environment

This chapter is a catch-all for Ruby programming topics that have not been discussed elsewhere. Most of the
features covered here have to do with the interface between Ruby and the operating system on which it is
running. As such, some of these features are OS-dependent. Similarly, many of the features may be
implementation dependent: not every Ruby interpreter will implement them in the same way. Topics covered
include:

The Ruby interpreter's command-line arguments and environment variables.

The top-level execution environment: global functions, variables, and constants.

Shortcuts for text processing scripts: global functions, variables, and interpreter options, usually inspired
by the Perl programming language, that make it possible to write short but powerful Ruby programs for
processing text files.

OS commands: running shell commands and invoking executables in the underlying operating system.
These are features that allow Ruby to be used as a scripting or "glue" language.

Security: how to reduce the risk of SQL injection and similar attacks on with Ruby's tainting mechanism,
and how to "sandbox" untrusted Ruby code with $SAFE execution levels.

10.1. Invoking the Ruby Interpreter

The standard C-based Ruby implementation is invoked from the command line like this:

ruby [options] [--] program [arguments]

options is zero or more command-line arguments that affect the operation of the interpreter. The legal

arguments are described shortly.

program is the name of the file that holds the Ruby program to be run. If the name of the program begins with a

hyphen, precede it with -- to force it to be treated as a program name rather than as an option. If you use a

single hyphen as the program name, or omit program and arguments altogether, the interpreter will read

program text from standard input.

Finally, arguments is any number of additional tokens on the command line. These tokens become the elements

of the ARGV array.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The subsections that follow describe the options supported by the standard C-based Ruby implementation. Note
that you may set the RUBYOPT environment variable to include any of the -W, -w, -v, -d, -I, -r, and -K options.

These will automatically be applied to every invocation of the interpreter, as if they were specified on the
command line.

10.1.1. Common Options

The following options are probably the most commonly used. Most Ruby implementations can be expected to
support these options or to provide a work-alike alternative:

-w

This option enables warnings about deprecated or problematic code and sets $VERBOSE to true. Many

Ruby programmers use this option routinely to ensure that their code is clean.

-e script

This option runs the Ruby code in script. If more than one -e option is specified, their associated scripts

are treated as separate lines of code. Also, if one or more -e option is specified, the interpreter does not

load or run any program specified on the command line.

To enable succinct one-liner scripts, Ruby code specified with the -e option may use the Regexp matching

shortcut explained later in this chapter.

-I path

This option adds the directories in path to the beginning of the global $LOAD_PATH array. This specifies

directories to be searched by the load and require methods (but does not affect the loading of the

program specified on the command line).

Multiple -I options may appear in the command line and each may list one or more directories. If

multiple directories are specified with a single -I option, they should be separated from each other with :

on Unix and Unix-like systems and with ; on Windows systems.

-r library

This option loads the specified library before running the specified program. This option works as if the

first line of the program were:

require 'library'

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The space between the -r and the name of the library is optional and often omitted.

-rubygems

This frequently used command-line argument is not a true option but simply a clever application of the -r

option. It loads the module named ubygems (with no r) from the standard library. Conveniently, the

ubygems module simply loads the real rubygems module. Ruby 1.9 can load installed gems without this

module, so this option is only necessary in Ruby 1.8.

--disable-gems

This Ruby 1.9 option prevents the addition of gem installation directories to the default load path. If you
have many gems installed, and you are running a program that does not use those gems (or a program
that explicitly manages its own dependencies with the gem method), you may find that your program

startup time is reduced with this option.

-d

--debug

These options set the global variables $DEBUG and $VERBOSE to true. Your program, or library code, used

by your program may print debugging output or take other action when these variables are set.

-h

This option displays a list of interpreter options and exits.

10.1.2. Warnings and Information Options

The following options control the type or the amount of information the Ruby interpreter displays:

-W

-W2

--verbose

http://lib.ommolketab.ir
http://lib.ommolketab.ir

These are all synonyms for -w: they enable verbose warnings and set $VERBOSE to true.

-W0

This option suppresses all warnings.

-v

This option prints the Ruby version number. If no program is specified, it exits rather than reading a
program from standard input. If a program is specified, run it as if --verbose (or -w) had been specified.

--version

--copyright

--help

These options print Ruby version number, copyright information, or command-line help and exit. --help

is a synonym for -h. --version differs from -v in that it never runs a specified program.

10.1.3. Encoding Options

The following options are used to specify the default external encoding of the Ruby process and the default
source encoding for files that do not specify their own encoding with a coding comment. If none of these options
is specified, then the default external encoding is derived from the locale and the default source encoding is
ASCII (see Section 2.4 for more on source encoding and default external encoding):

-K code

In Ruby 1.8, this option specifies the source encoding of the script and sets the global variable $KCODE. In

Ruby 1.9, it sets the default external encoding of the Ruby process and specifies a default source
encoding.

Specify a code of a, A, n, or N for ASCII; u or U for Unicode; e or E for EUC-JP; and s or S for SJIS. (EUC-

JP and SJIS are common Japanese encodings.)

-E encoding

http://lib.ommolketab.ir
http://lib.ommolketab.ir

--encoding= encoding

These options are like -K but allow the encoding to be specified by name rather than by a one-letter

abbreviation.

10.1.4. Text Processing Options

The following options alter Ruby's default text processing behavior, or are helpful when writing one-line scripts
with the -e option:

-0 xxx

This option is the digit 0, not the letter O. xxx should be between zero and three octal digits. When

specified, these digits are the ASCII code of the input record separator character and set the $/ variable.

This defines "a line" for gets and similar methods. -0 by itself sets $/ to character code 0. -00 is special;

it puts Ruby into "paragraph mode" in which lines are separated by two adjacent newline characters.

-a

This option automatically splits each line of input into fields and stores the fields in $F. This option only

works with -n or -p looping options and adds the code $F = $_.split at the start of each iteration. See

also -F.

-F fieldsep

This option sets the input field separator $; to fieldsep. This affects the behavior of split when called

with no arguments. See -a.

fieldsep may be a single character or an arbitrary regular expression, without the delimiting slashes.

Depending on your shell, you may need to quote or double the backslashes in any regular expression
specified on the command line.

-i [ext]

This option edits the files specified on the command line in place. Lines are read from the files specified
on the command line, and output goes back to those same files. If ext is specified, a backup copy of the

files is made, adding ext to the filename.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

-l

This option makes the output record separator $\ the same as the input record separator $/ (see -0), so

that that line ending is automatically added to text output with print. This option is intended for use with

-p or -n. When used with one of those options, it automatically calls chop to remove the input record

separator from each line of input.

-n

This option runs the program as if it were enclosed in the following loop:

while gets # Read a line of input into $_

 $F = split if $-a # Split $_ into fields if -a was specified

 chop! if $-l # Chop line ending off $_ if -l was specified

 # Program text here

end

This option works in Ruby 1.9 even though the global functions chop! and split are no longer available in that

version of the language.

This option is often used with -e. See also -p.

-p

This option runs the program as if it were written in the following loop:

while gets # Read a line of input into $_

 $F = split if $-a # Split $_ into fields if -a was specified

 chop! if $-l # Chop line ending off $_ if -l was specified

 # Program text here

 print # Output $_ (adding $/ if -l was specified)

end

This option works in Ruby 1.9 even though the global functions chop! and split are no longer available in that

version of the language.

This option is often used with -e. See also -n.

10.1.5. Miscellaneous Options

The following options don't fit into any of the previous categories:

-c

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This option parses the program and report any syntax errors, but does not run it.

-C dir

-X dir

These options change the current directory to dir before running the program.

-s

When this option is specified, the interpreter preprocesses any arguments that appear after the program
name and begin with a hyphen. For arguments of the form -x=y, it sets $x to y. For arguments of the

form -x, it sets $x to true. The preprocessed arguments are removed from ARGV.

-S

This option looks for the specified program file relative to the path specified in the RUBY_PATH

environment variable. If it is not found there, it looks for it relative to the PATH environment variable. And

if it is still not found, it looks for it normally.

-T n

This option sets $SAFE to n, or to 1 if n is omitted. See Section 10.5 for more.

-x [dir]

This option extracts Ruby source from the program file by discarding any lines before the first that starts
#!ruby. For compatibility with the capital -X option, this option also allows a directory to be specified.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.2. The Top-Level Environment

When the Ruby interpreter starts, a number of classes, modules, constants, and global variables and global
functions are defined and available for use by programs. The subsections that follow list these predefined
features.

10.2.1. Predefined Modules and Classes

When the Ruby 1.8 interpreter starts, the following modules are defined:

Comparable FileTest Marshal Precision

Enumerable GC Math Process

Errno Kernel ObjectSpace Signal

These classes are defined on startup:

Array File Method String

Bignum Fixnum Module Struct

Binding Float NilClass Symbol

Class Hash Numeric Thread

Continuation IO Object ThreadGroup

Data Integer Proc Time

Dir MatchData Range TrueClass

FalseClass MatchingData Regexp UnboundMethod

The following exception classes are also defined:

ArgumentError NameError SignalException

EOFError NoMemoryError StandardError

Exception NoMethodError SyntaxError

FloatDomainError NotImplementedError SystemCallError

IOError RangeError SystemExit

IndexError RegexpError SystemStackError

Interrupt RuntimeError ThreadError

LoadError ScriptError TypeError

LocalJumpError SecurityError ZeroDivisionError

Ruby 1.9 adds the following modules, classes, and exceptions:

BasicObject FiberError Mutex VM

Fiber KeyError StopIteration

You can check the predefined modules, classes, and exceptions in your implementation with code like this:

Print all modules (excluding classes)

puts Module.constants.sort.select {|x| eval(x.to_s).instance_of? Module}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Print all classes (excluding exceptions)

puts Module.constants.sort.select {|x|

 c = eval(x.to_s)

 c.is_a? Class and not c.ancestors.include? Exception

}

Print all exceptions

puts Module.constants.sort.select {|x|

 c = eval(x.to_s)

 c.instance_of? Class and c.ancestors.include? Exception

}

10.2.2. Top-Level Constants

When the Ruby interpreter starts, the following top-level constants are defined (in addition to the modules and
classes listed previously). A module that defines a constant by the same name can still access these top-level
constants by explicitly prefixing them with ::. You can list the top-level constants in your implementation with:

ruby -e 'puts Module.constants.sort.reject{|x| eval(x.to_s).is_a? Module}'

ARGF

An IO object providing access to a virtual concatenation of files named in ARGV, or to standard input if

ARGV is empty. A synonym for $<.

ARGV

An array containing the arguments specified on the command line. A synonym for $*.

DATA

If your program file includes the token __END__ on a line by itself, then this constant is defined to be a

stream that allows access to the lines of the file following __END__. If the program file does not include

__END__, then this constant is not defined.

ENV

An object that behaves like a hash and provides access to the environment variable settings in effect for
the interpreter.

FALSE

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A deprecated synonym for false.

NIL

A deprecated synonym for nil.

RUBY_PATCHLEVEL

A string indicating the patchlevel for the interpreter.

RUBY_PLATFORM

A string indicating the platform of the Ruby interpreter.

RUBY_RELEASE_DATE

A string indicating the release date of the Ruby interpreter.

RUBY_VERSION

A string indicating the version of the Ruby language supported by the interpreter.

STDERR

The standard error output stream. This is the default value of the $stderr variable.

STDIN

The standard input stream. This is the default value of the $stdin variable.

STDOUT

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The standard output stream. This is the default value of the $stdout variable.

TOPLEVEL_BINDING

A Binding object representing the bindings in the top-level scope.

TRUE

A deprecated synonym for true.

10.2.3. Global Variables

The Ruby interpreter predefines a number of global variables that your programs can use. Many of these
variables are special in some way. Some use punctuation characters in their names. (The English.rb module

defines English-language alternatives to the punctuation. Add require 'English' to your program if you want

to use these verbose alternatives.) Some are read-only and may not be assigned to. And some are thread-local,
so that each thread of a Ruby program may see a different value of the variable. Finally, some global variables
($_, $~, and the pattern-matching variables derived from it) are method-local: although the variable is globally

accessible, its value is local to the current method. If a method sets the value of one of these magic globals, it
does not alter the value seen by the code that invokes that method.

You can obtain the complete list of global variables predefined by your Ruby interpreter with:

ruby -e 'puts global_variables.sort'

To include the verbose names from the English module in your listing, try:

ruby -rEnglish -e 'puts global_variables.sort'

The subsections that follow document the predefined global variables by category.

10.2.3.1. Global settings

These global variables hold configuration settings and specify information, such as command-line arguments,
about the environment in which the Ruby program is running:

$*

A read-only synonym for the ARGV constant. English synonym: $ARGV.

$$

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The process ID of the current Ruby process. Read-only. English synonyms: $PID, $PROCESS_ID.

$?

The exit status of the last process terminated. Read-only and thread-local. English synonym:
$CHILD_STATUS.

$DEBUG

$-d

Set to true if the -d or --debug options were set on the command line.

$KCODE

$-K

In Ruby 1.8, this variable holds a string that names the current text encoding. Its value is "NONE",
"UTF8", "SJIS" or "EUC". This value can be set with the interpreter option -K. This variable no longer

works in Ruby 1.9 and using it causes a warning.

$LOADED_FEATURES

$"

An array of strings naming the files that have been loaded. Read-only.

$LOAD_PATH

$:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

$-I

An array of strings holding the directories to be searched when loading files with the load and require

methods. This variable is read-only, but you can alter the contents of the array to which it refers,
appending or prepending new directories to the path, for example.

$PROGRAM_NAME

$0

The name of the file that holds the Ruby program currently being executed. The value will be "-" if the

program is read from standard input, or "-e" if the program was specified with a -e option. Note that this

is different from $FILENAME.

$SAFE

The current safe level for program execution. See Section 10.5 for details. This variable may be set from
the command line with the -T option. The value of this variable is thread-local.

$VERBOSE

$-v

$-w

True if the -v, -w, or --verbose command-line option is specified. nil if -W0 was specified. false

otherwise. You can set this variable to nil to suppress all warnings.

10.2.3.2. Exception-handling globals

The following two global variables are useful in rescue clauses when an exception has been raised:

$!

The last exception object raised. The exception object can also be accessed using the => syntax in the

declaration of the rescue clause. The value of this variable is thread-local. English synonym:

$ERROR_INFO.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

$@

The stack trace of the last exception, equivalent to $!.backtrace. This value is thread-local. English

synonym: $ERROR_POSITION.

10.2.3.3. Streams and text-processing globals

The following globals are IO streams and variable that affect the default behavior of text-processing Kernel

methods. You'll find examples of their use in Section 10.3:

$_

The last string read by the Kernel methods gets and readline. This value is thread-local and method-

local. A number of Kernel methods operate implicitly on $_. English synonym: $LAST_READ_LINE.

$<

A read-only synonym for the ARGF stream: an IO-like object providing access to a virtual concatenation of

the files specified on the command-line, or to standard input if no files were specified. Kernel read

methods, such as gets, read from this stream. Note that this stream is not always the same as $stdin.

English synonym: $DEFAULT_INPUT.

$stdin

The standard input stream. The initial value of this variable is the constant STDIN. Many Ruby program

read from ARGF or $< instead of $stdin.

$stdout

$>

The standard output stream, and the destination of the printing methods of Kernel: puts, print, printf,

etc. English synonym: $DEFAULT_OUTPUT.

$stderr

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The standard error output stream. The initial value of this variable is the constant STDERR.

$FILENAME

The name of the file currently being read from ARGF. Equivalent to ARGF.filename. Read-only.

$.

The number of the last line read from the current input file. Equivalent to ARGF.lineno. English

synonyms: $NR, $INPUT_LINE_NUMBER.

$/

$-0

The input record separator (newline by default). gets and readline use this value by default to

determine line boundaries. You can set this value with the -0 interpreter option. English synonyms: $RS,

$INPUT_RECORD_SEPARATOR.

$\

The output record separator. The default value is nil, but is set to $/ when the interpreter option -l is

used. If non-nil, the output record separator is output after every call to print (but not puts or other

output methods). English synonyms: $ORS, $OUTPUT_RECORD_SEPARATOR.

$,

The separator output between the arguments to print and the default separator for Array.join. The

default is nil. English synonyms: $OFS, $OUTPUT_FIELD_SEPARATOR.

$;

$-F

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The default field separator used by split. The default is nil, but you can specify a value with the

interpreter option -F. English synonyms: $FS, $FIELD_SEPARATOR.

$F

This variable is defined if the Ruby interpreter is invoked with the -a option and either -n or -p. It holds

the fields of the current input line, as returned by split.

10.2.3.4. Pattern-matching globals

The following globals are thread-local and method-local and are set by any Regexp pattern-matching operation:

$~

The MatchData object produced by the last pattern matching operation. This value is thread-local and

method-local. The other pattern-matching globals described here are derived from this one. Setting this
variable to a new MatchData object alters the value of the other variables. English synonym:

$MATCH_INFO.

$&

The most recently matched text. Equivalent to $~[0]. Read-only, thread-local, method-local, and derived

from $~. English synonym: $MATCH.

$`

The string preceding the match in the last pattern match. Equivalent to $~.pre_match. Read-only,

thread-local, method-local, and derived from $~. English synonym: $PREMATCH.

$'

The string following the match in the last pattern match. Equivalent to $~.post_match Read-only, thread-

local, method-local, and derived from $~. English synonym: $POSTMATCH.

$+

The string corresponding to the last successfully matched group in the last pattern match. Read-only,
thread-local, method-local, and derived from $~. English synonym: $LAST_PAREN_MATCH.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.2.3.5. Command-line option globals

Ruby defines a number of global variables that correspond to the state or value of interpreter command-line
options. The variables $-0, $-F, $-I, $-K, $-d, $-v, and $-w have synonyms and are included in the previous

sections:

$-a

true if the interpreter option -a was specified; false otherwise. Read-only.

$-i

nil if the interpreter option -i was not specified. Otherwise, this variable is set to the backup file

extension specified with -i.

$-l

true if the -l option was specified. Read-only.

$-p

true if the interpreter option -p was specified; false otherwise. Read-only.

$-W

In Ruby 1.9, this global variable specifies the current verbose level. It is 0 if the -W0 option was used, and

is 2 if any of the options -w, -v, or --verbose were used. Otherwise, this variable is 1. Read-only.

10.2.4. Predefined Global Functions

The Kernel module, which is included by Object, defines a number of private instance methods that serve as

global functions. Because they are private, they must be invoked functionally, without an explicit receiver
object. And because they are included by Object, they can be invoked anywhere-no matter what the value of

self is, it will be an object, and these methods can be implicitly invoked on it. The functions defined by Kernel

can be grouped into several categories, most of which are covered elsewhere in this chapter or elsewhere in this
book.

10.2.4.1. Keyword functions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following Kernel functions behave like language keywords and are documented elsewhere in this book:

block_given? iterator? loop require

callcc lambda proc throw

catch load raise

10.2.4.2. Text input, output, and manipulation functions

Kernel defines the following functions most of which are global variants of IO methods. They are covered in

more detail in Section 10.3:

format print puts sprintf

gets printf readline

p putc readlines

In Ruby 1.8 (but not 1.9), Kernel also defines the following global variants of String methods that operate

implicitly on $_:

chomp chop gsub scan sub

chomp! chop! gsub! split sub!

10.2.4.3. OS methods

The following Kernel functions allow a Ruby program to interface with the operating system. They are platform-

dependent and are covered in Section 10.4. Note that ` is the specially named backtick method that returns the

text output by an arbitrary OS shell command:

` fork select system trap

exec open syscall test

10.2.4.4. Warnings, failures, and exiting

The following Kernel functions display warnings, raise exceptions, cause the program to exit, or register blocks

of code to be run when the program terminates. They are documented along with OS-specific methods in
Section 10.4:

abort at_exit exit exit! fail warn

10.2.4.5. Reflection functions

The following Kernel functions are part of Ruby's reflection API and were described in Chapter 8:

binding set_trace_func

caller singleton_method_added

eval singleton_method_removed

global_variables singleton_method_undefined

local_variables trace_var

method_missing untrace_var

remove_instance_variable

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.2.4.6. Conversion functions

The following Kernel functions attempt to convert their arguments to a new type. They were described in

Section 3.8.7.3:

Array Float Integer String

10.2.4.7. Miscellaneous Kernel functions

The following miscellaneous Kernel functions don't fit into the previous categories:

autoload rand srand

autoload? sleep

rand and srand are for generating random numbers, and are documented in Section 9.3.7. autoload and

autoload? are covered in Section 7.6.3. And sleep is covered in Section 9.9 and Section 10.4.4.

10.2.5. User-Defined Global Functions

When you define a method with def inside a class or module declaration and do not specify a receiver object

for the method, the method is created as a public instance method of self, where self is the class or module

you are defining. Using def at the top level, outside of any class or module, is different in two important ways.

First, top-level methods are instance methods of Object (even though self is not Object). Second, top-level

methods are always private.

Top-Level self: the Main Object

Because top-level methods become instance methods of Object, you might expect that the value

of self would be Object. In fact, however, top-level methods are a special case: methods are

defined in Object, but self is a different object. This special top-level object is known as the

"main" object, and there is not much to say about it. The class of the main object is Object, and it

has a singleton to_s method that returns the string "main".

The fact that top-level methods are defined in Object means that they are inherited by all objects (including

Module and Class) and (if not overridden) can be used within any class or instance method definition. (You can

review Ruby's method name resolution algorithm in Section 7.8 to convince yourself of this.) The fact that top-
level methods are private means that they must be invoked like functions, without an explicit receiver. In this
way, Ruby mimics a procedural programming paradigm within its strictly object-oriented framework.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.3. Practical Extraction and Reporting Shortcuts

Ruby was influenced by the scripting language Perl, whose name is an acronym for Practical Extraction and
Reporting Language. Because of this, Ruby includes a number of global functions that make it easy to write
programs that extract information from files and generate reports. In the object-oriented paradigm, input and
output functions are methods of IO, and string manipulation functions are methods of String. For pragmatic

reasons, however, it is useful to have global functions that read from and write to predefined input and output
streams. In addition to providing these global functions, Ruby follows Perl further and defines special behavior
for the functions: many of them operate implicitly on the special method-local variable $_. This variable holds

the last line read from the input stream. The underscore character is mnemonic: it looks like a line. (Most of
Ruby's global variables that use punctuation characters are inherited from Perl.) In addition to the global input
and output functions, there are several global string processing functions that work like the String methods but

operate implicitly on $_.

These global functions and variables are intended as shortcuts for short and simple Ruby scripts. It is generally
considered bad form to rely on them in larger programs.

10.3.1. Input Functions

The global functions gets, readline, and readlines are just like the IO methods by the same names (see

Section 9.7.3.1), but they operate implicitly on the $< stream (which is also available as the constant known as

ARGF). Like the methods of IO, these global functions implicitly set $_.

$< behaves like an IO object, but it is not an IO object. (Its class method returns Object, and its to_s method

returns "ARGF".) The precise behavior of this stream is complicated. If the ARGV array is empty, then $< is the

same as STDIN: the standard input stream. If ARGV is not empty, then Ruby assumes that it is a list of

filenames. In this case, $< behaves as if it were reading from the concatenation of each of those files. This does

not correctly capture the behavior of $<, however. When the first read request for $< occurs, Ruby uses

ARGV.shift to remove the first filename from ARGV. It opens and reads from that file. When the end of that file

is reached, Ruby repeats the process, shifting the next filename out of ARGV and opening that file. $< does not

report end-of-file until there are no more file names in ARGV.

What this means is that your Ruby scripts can alter ARGV (to process command-line options, for example) before

beginning to read from $<. Your script can also add additional files to ARGV as it runs, and $< will use these files.

10.3.2. Deprecated Extraction Functions

In Ruby 1.8 and before, the global functions chomp, chomp!, chop, chop!, gsub, gsub!, scan, split, sub, and

sub! work like the same-named methods of String, but operate implicitly on $_. Furthermore, chomp, chop,

gsub, and sub assign their result back into $_, which means that they are effectively synonyms for their

exclamation-mark versions.

These global functions have been removed in Ruby 1.9, so they should not be used in new code.

10.3.3. Reporting Functions

Kernel defines a number of global functions for sending output to $stdout. (This global variable initially refers

to the standard output stream, STDOUT, of the Ruby process, but you can alter its value and change the

behavior of the functions described here.)

puts, print, printf and putc are equivalent to the same-named methods of STDOUT (see Section 9.7.4). Recall

that puts appends a newline to its output if there is not one there already. print, on the other hand, does not

http://lib.ommolketab.ir
http://lib.ommolketab.ir

automatically append a newline, but it does append the output record separator $\, if that global variable has

been set.

The global function p is one with no analog in the IO class. It is intended for debugging, and its short name

makes it very easy to type. It calls the inspect method of each of its arguments and passes the resulting

strings to puts. Recall that inspect is equivalent to to_s by default, but that some classes redefine it to provide

more developer-friendly output suitable for debugging. If you require the pp library, you can use the pp function

in place of p to "pretty print" your debugging output. (This is useful for printing large arrays and hashes.)

The printf method mentioned earlier expects a format string as its first argument and substitutes the value of

its remaining arguments into that string before outputting the result. You can also format into a string without
sending the result to $stdout with the global function sprintf or its synonym format. These work like the %

operator of String.

10.3.4. One-Line Script Shortcuts

Earlier in this chapter, we described the -e option to the interpreter for executing single-line Ruby scripts (often

used in conjunction with the -n and -p looping options). There is one special shortcut inherited from Perl that is

allowed only in scripts specified with -e.

If a script is specified with -e, and a regular expression literal appears by itself in a conditional expression (part

of an if, unless, while, or until statement or modifier), then the regular expression is implicitly compared to

$_. If you want to print all lines in a file that begin with the letter A, for example, you can write:

ruby -n -e 'print if /^A/' datafile

If this same script was stored in a file and run without the -e option, it would still work, but it would print a

warning (even without -w). To avoid the warning, you'd have to make the comparison explicit instead:

print if $_ =~ /^A/

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.4. Calling the OS

Ruby supports a number of global functions for interacting with the operating system to execute programs, fork
new processes, handle signals, and so on. Ruby was initially developed for Unix-like operating systems, and
many of these OS-related functions reflect that heritage. By their very nature, these functions are less portable
than most others, and some may not be implemented at all on Windows and other non-Unix platforms. The
subsections that follow describe some of the most commonly used of the OS-dependent functions. Functions,
such a syscall, that are particularly low-level or platform-dependent are not covered here.

10.4.1. Invoking OS Commands

The Kernel.` method expects a single string argument representing an OS shell command. It starts a subshell

and passes the specified text to it. The return value is the text printed to standard output. This method is
typically invoked using special syntax; it is invoked on string literals surrounded by backquotes or on string
literals delimited with %x (see Section 3.2.1.6). For example:

os = `uname` # String literal and method invocation in one

os = %x{uname} # Another quoting syntax

os = Kernel.`("uname") # Invoke the method explicitly

This method does not simply invoke the specified executable; it invokes a shell, which means that shell features
such as filename wildcard expansion are available:

files = `echo *.xml`

Another way to start a process and read its output is with the Kernel.open function. This method is a variant on

File.open and is most often used to open files. (And if you require 'open-uri' from the standard library, it

can also be used to open HTTP and FTP URLs.) But if the first character of the specified "filename" is the pipe
character |, then it instead opens a pipe to read from and/or write to the specified shell command:

pipe = open("|echo *.xml")

files = pipe.readline

pipe.close

If you want to invoke a command in a shell, but are not interested in its output, use the Kernel.system method

instead. When passed a single string, it executes that string in a shell, waits for the command to complete, and
returns true on success or false on failure. If you pass multiple arguments to system, the first argument is the

name of the program to invoke, and remaining arguments are its command-line arguments. In this case no shell
expansion is performed on those arguments.

A lower-level way to invoke an arbitrary executable is with the exec function. This function never returns: it

simply replaces the currently running Ruby process with the specified executable. This might be useful if you are
writing a Ruby script that is simply a wrapper to launch some other program. Usually, however, it is used in
conjunction with the fork function, which is described in the next section.

10.4.2. Forking and Processes

Section 9.9 described Ruby's API for writing multithreaded programs. Another approach to achieving

http://lib.ommolketab.ir
http://lib.ommolketab.ir

concurrency in Ruby is to use multiple Ruby processes. Do this with the fork function or its Process.fork

synonym. The easiest way to use this function is with a block:

fork {

 puts "Hello from the child process: #$$"

}

puts "Hello from the parent process: #$$"

When used this way, the original Ruby process continues with the code that appears after the block and the new
Ruby process executes the code in the block.

When invoked without a block, fork behaves differently. In the parent process, the call to fork returns an

integer which is the process ID of the newly created child process. In the child process, the same call to fork

returns nil. So the previous code could also be written like this:

pid = fork

if (pid)

 puts "Hello from parent process: #$$"

 puts "Created child process #{pid}"

else

 puts Hello from child process: #$$"

end

One very important difference between processes and threads is that processes do not share memory. When
you call fork, the new Ruby process starts off as an exact duplicate of the parent process. But any changes it

makes to the process state (by altering or creating objects) are done in its own address space. The child
process cannot alter the data structures of the parent, nor can the parent alter the structures seen by the child.

If you need your parent and child processes to be able to communicate, use open, and pass "|-" as the first

argument. This opens a pipe to a newly forked Ruby process. The open call yields to the associated block in both

the parent and the child. In the child, the block receives nil. In the parent, however, an IO object is passed to

the block. Reading from this IO object returns data written by the child. And data written to the IO object

becomes available for reading through the child's standard input. For example:

open("|-", "r+") do |child|

 if child

 # This is the parent process

 child.puts("Hello child") # Send to child

 response = child.gets # Read from child

 puts "Child said: #{response}"

 else

 # This is the child process

 from_parent = gets # Read from parent

 STDERR.puts "Parent said: #{from_parent}"

 puts("Hi Mom!") # Send to parent

 end

end

The Kernel.exec function is useful in conjunction with the fork function or the open method. We saw earlier

that you can use the ̀ and system functions to send an arbitrary command to the operating system shell. Both

of those methods are synchronous, however; they don't return until the command completes. If you want to
execute an operating system command as a separate process, first use fork to create a child process, and then

http://lib.ommolketab.ir
http://lib.ommolketab.ir

call exec in the child to run the command. A call to exec never returns; it replaces the current process with a

new process. The arguments to exec are the same as those to system. If there is only one, it is treated as a

shell command. If there are multiple arguments, then the first identifies the executable to invoke, and any
remaining arguments become the "ARGV" for that executable:

open("|-", "r") do |child|

 if child

 # This is the parent process

 files = child.readlines # Read the output of our child

 child.close

 else

 # This is the child process

 exec("/bin/ls", "-l") # Run another executable

 end

end

Working with processes is a low-level programming task and the details are beyond the scope of this book. If
you want to know more, start by using ri to read about the other methods of the Process module.

10.4.3. Trapping Signals

Most operating systems allow asynchronous signals to be sent to a running process. This is what happens, for
example, when the user types Ctrl-C to abort a program. Most shell programs send a signal named "SIGINT"

(for interrupt) in response to Ctrl-C. And the default response to this signal is usually to abort the program.
Ruby allows programs to "trap" signals and define their own signal handlers. This is done with the Kernel.trap

method (or its synonym Signal.trap). For example, if you don't want to allow the user to use Ctrl-C to abort:

trap "SIGINT" {

 puts "Ignoring SIGINT"

}

Instead of passing a block to the trap method, you can equivalently pass a Proc object. If you simply want to

silently ignore a signal, you can also pass the string "IGNORE" as the second argument. Pass "DEFAULT" as the

second argument to restore the OS default behavior for a signal.

In long-running programs such as servers, it can be useful to define signal handlers to make the server reread
its configuration file, dump its usage statistics to the log, or enter debugging mode, for example. On Unix-like
operating systems, SIGUSR1 and SIGUSR2 are commonly used for such purposes.

10.4.4. Terminating Programs

There are a number of related Kernel methods for terminating program or performing related actions. The exit

function is the most straightforward. It raises a SystemExit exception, which, if uncaught, causes the program

to exit. Before the exit occurs, however, END blocks and any shutdown handlers registered with Kernel.at_exit

are run. To exit immediately, use exit! instead. Both methods accept an integer argument that specifies the

process exit code that is reported to the operating system. Process.exit and Process.exit! are synonyms for

these two Kernel functions.

The abort function prints the specified error message to the standard output stream and then calls exit(1).

fail is simply a synonym for raise, and it is intended for cases in which the exception raised is expected to

terminate the program. Like abort, fail causes a message to be displayed when the program exits. For

http://lib.ommolketab.ir
http://lib.ommolketab.ir

example:

fail "Unknown option #{switch}"

The warn function is related to abort and fail: it prints a warning message to standard error (unless warnings

have been explicitly disabled with -W0). Note, however, that this function does not raise an exception or cause

the program to exit.

sleep is another related function that does not cause the program to exit. Instead, it simply causes the

program (or at least the current thread of the program) to pause for the specified number of seconds.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.5. Security

Ruby's security system provides a mechanism for writing programs that work with untrusted data and untrusted
code. There are two parts to the security system. The first is a mechanism for distinguishing safe data from
untrusted, or tainted, data. The second is a technique for restricted execution, which allows you to "lock down"
the Ruby environment and prevents the Ruby interpreter from performing potentially dangerous operations on
tainted data. This serves to prevent things like SQL injection attacks in which malicious input alters a program's
behavior. Restricted execution can be taken a step further so that untrusted (and possibly malicious) code can
be executed without fear that it will delete files, steal data, or otherwise cause harm.

10.5.1. Tainted Data

Every object in Ruby is either tainted or untainted. Literal values in program source code are untainted. Values
that are derived from the external environment are tainted. These include strings read from the command-line
(ARGV) or environment variables (ENV) and also any data read from files, sockets, or other streams. The

environment variable PATH is a special case: it is tainted only if one or more of the directories it contains is

world-writable. Importantly, taintedness is contagious, so objects derived from tainted objects are also tainted.

The Object methods taint, tainted?, and untaint allow you to mark an untainted object as tainted, test the

taintedness of an object, and untaint a tainted object. You should untaint a tainted object only if your code has
inspected it and determined that it is safe despite its unsafe origin or derivation.

10.5.2. Restricted Execution and Safe Levels

Ruby can execute programs with security checking turned on. The global variable $SAFE determines the level of

the security check. The default safe level is normally 0, but is 1 for Ruby programs that run setuid or setgid.
(These are Unix terms for a program that runs with privileges beyond those of the user that invokes it.) Legal
safe levels are the integers 0, 1, 2, 3, and 4. You can explicitly set the safe level with the -T command-line

option to the Ruby interpreter. You can also set the safe level by assigning to $SAFE. Note, however, that you

can only increase the value-it is never possible to lower this value:

$SAFE=1 # upgrade the safe level

$SAFE=4 # upgrade the safe level even higher

$SAFE=0 # SecurityError! you can't do it

$SAFE is thread-local. In other words, the value of $SAFE in a thread may be changed without affecting the

value in other threads. Using this feature, threads can be sandboxed for untrusted programs:

Thread.start { # Create a "sandbox" thread

 $SAFE = 4 # Restrict execution in this thread only

 ... # Untrusted code can be run here

}

This discussion of Ruby's SAFE levels is specific to the reference implementation. Other implementations may
differ. JRuby, in particular, makes very little attempt (at the time of this writing) to emulate the restricted
execution modes of the reference implementation. Furthermore, keep in mind that Ruby's security model has
not received the kind of careful and prolonged scrutiny that Java's security architecture has. The subsections
that follow explain how restricted execution is supposed to work in Ruby, but bugs yet to be discovered may
allow the restrictions to be circumvented.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.5.2.1. Safe level 0

Level 0 is the default safe level. No checks are performed on tainted data.

10.5.2.2. Safe Level 1

In this level, potentially dangerous operations using tainted data are forbidden. You can't evaluate a string of
code if the string is tainted; you can't require a library if the library name is tainted; you can't open a named

file if the filename is tainted; and you can't connect to a network host if the hostname is tainted. Programs,
especially networked servers, that accept arbitrary input should probably use this safe level. This helps catch
programming errors that use tainted data in unsafe ways.

If you write a library that performs potentially dangerous operations-such as communicating with a database
server-you should check the value of $SAFE. If it is 1 or higher, your library should not operate on tainted

objects. For example, you should not send a SQL query to a database if the string containing that query is
tainted.

Execution restrictions at safe level 1 include the following:

Environment variables RUBYLIB and RUBYOPT are ignored at startup.

The current directory (.) isn't included in $LOAD_PATH.

The command-line options -e, -i, -I, -r, -s, -S, and -X are prohibited.

Certain instance methods and class methods of Dir, IO, File, and FileTest are prohibited for tainted

arguments.

test, eval, require, load, and trap may not be invoked with tainted arguments.

10.5.2.3. Safe level 2

Safe level 2 restricts operations on tainted data just as level 1 does, but also imposes additional restrictions on
how files and processes can be manipulated, regardless of taint. There is little reason for a program to set its
own safe level to 2, but a system administrator might choose to run a program you have written at this safe
level to ensure that it cannot create or delete directories, change file permissions, launch executables, load
Ruby code from world-writable directories, and so on.

Methods restricted at this safe level include:

Dir.chdir File.truncate Process.egid=

Dir.chroot File.umask Process.fork

Dir.mkdir IO.fctrl Process.kill

Dir.rmdir IO.ioctl Process.setpgid

File.chmod Kernel.exit! Process.setpriority

File.chown Kernel.fork Process.setsid

File.flock Kernel.syscall

File.lstat Kernel.trap

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In addition, safe level 2 prevents you from loading or requiring Ruby code or running executables stored in
world-writable directories.

10.5.2.4. Safe level 3

Safe level 3 includes all of the restrictions of level 2, and in addition, all objects-including literals in program
source code (but not including predefined objects in the global environment)-are tainted when they are
created. Furthermore, the untaint method is prohibited.

Safe level 3 is an intermediate step toward level 4 and is not commonly used.

10.5.2.5. Safe level 4

This level extends safe level 3 by preventing any modifications to untainted objects (including calling taint on

untainted objects). Code running at this level cannot modify the global environment, nor can it modify any
untainted objects previously created by code running at lower safe levels. This effectively creates a sandbox in
which untrusted code can be run without doing any harm. (In theory, at least-bugs in the implementation or
deficiencies in the underlying security model may be found in the future.)

Calling eval on a tainted string is prohibited in levels 1, 2, and 3. In safe level 4, it is allowed again because the

restrictions on level 4 are stringent enough that the evaluated string can do no harm. Here is a way to evaluate
arbitrary code in a level-4 sandbox:

def safe_eval(str)

 Thread.start { # Start sandbox thread

 $SAFE = 4 # Upgrade safe level

 eval(str) # Eval in the sandbox

 }.value # Retrieve result

end

In safe level 4, you may not use require to load another file of Ruby code. You can use load, but only in

wrapped form, with true as its second argument. This causes Ruby to sandbox the loaded file in an anonymous

module so that any classes, modules, or constants it defines do not affect the global namespace. This means
that code running under safe level 4 can load, but cannot use, classes and modules defined in external modules.

You can further restrict a level-4 sandbox by placing the sandbox thread (before setting $SAFE) into a

ThreadGroup and calling enclose on that group. See Section 9.9.5 for details.

As part of the sandbox it creates, safe level 4 prohibits additional operations including the following:

require, unwrapped load, autoload, and include

Modifying Object class

Modifying untainted classes or modules

Metaprogramming methods

Manipulating threads other than current

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Accessing thread local data

Terminating the process

File input/output

Modifying environment variables

Seeding the random number generator with srand

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix. Colophon

The animals on the cover of The Ruby Programming Language are Horned Sungem hummingbirds (Heliactin
bilophus). These small birds are native to South America, living mainly in Brazil and Bolivia. They prefer dry,
open habitats such as grasslands, and they avoid dense or humid forests.

Hummingbirds have the fastest wingbeat of all birds, and the Horned Sungem is capable of 90 wingbeats per
second. (Contrast that with the vulture, the slowest of all birds, capable of just 1 wingbeat per second.) Because
hummingbirds are so fast and light, they are able to hover in mid-air by rapidly flapping their wings. They can
also fly backward (the only birds who can do so) in order to keep position as they drink nectar from flowers.
Their long, thin bills allow them to reach deep within blossoms. Fittingly, the Portuguese word for hummingbird
is beija-flor, or "the bird that kisses flowers." The English word, of course, comes from the hum made by its
fast-moving wings.

The male Horned Sungem has tufts of red, blue, and gold feathers on either side of its head. Its back is
iridescent green, its throat and breast are black, and its belly is white. It has a long, pointed tail. The female
looks similar to the male but lacks the dramatic crown pattern. Because of the hummingbird's vibrant colors,
early Spanish explorers named it Joyas voladoras, or "flying jewel."

There are many myths about hummingbirds. In Brazil, a black hummingbird is a sign of a death in the family.
The ancient Aztecs honored them, and priests used staffs covered with their feathers to remove curses. The
hummingbird is also a symbol of resurrection, as Aztecs believed that dead warriors were reincarnated as these
birds. The Aztec god of the Sun and war, Huitzilopochtli, was represented as one; his name means
"Hummingbird from the south," the south being the location of the spirit world.

The cover image is from J. G. Wood's Animate Creation. The cover font is Adobe's ITC Garamond. The text font
is Linotype Birka, the heading font is Adobe Myriad Condensed, and the code font is LucasFont's TheSans Mono
Condensed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

! operator 2nd 3rd 4th
!= operator 2nd 3rd
 object equality and
!~ operator 2nd
" (quotation marks)
 expressions, interpolating into strings
(hash)
 comments and 2nd 3rd
 string interpolation and
#{ } interpolation in regexps
$ (dollar sign)
 global
 variables and
 keywords prefixes and
 regexp anchor
$! global variable 2nd
$$ global variable
$& global variable
$' global variable
$* global variable
$+ global variable
$, global operator
$-d global variable
$-I global variable
$-K global variables
$. global variable
$/ global variable
$: global variable 2nd
$; global variable
$< global operator 2nd
$> global operator
$? global variable
$@ global variable
$\ global variable
$_ global variable 2nd
$` global variable
$~ global regexp variable
$~ global variable 2nd
% (percent sign)
 modulo operator, using as 2nd 3rd
 %Q sequence, using as
 %r delimiter
 %x syntax
%= operator
%Q sequences
%q sequences
& (ampersand)
 method invocation and
& operator 2nd 3rd
&& operator 2nd
&&= operator 2nd
&= operator 2nd
' (single quotes), using for string literals
() (parentheses)
 functions/methods, using

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if statements and
 method declarations 2nd 3rd
 optional
 parallel assignment and
 required
* (asterisk)
 matching characters
 multiplication operator 2nd 3rd
 repetition (strings)
 variable-length method argument lists, setting
** (exponentiation) operator 2nd 3rd
**= operator 2nd
*= operator 2nd
+ (plus sign) 2nd 3rd
 concatenation and
 strings and
 unary 2nd
+= operator 2nd
+@ unary operator
, (comma)
– (minus sign) operator 2nd
 unary
--debug command-line option
–= operator 2nd
-> (arrow) characters
–@ unary operator
. (dot) 2nd
 directories
 matching characters and newlines (regular expressions)
 method declarations
 method invocations and
.. operator 2nd 3rd
... operator 2nd
/ (forward slash)
 directory separator character
 division operator
 Windows directory separator character
/* ... */ (C-style) comments
/= operator 2nd
: (colon)
:: (double colon) 2nd 3rd
; (semicolons), as statement terminators 2nd
< (less than) operator 2nd 3rd 4th
<< operator 2nd 3rd
 appending text
 set elements and
 string operators and
<<= operator 2nd
<= (less than or equal) operator 2nd 3rd 4th
<=> operator 2nd 3rd 4th
 object order and
 SortedSet class and
 testing membership in ranges
= (equals sign) 2nd 3rd
 embedded documents, writing comments and
 method names and
 nonoverridable operator
 suffixes/prefixes punctuation
== operator 2nd 3rd 4th
 object equality, testing
 point equality and
 proc equality and
 String class and
=== [See case equality operator]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

=> (arrow) 2nd
 comments, using for
=begin (multiline comments)
=end (multiline comments)
=~ operator 2nd 3rd
 pattern matching and
> (greater than) operator 2nd 3rd
>= (greater than or equal) operator 2nd 3rd 4th
>> operator
>>= operator 2nd
? (question mark)
 matching characters with
 method names and
?: operator 2nd 3rd
@ (at sign)
 class variables and
 instance variables and 2nd
 keywords prefixes and
@@ (class variables)
[] (square-bracket array-index) 2nd 3rd 4th 5th
 access to arrays/hashes
 strings, indexing
[]= operator 2nd 3rd
 storing key/values in hashes
\ (backslash)
 apostrophes, using inside string literals
 escapes
 line breaks, escaping
\ (slash)
 regular expressions and
\" (nonterminating quotation mark)
^ operator 2nd
 regexp anchor
^= operator 2nd
_ (underscore)
 constants
 integer literals, using
` (backtick) method (Kernel)
{ } (curly braces)
 block structure and
 iterators in blocks, using
 string interpolation and
 syntax of blocks
 Unicode escapes and
| (Boolean) operator 2nd
| operator
|= operator 2nd
|| operator 2nd
||= operator 2nd
~ (tilde) 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

"a" (append) file mode
-a command-line option
\a escape (BEL character)
\A regexp anchor
"a+" (append and reading) file mode
abbreviated assignments 2nd
aborting thread state
accessors
 define_method and
 methods
add method (Set)
add? method (Set)
alias chaining
alias keyword
alias_method method (Module)
aliases (method)
all? method (Enumerable)
allocate keyword
ampersand (&)
 method invocation and [See also &]
ancestry 2nd
AND (&) operator
and keyword 2nd
any? method (Enumerable)
apostrophes ('), using inside string literals
append operator [See >>]
arbitrary delimiters for string literals
ARGF stream 2nd 3rd
ArgumentError
arguments
 arbitrary number, setting
 block
 method
 parameters, mapping to
 passing to blocks
 procs/lambdas, passing to
ARGV stream
arithmetic
 coerce method and
 operations
arity (proc/lambda)
Array class
 [] operator
 suffixes/prefixes punctuation
Array functions
 conversion functions and
Array.[] method
Array.new method
arrays 2nd 3rd
 access with []
 associative
 comparison
 creating
 elements
 altering

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 assigning to
 hashes, extracting from
 iterating
 methods, passing to
 searching
 sorting
 stacks and queues
 variable-length method arguments
arrows (=>)
 comments, using for
ASCII
 \a escape
 default source encoding
assignments 2nd
 abbreviated
 operators
 parallel
assoc method (Array)
associative arrays 2nd
asterisk (*)
 matching characters (Dir class)
 multiplication operator 2nd
 repetition (strings)
 variable-length method argument lists, setting
at sign (@)
 class variables and
 instance variables and 2nd 3rd
 keywords prefixes and
at_exit method (Kernel)
attr method (Module)
attr_accessor method (Module)
 define_method and
attr_reader method (Module)
 define_method and
attributes 2nd 3rd [See also accessors]
 define_method and
 methods
 accessor, defining
autoload? function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

\b (backspace character) escape
\B (nonword boundary) regexp anchor
\b (word boundary) regexp anchor
backslash (\)
 apostrophes, using inside string literals
 escapes
 line breaks, escaping
backspace character (\b) escape
backtick (`) method (Kernel)
backtraces
BasicObject class
BEGIN keyword
 program execution and
BigDecimal class 2nd
Bignum class 2nd
 arithmetic and
 bit-manipulation operators and
BINARY encodings
binary floating-point
binary strings
binding method (Proc)
Binding object
binding UnboundMethod objects
binmode method (IO)
bit-manipulation operators
blocks 2nd 3rd
 arguments
 passing to
 evaluating
 structure
 syntax
 thread safety and
 values of
 variable scope
Boolean flip-flops
Boolean operators 2nd
break statement 2nd 3rd 4th
 next keyword and
 procs/lambdas/blocks and
 throw and catch methods
bytesize method (String)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

-C command-line option
-c command-line option
C-style (/* ... */) comments
call method (Continuation)
call method (Method)
call method (Proc)
caller method (Kernel)
Cardinal
carriage return (\r) escape
case equality (===) operator 2nd 3rd 4th
 case keyword and
case sensitivity
 string comparison and
case statement
casecmp method (String)
catch statement 2nd
chaining methods
characters
 accessing
 literals
 multibyte
Class class (Module)
class hierarchy
class keyword
 creating classes
class method (Object)
class methods
 inheritance of
 lookup
Class#new method
Class::new method
class_eval method (Module) 2nd 3rd
class_exec method (Module)
classes 2nd 3rd
 block structure and
 defining 2nd
 exceptions, defining
 identifiers and
 instance variables
 variables 2nd
classify method (Set)
clone method (Object)
close method (IO)
closures
 bindings and
coding comments
coerce method (Numeric)
collect method (Enumerable) 2nd
collections 2nd
 iterating/converting and
 searching
 sorting
colon (:)
comma (,)
command-line options

http://lib.ommolketab.ir
http://lib.ommolketab.ir

command-line tools
comments 2nd 3rd
 lexical structure and
Comparable module 2nd
compare_by_identity method
comparison operators 2nd
compiled languages
Complex class 2nd
compute-bound programs
concurrency
 iterators
 modification
 platform dependencies and
 thread lifecycle and
 threads for
conditional (?:) operator
conditionals
 case statements
 if statements
const_missing method
constants 2nd 3rd
 assigning
 inheritance of 2nd
 missing
constructors
continue keyword
continuous ranges
control flow
control structures 2nd
 custom
conversions (object)
coroutines
cover? method (Range)
curly braces ({ })
 block structure and
 iterators in blocks, using
 string interpolation and
 syntax of blocks
 Unicode escapes and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

\d (digits) regexp character class
\D (nondigits) regexp character class
-d command-line option
DATA stream 2nd 3rd
datatypes
 arrays
 character literals
 hashes
 numbers
 string operators
 text and
dates and times
DateTime class
deadlocks
$DEBUG variable
decimal point (.), using floating-point literals and
def keyword
 methods, defining
default external encoding 2nd
default parameters of methods
define_finalizer method (ObjectSpace)
define_method method (Module) 2nd
defined? keyword 2nd
delete method (Hash)
delete method (Set) 2nd
delete? method (Set)
delete_if method (Hash)
delete_if method (Set)
delimiters (arbitrary)
deprecated extraction functions
descendants of classes
Dir class
 chdir method
 entries method
 foreach method
 glob method
 mkdir method
 rmdir method
 unlink method
Dir.glob method
directories
 creating, deleting, and renaming
 listing
 separator character (/)
discrete
 membership
 ranges
divide method (Set)
.dll files, loading extensions
do keyword 2nd
 while loops and
documentation comments
dollar sign ($)
 global
 variables and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 keywords prefixes and
domain-specific languages (DSLs) 2nd
dot (.) 2nd
 directories and
 matching characters and newlines (regular expressions)
 method declarations
 method invocations and
double colon (::) 2nd 3rd
double-quoted string literals
downto method (Integer)
drop method (Enumerable)
drop_while method (Enumerable)
DSLs (domain-specific languages) 2nd
duck typing 2nd 3rd
dup method (Object)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

\e (ESC) escape
e (regular expression) modifier
-E command-line option
-e command-line option 2nd
-E option
each method (Enumerable)
each method (String)
each_byte iterator
each_byte method (String)
each_char method (String)
each_cons method (Enumerable)
each_line method (String)
each_pair method (Hash)
each_slice method (Enumerable)
each_with_index method (Enumerable)
eigenclass 2nd 3rd
 class method lookup
 method lookup and
else keyword 2nd 3rd 4th
elsif keyword
embedded documents
empty? method (Array/Hash)
encapsulation
encode! method (String)
Encoding class 2nd
__ENCODING__ keyword
encoding method (Regexp)
encoding method (String)
encoding options 2nd
Encoding.compatible? method
Encoding.default_external method 2nd 3rd
Encoding.find method 2nd
Encoding.list method 2nd
Encoding.locale_charmap method 2nd
END keyword 2nd
end keyword
 if statement and
__END__ token 2nd
end-of-file (EOF) 2nd
ensure keyword 2nd
Enumerable module 2nd 3rd 4th 5th 6th
 functions, applying functions to
 max method and
 String class and
Enumerable::Enumerator class
enumerators
ENV stream
environment
EOF (end-of-file) 2nd
eof? method (IO)
EOFError
eql? method (Object) 2nd 3rd
equal? method (Object)
equality
equals sign (=) 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 embedded documents, writing comments and
 method names and
 suffixes/prefixes punctuation
$ERROR_INFO global variable
ESC (\e) escape
escapes
 double-quoted string literals and
 Unicode
EUC characters
EUC-JP
eval method (Binding) 2nd
eval method (Kernel) 2nd 3rd
Exception objects
exceptions
 classes and objects
 exceptions during handling
 methods, handling
 rescue clause and
exclamation point (!) [See also !]
 method names and
exclusion (thread)
exclusive (ranges)
execution of programs
explicit conversions
exponentiation (**) operator 2nd 3rd
expressions 2nd
external iterators 2nd
external_encoding method (IO)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

\f (form feed character) escape
-F command-line option
$F global variable
factory methods
 regular expression
false keyword 2nd
 conditionals and
 else keyword and
fetch method (Hash) 2nd
Fiber.new method
Fiber.yield method
fibers
 advanced features
 argument/return values and
File class
 expand_path method
 fnmatch method
 identical? method
 link method
 open method
 read method
 readlines method
 rename method
 symlink method
__FILE__ keyword
 tracing and
file structure
File.chmod method
File.expand_path method
File.fnmatch method
File.identical? method
File.truncate method
File.unlink method
File.utime method
File::ALT_SEPARATOR method
File::FNM_PATHNAME method
File::Stat method
$FILENAME global variable
files
 bytes and characters, reading
 creating, deleting, and renaming
 opening
 reading entire
 specifying encodings
 testing
 Windows
find method (Enumerable)
find_index method (Enumerable)
first method (Enumerable)
fixed_encoding? method (Regexp)
Fixnum objects 2nd
 arithmetic and
 bit-manipulation operators and
 integer literals and
 object identity and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 references and
flatten method (Set)
flatten! method (Set)
flip-flops
Float class 2nd
Float function (Kernel)
floating-point division
floating-point literals
flow-of-control
 statements
for keyword
 in keyword and
force_encoding method (String)
forking
form feed character (\f) escape
forward slash (/)
 directory separator character
 division operator
 Window directory separator character
freeze method (Object)
frozen objects
functional styles
functions
 composition
 conversion
 deprecated extraction
 enumerable, applying to
 functional programming
 memoization
 parentheses (()) and
 partial application
 predefined global
 reporting
 user-defined global

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

garbage collection 2nd
GC module (garbage collection)
Gem
gem tool 2nd
getter methods
global
 functions
 methods
 variables 2nd 3rd
 $! operator
 load path and
greater than (>) operator 2nd 3rd
greater than or equal (>=) operator 2nd 3rd 4th
group_by method (Enumerable)
gsub method (String)
gsub! method (String)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

hash (#)
 comments and 2nd 3rd
 string interpolation and
Hash.each_pair method
Hash.new method 2nd
hashcodes
hashes 2nd 3rd
 [] operator 2nd
 access with []
 arrays, extracting from
 codes/tables
 creating
 default values
 entries, removing
 eql? method, using
 integer hashcodes
 literals
 named method arguments
 suffixes/prefixes punctuation
--help command-line option
<<here documents
hooks

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

i (regular expression) modifier
-I command-line option 2nd
-i command-line option
id method (deprecated)
id2ref method (ObjectSpace)
idempotent expressions
identifiers
 unicode characters and
if keyword 2nd 3rd
 ?: (conditional) operator
 modifier, as a
immutable objects 2nd
implicit conversions
in keyword
includable namespace module
include? method (Module)
include? method (Range)
inclusive (ranges)
indexes
 arrays
 hashes
indexing arrays
inheritance
 class methods and
 constants
 instance variables
 methods
inherited method
 hooks and
initialize method 2nd 3rd 4th
 factory methods
 object creation and initialization
 private/protected methods and
 singleton classes and
initialize method (Class)
initialize_copy method 2nd
inject iterator
inject method (Enumerable) 2nd
input/output
 input functions
 random access methods
 streams, writing to
inspect method 2nd
installing gems
instance variables 2nd 3rd
 assigning
 classes
 inheritance and
instance_eval method (Object) 2nd 3rd
instance_exec method (Object)
instance_of? method (Object) 2nd
Integer function
Integer function (Kernel)
integers
 literals

http://lib.ommolketab.ir
http://lib.ommolketab.ir

intern method (String)
internal iterator
internal_encoding method (IO)
internationalization
interpreter (Ruby) 2nd
 lexical structure and
 syntactic structure and
introspection [See reflection]
invert method (Hash)
invocations 2nd
IO object
IO-bound programs
IO.new method
IO.open method
IO.pipe method
IO.popen method
IOError
irb (interactive Ruby) tool 2nd 3rd
IronRuby
is_a? method (Object) 2nd
iterators 2nd
 classes/methods and
 concurrent modification and
 custom, writing
 external 2nd
 numeric
 Set class and
 strings

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Java programming language, using equality operators
JRuby

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

-K command-line option 2nd
Kanji characters
$KCODE global variable
Kernel module 2nd 3rd 4th
 looping
Kernel.eval method
Kernel.lambda method
Kernel.proc method
Kernel.rand method
keys
 storing in hashes
keyword literals
keywords
kill method
kill! method
kind_of? method (Object)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

-l command-line option
lambdas 2nd
 invoking
 literals
length method (Array)
length method (String) 2nd
less than (<) operator 2nd 3rd 4th
less than or equal (<=) operator 2nd 3rd 4th
lexical structure 2nd
lifetime of objects
__LINE__ keyword
__ENCODING__ keyword
__LINE__ keyword
 tracing and
literals 2nd
 characters
 hashes
 integer and floating-point
 strings
 arbitrary delimiters and
 mutability and
load function
 executing code
load path
$LOAD_PATH global variable 2nd
$LOADED_FEATURES global variable
local variables
localization
lock method
lookups (methods) 2nd
loop method
loops 2nd
 break keyword
lvalues
 abbreviated assignment and
 parallel assignments and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

m (regular expression) modifier
main method
makeproc method
map iterator
map method (Enumerable)
maps
Marshal.dump method
Marshal.load method 2nd
marshal_dump method
marshal_load method
match method (Regexp/String)
MatchData object
Math module 2nd
Matrix class
Matsumoto, Yukihiro (Matz)
Matz's Ruby Implementation (MRI)
max method
max method (Enumerable)
max_by method (Enumerable)
member? method (Range)
memberships
 testing in ranges
memoization
metaclass [See also eigenclass]
metaprogramming 2nd 3rd 4th 5th
Method class
method method (Object)
method_missing method 2nd 3rd
 XML output and
methods 2nd 3rd 4th
 accessors/attributes and
 aliases
 arguments
 block structure and
 chaining for thread safety
 creating dynamically
 defining, undefining, and aliasing
 exception handling and
 exception objects and
 factory
 identifiers and
 invocations
 invoking
 invoking on objects
 IO random access
 lookup/name resolution
 Method objects
 missing
 mutable
 names
 numeric
 omitting parentheses in
 operator
 overriding
 parentheses (()) and 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 return values and
 simple, defining
 singleton
 defining
 UnboundMethod objects
 undefined, handling
 undefining
 visibility
 public, protected, and private
 setting
min method (Enumerable)
min_by method (Enumerable)
minmax method (Enumerable)
minmax_by method (Enumerable)
minus sign (–) operator 2nd
 unary
missing constants
missing methods
mixin modules
 object order and
modifiers 2nd
 while and until as
Module class 2nd 3rd
Module.nesting method
module_function method
modules 2nd 3rd
 ancestry
 autoloading
 block structure and
 defining
 includable namespaces
 loading and requiring
 mixins as
 namespaces as
modulo (%) operator 2nd 3rd
monkey patching
MRI (Matz's Ruby Implementation)
multibyte characters
multiline comments
multiplication (*) operator 2nd
multithreaded
 programs
 servers
mutable
 keys
 points
mutator methods
Mutex object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

\n (newline) 2nd
n (regular expression) modifier
-n command-line option
name method (Encoding)
name resolution (methods) 2nd
named captures
 local variables, and
 MatchData, and
 references in replacement strings
NameError
namespaces
 includable modules
 nested
NaN (Not-a-Number)
negative numbers
networking
new keyword
new method (Class)
newlines
 \n escape 2nd
 using print methods and
next keyword
next method
nil keyword 2nd 3rd
 <=> operator and
 characters in strings, accessing
 conditionals
 else keyword and
 expressions and
NoMethodError
nonoperators
nonoverridable (=) operator
nonterminating quotation mark (\")
not keyword 2nd
Not-a-Number (NaN)
numbers 2nd
 random
Numeric class 2nd 3rd
numeric iterators

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

o (regular expression) modifier
Object class 2nd
object-oriented
object_id method (Object) 2nd
objects 2nd
 classes/types
 conversion
 copying
 creating and initialization
 equality
 exceptions, creating
 naming
 freezing
 identity
 lifetime
 marshaling
 methods, invoking on
 order
 references
 tainting
ObjectSpace module
one-line scripts
open classes
open method (Kernel)
operators 2nd
 assignments
 defining
 methods
 punctuation and
optional parentheses
options (command-line)
or keyword 2nd
OR operator [See |]
ORIGIN constant
OS-dependent functions
output, displaying
overriding methods

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

-p command-line option
package management systems
parallel assignments 2nd 3rd 4th
parameter defaults
parentheses (())
 function/methods
 if statements and
 method declarations 2nd 3rd
 optional
 parallel assignment and
 required
partial application
partition method (Enumerable)
pattern matching
percent sign [See %]
Perl regular expression syntax
platform (Ruby)
platform dependencies
plus sign (+) 2nd 3rd
 coerce method and
 concatenation and
 strings and
 unary 2nd
Point class, using accessors and attributes
Point3D class 2nd
 class methods, inheritance of
pointers
precedence
 assignment operators and
predicate methods
preemption (thread)
prefixes punctuation
primary expressions
primitive types
print function, IO streams and
print method 2nd
printf function 2nd
priorities (thread)
private methods 2nd 3rd
 overriding
Proc.new method 2nd
processes
procs 2nd
 creating
 equality
 invoking
program encoding
program execution
$PROGRAM_NAME global variable
protected methods
public methods
public_instance_method
public_method method
public_send method
punctuation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 characters
 identifiers and
 suffixes/prefixes
putc method
puts function
puts method (Kernel)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

%Q sequences
%q sequences
question mark (?)
 matching characters with
 method names and
queue data structures
quotation marks (")
 expressions, interpolating into strings

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

\r (carriage return) escape
"r" (reading) file mode
-r command-line option
%r delimiter
"r+" (reading and writing) file mode
raise method
 exceptions and
 exceptions, raising and
rand method
random access methods
Range object
ranges 2nd 3rd 4th [See also .. operator]
 membership, testing
rassoc method (Array)
Rational class 2nd
.rb source files
rdoc tool
read method
read_nonblock method
readbytes method
readline method (IO)
readpartial method
receiver [See also objects]
redo keyword 2nd 3rd
references
 constant
 object
 variable
reflection 2nd
Regexp [See also regular expressions]
Regexp objects
 =~ operator and
 compile method
 new method
 textual patterns and
Regexp.escape method
Regexp.last_match method
Regexp.union method
regular expressions
 literals
 named backreferences
 named captures, in 2nd
 syntax
reject method (Enumerable)
reject! method
reject! method (Hash)
remainder method (Numeric)
remove_method method (Module)
replace method (Hash)
require method 2nd
 code, executing
required parentheses
rescue keyword
 exceptions, handling
 method, class, and module definitions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 methods and exception handling
 retry statement and
 statement modifiers and
reserved words
respond_to? method 2nd
retry keyword 2nd 3rd
 rescue clause and
return keyword 2nd 3rd
 blocks and
 method values and
 next statement and
ri tools 2nd
 comments and
rounding errors
Rubinius
Ruby 1.8
 $LOAD_PATH
 blocks and
 blocks, passing arguments
 character literals
 encoding, specifying
 enumerators
 Exception objects and
 hashes and 2nd
 inheritance and class variables
 installing gem
 iterating strings
 modules as mixins and
 multibyte characters and
 object identity and
 parameters, mapping arguments to
 parentheses, required
 platform dependencies and
 regular expressions
 retry statement and
 string operators
 text in
Ruby 1.9
 $LOAD_PATH
 === operator and 2nd
 arrays, passing to methods
 ASCII and BINARY encodings and
 BasicObject class and 2nd
 bindings and
 blocks and
 character literals
 const_get method/const_defined? method, passing false
 enumerable objects and
 eval method and
 fibers for coroutines and
 filenames and
 gem and
 gem command and
 hashes and
 implementation and
 invoking methods and
 iterating strings
 mapping arguments to
 modules, loading
 multibyte characters and
 operators and
 Proc objects and
 public_instance_method and
 Regexp methods and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 respond_to method (Object) and
 Set class and
 stack traces and
 string literals and
 Symbol class and
 text and
 thread scheduling and
 to_proc method and
 whitespace and
ruby command
Ruby operator
 splat operator and
Ruby platform
ruby-lang.org
RUBY_PATCHLEVEL constant
RUBY_PLATFORM constant
RUBY_RELEASE_DATE constant
RUBY_VERSION constant
RubyGems 2nd
-rubygems command-line option
RUBYOPT environment variable
runnable threads
rvalues
 parallel assignments and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

\S (nonwhitespace) regexp character class
s (regular expression) modifier
\s (space character)
\s (whitespace) regexp character class
-S option
-s option
%s sequences
$SAFE global variable
security
select method (Enumerable) 2nd
self keyword 2nd
 class methods and
 protected methods and
self. prefix
semicolons (;), as statement terminators 2nd
semicoroutines
send method (Object)
sequential execution
set_encoding method (IO)
set_trace_func method (Kernel)
sets
 adding/deleting elements
setter methods 2nd 3rd
shared variables
shebang comments
shell commands, using backtick command execution
shift method (Hash)
shift operator [See <<]
side effects of assignments
signals, trapping
simple methods
single quotes ('), using for string literals
single-quoted string literals
singleton classes
singleton methods 2nd 3rd 4th
singleton_methods method (Object)
size method (Array)
size method (String) 2nd
SizedQueue data structures
SJIS
SJIS characters
slash (/)
 regular expressions and
sleeping threads
slice method (String)
slices (subarrays)
.so files, loading extensions
sort_by method (Enumerable)
SortedSet class
source encoding
space character (\s)
spaces
splat operator
split method (String)
sprintf function 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

square-bracket array-index ([]) 2nd 3rd 4th 5th
 access to arrays/hashes
 strings, indexing
StandardError 2nd
statement modifiers
 rescue keyword and
statement terminators
statements 2nd
$stderr global
STDERR stream 2nd
$stdin global
STDIN stream 2nd 3rd
$stdout global
STDOUT stream 2nd 3rd
store method (Hash)
streams
 closing, flushing, and testing
 encoding and
 opening
 reading from
 text processing globals
 writing to
String class 2nd 3rd
 =~ operator and
 Enumerable module and
 new method
String.new method
StringIO class 2nd
strings
 encodings 2nd
 evaluating
 formatting
 iterating
 literals 2nd 3rd
 operators
 pattern matching and
structure of programs
sub method (String)
sub! method (String)
subarrays (slices)
subclassing
substrings
succ method
Sudoku
suffixes punctuation
super method
superclass method
 hooks and
superclass method (Class)
switch statement
symbols 2nd 3rd
synchronize method (Mutex)
synchronized
 blocks
 objects
syntactic structure
syntax, using parentheses and
sysread method
SystemCallException

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

\t (tab) 2nd
-T option
tab 2nd
 \t escape
tables (hash)
tainted data
tainted? method
take method (Enumerable)
take_while method (Enumerable)
TCPServer class
TCPSocket class
TCPSocket.open method
terminated normally thread state
terminated with exception thread state
test method (Kernel)
text 2nd [See also strings]
 formatting
 global
text processing options
thawing objects
Thread class
 list method
 new method 2nd
 pass method
Thread.abort_on_exception method
Thread.new method
ThreadGroup.list method
threads
 exclusion and deadlock
 of execution
 lifecycle
 safety
 scheduling
 states
 variables and
throw statement 2nd
tilde [See ~]
Time class
times method
times method (Integer)
to_a method
 arrays and
to_a method (Enumerable)
to_ary method
to_enum method
to_hash method
to_int method
to_path method
to_proc method (Symbol)
to_s method 2nd 3rd
to_s method (Object)
to_set method (Enumerable)
to_splat method
to_sym method (String)
tokens

http://lib.ommolketab.ir
http://lib.ommolketab.ir

top-level environment
TOPLEVEL_BINDING constant
trace_var method (Kernel)
tracing
TRUE constant
true keyword 2nd
Try Ruby tutorial
TypeError
types (objects) 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

u (regular expression) modifier
\u (Unicode) escape 2nd
UCS (Universal Character Set)
UDPServer class
unary +/– 2nd
UnboundMethod class
undef keyword
undefine_finalizer method (ObjectSpace)
undefining methods
underscore (_)
 constants
 integer literals, using
ungetc method
unhandled exceptions
Unicode
 const_missing method and
Unicode characters
 escapes 2nd
uninitialized variables
union method
Universal Character Set (UCS)
unless keyword 2nd
unreachable objects
until keyword
 modifiers, as
 while loops and
untrace_var method (Kernel)
upto method 2nd
upto method (Integer)
UTF-8 encoding 2nd 3rd 4th

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

\v (vertical tab)
-v command-line option
valid_encoding? method (String)
values, storing in hashes
variable-length argument lists and
variables
 $! (global)
 assigning to
 blocks and
 classes
 instance
 method arguments and
 object references and
 querying, setting, and testing
 references
 shared
 threads and
 uninitialized
Vector class
--verbose command-line option
$VERBOSE global variable
--version command-line option
vertical tab (\v)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

\W (nonword) regexp character class
\w (word) regexp character class
"w" (writing) file mode
-W command-line option
-w command-line option
"w+" (writing and reading) file mode
-W0 command-line option
-W2 command-line option
weak reference objects
when keyword
while keyword
while loops 2nd 3rd
 modifiers, as
 retry statements and
whitespace
with_index (Enumerable)
with_index method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

x (regular expression) modifier
-X option
-x option
%x syntax
XML, using method_missing method and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

YAML
YARV
yield statement
 blocks and 2nd
 coordinates, enumerating
 custom iterators, writing
 method invocations and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

\Z regexp anchor
\z regexp anchor
ZeroDivisionError
zip method (Enumerable)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	The Ruby Programming Language
	Table of Contents
	Copyright
	Preface
	Chapter 1. Introduction
	Section 1.1. A Tour of Ruby
	Section 1.2. Try Ruby
	Section 1.3. About This Book
	Section 1.4. A Sudoku Solver in Ruby

	Chapter 2. The Structure and Execution of Ruby Programs
	Section 2.1. Lexical Structure
	Section 2.2. Syntactic Structure
	Section 2.3. File Structure
	Section 2.4. Program Encoding
	Section 2.5. Program Execution

	Chapter 3. Datatypes and Objects
	Section 3.1. Numbers
	Section 3.2. Text
	Section 3.3. Arrays
	Section 3.4. Hashes
	Section 3.5. Ranges
	Section 3.6. Symbols
	Section 3.7. True, False, and Nil
	Section 3.8. Objects

	Chapter 4. Expressions and Operators
	Section 4.1. Literals and Keyword Literals
	Section 4.2. Variable References
	Section 4.3. Constant References
	Section 4.4. Method Invocations
	Section 4.5. Assignments
	Section 4.6. Operators

	Chapter 5. Statements and Control Structures
	Section 5.1. Conditionals
	Section 5.2. Loops
	Section 5.3. Iterators and Enumerable Objects
	Section 5.4. Blocks
	Section 5.5. Altering Control Flow
	Section 5.6. Exceptions and Exception Handling
	Section 5.7. BEGIN and END
	Section 5.8. Threads, Fibers, and Continuations

	Chapter 6. Methods, Procs, Lambdas, and Closures
	Section 6.1. Defining Simple Methods
	Section 6.2. Method Names
	Section 6.3. Methods and Parentheses
	Section 6.4. Method Arguments
	Section 6.5. Procs and Lambdas
	Section 6.6. Closures
	Section 6.7. Method Objects
	Section 6.8. Functional Programming

	Chapter 7. Classes and Modules
	Section 7.1. Defining a Simple Class
	Section 7.2. Method Visibility: Public, Protected, Private
	Section 7.3. Subclassing and Inheritance
	Section 7.4. Object Creation and Initialization
	Section 7.5. Modules
	Section 7.6. Loading and Requiring Modules
	Section 7.7. Singleton Methods and the Eigenclass
	Section 7.8. Method Lookup
	Section 7.9. Constant Lookup

	Chapter 8. Reflection and Metaprogramming
	Section 8.1. Types, Classes, and Modules
	Section 8.2. Evaluating Strings and Blocks
	Section 8.3. Variables and Constants
	Section 8.4. Methods
	Section 8.5. Hooks
	Section 8.6. Tracing
	Section 8.7. ObjectSpace and GC
	Section 8.8. Custom Control Structures
	Section 8.9. Missing Methods and Missing Constants
	Section 8.10. Dynamically Creating Methods
	Section 8.11. Alias Chaining
	Section 8.12. Domain-Specific Languages

	Chapter 9. The Ruby Platform
	Section 9.1. Strings
	Section 9.2. Regular Expressions
	Section 9.3. Numbers and Math
	Section 9.4. Dates and Times
	Section 9.5. Collections
	Section 9.6. Files and Directories
	Section 9.7. Input/Output
	Section 9.8. Networking
	Section 9.9. Threads and Concurrency

	Chapter 10. The Ruby Environment
	Section 10.1. Invoking the Ruby Interpreter
	Section 10.2. The Top-Level Environment
	Section 10.3. Practical Extraction and Reporting Shortcuts
	Section 10.4. Calling the OS
	Section 10.5. Security

	Colophon
	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

