
Unicode Explained

By Jukka K. Korpela

...

Publisher: O'Reilly

Pub Date: June 2006

Print ISBN-10: 0-596-10121-X

Print ISBN-13: 978-0-59-610121-3

Pages: 678

Table of Contents | Index

Fundamentally, computers just deal with numbers. They store letters and other characters by
assigning a number for each one. There are hundreds of different encoding systems for mapping
characters to numbers, but Unicode promises a single mapping. Unicode enables a single software
product or website to be targeted across multiple platforms, languages and countries without re-
engineering. It's no wonder that industry giants like Apple, Hewlett-Packard, IBM andMicrosoft have
all adopted Unicode.

Containing everything you need to understand Unicode, this comprehensive reference from O'Reilly
takes you on a detailed guide through the complex character world. For starters, it explains how to
identify and classify characters - whether they're common, uncommon, or exotic. It then shows you
how to type them, utilize their properties, and process character data in a robust manner.

The book is broken up into three distinct parts. The first few chapters provide you with a tutorial
presentation of Unicode and character data. It gives you a firm grasp of the terminology you need
to reference various components, including character sets, fonts and encodings, glyphs and
character repertoires.

The middle section offers more detailed information about using Unicode and other character codes.
It explains the principles and methods of defining character codes, describes some of the widely
used codes, and presents code conversion techniques. It also discusses properties of characters,
collation and sorting, line breaking rules and Unicode encodings. The final four chapters cover more
advanced material, such
as programming to support Unicode.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You simply can't afford to be without the nuggets of valuable information detailed in Unicode
Explained.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Unicode Explained

By Jukka K. Korpela

...

Publisher: O'Reilly

Pub Date: June 2006

Print ISBN-10: 0-596-10121-X

Print ISBN-13: 978-0-59-610121-3

Pages: 678

Table of Contents | Index

 Unicode Explained

 Preface

 Part I: Working with Characters

 Characters as Data

 Section 1.1. Introduction to Characters and Unicode

 Section 1.2. What's in a Character?

 Section 1.3. Variation of Writing Systems

 Section 1.4. Glyphs and Fonts

 Section 1.5. Definitions of Character Repertoires

 Section 1.6. Numbering Characters

 Section 1.7. Encoding Characters as Octet Sequences

 Section 1.8. Working with Encodings

 Section 1.9. Working with Fonts

 Section 1.10. Summaries

 Writing Characters

 Section 2.1. Method Varieties

 Section 2.2. Keyboard Variation and Settings

 Section 2.3. Virtual Keyboards

 Section 2.4. Program Commands

 Section 2.5. Character Maps

 Section 2.6. Replacements on the Fly

 Section 2.7. Special Techniques

 Section 2.8. Escape Sequences

 Section 2.9. Specialized Editors

 Section 2.10. Exercise

 Character Sets and Encodings

 Section 3.1. Good Old ASCII

 Section 3.2. ISO 8859 Codes

 Section 3.3. Windows Latin 1 and Other Windows Codes

 Section 3.4. Other 8-bit Codes

 Section 3.5. Unicode and UTF-8

 Section 3.6. Encodings for East Asian Language

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 3.7. Converters and Transcoding

 Section 3.8. Using Character Codes

 Part II: A Systematic Look at Unicode

 The Structure of Unicode

 Section 4.1. Design Principles

 Section 4.2. Versions of Unicode

 Section 4.3. Coding Space

 Section 4.4. Unicode Terms

 Section 4.5. Guide to the Unicode Standard

 Section 4.6. Unicode and Fonts

 Section 4.7. Criticism of Unicode

 Section 4.8. Questions and Answers

 Properties of Characters

 Section 5.1. Character Classification

 Section 5.2. An Overview of Properties

 Section 5.3. Compositions and Decompositions

 Section 5.4. Normalization

 Section 5.5. Case Properties

 Section 5.6. Collation and Sorting

 Section 5.7. Text Boundaries

 Section 5.8. Directionality

 Section 5.9. Line-Breaking Properties

 Section 5.10. Unicode Conformance Requirements

 Section 5.11. Effects on Choosing Characters

 Unicode Encodings

 Section 6.1. Unicode Encodings in General

 Section 6.2. UTF-32 and UCS-4

 Section 6.3. UTF-16 and UCS-2

 Section 6.4. UTF-8

 Section 6.5. Byte Order

 Section 6.6. Conversions Between Unicode Encodings

 Section 6.7. Other Encodings

 Section 6.8. Auto-Detecting the Encoding

 Section 6.9. Choosing an Encoding

 Part III: Advanced Unicode Topics

 Characters and Languages

 Section 7.1. Writing Systems and IT

 Section 7.2. Character Requirements of Languages

 Section 7.3. Transliteration and Transcription

 Section 7.4. Language Metadata

 Section 7.5. Languages and Fonts

 Character Usage

 Section 8.1. Basics of Character Usage

 Section 8.2. ASCII (Basic Latin)

 Section 8.3. Latin-1 Supplement (ISO 8859-1)

 Section 8.4. Other Latin Letters

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 8.5. Other European Alphabetic Scripts

 Section 8.6. Diacritic Marks

 Section 8.7. Letterlike Symbols

 Section 8.8. General Punctuation

 Section 8.9. Line Structure Control

 Section 8.10. Mathematical and Technical Symbols

 Section 8.11. Other Blocks

 The Character Level and Above

 Section 9.1. Levels of Text Representation and Processing

 Section 9.2. Characters and Markup

 Section 9.3. Media Types for Text

 Characters in Internet Protocols

 Section 10.1. Information About Encoding

 Section 10.2. Characters in MIME

 Section 10.3. Content Negotiation and Multilingual Sites

 Section 10.4. Characters in Protocol Headers

 Section 10.5. Characters in Domain Names and URLs

 Characters in Programming

 Section 11.1. Characters in Computer Languages

 Section 11.2. Character and String Data

 Section 11.3. The Preparedness Principle

 Section 11.4. Character Input and Output

 Section 11.5. Processing Form Data

 Section 11.6. Identifiers, Patterns, and Regular Expressions

 Section 11.7. International Components for Unicode (ICU)

 Section 11.8. Using Locales

 Tables for Writing Characters

 Section A.1. Additional Notes

 About the Author

 Colophon

 Index

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Unicode Explained
by Jukka K. Korpela

Copyright © 2006 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Simon St.Laurent

Production Editor: T/K

Copyeditor: Linley Dolby

Proofreader: T/K

Indexer: Jukka K. Korpela

Compositor: Jukka K. Korpela

Cover Designer: Karen Montgomery

Interior Designer: David Futato

Cover Illustrator: T/K

Illustrators: Robert Romano, Jessamyn Read, and Lesley Borash

Printing History:

April 2006: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. Unicode Explained, the image of a long-tailed glossy starling, and related trade
dress are trademarks of O'Reilly Media, Inc.

Unicode™ is a trademark of the Unicode Consortium.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 0-596-10121-X

[M]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Preface
Characters often seem simple on the surface, but they are at the heart of a wide variety of data
communications and data processing problems, including text processing, typesetting, styling text,
text databases, and the transmission of textual information.

Computers were invented just for computing. For quite some time, they were so expensive that their
use was limited to the most important numerical calculations that would have been impossible
otherwise. Text was used mainly to add legends and headings to numeric output, often using a very
limited character repertoire, maybe even lacking lowercase letters. As the cost of computing has
dropped, computers have become extensively used for human communication in text format. Most
people think of computers as communicators rather than calculators. People want to communicate in
different languages, and we also use notation systems that may require rich repertoires of
characters.

Unicode was developed to help make this both possible and smooth. Unicode was first defined in the
early 1990s, but its use has progressed fairly slowly. Modern computers often use Unicode internally,
but applications and users still tend to work with older character codes, which are often very limited.
It has been rather complicated to work with Unicode in text processing, for example. At long last,
however, these problems are becoming easier to solve. Information technology is becoming really
multinational, supporting different languages, writing systems, and conventions. IT products need to
be at least potentially suitable for use in different cultural environments, or "localizable." Unicode
itself is just part of the technical basis for all this, but it is an indispensable part.

The technological basis of using Unicode, though still imperfect, is much better than most people's
capabilities for making use of it. Even computer professionals often don't know how to work with
large repertoires of characters. The bottleneck is lack of a basic knowledge and skills, not a lack of
hardware or software.

The concept of a character is one of the most difficult basic concepts in information technology, yet
fundamental to text processing, databases, the Web, XML-based markup, internationalization, and
other areas. People who encounter Unicode when studying such topics often run into serious
difficulties. They mostly find material that assumes that the reader already knows what Unicode is. It
might be even worse: it is very easy to find incorrect or seriously confusing information about
Unicode and characters, even in new books. People find themselves in a maze of twisty little
passages of characters, fonts, encodings, and related concepts.

This book guides you through the Unicode and character world. It explains how to identify and
classify characterswhether common, uncommon, or exoticand to type them, to use their properties,
and to process character data in a robust manner. It helps you to live in a world with several
character encodings.

Audience

Readers of this book are expected to be familiar with computers and how computers work, broadly

http://lib.ommolketab.ir
http://lib.ommolketab.ir

speaking. They are not expected to know computer programming, though many readers will use the
contents in system design and programming.

This book is intended for people with different backgrounds and needs, including:

An end user of multilingual or specialized text-related applications. For example, anyone who
works with texts containing mathematical or special symbols, or uses a multilingual database.
These readers should probably explore Chapters 1 through 3 first, practice with that content,
and then read Chapters 7 and 8.

An IT professional who needs to understand Unicode and work with it. The need might arise
from text data conversion tasks, from creating internationalized software or web sites, or from
system design or programming in an environment that uses Unicode.

An IT teacher who needs a better understanding of character code issues, both to understand
the subject area better and to disseminate correct information. There is rather little about
character codes in curricula, and this is largely a chicken-and-egg problem: there are no good
textbooks, and teachers themselves don't know the topic well enough. The first three chapters
of the book could provide the foundation for a course, optionally coupled with other chapters
relevant to a particular curriculum.

An IT student, hobbyist, or professional who keeps hearing about Unicode and needs to work
with technologies that use Unicode, such as XML.

Assumptions and Approach

Previous knowledge about character codes is not assumed. If you already know about them, you may
need to change your mental model a bit.

This book starts at the ordinary computer user's level. Thus, it unavoidably contains explanations
that look trivial to some readers. However, these discussions might help in explaining things to others
when needed. The book also contains practical instructions on actually working with "special"
characters, and an IT professional might find this irrelevant. However, studying such issues and
practicing with them will help a lot in creating a background for more technical work with the
infrastructures of character usage.

In explaining practical ways of doing things, this book often uses Microsoft Windows and Microsoft
Office programs as examples. This is because so many people use such software and need to know
how to use Unicode in them. Moreover, even if you personally prefer other software, odds are good
that you need to work with Windows and Office at times. Information on using Unicode in some other
environments can be found in the following:

Markus Kuhn: "UTF-8 and Unicode FAQ for Unix/Linux," which is available at
http://www.cl.cam.ac.uk/~mgk25/unicode.html

Tom Gewecke: "Unleash Your Multilingual Mac," which is available at
http://hometown.aol.com/tg3907/mlingos9.html

After the first three chapters, this book gets more technical, and many of the issues discussed are

http://www.cl.cam.ac.uk/~mgk25/unicode.html
http://hometown.aol.com/tg3907/mlingos9.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

abstract and even formal. Therefore, understanding most of the material in the initial chapters is
essential for the rest. To most people, it is very difficult to read about abstract things if you lack a
concrete background that lets you map the abstract concepts and rules to specific practice.

This book explores Unicode processing generally, but cannot go into great detail on all parts of the
Unicode character space. For much more information on ideographic characters and processing of
East Asian languages, see Ken Lunde's CJKV Information Processing (O'Reilly).

Except for the last chapter (Chapter 11), this book does not assume that the reader knows about
computer programming. However, some references to programming are made throughout the book.

Contents of This Book

The book has three parts:

Part I

Chapters 1 through 3 provide a self-contained tutorial presentation of Unicode and character
data. It is aimed at anyone who has a basic understanding of computing, and introduces
characters in information technology, with some historical background. Although much of this
part is well-known to many IT professionals, it provides a consistent terminology that could
give professionals (and especially teachers) a model for talking to laymen about characters.

Part II

Chapters 4 through 6 give detailed information about using Unicode and other character codes.
These chapters are especially aimed at computer science students and teachers, information
technology professionals, and people involved in linguistic data processing and databases
containing string data. Together with the first part, this covers what every IT professional
should know about characters. It explains the principles and methods of defining character
codes, describes some of the widely used codes, presents code conversion techniques, and
takes a detailed look at Unicode. This includes properties and classification of characters,
collation and sorting, line breaking rules, and Unicode encodings.

Part III

Chapters 7 through 11 discuss relatively independent topics, to be read according to each
reader's specific needs. They are topics that are important and even crucial to many, but not
necessary to all. For example, if you need to author or administer multilingual web sites, you
should read the section on characters in HTML and XHTML. To be honest, I would suggest that
most people need to read it at least twice. Character code problems are intrinsically difficult,
and very widely misunderstood. It takes time to digest the concepts and principles before you
can really start working with the algorithms and tools.

The chapters can be characterized as follows:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 1, Characters as Data

This chapter describes, at a general level but exemplified by simple and typical cases, how
computers represent and process characters. It defines fundamental concepts like character
set, code position, encoding, glyph, and font. At this point, Unicode is the only character set
discussed, to avoid confusion. To make the discussion more concrete and motivating, some
features of writing systems are described. The historical development of character codes is
presented to the extent that is necessary for understanding why even apparently simple
characters, such as dashes and é, still cause problems. The use of different encodings is
illustrated by examples of viewing email messages and web pages, using commands to select
the encoding if needed. The basic methods for finding, installing, and selecting fonts are
described.

Chapter 2, Writing Characters

This is a practical presentation of some common methods of entering characters, including
keyboard variation, special keys, changing keyboard settings, virtual keyboards, character
maps, automatic "correction" of character sequences, program commands, and different
escape notations. It is largely a collection of recipes, useful, for example, to people who work
daily with texts containing "difficult" characters. For this reason, some quick reference tables
for very commonly needed characters are presented. However, it is also relevant to IT
specialists who need to understand the possible input methods when designing applications and
systems. The examples used are mostly from MS Windows and MS Office environments but
various alternatives (such as "Unicode editors") are also discussed. HTML and XML character
reference and entity reference techniques are presented as well. The chapter ends with an
exercise for writing some specialized texts using some of the techniques presented.

Chapter 3, Character Sets and Encodings

This chapter describes some very widely used character codes and encodings, mainly ASCII,
ISO-8859-1 and other ISO-8859 standards, Windows Latin 1 and relatives, and UTF-8.
(However, the semantics of characters are described in Chapter 8.) Some less common
encodings such as DOS code pages are described in order to give some basics for working with
legacy data and legacy systems. A few widely used multibyte encodings for East Asian
languages are briefly described, too. The section describes how conversions between the
encodings can be performed, either with the functions of commonly used programs or separate
converters. It also discusses practical feasibility of the character sets in different contexts, such
as email, Internet discussion forums, and document interchange. MIME is presented to the
extent needed for dealing with the charset issue.

Chapter 4, The Structure of Unicode

An in-depth presentation of the fundamentals of Unicode, including design principles, coding
space, and special terminology. The nature of Unicode as an umbrella standard based on a
large number of older standards is explained, as well as its relationship to ISO 10646. The
unification principle as well as criticism of it is described.

Chapter 5, Properties of Characters

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This chapter describes the various properties defined for characters in the Unicode standard
and their relationship with some programming concepts. This is, in part, a companion to the
much more formal definitions in the standard itself. In particular, compatibility, decompositions,
collation, sorting, directionality, and line-breaking properties as well as Unicode normalization
forms are described.

Chapter 6, Unicode Encodings

This chapter describes UTF-8 and other Unicode encodings in detail, including the algorithmic
descriptions and the practical considerations on choosing an encoding.

Chapter 7, Characters and Languages

The chapter describes some IT-related requirements of different languages and writing
systems, such as how to deal with right-to-left writing. This includes conversions between
writing systems (transliteration or transcription). The interaction between encoding, language,
and font settings is described. Moreover, language codes, language metadata, and language
markup are described, illustrated with XML examples.

Chapter 8, Character Usage

This chapter consists of sections devoted to different character blocks and collections that are
practically important especially in the Western world. The first section is more generic and
discusses the relationship of character standards, orthography, and typography. (Even in
purely English-language text, typographically correct punctuation requires characters beyond
ASCII.) The chapter contains detailed information about the semantics and usage of individual
characters, although the level of detail depends greatly on the importance of the character. All
the major blocks are briefly characterized to give an overview, but the emphasis is on ASCII,
different Latin supplements, general punctuation, and mathematical and technical symbols.

Chapter 9, The Character Level and Above

Characters form but one "protocol level," above which there are higher levels such as markup
level, record structure level, and application level. This chapter provides guidelines for the
coding of information at different levels when there is choice, such as using markup versus
character difference (largely still an open problem despite the efforts of the W3C and the
Unicode Consortium). This is particularly important for processing of legacy data and for
avoiding overly fine distinctions at the character level. The chapter ends with a section on
media types for text and the difference between plain text, other subtypes of text, and
application types such as text-processing formats.

Chapter 10, Characters in Internet Protocols

This chapter describes how character encoding information is transmitted using Internet
protocols, including MIME and HTTP, and how content negotiation works on the Web (for the
purposes of negotiating on character encoding). This constitutes a basis for a presentation of
some fundamentals of multilingual web authoring at the technical level. Moreover, the use of
characters in the protocols themselves, such as Internet message headers and URLs, is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

described, with focus on the partial shift from pure ASCII to Unicode. In particular, the
technical basis of Internationalized Domain Names and Internationalized URLs is described.

Chapter 11, Characters in Programming

This chapter presents a number of ways to represent character and string data in different
programming languages, such as FORTRAN, C, C#, Perl, ECMAScript, and Java™, as well as
other computer languages such as XML and CSS. It emphasizes both the differences and
similarities, which are illustrated with sample programs to perform simple manipulation of
string data. The chapter is especially intended for people who teach programming but also for
people who study or practice programming in an environment where character data is
essential. Programs that cannot distinguish, for example, between an empty string, a space
character, the NUL character, and the digit zero will have large problems in a Unicode
environment. The chapter also examines requirements for modern processing of character
data, including the principle of being prepared to handle a large character repertoire and that
of separating internal encoding from input and output encodings. The International
Components for Unicode (ICU) activity and its results are described. The chapter also contains
a section on Common Locale Data Repository (CLDR) and its future use in disciplined
programming. This largely goes beyond the character concept but is motivated by the use of
Unicode in CLDR and by the organizational connection with the Unicode Consortium.

Appendix, Tables for Writing Characters

The Appendix provides some commonly needed information useful for entering characters. It
includes tables of key sequences, as well as a mapping chart from the Symbol font to Unicode.

Self-Assessment Test

To estimate your progress in knowledge about Unicode, you can perform the following self-
assessment test. Read the following statements and comment on each of them with one of the
following alternatives (using whatever symbols you find convenient, such as those in parentheses): "I
do not understand what the statement says" (??), "I know what it says but I do not know whether it
is true" (?), "true" (+), and false (). Moreover, for any "true" or "false" answer, consider what you
would present as an argument in a discussion in which someone says you're wrong.

At any point in reading the book, and especially when you think you have learned enough, reread the
statements and perform the test again. You might regard the following as a spoiler, so it has been
written backward so that you can hopefully ignore it at this point if you like. It reveals what the test
is about: .elpoep ot siht nialpxe ot deen thgim uoy dna, gnorw era yeht yhw wonk ot laitnesse si ti
ecnis, hguoht, siht gniwonk htiw deifsitas eb ton dluohs uoY .eslaf lla era yeht tub, skoob ecnerefer ni
neve edam ylnommoc era stnemetats ehT

Unicode is a 16-bit character code.1.

Unicode contains all the characters used in the languages of the world.2.

Unicode is meant to replace all the other character codes.3.

4.

5.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.

3.

Unicode cannot be used in real applications now; it is just a future plan.4.

Using Unicode, the size of a text file gets doubled.5.

We don't need Unicode if we write only in English.6.

Unicode consists of 256 code pages.7.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Indicates computer code in a broad sense. This includes commands, options, switches,
variables, attributes, keys, functions, types, classes, namespaces, methods, modules,
properties (does not include Unicode "properties"), parameters, values, objects, events, event
handlers, XML tags, HTML tags, macros, the contents of files, and the output from commands.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values determined by
context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

The following special notations are used in this book to refer to characters:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

"x"

Refers to character x by showing it within double quotation marks. For clarity, characters that

might be confused with other characters in the texti.e., letters az, AZ, and some common
punctuation, such as hyphens (-), commas (,), and periods (.)'are enclosed in quotation marks.

U+nnnn

Refers to a character (or a code point) by its Unicode number. The number nnnn is written in

hexadecimal notation, usually in four digits using leading zeros if needed.

Web sites and pages are mentioned in this book to help the reader locate online information that
might be useful. Normally both the address (URL) and the name (title, heading) of a page are
mentioned. Some addresses are relatively complicated, but you can probably locate the pages easily
by using your favorite search engine to find a page by its name, typically by typing it inside quotation
marks. This may also help if the page cannot be found by its address; it may have moved elsewhere,
so the name may work.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in
your programs and documentation. You do not need to contact us for permission unless you're
reproducing a significant portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "Unicode Explained by Jukka K. Korpela. Copyright 2006 O'Reilly
Media, Inc., 0-596-10121-X."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to
contact us at permissions@oreilly.com.

Safari® Enabled

When you see a Safari® Enabled icon on the cover of your favorite technology book,
that means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search
thousands of top tech books, cut and paste code samples, download chapters, and find quick answers
when you need the most accurate, current information. Try it for free at http://safari.oreilly.com.

http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information.
You can access this page at:

http://www.oreilly.com/catalog/unicode

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see
our web site at:

http://www.oreilly.com

Acknowledgments

The presentation of problems, solutions, and ideas owes much to people with whom I have been in
contact in character-related matters through years, such as (roughly in chronological order by their
influence) Timo Kiravuo, Alan J. Flavell, Arjun Ray, Roman Czyborra, Bob Bemer, and Erkki I.
Kolehmainen.

The reviewers, Andreas Prilop, John Cowan, and Jori Mäntysalo gave a very substantial amount of
valuable input, both on content and on presentation. Simon St.Laurent has had an active and
supportive role through the entire process as an editor.

http://www.oreilly.com/catalog/unicode
http://www.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Part I: Working with Characters
This part describes the fundamentals of representing character data in computers, including
Unicode and other important character codes. It also discusses several practical ways of writing
Unicode characters.

Chapter 1, Characters as Data

Chapter 2, Writing Characters

Chapter 3, Character Sets and Encodings

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Characters as Data
Computers were originally built to process numbers. Over the last few decades, they've become
increasingly better at handling text as well, but the transition from human scribbling and beautiful
typography to bits and bytes has been complicated. Going from a paper document to a computerized
representation of that document means learning about how the computer handles text, and requires
learning about characters, character codes, fonts, and encodings. Unicode provides a set of solutions
for some of these problems, while retaining presentation flexibility for making text look as we feel it
should.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.1. Introduction to Characters and Unicode

Computer programs use two basic data types in most of their processing: characters and numbers.
These basic types are combined in various ways to create strings, arrays, records, and other data
structures. (Inside the computer, characters are numbers, but the ways that these numbers are
handled is very different from numbers meant for calculation.)

Early computers were largely oriented toward numerical computation. However, characters were
used early on in administrative data processing, where names, addresses, and other data needed to
be stored and printed as strings. Text processing on computers became more common much later,
when computers had become so affordable that they replaced typewriters. At present, most text
documents are produced and processed using computers.

Originally, character data on computers had limited types and uses. For economic and technical
reasons, the repertoire of characters was very small, not much more than the letters, digits, and
basic punctuation used in normal English. This constitutes but a tiny fraction of the different
characters used in the world's writing systemsabout 100 characters out of literally myriads (tens of
thousands) of characters. Thus, there was a growing need for a possibility of presenting and handling
a large character repertoire on computers; Unicode is the fundamental answer to that.

1.1.1. Why Unicode?

Since you are reading this book, I assume you already have sufficient motivation to learn about
Unicode. Nevertheless, a short presentation follows that explains the benefits of Unicode.

Computers internally work on numbers. This means that characters need to be coded as numbers. A
typical arrangement is to use numbers from 0 to 255, because that range fits into a basic unit of data
storage and transfer, called a (8-bit) byte or octet .

When you define how those numbers correspond to characters, you define a character code. There
are quite a number of character codes defined and used in the world. Most of them have the same
assignments for numbers 0 to 127, used for characters that appear in English as well as in many
other languages: the letters az plus their uppercase equivalents, the digits 09, and a few punctuation
marks. Many of the code numbers in this so-called ASCII set of characters are used for various
technical purposes.

For French texts, for example, you need additional characters such as accented letters (é, ô, etc.).
These can be provided by using code numbers in the range 128255 in addition to the ASCII range,
and this gives room for letters used in most other Western European languages as well. Thus, you
can use a single character code, called Latin 1, even for a text containing a mixture of English,
French, Spanish, and German, because these languages all use the Latin characters with relatively
few additions.

However, you quickly run out of numbers if you try to cover too many languages within 256
characters. For this reason, different character codes were developed. For example, Latin 1 is for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Western European languages, Latin 2 for several languages spoken in Central and Eastern Europe,
and additional character codes exist for Greek, Cyrillic, Arabic, etc. When only one language is used,
you can usually pick up a suitable character code and use it. In fact, someone probably did that for
you when designing the particular computer system (including software) that you use. You may have
used a particular character code for years without knowing anything about it.

Character codes that use only the code numbers from 0 to 255 are called 8-bit codes, since such
code numbers can be represented using 8 bits.

Things change when you need to combine languages in one document and the languages are
fundamentally different in their use of characters. In an English-German or French-Spanish glossary,
for example, you can use Latin 1. In English-Greek data, you can use one of the character codes
developed for Greek, since these codes contain the ASCII characters. But what about French-Greek?
That's not possible the same way, since the character codes discussed above do not support such a
combination. A code either has Latin accented letters in the "upper half" (the range of 128255), or it
has Greek letters (α, β, γ, etc.) there. It would be impractical, and often impossible, to define 256-
character codes for all the possible language combinations.

As you probably know, the number of characters needed for Chinese and Japanese is very large.
They just would not fit into a set with only 256 characters. Therefore, different strategies are used.
For example, 2 bytes (octets) instead of one might be used for one character. This would give 65,536
possible numbers for a character. On the other hand, the character codes developed for the needs of
East Asian languages do not contain all the characters used in the world.

The solution to such problems, and many other problems in the world of growing information
exchange, is the introduction of a character code that gives every character of every language a
unique number. This number does not depend on the language used in the text, the font used to
display the character, the software, the operating system, or the device. It is universal and kept
unchanged. The range of possible numbers is set sufficiently high to cover all the current and future
needs of all languages.

The solution is called Unicode, and it gives anyone the opportunity to say, "I want this character
displayed and the number is..." and have herself understood by all systems that support Unicode.
This does not always guarantee a success in displaying the character, due to lack of a suitable font,
but such technical problems are manageable.

Much widely used software, including Microsoft Windows, Mac OS X, and Linux, has supported
Unicode for years. However, to use Unicode, all the relevant components must be "Unicode enabled."
For example, although Windows "knows Unicode," an application program used on a Windows system
might not. Moreover, the display or printing of characters often fails since fonts (software for drawing
characters) are still incomplete in covering the set of Unicode characters. This is changing as more
complete fonts become available and as programs become more clever in their ability to use
characters from different fonts.

1.1.2. Unicode Can Be Easy

Unicode is both very easy and very complicated. The fundamental principles are simple and natural,
as the explanation above hopefully illustrated. The actual typing and viewing of Unicode characters
can also be easy, when modern tools are used. As we get to complicated issues like sorting Unicode
strings or controlling line breaking, you will find some challenges. But this book starts from simple

http://lib.ommolketab.ir
http://lib.ommolketab.ir

principles and usage.

For example, an average PC running the Windows XP system has a universal tool for typing any
Unicode character, assuming that it is contained in some font installed on the system. The tool is
called the Character Map, or CharMap for short. Figure 1-1 shows the user interface of this program.
The program can be launched from the Start menu, although you may need to look for it among
"System tools" or something like that. You can select a collection of characters from a menu, and
then click on a character to select it. The selected characters can be copied onto the clipboard with a
single click, and you can then paste them (e.g., with Ctrl-V) where you like.

There are many other similar tools, often with advanced character search features. There are also
ways to configure your keyboard on the fly so that keys and key combinations produce characters
that you need frequently.

Figure 1-1. Character Map, part of Windows XP, lets you type any
Unicode character

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.2. What's in a Character?

We use characters daily: we type them, and we read them on screen or on paper. We use text-
processing programs routinely, much like people used to use typewriters, pens, or other writing tools.
How could characters create problems?

1.2.1. Why Do We Need to Know About Characters?

If English is your native language, you are accustomed to using a small set of characters, consisting
of the letters AZ and az, digits 09, and a few punctuation characters. Most novels, newspaper
articles, and memos contain no other characters. Since you seem to be able to type these characters
directly on a keyboard, why should you learn more about characters and get confused? To be honest,
character issues are confusing.

Suppose you use a computer only to write and edit texts in English, perhaps as a secretary or a
technical editor. You still have reasons to know about characters:

Computer technology has caused a decline in typography, and you can make a positive
impression by using correct punctuation instead of typewriter-style punctuation. If you use a
text-processing program, it probably takes care of using "smart" quotation marks instead of
"straight" quotes, but you need to learn how to produce dasheslike thisand how to prevent bad
line breaks.

Normal English texts may contain special characters occasionally. Someone may spell Caesar as

Cæsar, or use a word like fiancé, rôle, or garçon the French way, or use the per mille sign
or the euro sign €. Michael Everson writes: "Despite unfounded but widespread belief to the
contrary (based doubtless on the prevalence of ASCII), diacritics (usually French ones) are
often found in naturalized English words. Examples are: à la carte, abbé, Ægean, archæology,
belovèd, café, décor, détente, éclair, façade, fête, naïve, naïvety (but cf. non-naturalized
naïveté), noël, œsophagus, résumé, vicuña" (http://www.evertype.com/alphabets/english.pdf).
You may regard some of these spellings as foreign or obsolete, but people may still use them in
English. There are often good reasons to change the spelling to something simpler, but not
knowing how to produce the characters is not a good reason.

Your text may contain foreign names with some strange characters. Although it is common to
simplify the spelling, you can stand out positively by doing things correctly. Suppose that
someone's surname is Hämäläinen and she works in an important international position. She is
probably accustomed to seeing her name written as Hamalainen or Haemaelaeinen. But
wouldn't she be delighted if someone were polite enough and competent enough to spell her
name right, just for a change? However, she might not like it if someone tried to do so and
failed, producing Hmlinen or H{m{l{inen.

You might even be asked to include quotations in a foreign language. You might even need to
work with a document in a foreign language, because someone has to do that and this is your

http://www.evertype.com/alphabets/english.pdf
http://lib.ommolketab.ir
http://lib.ommolketab.ir

day for being that someone. In that case, you may need to use foreign punctuation as well and
to find a way to enter foreign characters efficiently, in addition to just knowing a universal
clumsy way of entering any character.

Texts increasingly contain technical and scientific special notations . Even casual memos and

messages may need to mention µm (micrometer) or to use the almost equals sign or the

male sign . In scientific or technical texts, mathematical formulas are often quite crucial and
need to be exactly right, down to the choice of each special symbol. The world is getting more
technical and symbolic. Even nontechnical texts like bridge columns contain special symbols,

such as .

In multilingual applications, characters and their codes are a major issue. Even a web site with two
or more languages or a bilingual dictionary can be regarded as multilingual applications, and they
create the problem of representing the characters of both or all languages. For example, people using
French and people using Russian on computers probably work with their own tools, settings, and
conventions, but if you need to create a document that is bilingual in French and Russian, you need
to make sure you can work with both Latin letters with diacritic marks and Cyrillic letters. In effect,
you would need to use Unicode, one way or another.

If you are a computer professional,you need to be prepared to handle data-processing problems that
may involve characters of any kind. Someday someone will ask you to work with a system for
processing data in a strange language or with strange symbols in it, perhaps even in a writing system
where text runs right to left. It will be very difficult if you have no background in working with such
issues. Most people need quite some time to digest character problems and techniques. You may find
that, with something you thought you knew for years, you have completely misunderstood some
basics.

Even if you process only "normal" text, character code standards and specifications are more
important than they used to be. Modularity of software requires that you isolate character-level
processing from other levels. You should not test for a character variable's value being equal to 32 to
test whether it is a space character. Often, even a more sensible test, against the character constant
' ', is suboptimal, and using a built-in function like isspace is better, since it takes care of other
space-like characters as well. Tools developed for such operations are increasingly based on general
specification in character standards, especially the Unicode standard. They are supposed to define, in
a systematic and all-compassing way, the fundamental properties of characters, like being space-like,
or being a letter, or allowing a line break before or after a character. To use such definitions and
software modules that implement them, you don't need to know every detail, but you need to know
the principles and the ways to get at the details when needed.

In addition, if you design or develop programs, databases, or systems, you will find that it is
extremely difficult to adapt them to processing different character sets, if they were not designed to
work that way. If the software is full of code that relies on using 1 byte (octet, 8-bit entity) for one
character, it may need an almost complete rewrite if it needs to be modified to process Chinese text
as well.

1.2.2. Characters as Units of Text

A character is a basic (or "atomic") unit of written text. A piece of text is a sequence of characters,
also called a string. This does not necessarily mean that text is always displayed so that its

http://lib.ommolketab.ir
http://lib.ommolketab.ir

characters appear linearly one after another, although this is what happens for English text, if we
ignore the issue of division into lines. In other writing systems, consecutive characters may be
combined into one glyph in complex ways. However, the text is still logically a sequence of
characters.

1.2.2.1. Characters as abstractions

To store, process, and transfer data in digital form, we need an abstract concept of a character. It
would not be feasible to store the specific appearance of each written character. Instead, we store
information that tells which character it is, independent of the specific visual shape it has. If we wish
to affect the way in which our characters are displayed and printed, we use special formatting
commands or other tools.

The abstract concept of character is essential in Unicode, in all digital processing of character data,
and even in writing itself. The meaning of a piece of text does not change if you change its font, the
specific design of its characters. To put it a bit differently, the style and tasteand even the effectof
text might change, but we have an intuitive understanding of something invariant behind such
variation. For example, "A," "A," "A," and "A" are instances of the same character. Since you know
the Latin alphabet, you should have no difficulty with this. You might find it more difficult to know
whether א and א are instances of the same Hebrew character, but people who speak Hebrew are able
to recognize that.

Different attempts have been made to describe what characters are. They have even been compared
to Platonic forms. The point is that there is so much negative in the concept: it is largely defined by
saying what a character is not. In a sense, we extract properties and concrete features, until there's
very little leftsomething that could be called the idea of a particular character. Dan Connolly has
written in his classical treatise "'Character Set' Considered Harmful": "Note that by the term
character, we do not mean a glyph, a name, a phoneme, nor a bit combination. A character is simply
an atomic unit of communication. It is typically a symbol whose various representations are
understood to mean the same thing by a community of people."

This raises the question of what to do if different people recognize things differently. In some
languages, "v" and "w" have been treated as typographic variants of a single character; other
languages treat them as completely distinct letters. In such situations, Unicode normally defines
separate characters.

To clarify the abstract nature of characters, a Unicode character, or a character defined by some
other standard:

Normally has no particular stylistic appearance but may vary between broad limits, as long as
the designs can be recognized as the same character

Is essentially black and white, though a character as a whole could be colored with any other

two colors (making, for example, the character appear in red), using methods external to
character standards

Has an official name (as described later) but no fixed name across languages, and not
necessarily any commonly known name in a particular language

Has no fixed pronunciation, except for some specifically phonetic characters; however, there are

http://lib.ommolketab.ir
http://lib.ommolketab.ir

of course correspondences between letters and sounds, even across languages that use the
same basic writing system

May have very specific usage as a special symbol (e.g., © is just a copyright symbol) or a broad
range of different uses (e.g., / can be a separator of a kind, a mathematical operator, or
something else)

1.2.2.2. Variation of appearance or different characters?

Problems arise when the concept of an abstract character has to be applied to concrete situations.
We know what the letter "A" is, but is it the same as the lowercase letter "a"? That is, is the
difference between them just variation in appearance, the same way as the letter "A" in the Times
font differs from the letter "A" in the Arial font? In fact, the lowercase letters are a medieval
invention, created by people who wrote text by hand and needed forms that are more convenient for
that.

We could have defined "A" and "a" as just visual variants of the same abstract character, but we
didn't. Quite early in the history of computers, this decision was made. It has far-reaching
implications. If you wish to process input data so that upper- and lowercase letters are equivalent, to
make things easier to people who type the data, you need to do something special to take care of
that.

To take things a bit further, consider the Latin letter "A" and its relationship to the corresponding
Cyrillic letter and the corresponding Greek letter, capital alpha. All three letters look the same in most
fonts, and they share a common origin. Yet they belong to different alphabets: the Latin alphabet A,

B, C, D..., which we use in English and many other languages, the Cyrillic alphabet , , , ...,
which is used in Russian and many Eastern European languages, and the Greek alphabet Α, Β, Γ, ∆...
(alpha, beta, gamma, delta...).

It would have been possible to identify the Latin "A" and its Cyrillic and Greek counterparts. However,
it was decided to keep them separate. Generally, Unicode (and character standards in general) do
not unify characters across writing system boundaries. We might take this just as a fact of life and
live with it. But we might also look at its reasonableness. Consider the operation of converting text
from upper- to lowercase. The Latin letter "A" should become "a," whereas the Greek letter alpha "Α"
should become α. It would be impossible to do this automatically if it were impossible to tell, from the
internal digital representation, whether the original data contains the Latin "A" or the Greek "Α."

Writing systems were invented by people, and characters are creations of mankind, not nature. Thus,
the identity of abstract characters is in a sense just a decision made by some people. However, it is
usually an informed decision.

1.2.2.3. Variation in shape turned into a character difference

In many cases, stylistic variation in drawing or printing a character has been "frozen" so that a
variant obtains a specific shape and meaning. The ancient Romans used the letter "V" both as a
consonant and as vowel. Later, it appeared in different variants, such as a rounded one, like our "U."
People started using the original version and different curved variants in different contexts. As such

http://lib.ommolketab.ir
http://lib.ommolketab.ir

usage became systematic, consistent, and common, the letter "U" was born.

Therefore, we now have the independent characters "V" and "U." They are, in turn, written with
stylistic variation, though now the general idea is that the variation should not obscure the difference
between these two characters. Yet, you might still see "V" used for "U" for stylistic reasons, especially
to imitate ancient inscriptions (SENATVS POPVLVSQVE ROMANVS).

The letters "U" and "V" have later given birth to new characters that have originally been formed as
their typographic variants, as well as the letter "W," originally a digraph (VV). Special forms of this
letter have been recognized as separate characters, such as the modifier letter small w, . The story
goes on. In different areas that need new symbols, characters are created as variants or
modifications of old characters. This seems to suit the human mind better than the invention of new
character shapes from scratch.

1.2.2.4. Characters and "abstract characters"

The Unicode standard defines different meanings for the term character. The first one is: "The
smallest component of written language that has semantic value; refers to the abstract meaning
and/or shape, rather than a specific shape (see also glyph), though in code tables some form of
visual representation is essential for the reader's understanding." The second meaning is that
"character" is a synonym for "abstract character," which is defined as "a unit of information used for
the organization, control, or representation of textual data."

Thus, the difference seems to be that an abstract character may have a control purpose only. Control
purposes include line breaks, for example. In more common terminology, "character" in Unicode
often means a printable (graphic) character, whereas "abstract character" means what is commonly
called just "character," which includes printable and control characters.

On the other hand, the Unicode standard also uses the expression "abstract character" to refer to a
symbol that may be perceived by users as a character ("user character"), although it cannot be
represented as a single Unicode character (also known as encoded character or coded character). In
particular, a symbol with special marks (diacritic marks) on it, such as ó, cannot always be
represented as one character in Unicode but may be a sequence of two or more characters.

The expression "semantic value" is somewhat misleading in this context. A character such as a letter
can hardly be described as having a meaning (semantic value) in itself. It would be better to say that
a character has a recognized identity and it may be sometimes used as meaningful in itself (as a
symbol or as a one-letter word) but more often as a component of a string that has a meaning.
Moreover, the "smallest component" part is somewhat vague. A character such as ú (letter u with an
acute accent), which belongs to Unicode, can often be regarded as consisting of smaller components:
a letter and a diacritic (acute accent). In fact, in Unicode, the character ú may be regarded either as
a character on its own or as a combination: as two successive characters, letter "u" and a combining
acute accent.

The intuitive concept of character varies by language and cultural background . If you know the letter
ä mainly from J. R. R. Tolkien's books, you might regard it just as letter "a" with a special mark that
indicates that it is to be pronounced separately. You might even regard the two dots just as optional
decoration, as in "naïve" if spelled in the French way. If your native language were Finnish, you would
certainly treat ä as a completely separate character, and you would have learned at school that it has
its own position in alphabetic order (a, b, c,...x, y, z, å, ä, ö). Similarly, in Swedish, the words "här"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

("here"), "har" ("has"), and "hår" ("hair") must be kept clearly separate. To a German, ä is different
from "a," but it is treated as primarily equivalent to "a" in alphabetic order and is in a sense a variant
of "a" ("a Umlaut").

Unicode, aiming at universality, generally recognizes written forms as separate characters, if at least
one language or commonly used notation system makes a difference. Thus, "a" and ä are treated as
distinct. If you wish to handle them as equivalent, you need to program code that treats them that
way.

1.2.2.5. Characters and other units of text

Although a character is a natural "atom" of text in data processing, it does not always correspond to
people's intuitive idea of the basic constituents of text. Looking at text in English, we might

occasionally ask ourselves whether the ligature is two characters or one. In other writing systems,
similar questions arise more often. Unicode takes a liberal approach to identifying a complex

character in many cases. You can represent as one character or (more often) as two characters,
"f" and "i." As mentioned above, similar principles apply to letters with diacritic marks.

People who speak languages with many diacritic marks or ligatures may regard a symbol like or ú
as a single character, even though they are often coded as sequences of characters. In some cases,
it would not even be possible to code the symbol as a single character in Unicode, since Unicode does
not contain all the combinations and ligatures that can be formed.

Moreover, although characters might be written separately, as in "ch," their combination might be
understood as a single entity by some people. In English, "ch" denotes a particular sound and has
thus some identity of its own. Some other languages treat the combination as an inseparable unit
even in alphabetic order: in a dictionary, words would appear in an order like car, czar, char. Such
treatment has become less common, though, since it is somewhat more difficult to implement in
automated processing. Unicode treats "ch" as two characters but recognizes that it might constitute a
unit in ordering.

Partly for such reasons, the ordering of characters is rather complex. Unicode does not prescribe a
single ordering of characters and strings. Rather, it defines a basic (default) ordering that can be
used as basis for defining language-dependent and even application-specific orderings.

1.2.3. Characters Versus Images

Characters are normally represented in graphic form, as something that can be called an image.
However, there is a fundamental difference between an image and a character. An image can be a
particular rendering of a character, much like a spoken word is a particular presentation of an
element of a language. Moreover, most images are not renderings of characters at all.

Character code standards mostly identify a symbol as a character only if it is actually used in
textse.g., in books, magazines, newspapers, and electronic documents. Characters that are normally
used only in product labels and other specialized contexts are often borderline cases. However, they
are often identified as characters if they are used in conjunction with symbols that are undeniably
characters.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A typical example is the estimated symbol e, a stylized variant of the letter "e." It is not used in
normal texts, but only in European packaging to claim conformance to certain standards in specifying
a quantity. However, it is identified as a character, partly because it is used in packages in relation to
text characterse.g., in "e 200 g" (indicating that the mass of the product is 200 grams, within
tolerances defined in specific regulation).

On the other hand, logos and identifying symbols are not treated as characters, even though they
might be accompanied by texts. By its nature, a logo consists of a name or abbreviation in a
particular graphic style. Hence, it would be unnatural to encode it as a character or sequence of
characters, although we might use a string of characters as a replacement for a logo (e.g., when a
document containing a logo needs to be converted to plain text and the logo conveys essential
information).

Similarly, most of the various political, ideological, or religious symbols are treated as graphic
symbols that are not characters. They are not normally used in texts. Their shape may vary, but not
as part of font variation. However, for various reasons, some graphic symbols have been defined as
characters in some character codes, contrary to these principles. Unicode therefore contains them as
characters, so that existing texts using such characters can be encoded.

Generally, a graphic symbol is encoded as a character in Unicode, if there is
need for exchanging it in digital form in plain text. Decisions on this are
sometimes difficult and may be affected by tradition.

The distinction between a character and an image is often a practical decision to be made by the
author or editor of a document. In many cases, you have a choice between a character and an
image. For example, suppose that you are designing a user interface for a document, program, or
web page and you need graphic symbols for "Next" and "Previous." It may often be best to use
words, but let us assume that you want to use arrows pointing to the left and to the right. Beware
that even at this fairly abstract level, the decision is not culturally neutral: it implies left-to-right
writing direction.

In Unicode, there is a largish block of arrow characters. Among them, a few like and are
widely available in commonly used fonts. However, they are not very prominent graphically, even if
shown in bold, in large font, and in color. Their graphic design is character-like, not iconic. Some
other characters in the Arrows block of Unicode look more solid, but they are not as common in fonts.
For buttons or links, specially designed images may thus work better. On the other hand, in running
texts, the arrow characters often work well. If you wish to make references to other entries in an
encyclopedia by using arrows, then " foobar" works better than a word preceded by a distinctive
graphic.

Generally, when deciding between the use of characters and the use of an image for presenting a
graphic symbol, the following items should be considered:

Are there some Unicode characters that could be used, and are they suitable both by their
defined semantics and by their typical graphic appearance?

Is it possible that the document will be rendered so that images are not displayed? If yes, is it
possible to specify a textual alternative to the image (such as the alt attribute in HTML
markup)?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

How safely would the character work, given all the possible problems with encodings, fonts,
etc.?

Is it acceptable, and perhaps desirable, that the symbol changes size, shape, or color when text
font size, face, or color is changed?

Is it possible that the data will be processed as a character stringe.g., stored in a database or
used in a search string?

For example, suppose we write about music and wish to refer to F-sharp and B-flat using the

conventional musical symbols: F , B . The Unicode approach would use the special characters: music

sharp sign and music flat sign . However, these characters, although part of Unicode since Version
1.1, are poorly supported in fonts. Even though you could find them in some fonts at your disposal,
their appearance might not fit into your typographic design. You might end up using the number sign
and the letter "b" as replacements. In web authoring for example, you might decide that although
B♭ would be technically quite correct (using a so-called character reference to include the flat
sign), it is safer to create a small image, say flat.gif, and embed it with markup like B. This means that the flat symbol remains in constant size if the text
size is changed, but this is usually tolerable.

Sometimes character-looking symbols are not characters. Microsoft Word by default changes the
three-character sequence "-->" into a kind of arrow symbol (à). However, this arrow is different from
any Unicode character: it is just a glyph in the Wingdings font. It is therefore something between a
character and an image; as so many compromises, it combines the drawbacks of the alternatives.

1.2.4. Processing of Characters

The previous discussion mentioned that characters can be processed and used in many ways that are
not possible (or practical), if information is represented as images, sounds, or in another nontext
format. This includes:

Searching for occurrences of a word or other fragment of text, using either a simple search
string or a text pattern

Performing automatic replacements, such as substituting a string for another in all occurrences

Indexing the data for efficiency of searching and for creating an alphabetic index or concordance
(list of occurrences of words)

Sorting text datae.g., for presentation in alphabetic order

Copying text from an application or data format to another, often via a clipboard

Modifying text as in a text editor or text-processing application, by deleting, inserting, and
replacing characters

Selecting parts of text by user actions, such as painting or keyboard commands

Recognizing constructs like words, syllables, morphemes (components of a word with a
meaning), and sentences

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Computing statistics on the use of characters, words, phrases, etc.

Spelling and grammar checks

Automatic or computer-aided translation

Presenting texts in audible form, via speech synthesis, which is more natural these days than
you might expect from many science fiction films

Even the display of characters on screen or paper involves processing:

Choice of font, which can be a complex process

Application of bolding, italics, and other features, if requested

Selection of contextual forms for characters

Recognition of character sequences that should or could be rendered using ligatures or other
special methods

Formation of characters with diacritic marks, often requiring complex algorithms

Adjusting spacing between characters and words, perhaps for justification of lines

Breaking text into lines, perhaps using hyphenation

In particular, suppose that some document exists on paper only, or as a scanned image only. The
above lists of possibilities can be consulted when estimating whether the text should be converted
into text format. The conversion may require quite a bit of work, including the identification of special
characters occurring in the documents.

Sometimes the benefits of text format turn into drawbacks, or they are regarded as problems. If you
send a contract by email and ask the recipient to print, sign, and send it, can you be sure that he
does not edit the text before printing, without your noticing? Ease of copying text can be a problem,
if it is used to violate your copyright. For such reasons, plain text and even other text forms are
sometimes avoided. Perhaps even a printing possibility is undesirable. Some data formats, such as
PDF, can be locked, or protected against copying and modification and printingthough in a relative
sense only.

1.2.5. Giving Identity to Characters

To represent characters in digital form, we need to encode them using bits, but first we need
something to encode. We need a collection of characters that are distinguishable from each other. We
do not define characters individually but as parts of a collection. The Latin letter "A" is defined,
among other things, by designating it as distinct from lowercase "a" or from any Greek or Cyrillic
letter.

A character is also described by its meaning, or semantics. However, we must be careful about this.
A character is usually just an atom of text and normally lacks a meaning in the sense that words or

http://lib.ommolketab.ir
http://lib.ommolketab.ir

some parts of words have meanings. In the word "singing," the stem "sing" and the suffix "-ing" have
meanings, but it would not be natural to say that the letter "g" has a meaning, in any comparable
sense.

The meaning of letter "g" is basically that it is one of the (lowercase) Latin letters, used to write
words in some writing systems. Its pronunciation may vary (even within one languagecompare "get"
with "gem"), although it might be possible to indicate some typical phonetic values. Generally,
definitions of letters in character standards are independent of pronunciation issues, except for some
characters specifically designed for such usage (e.g., characters in the International Phonetic
Alphabet, IPA).

As we get to more technical characters, such as the plus sign + or the copyright symbol © or the
smiling face , we find characters that can be described as having a meaning of their own. They
might even correspond to words, such as "plus" and "copyright."

1.2.5.1. Definitions of characters in standards

The definition of a character in a standard needs to be unambiguous and definitive, not just loose
prose. Old character standards tried avoiding the problem of definition by simply showing the
character, assigning a number to it, and possibly naming it. This has turned out to be insufficient for
many purposes. How could you tell from just seeing an "A" whether it is meant to be the Latin letter
only, or also the Greek or Cyrillic letter?

The most important character standard in the modern world is Unicode, so let us take a look at its
way of defining characters. Unicode identifies a character by:

Showing a representative glyph for the characteri.e., one specific but typical visual form that the
character may have

Assigning a unique number to it; this number will never be changed

Assigning a unique Unicode name for it; this will never be changed either, even if it is found
misleading or originally mistyped, and it is best to regard it as a mnemonic identifier rather than
a name in a normal sense

Specifying a set of properties for it in a rigorous, formalized manner; they describe, for
example, the general class (letter, digit, punctuation, etc.) of the character, its uppercase
equivalent when applicable, etc.

Making annotations i.e., prose descriptions that clarify the meaning, often comparing the
character with other characters, presenting alternate names for it, and sometimes even
describing possible variation in the visual appearance

For example, the plus sign is defined in Unicode as follows:

The representative glyph looks much like +.

The number is 2B, often written as 002B for uniformity, in hexadecimal (base 16) notation,
which means 43 in decimal (base 10).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The name is PLUS SIGN.

The general category is "Sm," which is short for "Symbol, Math." Line breaking is permitted
after the character. There are several other formalized properties as well; we will discuss the
various properties in detail in Chapter 5.

There are no annotations for this character.

1.2.5.2. Annotations used to emphasize differences

The plus sign is not easily confused with any other character, and it has no widely used alternate
names in English. Therefore, no annotations were deemed necessary. For the comma character ","
character number 002C, for example, there is an annotation that says that the character has the
alternative name "decimal separator." This does not mean that the decimal separator should be a
comma (although most languages in fact use a comma for that). It just means that in some contexts
some people call the comma "decimal separator." This effectively identifies a comma used as a
decimal separator with the character number 002C, as opposed to treating it as a separate though
similar character. On the other hand, the annotations related to the comma character also contain
notes that refer to "Arabic comma," "single low-9 quotation mark," and "ideographic comma" as
separate characters. This can be read as a warning against confusing the comma with those visually
similar characters. For example, some languages use a single low-9 quotation mark as an opening
quote in some contexts (e.g., in German: 'gut'); without a warning, you might be inclined to think
that it's just a special use for the comma.

1.2.5.3. The representative glyphs

The definitions of characters in Unicode are logical and do not imply any particular presentation of a
character, either internally (in digital form, as bits) or visibly on paper or screen. However, a
representative glyph is given to clarify the identity of a character.

The Unicode standard explicitly says that the representative glyph is not a prescriptive form of the
character, but it lets a "knowledgeable user" recognize the character.

The glyphs used in Unicode code charts tend to be neutral and generic rather than typographically
well-designed. They typically lack artistic ambitions, and they have been designed so that differences
with other characters have been emphasized. That is, glyphs for characters that are often rather
similar in practice, especially if we consider variation across fonts, have usually been designed to be
sufficiently different from each other.

1.2.5.4. The number and the Unicode name as identifiers

The number assigned can be regarded as identification only, although in practice, it is used as a basis
for the digital representation. The Unicode name is an alternative, more mnemonic identifier. As a
mental exercise, consider the possibility of sending information by telephone so that you utter the
names of Unicode characters, in order to express something complicated like a foreign word or a
formula. If both participants have access to information about Unicode characters, the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

communication can be completely successful even though no visible characters are sent and no
digital encoding is used.

Thus, when characters are represented in digital form, each character is internally a number, an
integer. Numbers in turn are represented as sequences of bits, but this is a different level. When a
file contains the string "Hello" (without the quotation marks), it really contains five numbers
corresponding to the characters. In most character codes, this is the sequence 72, 101, 108, 108,
111.

A character code can assign numbers to characters arbitrarily, but once assigned in a specification,
they should not be changed. In practice, the assignments have been made in a partly systematic
way, so that related characters often have consecutive numbers.

Many modern standards, specifications, and instructions identify characters by their Unicode numbers
to achieve unambiguity. Previously, documents on matters like mathematical or technical notations
or transliteration of texts used to specify the symbols to be used just by showing them as visual
forms, as ink on paper. This turned out to be particularly problematic in the computer era, when
different people interpreted such signs differently, resulting in incompatible encoding of data.

Suppose that you specify, for example, that in some notation, the double prime character ("), with
Unicode number 2033 in hexadecimal, be used (say, to denote seconds as a subdivision of a degree
when expressing angles). Actually, the Unicode number alone would suffice, but mentioning the name
makes the specification more readable. In principle, you do not even need to write the character
itself, though usually it helps. By identifying the Unicode number, you have achieved several things:

You have unambiguously identified the character you mean. People may still decide to use some
similar character instead, if they have difficulty typing the right character. Yet, it is clear which
is the right character; others are various replacements.

You have given a number that can be used as an index to large collections of information about
the character, such as varying visual shapes for it, its defined properties, fonts containing it,
definitions of meaning, and comments on scope of usage.

The number can be used for typing the character by anyone who knows a general input method
for Unicode characters in a particular environment. Typical word processors have at least one
mechanism that produces a specific character, if you just specify its Unicode number.

Thus, anyone who participates in creating or clarifying notational specifications should know the
principles of Unicode and should promote the use of Unicode numbers for characters. You should
probably expect resistance, since it is not quite easy to see the benefits.

1.2.5.5. Unicode is more explicit

Older character standards, such as ASCII and the ISO 8859 family of standards, contain substantially
less information about characters. They rely on the names of characters and the representative
glyphsand intuitive understanding related to the traditions of using characters. The same applies to
the ISO 10646 standard, which is the official international standard that corresponds to Unicode. This
means that we have two standards that are fully in accordance, ISO 10646 and the Unicode
standard, but the latter contains a lot of additional information. Moreover, the Unicode standard is
freely available on the World Wide Web, which is why people speak about Unicode and not ISO

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10646, except in official standards and related documents.

The collection of all Unicode (or ISO 10646) characters is sometimes called the Universal Character
Set (UCS). This expression is used especially in formal contexts, when one needs to refer to ISO
10646 and does not want to mention Unicode. In normal prose, we usually refer just to Unicode
characters.

1.2.5.6. Spelling of names and the U+nnnn convention

The Unicode names of characters are written in all uppercase in the Unicode standard, but this is just
a convention. In fact, the standard itself spells the names in all lowercase in some contexts.
Uppercasing is often used to indicate (or hint) that a character is referred to by its Unicode name.
However, in this book, we use normal (mixed) case for the names, except in some quotations.

We will use the conventional style of mentioning a Unicode character by its code number in
hexadecimal (base 16) and prefixed with U+e.g., U+002B. We could use just the number, but then
you might not always know whether we use a number for such identification or just as a number.

This notation is used with at least four hexadecimal digits, so there are often leading zeros. All
characters in the so-called Basic Multilingual Plane (BMP) can be expressed in four digits, but some
newer characters need more.

We will normally mention first the Unicode name, then the code, often with a glyph between them.
Thus, while you might see a Unicode character mentioned as U+002B PLUS SIGN in many sources,
we will mostly say: the plus sign + U+002B.

1.2.6. Unicode Definitions of Characters

The definition of a character in Unicode is given partly in code charts, partly in the Unicode Database,
which contains large tables of data on characters, by property, to be discussed in Chapter 5. Here we
concentrate on the information in the code charts, which are available via
http://www.Unicode.org/charts/. Each code chart begins with a table of glyphs, followed by notes on
each character. The notes vary greatly in length and nature, but they should always be consulted
when in doubt about the identity of character. Note that the code charts have been divided into two
major groups, "Scripts" (which contains letters, ideographs, and other characters to write different
human languages) and "Symbols and Punctuation." There is some overlap, since some blocks of
characters belong to both groups.

The description of a character in a code chart consists of the following, where the first three items are
given for every character (on one line), and others may or may not be present:

Figure 1-2. Sample description of a character in a Unicode code chart

http://www.Unicode.org/charts/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Unicode number

Representative glyph (in normal text size)

Unicode name, in uppercase; this name is fixed

Old (Unicode 1.0) name, in uppercase on a line of its own

Other name(s), preceded by an equals sign = and written in lowercase; these names may be
changed

Comment(s) on usage, preceded by a bullet •

Cross reference(s) to other characters, preceded by an arrow ; these references often warn
against confusing a character with another, similar-looking character

Information that specifies the character as a decomposable character, using a notation that

begins with the symbol (indicating so-called canonical equivalence) or with the symbol
(indicating weaker correspondence)

Figure 1-1 shows the description of the full stop (period) character in a code chart.

1.2.7. Definitions of Characters Elsewhere

Characters were defined and used long before Unicode. Even in our times, characters are often used
without identifying them with a reference to any character code standards. This creates ambiguity
and potential diversity when text data is represented in computer-readable form.

For example, the standards that define the SI, the International System of Units (an extension of the

metric system), use several special characters such as µ, x, and . The authoritative formats of the
standards are printed documents, and since they do not specify code numbers or Unicode names for
the characters, we are left in some uncertainty. Some characters can be identified rather
unambiguously, but it is unclear what the "raised dot" character is, for example. This character, used
in notations like N·m (for newton meter), is usually interpreted as the middle dot U+00B7, but it can
be argued that a more appropriate interpretation is the dot operator U+22C5.

Similarly, the International Phonetic Alphabet (IPA) was originally defined about a century ago. When
it later became relevant to use it on computers, the characters had to be identified as Unicode
characters. This was far from trivial, since many IPA characters can be regarded as normal Latin

http://lib.ommolketab.ir
http://lib.ommolketab.ir

letters, or treated as separate symbols.

Even relatively new standards on transliteration or transcriptioni.e., on conversions between writing
systemsfail to identify all characters unambiguously. For example, many standards and tables for

writing Russian words in Latin letters specify that the so-called hard sign, , is to be translated using
a special character, but this character is just shown as a glyph on paper. This is subject to different
interpretations including the ASCII quotation mark ", the right double quotation mark ", and the
double prime " (U+2033). The Unicode standard makes, in a code chart, the following note about the
modifier letter double prime (U+02BA): "transliteration of tverdyj znak (Cyrillic hard sign: no
palatalization)." This might seem to resolve the issue in principle, but in practice, that character is not
present in most fonts, and we can also ask whether the Unicode standard is authoritative in
transliteration issues. Problems similar to this also exist for some apostrophe-like characters in
transliteration systems for Arabic, for example.

1.2.8. What's in a Name?

The names of characters in character standards are assigned identifiers rather than definitions. This
is particularly true for Unicode, which now has an absolute principle of name stability. A Unicode
name will not be changed even if proved wrong.

Typically, the names are selected so that they contain only letters AZ, spaces, and hyphens; often
the uppercase variant is the reference spelling of a character name.

The same character may have different names in different definitions of character repertoires.
Generally, the name is intended to suggest a generic meaning and scope of use. However, the
Unicode standard warns (mentioning full stop "." as an example of a character with varying usage):

A character may have a broader range of use than the most literal interpretation of its name
might indicate; the coded representation, name, and representative glyph need to be taken in
context when establishing the semantics of a character.

Although the Unicode names can be misleadinga price that we pay for their absolute stabilitymost of
them aren't. The great majority of Unicode names describe the character, and the name is often the
only description that the Unicode standard gives about a character individually. Thus, the name
should be taken as describing the character, unless there is an annotation that says otherwise.

The Unicode name is in English, in a sense. In many cases, it is normal English, but often the name
contains elements from other languages, such as the name in another language but as (somehow)
adapted to English spelling.

For many purposes, it would be desirable to refer to characters by some widely understood names, in
different languages. There will probably be a registry of such names, though mostly only for those
characters that are widely used in each language. It will naturally contain English names as well,
partly different for U.S. English and British English. They will of course have much similarity to the
Unicode names. The naming is expected to take place in the context of Common Locale Data
Repository (CLDR), discussed in Chapter 11.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Names of characters vary a lot, even within a language. This applies
particularly to characters that are widely used in modern notations, but without
much tradition, such as the tilde ~ or the commercial at @. Do not assume that
people know from the name alone what you mean, even if you speak the same
language.

The Unicode standard mentions some colloquial names for characters, even in languages other than
English. For the @ character, it mentions that the "common, humorous German slang name" is
"Klammeraffe," which means "clinging monkey." Undoubtedly, in some environments, the character
might be better known under that name than under any official name. However, you need to be
careful in using the alternate names mentioned in the standard. It is better to look for information on
actual usage in a language and a subculture. Slang, by its nature, varies by time and people.

When you need to refer to a character and cannot just show it, try to mention commonly known
synonyms for it. It is not constructive to say just "use the reverse solidus." Instead, you can say "use
the forward slash (that is, solidus), not the backslash (reverse solidus)." Unicode names alone are
often rather useless in difficult situations for identifying characters to people who are not familiar with
Unicode. The same applies even more to Unicode numbers.

Thus, you are not supposed to use the Unicode names for all characters in all contexts. If you are
used to calling the "." character "period," you need not start calling it "full stop." You need not spell
out "capital Latin letter A" every time you mention capital (uppercase) "A." However, the Unicode
names appear in many contexts, like in character selection menus in editors, so you need to know
the idea.

You may wonder why Unicode assigns two immutable identifiers for a character: a number and a
name. If each of them is unique and guaranteed to remain unchanged, what do you need the other
one for? The short answer is that numbers are the basic identifiers but names are needed too, since
they have been used in programs and data to uniquely identify characters. Although it might not be
wise to write code that operates on character names that way, it would be unwise to intentionally
break all such code now.

Originally, names of characters were meant to act as identifiers across character codes. Different
code may assign different numbers to the character ±, but they can be expected to assign the same
name, "plus-minus sign," to it, or at least use names that can be recognized as essentially the same.
However, this idea never worked well, since the names were in practice not always the same, or even
essentially the same. Moreover, Unicode has made the original idea unnecessary, since nowadays the
Unicode numbers are widely used to refer to characters across character codes, even when Unicode
is not otherwise used for representing characters.

1.2.9. Should We Be Strict About the Meanings of Characters?

People tend to use characters on the basis of their visual appearance. You see a character like ß in
some repertoire, and you start using it for the Greek letter beta, if you need it. You see the character
ø and you take it as the diameter sign, so you use it in a technical context like "ø = 0.12 m" (saying
that the diameter of something is 0.12 meters).

Unicode has strengthened such tendencies. People browse tables or menus of Unicode characters and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

pick up the first one that looks right for the purpose they have in their mind. Since Unicode has so
many more characters than most old standards, there are far more opportunities for getting lost: it is
easy to find a Unicode character that more or less looks like the one you need.

Then comes a purist and says that ß is a letter (sharp s) used in German, not any Greek letter, and
that ø is a vowel used in some Nordic languages, not a mathematical symbol. Should we care?

Although you might realize the importance of using the right character, not just a right-looking
character, you may need to explain the issue to others. Moreover, we often need to make
compromises, and then it becomes essential to consider their impact. Reasons for using the right
character translate into risks that you need to prepare for, when you cannot use the right character.
So here are some basic reasons for being strict:

Some people see the difference

Although the character looks right to you, a specialist may well see a difference between ß and
β (sharp s versus small beta) or between o and (letter "o" with stroke versus diameter sign).
When you write a foreign word, anyone who speaks that language as her native language is a
specialist compared to you.

Font changes make differences noticeable

When the font is changed, the difference can become clearly visible. A typical example is that
the difference between degree sign ° (as in "50 °F" or "10 °C") and masculine ordinal indicator
º (superscript letter "o," used in Spanish) is very small or nonexistent in many fonts, but very
clear in many other fonts (e.g., ° versus º). Your text might be rendered in different fonts even
though you have carefully selected a particular font. This is particularly true in web authoring
and in cooperative authoring.

Conversions operate on characters, not appearance

Automated editing of text is based on defined properties of characters, not on their
appearance. For example, text-editing commands that operate on words will (or at least
should) treat ø as a letter, not as a technical symbol. Converting text to uppercase would turn
"ß-carotene" into "SS-CAROTENE," since "SS" is the defined uppercase version of ß.

Searching looks for characters, not appearance

A search function in a program, as well as a database search, works on characters. When
asked to find the string "β-carotene" (with beta), they will not find " -carotene" (with sharp s).
The same applies to pattern matching and replace functions. Search routines may use some
heuristics in their attempt to help users with common errors in using wrong characters, just as
they may help with misspellingsas Google might say "did you mean pseudonym?" when you
have typed "psuedonym." But don't rely on such features.

Automated processing generally ignores appearance

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For example, automatic speech synthesis and automatic translation, works on characters as
abstract entities, not on their visual appearance. If your text contains "1º", meant to mean
"one degree" but incorrectly uses a masculine ordinal indicator, it might be spelled out as
"primero" (Spanish word for "first" in masculine gender). Similarly, it might be translated
incorrectly.

Sometimes these considerations do not matter, ormore oftenthey need to be suppressed in favor of
other needs. If you only aim at producing a document to be distributed on paper and you have full
control up to and including the print operation, then the appearance is all that matters. But more
often than not, documents are stored and sent in digital form. Then you may need to take
precautions against wrong processing, perhaps document what you have done, and check things
after various conversions and other operations.

Characters differ in the definiteness of their meaning. Some well-known characters like the hyphen -
(known formally as hyphen-minus in Unicode) have a wide range of uses, and you may need to use
them liberally. Computer programs need to be prepared for handling them accordingly. But other
characters have specific semantics. The letter ø and the technical symbol have limited uses. They
should not be confused with each other or used for other purposes without careful consideration.

1.2.10. Ambiguity Among Characters

The identity of characters is defined by the definition of a character repertoire. Thus, it is not an
absolute concept but relative to the repertoire; some repertoire might contain a character with mixed
usage while another defines distinct characters for the different uses. For instance, the ASCII
repertoire has a character called "hyphen." It is also used as a minus sign, as well as a substitute for
a dash, since ASCII contains no dashes. Thus, that ASCII character is a generic, multipurpose
character, and one can say that in ASCII, hyphen and minus are identical. But in Unicode, there are
distinct characters named "hyphen" and "minus sign" (as well as different dash characters). For
compatibility, the old ASCII character is preserved in Unicode, too (in the old code position, with the
name hyphen-minus).

Similarly, as a matter of definition, Unicode defines characters for micro sign, n-ary product, etc., as
distinct from the Greek letters (small mu, capital pi, etc.) from which they originate. This is a logical
distinction and does not necessarily imply that different glyphs are used. The distinction is important,
for example, when textual data in digital form is processed by a program (which "sees" the code
values, through some encoding, and not the glyphs at all). Note that Unicode does not make any
distinction, for example, between the Greek small letter pi (π), and the mathematical symbol pi
denoting the well-known constant 3.14159... (i.e., there is no separate symbol for the latter). For the

ohm sign (), there is a specific character (in the Symbols Area), but it is defined as being canonical
equivalent to Greek capital letter omega (Ω)i.e., there are two separate characters but they are
equivalent. On the other hand, Unicode makes a distinction between Greek capital letter pi (Π) and

the mathematical symbol n-ary product (), so that they are not equivalent.

If you think this doesn't sound quite logical, you are not the only one to think so. The point is that for
symbols resembling Greek letters and used in various contexts, there are three possibilities in
Unicode:

The symbol is regarded as identical to the Greek letter (just as its particular usage).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The symbol is included as a separate character, but it is defined as equivalent to the Greek
letter. There are two kinds of equivalence: canonical and compatibility.

The symbol is regarded as a completely separate character.

You need to check the Unicode references for information about each individual symbol. As a rough
rule of thumb about symbols looking like Greek letters, mathematical operators (like summation)
exist as independent characters whereas symbols of quantities and units (like pi and ohm) are
identical to Greek letters or equivalent to them.

1.2.11. How Do I Find My Character?

Suppose you have been requested to convert some printed or handwritten text into a digital format.
(At the end of this chapter, we have such an exercise.) For English text with no special characters,
you might be able to use a scanner. But what would you do with characters that the scanner does
not recognize reliably?

Such problems are fairly common. For example, you might need to check the spelling of a foreign
name from a printed reference book, or you might need to quote some printed material. Even
standards on various notations often fail to specify the characters unambiguously: the authoritative
format of a standard is usually a printed publication, and all you have got there is ink on paper,
glyphs.

The recognition of a character from its glyph can be quite difficult, and it may require both factual
and cultural knowledge about the subject area and the text. You also need technical information on
character standards, since you ultimately need to identify glyphs as appearances of characters
defined in the standards.

Looking for characters through lists or code charts is a rather hopeless task. The amount of
characters is huge, and many characters look very similar to each other. For example, how can you

know whether a glyph on paper is letter "a" with a caron () or letter "a" with a breve ()? Thus,
you first need some information or guess on the nature of a character. If you know or suspect that
the character appears in a Romanian name, you have a good starting point, since the character
repertoire used in Romanian can be found in a suitable reference. Similarly, if you know that a glyph
like ? is a currency symbol, you have almost identified it.

The following list suggests some general online resources for identifying characters:

"Where is my Character?" (http://www.Unicode.org/standard/where/)

An explanatory document by the Unicode Consortium. It explains some problems caused by the
variation of shapes of characters.

Unicode Code Charts (http://www.Unicode.org/charts/)

This is official information and covers all Unicode characters. It is organized first by division into
"Scripts" (writing systems for human languages, containing letters, syllables, and word signs)
and "Symbols and Punctuation." These parts are further divided into large categories such as

http://www.Unicode.org/standard/where/
http://www.Unicode.org/charts/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

"European Alphabets." Figure 1-3 illustrates the appearance of the main page of the Code
Charts.

Fileformat.info, section Unicode (http://www.fileformat.info/info/Unicode/)

This contains data taken from the Unicode site and organized for viewing in different ways. It
also contains information on Unicode support in different fonts. As you get down to information
on individual characters, their properties are displayed in a compact format, which is great
when you are ready to use it.

Database of characters at the EKI (http://www.eki.ee/letter/)

Although not as exhaustive in character repertoire as the above, this database lets you search
for characters in a few ways and shows some essential extra information on usage: it lists
languages that use a character and character encodings (charsets) that contain it. Although
these lists are not complete, they are often helpful. For example, they tell that letter "a" with a
caron (, U+01CE) is used in Yoruba and in Romanization of Bulgarian and Chinese, whereas

the letter "a" with a breve (, U+0103) is used in Romanian and Vietnamese and
Romanization of Khmer, as shown in Figure 1-4. However, the information is not always
completely reliable; in particular, the character used when writing Bulgarian as Romanizedi.e.,
in Latin lettersis not "a" with a caron but "a" with a breve, according to standards.

1.2.12. Which Characters Does Each Language Use?

For details on the use of characters in different languages, you need to consult grammar guides and
textbooks on the languages themselves. However, there is an extensive compilation of basic
information in The World's Writing Systems by Peter T. Daniels and William Bright (Oxford University
Press). There is brief description of character usage in a few languages in The Chicago Manual of
Style, 15th Edition (The University of Chicago Press). Online, you can find "The Alphabets of Europe,"
by Michael Everson, at http://www.evertype.com/alphabets/. It is extensive and based on detailed
research, although it partly applies different criteria to different languages: for some languages, it
includes only the basic modern alphabet; for others, it lists historical characters and other

Figure 1-3. Part of the interface to online Unicode code charts

http://www.fileformat.info/info/Unicode/
http://www.eki.ee/letter/
http://www.evertype.com/alphabets/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

characters that are not used in normal writing. The CLDR database, discussed in Chapter 11, contains
information on the use of letters in different languages.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.3. Variation of Writing Systems

The most widely used writing systems, or scripts, can be classified as follows:

Alphabetic scripts

Denote sounds with letters, though usually not in a strict one-to-one manner. Examples: Latin,
Greek, and Cyrillic scripts, each of which exists in different versions.

Consonant scripts, or abjads

Basically denote consonants, leaving vowels to be inferred; however, consonant scripts may
have letters for long vowels, and in some situations even short vowels are written using small
signs attached to consonants. Examples: Hebrew and Arabic scripts.

Abugida scripts

These use consonant letters that imply a particular vowel after the consonant, when used in
the base form. Alternatives with other vowels or without any vowel are indicated by additional
marks. Many South and Southeast Asian scripts belong to this categorye.g., the Devanagari
script used for many Indic languages.

Syllabic scripts

Use basically one character for each syllable. Examples: the Hiragana and Katakana scripts,
used for Japanese.

Ideographic scripts

Use basically one character for one (short) word. The most widely known ideographic script is
Han, often known as Chinese script, though it is also used (in part) for other languages as well,
especially Japanese and Korean, and therefore often called "CJK."

Figure 1-4. Sample information on a character in the eki.ee database

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Consonantal writing may sound impossible, because it introduces so much ambiguity. However,
although an individual written form of a word is often ambiguous, the ambiguities are usually
resolved easily from the context by a person who understands the language well. Moreover,
languages written with a consonantal script typically have a structure that makes this easier than for
English, for example. When vowels are mainly used to express variations of a common theme
expressed by a word root, consisting of a pattern described by a combination of consonants, the
vowels can usually be inferred from the grammatical context.

The word "script" is often used in character code contexts instead of "writing system." It is important
to distinguish it from the use of the word "script" to denote a programming concept'a certain type of
a computer program, such as a Perl script.

Some scripts, such as the Latin script, are written with spaces between words, and a space is
normally a permissible line break point. Hyphenation may introduce other break points. Other scripts
may permit line breaks more freely.

The Latin script and many other scripts are written left to right, with lines proceeding from top to
bottom. These are not universal properties of human writing, and even the Latin script is historically
based on a script that was written right to left. Unicode addresses the problem of left-to-right versus
right-to-left writing in two ways: by defining inherent directionality for characters and by defining
control characters for affecting writing direction. For example, Hebrew and Arabic letters have
inherent right-to-left directionality. Special methods are needed when text in such letters contains
names or quotations that have the opposite directionality, or vice versa.

Figure 1-5. The four contextual forms of the Arabic letter "ba"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In Latin scripts, each character is normally displayed as a separate image on screen or paper, though
the spacing between characters may vary. In other scripts, the formatting of texts for visual
presentation can be essentially more difficult: the shape of a character may depend on context;
adjacent characters can be written together (using a ligature or using cursive writing where
characters join smoothly); and a character might be displayed as an auxiliary symbol above, below,
before, or behind another character.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.4. Glyphs and Fonts

It is important to distinguish the character concept from the glyph concept. A glyph is a presentation
of a particular shape a character may have when rendered or displayed. It has even been said that
any character is an abstract idea, whereas glyphs for the character are its different visible
manifestations.

Each character we use in English normally has the same basic shape, and glyphs for it differ in
typographic design only. It is obvious that "T" in the Times font represents the same character as "T"
in the Arial font, for example. However, the letter "a" has two rather different shapes (compare "a" in
normal Times font and "a" in Times italic). When you write literally by hand, you may draw
characters differently in different positions of a word. For example, a word-final "s" may be quite
different than a word-initial "s." In typewritten or typeset text, or in text displayed or printed on
computers, such distinctions are not made, even in so-called handwriting-style fonts .

In Greek writing, a word-final sigma () is rather different from a normal small sigma (σ), although

they are logically the same character. The first and last letter of the word σοφ (sophos, "wise")
are the same but are written differently. However, since this is a special case, character codes usually
solve this by encoding them as two separate characters, and Unicode follows suit, even without
defining any equivalence between them.

In other writing systems, the variation can be much bigger, especially if the writing systems imitate
handwriting. In Arabic, letters have two or four contextual forms, which can be quite different from
each other. Figure 1-5 shows the four forms of an Arabic letter, usually called "ba" or more exactly b

 , though the Unicode name is Arabic letter beh (U+02BE). The forms are (from right to left!) for
use as isolated, at the start of a word, in the middle of a word, and at the end of a word. As you can
see, for example, the word-final form (on the left) has a part that helps in joining the character with
the previous character. Each of these forms, in turn, can appear differently in different fonts.

In the ISO-8859-6 character code (Latin/Arabic), for example, each Arabic letter has one code
position only. This leaves it to rendering engines to determine the context (position within a word)
and to use the correct contextual form. Unicode, on the other hand, contains both such characters
(effectively, taken from ISO-8859-6) and each of the contextual forms as a separately coded
character. This lets you write Arabic so that the rendering process can be very simple, at the cost of
extra work in writing. However, even using Unicode, you are normally supposed to use the more
abstract Arabic letters.

It is ultimately a matter of definition whether two graphic presentations are glyphs for the same
character or distinct characters. However, it is normally not an individual's decision but a collective
agreement. The definition of a character repertoire specifies the "identity" of characters, among other
things. One could define a repertoire where uppercase "Z" and lowercase "z" are just two glyphs for
the same character. On the other hand, one could define that italic "Z" is a character different from
normal "Z," not just a different glyph for it.

In fact, in Unicode for example there are several characters that could be regarded as typographic
variants of letters only, but for various reasons, Unicode defines them as separate characters. For
example, mathematicians use a variant of letter "N" to denote the set of natural numbers (0, 1,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2,...), and this variant is defined as being a separate character (double-struck capital N, , U+2115)
in Unicode.

The design of glyphs has several aspects, both practical and esthetic. For a review of a major
company's description of its principles and practices, see Microsoft's "Character design standards" on
its typography pages at http://www.microsoft.com/typography/.

Some discussions, such as ISO 9541-1 and ISO/EC TR 15285, make a further distinction between
"glyph image," which is an actual appearance of a glyph, and "glyph," which is a more abstract
notion. In such an approach, "glyph" is close to the concept of "character," except that a glyph may
present a combination of several characters. Thus, in that approach, the characters "f" and "i" might

be represented using an abstract glyph that combines the two characters into a ligature , which
itself might have different physical manifestations. Such approaches need to be treated as different
from the issue of treating ligatures as (compatibility) characters.

1.4.1. Allowed Variation of Glyphs

When a character repertoire is defined (e.g., in a standard), some particular glyph is often used to
describe the appearance of each character, but this should be taken as an example only. The Unicode
standard specifically says the glyphs used for a character can be quite different from the
"representative glyph," but within cultural conventions:

Consistency with the representative glyph does not require that the images be identical or even
graphically similar; rather, it means that both images are generally recognized to be
representations of the same character. Representing the character U+0061 Latin small letter a
by the glyph "X" would violate its character identity.

Thus, the definition of a character repertoire is not a matter of just listing glyphs. In fact, it's the
exception rather than the rule that a character repertoire definition explicitly says something about
the meaning and use of a character. For example, the description of the dollar sign $ says that the
character may have one or two vertical bars, to make it clear that such variation does not change the
character's identity. On the other hand, the pound sign £ has one crossbar, in contrast with the lira
sign £, which is identified as a separate character.

1.4.2. Fonts and Their Properties

A font contains a repertoire of glyphs. In a more technical sense, as the implementation of a font, a
font is an organized set of glyphs. The glyphs may have names that identify them; this is the way
used in PostScript fonts . More often, glyphs are identified by their numbers, which typically
correspond to code positions of the characters (presented by the glyphs). Thus, a font in that sense
is character-code dependent. An expression like Unicode font refers to such issues of basic structure
and does not imply that the font contains glyphs for all Unicode characters. In fact, such
comprehensive fonts are very rare at present.

A font may contain the same glyph for distinct characters. For example, although characters such as
Latin uppercase "A," Cyrillic uppercase "A," and Greek uppercase alpha are regarded as distinct
characters (with distinct code values) in Unicode, a font might contain just one "A" that is used to

http://www.microsoft.com/typography/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

present all of them. In fact, this applies to most fonts. On the other hand, a font may contain
alternative glyphs for a character, for use in different contexts.

Fonts have names, which are often trademarks. The name of a font can be a single word like "Times"
or it may consist of two or more words, such as "Times New Roman." It is not uncommon to see
fonts that are very similar to each other but have completely different names such as "Helvetica" and
"Arial."

Fonts can be classified in many ways, and this belongs to typography rather than our topic. However,
some basic classifications as indicated in Table 1-1 are relevant for our purposes, since they appear
in program settings for selecting fonts for displaying characters. For example, a program may have
one choice of a font for serif font, another choice for sans serif font. These font classes are
distinguished by the presence or absence (in French, "sans" means "without") of short strokes that
terminate the lines of many letters. Usually there is also the difference that in a sans serif font, the
lines of letters have (almost) equal thickness, whereas in a serif font, the thickness varies (e.g., the
vertical line of "T" is thicker than the horizontal line).

Table 1-1. Some basic classes of fonts

Class of fonts Characteristics Sample font(s)

Serif Widely used for copy text in books Times, Georgia

Sans serif Often used on screen and for small print Arial, Verdana

Monospace Equal-width characters, often used for code Courier New

Cursive Letters join to each other as in handwriting Cooper BlkIt BT

Fantasy Exotic, artistic (font) Comic Sans MS

The attribute "proportional" refers to any font where the width of character varies, as opposed to
monospace fonts. Monospace fonts are often used for computer code, and sometimes to imitate old
typewriter text. To be exact, there can be variation in width even in a monospace font: some Unicode
characters are defined to be invisible, so they need to have a width of zero, and some characters
such as fixed-width spaces have a specific width by definition.

There are many online services for viewing samples of fonts and for identifying the font of some text
you have seen. They often tell how to download or buy the fonts, too. See, for example,
http://www.identifont.com and http://www.linotype.com.

Typographers often use the term typeface to denote the basic design of glyphs, reserving the word
"font" for particular implementations and variants. For example, the Times typeface is available as
normal (regular), as bold, as italic, and bold italic, as well as in different sizes. Variants of a typeface
in different sizes may differ in their detailsi.e., they are not just formed from a basic size by simple
scaling.

1.4.3. Font Variation Versus Characters

http://www.identifont.com
http://www.linotype.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

As mentioned above, variants such as normal, bold, and italic do not normally constitute a character
difference. That is, a normal "A" is the same character as a bold "A" or an italic "A." Neither does
changing the typeface change the identity of a character, as a rule. However, some Unicode
characters have been defined essentially as variants of other characters, although this difference
could have been made at the font level only. Such characters are defined in the Unicode standard as

having compatibility decompositions, using notations as in Figure 1-6. The symbol stands for
compatibility equivalence, and indicates font variationsimilar to what you could achieve using
the font element in HTML, but here is just a general notation, not markup. The
notation in the Unicode standard does not specify what kind of a font is to be used, and as you can
see from the descriptions of U+210C and U+210D, can mean quite different things for
different characters. For example, U+210E is essentially "h" in italics, but in the Unicode standard,
this is just implicit in its representative glyph.

1.4.4. Fonts in Implementations

The implementation of fonts is relevant to our topic, since it affects the practical availability of
characters. If a character is only available in a font that is poorly implemented, we may need to look
for other approaches. For example, high-quality printing may require the use of certain font
technologies.

The most important font technologies at present are:

Figure 1-6. Some descriptions of characters in the Letterlike Symbols
block in the Unicode standard

Bitmap fonts

Also known as raster fonts, system fonts, or screen fonts, these fonts essentially present a
character as a matrix or raster of pixels, or bits indicating the presence or absence of a pixel.
Bitmap fonts are more or less obsolete, though they are still used as "system fonts," often in
window titles and dialog boxes.

PostScript Type 1

This technology, developed by Adobe, is widely used in the print industry and in desktop

http://lib.ommolketab.ir
http://lib.ommolketab.ir

publishing. On your PC, you may find Type 1 fonts, too.

TrueType

This technology was developed by Apple, and then licensed to Microsoft. Probably most fonts
on your PC are TrueType fonts (with filenames ending in .ttf).

OpenType

This is a new technology developed jointly by Microsoft and Adobe. It is Unicode oriented and
more platform-independent than older technologies.

Fonts other than bitmap fonts are effectively computer programs of a kind, controlling the drawing of
lines that constitute a glyph. Fonts are generally protected by copyright laws, although the scope and
terms of protection vary by country.

If you use Windows, you will probably benefit from downloading and installing the software from
http://www.microsoft.com/typography/TrueTypeProperty21.mspx, "Font properties extension." It
enhances the functionality of Windows so that when you open the Fonts folder (via Start Control
Panel), you can right-click on the icon of a font file and select Properties to get rather detailed
information on the font. However, the amount of information depends on the technology of the font.
Figure 1-7 shows some properties of a TrueType font. The properties include the ranges of Unicode
characters that the font supports. Beware, however, that such support is not always exhaustive; it
may lack some characters of the range, especially if the Unicode standard has been extended since
the creation of the font. (The figure contains some Finnish words, too. Such things may happen if you
install a program that uses English on an operating system that uses a different language in its
interface.)

Figure 1-7. Properties of a font (Garamond), as viewed with the Font
properties extension

http://www.microsoft.com/typography/TrueTypeProperty21.mspx
http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.4.5. Failures to Display a Character

In addition to the fact that the appearance of a character may vary, it is quite possible that some
program fails to display a character at all. Perhaps the program cannot interpret the character
encoding of the data, either because it was not properly informed about the encoding or because it
has not been programmed to handle the particular encoding.

Even if a program recognizes some data as denoting a character, it may well be unable to display it
since it lacks a glyph for it. Often it will help if the user manually checks the font settings, perhaps
trying to find a rich enough font. Advanced programs could be expected to do this automatically and
even to pick up glyphs from different fonts, but such expectations are often unrealistic at present.
However, it is quite possible that no such font can be found. As an important detail, the possibility of
seeing, for example, Greek characters on some Windows systems depends on whether "multilingual
support" has been installed.

A well-designed program will in some appropriate way indicate its inability to display a character. For
example, a small rectangular box, the size of a character, could be used to indicate that there is a
character that was recognized but cannot be displayed. Some programs use a question mark, but
this is riskyhow is the reader expected to distinguish such usage from the real "?" character?
Advanced browsers may display a symbol that indicates the general class (e.g., Latin letter or
mathematical symbol) of the character.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.4.6. Font Embedding

To overcome a situation in which a recipient of a document might not have a font needed for the
characters in it, techniques have been developed for embedding fonts into documents themselves.
This is quite different from what word processors normally do with fonts: they include information
about fonts (by font name), not fonts themselves.

Font embedding does not normally mean the inclusion of an entire font but only an extract from the
font data, as needed for a particular document. The technique may prevent the recipient from using
the embedded font for anything but viewing the particular document. This makes font designers more
willing to allow embedding.

Another reason for font embedding is the desire to have a document presented exactly as designed.
If you create a document using fonts that you like and send it, the recipient's program may well be
capable of displaying all the characters but by using different fonts, in part. Usually if you specify a
font that is not present in the recipient's system, the program used for viewing the document will use
its default font instead. This might be regarded as a serious problem especially by visual designers.

The Font properties extension that was illustrated in Figure 1-7 gives access to information about
font embedding possibilities, in the Embedding pane. If embedding is allowed for a TrueType font,
you can, for example, set Microsoft Word to embed the font. For this, you would select Tools
Settings Save, and then check the box about font embedding. Remember to reset this setting
after saving the document, since otherwise Word will keep embedding all TrueType fonts, which is
generally unnecessary.

For the Web, Microsoft has developed the Web Embedding Fonts Tool (WEFT) for use with HTML and
CSS. However, it has not gained much popularity, partly due to its relative complexity. Instead, the
usual approach is to use the PDF format, since common PDF creation tools allow easy font
embedding. In addition to commercial products such as Adobe Acrobat, there are free tools like
PDFCreator, which adds a "virtual printer" to your system. You can then use the Print command in
various programs to generate a PDF version of a document, and in this context, you can check
settings that make the tool embed the fonts you have used.

Font embedding has its drawbacks, too. Often it would be desirable for the user to change the font
for legibility, but font embedding has more or less been designed to prevent this. A special character
may look odd to a user, who might well recognize it if he could view it using some font he knows well.
The PDF format does not allow easy font resizing, which would be crucial to many people. Therefore,
it is best to distribute your material in alternative formats in accordance with recipients' choices, such
as Microsoft Word, RTF, HTML, or PDF.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.5. Definitions of Character Repertoires

The implementation of Unicode support is a long and mostly gradual process. Unicode can be
supported by programs on any operating systems, although some systems may allow much easier
implementation than others; this mainly depends on whether the system uses Unicode internally so
that support to Unicode is built in.

Even in circumstances where Unicode is supported in principle, the support usually does not cover all
Unicode characters. For example, an available font may cover some part of Unicode that is only
practically important in some area. When text data produced in one program is to be processed in
another, we should be prepared for difficulties with any unusual characters. For data transfer, it is
essential to know which Unicode characters the recipient is able to handle.

Thus, although Unicode contains a huge number of characters, not all of them can be used safely.
Among the 100,000 or so characters, usually only a small subset can be used in a particular
application and context without a serious risk of distorting information.

1.5.1. Formally Defined Repertoires

Each character code, by itself, defines a character repertoire: the collection of characters that can be
represented in the code. In addition to this, subsets of such collections can be defined.

A character repertoire is any collection of characters, without implying any particular implementation
even at the level of code numbers. However, in practice, the simplest way to define a character
repertoire is to use Unicode as the basis and simply list the code numbers. Such a definition specifies
a closed collection, which does not change if the Unicode standard is enhanced. In contrast, by listing
a set of Unicode blocks you define anopen collection, which is fixed at any given moment of time but
will automatically expand if new characters are added to any of those blocks in a revision of the
Unicode standard.

For example, there are three Multilingual European Subsets (MES-1, MES-2, MES-3), defined in a
CEN Workshop Agreement, CWA 13873. Among them, MES-2 is the most important. It is a closed
collection, covering Latin, Greek, and Cyrillic scripts. The CWA is available at
http://www.evertype.com/standards/iso10646/pdf/cwa13873.pdf or via
http://www.cenorm.be/cenorm/businessdomains/businessdomains/isss/cwa/.

1.5.2. Practical Repertoires

In addition to international standards, there are company policies that define various subsets of the
character repertoire. A practically important one, especially in regards to support in widely used
fonts, is Microsoft's "Windows Glyph List 4" (WGL4), also known as "PanEuropean" character set,
listed on the page "Using special characters from Windows Glyph List 4 (WGL4) in HTML" at

http://www.evertype.com/standards/iso10646/pdf/cwa13873.pdf
http://www.cenorm.be/cenorm/businessdomains/businessdomains/isss/cwa/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://www.alanwood.net/demos/wgl4.html. Contrary to what you might expect, the characters in it
have not all been included in MES-2.

In data-processing contexts, a character can be considered "safe" if it is certain or very probable that
it will be correctly transmitted and presented to the recipient. In a broader sense, being safe entails
more: the sender should be sure of the character he means, and the recipient should understand it
correctly. Mostly, however, we consider the technical problems: difficulties in presenting the
character in a digital form, in sending it over network connections and possibly to a different program
and operating environment, and in rendering it visually. Nowadays, it's usually the last phase that
poses most problems.

From a practical point of view, we can distinguish the following repertoires of characters. Each
repertoire listed here contains all the previous repertoires. The list can be useful when you design an
application, or instructions on writing things, or a computer language. When selecting which
repertoire you use or support, it is advisable to proceed slowly in the list and consider whether the
usefulness of extra characters outweighs the risks. The names used for the repertoires here are
practical descriptions, not official names. They make liberal use of encoding names, which will be
described in more detail in Chapter 3.

ASCII name characters: English letters AZ and az and digits 09

These are the safest characters and often the only characters you can use in names or
identifiers in a computer language. Often a few extra characters like underline _, hyphen - and
full stop "." are allowed, too. Be careful with any extra characters when selecting a name for a
file, a username, or a data item name. The naming rules you have learned in some context
may not apply in others. For example, Unicode names for characters use just letters AZ
without case distinction, digits 09, space, and hyphen (hyphen-minus, to be exact).

The invariant subset of ASCII: the above, plus characters ! " % & ' () * + , - . / : ; < = > ? and the
space character

This can be described as the rock-bottom repertoire of characters in data processing. However,
in different transfer and transformations, even these characters may get changed somehow. A
common example is the ampersand &, which often needs to be written in some special way
(e.g., as & in HTML and XML).

The full ASCII repertoire: the above, plus characters # $ @ [\] ^ _' { | } and ~

This repertoire, called Basic Latin in Unicode, usually works well across programs, computer
platforms, and network connections. The characters listed here work mostly just as well as the
other ASCII characters, but some standards allow national variation that may make them
unsafe. Moreover, producing some of these characters can be a nontrivial task on a non-U.S.
keyboard.

The ISO Latin 1 repertoire consists of the above plus 96 additional characters, such as à, é, Ô, £, §,
µ, ©, and ¥

This repertoire is also called ISO 8859-1, and it will be described in more detail in Chapter 3

http://www.alanwood.net/demos/wgl4.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

and Chapter 8. It is sufficient for writing most Western European languages, except for some
typographic issues. It is widely available in the Western world, but not necessarily elsewhere.
Some characters in it still cause problems to some Mac users.

The Windows Latin 1 repertoire, which adds the dashes "" and "'" as well as English (curly) quotation
marks and apostrophe, and a few other characters

This repertoire is generally available on Windows systems and on most other systems as well.
The extra characters usually need to be produced using special key combinations or other tools
such as word processor functions. Due to character code differences between systems, the
extra characters are generally not safe in email, for example.

The WGL4 repertoire

Although the repertoire has been defined by a private company and not in any standard, the
characters in it are standard and rather widely available in environments other than Windows,
too. The repertoire has a total of 652 characters. In addition to the characters mentioned
above, it contains additional Latin letters, the basic characters used in modern Greek, a
repertoire of Cyrillic letters sufficient for several languages, a mixed collection of mathematical
and other symbols, and some line drawing characters.

The Unicode 2.0 repertoire

There is quite a jump from the WGL4 repertoire to the Unicode 2.0 repertoire, but there are
few intermediate general purpose repertoires. Since Unicode is an evolving standard, there are
considerable differences between its versions. For example, a font that purportedly supports
"full Unicode" might actually support just Unicode 2.0. Newer versions are much more
extensive. At the time Unicode 4.1 was published (March 2005), no widely used font supported
essentially more than Unicode 2.0 (published in July 1996).

The full Unicode repertoire(s)

Unicode as currently defined is very large, but anything beyond Unicode 2.0 (except for the
euro sign €, defined in 2.1) is rather unsafe. Experimental use, as well as use for well-defined
limited applications, can be possible and interesting. When designing such use, select and
document clearly the Unicode version you need. In the future, things can be expected to
change, as font support to (at least) Unicode 4.1 will be shipped with important operating
systems.

To illustrate the repertoire of characters that is reasonably "safe" in many situations, Table 1-2 shows
all WGL4 characters. This is just an overview. Many of the characters cannot be identified by their
shape only. The classification of the characters used in the table is a practical one, rather thanformal.

Table 1-2. WGL4 characters

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Classification Characters

Basic Latin
letters

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz

Variants of
Latin letters ª º n

Ligatures

Added Latin
letters ÆæŒœØø ß•

Latin letters
with diacritics

ÀÁÂÃÄÅÇÈÉÊËÌÍÎÏÑÒÓÔÕÖÙÚÛÜÝàáâãäåçèéêëìíîïñòóôõ öùúûü ÿ

E g I

O

 ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Greek
characters

ΑΒΓ∆ΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ αβγδε ζηθικλµνξοπρ

στυφχψω ???

Cyrillic letters

Ґґ

Digits 0123456789123

Fractions ½ ¼ ¾ 1/8 3/8 5/8 7/8

Punctuation , : ; . ! ¡ ? ¿ " « » ‹ › " " " ' ' ? ' ' ... ' = • ' " < > D

Space
characters

space (U+0040), no-break space (U+00A0)

Parentheses () [] { }

Multiple-use
characters # % & * - / \ @ ^ _ ' | ~ § ¯ ¶ · °

Spacing
modifier letters

´ ¨ ¸ ˆ ¯

Currency
symbols

$ ¢ £ ¤ ¥ £ ¤ § ¬

Letterlike
symbols © ® ™ µ e

Arrows

Mathematical
operators + - ± x ÷ < = > ¬ ? / ·

Miscellaneous
technical

Box drawing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Classification Characters

Block elements

Geometric
shapes ? ? ?

Miscellaneous
symbols

Block elements

Geometric
shapes ? ? ?

Miscellaneous
symbols

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.6. Numbering Characters

Definitions in character standards assign a number to each character. The numbers are unique in
each standard, but different standards assign the numbers differently. Some commonly used
standards are mutually compatible, in part: the numbers of characters in ASCII (ranging from 0 to
127) are the same as in the ISO 8859 standards, and the numbers of characters in ISO 8859-1
(ranging from 0 to 255) are the same as in Unicode.

The numbers are nonnegative integers 0, 1, 2,..., but are not necessarily consecutive; there can be
gaps in the assignment. For example, in ISO 8859 standards, numbers in the range 128 to 159 are
unassigned; more specifically, they are reserved for control purposes, leaving it up to other
standards to define them. Unicode contains a lot of gaps, due to the coding structure, partly in order
to leave space for future extensions.

It might sound natural to use the first few code numbers for digits 0, 1,..., but character standards
use different assignments. Don't expect to find much logic in it. The code number of a character
should be treated as fairly arbitrary, but fixed.

The number assigned to a character in a character standard has many different names: code
number, code position, code value, code element, code point, code set value, as well as simply code.
In the Unicode standard, the term "code point" is used both about a number and about a location in
the coding space where a character could reside. Some code points are allocated for characters, a
few have been explicitly designated as not corresponding to characters (now or ever), and most code
points are still not assigned in any way.

Since characters are internally represented by their code numbers, a character can also be treated as
an integer. In fact, many old programming languages lack a data type for characters and use an
integer type instead. However, the code numbers are usually not used in arithmetic operations, since
they mostly lack numeric meaning. If a character's number is smaller than another character's
number, this by no means implies a corresponding relation in alphabetic order. For some small
regions of code numbers, the order actually corresponds to alphabetic order, though.

For example, in Unicode, the numbers for the characters "a," 0 (digit zero), ! (exclamation mark), ä

(letter a with umlaut), and (per mille sign) are 97, 48, 33, 228, and 8240 in decimal notation.
More often, hexadecimal notation is used: 61, 30, 21, E4, and 2030. The code number assignments
are essentially arbitrary: the code number has no relationship with the meaning of a character.

Normally, you do not need to memorize the numbers; you check them from suitable references.
However, if you use some code numbers frequently, you will probably learn to remember some of
them by heart. This explains the sarcastic saying: "Real Programmers might or might not know their
spouse's name. They do, however, know the entire ASCII (or EBCDIC) code table."

1.6.1. Hexadecimal Notation

As mentioned above, character numbers are usually specified in hexadecimal notation, or hex

http://lib.ommolketab.ir
http://lib.ommolketab.ir

notation. The phrase hexadecimal number is often used, but in fact, it is just a convention for writing
numbers. The hexadecimal notation FF denotes the same number as the decimal notation 255.

In hexadecimal notation, letters "A" through "F" (or "a" through "f") are used to denote numbers
from 10 to 15 (10 to 15 in decimal notation). The number denoted by a two-digit hexadecimal
notation is the value of the first digit times 16 plus the value of the second digit. For example,
hexadecimal 2E means 2 x 16 + 14 = 46 in decimal. Similarly, the four-digit hexadecimal notation
215A means 2 x 163 + 1 x 162 + 5 x 16 + 10 = 8,538 in decimal. The largest four-digit hexadecimal
number is FFFF, which is 65,535 in decimal.

Figure 1-8. The Calculator in Windows XP, in Scientific mode

It is usually evident from context whether a number is presented as hexadecimal or decimal. In
particular, Unicode code numbers written as U+nnnn are always in hexadecimal. When necessary,

some special convention is used to indicate the base. In plain text, it is common to use a "0x" (digit
zero, letter "x") prefix for hexadecimal numbers, such as in "0x215A." In mathematical notations, the
base is often written (in decimal) as a subscript, as in 215A16 or 8,53810.

It is easy but boring to convert between decimal and hexadecimal, so we mostly use computers for
that. In Windows, the Calculator program can be used for such conversions, when set in "scientific"
mode. As shown on Figure 1-8, you can, for example, set the Calculator to hexadecimal mode, enter
a number, and click on "Dec" to get the value in decimal.

The reason for using hexadecimal notation in character code issues is that Unicode and other
standards use that notation. This in turn reflects the design decisions of using 8-bit bytes and
grouping characters into 256-character sets. For example, the Unicode number U+205F denotes the
character in relative position 5F inside the set U+2000..U+20FF. Such handy things are not possible if
decimal numbers are used.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Another reason is that it is trivial and fast to convert between hexadecimal and binary, and
computers internally use binary. Each hexadecimal digit corresponds to 4 bits: 0 = 0000, 1 = 0001, 2
= 0010, 3 = 0011,..., E = 1110, F = 1111.

1.6.2. Numbers as Indexes

We can regard a character code as a row of boxes, each capable of containing one character. In
many widely used old character codes, the sequence has 256 boxes. In Unicode, the sequence is
about a million boxes long. Although Unicode is often presented as a set of code tables (arrays), each
consisting of 256 elements, its fundamental structure is essentially linear.

The code numbers are ordinal numbers, or indexes, of the boxes, starting from zero. They can also
be understood as indexes to tables of properties of characters. Thus, to find out whether a particular
character is a letter in the most general sense, you would conceptually use the character's code
number to access a table that contains information about the general category of each character.
Actual implementations do not necessarily use such table lookup techniques, but the idea illustrates
the point of using code numbers.

There are some things to note on this model, however:

Not all boxes contain a character. That is, not all code points correspond to a character. In
Unicode, most code points are currently unassigned, and some have been explicitly defined as
"noncharacters"i.e., as not corresponding to any character, ever.

Not all characters have a box of their own, or a code point. Some characters containing a
diacritic mark can only be written as decomposedi.e., as a base character followed by one or
more combining diacritic marks. For example, the letter "e" with acute accent, é, has a box of

its own; but the Cyrillic letter with an acute accent on it (´), though used as a character in

dictionaries, for example, has no code point'it can only be represented as followed by a
combining acute accent.

Although the numbering implies an order, this order is mostly arbitrary and not used much. For
instance, if a character's code point is numerically smaller than another character's code point,
this implies in general nothing about the mutual order of the characters in alphabetic or sorting
order.

Thus, although characters are identified by their code points, which are numbers (unsigned integers),
the numeric (arithmetic) value is usually irrelevant. That is, we mostly don't operate on them as
numbers, with arithmetic operations. For most purposes, the numbers are just indexes. It is not a
pure coincidence, though, that some characters have code points that correspond to their mutual
alphabetic order. Many character codes have put letters into alphabetic order, and Unicode has tried
to preserve much of that.

1.6.3. Making Use of Character Numbers

There are several ways to use the Unicode number of a character. The methods of writing characters

http://lib.ommolketab.ir
http://lib.ommolketab.ir

will be discussed in Chapter 2, but here are some possibilities:

In HTML and XML authoring, you can use a character reference of the form &#xnumber;e.g.,

℮. That way, you can include any character, no matter what your keyboard is or what
your document's encoding is.

On Microsoft software that uses the so-called Uniscribe input (e.g., many programs under
Windows XP), you can type a character's number in hexadecimal, such as 212e, and then type
Alt-X and see how the number is replaced by the character.

Figure 1-9. Character insertion window in Microsoft Word lets you
select a character by its Unicode number, as one possibility

You can use the number as an index to information on characters in different tables, databases,
and services, including the Unicode standard.

You can select a character by its number in user interfaces such as the Character Map in
Windows, as illustrated earlier in Figure 1-1, or the window that opens in Microsoft Word when
you select Insert Symbol. The latter is illustrated in Figure 1-9, which shows the window in
a Finnish version of Word. As you can see, the character name shown is still the Unicode name
as suchin this case,ESTIMATED SYMBOL.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.7. Encoding Characters as Octet Sequences

When we need to store character data on a computer, we might consider storing it in an exact visual
shape. Some people would call this a very naive idea, but it is in fact quite feasible, even
necessaryfor some purposes. If you have an old manuscript to be stored digitally, you need to scan it
with high resolution and store it in some image format. Sometimes you would do that for individual
characters as well. On web pages, for example, it is common to use images containing text for logos,
menu items, buttons, etc., in order to produce a particular visual appearance.

Figure 1-10. Using Windows Notepad, a simple plain text editor

For most processing of texts on computers, however, we need a more abstract presentation. It would
be highly impractical to work on scanned images of characters in storing and transferring text, not to
mention comparing strings for example. We do not want to do the process of recognizing a
character's identity every time we use the character. Instead, we use characters as atoms of
information, identified by their code numbers or some other simple way. This is really what "abstract
characters" are about.

1.7.1. Plain Text and Other Formats for Text

Plain text is a technical term that refers to data consisting of characters only, with no formatting
information such as font face, style, color, or positioning. However, formatting such as line breaks
and simple spacing using space characters may be included, to the extent that it can be expressed
using control characters only. Moreover, all characters are to be taken as such, without interpreting
them as formatting instructions or tags. For example, HTML or XML is not plain text.

Plain text is a format that is readable by human beings when displayed as such. The reader needs to
know the human language used in the text, of course. The display of plain text depends on the font
that happens to be used. This can often be changed within a program, but such settings change the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

font of all text. (As an exception, if the font chosen does not contain all the characters used in the
text, a clever program might use other fonts as backup for missing characters.)

Plain text is a primitive format, but it is extremely important. In processing texts, the ultimate
processing such as searching, comparison, editing, or automatic translation takes place at the plain
text level. Databases often use plain text format for strings for simplicity, even though data extracted
from them is presented as formatted.

Plain text is universal, since no special software is needed for presenting it, as long as a suitable font
can be used. In Windows, you can use Notepad, the very simple editor, to write and display plain
text, as illustrated in Figure 1-10. There are many plain text editors, some of which contain fairly
sophisticated processing tools. However, their character repertoire is often very small.

Plain text is commonly used, and normally should be used, in email, Internet discussion forums,
simple textual documents (like readme.txt files shipped with software), and many

Figure 1-11. Using Microsoft Word, a text-processing program

other purposes. For example, the RFC (Request for Comments) series of documents, describing the
standards, protocols, and practices on the Internet, have ASCII plain text as their format.

The phrase "ASCII file" or "ASCII text" is often used to denote plain text in general, even in contexts
where ASCII is obviously not used and could not be used. This is because ASCII has been used so
long and so widely, and quite often "ASCII" is mentioned as an opposed to anything that is not plain
text (e.g., "ASCII" versus "binary" transfer).

Text-processing programs such as Microsoft Word normally process and store text data in a format
that is somehow "enhanced" with formatting and other information. This includes the use of different
fonts for different pieces of text, specific positioning and spacing, and invisible metadata ("data about
data") such as author name, program version, and revision history. Figure 1-11 illustrates the use of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Microsoft Word.

If you create a file containing just the word "Hello" using a plain text editor, the file size will be five
octets, or maybe 10 octets, depending on encoding. If you do the same using a text-processing
program such Microsoft Word, you might get, for example, a file size of 24 kilobytes (24,576 octets),
because a text-processing program inserts a lot of basic information in its internal format, in addition
to the text itself and some information about its appearance (font face and size). This means that if
you accidentally open a Word file in a plain text editor or process it with a program prepared to deal
with plain text only, you get a mess. This is illustrated in Figure 1-12, which contains a Word
document with just the text "This is a simple document." written into it, opened in Notepad.

Similar considerations apply to widely used document formats such asPDF (Portable Document
Format). There are also intermediate formats, which contain text and formatting information, such
asRTF (Rich Text Format). It was designed for purposes like exchanging text data between different
text-processing programs.

Figure 1-12. Part of a Word document accidentally opened in Notepad

If you are not familiar with the idea of formats like plain text, Word format (often called ".doc format"
due to the common filename extension), and RTF, you could launch your favorite text-processing
program. Write a short document and save it, and then use the "Save As" option in the "File" menu
(or equivalent), and study and test the alternative save formats you find there. Save the document in
each format in the same folder, and then view the contents of the folder, with file sizes displayed.
You might then see what happens if you open each format in a text editor like Notepad, just to get a
general idea. Such exercises will prepare you to deal with requests like "Please send your proposal in
RTF format." This will also aid you in recognizing situations like receiving an RTF file when you have
asked for something else.

1.7.2. Bytes and Octets

In computers and in data transmission between themi.e., in digital data processing and transferdata
is internally presented as octets, as a rule. An octet is a small unit of data with a numerical value
between 0 and 255, inclusively. The numerical values are presented in the normal (decimal) notation
here, but other presentations are widely used too, especially octal (base 8) or hexadecimal (base 16)
notation. The hexadecimal values of octets thus range from 0 to FF.

Internally, an octet consists of 8 bitshence the name, from Latin octo "eight." A bit, or binary digit, is
a unit of information indicating one of two alternatives, commonly denoted with the digits 0 and 1 in
writing but internally represented by some small physical entity that has two distinguishable states,
such as the presence or absence of a small hole or magnetization. The digits 0 and 1 that symbolize
the values are also called bits (0 bit, 1 bit). When a bit has the value 1, we often say that the bit has

http://lib.ommolketab.ir
http://lib.ommolketab.ir

been set.

In character code contexts, we rarely need to go into bit level. We can think of an octet as a small
integer, usually without thinking how it is internally represented. However, in some contexts the
concept of most significant bit (MSB), also called first bit or sign bit is relevant. If the most significant
bit of an octet is set (1), then in terms of numerical values of octets, the value is greater than 127
(i.e., in the range 128255). In various contexts, such octets are sometimes interpreted as negative
numbers, and this may cause problems, unless caution is taken.

The word "byte" is more common than "octet," but the octet is a more definite concept. A byte is a
sequence of bits of a known length and processed as a unit. Nowadays it is almost universal to use 8-
bit bytes, and therefore a distinction between a byte and an octet is seldom made. However, in
character code standards and related texts, the term octet is normally used.

There is nothing in an octet that tells how it is to be interpreted. It is just a bit pattern, a sequence of
eight 0s or 1s, with no indication of whether it represents an integer, a character, a truth value, or
something else. For example, the octet with value 33 in decimal, 00010001 in binary (as bits), could
represent the exclamation sign character !, or it could mean just the number 33 in some numeric
data. It could well be just part of the internal representation of a number or a character. Information
about the interpretation needs to be kept elsewhere, or implied by the definition of some data
structure or file format.

1.7.3. Character Encodings

A character encoding can be defined as a method (algorithm) for presenting characters in digital form
as sequences of octets. We can also say that an encoding maps code numbers of characters into
octet sequences. The difference between these definitions is whether we conceptually start from
characters as such or from characters that already have code numbers assigned to them.

There are hundreds of encodings, and many of them have different names. There is a standardized
procedure for registering an encoding, and this means that a primary name is assigned to it, and
possibly some alias names. For example, ASCII, US-ASCII, ANSI_X3.4-1986, and ISO646-US are
different names for an encoding. There are also many unregistered encodings and names that are
used widely. The Windows Latin 1 encoding, which is very common in the Western world, has only
one registered name, windows-1252, but it is often declared as cp-1252 or cp1252.

The case of letters is not significant in character encoding names. Thus, "ASCII" and "Ascii" are
equivalent. Hyphens, on the other hand, are significant in the names.

1.7.4. Single-Octet Encodings

For a character repertoire that contains at most 256 characters, there is a simple and obvious way of
encoding it: assign a number in the range 0255 to each character and use an octet with that value to
represent that character. Such encodings, called single-octet or 8-bit encodings, are widely used and
will remain important. There is still a large amount of software that assumes that each character is
represented as one octet.

Various historical reasons dictate the assignments of numbers to characters in a single-octet
encoding . Usually letters AZ are in alphabetic order and digits are in numeric order, but the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

assignments are otherwise more or less arbitrary. Besides, any extra Latin letters, as used in many
languages, are most probably assigned to whatever positions that were "free" in some sense. Thus, if
you compare characters by their code numbers in a single-octet encoding, you will generally not get
the right alphabetic ordering by the rules of, for example, French or German.

1.7.5. Multi-Octet Encodings

As you may guess, the next simpler idea of using two octets for a single character has been invented,
formalized, and used. It is not as common as you might suspect, though.

A simple two-octet encoding is sufficient for a character repertoire that contains at most 65,536
characters. An octet pair (m,n) represents the character with number 256 x m + n. Alternatively, we

can say that the number is represented by its 16-bit binary form. This makes processing easy, but
there are two fundamental problems with the idea:

Each character requires two octets, which is rather uneconomical if the text mostly consists of
characters that could be presented in a single-octet encoding.

Unicode is no longer limited to the code number range 0..65,536, so extra methods would
anyway be needed to represent characters outside it.

Thus, encodings that use a variable number of octets per character are more common. The most
widely used among such encodings is UTF-8 (UTF stands for Unicode Transformation Format), which
uses one to four octets per character. For those writing in English, the good news is that UTF-8
represents each ASCII character as one octet, so there is no increase in data size unless you use
characters outside ASCII.

If you accidentally view an UTF-8 encoded document in a program that interprets the data as ASCII
or windows-1252 encoded, you will notice no difference as long as the data contains ASCII only. In
fact, any ASCII data can trivially be declared as UTF-8 encoded as well. If the data contains
characters other than ASCII, they would in this case be displayed each as two or more characters,
which have no direct relationship with the real character in the data. This is because consecutive
octets would be interpreted as each indicating a character, instead of being treated according to the
encoding as a unit.

1.7.6. The "Character Set" Confusion

Character encodings are often called character sets, and the abbreviation charset is used in Internet
protocols to denote a character encoding. This is confusing because people often understand "set" as
"repertoire." However, character set means a very specific internal representation of characters, and
for the same repertoire, several different "character sets" can be used. A character set implicitly
defines a repertoire, though: the collection of characters that can be represented using the character
set.

It is advisable to avoid the phrase "character set" when possible. The term character code can be
used instead when referring to a collection of characters and their code numbers. The term character
encoding is suitable when referring to a particular representation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For example, the word "ASCII" can mean a certain collection of characters, or that collection along
with their code numbers 0127 as assigned in the ASCII standard, or even more concretely, those
code numbers (and hence the characters) represented using an 8-bit byte for each character.

Figure 1-13. An extract from a Save As dialog in Notepad

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.8. Working with Encodings

When you use characters on a computer, some software will internally encode them in binary format.
Most users never need to know the details of this, still less need to actually handle the encoding
process, but it is essential to know that there are different encodings, with different properties. In
transferring data between applications and computers, you may need to change the encoding or
select a suitable encoding.

1.8.1. Selecting the Encoding When Saving

Text editors and many other programs typically have a File menu, with a Save function for storing
data onto disk. Normally, this function uses the file format and the character encoding that is typical
of the program. However, there is usually also a Save As function, which lets the user select the
format and encoding. This function is often used because it lets you save an edited document under a
different filename.

The Save As function is often the simplest way to convert between different encodings (and file
formats). You simply open a file and save it differently. For example, suppose you have used Notepad
to create a plain text file. If you use, for example, an English version of Windows, the default
encoding that Notepad uses is Windows Latin 1. Now suppose that a friend has asked you to send
your text in the UTF-8 encoding for some reason. You simply open your file in Notepad, select File

 Save As and then choose the UTF-8 encoding from the menu of encodings, as shown in Figure 1-
13. It illustrates the three basic things you can (and need to) specify in Save As dialogs: the
filename, the file format, and the encoding.

The list of possible encodings in a Save As dialog varies greatly, and the names of the encodings are
not always official names. For example, in Microsoft products, "ANSI" often appears as denoting the
character code that the system uses as its normal 8-bit code, such as the Windows Latin 1 encoding,
which should be called "windows-1252." The word "Unicode" may denote different encodings used for
Unicode, typically UTF-16. Use the UTF-8 encoding for Unicode text, unless you have a good reason
for doing otherwise.

When using a text-processing program, the situation is usually different. There is a file format menu
in the Save As dialog but often no encoding menu. The reason is that in text processing, the overall
format is crucial, and the encoding is often coupled with the format.

Figure 1-14. An extract from a Save As dialog in Microsoft Word

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In Microsoft Word, for example, the list of formats may contain alternatives as shown in Figure 1-14,
with options corresponding to the internal formats of different programs and some plain text formats.
Here, too, it may require some guesswork or study to identify what the options really mean. On
Windows systems, "*.txt" is associated with several different encodings, and "*.ans" refers to ANSI
(e.g., windows-1252). The notation "*.asc" may suggest ASCII encoding, but in fact it refers to an
old DOS encoding, a code page, which is a single-octet encoding and may vary from one system to
another.

Having selected a plain text (*.txt) format, modern versions of Microsoft Word ask you to specify the
encoding in another dialog. In older versions, this happens if you select the "Encoded text" format. In
this mode, the default is "Windows" or, more explicitly, something like "Western European
(Windows)," which means windows-1252. The dialog is shown in Figure 1-15. The user has typed in

the text "This is a sample documentwith special characters like and ." When saving as windows-
1252, Microsoft Word is about to quietly change the em dash "'" to hyphen "-" (for some odd reason)
and to omit the two special characters, but it issues a warning about them. If you would like to have
them saved, you would need to select an encoding that makes this possible, such as UTF-8.

In Save As dialogs, there are often additional settings that affect line break conventions, which are
discussed in Chapter 8. These conventions specify which control characters are used to separate lines
of text, as well as the method of presenting paragraphs internally. Microsoft Word stores a paragraph
as one long line and splits it to separate lines as needed for display. It is often desirable to split a
paragraph into lines of reasonable length (e.g., at most 80 characters) when saving as plain text.

1.8.2. How Encodings Should Be Detected

Character encodings are of crucial importance, but most peopleincluding most computer
professionalsneed not know the technicalities of encodings. To view an email message or a web page
that is UTF-8 or ISO 8859-2 encoded, you need not know how characters are encoded in them.
Instead, you need a program that understands the encodings, and perhaps you need to tell it to use
a particular encoding.

The correct interpretation and processing of character data of course requires knowledge (or correct
guess) about the encoding used. For email, the encoding should be specified (by the email program)
in so-called MIME headers, unless ASCII, the default encoding,

Figure 1-15. Selecting encoding when saving as plain text in Microsoft
Word

http://lib.ommolketab.ir
http://lib.ommolketab.ir

is used. For HTML documents, such information should be sent by the web server along with the
document itself, using HTTP headers, which resemble MIME headers. The headers are normally
invisible to users but processed by a program, such as an email reader or web browser. Using special
tools, the headers can be made visible for an analysis.

Thus, when everything works well, you need not see MIME or HTTP headers or care about them. But
if things look odd, you may need inspect them or at least force a program make a particular guess on
the character encoding. In some situations, you might have some prose description of the data
format, such as an email sender's note like "the attached file is in ISO-8859-2." Beware that people
don't always use the right terms in such notes.

Previously the ASCII encoding was usually implied by default, and it is still very common to do so.
Nowadays ISO-8859-1, which can be regarded as an extension of ASCII, is often the practical
default. The current trend is to avoid giving such a special position to ISO-8859-1 among the variety
of encodings. In XML, the default encoding is UTF-8.

To summarize, the character encoding of input data can be deduced from:

An explicit indication of the encodinge.g., in protocol headers

An explicit or implicit agreement on using a particular encoding by default in a certain context

A private agreement or note about the encoding in a particular case

Guesswork based on the context or inspection of the data using different guesses

In Chapter 3, we will discuss some commonly used encodings and their typical scope of use. This will
help you in the guesswork. For example, if you get an email message from Poland and it contains
some Polish names that look misspelled, the odds are good that the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 1-16. Fixing the display of an email message by setting the
character encoding manually

message is in fact in ISO-8859-2 or windows-1250 encoding, since these are very common in Poland.

1.8.3. Setting the Encoding Manually

Suppose you get email from abroad and it contains some strange characters in names or in other
text. Figure 1-16 shows an example of a received email message, as displayed by the Mozilla
Thunderbird email program. The message is meant to contain French words like "Rhône" and "moiré"
but is displayed incorrectly, with Greek letters in place of accented Latin letters. The sender may
have seen text all right, but something went wrong, and the error is not the recipient's email
program. The reason is that the message was incorrectly sent with a message header that claims
that it is encoded in ISO-8859-7, as we can see by selecting View Character Encoding. Clicking
on "Western (ISO-8859-1)" fixes the display.

Setting the encoding manually in the recipient's email program does not always help. For example, if
a message has incorrect information about encoding, it may be converted to another encoding before
it reaches the recipient. Since the information is wrong, the conversion goes all wrong too, and
special repair might be needed.

1.8.4. Sending Unicode Email

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Before sending Unicode email, make sure the recipient is willing to receive Unicode-encoded
messages and knows what that means. Although most users have email programs that are capable
of displaying such messages, the user may need to change settings (especially font settings) to see
them properly. Moreover, on programs that cannot handle Unicode, the message would look more or
less like garbage.

It's a good idea to test things by sending email to yourself. There are things that can go wrong in
that simple case, and it's best that only you see your own initial mistakes. However, many problems
will not be detected that way. If possible, find someone who works in a different environment (say,
Mac or Unix, if you are using Windows) and uses a different email program, and exchange some test
messages with Unicode characters in them.

There are basically three ways to send Unicode text by email:

As an attachmente.g., in Microsoft Word format. This is usually no different from using a
"normal," non-Unicode attachment. The recipient needs to know what to do with the
attachment. Beware that attachments are often frowned upon for security reasons, and they
might even be filtered out by firewalls.

In HTML format, typically as generated by an email program. Effectively, the program would
convert "special" characters to HTML character references. This is what typically happens when
you try to compose an email message with special characters in Outlook Express. Although this
may solve some problems, it also causes some. HTML format messages cannot be read by all
programs, and they may affect the classification of your message as unsolicited bulk email, or
"spam."

As plain text, with message headers that specify the encoding (as explained in detail in Chapter
10). This is a simple and clean approach. It's very easy on Mozilla Thunderbird, for example. If
you don't have that program on your system, you can download it from the
http://www.mozilla.org site.

Figure 1-17 shows a dialog that appears when you have composed a Unicode email message in
Thunderbird. The program asks for permission to send the message as UTF-8 encoded, which is just
fine. In composing a message, you can use, for example, the Character Map program when using
Windows, as explained in "Introduction to Characters and Unicode" earlier in this chapter.

Sent this way, the email message is plain text, effectively just a sequence of characters as Unicode
code points, though with headers that specify the encoding. This means, in particular, that there is no
font information included. It is up to the receiving email program to use the font(s) it has been set to
use. The recipient needs to have some font that contains the character you have included, but she
does not need to have the same font as you. This is essential for communication between people who
work on different platforms, often with quite different choices of fonts.

Figure 1-17. Sending Unicode email in Thunderbird

http://www.mozilla.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Outlook Express (OE) may automatically convert the message into HTML format, if your text contains
characters outside the repertoire that OE normally supports. To prevent this, go to the settings for
outgoing mail in the Tools menu, and check that the plain text format is selected. Note that there are
separate settings for outgoing email and for outgoing newsgroup (Usenet) messages. Check also the
options for text format in the settings: make sure "MIME" is checked, and select "no encoding"
instead of an encoding like Quoted Printable or Base64. When you then send email with special
characters, OE asks how to send the message; select sending as Unicode. As you see, OE is less
convenient for getting started with Unicode email than Thunderbird but once you've found the right
settings, OE works well for Unicode.

1.8.5. Viewing Web Pages in Different Encodings

A web page author can specify the character encoding of her page in several ways, discussed in
Chapter 10. Normally, your web browser recognizes the encoding and uses it to interpret and display
the page. However, sometimes an author fails to use any of those ways or specifies a wrong
encoding. Then the user may need to select the encoding, perhaps with trial and error, until the page
becomes legible.

Your browser might not be prepared to handle all encodings. For Internet Explorer in particular, there
is a set of updates available from the Windows Update site http://windowsupdate.microsoft.com. In
addition to updates that fix security problems, the site contains optional updates that add some
encodings to the capabilities of Internet Explorer (IE). The site http://www.mauvecloud.net/charsets/
contains pages for testing browser support to encodings.

If you visit web pages in many languages, you will probably encounter some pages that are not
displayed correctly due to encoding mismatches. For example, you might visit a Hungarian page and
see most characters correctly but some letters all wrong. If you have problems with finding such
problems, try the index http://www.dmoz.org/World/, which contains links to collections of web
pages in different languages; the link names are in the language itself.

The explanation is probably that the web server has not sent any information about the encoding. In

http://windowsupdate.microsoft.com
http://www.mauvecloud.net/charsets/
http://www.dmoz.org/World/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Hungary, web browsers are probably configured to use ISO-8859-2 in such cases, and users do not
observe any problem. However, your browser might use ISO-8859-1 by default, and this makes a

difference for a handful of characters. For example, the octet that denotes (u with double acute
accent) according to ISO-8859-2 will be treated as û (u with circumflex) according to ISO-8859-1.

What you can do as a user is to tell your browser to use an encoding that differs from the browser
default:

On IE, select View Encoding, and then the appropriate encoding. Use the "More" option
when needed. In the example, you would select "Central European (ISO)," which is what
Microsoft calls ISO-8859-2.

On Firefox, select View Character Encoding, and choose the suitable encoding directly or via
"More Encodings," as illustrated in Figure 1-18. Firefox classifies, for example, ISO-8859-2 as
"East European" and calls it "Central European (ISO-8859-2)."

Often you can fix the display of a web page rather easily, since you can guess the encoding. This
requires some experience, though. For example, Hungarian pages are most probably in ISO-8859-2
or in windows-1250 encoding; but for Russian pages, there are a few encodings (in the Cyrillic group)
you might need to try.

1.8.6. Common Confusion: Encoding Versus Language

Quite often the choice of a character repertoire, code, or encoding is presented as the choice of a
language. Programs typically confuse their users quite a lot in this area.

On the Opera browser (available from http://www.opera.com), for example, the keyboard shortcut
Alt-P (or the command Tools Preferences) and the choice of the "General" pane takes you to
settings titled "Languages," as shown in Figure 1-19. The pane contains settings for three quite
independent things:

The user interface languagei.e., the names of menus and options in the browser itself, quite
independently of any particular page content.

The language preferences sent by the browser. You can specify an ordered sequence of
languages, to be used in the (rare) cases where a web page is served in different language
versions using a particular protocol.

The default encoding, to be used when a web page fails to specify its encoding in any explicit
manner. The encoding windows-1252 is suitable here if you mainly view pages in English and
other Western European languages. However, the encoding itself is a technical setting and does
not depend on any language settings.

Figure 1-18. Setting encoding for a page in the Firefox browser

http://www.opera.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

All these settings are useful, but lumping them together into one pane called "Languages" is
misleading.

A language setting is quite distinct from character issues, although naturally each language has its
own requirements for character repertoire. Even more seriously, programs and their documentation
very often confuse the above-mentioned issues with the selection of a font.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.9. Working with Fonts

In a word processor like Microsoft Word, it is deceptively simple to change the overall font, or the
font of some particular piece of text. You can paint a piece of text with the mouse and select a font
for it from a drop-down menu. In web authoring, it is not much more difficult, especially if you use
authoring software that resembles a word processor. However, things become difficult if the chosen
font does not contain all the characters you need.

Figure 1-19. The "Languages" settings in the Opera browser

Each computer system is shipped with some repertoire of fonts, which may be
insufficient for working with a large character repertoire even if the system is
basically "Unicode enabled."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.9.1. Installing Additional Support

For example, a typical Windows system might not have any font that is rich enough to present all the
characters you need. Unfortunately, Windows has often been preinstalled without full "multilingual
support." You may therefore need to install additional fonts.

On Windows XP, you would do this as follows:

Select Start Control Panel Regional Options and Language Options.1.

In the "Languages" tab, there are checkboxes for two groups of languages, "complex scripts
and right-to-left languages" and "East Asian languages." Check either or both of them to install
optional fonts and system support for these languages. You will be informed about disk
requirements and asked to confirm. You might be prompted to insert the Windows CD-ROM or
point to a network location where the files are located.

2.

On older Windows systems, you may need to select Control Panel Add/Remove Programs, click
on Multilanguage Support, and then Details. Make sure a checkmark appears beside the language or
languages you want to use, and then click on OK.

There is support to many languages available, for different versions of Windows, in the Windows
Update site http://windowsupdate.microsoft.com. The site also contains important security updates.
However, even if your computer has been configured to download and install security updates
automatically, this does not cover the extra language support. You need to download and install it
separately.

If you have installed MS Office, you have probably got some important additional fonts, such as Arial
Unicode MS, which is not a complete Unicode font, but is rather extensive (though it exists in
different versions). However, it is possible that this font was not included when MS Office was
installed; you may need to install it separately from the MS Office CD then.

There are some additional instructions for installing fonts in a few environments on the page "Display
Problems?" at http://www.Unicode.org/help/display_problems.html.

As a quick check, access http://www.Unicode.org/standard/WhatIsUnicode.html, which contains the
document "What is Unicode?" in English but also, under the heading "Translations," links to versions
of the document in many other languages. Do the link texts look meaningful (though perhaps all
Greek or all Hebrew to you), or are there boxes or question marks that look like symbols of
unrepresentable characters? This test is best carried out using a Mozilla or Opera browser rather than
Internet Explorer 6, which will only use characters in the currently selected font. Note that it is rare,
these days, to be able to see all the link texts there properly, since some of them contain characters
that are not present in relatively large fonts. Figure 1-20 shows the test page viewed on Opera, on a
system where the font support is relatively good.

Of course, installing additional fonts and language support on your computer does not make
documents created by you behave any better on other computers. If you had to install something
extra in order to type some Chinese, the odds are that if you send a Chinese document you

http://windowsupdate.microsoft.com
http://www.Unicode.org/help/display_problems.html
http://www.Unicode.org/standard/WhatIsUnicode.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

composed to your neighbor, he might not see it properly without installing something extra, too. We
cannot expect all, or even most, computers to be able to display the full Unicode repertoire, or even
anything close to it.

The situation is expected to change in time in the sense that new systems will have a few complete
Unicode fonts installed. Additional fonts may still be needed for typographic reasons. In general, any
font that has a large character repertoire cannot be typographically optimal for any particular writing
system. The font needs to have many characters that are distinguishable from each other, and this
imposes restrictions on the design of characters.

1.9.2. Font Support in Web Browsers

There is a major difference between Internet Explorer (at least up to Version 6) and more modern
browsers. IE basically uses a single font for a piece of text, as specified on the page itself or in the
browser settings. If the text contains a character that is not present in

Figure 1-20. A page with links containing characters from several
languages, therefore suitable for testing font support

Figure 1-21. A word with a special character in Internet Explorer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the font, IE shows just a small rectangular box to indicate the lack of glyph, as shown in Figure 1-21.
Firefox, for example, is capable of picking up glyphs from different fonts, if the primary font is not
sufficient for all characters.

When a browser, or other program, uses glyphs from different fonts, the situation is not as happy as
you might think. The problem is that a font typically has a distinctive style and flavor, and mixing
fonts often produces typographically poor results. This is illustrated in Figure 1-22, where a Romanian
word containing letter "t" with comma below is rendered using a different font for that character. (In
practice, the letter "t" with a comma below is almost always replaced by the letter "t" with a cedilla,

which is much better supported in fonts, making it possible to present words like "Constan a" in a
typographically suitable way.)

Figure 1-22. A word with a special character in Firefox

1.9.3. Font Substitution: a Solution and a Problem

The font problem discussed above appears in contexts other than web pages, too. In composing a
text in a word processor, you may have decided (or someone may have decided for you) on the fonts
to be used. It may well happen that you need a character that does not appear in the font you use,
and you need to pick it up from another font. A program might do this for you, by automatically
switching to a substitute font.

The presentation of special symbols like in a different font need not have drastic effects, though it
may cause uneven line spacing. Font changes inside a word are often much worse. Thus, it is best to
design the use of fonts so that the primary font is sufficient at least for all letters that might be
needed. Sometimes, however, it is feasible to use a reasonably similar font as a secondary fonte.g.,
Arial Unicode MS as a "backup font" for Arial.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When using fonts like Arial Unicode MS or Geneva as "backup fonts," you might run into problems
with italicized or bold text. The reason is that some fonts exist in one version only, not in italics or
bold versions. Many programs still display them in italics or in bold by "faking" the typographic
features by modifying the shapes of characters. However, some programs don't do this, and those
that do may produce typographically poor results. Thus, try to limit the use of "backup fonts" to
nonstylized copy text.

When deciding on a font, you should use some test files that contain both typical text and some less
typical "exotic" characters that may appear in actual documents. The Common Locale Data
Repository (CLDR), discussed in Chapter 11, contains lists of "exemplary characters" for different
languages. These lists include both characters normally used in the language and characters that
often appear in names in texts in that language, due to cultural connections. For example, text in
Spanish may well contain names in Portuguese or French. Therefore, a good test file for Spanish
contains more than just Spanish characters.

Moreover, depending on the topic areas of texts, various special symbols will be needed. If you
design the use of fonts in a publication on technology, you should probably pay attention to the
availability of technical symbols such as µ and in the fonts. That way, you can avoid embarrassing
problems that you might encounter when you have selected a font but later find out that it lacks
some essential characters. For example, the site http://www.fileformat.info/info/Unicode/char/
contains tools for finding fonts (within some

Figure 1-23. Information on font support for a character

repertoire of fonts) that support a particular character. Figure 1-23 shows an example of such
information, which indicates here that support for the diameter sign is rather limited, despite the
rather common use of this character in technical contexts. Among the fonts listed, Arial Unicode MS is
the most realistic alternative, since it is shipped with MS Office products, though not always installed
along with them.

The font problems are one reason why the common use of "Lorem ipsum" texts (i.e., meaningless pig
latin texts) in visual design is not such a good idea. Those texts seldom contain anything but the
basic Latin letters and a few punctuation characters. It is safer to play with more realistic texts with a
richer character repertoire. This does not mean that you need to reject all fonts that do not contain
all the characters you might imaginably need in the texts. Rather, the suggested testing ensures that
the most important characters work well, and you can prepare for eventual problems with less
common characters.

1.9.4. Printer Fonts

http://www.fileformat.info/info/Unicode/char/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

When a document is printed, the fonts used in it may need to be replaced by printer fonts . It may
well happen that the document looks fine on screen but some characters are lost or distorted in
printing. The situation may vary by printer. A printer may use a font shipped with the printer itself
(on ROM), or a font that has been separately installed into it, or a downloaded fonti.e., a font sent by
the program to the printer.

It often happens that a document with special characters looks good on screen,
but some characters are wrong when the document is printed.

Therefore, you may need to test your fonts especially before making an important decision on using
particular fonts in publications. Make sure that your test file is extensive enough to cover even less
common characters. Typical printer test pages contain a relatively limited repertoire of characters.

Figure 1-24. Text samples in some large-repertoire fonts

1.9.5. Finding Fonts

Typographically good fonts are usually commercial products, sold either as such or packaged into
text-processing, publishing, or other programs. However, there are some fonts with large character
repertoires available as freeware or shareware, and they can be useful for special applications or as
general "backup fonts." The following fonts are illustrated in Figure 1-24; the rectangular boxes
indicate a lack of glyph in the font.

Doulos SIL (http://scripts.sil.org/DoulosSILfont)

A free font family that contains a large repertoire that is suitable for almost any text based on
a Latin or Cyrillic script. It also contains a rich set of phonetic symbols and is therefore useful
for linguistics.

Code2000, Code2001, Code2002 (http://home.att.net/~jameskass/)

Large shareware fonts. Often used as ultimate backup due to coverage, but not typographically
for normal use.

http://scripts.sil.org/DoulosSILfont
http://home.att.net/~jameskass/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Everson Mono (http://www.evertype.com/emono/)

A simple, monospace font, which is legible even in rather small size. Shareware.

For many additional fonts, please refer to http://www.alanwood.net/Unicode/fonts.html.

Installing new fonts is typically easy. On Windows, having downloaded a font, you can open the
Control Panel via the Start menu, open the Fonts folder, and select File Install New Font. Then
find the folder where you downloaded the font, and the font will appear in a menu, to be selected for
installation. After installation, you can check that the font is available, by opening a program's font
menu.

1.9.6. Fonts in Web Authoring

Originally, web pages had no font information; each browser used its own font. Soon after,
tags were introduced and gained popularity among web authors. This meant a seemingly simple way
to specify a font: Hello world, or perhaps with
face="Arial,Helvetica,Geneva" to provide a list of alternatives, because not all browsers have a font
named Arial. However, this approach is inflexible and makes things difficult to modify and maintain.

The more modern approach is to specify font usage separately from the HTML markup through the
use ofCascading Style Sheets (CSS). For example, you could specify the font for an entire page in
CSS as follows: body { font-family: Arial, Helvetica, Geneva; }. Modern browsers effectively
turn tags into CSS rules internally.

1.9.6.1. The fallback problem

Since many fonts used on computers have rather small character repertoires, the question arises
what to do if your document contains more or less "unusual" characters. You might wish to use, say,
the Arial font in general, but you may need other fonts for some special characters.

Recommendations by the World Wide Web Consortium (W3C) suggest that an author include a
generic font name as the last name in a font list. These names (serif, sans-serif, monospace, cursive,
and fantasy) correspond to broad classes of fonts. The idea is that normally the font list consists of
fonts of the same class, and the last item there would effectively tell the browser to use some font of
the class, if it cannot find any of the specific fonts listed. A typical example would thus be body {
font-family: Arial, Helvetica, Geneva, sans-serif; }.

In principle, generic font family names are supposed to be mapped to typical fonts in a category.
Thus, sans-serif would not mean any sans-serif font that a browser may have but the most typical
representative of the class of sans-serif fonts. However, typical fonts tend to be old fonts, and old
fonts tend to have relatively small character repertoires.

The CSS font model (font-matching algorithm) is based on the idea of determining (at the conceptual
level at least) the font individually for each character. If none of the fonts declared contains a glyph
for the character, the browser is supposed to use a browser-dependent default list of fonts. This is
how, for example, the Opera and Firefox browsers work. The problem is with IE, which more or less

http://www.evertype.com/emono/
http://www.alanwood.net/Unicode/fonts.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

just uses the declared font-family value and picks up the first font there that is available on the
system, without checking whether it contains all the characters that appear in the text.

This means that with the above-mentioned CSS rule, a piece of text containing, for example, the
diameter sign (U+2600) will contain a small rectangle in place of the character on IE. The browser
sees the name Arial in the font list and uses it, since a font with that name exists. Characters not
present in that font will then be replaced by a symbol for missing character. On Opera and Firefox,
the lack of character is detected and the list of fonts is scanned further. Here, Helvetica and Geneva
are probably not of use, whereas the font used as a generic sans-serif font might contain the
character. Even if it does not, the browser proceeds to its internal list of fallback fonts. In effect, if
any font on the system contains the character, it will be shown. This often results in a typographically
poor rendering, but at least the character is displayed.

The practical conclusion is that for web authoring, the font names in a font-family list should be
chosen so that each of them contains all the characters that appear in the text of an element. At
least as long as IE Version 6 is widely used, we should avoid relying on the defined fallback
mechanism.

Generally, if a document or part of a document contains characters that do not appear in commonly
available fonts, there are two things you can do. You can specify no font, leaving it to users to select
the best font on their browsers they can. Or, according to another school of thought, you can try and
identify some fonts so that any of them alone is sufficient for all of your characters. This typically
means declarations like font-family: Arial Unicode MS, Lucida Sans Unicode. The choice of fonts
cannot be an exact science, since fonts with the same exact name (such as Arial Unicode MS) often
exist in different versions, with different character repertoires.

1.9.6.2. Effects of browser settings

As a user of a browser such as Opera or Firefox, you can affect the default fonts used by the
browser. You can define what fonts the generic font names serif, sans-serif, etc. map to. You can
also specify which default font is used for texts for which no font suggestion is made on a page. The
latter possibility exists on IE as well, and it typically contains settings for different writing systems .
That is, you can select one font for texts in Latin letters, another font for texts in Cyrillic letters, etc.
The details can be somewhat obscure and depend on the browser, but the point is that there can be
three kinds of "default fonts" in a browser:

The font used (when possible) for a character for which no font information is given on a web
page. This font typically depends on the writing system that the character belongs to. Note that
a web page very often specifies the overall font to be used, and in that case, this setting has no
effect.

The font used when a page specifies a generic font name.

The internal list of fonts to be used when everything else fails. Typically, this cannot be changed
in normal browser settings but only through a configuration file.

For example, in Firefox, you can select Tools Options General Languages to enter a
"Fonts & Colors" settings window as in Figure 1-25. It lets you specify, for different writing systems,
whether a sans serif or a serif font is used by default and what the default serif, sans serif, and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

monospace (teletype) fonts are, as well as default font size. The effect of these settings is somewhat
complicated, since browsers may recognize the script (writing system) of text from some technical
matters, not from the text itself.

The "Fonts for" menu in Figure 1-25 has the options shown in Figure 1-26. You should be mildly
surprised at seeing a mixture of names, some of which seem to refer to scripts, some not. Unicode is
of course not a script, and Western, Central European, Baltic, and Turkish refer to character codes
rather than scripts. The logic of deciding what such names really mean varies by browser, but at the
implementation level, the assignments are for languages in Firefox. It uses various methods to
deduce or guess the language. Here "Unicode" refers to anything that does not fall into any other
category.

Figure 1-25. In the Firefox browser, the default fonts can be specified as
different for different scripts; here they are set for the Thai script

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.10. Summaries

The following summaries use very concise language, and they are hardly understandable in isolation.
However, having read the text of this chapter, you may find them useful and return to them later.
The terminology related to characters varies quite a lot, so the summaries help in checking out how
this book names things.

1.10.1. Summary of Definitions

Following is a list of terms you may come across:

Character

A basic unit of textual information, as abstract concept, as opposed to stylistic and typographic
variation between shapes that can be identified as the same character.

Character code

A mapping, often presented in tabular form, that defines a one-to-one correspondence between
characters in a character repertoire and a set of nonnegative integers.

Character encoding

A method (algorithm) for presenting characters in digital form by mapping sequences of code
numbers of characters into sequences of octets. Encodings have names, which can be
registered.

Figure 1-26. Menu of contexts for font settings in a version of Firefox

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Code number

The integer assigned to a character in a character code. Synonyms: code position, code value,
code element, code point, code set value, code.

Character repertoire

A collection of distinct characters. No specific internal presentation in computers or data
transfer is assumed. The repertoire per se does not even define an ordering for the characters;
ordering for sorting and other purposes is to be specified separately. A character repertoire is
usually defined by specifying names of characters and a sample (or reference) presentation of
characters in visible form.

Glyph

A basic unit of visual rendering of charactersi.e., a particular visible presentation of a character,
or part of character, or pair or sequence of characters.

Octet

A sequence of eight binary digits (0 and 1) treated as a unit.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.10.2. Summary of Concept Levels

We can consider a character, say @, at different conceptual levels, or levels of abstraction:

Character as an abstraction

The idea of a particular character, in the mind of an individual and in social usage. For
example, whatever @ suggests to you, or your friends, or people in your country.

Character as defined in a specification

A particular definition of a character, aimed at making the idea explicit and communicable. The
definition can show some glyph(s) for the character, name it (e.g., "commercial at"), describe
it verbally, and list its properties in some general framework.

Coded character

A character as defined in a specification together with its code number in some system of such
numbers. In most systems, the number of @ is 40 in hexadecimal. The number can be used as
a concise way of referring to the characters, often using some special notation like 0x40 or
U+0040.

Encoded representation

A particular internal representation of the code number of a character, and hence of the
character. This depends on the encoding used. For the @ character, the representation could
be the octet 40 (hex) alonei.e., the bit sequence 00001000. In another encoding, however, it
could consist of two octets, 00 and 40.

Glyph

A rendering of a charactere.g., @ or @ or @.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Writing Characters
The practical difficulties of producing characters on normal computer keyboards are among the most
serious obstacles to more widespread use of rich character repertoires. Most modern computers have
rather good Unicode support, but people don't make use of it, because they simply don't know how to
type special characters .

This chapter presents some common methods of entering characters. It is largely a collection of
recipes, useful to people who work daily with texts containing "difficult" characters. Appendix A gives
a quick reference for commonly needed characters.

The topic is also relevant to IT specialists who need to understand the possible input methods when
designing applications and systems. The same applies to giving instructions on data entry, or simply
asking someone to send you in writing (on paper or in digital form) something that contains
characters that are "special" to him. It is not sufficient to know some way of typing characters, since
users may not have the same methods at their disposal, or they might find it too awkward.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.1. Method Varieties

There is no single answer to a question like "How do I write the character...?" The methods vary by
program and equipment. In any given situation, there are usually several ways to write a character.

When you give individual instructions to someone, or you are solving your own problem with typing
characters, you should normally try to find one way to input the characters, preferably the most
convenient one. However, as usual, convenience is relative. It does not pay off to find a clever way of
producing a character if you need it only once and you already know a general, if clumsy, way to
input that character. When you give general instructions to many people, especially to people who
work in different environments, you should try to explain a few alternatives. It is quite probable that
different people need or like different methods.

2.1.1. A Simple Way or a Universal Way?

There are many different methods for typing characters, often available in parallel. Some of them are
very general, allowing even the insertion of any Unicode character. Some methods have been tailored
for very special purposes, perhaps even for the entry of one particular character that would otherwise
be difficult to produce. This chapter aims at clarifying things by explaining typical approaches. The
multitude of methods can be divided into a few basic categories, to make things more
understandable.

When you select methods to be explained to users of an application, it is usually best to aim at
systematic ways rather than the fastest ways. That is, opt for a method that works for all the
characters needed rather than an eclectic combination of tricks. The same may apply to your own
use, e.g., when you need to type particular characters frequently.

Appendix A contains a collection of methods for some commonly needed characters. For casual use,
pick up whatever works for you and suits you. For more regular use, it is better to analyze the needs
and to make some choices.

Suppose, for example, that in some application or document, the only special characters needed are

superscript two 2 and the less-than-or-equal-to sign . In a Windows XP environment, the former
can be typed rather fast as b2 Alt-X, whereas the latter can be typed with fewer keystrokes: Alt-
8804. Understanding and remembering two different methods might be an unnecessary burden. So
instead of optimizing each case separately, it might be best to teach (or learn) a single systematic
method: either b2 Alt-X and 2264 Alt-X, or Alt-0178 and Alt-8804. On the other hand, if the
application is widely used or the document is large, it might pay off to spend some time in
customizing things to achieve something more natural. For example, MS Word can be rather easily

configured to automatically turn ^2 into 2 and <= into .

2.1.2. An Overview of Methods

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For practical reasons, the methods presented in this chapter are mostly from MS Windows and MS
Office environments, but various alternatives (such as Unicode editors) are also discussed. The HTML
and XML character reference and entity reference techniques are presented as well. The chapter ends
with an exercise for writing some specialized texts using some of the techniques presented.

To illustrate the variation in the ways of writing characters, Table 2-1 shows some ways of writing the
copyright sign ©, U+00A9. In each program or other environment, there might be several ways to
write this. We have omitted the most obvious way, using a keyboard key for the character, since © is
hardly ever found on keyboards. Each of the ways will be discussed in more detail in this chapter.

Table 2-1. Typical methods of writing special characters

Program or context Method Remarks

Windows Notepad Alt-0169 169 is decimal code for ©

Win XP WordPad a9 Alt-X Uses Uniscribe

Mozilla Thunderbird Insert Characters... Common symbols, select ©

Microsoft Word (c) Word converts to ©

XML © Character reference

XML © Character reference using decimal notation

HTML © Entity reference

CSS \a9 Has a trailing space

TeX or LaTeX \copyright \symbol{'251} works, too

The methods can be classified roughly as follows:

Key combinations

These use keyboard keys, often with modifier keys like Alt and often referring to characters by
their code numbers. After using a combination, you see the desired character appear.

Character sequences

These resemble key combinations, but a sequence of characters produced using keyboard keys
appears in the data (file) as such. It will only later be rendered as the intended characterby a
web browser, for example.

Command menus

You select a command and subcommand from a program's menu. Such tools are almost self-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

documenting but often very limited, letting you produce just a few commonly used characters.
Typically, these commands can also be invoked using keyboard shortcuts.

Selection from a table

You invoke a function of a programe.g., using a menu commandand a window containing a
table of characters appears on the screen. By clicking on a character, you select it. So-called
virtual keyboards can, in part, be regarded as a special case of this, though the characters
appear there in a keyboard setup and not in a rectangular grid.

2.1.3. Choosing Fonts

Some methods of typing characters produce just an abstract character; others include font
information. For example, when using Notepad, no font information is included, though whenever
someone looks at the characters, some font needs to be used. Databases normally contain character
data as coded characters only, with no font information. In MS Word, fonts are an integral part of the
content, although the use of fonts can be controlled in a disciplined way by using styles in Word.

Figure 2-1. A character from a different font can be a disturbance

In any case, when text data is to be presented visibly, font issues are essential. You do not need to
worry about it in database design and data entry, but when printing out strings from a database, a
font or fonts need to be selected at some point. In web design, for example, we can choose to leave
the font selection to browsers and users, but font problems still need to be anticipated. You do not
want to create a document that most people will not see correctly.

The larger the number of different characters, the more you have problems with typographic quality,
for several reasons:

The character requirements reduce the number of fonts that can be chosen. Many
typographically ambitious fonts have fairly small repertoires of characters, and many large fonts
are typographically rather questionable.

If you use characters from different fonts, the results are often poor, at least if you are not

careful. In Figure 2-1, the "s" with caron () is disturbingly different from the general style of
letters, because it is a "loan-character" from another font.

A large repertoire often contains characters that can easily be confused with each other. Their
design in a font should thus be sufficiently different. This may exclude an otherwise excellent
font, or it may lead you into mixing fonts.

The moral is that you should look out for typographic discrepancies, when you enter characters. If
possible, use the same font throughout. If you need to use characters from different fonts, try to use

http://lib.ommolketab.ir
http://lib.ommolketab.ir

some rather large font as a backup, such as Arial Unicode MS or Lucida Sans Unicode when the basic
font is a sans-serif font, and Times New Roman or Code2000 for serif fonts. Such large fonts tend to
be relatively neutral in typographic design, so they can work reasonably in the midst of text in
another font of the same class.

When designing a publication or series and selecting fonts for it, try to analyze
the repertoire of characters that will be used. Consider especially the potential
needs for additional letters in foreign words, special (e.g., mathematical)
symbols, and different types of punctuation.

The following true story illustrates the risks of insufficient analysis. A public institution was
redesigning the format of its printed serial publication, and this included the choice of a new font.
Among other things, the publication discussed orthographic questions such as the difference between
the hyphen "-" and the en dash "" and the importance of choosing correctly between the two. The
embarrassing thing was that the chosen font made a very small difference between the two
characters.

Typographers and designers often used "Lorem ipsum" texts in sample documents. Lorem ipsum is a
piece of text that looks like Latin to a person who does not know Latin too well, and it contains only
basic Latin letters and a few punctuation marks. This implies that it is not suitable for considering
how real-world texts appear in the chosen font. Therefore, it is better to design your own sample text
and use it. Its content should depend on the nature of the real texts that will be used, but the
following short sample text can be suitable as a starting point for typical non-specialized texts in
English (see Table 2-4 at the end of this chapter for more specialized samples):

The quick brown fox jumps over the lazy dog. 1234567890.
THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG.
"You 'quote' inside quoted text this wayin U.S. style."
'You "quote" inside quoted text this way in British style.'
His fiancée Märtha visited Rhône.

áà éè íì óò úù âêîôû æœ äëïöüÿ åø çñß

It is not rare to see fonts that look good for normal mixed-case text but poor for all-caps text.
Similarly, letters with diacritic marks can cause surprises: the accents might look like just thrown in,
instead of sitting nicely near the base character. Consider the importance of using typographically
suitable dashes and quotation marks, too. The last line of the sample lists letters that relatively often
appear in foreign names in English texts, according to one version of the Common Locale Data
Repository (CLDR).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.2. Keyboard Variation and Settings

Understanding the effects of keyboard variation is essential, because you may need to work with
different keyboards, or you may need to write instructions for people who use different keyboards. If
you design computer applications for a potentially worldwide market, you need to make them work in
wide range of environments. Even a simple form on a web page might be a computer application in
this sense.

2.2.1. Typing CharactersJust Pressing a Key?

Typing characters on a computer may appear deceptively simple: you press a key labeled "A," and
the character "A" appears on the screen. Well, you actually get uppercase "A" or lowercase "a"
depending on whether you used the Shift key or not, but that's common knowledge. You also expect
"A" to be included into a disk file when you save what you are typing, you expect "A" to appear on
paper if you print your text, and you expect "A" to be sent if you send your text by email or
something like that. Moreover, you expect the recipient to see an "A."

It has hopefully become clear from the previous discussion that the representation of a character in
computer storage or disk or in data transfer may vary a lot. You have probably realized that
especially if it's not the common "A" but something more special, like an "A" with an accentsay,
À'strange things might happen, especially if data is not accompanied with adequate information about
its encoding.

You might still be too confident. You probably expect that on your system at least things are simpler
than that. If you use your very own very personal computer and press the key labeled "A" on its
keyboard, then shouldn't it be evident that in its storage and processor, on its disk, and on its screen
it's invariably "A"? Can't you just ignore its internal character code and character encoding? Well,
probably yeswith "A." Don't be so sure about À, for instance. On a typical PC, for example, try this:
create a file containing À in Notepad and then open the command-line interface (DOS prompt) and

display the file using the type command. Instead of À, you will see the graphic element , or
something else, depending on your computer's settings.

When you press a key on your keyboard, the keyboard sends the code of a character to the
processor. The processor then, in addition to storing the data internally somewhere, normally sends it
to the display device. Now, the keyboard settings and the display settings might be different from
what you expect. Even if a key is labeled, say, Ä, it might send something other than the code of Ä in
the character code used in your computer. Similarly, the display device, upon receiving such a code,
might be set to display something different. Such mismatches are usually undesirable, but they are
definitely possible.

2.2.2. Keyboard Limitations and Variation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Typical computer keyboards do not contain enough keys even for all characters in an 8-bit character
code with 256 code positions. If your computer uses internally, say, the ISO Latin 1 character
repertoire, you probably won't find keys for all the 191 characters in it on your keyboard. Many
characters can be produced by using auxiliary keys, such as Shift and Alt, that extend the repertoire
of characters. However, you cannot type, for example, the yen sign ¥ or the plus-minus sign ± on a
normal U.S. keyboard in any obvious way.

Different keyboards are manufactured and used, often according to the needs of particular
languages. For example, keyboards used in Sweden often have a key for the å character but seldom
a key for ñ; in Spain, the opposite is true. For an illustration of the variation, as well as to see what
layout might be used in some environments, visit
http://www.microsoft.com/globaldev/reference/keyboards.aspx, an interactive Windows Layouts
page by Microsoft. Using it requires Internet Explorer with JavaScript enabled. For an example of its
presentation style, see Figure 2-2.

Practical considerations limit the number of characters that have a key of their own or appear as
engraved on a key at all. For the Unicode character repertoire, it would of course be quite impossible
to have a key for each character. This is one reason why it is important to identify which characters
are commonly used in a writing system and in a language. Among all the Unicode characters, only a
small part can be directly assigned to keys.

2.2.3. Auxiliary Keys

Some keyboard key combinations, typically involving the use of anAlt or AltGr key or some other
auxiliary key, are often automatically processed by converting them to special characters. For
example, pressing the "E" key while keeping AltGr pressed down might produce the euro sign, €. This
usually takes place at a low, device-oriented level, in software called the keyboard driver. In that
case, normal programs would have all their input from the keyboard processed that way. The
practical impact is that on a given system, these methods usually work across programs, unless
some program specifically overrides such functionality for its own purposes.

Notations that refer to the use of auxiliary keys vary a lot. O'Reilly books use the style AltGr-M (and
similarly Alt-M, Ctrl-M, Shift-M, etc.). Another common style is AltGr+M, and sometimes you'll see
AltGr M.

The well-known Shift key is an auxiliary key, too. It is used to modify the meaning of another key,
e.g., by changing a letter to uppercase or turning a digit key to a special character key.

The effects of auxiliary keys depend on the program used, and even on its settingsand on the
keyboard and its settings. The effects are often user-modifiable. For example, producing the euro
sign using the method described at the beginning of this section requires a special "euro update" on
old Windows systems. Some confusion was caused when people said, e.g., "to type the euro, use
AltGr-E" as general, unqualified advice. A keyboard might even not have an AltGr key, and if it does,
the key that produces the euro sign varies by country.

On many keyboards, especially in Europe, there is an Alt key to the left of the spacebar and an AltGr
key to the right of it, and these keys have different functionality. On U.S. keyboards, there is usually
an Alt key on each side of the spacebar. The reason why European keyboards usually have an AltGr
key is because it makes it easy to type the additional characters needed in many languages.

http://www.microsoft.com/globaldev/reference/keyboards.aspx
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Generally, using the AltGr key corresponds to using the Alt key and the Ctrl key simultaneously;
AltGr is the same as Alt-Ctrl. Thus, if your keyboard has no AltGr key, you might still be able to type
the micro sign µ, for example, by pressing Alt-Ctrl-M. However, this depends on keyboard and
program settings.

Some keyboards have two different Ctrl keys as well, so that the left Ctrl key works the usual way,
and the right Ctrl key is yet another key for producing alternate graphic characters.

The name AltGr is short for "alternate graphic," and it is mostly used to create additional characters,
whereas the Alt key is typically used for keyboard access to command menus, as an alternative to
using a mouse. The AltGr key creates a new layer of possible characters that normal keys can
produce, but usually this layer is not very densely populated. Moreover, the use of AltGr is partly
handled at application program level, not in keyboard drivers; thus, in a particular system, AltGr-R
might produce the registered sign ® in one program, but do nothing in another. To see the AltGr
assignments in your copy of MS Word, search for "Alt Gr" in its Help system.

Typical usage includes AltGr-M to produce the micro sign µ. The connection between the normal
character in a key and the alternate character is not obvious, but it is usually somehow natural. The
AltGr settings vary greatly by the needs of different languages and cultural environments. A few
examples:

Figure 2-2. Spanish keyboard in two states, normal and AltGr state

On a British (U.K.) keyboard, AltGr-A produces á, and similarly for e, i, o, and u. Alt-$ produces
€.

On a Canadian Multilingual keyboard, AltGr is used to type several characters, such as < and >,
which cannot be typed directly, since keys have been allocated to some accented letters. AltGr
is also used for typing French quotation marks (guillemets).

On a Greek keyboard, AltGr is used to type several special symbols, e.g., AltGr-ρ produces ®;
AltGr-υ produces ¥; and Alt--, ±.

On a Romanian keyboard, which has some keys reserved for letters with diacritic marks, the
AltGr key is used to type some characters like \ and |. There are also some AltGr combinations

for characters that do not appear in Romanian but in neighboring languages, e.g., ß and .

On a Spanish keyboard, as shown in Figure 2-2 (captured using Microsoft's online service
"Keyboard Layouts"), you need the AltGr key to type some common characters, like @.

Key caps may have additional engravings that act as hints and reminders on the alternate graphic

http://lib.ommolketab.ir
http://lib.ommolketab.ir

characters. For example, the "E" or $ key may have € engraved onto it.

2.2.4. Dead Keys

For languages that use diacritic marks extensively, it is natural to try to accommodate letters with
diacritic marks into the keyboard. This is possible for many languages that use a small set of such
letters, perhaps just two or threee.g., ä, ö, and ü in German. However, if there are many different
combinations of a letter and diacritic marks, it is more practical to include keys that correspond to the
diacritic marks.

Many keyboard designs contain auxiliary keys for typing characters with diacritic marks. The key
might have the characters ´ and ' (acute accent and grave accent) engraved onto it, for example.
Hitting such a key has no visible effect as such, but when followed by a letter, it might add an accent
on the letter. Thus, on a Spanish keyboard, as was illustrated in Figure 2-2, you would press the ´
key, and then the "O" key to type ó.

Such an auxiliary key is often called a dead key, since just pressing it causes nothing; it works only in
combination with some other key. You press it before pressing a letter key, not simultaneously. A
more official name for a dead key is modifier key.

A dead key itself may be affected by a Shift key. Thus, Shift-´ followed by "a" might produce à, and
Shift-´ Shift-A would then produce À. Moreover, even AltGr might affect a dead key. On a normal
Finnish keyboard, there is a dead key with the dieresis (¨) and the circumflex (^) above it (i.e., as
"upper case," to be generated using the Shift key) and the tilde (~) below or left to it. This means
that on such a keyboard, the AltGr key is needed for producing a letter with tilde.

The use of dead keys has essential limitations. Usually the diacritics cannot be freely combined with
letters. For example, if I use a Finnish keyboard and hit the acute key (´), and then the "C" key, I do

not get a c with acute () but the acute accent character followed by the letter (´c). The dead keys
work within some repertoire and encoding and settings, not as a general tool.

On keyboards with dead keys, characters that can be directly typed on a U.S. keyboard may cause
difficulties. For example, if the tilde ~ key is a dead key (to make it easier to type ã, õ, etc.), then
you cannot always type the tilde itself directly. If you try to type a string like "~abc", it will be
converted to ãbc. The solution is to press the spacebar after pressing the tilde key. This might be
seen as putting the tilde on a space character. This illustrates why even ASCII characters such as the
tilde can be difficult to produce.

Keyboard solutions are not always systematic. They may result from combinations of different ways
of supporting diacritic marks. For example, a typical French keyboard has separate keys for those
accented characters that are used in French (e.g., à), but in order to write the accents as characters,
you need special methods, such as AltGr-è followed by a space to produce the grave accent '.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.3. Virtual Keyboards

In several systems, including MS Windows, it is possible to switch between different keyboard
settings. This means that the effects of different keys do not necessarily correspond to the
engravings in the key caps but to some other assignments. This way you can turn your keyboard to
French, Greek, Russian, or another language just by clicking on an icon at the bottom of the screen
and selecting a setting from a menu, as shown in Figure 2-3. What you need to do is to enable the
"language support" you need. It is called language support, but the relevant part is keyboard
settings. We will not go into details here, since the techniques depend on the version of Windows.

MS Windows has some keyboard shortcuts for switching between different keyboard layouts. If you
right-click on the language indicator in the toolbar, you can access settings that control such
shortcuts. They typically involve the Alt and Shift keys. It is convenient to be able to switch between
two layouts simply by pressing Alt and Shift simultaneously, if you know how this works. It is less
convenient to do such things by mistake and find yourself using an odd-behaving keyboard where,
for example, pressing the "-" key produces "/" and you have no idea how to fix that. Therefore, avoid
installing keyboard layout options on other people's computers without informing them.

Figure 2-3. Changing keyboard settings from Finnish (code FI) to Spanish
(code ES)

For example, if you write in English but frequently need Greek letters, you can install Greek keyboard
settings. You would then learn how to switch between the settingsfor example, by using Alt and Shift
keys. To type the letter pi (π), you would do the switch, press the "P" key, and switch back to your
normal keyboard settings.

If you mainly write in English but occasionally need to type names in Western European languages,
with accented characters, you may find theU.S. International keyboard setting suitable. You would
install and use it like any other keyboard layout: go to the Regional and Language Options control
panel, and select the Languages tab, then click the Details button and the Add button in the next
dialog. Finally, you'll see the Add Input Language dialog box, where you can check the
Keyboard/Layout box and choose United States-International. This keyboard differs from the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

common U.S. keyboard settings in a few ways, which let you type almost all ISO Latin-1 characters:

The grave accent key ' in the upper left corner acts as a dead key for typing letters with grave
accent (à, è, etc.); used with the Shift key, this key acts as a dead key for typing letters with
tilde (ã, ñ, etc.).

The apostrophe key ' acts as a dead key for typing letters with an acute accent (e.g., á); used
with the Shift, it works similarly for the dieresis (e.g., ä).

Used with the Shift key, the 6 key acts as a dead key for the circumflex (e.g., â).

The Alt key on the right acts as AltGr, which can be used to produce a large number of
characters, as shown in Figure 2-4.

There are additional characters that you can produce using both the AltGr key and the Shift key
together with a normal key.

2.3.1. A Keyboard on Screen

It would be nice if we could modify the keycaps dynamically using, for example, LED displays in
them. Changing keyboard settings would change the appearance of the keyboard. Although this idea
is old and technically possible, it is not economically feasible. Instead, "virtual keyboards" can be
used.

This means that an image of a keyboard is visible on the screen . It helps the user type characters in
two alternative ways:

Figure 2-4. Characters available using the right Alt key (Alt Gr) in the
U.S. International keyboard layout

By clicking on keys in the virtual keyboard

By using the visible information to see the current assignments of the keys of the physical
keyboard

For the Office software on Windows systems, there is a free add-in available for this: Microsoft Visual
Keyboard, http://office.microsoft.com/downloads/2002/VkeyInst.aspx. Using it, you select the

http://office.microsoft.com/downloads/2002/VkeyInst.aspx
http://lib.ommolketab.ir
http://lib.ommolketab.ir

keyboard settings as illustrated above, and you use, for example, Microsoft Office Tools under the
Start menu to get a virtual keyboard on the screen. You can select between a large number of
national settings, or even define new keyboard settings.

Figure 2-5 shows how you could position a virtual keyboard over a MS Word window; you can put it
anywhere you like. Using a normal U.S. or Western European qwerty keyboard, you can type Greek
rather easily. Many key assignments are rather natural: a = α, b = β, d = δ, etc. For the less natural
correspondences, the virtual keyboard is a quick reference and reminder. In general, the relationship
between a physical keyboard and virtual keyboard can be much less intuitive than it is here.

2.3.2. Virtual Keys for Character Input in Forms

When we need just a few characters in addition to those that can be typed on a normal keyboard,
virtual keys can be quite handy. This means that we have images of keys on screen in an input form,
as shown in Figure 2-6. The user is expected to use the physical keyboard for most of the input, but
if the keyboard does not contain the ä and ö keys, the user can instead click on the virtual keys. This
is really just a virtual keyboard with a very small set of keys.

The virtual key approach is especially suitable for situations in which the input is in a language that
needs few extra characters in addition to basic Latin letters (or other set of characters that users are
expected to have in their keyboards). This has many benefits:

The user interface is intuitive: it is rather obvious what the user needs to do.

The choices are limited to a relevant number of characters. This makes things easier than the
use of general purpose methods, which may require selections from large and confusing
repertoires.

Figure 2-5. Working with the Greek virtual keyboard

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 2-6. An input form with two virtual keys

Character selection errors are reduced, since the user does not have to choose between, say,
and , as in more general methods. A particular language or other context seldom contains
both characters.

The virtual key idea is easy and quick to implement. Thus, it can be applied even on an individual
basis, to create a convenient input form for someone's personal needs and preferences. On the other
hand, this approach is normally application dependent: the method needs to be implemented
separately for each data entry form. For implementation issues, see "Character Input and Output" in
Chapter 11.

Along similar lines, we could use virtual keys that correspond to writing several characters. If user
input is expected to contain some fixed strings rather often, a form designer can set up keys
(buttons) that add those strings. This is particularly useful if the strings contain characters that
cannot be directly typed on users' keyboards.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.4. Program Commands

We often need program-specific ways of entering characters from a keyboard, either because there is
no key for a character we need or there is but it does not work. The program involved might be part
of system software, or it might be an application program. We describe here some typical cases.

2.4.1. Copying via the Clipboard

In typical computer systems, you can copy data from one program to another through an internal
storage area called the clipboard . On Windows, you can usually highlight text with the mouse or
select a piece of text otherwise, and then press Ctrl-C to copy, click on a location in another window,
and press Ctrl-V to paste a copy of the text there. This also works inside a program of course, so you
can use it to create copies of a character or a string.

This feature is well known by most users and often very convenient, though it cannot be the primary
method of writing text. You can however copy characters from web pages or from text documents
specifically designed for use as "cliptext ."

Often this technique has the property of copying text formatting along with the text. If you copy bold
16-point Verdana text from Excel to Word, you get 16-point Verdana text, not text in the normal font
as defined by your Word settings or template. This might be desirable, but more often, it is a
problem. Moreover, constructs like hypertext links may get copied along with the text. To make sure
that only the plain text is inserted, you can first paste the text in Notepad, select it again there, press
Ctrl-C, and paste in the desired destination.

2.4.2. Menu Commands

Programs may have command menus for inserting characters, so that characters are identified by
some names or glyphs. At the simplest, you just select a command and a subcommand from a menu.
Usually it is more complicated, to allow the insertion of more characters that can conveniently be
included into a command menu.

2.4.2.1. Insertion menu in Thunderbird

In Mozilla Thunderbird, when composing an email message, you can select Insert Characters and
symbols. This opens a small window, as in Figure 2-7. There, you can select a class of characters by
clicking on one of the radio buttons. This affects the drop-down menu under the buttons. For
example, when Common Symbols is selected, the Character drop-down menu contains a collection of
Latin 1 special characters (other than letters), such as © and ±.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Such an input method is intuitively easy and can be found and used by a user even without any
documentation. On the other hand, it is rather clumsy, since any insertion requires several steps.

2.4.2.2. Symbol (character) insertion menu in MS Word

In MS Word, you can use the command Insert Symbol to invoke an auxiliary window, which has
two modes of operation. In the default mode, Symbols, you can select a character

Figure 2-7. Character insertion window in Thunderbird

Figure 2-8. Special Characters insertion window in MS Word

http://lib.ommolketab.ir
http://lib.ommolketab.ir

from a table, as explained in the section "Character Maps" later in this chapter. You enter the second
mode by clicking on Special Characters. There, you can pick up a character from a short list, as
shown in Figure 2-8. The list also contains information about shortcut keys for the characters, so it
can be used to check such things. Among the characters that have no default shortcut keys, the
fixed-width spaces (em space, en space, and 1/4 em space = four-per-em space) work with a few
fonts only.

Figure 2-9. Formatting characters and markers in MS Word

Some of the symbols that you can add via the Special Characters menu, (or corresponding shortcuts)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

are really just internal markers used by MS Word. Either they do not correspond to any Unicode
character or they involve using Unicode characters in an abnormal way. For example, Optional
Hyphen which is invisible but indicates an allowed hyphenation point in a word, is not what you might
expect, the soft hyphen (U+00AD) is a marker recognize by MS Word. We will return to this in
Chapter 8.

2.4.2.3. The Show Formatting (Show ¶) tool

In MS Word, there is a special mode of viewing a document on screen so that some formatting
characters and markers appear as visible symbols, as formatting markse.g., paragraph breaks as ¶
symbols. The mode works independently on the input method that has been used. It is useful, for
example, when checking which spaces are no-break spaces, since they will appear as small rings
(resembling the degree sign ° but larger). The formatting marks do not appear in printed copies.

You can select a view with formatting marks by clicking the ¶ icon in the toolbar. Clicking the icon
again changes the view to normal. If this icon is not present, you can use a menu command like View

 Show Paragraph Marks instead.

The detailed look varies by the version of MS Word, but it resembles the one shown in Figure 2-9.
The columns in it indicate the name of the character or other construct; its Unicode code number, if
any; its display in "Show Formatting" mode; an example of such appearance in text context; the
same text in normal view; and a method for typing in the construct. "Insert menu" refers to the
Special Characters insertion menu. Table cells are created using special commands in MS Word. The
issue is mentioned here because making paragraph marks visible also makes a ¤ symbol appear at
the end of the content of each table cell.

Sometimes you might wish to view some of the formatting indicators but not all. This can be achieved
by choosing Tools Options, and then selecting the View pane, shown in

Figure 2-10. Setting the display of formatting marks in MS Word

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 2-10. Some settings under "Formatting marks" affect several marks; e.g., "Optional breaks"
makes line break prohibitions visible, too. Clicking the ¶ icon in the toolbar corresponds to checking
"All" in this dialog.

2.4.3. Methods Using the Alt Key on Windows

There are several ways to type a character on Windows if you know the code number. Not all of the
ways work in all contexts, and they differ from each other so that they are easily confused with each
other. Table 2-2 summarizes the methods, and then each method is explained in detail. The example
characters, for which key sequences are given in columns "Ex. 1" and "Ex. 2," are the copyright sign

© (U+00A9) and the ohm sign (U+2126). The expression "New Windows software" refers to
programs such as WordPad and MS Word on Windows XP and newer.

Table 2-2. General methods for character input on Windows

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Method Ex. 1 Ex. 2 Description Applicability

Alt-0n Alt-0169 Uses decimal number Windows in general

Alt-n (n 255) Alt-184 Code page dependent Windows in general

Alt-n(n>255) Alt-8486 Unicode, decimal New Windows software

n Alt-X a9 Alt-X 2126 Alt-X Unicode, hexadecimal New Windows software

Alt-+n Alt-+a9 Alt-+2126 Unicode, hexadecimal New Windows (often)

2.4.3.1. The Alt-0n method

On Windows systems, you can (usuallysome application programs may override this) produce any
character in the 8-bit Windows character set (such as Windows Latin 1) as follows:

Press down the Alt key and keep it down. (Use the Alt key, not AltGr.)1.

Using the separate numeric keypad (not the numbers above the letter keys!), type the number
of the character in decimal and with a leading zero. You do not see anything happen on screen
when you do this.

2.

Release the Alt key. The character now appears.3.

The code values for which this works are in the range 32255 (decimal). For instance, to produce the
letter Ä (which has code 196 in decimal), you would hold Alt down, type 0196, and then release Alt.
Upon releasing Alt, the character should appear on the screen.

In MS Word, the method works only if Num Lock is set (by pressing the Num Lock key in the numeric
keypad).

Portable computers often lack a numeric keypad. They usually have a key combination (explained in
the manual) that makes some normal keys simulate a numeric keypad. Typically, the same
combination turns the situation back to normal.

This method is often referred to as Alt-0nnn to emphasize that you normally type four digits starting
with zero, but we use the shorter notation Alt-0n. It is quite possible to use less than four digits when

the number is small; for example, Alt-092 produces a \. However, characters with such small code
numbers can usually be typed more directly.

The codes are interpreted according to the Windows character code, which may vary by country and
language version as well as keyboard settings. In the Western world, the code is normally windows-
1252, also known as Windows Latin 1. This means, as will be explained in Chapter 3, that code
numbers 32126 and 160255 (decimal) are the same as in Unicode. However, if you, for example, set
your keyboard layout to Russian, the meanings change: they refer to windows-1251 (Windows
Cyrillic). Then, for example, Alt-0169 still produces ©, since the copyright sign has the same position

in windows-1251 as in windows-1252, but Alt-0233 produces and not é as with English keyboard
settings.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.4.3.2. The code pagespecific Alt-n method

If you use the method described in the previous section but omit the leading zeroi.e., use Alt-nthe
effect is different. That way, you insert the character that occupies code position n in the DOS

character code! More generally, the character inserted is the one in that position in the code page in
use. Code pages have the same assignments for code numbers 30126 as Unicode but differ from
Unicode and from other code pages in other positions.

Code pages will be discussed in Chapter 3. For a quick reference to the character assignments in
code pages, see http://www.fileformat.info/info/charset/codepage.htm.

Briefly, a code page is an 8-bit encoding that is used in some contexts in Windows environmentsa
holdover from DOS systems . You can find out your system code page number by giving the
command chcp on the command prompt (DOS prompt). Normally, your computer uses the code page

defined by the manufacturer according to the market area, called the OEM code page (OEM stands
for original equipment manufacturer).

For example, Alt-196 might insert a graphic character, box drawings light horizontal (U+2500).
To get the copyright sign, you would use Alt-184, if your system's current code page is 850, which is
common in Western Europe. In that code page, the code of the copyright sign is 184 in decimal (B8
in hexadecimal). Code page 437, which is common in the U.S., does not contain the copyright sign at
all. On the other hand, it contains some Greek letters and additional mathematical symbols, such as

.

There are variations in the behavior of various Windows programs in this area. Using DOS codes and
this input method is best avoided, although it would save a little typing. It is very easy to get
confused with the methods and the numbers.

It may happen that if you type, for example, Alt-1 or Alt-3, you get graphic characters like and .
This is because some code page versions have allocated graphic characters to code positions 031
(decimal), although these positions are normally reserved for control characters. Though occasionally
handy, such methods cannot be relied on, since they depend on the code page, its version, and the
program.

2.4.3.3. The Unicode-based Alt-n method

In some programs on modern Windows systems, you can use Alt-n for n > 255 to produce the
Unicode character with code number n in decimal. Thus, the method is:

Press and hold the Alt key.1.

Type the decimal number n using the numeric keypad. Nothing visible happens yet.2.

Release the Alt key. The character with Unicode number n now appears.3.

This works in programs such as WordPad and Word on Windows XP. In many other programse.g., in

http://www.fileformat.info/info/charset/codepage.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.

Notepad or in form field input in Internet Explorerthe method does not work. If you try it, the value n

is mapped to a value in the range 0255 (using division by 256 and taking the remainder) and it has a
code pagespecific effect as above.

Characters that belong to Windows Latin 1 but not to ISO Latin 1 thus have two alternative
sequences. For example, the em dash, ', can be typed as Alt-0151 or as Alt-8211.

This method is relatively fast but requires you to type the decimal code number "in blind," i.e.,
without seeing what you have typed. The next method is different.

2.4.3.4. The Alt-X method

This method, too, works only in some programs on modern Windows systems. Like the Unicode-
based Alt-n method, it uses so-called Uniscribe program code for handling the keyboard, and only a

few programs use Uniscribe so far.

The method consists of the following:

Type the hexadecimal Unicode code number of the character you want. You can use the normal
keyboard. (You can alternatively use the numeric keypad for digits 09, if the Num Lock mode is
set.)

1.

Press Alt-X, i.e., hold down the Alt button and press the "X" button. The number now turns to
the character.

2.

The method also works for any string of hexadecimal digits in a document, not just a string you have
directly typed. If an existing document contains, say, the string 101, you can click on the position

right after the last digit and press Alt-X. The string then turns to the character (U+0101). If the
hexadecimal string is preceded by U+ (or u+), those characters, too, disappear in the process.

The method applies to the maximal sequence of hexadecimal digits before the point where Alt-X is

typed. If you would like to write b , you cannot just type b101 Alt-X, since the letter "b" is a
hexadecimal digit, so you would get the character U+B101. Instead, you can type a space before the
digits 101, apply Alt-X, and then remove the extra space.

The method works in the other direction, too: when the preceding character is not a hexadecimal
digit, pressing Alt-X turns the character to its hexadecimal Unicode number. However, the effect is
not always directly reversible. If you have typed "8-" (digit eight and minus sign) and then press Alt-
X, you get 82212. Pressing Alt-X would turn this five-digit string to the character U+82212. If such a
problem appears, insert a space temporarily.

Program-specific keyboard command assignments may mask out the possibility of using this method.
It is therefore not a good idea to define a text-processing macro with an invocation that starts with
Alt-X.

2.4.3.5. The Alt-+n method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This method is similar to the nAlt-X method in the sense that it uses hexadecimal Unicode numbers

and works on modern Windows systems. However, this method has some specific features:

It works in most programs and contexts, including Notepad, form fields in web browsers,
Unicode email, etc.

It has limitations due to Alt key assignments in programs.

It depends on system configuration, so it might not work by default.

To use this method, proceed as follows:

Press and hold the Alt key.1.

Press the + key in the numeric keypad. (Think of it as indicating that the following number is to
be treated as hexadecimal.)

2.

Type the hexadecimal number n using either normal keys or (for digits 0 to 9) the numeric

keypad. Nothing visible happens yet.

3.

Release the Alt key. The character with Unicode number n now appears.4.

If this does not work (and you are using a relatively modern Windows version, such as Windows XP),
it is because your system has been configured not to use this input method. This can be changed
through the Windows registry settings, using the registry editor (regedit). If you are not familiar with
registry settings, try to find someone who knows them and can fix your settings. In
HKEY_Current_User Control Panel Input Method, set EnableHexNumpad to 1 (one). If the
variable does not exist, add it there and set its type to REG_SZ. Now you must reboot the system.
This inconvenience is probably partly intentional: the method is still experimental and lacks support.

Using the Alt key together with normal keys (outside the numeric keypad) often conflicts with
keyboard shortcuts in programs, such as Alt-F for opening a File menu. This may cause limitations for
characters with letters in their hexadecimal code number.

2.4.4. Ctrl-Q and Other Methods in Emacs

In the Emacs editor, which is popular especially on Unix-type systems, you can produce any ISO
Latin 1 character by typing first Ctrl-Q, and then the character's code as a three-digit octal (base 8)
number. To produce Ä, you would type Ctrl-Q followed by the three digits 304 (and expect the Ä
character to appear on screen). This method is often referred to as C-Q-nnn.

There are additional ways of entering many ISO Latin 1 characters in Emacs. You can for example
use the M-x iso-accents-mode command (where M-x means meta-X, which can typically be produced
by pressing first the Esc key, and then the X key). It sets Emacs to a mode of operation where
several ASCII characters are converted to diacritic marks when typed before a letter. For example,
typing 'e would produce e with an acute accent, é.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.5. Character Maps

A character map as an input method is an array of images of characters where you can click on an
image and have the character inserted into your data. A click might immediately insert the character
in the current point of insertion in some window. More often, a click selects the character, and then
you click on a button to do something with it. A character map acts as a selection table, a menu
arranged as a table.

Figure 2-11. Character map in an old version of MS Word

Different programs have different character maps, ranging from a simple one (typically containing
just 256 positions) to a full Unicode table with many extra features. Of course, only a small
rangee.g., 80 positionsof Unicode characters can be visible at any given moment.

Old Windows systems have a rather primitive character map, which you can launch by selecting Start
 Programs Utilities System utilities Character Map. On newer systems, the character

map is much more powerful, but the method of starting it is equally clumsy and hard to find if you did
not know about it.

2.5.1. Character Map in MS Word

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Let us first consider the character map in MS Word in an old Windows system. The system's
character map being primitive, Word offers more. As mentioned before, you launch the map using
the command Insert Symbol to invoke an auxiliary window, where the initial pane Symbols
contains a map, as in Figure 2-11.

Newer systems have more powerful character maps, but even the old interface has the basic
functionality you need to insert any Unicode character:

Select a font from the Font menu. This is essential because the map usually shows only those
characters that appear in the chosen font. Arial Unicode MS contains a relatively large subset of
Unicode.

1.

Select a subset of Unicode from the next menu. For example, if you are looking for the sound
recording copyright symbol, consisting of a "P" in a circle, you can expect to find it in the
Letterlike Symbols set. The subsets are mostly Unicode blocks

Figure 2-12. Customizing MS Word with an Insert Symbol button

(explained in Chapter 8), but beware that in non-English versions of Word, some of the names
of the subsets can be thoroughly misleading.

2.

Find the character and click on it; a larger version of the character shows up.3.

If you wish to make it easier to type the character in the future click on the Shortcut Key
button. See "Replacements on the Fly" later in this chapter.

4.

5.

6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.

Click on the Insert button.5.

You can now close the Symbol window, but it might be better to just iconize it, so that you can
easily get it back when needed.

6.

You may wish to enhance the user interface with a button that opens the Symbol window. It is a bit
faster to click on it than to use the commands. The button has the icon Ω by default, and you add it
to the row of buttons using Word's normal customization tools. (You would select Tools
Customize and then, in the situation shown in Figure 2-12, select Commands pane, the Insert
category and then the Symbol command, then you'd drag and drop the Ω button into the toolbar.)

Using a character map like the one shown in Figure 2-11, you have to select characters mainly on the
basis of their appearance. This can be deceptive because Unicode often contains a number of
characters that can easily be confused with the character you are looking for. The Unicode subset is
often useful in guessing the nature of a character.

In newer versions of Word, the character map has more features, as illustrated in Figure 2-13. It has
the same basic features as the older version but in addition, it includes:

A collection of recently used characters, in a row

Figure 2-13. Character map in Word 2002 on Windows XP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Unicode name of the character, in uppercase

The Unicode number, in hexadecimal, e.g., 2117

A shortcut for the character, such as "2117, Alt+X" (corresponding to 2117 Alt-X in our
notation)

You can also use the box where the Unicode number is shown as an input area. If you type a
hexadecimal number there, Word will find the character for you. It will appear in the context of
characters near to it in Unicode. This can be useful if you have some idea of the number of the
character you are looking for.

As described in Chapter 1, the Unicode names of characters can be misleading, but mostly they
aren't; "sound recording copyright" is a very descriptive name, for example.

2.5.2. Windows Character Map

As mentioned above, all Windows systems have a character map that you can launch in Windows via
the Start menu, but the functionality of the map varies by Windows version. It generally differs from
the character map in MS Word, partly due to different usage. When using Word, you directly insert
characters into your document. When using the Windows character map, you add characters to the
clipboard . Then you can paste them wherever you likee.g., by using Ctrl-V.

Figure 2-14. Using the Character Map in Windows

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Having launched the character map, the simple way to pick up characters is to find them from the
array of characters. For this, you may need to select, from a menu, a font that contains the character
you need. In Figure 2-14, the font is Arial Unicode MS, and the user is picking up a mathematical
operator. If you do not see all the information as in the figure, click on the "Advanced view" checkbox
and select "Unicode Subrange" from the "Group by" drop-down menu. (The user interface is
somewhat odd: the checkbox acts as a button with immediate action, changing the view.)

If you are looking for a character such as a Latin letter with a diacritic mark, you can easily scroll
down the character array to find it because most such characters appear near the start of the
character array, either among the characters that are immediately visible or a little later.

You can double-click on a character in the array to copy it to the clipboard. You need not use the
buttons in the interface for this.

You can select several characters in succession. They will all be copied to the clipboard as one string,
as shown in a box in the Character Map window.

In general, when you need characters that are not near the start of the Unicode code order, you can
benefit a lot from other features in the Character Map:

If you know the Unicode number of the character you are looking for, type it (in hexadecimal)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

into the Show Unicode box. The character will then appear in the upper-left corner of the
character array.

If you know an essential part of the Unicode name of the character, type it into the Find box
and click the Find button. Characters that match your search will appear in the character array.

If you wish to search by general category, select Unicode Subrange from the "Group by" menu.
This is an odd way of reaching a useful feature: an auxiliary window will appear on the right (as
in Figure 2-14), with names of character categories. By clicking on a category name, you get
that category into the character array.

Alternatively, you can make a selection from the "Character set" menu. The default selection is
Unicode, but you can choose a set of characters that corresponds to some widely used non-
Unicode character encoding, such as Windows: Cyrillic, if you are primarily interested in Cyrillic
letters, or Windows: Turkish, if you need to type some Turkish names.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.6. Replacements on the Fly

A program may process your input so that it is immediately changed as you type. This is usually
based on assumptions on what people really want to type but cannot type directly, due to keyboard
limitations. Sometimes such features are very convenient, sometimes really frustrating, if the user
does not know how to override or undo their effects.

2.6.1. Default Replacements in MS Word

Word processors often modify user input so that when you have typed, for example, the three
characters (c), the program changes that string, both internally and visibly, to the single character

©. This substitution is often convenient, especially if you can add your own rules for modifications.
On the other hand, it causes unpleasant surprises and problems when you actually meant what you
wrotee.g., you wanted to write letter "c" in parentheses.

Use Ctrl-Z as the immediate cure to an undesired on-the-fly conversion in MS
Word. If you are uncertain of what happened, use Edit Undo instead (since
Word will show which operation will be undone).

In MS Word, there are several automatic conversions like the one described above. They can be
modified: you can remove conversions that you regard as annoying, and you can add conversions of
your own.

Figure 2-15. The Tools menu in MS Word

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.6.1.1. Viewing and changing the rules

There are many different settings in MS Word, and their organization is not always what we might
expect. In the Tools menu, as shown in Figure 2-15, the Customize and Options commands lead to
various settings, but the automatic replacements are found via the command AutoCorrect. Having
selected the command, you get a new window, where the first pane is as in Figure 2-16.

In addition to some settings related to the case of letters, the AutoCorrect pane contains a table of
replacements. It has default rules, such as replacing (c) with ©, and you can click on a rule and then
click the Delete button to remove it. You can add your own rules. In Figure 2-16, the user has typed
^2 into the Replace box and 2 into the With box, and by clicking on Add, she will add a rule that
makes it easier to type superscript 2.

You can enter special characters in the With box using the methods explained above, such as the
Windows Character Map. It can be a bit awkward, but once you have gone through it, you have an
input method that you have designed for yourself. Beware, however, that the replacement is (in
general) performed only when the string to be replaced appears as a "word," i.e., surrounded by
spaces or other whitespace characters. Thus, you may need to type a space and delete it later.

Figure 2-16. The AutoCorrect settings in MS Word

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.6.1.2. Language dependency

The settings for replacements are language-dependent in the sense that they depend on the
language of the text as guessed by Word or as explicitly told to it. As a reminder of this, the settings
have the current language name in the window's title bar (see Figure 2-16). In particular, check the
language setting if you have changed the keyboard settings, since setting the keyboard layout often
changes the assumed language of text in Word.

Thus, you could set things up so that when typing in English, the two hyphens in "foo--bar" get
converted to an em dash, producing "foobar," but two consecutive hyphens are preserved when
typing in French.

This not quite as comfortable as it may seem, since Word is not perfect in guessing the language, and
human beings are not perfect in remembering to check such things. Moreover, things get a bit
awkward if you would like to have certain replacements applied regardless of language. You need to
copy these replacements into the settings for all languages.

Figure 2-17. AutoFormat settings in MS Word: contextual replacements

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.6.1.3. Autoformatting in MS Word

In the AutoCorrect window, there are some other panes as well. One of them is related to character
processing: the AutoFormat pane, as shown in Figure 2-17. The settings vary by Word version, but
the general idea is the same: automatic replacements that are not all just simple string replacement
but involve some contextual analysis. You can select which replacements are enabled by checking or
unchecking the checkboxes.

Some of the AutoFormat settings are actually simple string replacements, but one setting (like
"Ordinals (1st) with superscript") can correspond to a collection of settings (e.g., 1st, 2nd, etc.).

Even the setting that is described as replacing -- with actually does other things as well; it replaces
the following:

A single hyphen with an en dash, if the hyphen is preceded by a space: -foo becomes foo

Two consecutive hyphens with an en dash, if the hyphens are preceded by a space: foo -- bar

becomes foo bar (helping to write British-style dashes)

Two consecutive hyphens with an em dash, if not preceded by a space: foo--bar becomes

foobar

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.6.1.4. Example: quotation marks

Language-dependency is essential for quotation marks. Their use varies greatly by language. Here
are some examples:

"foo" (U.S. English style)

« foo » (French style)

"foo" (German style)

"foo" (Swedish style; note that the quotes are identical)

Normally, you can just type text, and Word converts, say, your input "foo" (typed using the normal

key for ASCII quotation mark) to a language-specific form. However, this requires that Word knows
or guesses right the language you use. Therefore, it is a good idea to check first, when starting to
create a document, that Word has the right idea of language. Normally the language indicator
appears on the bottom row of Word's window. You can click on it to change the language, or you can
use Tools Language.

Whether this happens depends on whether the checkbox about replacing "Straight quotes" with
"smart quotes" has been checked in the AutoFormat settings (see Figure 2-17). Thus, the setting has
a more general meaning than its name suggests.

MS Word does not know the British English style of using single quotation marks for normal
quotations. However, you can simply use the key for ASCII apostrophe, and Word will convert your
input 'foo' to 'foo' when in English mode.

The automatic conversion of ASCII quotes to language-dependent quotes might fail to work, for
example, if your version of Word does not support a particular language or the feature has been
disabled. You can type the correct quotation marks manually. Appendix A contains some quick
references for this. For example, Ctrl-' " (control-apostrophe followed by quotation mark) creates a
right double quotation mark, ".

2.6.2. Defining Your Own Shortcuts

Shortcuts are key combinations using Alt, AltGr, or Ctrl for special purposes, such as typing special
characters. They differ from the replacements discussed above, since the replacements modify the
data that has been typed. In practice, however, the two methods serve similar purposes and can be
used as alternatives. For example, MS Word may by default replace the character sequence (r) with
the character ®, but in many situations, you can also write ® by pressing AltGr-R (or Alt-Ctrl-R).

In MS Word, you can locate a character in the Character Map and then click on the Shortcut Key
button to enter a dialog in which you can define a shortcut for the character. (See Figure 2-11.) By
default, this definition will be saved into the Normal.dot file, so it can be used whenever you later edit
documents based on that template. In Figure 2-18, the user has entered the dialog and typed Alt-P
(echoed in a text box as Alt+P), because that's the shortcut he wants to use for the character he

http://lib.ommolketab.ir
http://lib.ommolketab.ir

selected.

Using this dialog, there are a few things to note:

Figure 2-18. MS Word dialog for defining a shortcut for a character

Use this technique primarily for characters that will be needed often and that are difficult to type
using other methods.

Select a shortcut that has some connection with the character. For example, Alt-P for a circled P
is easy to remember. See Table 2-3 for some additional ideas. You cannot use normal keys as
such; you need to involve Ctrl, Alt, or AltGr (and optionally Shift). However, as a second key,
you can use a normal key as such (example: Ctrl-/ a).

Check that you are not going to override any existing shortcut you may need. The existing
setting, if any, can be seen under the text "Currently assigned to."

Check that you are defining a shortcut for the right character (shown under Symbol).

Remember to click on Assign before clicking on Close.

After defining the shortcut, check immediately that it works in the desired way. You will be in a
good position to fix things if needed; later, you might not remember what you were really about
to do.

It is a good idea to write down the assignments you have defined. You can, however, check
them later: select the character from the map and enter the dialog, and look under "Current

http://lib.ommolketab.ir
http://lib.ommolketab.ir

keys."

As the plural "Current keys" suggests, you can define several alternative shortcuts for a
character. This can be a good idea especially if you are designing a working environment for
other people, who might not understand and remember quite clearly whether they need to use
Alt-P, AltGr-P, or Ctrl-P. However, there is then a risk of overriding some shortcut definitions
they might need. If you use the Ctrl key, you probably will not mask out any useful existing
assignment in MS Word.

Table 2-3. Possible ideas for shortcuts

Shortcut Meaning Context for use

Ctrl-/ L (L with stroke, U+0141) Polish names

Ctrl-. e (e with dot above, U+0117) Lithuanian names

Ctrl-- - (right arrow, U+2192) Mathematical texts, references

Alt-Ctrl-2 2 (superscript two, U+00B2) General text containing, for example, m2

Alt-S c (black club suit, U+2663) Bridge column

AltGr-S (s with caron, U+0161) Czech names

Alt-f (female sign, U+2640) Biological texts

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.7. Special Techniques

General techniques that let you type any Unicode character are often impractical when you need to
write a large number of characters of some particular kind. More specialized techniques are often
more convenient. Moreover, some characters cannot be written just by selecting a character from a
map, since they need to be represented as combinations of two (or more) Unicode characters.

2.7.1. Combining Diacritic Marks

Unicode has a special concept of combining diacritic marks, which will be described in detail in
Chapter 8. Here, we discuss its relevance to typing characters.

A combining diacritic mark is a Unicode character that is not meant to be shown as such but only in
conjunction with another character, a base character. For example, a combining acute accent,
U+0301, has really no independent appearance, but when combined with the Latin small letter "u"
U+0075 as a base character, it produces ú. By definition, the two-character sequence U+0075
U+0301 is canonically equivalent to Latin small letter "u" with acute accent U+00FA. The latter is an
example of a precomposed character, which means that a base character and some diacritic mark(s)
have been combined and the combination is defined as a separate Unicode character.

There is not much point in typing ú in a manner based on that equivalence, since there are ways that
are more practical. It is possible, though, in programs that have sufficiently good Unicode support,
and it can be useful as an exercise. Try this in MS Word, for example:

Press the "u" key.1.

Type 301 Alt-X. You should now see the "u" change to u´.2.

You can now type Alt-X to check what you have got; it should show u301, indicating that you
really have "u" followed by a combining acute accent. If you had typed ú as a single character,
Alt-X would give you 00FA, which is the code of that character.

3.

Canonical equivalence does not mean identity. The character ú (U+00FA) is still distinct from the
character sequence U+0075 U+0301, for example, in string matching, unless measures have been
taken to deal with the equivalence. Moreover, even the rendering may differ. If you look carefully,
you may notice that the accent in ú (U+00FA) is different from the accent in u´ (U+0075 U+0301).
This is because the former has probably been specifically designed by the typographer who created
the font, while the latter is often the result of "mechanical" composition by a program.

This probably sounds confusing, but it has practical applications. Although you don't want to use this

method to type ú, for example, what would you do if requested to produce the Cyrillic letter yu, ,
with an acute accent on it? Such a character does not exist in Unicode as precomposedi.e., in a code

position of its own. It exists in Unicode only in the sense that it can be expressed as followed by a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

combining acute accent.

To produce ´, you would type and then use one of the ways discussed to add U+0301'for
example, 301 Alt-X. The visual appearance of the combined character might not be ideal, but there is
little you can do about it. Many programs use rather simplistic methods to create characters with
diacritic marks.

There are many potential combinations of characters with diacritic marks, and only a small
percentage of them have been included in Unicode as characters. The rest are mostly very rare
characters, such as special symbols used in mathematics. Some human languages use such
combinations, though.

For example, letter `i.e., "i" with both a macron (a horizontal line above) and a grave accentdoes not
exist in Unicode as such. It can be expressed in several ways: "i" followed by a combining macron

and a combining grave in some order, or as followed by a combining grave, or as ì followed by a
combining macron. This multitude causes some problems, and there are techniques in Unicode to
reduce the variation by so-called normalization. If you need to produce the character only on paper
or screen, you can try the different methods (using a large font to see the differences) and use the
combination that produces the typographically best result. This often heavily depends on the font.

In Unicode, a combining diacritic mark always appears after the character that it relates to. This is
different from the use of dead keys for typing letters with diacritic marks: you press the dead key
before the letter key.

2.7.2. Spacing Between Characters

Spacing between characters is mostly a typographic issue and, as such, is outside the scope of this
book. We will however consider some Unicode approaches to spacing, emphasizing their limited
usefulness as compared with other tools. Basically, you use tools like commands in a layout or
publishing program to control character spacing.

In Unicode, there are somefixed-width space characters, which will be discussed in Chapter 8.
Contrary to normal spaces, which are usually flexible (can be expanded or shrunk in formatting),
fixed-width spaces have a more or less fixed width.

Figure 2-19. Different methods for adding spacing around a dash

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Consider the typographic problem with an expression like 46 (four, en dash, six, meaning "from four
to six"). In most fonts, the en dash will (almost) touch both digits, creating a somewhat unpleasant
appearance. We could write "4 6" using spaces around the en dash, but this would violate
orthographic rules, and it would also create too much spacing, as a rule. There are different
approaches to the problem:

Use a font where the problem does not appear. This might mean using a different font for the
en dash than for the text around it. Naturally, this is a tricky way, and it does not work if you
cannot really control fonts.

Use the tools of a typesetting or other program to adjust character spacing. Even in MS Word,
you can do that. Select the characters 4, and then choose Format Font Character
Spacing, and set Spacing to Expanded by, say, 1pt or 2pt. The setting affects the spacing after
each character in the selected area. (In HTML or XML authoring, you might use CSS, specifically
the letter-spacing property, to affect spacing in a similar manner.)

Insert suitable fixed-width spaces, such as thin spaces (U+2009), before and after the en dash.
You could also try a hair space (U+200A), but it is probably too narrow (perhaps just one pixel
wide).

The last approach is the only one that operates at the character level only, so it belongs to our topic.
However, it is usually not the best way. It gives rather coarse control, at least if the typesetting
program does not let you modify the widths of the fixed-width spaces. Moreover, it works for some
fonts only. (If you enter fixed-width spaces and the current font does not contain them, your
program might insert the space in some other font, often causing odd effects.) On the positive side, it
expresses the spacing request at the character level and can thus be used even in plain text.

The three approaches are illustrated in Figure 2-19. The basic font there is Arial Unicode MS, which
contains the thin space character.

2.7.3. Inputting East Asian Characters

You may wonder how people type Chinese/Japanese/Korean (CJK) characters on a computer, given
the fact that there are thousands of such characters. Using a general character map is rather
impractical, since it is very difficult to find CJK characters there.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Some techniques are based on the phonetic values of characters: using Latin letters, you type a
string that corresponds to the pronunciation, and a program shows you a menu of alternative
characters to select from. Other techniques work on the graphic elements of characters, such as the
number of strokes or the radical (root symbol). A program might even recognize characters as drawn
using a mouse.

There are severalInput Method Editors (IME) available from different sources. These utilities combine
many alternative methods of CJK character input, as illustrated in the document
http://www.microsoft.com/globaldev/handson/user/IME_Paper.mspx.

If you use Microsoft products, you can download and install support to one or more of the East Asian
writing systems: Chinese Traditional, Chinese Simplified, Japanese, and Korean. Along with the
support, you get an IME. Since the choice and installation heavily depends on a particular system
(including version of Windows) and on whether MS Office is used or not, we just refer to information
available via http://www.alanwood.net/unicode/utilities_editors.html. Be aware that because of the
number of CJK characters, the packages are rather large.

http://www.microsoft.com/globaldev/handson/user/IME_Paper.mspx
http://www.alanwood.net/unicode/utilities_editors.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.8. Escape Sequences

Characters can often be written using various "escape" notations. This rather vague term means
notations that are later converted to (or just displayed as) characters according to some specific
rules. The rules are applied by a program like a text formatter or web browser, and the rules depend
on the context. They may belong to a markup, programming, or other computer language.
(Programming languagerelated issues will be discussed in Chapter 11.) If different computer
languages have similar conventions in this respect, a language designer may have picked up a
notation from another language, or it might be a coincidence.

The phrase "escape sequence," or even "escape" for short, is rather widespread, and it reflects the
general idea of escaping from the limitations of a character repertoire or device or protocol or
something else. These notations should not be confused with the use of the ESC (escape) control
code in ASCII and other character codes. Especially in old text, "escape sequence" may mean a
sequence of characters starting with ESC and typically used for controlling a device. The "escape
sequences" discussed here are strings of printable characters used in text, and we will emphasize this
by using the term "escape notation."

2.8.1. Examples of Escape Notations

Table 2-4 illustrates the use of escape notations in some markup and other computer languages. It
shows examples of notations for the character Ä (A with dieresis, U+00C4) and the string "-8 °C"
(minus sign, digit eight, no-break space, degree sign, letter C). Often a computer language has
several alternative escape notations for a character; shown is just one of the possibilities. The
principles of the notations will be explained in some detail after the table. As you see, the notations
are partly similar, partly quite different. Once you know a few of them, learning new ones will be
easy, as long as you manage to keep the different systems as separate in your mind.

Table 2-4. Escape notations in computer languages

Language or notation Code for Ä Code for -8 °C

CSS \c4 \2013 8\a0 \b0 C

HTML Ä −8 °C

PostScript \304 (-8 \260C)

RTF \'c4 \u8722\'2d8\~\'b0C

TeX \"A $-$8~\char'0260 C

XML (and HTML) Ä –8 °C

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As you can see, the notations typically involve some (semi-)mnemonic name or the code number of
the character, in some number system. The ISO 8859-1 code number for our example character Ä is
196 in decimal, 304 in octal, and C4 in hexadecimal. The notations contain some method of indicating
that the letters or digits are not to be taken as such but as part of a special notation denoting a
character. Often some specific character such as the backslash \ is used as an "escape character."
This implies that such a character cannot be used as such in the language or format but must itself
be "escaped." For example, to include the backslash itself in a string constant in C, you need to write
it twice (\\).

In cases like these, the character itself does not occur in a file (such as an HTML document or a TeX
source file). Instead, the file contains the "escape" notation as a character sequence, which will then
be interpreted in a specific way by programs like a web browser or a TeX program. We can in a sense
regard the "escape notations" as encodings used in specific contexts upon specific agreements.

2.8.1.1. CSS

CSS (Cascading Style Sheets) is a language for suggesting presentational features for an HTML or
XML document. It does not have much use for string constants, but in principle, so-called generated
content strings may contain arbitrary Unicode data. The convention is that within a string constant,
\n means the character with hexadecimal Unicode number n. This works well when the number is

followed by a character that cannot be part of a hexadecimal number. There are special conventions
that help in other cases: a \n construct is treated as terminated after six consecutive hexadecimal
digits, and a space immediately following a \n construct is ignored. By these rules, the string 15

(containing an en dash, U+2013) can be written as a CSS constant in two ways: "1\0020135" or
"1\2013 5".

2.8.1.2. PostScript

PostScript is a page description language defined by Adobe. PostScript format can be viewed on
screen, too, using tools like GhostScript software. More than markup, PostScript is a powerful (and
complex) programming language. Normally PostScript code is generated from other formats with
automatic tools, but sometimes people edit the resulting code for fine-tuning of visual appearance or
small changes to the content.

PostScript contains a large collection of names for glyphs. The names are mnemonic and relatively
long, such Adieresis for Ä. Some character databases mention, along with other information about
characters, the PostScript names, also known as "Adobe names." However, the names refer to
glyphs, not characters. You would not use Adieresis in a PostScript file to get Ä printed; instead, you
would use \304.

Adobe's information on PostScript, including the PostScript reference manual, can be found at
http://www.adobe.com/products/postscript/resources.html.

2.8.1.3. RTF

Rich Text Format (RTF) was designed for information interchange between text-processing programs,

http://www.adobe.com/products/postscript/resources.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

preserving much of the formatting of text. Such programs typically have a "Save As RTF" function,
and they can open RTF files and automatically convert them to the program's internal format. RTF
contains much more than plain text, but often conversion to RTF format loses some information, if
advanced or specialized tools have been used in text processing. RTF is favored by some
organizations for security reasons: RTF does not contain macros, so RTF files, unlike MS Word files,
cannot contain macro viruses.

RTF should not be confused with the general concept of "rich text," which may mean almost any data
format that allows some formatting of texts, such as italics and bolding.

RTF markup is verbose and confusing to a human reader, since it is meant to be read by programs
primarily. In addition to notations for characters as discussed here, RTF contains quite a lot of
commands merged with text content. The RTF format is, however, a text format, defined as the
Internet media type text/rtf and usually containing ASCII characters only. (The media type
application/rtf is used, too.)

The meanings of notations like 'c4 depend on the encoding used. However, an RTF file may contain
commands that specify the encoding, making the document more portable.

In the example \u8722\'2d8\~\'b0C, the notation \u8722 refers to the minus sign character (U+2212)
by its code number in decimal. The notations \'2d and \'b0 refer to the hyphen-minus (U+002D) and
the degree sign (U+00B0) by their two-digit hexadecimal codes, whereas \~ is a special notation that
denotes the no-break space. The hyphen-minus character appears in the notation for fallback
behavior: it is the character to be rendered if the preceding character cannot be displayed.

For more information on RTF, consult RTF Pocket Guide by O'Reilly or the extensive web site,
http://interglacial.com/rtf/.

2.8.1.4. TeX

In TeX typesetting systems (including LaTeX, AMSTeX, etc.), there are different ways of producing
characters, possibly depending on the "packages" used. Examples of ways to produce Ä include: \"A,
\symbol{196}, \char'0304, and \capitaldieresis{A}. For a large list of such notations, consult The
Comprehensive LaTex Symbol List, http://www.ctan.org/texarchive/info/symbols/comprehensive.

2.8.2. Notations for Human Readers

There are also "escape notations" that are to be interpreted by human readers directly. For example,
when sending email, you might use A" (letter A followed by a quotation mark) as a surrogate for Ä
(letter A with dieresis), or you might use AE instead of Ä. The reader is assumed to understand that,
for example, A" on a display actually means Ä. Quite often, the purpose is to use ASCII characters
only, so that the typing, transmission, and display of the characters is "safe."

However, such notations typically make texts rather messy. The name Hämäläinen does not look too
good or readable when written as Ha"ma"la"inen or Haemaelaeinen. Such usage is based on special
(though often implicit) conventions and can cause a lot of confusion when there is no mutual
agreement on the conventions. Many different and mutually incompatible conventions are used. For
example, to denote letter "a" with an acute accent, á, a convention might use the apostrophe, a', or
the solidus, a/, or the acute accent, a´, or something else.

http://interglacial.com/rtf/
http://www.ctan.org/texarchive/info/symbols/comprehensive
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Some notations are rather evident, such as using a^ to denote â. The character ^ has no normal use
in words, so the most plausible explanation is that the writer meant to indicate that a circumflex
should appear above the preceding letter. But quotation marks, apostrophes, and even acute and
grave accents could sometimes be mistaken for punctuation marks.

There is an old (1992) proposal by K. Simonsen, "Character Mnemonics & Character Sets," published
as RFC 1345, that lists a large number of "escape notations" for characters. They are very short,

typically two characterse.g., "Co" for ©, "A:" for Ä, and "th" for (thorn). Naturally, there's the
problem that the reader must know whether, for example, "th" is to be understood that way or as
two letters t and h. So the system is primarily for referring to characters, but under suitable
circumstances, it could also be used for actually writing texts, when the ambiguities can somehow be
removed by additional conventions or by context. RFC 1345 is old and not approved by any authority,
but if you need, for some applications, an "escape scheme," you might consider using those notations
instead of reinventing the wheel. RFCs are available via http://www.rfc-editor.org/.

2.8.3. Explanations to Human Readers

Extending the meaning of "escape sequence" even furtherand probably beyond what many experts
find reasonablelet us consider the common problem of explaining verbally which character you mean.
This may happen when you cannot show the character (e.g., when spelling out a foreign name over
the phone) or when showing the character is not sufficient. Here we are not primarily interested in
using characters in running text but in specifying which character is being discussed.

As an example, consider a situation where you need to mention the Cyrillic letter in a situation
where you can safely use only ASCII (e.g., email, or a Usenet discussion). There are various ways to
try to describe the character:

The Russian letter that looks like a mirrored "R"

Such descriptions of the shape of a character might do their job in some cases, but they don't
work well in general. The shape of a character may vary, and different people interpret shapes

differently. For example, the letter looks like a chair to some people, while some might
describe it as digit 4, etc.

U+042F

This is the other extreme: a unique code-like notation, which is just fine when understood, but
rather useless to most readers.

Я

This is code-like too. It might, however, be understood by people who know HTML authoring
but have never heard of the U+... notation.

Cyrillic capital letter ya

http://www.rfc-editor.org/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is better, and when understood as a Unicode name, it is unique and immutable. However,
such names are not always intuitively understandable, even to people who know the character
itself. For example, due to differences in English and French transliteration of Russian, the

phrase "Cyrillic capital letter che" might be understood either as meaning or as meaning
.

The character you can see at http://www.fileformat.info/info/unicode/char/042f/

This would mean a reference to a web page that contains information on the character,
including a glyph of it as a largish image. If you use it in an email message, the recipient is
usually able to just click on the address to visit the page. Unfortunately, for many purposes,
the content of online services that could be used for such references tends to be rather
technical in nature. The formal information might even confuse the reader.

A combination of some of the above

This is usually the best strategy. The methods used will vary by the audience and by the
character. An explanation such as "Cyrillic capital letter ya (in Unicode: U+042F)" might work
reasonably well.

Sometimes you need to avoid common phrases in order to be unambiguous. It is common to say
"double slash" in English, when you mean two consecutive slash characters, //. However, such
wording is potentially ambiguous, since Unicode contains the double solidus operator // (U+2AFD) as
a separate, independent character. Unicode contains hundreds of characters with the word "double"
in their name. Thus, a wording like "two slashes" is safer. Since even this might be misunderstood as
referring to one character, the expression "two slash characters" is even safer.

2.8.4. HTML, SGML, and XML Notations for Characters

HTML is the markup language in which web pages are usually written. It is formally a special case of
SGML or XML, which are generic markup languages. These languages have special notations that you
can use for writing characters, if it is for some reason difficult or impossible to use the characters
themselves.

2.8.4.1. Character and entity references in web authoring

If you use a "Save as HTML" or "Save as Web page" command or something similar in a word
processor, it is quite possible that some characters in your text get stored as entity references or as
character references. For example, you have typed é but the program stores it as é or as
é. Web-authoring programs often do the same.

There is nothing wrong with this per se (in most cases; some programs generate incorrect character
references, though). Web browsers can deal with such references. Many web page editors can
interpret them as well. But if you wish to edit the document later using a program like Notepad, you
will see the references, and things can get really awkward if you need to work with data like

http://www.fileformat.info/info/unicode/char/042f/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

résumé a lot. Depending on the software you use, the references might appear as
such, or interpreted and displayed as the characters they denote.

Some programs have options that control whether and how Unicode characters are replaced by entity
or character references. Moreover, they may have options for setting the encoding of the HTML
document, and this may affect the situation.

For example, suppose you use OpenOffice to create a document with é and a Chinese character, and
then use File Save and select HTML format. With default settings, the program saves é as
é and the Chinese character as a character reference like 不. The latter part is
understandable, since the default encoding in HTML documents created with OpenOffice is windows-
1252, which contains no Chinese characters. There is no good explanation for using é,
though. If you set the encoding to utf-8 (via Tools Options Load and Save HTML
Compatibility), then the Chinese character is saved as such, UTF-8 encoded. The é entity
reference still appears. It is of course a correct notation, but it makes HTML source harder to read.

Thus, one of the reasons for using references is that the document's encoding might not allow all
characters to be represented as such, and character references offer a universal way to overcome
such limitations. But programs might also use such output form for no good reason.

If you represent all non-ASCII characters using entity references or character references, you can
use ASCII only in an HTML document. The data will be "7-bit safe"i.e., it can even be sent over a
connection that does something nasty to octets with the most significant bit set. This is seldom
relevant these days, but many tutorials have taught that entity and character references are safer
than using the actual characters, and people tend to believe such things.

Exceptionally, such issues might still be relevant, if you work, say, in a Mac environment and upload
your documents to a server that runs Unix. It might then happen that the software you use for
uploading performs a wrong character encoding conversion, or doesn't do a conversion when it
should. But if you have used only ASCII characters (and wrote, for example, accented letters using
entity references), then no such conversion is needed, and no conceivable conversion will harm you
either, since conversions would leave ASCII characters intact.

The Free Recode program available from http://recode.progiciels-bpi.ca can perform an impressive
amount of code conversions, including conversions that replace references by characters or vice
versa. Beware that it uses rather odd terminology: it refers to "HTML charsets" when it actually
means HTML format. Normally "charset " means character encoding, at the character level, without
any notion of entity references or character references.

2.8.4.2. The role and use of character and entity references

Entity references like é and character references like é are actually quite distinct
concepts, though commonly confused with each other in HTML tutorialsand even in specifications!
What they share is that they relate to markup languages, namely SGML, XML, and languages defined
with them, such as HTML. The references do not belong to Unicode at all, though they usually make
use of Unicode code numbers. Rather, they are at a "higher level."

Thus, the references make sense only in contexts where markup is used and interpreted. For
example, they do not work in normal email, though they may work if email is sent and interpreted in
HTML format. However, references might at times appear otherwise too, due to programming errors,
or sometimes intentionally. For example, in some situations, Internet Explorer represents characters

http://recode.progiciels-bpi.ca
http://lib.ommolketab.ir
http://lib.ommolketab.ir

in user input in forms as character references. However, by the specifications, a browser should send
form data as plain text, not in HTML format in any way. On some web-based discussion forums, you
might be able to type a character reference and have it displayed to your readers as the character
you mean. Technically, this is easily achieved in the design of forum software: it just needs to pass
the reference through as such.

2.8.4.3. Definition: character reference

Generally, in any SGML-based system, or SGML application as the jargon goes, a character reference
of the form &#number; can be used. It refers to the character that occupies code position n in the

character code defined for the SGML application in question. This is actually very simple: you specify
a character by its index (position, number). In SGML terminology, the character code that determines
the interpretation of a character reference is called, quite confusingly, the document character set . It
need not have anything to do with the character encoding in which the document is written.

Originally, SGML used decimal numbers in character references. Later, the hexadecimal alternative
was added, and it uses letter "x" (or "X") in front of the digits: &#xnumber;. Thus, Ä is equivalent

to Ä.

For HTML, the document character set is Unicode (or, to be exact, a subset thereof, depending on
HTML version). A most essential point is that for HTML, the document character set is completely
independent of the encoding of the document! Some early browsers (Netscape 4) got this wrong.

XML, which can be regarded as a lightweight derivative of SGML, has a very similar character
reference concept. XML fixes the document character set to Unicode. It also simplifies the syntax by
making the trailing semicolon (which is optional in some situations in SGML) an obligatory part of a
character reference.

2.8.4.4. Definition: entity reference

Entity references such as © in HTML can be regarded as symbolic names defined for some
characters. Contrary to popular belief, entity references are not less system-dependent than
character references like ©. It's rather the opposite. The entity references in HTML are defined
by equating them with character references, using XML declarations like:

<!ENTITY copy "©">

Entity references in SGML and XML correspond to macro invocations in many programming and
command languages. You define an entity with a declaration (e.g., the sample above) and you use
("call") the entity by prefixing its name with an ampersand. An SGML or XML processor, including
web browsers, simply substitutes internally the defining string © for a referencein this case,
©. In the general case, the definition of an entity could be a long string, even the content of an
external file.

2.8.4.5. Entity references in HTML

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The HTML language (including XHTML) has a finite set of predefined entities, and they are all defined
in terms of character references. This is a special case, but it has made people understand entity
references just as names for characters. Even HTML specifications call them character entity
references as opposed to numeric character references .

Moreover, although HTML was formally defined as an application of SGML, web browsers never
supported the general mechanisms for declaring and using entities. Thus, in practice, entities exist
only in the sense that you can use the predefined entities. To the extent that web browsers support
XHTMLi.e., XML-based versions of HTMLthe situation is different: new entities can be declared.

By SGML rules, the trailing semicolon in entity references may be omitted, if the next character is
non-alphanumeric (e.g., a space). However, popular browsers often get this wrong, so € is
much safer than &euro without the semicolon. Moreover, in XML, and therefore in XHTML, the
semicolon is required.

The entity references in HTML are officially defined in the HTML specifications; for example, see
http://www.w3.org/TR/xhtml1/dtds.html#h-A2. There are also some more readable presentations,
such as http://www.htmlhelp.com/reference/html40/entities/. However, there are several reasons
why the entity references are not that useful:

In modern authoring with Unicode-enabled tools, you don't need the entities. You simply write
characters themselves and see them as such even in HTML source, and you store and serve
your page in UTF-8 encoding, for example.

Entities exist for a rather haphazard collection of characters.

The entity names are often just half-mnemonic, or not mnemonic at all. Who could guess that
⟨ means left-pointing angle bracket? What would be your guess on ∋? Part of the
quasi-mnemonic nature is caused by the fact that the names have been taken from the SGML
standard, which uses entity names with a maximum length of six characters.

2.8.4.6. Character entities in XML

People often assume that the character entity references known from HTML are automatically
available in XML. However, in XML, only a very small set of predefined entities exist, as shown in
Table 2-5. Entities have been defined for markup-significant charactersi.e., characters that might
otherwise be understood as constituting part of markup. If you use the < character in document
content, as in the expression "a<b", you need to escape it as < or, equivalently, as < or
<. Otherwise, "<b" would be taken as starting a tag. There is actually no need to escape the >
character, but an entity has been defined for it for symmetry. The & character, on the other hand,
must always be escaped in XML, when it is not meant to start a character reference or an entity
reference. The apostrophe and the quotation mark need not be escaped in document content but
only in attribute values, where the character would otherwise terminate the value.

Table 2-5. Predefined entities (denoting characters) in XML

http://www.w3.org/TR/xhtml1/dtds.html#h-A2
http://www.htmlhelp.com/reference/html40/entities/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Entity reference Expansion Character Unicode name Need for the entity

< < < Less-than sign < normally starts a tag

> > > Greater-than sign For symmetry with <

& & & Ampersand & normally starts a reference

' ' ' Apostrophe Within an attribute value

" " " Quotation mark Within an attribute value

In XML, any other entities must be defined before use, though you can write the definitions into an
external file and refer to the file in an entity declaration.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.9. Specialized Editors

There are many good editors and word processors that can handle Unicode or other large repertoires,
many of which are free. The difficult part is to decide which is best for an individual user, or a user
community, or purpose. Therefore, the following descriptions are aimed at illustrating some
capabilities and features, so that you know what's possible and available.

For information on many other options, see the page "Unicode and Multilingual Editors and Word
Processors," http://www.alanwood.net/unicode/utilities_editors.html.

2.9.1. BabelPad

BabelPad is a Unicode editor for modern versions of Windows. It is free and available from
http://www.babelstone.co.uk/. It is relatively easy to get started with, and it has fairly good general
tools for entering characters. However, you need to know quite a bit about Unicode to use many of
the tools.

BabelPad is illustrated in Figure 2-20. You can use drop-down menus or keyboard shortcuts for the
insertion of some characters, but in general you need to use the character map or a character's
Unicode number. By clicking on the U+ button in the interface, you can enter a mode in which you
can type in the Unicode number. But this is not very convenient for typical work by a secretary or a
journalist, for example.

There is a Character Map window, shown in Figure 2-21, that looks rather similar to corresponding
utilities in Windows XP and MS Word. However, it has extra features. If you click on a character, and
then on the Properties button, you get detailed information on the character, as illustrated in Figure
2-22. The information is technical and formal, you need to understand Unicode properties as
explained in Chapter 5 to make the best use of it.

2.9.2. UniPad

UniPad is a Unicode text editor for Windows systems. It uses its own bitmap font, so you can use it
independently of the font repertoire in your system. On the other hand, you will not directly see
which characters will work in the fonts you have. UniPad is easy to get started with. It is free for very
small scale use. It is available from the site http://www.unipad.org.

UniPad has onscreen keyboard layouts, or "virtual keyboards," that allow you to type in texts
according to keyboard settings that are conventional for a language. Figure 2-23 illustrates such
usage. You can also modify the keyboard settings or define your own keyboard layout for such use.
Characters can also be selected from a character map.

http://www.alanwood.net/unicode/utilities_editors.html
http://www.babelstone.co.uk/
http://www.unipad.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 2-20. Use of BabelPad, here using a command menu to add a
character

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.10. Exercise

Enter the following text into a document in some way discussed earlier. Create the document in plain
text format, Word format, HTML format, or something else. Here the text is printed in large font to
make it easier to recognize the characters, but you can use any font size you find suitable. Some
characters can be difficult to identify, since identification may require understanding of the specific
topic area, languages, and context. On the other hand, this makes the exercise more realistic.

The exercise strings are in Table 2-6, where the first column contains the strings you should write.
The second column contains explanations, which might be useful in identifying the characters by
cultural connections. If you find an exercise far too difficult, postpone it; after reading Chapter 8, it
might be easier. If you find some sample string particularly typical of texts that you work with,
consider what method would be the fastest one in continuous use. Also consider what would be the
simplest and easiest way to explain to someone who is almost computer illiterate that she will be able
to remember.

Figure 2-21. The Character Map in BabelPad

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 2-6. Strings for typing exercises

String Explanation

naïve "Naive" in original French spelling

François French first name

São Paulo City in Brazil

Salvador Dalí Spanish painter

¡Viva España! Long live Spain! (in Spanish)

Carl von Linné, Carolus Linnæus Swedish and Latin names of the famous biologist

Erdo an Turkish family name

Klaip da City in Lithuania

Antonín Dvo ák, Bohuslav Martin Czech composers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

String Explanation

Br ila, Constan a Cities in Romania

NguyÅn V n Thi?u (19232001) Vietnamese general and politician

Anders Ångström Swedish scientist

Sándor Pet fi Hungarian poet

Karol Józef Wojty a The original name of John Paul II

Latvijas Nacion l bibliot ka National Library of Latvia

ebbu Town in Gozo (Malta)

Lech Wa sa Former president of Poland

β-carotene A chemical compound (provitamin)

γρ µ µ α Greek word "gramma" in Greek letters

R 900 µ Resistance is about 900 microhms (micro-ohms)

1.5 1.5 per mille (per thousand)

2.53 m2 ± 0.01 m2 2.53 plus or minus 0.01 square meters

CS x BA A crossbreeding formula with symbols for breeds

Er sagte: "Ich weiß nicht." German text, containing a quotation

[l gw st k] Phonetic (IPA) spelling of the word "linguistic"

¬(x,y,z,n)(n>2 xn+yn=zn) Fermat's last theorem in compact notation

Figure 2-22. Properties of a character as shown by BabelPad

Br ila, Constan a Cities in Romania

NguyÅn V n Thi?u (19232001) Vietnamese general and politician

Anders Ångström Swedish scientist

Sándor Pet fi Hungarian poet

Karol Józef Wojty a The original name of John Paul II

Latvijas Nacion l bibliot ka National Library of Latvia

ebbu Town in Gozo (Malta)

Lech Wa sa Former president of Poland

β-carotene A chemical compound (provitamin)

γρ µ µ α Greek word "gramma" in Greek letters

R 900 µ Resistance is about 900 microhms (micro-ohms)

1.5 1.5 per mille (per thousand)

2.53 m2 ± 0.01 m2 2.53 plus or minus 0.01 square meters

CS x BA A crossbreeding formula with symbols for breeds

Er sagte: "Ich weiß nicht." German text, containing a quotation

[l gw st k] Phonetic (IPA) spelling of the word "linguistic"

¬(x,y,z,n)(n>2 xn+yn=zn) Fermat's last theorem in compact notation

Figure 2-22. Properties of a character as shown by BabelPad

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 2-23. Using UniPad to write Japanese in hiragana

As a simple check, change the font of the texts. If you have used a text-processing program, use the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Select All function and a font changing command to try a few different fonts. It may happen that
some special characters are replaced by symbols of unrepresentable characters (e.g., boxes or
question marks). However, if some character is changed to a completely different character, you
know that you did something wrong.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Character Sets and Encodings
The world runs on a wide variety of character sets . This chapter describes the many encodings for
these sets and lists the characters in them. We also describe how conversions between the encodings
can be performed, either with the functions of commonly used programs or separate converters. This
chapter also discusses practical use of the character sets in different contexts, such as email, Internet
discussion forums, and document interchange.

The use of Unicode does not mean that you need not know anything about encodings. You will
inevitably encounter non-Unicode data as well, and you need to work with it, even if this only means
converting it into Unicode. Moreover, Unicode itself can be represented in different encodings, such as
UTF-8 and UTF-16.

Mostly you don't neeed to know about the details of encodings. You certainly don't have to know the
code numbers of characters in each encoding, let alone memorize them. What you need is an
overview of the world of encodings, general information about the suitability of each encoding for
various purposes, and tools for mapping between encodings.

The presentation of encodings in this chapter is practical rather than historical. For history, one place
to refer to is "A Brief History of Character Codes in North America, Europe, and East Asia" at
http://tronweb.super-nova.co.jp/characcodehist.html.

As explained in Chapter 1, the phrase "character set" is confusing and vague. It is therefore mostly
avoided in this book, but you will often see it elsewhere. It may mean any of the following, and often
two or three of these at the same time:

A collection of characters (character repertoire)

A mapping of characters into the mathematical set of integers (character code)

A mapping of characters (or their numbers) into sequences of octets (character encoding)

http://tronweb.super-nova.co.jp/characcodehist.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.1. Good Old ASCII

ASCII is still the set of characters that work safely in most text applications and on the Internet.
Almost all programming languages, command languages, markup languages, Internet protocol
headers, and many other notation systems still exclusively use ASCII in their basic syntax. They may
allow other characters in contexts like quoted strings, but the commands, reserved words, and
operators are written using good old ASCII. Moreover, most character codes currently in use can be
regarded as extensions of ASCII: they preserve the meaning of code numbers 0 through 127 and add
some more.

On the other hand, ASCII has a very small character repertoire. Historically, it was a big
improvement over even more restricted character codes, but it was created at a time when bits were
very expensive. ASCII was designed to be represented in 7 bits, and many character positions were
reserved for control codes such as linefeed (LF) and escape (ESC). Only about a hundred character
positions were assigned to printable characters.

Moreover, since the needs of programming were more important than those of text processing, the
assignments use positions for many technical characters. Even "smart" quotation marks were
omitted; the idea was that the ASCII quotation mark, ", was to be used as a neutral quotation mark.

3.1.1. American Origin

The name ASCII is originally an acronym for "American Standard Code for Information Interchange."
The ASCII code was developed in the United States and standardized by ANSI, the American National
Standards Institute. The standard is often referred to as ANSI X3.4-1986, but the current version is
ANSI INCITS 4-1986 (R2002).

The creation of ASCII started in the late 1950s, and several additions and modifications were made in
the 1960s. The 1963 version had several unassigned code positions. The ANSI standard, where those
positions were assigned, mainly to accommodate lowercase letters, was approved in 1967/1968, and
later modified slightly.

The nameUS-ASCII is also used, and is even the preferred name in some recommendations, to
distinguish ASCII proper from different "national variants of ASCII." In principle, the name ASCII is
unambiguous, since the "variants" are just different codes with more or less resemblance to ASCII
and with names of their own.

Contrary to popular belief, the designers of ASCII did not limit the scope to the English language
only. Some characters were included for the purpose of writing accented letters. For example, the
tilde ~ character was meant to be used so that it is overprinted on a lettere.g., writing "n,"
Backspace, and ~ on paper to produce a character that looks like ñ. This never became popular, and
the characters introduced for the purpose were used for other purposes as well, creating a conflict of
interests in font design. But ASCII surely tried to address the needs of other languages as well.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.1.2. The ASCII Repertoire

The following presentation contains the printable ASCII characters by their code number (32126)
order, in rows of 16 characters, except for the last one, which has only 15 characters. The first
character is the space, which is graphically empty, of course; it is often classified as a graphic
character. The font used here is the monospace font used for computer code in this book:

! " # $ % & ' () * + , - . /
0 1 2 3 4 5 6 7 8 9 : ; < = > ?
@ A B C D E F G H I J K L M N O
P Q R S T U V W X Y Z [\] ^ _
' a b c d e f g h i j k l m n o
p q r s t u v w x y z { | } ~

Thus, there are 6 x 16 - 2 = 94 graphic characters, if we do not count the space as graphic. They
include 26 uppercase letters, 26 lowercase letters, and 10 digits, leaving only 32 code positions for
other characters.

The repertoire corresponds rather closely to the characters that can be written on old typewriters and
similar devices. This is no coincidence, but intentional design. Only a few extra characters were
added, such as the backslash \ (reverse solidus).

3.1.3. The ASCII Encoding

By design, ASCII is a 7-bit character codei.e., each code number can be represented as an integer in
binary notation using 7 bits. In the early days, ASCII data was sometimes packed into 7-bit
bytese.g., putting 5 bytes into a 36-bit computer "word" (storage unit).

Nowadays, we almost always use an 8-bit byte, or octet, to represent an ASCII character. This leaves
1 bit (normally the most significant bit) unused. It has been used for various purposese.g., as a
parity check bit, which helps to detect errors in data. In modern protocols and applications, the most
significant bit is usually kept as zero. This, too, allows checks of a kind: if a text file purported to
contain ASCII data has any octet with the most significant bit set, there is an error of some kind
somewhere.

This makes the character encoding used for ASCII really simple: each code number, and hence each
character, is represented as an octet with that number as its value, when interpreted as an integer.

3.1.4. ISO 646 and National Variants of ASCII

There are several national variants of ASCII. Technically, each variant is a character code that is
defined separately and has its own name. In such variants, some special characters have been
replaced by national letters and other symbols. There is great variation here, and even within one
country and for one language, there might be different variants. The variants have lost much of their
significance because of more modern approaches to encoding characters, but they can still be in use

http://lib.ommolketab.ir
http://lib.ommolketab.ir

for legacy data and legacy applications.

A large number of the variants have been defined on the basis of the international standard ISO 646,
issued by the International Organization for Standardization (ISO), . ISO 646 has a so-called
International Reference Version (IRV) which is equivalent to ASCII; thus, in this context,
"International" effectively means "English"! In some contexts, it might be politically correct to refer to
ISO 646 IRV instead of ASCII.

ISO 646 defines a character set similar to US-ASCII but with code positions corresponding to US-
ASCII characters @, [, \,], {, |, and } as "national use positions." It also gives some liberties with
characters #, $, ^, ', and ~. Ecma International has issued the ECMA -6 standard, which is
equivalent in content to ISO 646 and is freely available on the Web via http://www.ecma-
international.org. Ecma was originally European Computer Manufacturers' Association, but it is now a
worldwide association for standardization, though with some European emphasis.

The ISO 646 standard is cited more officially as ISO/IEC 646, since it is a joint standard approved by
ISO and the International Electrotechnical Commission (IEC) . A similar note applies to many ISO
standards mentioned in this book.

Within the framework of ISO 646, and also outside of it, several "national variants of ASCII " have
been defined, assigning different letters and symbols to the "national use" positions. Thus, the
characters that appear in those positionsincluding those in US-ASCIIare more or less "unsafe" in
international data transfer, although this problem is losing significance. The trend is towards using
the corresponding codes strictly for US-ASCII meanings; national characters are handled otherwise,
giving them their own unique and universal code positions in character codes larger than ASCII.
However, old software and devices as well as legacy data may still reflect various "national variants
of ASCII."

In principle, the phrase "national variant of ASCII" is incorrect. They are character codes that are
defined independently, although they have been derived from ASCII. These codes are often
registered and named in a manner that reflects the geographic scope. For example, a variant
designed for use in Sweden and Finland has the primary name "SEN_850200_B" but also more
understandable alias names like "ISO646-SE."

Table 3-1 lists ASCII characters that have been replaced by other characters in some "national
variant of ASCII." That is, the code positions of these US-ASCII characters might be occupied by
other characters needed for national use. The lists of characters here is not intended to be
exhaustive, it just shows some typical examples. The "Code" column specifies the ASCII (and
Unicode) code number in hexadecimal.

Table 3-1. ASCII characters that vary in "national variants"

Code Character Unicode name National variants

23 # Number sign £ Ù

24 $ Dollar sign ¤

40 @ Commercial at É § Ä à 3

5B [Left square bracket Ä Æ ° â ¡ ÿ é

http://www.ecma-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Code Character Unicode name National variants

5C \ Reverse solidus Ö Ø ç Ñ ½ ¥

5D] Right square bracket Å Ü § ê é ¿ |

5E ^ Circumflex accent Ü î

5F _ Low line è

60 ' Grave accent é ä µ ô ù '

7B { Left curly bracket ä æ é à ° ¨

7C | Vertical line ö ø ù ò ñ f

7D } Right curly bracket å ü è ç ¼

7E ~ Tilde ü ¯ ß ¨ û ì ´ _

Thus, for example, text containing "foo[1]" might be displayed as "fooä1å" when processed by
software that assumes that the input is in a national variant of ASCII. Such software has become
rare as the use of ISO 8859 and other wider character codes has become common, since almost all
characters used in the national variants have been incorporated into an ISO 8859 character code.
However, legacy data may contain characters that need to be interpreted according to some national
variant. If you see a text containing the string "Sch}ler," odds are that } actually means ü. You need
information on the legacy codes used in a cultural environment in order to make educated guesses in
such situations. For a quick reference to such codes, presented graphically, consult the page
http://kanji.zinbun.kyoto-u.ac.jp/~yasuoka/CJK.html.

3.1.5. Subsets of ASCII for Safety

Mainly due to the national variants discussed in the previous section, some characters are less "safe"
than othersi.e., more often transferred or interpreted incorrectly. In addition to the letters of the
English alphabet (AZ, az), the digits (09), and the space (), only the following characters can be
regarded as really "safe" in data transmission:

! " % & ' () * + , - . / : ; < = > ?

Even these characters might eventually be interpreted wrongly by the recipient. For example, a
human reader could see a glyph for & as something other than what it is intended to denote. A
program could interpret < as starting some special markup, or ? as a so-called wildcard character,
etc.

When you need to name things (e.g., files, variables, data fields, etc.), it is often best to use only the
characters listed above, even if a wider character repertoire is possible. Naturally, you need to take
into account any additional restrictions imposed by the applicable syntax. For example, the rules of a
programming language might restrict the character repertoire in identifier names to letters, digits,
and one or two other characters. On the other hand, the underscore (low line) character _ is often
usable in names, and it normally works reliably.

5C \ Reverse solidus Ö Ø ç Ñ ½ ¥

5D] Right square bracket Å Ü § ê é ¿ |

5E ^ Circumflex accent Ü î

5F _ Low line è

60 ' Grave accent é ä µ ô ù '

7B { Left curly bracket ä æ é à ° ¨

7C | Vertical line ö ø ù ò ñ f

7D } Right curly bracket å ü è ç ¼

7E ~ Tilde ü ¯ ß ¨ û ì ´ _

Thus, for example, text containing "foo[1]" might be displayed as "fooä1å" when processed by
software that assumes that the input is in a national variant of ASCII. Such software has become
rare as the use of ISO 8859 and other wider character codes has become common, since almost all
characters used in the national variants have been incorporated into an ISO 8859 character code.
However, legacy data may contain characters that need to be interpreted according to some national
variant. If you see a text containing the string "Sch}ler," odds are that } actually means ü. You need
information on the legacy codes used in a cultural environment in order to make educated guesses in
such situations. For a quick reference to such codes, presented graphically, consult the page
http://kanji.zinbun.kyoto-u.ac.jp/~yasuoka/CJK.html.

3.1.5. Subsets of ASCII for Safety

Mainly due to the national variants discussed in the previous section, some characters are less "safe"
than othersi.e., more often transferred or interpreted incorrectly. In addition to the letters of the
English alphabet (AZ, az), the digits (09), and the space (), only the following characters can be
regarded as really "safe" in data transmission:

! " % & ' () * + , - . / : ; < = > ?

Even these characters might eventually be interpreted wrongly by the recipient. For example, a
human reader could see a glyph for & as something other than what it is intended to denote. A
program could interpret < as starting some special markup, or ? as a so-called wildcard character,
etc.

When you need to name things (e.g., files, variables, data fields, etc.), it is often best to use only the
characters listed above, even if a wider character repertoire is possible. Naturally, you need to take
into account any additional restrictions imposed by the applicable syntax. For example, the rules of a
programming language might restrict the character repertoire in identifier names to letters, digits,
and one or two other characters. On the other hand, the underscore (low line) character _ is often
usable in names, and it normally works reliably.

http://kanji.zinbun.kyoto-u.ac.jp/~yasuoka/CJK.html
http://kanji.zinbun.kyoto-u.ac.jp/~yasuoka/CJK.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.1.6. The Misnomer "8-bit ASCII"

The phrase "8-bit ASCII" is used surprisingly often. It follows from the discussion in the previous
section that in reality ASCII is strictly and unambiguously a 7-bit code in the sense that all code
positions are in the range 0127. It can be, and it usually is, represented using 8-bit bytes, but with
the first bit always zero, or used for other purposes so that it is not part of the encoded form of a
character.

The misnomer "8-bit ASCII" most often denotes windows-1252, the 8-bit code defined by Microsoft
for use in the Western world. More generally, 8-bit ASCII is used to refer to various character codes,
which are extensions of ASCII and mutually more or less incompatible. The character repertoire in
such a code contains ASCII as a subset, the code numbers are in the range 0256, and the code
numbers of ASCII characters equal their ASCII codes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.2. ISO 8859 Codes

ISO 8859or more formally, ISO/IEC 8859is a family of character code standards. They were largely
developed by Ecma, which distributes ECMA standards that are equivalent to ISO 8859 standards.
ISO 8859 standards are largely oriented toward languages of European origin.

ISO 8859 codes are widely used on different platforms and in different contexts. For example, on the
Web, ISO 8859-1 was long treated as the default encoding. On Windows, ISO 8859 as such is not
used that much, but the corresponding, somewhat extended Windows encodings are common. In
Unix and Linux, ISO 8859 is very common.

Each ISO 8859 standard tries to address the needs of one or more specific languages and cultural
environment, within the fairly narrow framework of 8-bit structure. This means that in most cases,
you cannot represent multilingual text using any single ISO 8859 encoding.

3.2.1. ISO 8859-1 (ISO Latin 1)

The international standard ISO 8859-1 defines a character repertoire identified as Latin alphabet No.
1, commonly called ISO Latin 1, as well as a character code for it. The repertoire contains the ASCII
repertoire as a subset, and the code numbers for those characters are the same as in ASCII. The
standard also specifies an encoding, which is similar to that of ASCII: each code number is presented
simply as one octet.

In addition to the ASCII characters, ISO Latin 1 contains various accented characters and other
letters needed for writing languages of Western and Northern Europe, and some special characters.
These characters occupy code positions 160255, and they are, in code number order and rendered in
a monospace font:

¡ ¢ £ ¤ ¥ § ¨ © ª « ¬ - ® ¯
° ± 2 3 ´ µ ¶ · ¸ 1 º » ¼ ½ ¾ ¿
À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï

 Ñ Ò Ó Ô Õ Ö x Ø Ù Ú Û Ü Ý ß
à á â ã ä å æ ç è é ê ë ì í î ï

 ñ ò ó ô õ ö ÷ ø ù ú û ü ÿ

On the first row, the first character is the so-called no-break space, which corresponds to the ASCII
space character but disallows line breaks in text formatting. The third-to-last character on the first
row is thesoft hyphen character, which either has no graphic appearance or looks the same as the
ASCII hyphen character.

The standard mentions that ISO 8859-1 was designed to cover the needs of the following languages:
Danish, Dutch, English, Faeroese, Finnish, French, German, Icelandic, Irish, Italian, Norwegian,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Portuguese, Spanish, and Swedish. It also covers Albanian and some non-European languages, such
as Indonesian/Malay, Tagalog, Swahili, and Afrikaans.

3.2.2. Names of Encodings

A character encoding may have several names, even several official names. This is illustrated in Table
3-2, which summarizes some names of ISO 8859-1. Names of encodings are often written with a
hyphen instead of spacee.g., ISO-8859-1or sometimes with an underscore (low line)e.g., ISO_8859-
1. This is because in Internet protocols (see Chapter 10), the character encoding needs to be
specified by a name that does not contain spaces. However, each context has its own rules for
accepted names. Generally, encoding names are case insensitive: iso-8859-1 is the same as ISO-
8859-1.

Table 3-2. Names of the ISO 8859-1 standard and encoding

Name Context of use

ISO/IEC 8859-1:1998 Official name of a particular version of the standard

ISO/IEC 8859-1 Official name of the standard in general

ISO 8859-1 Commonly used name of the standard and the encoding

ISO-8859-1 Preferred MIME name of the encoding (e.g., in Internet headers)

ISO_8859-1 An alternate MIME name (among others)

ISO8859-1 Unofficial, unregistered name used in some contexts

Latin alphabet No. 1 Official name of the character repertoire (in the standard)

Latin 1 Common name of the encoding and repertoire

ISO Latin 1 Another common name, to distinguish from Windows Latin 1

West European (ISO) A name for the encoding, used in some software

3.2.3. Other ISO 8859 Codes

ISO 8859-1 is a member of the ISO 8859 family of character codes, which extends the ASCII
repertoire in different ways with different special characters, for the purposes of different languages
and cultures. Just as ISO 8859-1 contains ASCII characters and a collection of characters needed in
languages of Western and Northern Europe, there is ISO 8859-2 alias ISO Latin 2 constructed
similarly for languages of Central/Eastern Europe, etc. The ISO 8859 character codes are isomorphic
in the following sense: code positions 0127 contain the same characters as in ASCII, positions
128159 are unused (reserved for control characters), and positions 160255 are the varying part
(often called "the upper half"), used differently in different members of the ISO 8859 family.

The ISO 8859 character codes use the obvious encoding: each code position is represented as one
octet. Such encodings have several alternative names in the official registry of character encodings,
but the preferred ones are of the form ISO-8859-n.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Although ISO 8859-1 has been a de facto default encoding in many contexts, it has in principle no
special role. ISO 8859-15 alias ISO Latin 9 was expected to replace ISO 8859-1 to a great extent,
since it contains the politically important symbol for euro (€), but it has gained relatively little
practical use. Old software does not recognize it, and new software supports Unicode encodings,
which give a much wider repertoire of characters.

Table 3-3 lists the ISO 8859 alphabets. Note that ISO 8859-n is Latin alphabet no. n (or ISO Latin n
for short) for n = 1, 2 ,3, 4, but this correspondence is broken for the other Latin alphabets. For

eventual new approved or proposed ISO 8859 standards, check the page
http://anubis.dkuug.dk/jtc1/sc2/ (official home of ISO/IEC JTC 1/SC 2, the international
standardization subcommittee for coded character sets).

Table 3-3. ISO 8859 character codes

Standard Name of alphabet Characterization ECMA

ISO 8859-1 Latin alphabet No. 1
"Western," "West
European"

94

ISO 8859-2 Latin alphabet No. 2
"Central/East
European"

94

ISO 8859-3 Latin alphabet No. 3
(For Maltese and
Esperanto)

94

ISO 8859-4 Latin alphabet No. 4
"North European,"
"Baltic"

94

ISO 8859-5 Latin/Cyrillic alphabet
(For some Slavic
languages)

113

ISO 8859-6 Latin/Arabic alphabet
(For the Arabic
language)

114

ISO 8859-7 Latin/Greek alphabet (For modern Greek) 118

ISO 8859-8 Latin/Hebrew alphabet
(For Hebrew and
Yiddish)

121

ISO 8859-9 Latin alphabet No. 5 "Turkish" 128

ISO 8859-10 Latin alphabet No. 6
"Nordic" (Sámi, Inuit,
Icelandic)

144

ISO 8859-11 Latin/Thai alphabet (For the Thai language)

(There is no part 12; it was planned to
cover Devanagari, but the idea was
abandoned.)

ISO 8859-13 Latin alphabet No. 7 Baltic Rim

ISO 8859-14 Latin alphabet No. 8 Celtic

http://anubis.dkuug.dk/jtc1/sc2/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Standard Name of alphabet Characterization ECMA

ISO 8859-15 Latin alphabet No. 9
"Euro" variant of ISO
8859-1

ISO 8859-16 Latin alphabet No. 10
"South-Eastern
European"

Ecma International has defined ECMA standards that have the same content as some ISO 8859
standards, as indicated in the table. For example, ECMA-94 defines Latin alphabets 1 through 4,
equivalent to ISO 8859-1 through ISO 8859-4. The ECMA standards are available via
http://www.ecmainternational.org/publications/standards/Standard.htm.

For a tabular summary of the coverage of European languages by the different ISO Latin codes, refer
to http://www.cs.tut.fi/~jkorpela/8859.html. The languages are listed in each standard, but the
coverage is somewhat debatable. In particular, ISO Latin codes usually do not contain characters
needed for correct punctuation of languages, even English.

ISO 8859-15 Latin alphabet No. 9
"Euro" variant of ISO
8859-1

ISO 8859-16 Latin alphabet No. 10
"South-Eastern
European"

Ecma International has defined ECMA standards that have the same content as some ISO 8859
standards, as indicated in the table. For example, ECMA-94 defines Latin alphabets 1 through 4,
equivalent to ISO 8859-1 through ISO 8859-4. The ECMA standards are available via
http://www.ecmainternational.org/publications/standards/Standard.htm.

For a tabular summary of the coverage of European languages by the different ISO Latin codes, refer
to http://www.cs.tut.fi/~jkorpela/8859.html. The languages are listed in each standard, but the
coverage is somewhat debatable. In particular, ISO Latin codes usually do not contain characters
needed for correct punctuation of languages, even English.

http://www.ecmainternational.org/publications/standards/Standard.htm
http://www.cs.tut.fi/~jkorpela/8859.html
http://www.ecmainternational.org/publications/standards/Standard.htm
http://www.cs.tut.fi/~jkorpela/8859.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.3. Windows Latin 1 and Other Windows Codes

The ISO 8859 character codes, which have been defined by international standards, have Microsoft-
specific counterparts, which are here called "Windows codes." The main difference is that some code
positions are reserved for control characters (and mostly unused) in ISO 8859 but assigned to
various printable characters, especially punctuation marks, in Windows codes. Although defined only
by a software vendor, the Windows codes are very important due to the market share of Microsoft.

3.3.1. Windows Latin 1

Microsoft defined its own Latin 1 encoding as different from ISO Latin 1, although only in the sense
that some positions that are reserved for control codes in ISO Latin 1 (codes 128159 decimal) are
used for printable characters in Windows Latin 1. The main reason was very understandable: the
inclusion of typographically correct quotation marks, as in "foo" and 'foo, and em dash (') and en
dash (). The right single quote is also the typographically correct apostrophe. Some other characters
were added as well.

Windows Latin 1 is one of the most commonly used encodings in the world. In most contexts where
the default is said to be ISO Latin 1, it's really Windows Latin 1 (sometimes called WinLatin1). For
example, if a web document is labeled as ISO-8859-1 but contains octets with values 128149,
browsers will generally display them according to Windows Latin 1. The practical reason is that most
often this is what the document's author really meant.

However, the use of octets in the range 128159 in any data to be processed by a program that
expects ISO 8859-1 encoded data is an error, and it might cause problems. The octets might for
example be ignored, or be processed in a manner that looks meaningful, or (in rare cases) be
interpreted as control characters.

The encoding has been registered under the name windows-1252. In practice, the name cp-1252, or
cp1252, was widely used before the registration, and it can still be seen.

Windows Latin 1 is often referred to as the ANSI character set, but this is completely misleading.
ANSI, the American National Standards Institute, never adopted the set as a standard. Microsoft
started using the name because they based the design on a draft for an ANSI standard. Other
Windows character codes have also been called "ANSI."

The Windows Latin 1 encoding has existed in somewhat different variants. The main difference in
practice is that early versions did not include the euro sign, €. Table 3-4 presents the modern version
of the characters in Windows Latin 1 that do not belong to ISO Latin 1. The table is grouped by
character semantics and uses Unicode names for the characters. The names used in Microsoft
documentation are partly different and vary by document.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 3-3. Additional characters in Windows Latin 1

Glyph Unicode name of character Code Win Comments

En dash U+2013 150

' Em dash U+2014 151

" Left double quotation mark U+201C 147

" Right double quotation mark U+201D 148

' Left single quotation mark U+2018 145

' Right single quotation mark U+2109 146 Also apostrophe

‹ Single left-pointing angle quotation mark U+2039 139 Left guillemet

› Single right-pointing angle quotation mark U+203A 155 Right guillemet

" Double low-9 quotation mark U+201E 132 Baseline quote

' Single low-9 quotation mark U+201A 130

... Horizontal ellipsis U+2026 133

• Bullet U+2022 149

Dagger U+2020 134

Double dagger U+2021 135

Small tilde U+02DC 152 Diacritic-like

ˆ Modifier letter circumflex accent U+02C6 136 Diacritic-like

Per mille sign U+2030 137 One thousandth

™ Trademark sign U+2122 153

Latin small letter "f" with hook U+0192 131 "Florin"

Latin small letter "s" with caron U+0161 154

Latin capital letter "S" with caron U+0160 138

Latin small letter "z" with caron U+017E 158 Added with euro

Latin capital letter "Z" with caron U+017D 142 Added with euro

œ Latin small ligature oe U+0153 156 In French

Œ Latin capital ligature OE U+0152 140 In French

Latin capital letter "Y" with dieresis U+0178 159 In French

€ Euro sign U+20AC 128 Added later

3.3.2. Other Windows Character Codes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Microsoft has also defined other Windows-specific 8-bit character codes that resemble ISO 8859
encodings, such as Windows Latin 2, also known as Windows Central European or Windows East
European. They, too, use the range of control codes (128159) for added punctuation and other
characters. In addition to this, the encodings may differ from the corresponding ISO 8859 encoding in
other positions. In particular, Windows Latin 2 differs from ISO 8859-2 in several positions.

The Windows codes are widely used as de facto standards in many environments. If you travel to
Central/Eastern Europe and use computers there, you will find that they very often have Windows
Latin 2 as the default encoding.

The Windows codes are known as windows-1250 through windows-1258 in the official registry of
character encodings; these names are often called MIME names of encodings, for reasons explained
in Chapter 10. Moreover, there is windows-874, which has not been officially registered. In practice,
somewhat different names are used, as shown in Table 3-5. Note that the numbering of windows-
1250 etc. differs from the numbering of the corresponding ISO 8859 standards. The table also
compares the codes with ISO 8859 codes; differences in the range 128159 are not mentioned here.

Table 3-5. Widely used Windows character codes

MIME Common name Compare to Differences

windows-1250 Windows Central/East Eur. ISO 8859-2 Differ in some positions

windows-1251 Windows Cyrillic ISO 8859-5 Different ordering

windows-1252 Windows Latin 1 (West Eur.) ISO 8859-1

windows-1253 Windows Greek ISO 8859-7 Differ in some positions

windows-1254 Windows Turkish ISO 8859-9

windows-1255 Windows Hebrew ISO 8859-8 Some differences

windows-1256 Windows Arabic ISO 8859-6 Major differences

windows-1257 Windows Baltic ISO 8859-13 A few differences

windows-1258 Windows Vietnamese (ISO 8859-1) Separate design

windows-874 Windows Thai ISO 8859-11

The windows-1258 encoding has no direct ISO 8859 counterpart, but its overall design is the same as
in ISO 8859-1, with the added characters as in windows-1252 and with some modifications made to
meet some needs of the Vietnamese language.

Names like cp1250 or cp-1250 (instead of windows-1250) are often used, but they are not official
(registered).

For detailed information, consult Microsoft's documentation "Code pages supported by Windows,"
http://www.microsoft.com/globaldev/reference/wincp.mspx.

http://www.microsoft.com/globaldev/reference/wincp.mspx
http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.4. Other 8-bit Codes

There is a large number of 8-bit encodings, including HP Roman-8, KOI8-R (for Russian), and many
others. A few of them are discussed below.

In general, full conversions between 8-bit character codes are not possible. For example, the
Macintosh character repertoire contains the Greek letter pi (π), which does not exist in ISO Latin 1 at
all. Naturally, a text can be converted (by a simple program that uses a conversion table) from
Macintosh character code to ISO 8859-1 if the text contains only those characters that belong to the
ISO Latin 1 character repertoire.

If a document needs to contain, say, both French and Greek (in Greek letters), then no existing 8-bit
code would be suitable. Such codes might contain accented characters needed in French, or Greek
letters, but not both. It would be impractical to define new codes for every possible combination of
characters you might need, and often impossible due to the limitation to a total of 256 code points.

Hence, it is natural to ask whether it should be possible to switch between encodings within a file. For
example, could you use ISO 8859-1 for the French text, and then switch to ISO 8859-7 for Greek
text, and back to ISO 8859-1? Such ideas have been developed, but their use is much more limited
than one might think.

The standard ISO 2022 (and the equivalent ECMA-35) defines a general framework for switching
between 8-bit codes (and other codes). One of the basic ideas is that code positions 128159
(decimal) are reserved for use as control codes (C1 controls). Some of those codes are used for
switching (shifting) purposes, to specify that subsequent data is in a different encoding. Note that the
Windows character sets do not fit well into this scheme, since they use codes in that range for
printable characters. The standard is rather complex, and only parts of it have been implemented and
used. It is used particularly for East Asian languages, such as Japanese, which uses different writing
systems. However, even for such purposes, Unicode offers a more uniform approach.

3.4.1. DOS Code Pages

In MS DOS systems, different character codes are used; they are called "code pages ." The original
American code page was CP 437, which includes some Greek letters, mathematical symbols, and
characters that can be used as elements in simple pseudo-graphics. Later, CP 850 became popular,
since it contains letters needed for Western European languageslargely the same letters as ISO 8859-
1, but in different code positions. Note that DOS code pages are quite different from Windows
character codes, although the latter are sometimes referred to by names like cp-1252 (same as
windows-1252)! For further confusion, Microsoft now prefers to use the notion OEM code page for the
DOS character set used in a particular country.

The registered names of DOS code pages as encodings (for use on the Internet) have no space or
hyphen: cp437, cp850, etc. They have alias names like IBM437, IBM850, etc., because of the once
important role of IBM in the PC market and in development.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In character-encoding menus in Save dialogs, web browsers, etc., you can often see entries like
"Cyrillic (DOS)." They refer to DOS code pages designed for particular cultural environment. In that
sense, they correspond to the Windows codes mentioned earlier. Otherwise, DOS and Windows code
pages can be quite different, in the allocation of code numbers and even in the character repertoire.

Even in modern Windows systems, the command-line user interface (DOS window) still typically uses
some DOS code page, so if you try to view a text file there (using the type command, for example),
you'll probably get odd results: the data, which is most likely in some Windows encoding, will be
interpreted according to another encoding.

DOS code pages should not normally be used for new data, but there is a lot of existing data in such
encodings. The main reason for getting acquainted with DOS code pages is finding out how to convert
from them to some other encodings. It is not always trivial to identify what the encoding really is,
since there are several DOS code pages with similar names and different versions of the code pages.

Detailed information on DOS code pages is available as code page-to-Unicode mapping tables at
http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/PC/.

The use of the coding space is rather different in the DOS and Windows encodings, except for the
range 0 through 7F (hexadecimal), which follows the ASCII tradition. Figure 3-1 shows the "upper
halves" of Windows and DOS encodings designed for Central/Eastern Europe. There are differences in
the character repertoirese.g., due to the presence of various drawing characters. Most strikingly, the
allocation of characters is almost completely different.

3.4.2. Mac Encodings

On Macintosh (Mac) computers, there has been less variation in character codes than on Windows
PCs. However, much like Windows code pages, there are several codes for different languages and
language groups. They can now be called "legacy encodings," since the Mac world is moving to
Unicode.

The most widely known legacy encoding isMac Roman, which is a combination of ASCII, accented
letters, mathematical symbols, and other ingredients. The general idea is similar to that of ISO 8859-
1 and windows-1252, but the repertoires are different. At
http://www.unicode.org/Public/MAPPINGS/VENDORS/APPLE/, you can find cross-mapping tables
from Mac Roman as well as other legacy encodings to Unicode.

The original Mac Roman code is presented visually in Figure 3-2. Code positions 0 through 1F
(hexadecimal) are not shown there; they (as well as position 7F) are assigned to control characters
the same way as in the ASCII context, although partly in a manner different from that used in the
ASCII context. As you can see, code positions 20 through 7F (the first six rows in the figure) are the
same as in ASCII. The same applies to other legacy encodings, with few exceptions.

As you can see, the Mac Roman character set contains several punctuation marks and mathematical
symbols that are not present in ISO 8859-1. On the other hand, it lacks the following ISO 8859-1
characters: multiplication sign x; superscripts 1, 2, and 3; vulgar fractions ¼, ½, and ¾; broken

vertical bar ; "y" with acute and Ý; Icelandic letters eth (,) and thorn (,); and the soft
hyphen. Moreover, in the modern version, Mac Roman has the euro sign € instead of the currency
sign ¤.

Thus, perfect conversion between Mac Roman and ISO 8859-1 (or windows-1252) is generally not

http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/PC/
http://www.unicode.org/Public/MAPPINGS/VENDORS/APPLE/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

possible. It can of course be performed if the text contains only characters that belong to both
encodings.

Figure 3-1. Windows Latin 2 and DOS Latin 2 (characters in code
positions 80 through FF in hexadecimal)

In fact, Mac Roman contains a character in position F0, too (the grayed first cell on the last row of
the table in Figure 3-2). It is the stylized apple that is used as the symbol of the Apple company,
called "Apple logo." Unicode does not include symbols of companies and trademarks, so the mapping
tables map the character to U+F8FF, which is the last code point in the Private Use area, to be used
by "private agreement" only.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Modern Mac computers can use a wider character repertoire, but there is still Mac software that is
limited to the Mac Roman encoding. This is one of the main reasons for saying that the character
repertoire of ISO 8859-1 is not absolutely universally supported yet.

Mac OS X uses Unicode as its primary character code. Legacy encodings are supported either directly,
in a limited manner, in some programs, or through the Mac OS Text

Figure 3-2. Mac Roman encoding, code positions 20 to FF (hexadecimal)

Encoding Converter or other conversion software. For more information, consult the document
"Background information on Unicode mapping tables for Mac OS legacy text encodings," which is
available at the following site:
http://www.unicode.org/Public/MAPPINGS/VENDORS/APPLE/Readme.txt.

3.4.3. EBCDIC

The EBCDIC code was defined by IBM, and it was once in widespread use on large "mainframe"
computers but has lost relative importance. EBCDIC exists in different national variants, and due to
its nature as a vendor-defined code, EBCDIC lacked rigorous definitions.

EBCDIC deviates from most 8-bit codes in basic structure. It contains all ASCII characters but in

http://www.unicode.org/Public/MAPPINGS/VENDORS/APPLE/Readme.txt
http://lib.ommolketab.ir
http://lib.ommolketab.ir

quite different code positions. Another peculiarity is that in EBCDIC, normal letters AZ do not all
appear in consecutive code positions. They are in alphabetic order, but with gaps. The original reason
for this was related to punched card technology. EBCDIC has been the most important practical
reason why it is incorrect (even in the limited context of the English language) to test for a character
being a letter simply by checking that it is in the range AZ or az, in comparison of code numbers.

For example, the CP 037 version of EBCDIC, as defined by the cross mapping table at
http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/EBCDIC/, is shown in Figure 3-3. Code
positions 0 through 3F (hexadecimal) are not shown; they (as well as

Figure 3-3. EBCDIC CP 037 characters with code positions 40 to FE
(hexadecimal) are the same as the characters of ISO 8859-1, but in a

very different order

position FF) are assigned to control characters, though partly in a manner different from that used in
the ASCII context. Code positions 40 and 41, appearing as blank here, have been allocated to space
U+0020 and no-break space U+00A0, respectively.

3.4.4. The Cyrillic KOI8 Encodings

For languages written in Cyrillic letters, such as Russian and Ukrainian, several 8-bit encodings have
been developed. We have already mentioned ISO 8859-5 (Latin/Cyrillic) and windows-1251
(Windows Cyrillic), and there is also DOS Cyrillic and Mac Cyrillic. However, along with windows-
1251, the most widely used encoding for Russian is KOI8-R (the letter "R" stands for Russian). There
are also other versions of KOI8.

http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/EBCDIC/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The KOI8 encodings assign code positions 0 through 7F as in ASCII and place Cyrillic letters and
other characters in the "upper half." As you can see from Figure 3-4, KOI8-R contains a large number
of drawing characters. Its repertoire of letters covers only (modern) Russian and a few other
languages. In contrast,Windows Cyrillic has many more Cyrillic letters, giving a wider coverage of
languages.

Comparing code positions C0 through FF (hexadecimal) in the two encodingsi.e., the last four rows of
the tables in Figure 3-4, we notice how they have different schemes for allocating the basic Cyrillic
letters. Even if you don't know the Cyrillic alphabet, you probably see that Windows Cyrillic has
uppercase letters first, and then lowercase, whereas KOI8-R has them the other way around. In
KOI8-R, the letters are not in the Russian alphabetic order but placed so that if the most significant
bit of each octet is lost, the text turns into a coarse transliteration with the case of letters reversed:

Cyrillic " " becomes Latin "A," Cyrillic becomes Latin "B," Cyrillic becomes Latin "C," etc.

Figure 3-4. Windows Cyrillic and KOI8-R (code positions 80 through FF
hexadecimal)

This implies that if you have Russian text in Windows Cyrillic and your program interprets it according

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to KOI8-R, or vice versa, words still resemble Russian but in an oddly distorted way. Uppercase
becomes lowercase, and vice versa, and with a shift of one position. This is comparable to having
"abcdef" munged to "BCDEFG," and such things have actually happenede.g., in Usenet discussions in
the Russian-language relcom.* groups, because some people post their messages in KOI8-R, some in
Windows Cyrillic, and they might use software that does not include information about the encoding.
Modern software can usually handle either encoding, but only if the encoding is properly declared.
The situation is not as bad as you might guess, since nowadays most people post in KOI8-R in those
groups. If your software does not use that encoding as the default, you probably need to change its
settings in order to read relcom.* groups.

This illustrates the point (to be elaborated on in Chapter 10) that the multitude of encodings is not a
problem as such, as long as there is adequate information of what the encoding is. It is a better
approach than trying to make everyone use the same encoding.

Figure 3-5. Samples of Wingdings fonts

3.4.5. Ad Hoc "8-bit Codes" Defined by Fonts

There is a theoretically quite unsatisfactory, yet widely used method of working with characters:
using font settings to extend character repertoire. To take a simple example, use a text-processing
program and type the letters abc, and then select them and choose the Symbol font from a font
menu. You will probably see the Greek letters αβχ. It seems that this way you can switch between
different 8-bit codes, if you have suitable fonts containing various sets of characters. In web
authoring, you could achieve a similar effect by using markup like abc.
(The Appendix contains a table of Symbol font glyphs and their Unicode equivalents.)

This approach may look conceptually simple, and it has often been practically successful, when you
just needed some characters on paper, or perhaps on screen. However, it is quite inadequate for any
operations where font information may get lost, or ignored. For example, if viewed on a system
without the Symbol font, the data in the example in the last paragraph would appear just as "abc."
The same happens if the font is changed for some reason, not to mention any operations of saving
and sending data as plain text. When data is entered into a database, for example, font information
will hardly be saved. A web browser can be configured or instructed to ignore font suggestions on
web pages.

Still, the approach can be useful in special circumstances, such as working with some repertoire of
uncommon characters. For example, in phonetics, people have often used a special 8-bit font that
contains a collection of phonetic (IPA) characters. Although the material is then unreadable without
that font (or a comparable tool), things have worked reasonably well within a community that knows

http://lib.ommolketab.ir
http://lib.ommolketab.ir

what is needed. Similarly, for some languages with a relatively small repertoire of characters, an 8-
bit font might be designed and distributed as a quick way of making it possible to use the language

There are some graphic symbols, such as Wingdings symbols, that cannot be effectively used except
via a font-based approach. Figure 3-5 shows some symbols that can be produced by applying
Wingdings fonts to the text "abcdef." Although some Wingdings symbols have been encoded in
Unicode (e.g., as Dingbats), many of them are essentially small decorative drawings rather than
characters for writing texts.

Similarly, if you wish to use some "private" characters, such as special characters designed for use
within a community, the use of a special font is a simple way to achieve this. If you would use the
characters just to create a printed fantasy book, it would not matter that nobody else has your
special font. It is possible, but more complicated, to use "private" characters in Unicode: there as a
large block of code points reserved for that purpose.

This approach has been used for many languages, especially in circumstances where programs
cannot be expected to support anything other than 8-bit encodings. Whenever you see a statement
like "you need the ... font for viewing this document," the odds are that some strictly font-based
approach is used. When Unicode or some other standardized encoding is used, you are not limited to
use any particular font; any font that contains the characters will do.

Conceptually, the approach discussed here means that you implicitly define a character by the design
of a font. If you put the letter alpha (α) into the code position that is occupied by the letter "a" in
ASCIIi.e., 61 (hexadecimal)you are in the process of defining a character code where that position is
allocated for the alpha. However, you rely on the use of a special font, which logically corresponds to
a character code conversion.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.5. Unicode and UTF-8

Since the range of code numbers in Unicode is very large, it is useful to have different encodings for
different purposes. Some encodings are technically very simple and efficient in terms of internal data
processing but wasteful in storage space. Some other encodings aim at compactness, for efficiency in
data storage and transfer. Before discussing the encodings, we will consider a general conceptual
model, which is aimed at clarifying the different meanings and level of encoding character data.

This discussion deals with Unicode encodings in general terms and in reference to options that you
have, as a user, in choosing an encoding. The technical definitions of the encodings (i.e., how data is
encoded in detail) are in Chapter 6.

3.5.1. The Conceptual Model: Levels of Coding

In the character context, "coding" or "encoding" of characters can mean different things, at different
levels of abstraction. There are several ways to describe the situation, trying to make things clearer
and unambiguous. In practice, approaches differ, so sometimes the clarifications end up confusing
people. The differences are reflected in terminology. Thus, when reading about characters, you'll see
not only unfamiliar words but also words that are familiar to you but have unexpected meanings.

3.5.1.1. The Internet (IAB) model

Before considering the Unicode model, we consider the superficially simple model that is often called
the Internet Architecture Board (IAB) model. It is described in a report of a meeting, published as
RFC 2130 (http://www.rfc-editor.org/rfc/rfc2130.txt). It has three levels:

Level 1: Coded Character Set

A collection of abstract characters with code numbers assigned to them

Level 2: Character Encoding Scheme

A mapping from a coded character set (or several such sets) into sequences of octets

Level 3: Transfer Encoding Syntax

A transformation of character data, encoded as a coded character set and possibly as a
character encoding scheme too, performed to allow the data to be transmitted

For example, ASCII and Unicode define Coded Character Sets. The Character Encoding Scheme for

http://www.rfc-editor.org/rfc/rfc2130.txt
http://lib.ommolketab.ir
http://lib.ommolketab.ir

ASCII uses one octet for each character (and for each code number). For Unicode, there are several
possible Character Encodings, such as UTF-8 and UTF-16.

Transfer encoding syntax is something that may or may not be applied. It can consist of an operation
that transforms a sequence of octets to another sequence, to be interpreted by different rules. The
idea could be, for example, to make sure that all octets used are "safe" in the sense that they can be
sent over a connection or a system that may not handle all octets properly. For example, the Base64
transfer encoding uses only a limited repertoire of octets, corresponding to a limited subset of ASCII
values.

Evidently, Transfer Encoding Syntax is logically different from the other levels. It is optional, not part
of the basic model. The Unicode approach recognizes this, but it also adds two levels: the most
abstract level where characters are defined as abstract objects only, without assigning code numbers
to them, and an intermediate level, where characters exist ascode units . A code unit is neither a
code number nor a sequence of octets, but at an intermediate abstraction level. The separation of
code number from code unit is mostly relevant in Unicode only, but the model itself is of a general
nature.

3.5.1.2. The four-level Unicode model

The Unicode model on character encoding, defined in Unicode Technical Report (UTR) #17 at
http://www.unicode.org/unicode/reports/tr17/, is summarized in Table 3-6. The last column shows
illustrative examples of the way characters (here the Latin "A," in Unicode and UTF-32) could be
represented at each level.

Table 3-6. Unicode model of encoding characters

Level of encoding Explanation Example

Abstract Character Repertoire Characters listed and described "A" (Latin letter A)

Coded Character Set Characters have code numbers U+0041

Character Encoding Form Sequences of code units 00000041

Character Encoding Scheme Code units mapped to octet strings 00 00 00 41

Thus, to represent the letter "A" in a computer, we logically start by identifying it as an abstract
character, as a member of an Abstract Character Repertoire, such as the collection of all Unicode
characters. At this level, a character may have a name assigned to it, but its internal representation
is in no way fixed.

At the next level, in a Coded Character Set, a code number is assigned to the character according to
a character code. The notation U+0041 is, as we have learned, just a way of writing the number 41
(hexadecimal) in a manner that emphasizes its role as a Unicode code number. The code number as
such is an abstract mathematical integer.

Next, the code number is mapped to a sequence of code units according to some Character Encoding

http://www.unicode.org/unicode/reports/tr17/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Form. The size of code units may vary across encodings (7, 8, 16, and 32 bits are typical sizes), but
the size is fixed for any particular encoding form. At this level, all characters are of equal size. For
Unicode, starting from Version 4.0, the encoding forms are UTF-8, UTF-16, and UTF-32, where the
number indicates the number of bits in a code unit. This is sometimes expressed by saying that
Unicode is variably an 8-, 16-, or 32-bit code, although it is very easy to misunderstand that. Using
UTF-32, for example, U+0041 would map to a 32-bit integer, which we here express as 00000041, to
be interpreted in hexadecimal.

The fourth level, Character Encoding Scheme, maps code units to strings of octets. If the encoding
form is UTF-32, for example, the encoding scheme maps a 32-bit value to a sequence of four 8-bit
values, of octets. This is not a trivial operation, since the order of octets may vary. This reflects
different machine architectures, namely different mutual order of octets in a two- or four-octet entity.
A 32-bit integer that logically consists of octets o1, o2, o3, and o4, from most significant to least
significant, can be physically represented in the order o1o2o3o4 or in the order o4o3o2o1. To use the
usual jargon, "byte order" can be "big endian" versus "little endian." The mapping of code units to
octet strings is often calledserialization .

In practice, Character Encoding Form and Character Encoding Scheme are often not distinguished
from each other. A term such as "UTF-16" may refer to a Character Encoding Form only, but it may
also refer to a specific Character Encoding Scheme, where the byte order has been fixed.

A mapping of character strings (sequences of abstract characters) to sequences of octets is called a
Character Map, or "charmap" for short, in UTR #17. This somewhat odd term thus refers to a
mapping that goes from the topmost level, Abstract Character Repertoire, to the bottom level,
Character Encoding Scheme. That is, when using this term, we are not interested in what happens at
the intermediate level.

A Character Map usually bears the name of a Character Encoding Scheme that determines the
mapping in practice. We can more or less identify "Character Map" with "charset" or "character
encoding" as understood by nontechnical people. When you select character encoding upon saving a
file (e.g., in a Save As dialog), you inevitably fix the representation down to the Character Encoding
Scheme.

3.5.1.3. Transfer Encoding Syntax

In the Unicode view, as mentioned earlier in this chapter, the Transfer Encoding Syntax (TES) is not
part of the basic model of character coding. Instead, it is an optional auxiliary transformation. The
most common forms of TES are Base64, uuencode (originally developed for Unix), BinHex (developed
for Mac), and Quoted Printable (QP).

Transfer encoding helps if you need to send character data from a system to another through a third
system that cannot handle 8-bit quantities properly. The third system could even be a mail server
that operates on ASCII data only, assuming that every character fits in 7 bits. In some situations,
even some ASCII characters might cause problems. In any case, you need a method for encoding
octets in a format that can be sent in a safe manner and then restored to the original format by the
receiving system.

Thus, the purpose of a TES is to make the data, as an octet string, acceptable to applications and
software that might fail to process the original octet string correctly. This especially means avoiding
octets that are known or suspected to cause problems.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When you send email on the Internet, for example, your email program may apply some TES on the
outgoing mail. It may (and indeed should) be capable of interpreting any commonly used TES in
incoming data. Normally this happens without your knowing. If you are curious, you may view the
"raw message source" with some special command (e.g., via File Properties on Outlook Express).
There you can see headers such as:

MIME-Version: 1.0
Content-Type: text/plain; charset="iso-8859-1"
Content-Transfer-Encoding: quoted-printable

Here, the encoding is iso-8859-1, which means that each character (in the ISO 8859-1 repertoire) is
represented as one octet. However, the additional TES modifies this. The QP encoding converts the
octet string so that the result contains only a limited repertoire of octets, corresponding to a subset
of ASCII. If you view the "raw message source," you will see things such as =E4 where the data
contains non-ASCII characters like ä.

Although any TES is normally transparent to users, you may need to get involved in TES issues in
email in some cases:

Some software is unable to handle TES, or conversely requires some TES for some data. This
should be rare, but it may happen, especially when you send email so that it will be processed in
some special waye.g., by distribution list software. It would then be your duty to check the
settings of your email program, to make sure it does not apply any TES, or applies the required
TES. Typically, you would open an Options dialog and find settings for outgoing mail. There you
can hopefully switch off or on the setting for Quoted Printable encoding, for example.

If you process your email using some automated tools, or simply open your mailbox using a
simple text editor, you need to be prepared to handling at least some TES. Any automated tool
for email processing should use suitable subroutine libraries that take care of TES when needed.
However, you might still encounter more or less naïve software that expects message content
to be ASCII.

3.5.2. Encodings for Unicode

Originally, before extending the code range past 16 bits, the "native" Unicode encoding was UCS-2,
which presents each code number as two consecutive octets m and n so that the number equals 256 x
m + n. This means, to express it in computer jargon, that the code number is presented as a 2-byte

integer. According to the Unicode Consortium, the term UCS-2 should now be avoided, as it is
associated with the 16-bit limitations.

UTF-32 encodes each code position as a 32-bit binary integeri.e., as four octets. This is a very
obvious and simple encoding. However, it is inefficient in terms of the number of octets needed. If we
have normal English text or other text that contains ISO Latin 1 characters only, the length of the
Unicode encoded octet sequence is four times the length of the string in ISO 8859-1 encoding. UTF-
32 is rarely used, except perhaps in internal operations (since it is very simple for the purposes of
string processing).

UTF-16 represents each code position in the BMP (Basic Multilingual Plane) as two octets. Other code

http://lib.ommolketab.ir
http://lib.ommolketab.ir

positions are presented using so-called surrogate pairs, using some code positions in the BMP
reserved for the purpose. This, too, is a very simple encoding when the data contains BMP characters
only. For the BMP, it is also efficient in processing in the sense that you can directly address the nth

character of a string, since all characters occupy the same number of storage locations.

UTF-8 is the most common encoding used for Unicode, especially on the Internet. Using it, code
numbers less than 128 (effectively, the ASCII repertoire) are presented "as such," using one octet for
each code (character). All other codes are presented, according to a relatively complicated method,
so that one code (character) is presented as a sequence of two to six octets, each of which is in the
range 128255. This means that in a sequence of octets, octets in the range 0127 (bytes with the
most significant bit set to 0) directly represent ASCII characters, whereas octets in the range 128255
(bytes with the most significant bit set to 1) are to be interpreted as multiple-octet encoded
presentations of characters.

UTF-8 is efficient in terms of storage required, if the data consists predominantly of ASCII characters
with just a few "special characters" in addition to them, and reasonably efficient for dominantly ISO
Latin 1 text.

The document "IETF Policy on Character Sets and Languages" (RFC 2277, BCP 18) clearly favors
UTF-8. It specifies that new Internet protocols must support UTF-8; they may support other
encodings as well.

UTF-7 was designed to deal with situations where data cannot be safely transmitted using arbitrary
8-bit bytese.g., on connections that use the first bit of an octet for parity checks, passing just 7 bits
through as actual data. In UTF-7, each character code is represented as a sequence of one or more
octets in the range 0127 (bytes with most significant bit set to 0, or 7-bit bytes, hence the name).
Most ASCII characters are presented as such, each as one octet, but for obvious reasons some octet
values must be reserved for use as "escape" octets, specifying that the octet together with a certain
number of subsequent octets forms a multioctet encoded presentation of one character.

As you can see, the number in the names UTF-32, UTF-16, UTF-8, and UTF-7 indicates the size of the
code unit in bits.

Figure 3-6. Choice of encoding settings in BabelPad

3.5.3. Saving as Unicode

Many programs let you save your data in different encodings. Even the Save As dialog in Notepad has
some alternatives, such as "ANSI" (which means windows-1252), "Unicode" (which means UTF-16),
"Unicode big-endian" (which means UTF-16 with swapped byte order), and "UTF-8" (which

http://lib.ommolketab.ir
http://lib.ommolketab.ir

surprisingly means UTF-8).

Advanced software that has been especially designed for multilingual applications typically contains
explicit options for setting the encoding. Figure 3-6 illustrates this for BabelPad, the editor discussed
in Chapter 1. You can choose UTF-8, UTF-16, or UTF-32 (as Character Encoding Scheme) from a
drop-down menu, and then (when applicable) select the byte order. There is also a setting for the
newline conventioni.e., which character or characters are used to indicate a line break (see Chapter
8); this is logically distinct from any encoding issues but often presented along with encoding for
practical reasons.

On the other hand, many text-processing and other application programs do not let you control the
character encoding. They use their built-in settings for that, and might even use a data format of
their own that contains information about the encoding.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.6. Encodings for East Asian Language

The languages written in East Asia pose special problems to encoding characters, since the languages
use, in part, a very rich character repertoire. Before considering the problems of characters of
Chinese origin, we discuss the modern writing system of Vietnamese, which is just about manageable
with 8-bit codes.

These encodings use different approaches to the problem of representing a
large repertoire of characters as sequences of octets. We will not consider their
technical nature or the choice between them in this book. Consult CJKV
Information Processing by Ken Lunde (O'Reilly) for detailed information on such
matters.

3.6.1. Vietnamese 8-bit Codes

The Vietnamese language is nowadays written in Latin letters but with several diacritic marks,
including multiple marks on a single letter. For example, the name of Vietnam in Vietnamese is "ViÇt
Nam" (note that the "e" has both a circumflex above it and a dot below it).

One reason for this is that Vietnamese is a tonal language: the tone (e.g., falling versus rising tone)
of a syllable is important and often makes a difference in meaning. Quite often, the tone, indicated by
a diacritic mark, is the only thing that distinguishes between words.

In texts in English and other Western languages, it is common to omit all or most of the diacritic
marks in Vietnamese names. They are difficult to produce and difficult to preserve in data
transmission and processing. However, at least in Vietnamese itself, it would be inappropriate to omit
the diacritic marks.

Due to the number of extra characters needed, the ISO 8859 model is not suitable for Vietnamese.
There are various 8-bit character codes developed for it; the most common of them are TCVN,
VISCII, VPN, and windows-1258 ("Windows Vietnamese").

VISCII (described in RFC 1456) uses almost all code points in the hexadecimal range 20FF for
printable characters, and it even allocates some points in the 01F range to printable characters. Thus,
although it has the range 207F allocated as in ASCII, it's not a pure extension of ASCII.

Windows-1258 is not very different from ISO-8859-1 but uses some code points for combining
diacritic marks. Thus, to write ?, for example, you would write ê followed by a combining dot below,
instead of using a single code point for the character.

3.6.2. Encodings for Chinese

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The traditional Chinese writing system uses thousands of ideographic characters. In the 20th century,
a simplified version of the writing system was developed in the People's Republic of China, using
simpler forms for the characters. It is called "Simplified Chinese" as opposite to "Traditional Chinese."
Thus, the difference between the two is in the writing system, rather than the language as a whole,
although these alternatives often appear in a menu for language choice.

Either variant of the writing system can be encoded in different ways. For example, in Mozilla, the
menu of encodings contains the following options:

Chinese Simplified (GB18030)

Chinese Simplified (GB2312)

Chinese Simplified (GBK)

Chinese Simplified (HZ)

Chinese Simplified (ISO-2022-CN)

Chinese Traditional (Big5)

Chinese Traditional (Big5-HKSCS)

Chinese Traditional (EUC-TW)

The names in parentheses refer to specific encodings. The abbreviation "GB" refers to Chinese words
that mean Chinese national standard in the People's Republic of China. The abbreviation "Big5" refers
to an agreement on character encoding by five big international companies in the computer industry.

For our purposes in this book, it is sufficient to know that several different encodings for Chinese are
in use, and one or another is often strongly preferred by a user or by an organization. The choice
may involve political considerations as well. Thus, if you design an application that allows Chinese
characters to be entered and shown, it is generally not sufficient to support Unicode alone. You could
use some Unicode encoding(s) internallye.g., in a databasebut the input and output operations
should be carried out using methods that allow at least some of the specific Chinese encodings to be
used as well. This means that the application needs to use character code converters.

3.6.3. Encodings for Japanese

The Japanese language is written using three different types of characters: kanji characters, which
are Japanese versions of Chinese characters, and hiragana and katakana, which are much smaller
repertoires of characters and are used to describe pronunciation. Although it is possible to represent
hiragana or katakana within an 8-bit code, it is usually culturally unacceptable to restrict the writing
of Japanese that way. Normally, Japanese is written using a mixture of the three writing systems,
and perhaps with additional characters such as Latin letters, too.

Encodings for Japanese include EUC-JP, ISO-2022-JP, and Shift_JIS. The ISO-2022-JP encoding uses
the switching mechanism defined in the ISO 2022 standard, effectively using control codes to specify
which 8-bit code (representing 256 different characters in the repertoire) is used at each point. Other
codes use different approaches to the switching problem. Shift_JIS is also called Shift-JIS or SJIS.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.6.4. Encodings for Korean

Korean was previously written using characters of Chinese origin; hence the abbreviation "CJK,"
which refers to Chinese characters in a broad sense, with Chinese, Japanese, and Korean versions.
The abbreviation "CJKV" adds the old Vietnamese versions to these.

Nowadays, Korean is mostly written using hangul characters, which were specifically developed for
Korean. They constitute a very logical and regular system for writing words phonetically. Hangul has
been called an "alphabetic syllabary," since it can be regarded as a system of syllable symbols that
consist of letters of an alphabet. The number of letters is comparable in size to the English alphabet,
whereas the syllable symbols, as precomposed sequences of letters, constitute a very large set.

If Korean is represented in a form that encodes the letters separately, a program for rendering text
needs to recognize how adjacent letters constitute syllables and to show them accordingly. The
construction of the written text needs to combine glyphs in specific ways. It is much easier to render
Korean text encoded using syllable characters.

Encodings for Korean include EUC-KR, ISO-2022-KR, JOHAB, and UHC.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.7. Converters and Transcoding

As the preceding discussion of some encodings has shown, there are many character codes and
encodings in use now and in the future. Unicode is a tool that helps to deal with this complexity,
rather than a once and for all solution that replaces all other codes. Even if you use Unicode for
everything you can, you still have reasons to know about conversions between encodings:

Old data often exists in different other encodings ("legacy data")

Old software, which you may need to use or to interface with, often requires input or writes
output in some non-Unicode encoding ("legacy software")

Other people still use and prefer other encodings, and you may need to cope with that in email,
exchange of text files, web page design, etc.

The process of converting character data from one encoding into another was previously often
calledrecoding, but nowadays the term transcoding is more common. A program or part of program
that has been specifically designed to perform transcodings can be called a converter. Transcoding is
often performed by programs that do something quite different as their main job.

3.7.1. Transcoding Tools

For example, a text editor can often read and write data in several encodings, including the possibility
of reading data in one encoding and saving it in another, as discussed in Chapter 1. This means that
the program has to transcodei.e., to contain a built-in converter. For an occasional conversion task,
the simplest way is usually to open a text file in a suitable editor or word processor and to use the
Save As function to save the content under a different filename and with a different encoding. For
repeated and often bulky conversions, something more efficient is needed.

When appropriate, a converter can be very simple. Transcoding between 8-bit codes is a matter of
mapping each code number to another code number according to a table, and this can be
implemented rather efficiently. If you need to write such a converter, the main challenge is to find
the relevant mapping table, or tables, from a reliable source. Beware that many codes exist in
slightly different versions.

There are cross-mapping tables available at http://www.unicode.org/Public/MAPPINGS for
transcoding between various encodings and Unicode. They are plain text files but in a format that can
easily be read and parsed to construct suitable data structures. For example, the document
http://www.unicode.org/Public/MAPPINGS/VENDORS/MISC/KOI8-R.TXT, which is about the Russian
KOI8-R encoding, contains lines like the following:

0xBF 0x00A9 # COPYRIGHT SIGN
0xC0 0x044E # CYRILLIC SMALL LETTER YU
0xC1 0x0430 # CYRILLIC SMALL LETTER A

http://www.unicode.org/Public/MAPPINGS
http://www.unicode.org/Public/MAPPINGS/VENDORS/MISC/KOI8-R.TXT
http://lib.ommolketab.ir
http://lib.ommolketab.ir

This says, for example, that code number BF (in hexadecimal) in KOI8-R denotes the same character
as code number 00A9 in Unicode. Anything after the # character in this format is to be treated as
comment, and the names of the characters are just for human readers. They are not needed in any
way in the transcoding process.

General purpose subroutine libraries often contain transcoding routines. Typically, if you pass a string
and the names of two encodings as parameters, you will get the transcoded string as output.

3.7.2. Free Recode

Probably the best known general purpose converter is Free Recode, available from
http://recode.progiciels-bpi.ca/. It has been designed for use as a so-called filter (in the Unix
sense)i.e., as a program that takes input from the standard input stream (called stdin in Unix) and
writes the output to the standard output stream (stdout). This means that it is typically used as a
component of a chain of programs (a pipe), where data is processed in phases. In such usage, each
component is more or less assumed to work correctly. Therefore, Free Recode plays fast and loose. If
the input is correct, so that all data actually represents characters in the source encoding and has a
representation in the target encoding, the output is fine. If there are errors in the datae.g., a
character that is unrepresentable in the target encodingno error message is given, and the output is
more or less unpredictable. Moreover, when you pass a filename as an argument to Free Recode, the
program performs an "in situ" conversioni.e., it replaces the old content of the file with the new,
transcoded version. It is your responsibility as the user to create a backup copy of the original
content if you need to, and usually you do.

Free Recode is available as an executable (.exe) file for Windows. When installing it, it is best to add
the name of the folder where you put it into the default path. (You do not need to do this if you put
the file into the same folder as your data files, but gets rather awkward if you perform many
transcodings.) Then you can use Free Recode via the command-line interface (DOS prompt) using a
command like:

recode cp-437..windows-1252 test.txt

This command takes the content of the file test.txt, interprets it as CP-437 encoded, and transcodes
it into windows-1252. The result overwrites the original content of test.txt.

There are several converters available commercially, too. You may find them more suitable, maybe
due to a graphic user interface or wider support of different encodings. Searching Google for
"character * converter" can be useful in finding them.

3.7.3. The iconv Converter

Unix systems normally contain a converter called iconv, which has a simple interface, where you
specify the source ("from") encoding after the switch -f, the destination ("to") encoding after the
switch -t, and then the source file. The result is written to standard output, which you can direct to a
file as usual on Unix. For example:

http://recode.progiciels-bpi.ca/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

iconv -f iso-8859-1 -t utf-8 demo.txt >demo.utf

Check man iconv for more instructions. Beware that your system might have an old version of iconv,

with rather limited support for different encodings. With some expertise, you could download and
install GNU iconv to improve the situation. GNU iconv contains the libiconv library, which you can use
when writing programs. For more information, consult http://www.gnu.org/software/libiconv/.

http://www.gnu.org/software/libiconv/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.8. Using Character Codes

Several factors affect the choice of character encoding for some particular area of application or
purpose. The factors range from the nature of use and technical possibilities and limitations to policy
decisions and external requirements. In typical situations, however, the choice is relatively simple.

For example, if you live in Sweden and wish to communicate in Swedish, you normally choose ISO
8859-1 for email, web pages, and plain text files. That's what practically all people in Sweden can
work with, and it is reasonably acceptable. There are good reasons for using a larger character
repertoire, such as some punctuation marks, but they are probably not good enough to justify the
potential risks of using Windows Latin 1 or Unicode. On the other hand, as soon as you really need to
include words in, say, Eastern European languages, or technical special symbols, you should probably
switch to Unicode, normally using UTF-8 encoding. In that case, you should make a reasonable effort
in making sure that the recipients have software that can handle the encoding and the characters
you use.

3.8.1. Repertoire Requirements

Each character encoding allows a specific repertoire of characters to be written. Therefore, the set of
characters that you need imposes restrictions on the encodings that you can use.

However, as discussed in Chapter 2, in different data formats, there are escape mechanisms that let
you enter characters that cannot be written directly in the selected encoding. Thus, if you write a web
page in English and may occasionally need an omega character Ω, for example, you can use ISO-
8859-1 or even ASCII, since you can represent the special character using the entity reference
Ω.

Different languages have rather different requirements on the repertoire. In the section "What's in a
Character" in Chapter 1, some sources of information on the character requirements of languages
were mentioned. The database at http://www.eki.ee/letter/ can be used to list the characters used in
many languages (written in Latin or Cyrillic letters).

The requirements are, however, largely debatable, and they are relative rather than absolute. Does
English need é? Most sources don't mention it as a letter of the English alphabet, but it is regarded by
many as necessary for correct writing of English texts.

For normal modern English that does not contain special notations, the repertoire of Windows Latin 1
is sufficient, whereas, for example, the ISO Latin 1 repertoire is insufficient (due to the lack of some
punctuation marks). This does not mean that you should use the Windows Latin 1 encoding
(windows-1252). You can use UTF-8, or ISO-8859-1, or even ASCII, and accept the consequences.

3.8.2. Encodings and the Internet

http://www.eki.ee/letter/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Most important, make sure that any Internet-related software that you use to send data specifies the
encoding correctly in suitable headers. There are two things involved: there must be a header that
reflects the actual encoding used and the encoding used must be one that is widely understood by
the (potential) recipients' software. You often need to make compromises in regard to the latter aim:
you may need to use an encoding that is not yet widely supported to get your message through at
all.

In principle, you should first determine the character repertoire you need in a document, database,
web page, or other context. Then you should proceed to determining the best possible character code
and encoding. In practice, things don't quite work that way. We need to consider some widely
recognized encodings and choose between them. Some rules of thumb:

In email to people that you do not know, use US-ASCII if possible. If not possible, try to analyze
whether the recipient(s) can handle some other encoding. When needed, ask for permission to
send non-ASCII data as attachments.

In messages on various international discussion forums, use US-ASCII even if the forum
software supports other characters. Check the rules of the forum for other alternatives.

In email to people in a particular cultural environment, or in discussion forums where a
language other than English is used, find out what people mostly do there, and do the same.
Usually there is one dominant encoding that you should use.

On web pages, try to express yourself in ISO-8859-1. For pages in languages other than
English, you could often use some widely understood encoding (such as ISO-8859-2 for
Central/East European languages). However, UTF-8 is fairly well supported, too, these days.
Use UTF-8, if ISO-8859-1 is not practical and there's no particular reason to use one of the 8-bit
encodings for different languages.

In projects and activities where information providers and editors work with different systems
and tools, be conservative and try to live with ASCII or ISO 8859-1 or perhaps some other 8-bit
code. The reason is that most tools, including simple text editors, can handle such encodings,
whereas Unicode encodings often pose problems, and many people do not know how to work
with them. Note that some data formats, such as HTML and XML, let you escape from the
limitations set by the encoding, and this can be feasible if you need extra characters only rarely.

If you use, say, Outlook Express to send email or to post to Usenet groups, make sure it sends the
message in a reasonable form. In particular, make sure it does not send the message as HTML or
duplicate it by sending it both as plain text and as HTML (select plain text only). In regard to
character encoding, make sure it is something widely understood, such as ASCII, some ISO 8859
encoding, or UTF-8, depending on how large a character repertoire you need.

In particular, avoid sending data in a proprietary encoding (like the Macintosh encoding or a DOS or
Windows encoding) to a public network. At the very least, if you do that, make sure that the message
heading specifies the encoding! There's nothing wrong with using such an encoding within a single
computer or in data transfer between similar computers. But when sent to the Internet, data should
be converted to a more widely known encoding by the sending program. If you cannot find a way to
configure your program to do that, get another program.

In email programs, there's typically a "Tools" or "Settings" menu, where you can set things like the
format and encoding of outgoing messages. The hard part is to understand what the settings and the
options are about, but at this point, you should have most if not all the information needed for that.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Having checked the settings, you can test them by sending email to yourself and viewing the "hidden
data."

The "hidden data" in an email (or Usenet) message consists of the message headers, and the
message body interpreted as plain text. Normally you see that data as formatted by your email
program. This includes interpreting the content according to the specified encoding and displaying
some (but usually not all) of the information in the headers, such as the sender's name and email
address. There are different ways to view such information, or to view just the headers. The ways are
not always easy to find; in Outlook Express for example, you can select the received message and
select File Properties. In Mozilla Thunderbird you can use View Message source, and you will
see the message headers and raw content in a new window, as illustrated in Figure 3-7. The Content-
Type header contains a charset parameter that specifies the encoding. In the absence of such
information, the ASCII encoding would be implied.

3.8.3. Encoding in Offline Data

In regard to other forms of transfer of data in digital form, such as diskette or CD-ROM, information
about encoding is important, too. The problem is typically handled by guesswork. Often the crucial
thing is to know which program was used to generate the data, since the text data might be inside a
file in, say, the MS Word format, which can only be read by (a suitable version of) MS Word or by a
program that knows its internal data format. That format, once recognized, might contain
information that specifies the character encoding used in the text data included; or it might not, in
which case one has to ask the sender, or make a guess, or use trial and errorviewing the data using
different encodings until something sensible appears.

Make sure you write down the encoding and make information about it available along with the data.
This could mean a separate document on a CD-ROM, or a note written with a pen on the CD-ROM or
its cover, or a sheet of paper you store and send with the data. This may sound trivial, but it is often
neglected. It is best to specify the encoding in two ways: by its official name, and by its more widely
known informal name. For example: "The files on this diskette are Windows Latin 2 (windows-1250)
encoded."

Figure 3-7. Viewing an email message in raw format ("source"), with
headers that should indicate the character encoding

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.8.4. Common Choices of Encoding

Some widely used choices of encoding for different languages are presented in Table 3-7, identified
by name of language or a name for a collection of languages, as commonly used in menus in
programs.

Table 3-7. Commonly used encodings for some languages

Language(s) Encodings Notes

Arabic iso-8859-6, windows-1256

Armenian ARMSCII-8

Baltic iso-8859-4, windows-1257 Latvian, Lithuanian

Central European iso-8859-2, windows-1250 Czech, Polish...

Chinese gb2312, hz-gb-2312, big5

Cyrillic koi8-r, koi8-u, windows-1251 koi8-r: Russian, koi8-u: Ukrainian

Farsi (Persian) windows-1256, MacFarsi

Georgian GEOSTD8

Greek iso-8859-7, windows-1253

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Language(s) Encodings Notes

Hebrew iso-8859-8, windows-1255

Japanese euc-jp, iso-2022-jp, Shift_JIS

Korean euc-kr, iso-2022-kr

Thai windows-874, TIS-620

Turkish iso-8859-9, windows-1254

Vietnamese windows-1258

Western European iso-8859-1, windows-1252 English, French, German, Italian...

As you can see, some encodings are intended rather specifically for a single language, while some are
for a wide group of languages. This depends mostly on character repertoire requirements rather than
language family relationships.

For data that may contain a combination of languages, Unicode encodings are usually the best
approach, and often the only possibility. You cannot find any widely understood encoding (other than
Unicode encodings) that would let you write a plain text file that contains French and Thai, for
example. The encoding that supports French accented letters does not support Thai characters, and
vice versa.

Some ISO-8859 encodings and their Windows counterparts have been designed to cover a large set
of languages. This especially applies to ISO-8859-1 and windows-1252. Such coverage is possible
due to the fact that many European languages use just the basic Latin letters with a small collection
of additional letters.

3.8.5. Sources of Information

The following web sites contain useful information on character codes. This means code tables,
conversion tables, prose descriptions, usage guidelines, etc.

Czyborra's site (http://czyborra.com)

A widely known site, which contains good concise descriptions and comments. It is rather old,
though, and has not been updated for years.

Fileformat.info on charsets (http://www.fileformat.info/info/charset/)

This part of the Fileformat.info site contains character tables ("grids") for different encodings,
tabular material.

Tex Texin's material (http://www.i18nguy.com/unicode/codepages.html)

Hebrew iso-8859-8, windows-1255

Japanese euc-jp, iso-2022-jp, Shift_JIS

Korean euc-kr, iso-2022-kr

Thai windows-874, TIS-620

Turkish iso-8859-9, windows-1254

Vietnamese windows-1258

Western European iso-8859-1, windows-1252 English, French, German, Italian...

As you can see, some encodings are intended rather specifically for a single language, while some are
for a wide group of languages. This depends mostly on character repertoire requirements rather than
language family relationships.

For data that may contain a combination of languages, Unicode encodings are usually the best
approach, and often the only possibility. You cannot find any widely understood encoding (other than
Unicode encodings) that would let you write a plain text file that contains French and Thai, for
example. The encoding that supports French accented letters does not support Thai characters, and
vice versa.

Some ISO-8859 encodings and their Windows counterparts have been designed to cover a large set
of languages. This especially applies to ISO-8859-1 and windows-1252. Such coverage is possible
due to the fact that many European languages use just the basic Latin letters with a small collection
of additional letters.

3.8.5. Sources of Information

The following web sites contain useful information on character codes. This means code tables,
conversion tables, prose descriptions, usage guidelines, etc.

Czyborra's site (http://czyborra.com)

A widely known site, which contains good concise descriptions and comments. It is rather old,
though, and has not been updated for years.

Fileformat.info on charsets (http://www.fileformat.info/info/charset/)

This part of the Fileformat.info site contains character tables ("grids") for different encodings,
tabular material.

Tex Texin's material (http://www.i18nguy.com/unicode/codepages.html)

http://czyborra.com
http://www.fileformat.info/info/charset/
http://www.i18nguy.com/unicode/codepages.html
http://czyborra.com
http://www.fileformat.info/info/charset/
http://www.i18nguy.com/unicode/codepages.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

"Character Sets And Code Pages At The Push Of A Button." This might be called a real portal to
detailed information on encodings.

3.8.6. Exercises

If possible, carry out the following exercises. If the book has been successful in explaining things,
each exercise should take just about 10 to 15 minutes and give you some self-confidence and
practice.

3.8.6.1. Testing encodings

Use an HTML document with an unspecified character encoding containing all octets in the range 160
through 255, like the document that you can copy from
http://www.cs.tut.fi/~jkorpela/chars/test8.htm. View the document in your web browser, using at
least two different 8-bit encodings other than ISO 8859-1. (In Internet Explorer, use View
Encoding.) Analyze which encoding your browser uses by default.

3.8.6.2. "Deciphering" text

You have got a text file of unknown origin and in unknown encoding but presumably containing text
in English. When you view the file in a Windows environment, with Windows Latin 1 as the default
encoding, using Notepad, you see the following:

The letters á and ù are the first and last letter of the Greek alphabet and are often used to
symbolize beginning and end. In uppercase, they are Á and Ù; in uppercase with stress mark,
they are ¢ and ¿.

Can you deduce what the real encoding is and what the content is?

http://www.cs.tut.fi/~jkorpela/chars/test8.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Part II: A Systematic Look at Unicode
This part gives detailed information about Unicode, its structure and rules, and classifications,
and properties of characters. Unicode encodings, such as UTF-8, are also described.

Chapter 4, The Structure of Unicode

Chapter 5, Properties of Characters

Chapter 6, Unicode Encodings

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Structure of Unicode
This chapter is an in-depth presentation of the fundamentals of Unicode, including design principles,
coding space, and special terminology. Unicode's nature as an umbrella standard based on a large
number of older standards and its relationship to ISO 10646 will be described, examining both the
unification principle and criticism of it. However, to divide the complexity to manageable pieces, we
postpone the discussion of properties of characters (including, for example, normalization) and the
Unicode encodings to the next two chapters.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.1. Design Principles

Here we will start from the proclaimed design principles of Unicode. Later there will be some critical
notes and considerations. We will first consider the very general, slogan-like expressions of the goals,
and then the more technical principles.

4.1.1. Goals: Universality, Efficiency, Unambiguity

The Unicode standard itself says that it was designed to be universal, efficient, and unambiguous.
These slogans have real meaning here, but it is important to analyze what they mean and what they
do not mean. Let us first see how they are presented in the Unicode standard, and then analyze each
item:

The Unicode Standard was designed to be:

Universal. The repertoire must be large enough to encompass all characters that are likely to be
used in general text interchange, including those in major international, national, and industry
character sets.

Efficient. Plain text is simple to parse: software does not have to maintain state or look for
special escape sequences, and character synchronization from any point in a character stream
is quick and unambiguous. A fixed character code allows for efficient sorting, searching, display,
and editing of text.

Unambiguous. Any given Unicode code point always represents the same character.

Universality means much more than just creating a superset of sets of characters. Practically all other
character codes are limited to the needs of one language or a collection of languages that are similar
in their use of characters, such as Western European languages. Unicode needs to encompass a
variety of essentially different collections of characters and writing systems. For example, it cannot
postulate that all text is written left to right, or that all letters have uppercase and lowercase forms,
or that text can be divided into words separated by spaces or other whitespace.

Moreover, Unicode has been designed to be universal among character codes. That is, it assigns code
points to the characters included in other codes, even if the characters could be treated as variants or
combinations of other characters. The reason is that Unicode was also designed for use as an
intermediate code. You can take character data in any character code and convert it to Unicode
without losing information. If you convert it back, you get the exact original data. You can also
convert it to a third character code, provided that it is capable of representing all the characters. If
the source and destination codes treat, say, £ (pound sign) and £ (lira sign) as different, they will
appear as different after the conversion that used Unicode as an intermediate code.

Thus, universality implies complexity rather than simplicity. Unicode needs to define properties of
characters in a manner that makes explicit many things that we might take for grantedbecause they
are not evident at all across writing systems.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Efficiency refers here to efficient processing of data. When all characters have unique identifying
numbers, and they are internally represented by those numbers, it is much easier to work with
character data than in a system where the same number may mean different characters, depending
on encoding or font or other issues. However, efficiency is relative. In particular:

Efficiency of processing often requires presentation that is wasteful in terms of storage needed
(e.g., using four octets for each character). This in turn causes inefficiency in data transfer.

The representation forms of Unicode are not always efficient in processing. In particular, the
common UTF-8 format requires linear processing of the data stream in order to identify
characters; it is not possible to jump to the nth character in a UTF-8 encoded string.

Unicode contains a large amount of characters and features that have been included only for
compatibility with other standards. This may require preprocessing that deals with compatibility
characters and with different Unicode representations of the same character (e.g., letter é as a
single character or as two characters).

For a specific data-processing task, Unicode can be less efficient than other codes. The
efficiency goal needs to be understood with the implicit reservation "to the extent possible,
given the universality goal."

Unambiguity may look like a self-evident principle, but not all character codes are unambiguous in
the Unicode sense. For example, ISO 646 permits variation in some code points, allowing the use of a
single code point for either # or £ by special agreement. Moreover, in Unicode, unambiguity also
means unambiguity across time and versions: a code point, once assigned, will never be reassigned
in a future version.

Sometimes a fourth fundamental principle, uniformity, is mentioned. It has been described as a
principle of using a fixed-length character code, to allow efficient processing of text. However, as
currently defined, Unicode does not use a fixed-length code in a simple sense. In some Unicode
encodings, all characters are represented using the same number of octets (or bits), but in many
important encodings, such as UTF-8, the lengths may vary.

4.1.2. The 10 Design Principles

The Unicode standard describes "The 10 Unicode Design Principles, " where the first two are the same
as those quoted in the previous section, universality and efficiency. The unambiguity principle is not
included. Obviously, the principles are meant to describe how Unicode was designed, whereas the
slogan "Universality, Efficiency, Unambiguity" is meant to describe the ultimate goals.

The standard admits that there are conflicts between the principles, and it does not specify how the
conflicts are resolved. As a whole, the set of principles describe ideas of varying levels (from
fundamentals to technicalities), and it should be read critically. It is however important to know the
underlying ideas, so we will discuss them briefly:

Universality

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Unicode defines a single repertoire of characters for universal use. (See the previous section for
other aspects of universality.)

Efficiency

Unicode text is simple to process. (See the previous section for the complexity of this issue.)

Characters, not glyphs

Unicode assigns code points to characters as abstractions, not to visual appearances. Although
there are many borderline cases, and although the compatibility characters can be seen as
violating this principle, it is still one of the fundamentals of Unicode. The relationship between
characters and glyphs is rather simple for languages like English: mostly each character is
presented by one glyph, taken from a font that has been chosen. For other languages, the
relationship can be much more complexe.g., routinely combining several characters into one
glyph.

Semantics

Characters have well-defined meanings. In fact, the meanings are often defined rather
indirectly or implicitly, if at allbut Unicode is generally much more explicit about meanings than
other character code standards, including ISO 10646. When the Unicode standard refers to
semantics, it often means (mostly) the properties of characters, such spacing, combinability,
and directionality, rather than what the character really means. This is largely intentional: the
ultimate meaning may vary by language, context, and usage; think about the various uses of
the comma in English and other languagese.g., as thousands separator or as a decimal
separator.

Plain text

Unicode deals with plain texti.e., strings of characters without formatting or structuring
information (except for things like line breaks). In practice, Unicode text is mostly used along
with some formatting or structuring information, such as a word processor's formatting
commands or some markup; but that is treated as a separate layer in data, above the
character level and outside the scope of the Unicode standard.

Logical order

The default representation of Unicode data uses logical order of data, as opposed to
approaches that handle writing direction by changing the order of characters. The ordering
principles also put all diacritics after the base character to which they are applied, regardless of
visual placement. For example, the Greek capital letter omega with tonos has the tonos (stress

mark) visually on the left of the omega (), but the decomposed form of this character still
consists of omega followed by combining tonos.

Unification

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Unicode encodes duplicates of a character as a single code point, if they belong to the same
script but different languages. For example, the letter ü denoting a particular vowel in German
is treated as the same as the letter ü in Spanish, where it simply indicates that the "u" is
pronounced, in a context where it would otherwise be mute.

Dynamic composition

Characters with diacritic marks can be composed dynamically, using characters designated as
combining marks. You can take almost any character and combine it with any diacritic; for
example, you can create ,~ (comma with tilde) by using the normal comma character and a
combining tilde. Therefore, you can write many more characters using Unicode than there are
characters in Unicode (i.e., code points allocated to characters)! You can also use multiple
combining marks on a character (e.g., you can just make up "a" with both a tilde and an acute
accent: ã´), although good rendering of such combinations often requires advanced techniques.

Equivalent sequences

Unicode has a large number of characters that are precomposed forms, such as é. They have
decompositions that are declared as equivalent to the precomposed form. An application may
still treat the precomposed form and the decomposition differently, since as strings of encoded
characters, they are distinct. However, usually such distinctions are not made, and should not
be made. The Unicode standard does not declare either the precomposed form or the
decomposed form as preferred; they are just two different forms. So-called normalization may
make either form preferred in some contexts.

Convertibility

Character data can be accurately converted between Unicode and other character standards
and specifications. As explained earlier, this can be regarded as part of the universality
principle.

Somewhat surprisingly, the list does not mention stability or continuity. Yet, one of the leading
principles in Unicode strategy (as described in the goals as "unambiguity") is that a code point
assignment once made will never be changed. When a number and a name have been given to a
character, they will remain in all future versions, though the properties of the character may be
changed.

Another key principle that is not mentioned explicitly is that each character has only one code. As we
will see, it is debatable whether Unicode actually follows that principle. Equivalent sequences can
even be seen as a strong deviation from the principle.

4.1.3. Unification

Unification means treating different appearances and uses of a symbol as one character rather than
several characters. Unicode performs extensive unification, although with many exceptions. In the
section "Criticism of Unicode" later in this chapter, we will address the question of whether Unicode
has gone too far in unification.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Unification ranges from obvious decisions, like treating the "a" used in English as the same character
as the "a" used in French (even though the pronunciation differs) to controversial identification of a
Chinese character with a quite different-looking Japanese character because of their common origin.
Do not expect to find perfect logic behind the decisions.

Basic decisions on unification in Unicode include the following:

Unification across glyph variation

Unicode encodes characters, not glyphs. Therefore, the different visual appearances of a
symbol are unified to a single character. This is, however, a rather vague formulation.
Ultimately, Unicode defines what is a character and what is just variation between glyphs. For
example, the dollar sign $ is defined so that it may have one vertical stroke or two, depending
on the font. There was simply not sufficient reason to treat them as separate symbols. On the
other hand, the pound sign £ and the lira sign £ are defined as two separate characters, more
or less arbitrarily, but basically because sufficiently many people see them as different
symbols.

No unification across scripts

Usually unification has not been applied to characters that look the same, and may have
common origin and even similar phonetic value but belong to different writing systems. Thus,
Latin letter "O" is treated as distinct from Greek letter "Ο" (omicron), even though they look
the same in most fonts.

Unified diacritics

Similar-looking diacritic marks used in different languages and with different meanings have
generally been unified, even across scripts. Thus, the acute accent used in French (e.g., on the
"e" letters in "bébé") is coded as the same as the acute accent used in Polish (e.g., on the "n"

letter in "Gda sk"), even though traditional typography for the languages uses rather different
shape for the acute. The acute accent is even unified with the Greek tonos mark (e.g., on first

letter in " ρα"), even though it is commonly called tonos and not acute and even though its
traditional shape is different from both French and Polish style. Often you do not see
differences in the shapes of a diacritic because typically each font has a uniform design for a
diacritic. However, a diacritic on a Latin letter often looks different from the same diacritic on a
non-Latin letter.

The unification applies to the diacritic as a combining mark and as a spacing character (such as
acute accent U+00B4, ´) as well as any precomposed letters containing the diacritic (e.g., é as
used in French is coded as the same character as é used in Hungarian).

Unification prevented by mapping considerations

Some capital letters have not been unified with each other despite similar or identical
appearance, if the corresponding lowercase letters differ. For example, Latin capital letter eth

 and Latin capital letter "D" with stroke are coded as separate characters, since the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

corresponding lowercase letters look quite different: and . Without the difference, it would
be impossible to convert text from uppercase to lowercase using simple algorithms.

Unification across different usages

The full stop character "." is used as a period that terminates a sentence, or to indicate an
abbreviation, or to act as a decimal separator, to mention a few uses. It is coded as a single
Unicode character, with multiple meanings. This is a bit inconvenient if you would like to write,
for example, a simple program for recognizing sentences from English text: you cannot just
look at the punctuation. On the other hand, people are used to thinking of "." as one character,
and it would hardly be possible to make us use different variants of it in different contexts.

Category difference may prevent unification

Sometimes a character difference has been made, even though there is no observable
difference in shape, only in meaning. The Latin letter retroflex click (U+01C3) has the same
glyph as the exclamation mark in practice (and has also been called Latin letter exclamation
mark), but it is used in some African languages to denote a click sound (for example, in the
name " kung"). It is therefore classified as a letter, and this is the basic reason for
distinguishing it from the exclamation mark.

Limitations due to convertibility

Unification is largely limited by the convertibility principle, which effectively implies that any
difference made in some character code must be made in Unicode as well. For example, the
micro sign ΅ would undoubtedly have been unified with the Greek small letter mu, µ, had it not
been so that some character codes contain separate positions for them. Unicode needs to allow
the distinction to be preserved, even though it defines the micro sign as a compatibility
character that is (in a specific sense) equivalent to the letter mu.

Han unification

Ideographic characters used in Chinese, Japanese, Korean, and Vietnamese have been unified
across languages to a large extent, even if the shapes of characters may vary significantly.
Ideographs have generally been treated as the same for unification, if they share a common
origin and the same basic meaning. However, substantial differences in shape may have
prevented unification.

4.1.4. Conformance Requirements

The Unicode standard defines conformance criteria. This just means that if some software satisfies
them, it can be said to conform to the Unicode standard. This helps other software designers as well
as potential customers in evaluating the software. In this context, "software" is to be understood in a
wide sense, covering computer programs, parts of programs, complexes of programs, applications,
data formats, etc.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For the purposes of conformance requirements, the standard defines some properties of characters
as "normative." This means that software that claims conformance to the standard is required to
process characters according to those properties, to the extent that it processes them at all. Other
properties defined in the standard are called "informative."

Conformance does not require support to all Unicode characters, on display or otherwise. Software
that conforms to the Unicode standard may process just a subset of Unicode characters, and this is
quite normal because Unicode is an evolving standard: new characters have been added and will be
added. We do not want to make conforming software nonconforming just because a rare hieroglyph
is added to Unicode.

When some software or data format is described as being based on Unicode or as supporting
Unicode, this does not constitute a conformance clause. Quite often, such statements simply mean
that the character concept used is that of Unicode. For example, HTML and XML make no claim on
Unicode conformance, although they make use of Unicode definitions. Thus, HTML or XML
implementations are not required to process characters according to Unicode semantics and rules,
though they may do so, for some meanings and rules at least.

Full presentation of the conformance requirements needs many detailed concepts related to character
properties. Therefore, it will be given at the end of Chapter 5.

4.1.5. Unicode and ISO 10646

ISO 10646 (officially ISO/IEC 10646) is an international standard, by ISO and IEC. It defines UCS
(Universal Character Set), which is the same character repertoire as in the Unicode standard, with
the same code numbers. ISO 10646 and the Unicode standard are not identical in content but they
are fully equivalent in matters covered by both standards. The number of the standard intentionally
reminds us of 646, the number of the ISO standard corresponding to ASCII. The rest of the number
depends on ISO standard numbering in general.

ISO and IEC are widely recognized international standardization organizations with a broad range of
activities, from light bulb standards to general quality control standards. They work on what are
regarded as "official standards" especially by governments and officials, although the standards
themselves are mostly recommendations, not enforced by law.

The Unicode standard, on the other hand, is a standard defined by the Unicode Consortium, which
has a relative focused area of activity. Originally founded for character code standardization, the
Consortium has taken new responsibilities, such as creating a common basis for software localization
settings. The Unicode standard is sometimes informally cited as "TUS."

Originally, ISO 10646 and the Unicode standard were two different standards created by different
organizations, with different objectives. The threat of mutual incompatibility and divergence lead to a
decision on full harmonization. The character repertoires were merged into one in 1992. The
standards are now in full accordance, and any changes are made in a synchronized way: any change
must be approved both by the Unicode Consortium and by the ISO. The harmonization wasn't easy,
and it involved changing many character names defined in Version 1.0 of Unicode as different from
the ISO 10646 names.

However, full accordance does not mean identity. ISO 10646 is more general (abstract) in nature,
whereas Unicode "imposes additional constraints on implementations to ensure that they treat

http://lib.ommolketab.ir
http://lib.ommolketab.ir

characters uniformly across platforms and applications," as they say in section "Unicode & ISO
10646" of the Unicode FAQ. Moreover, each of the standards contains definitions not present in the
other standard. We might say, a bit loosely, that ISO 10646 is more theoretical and the Unicode
standard is more practical. ISO 10646 deals with characters, whereas Unicode also describes
properties of characters as elements of text, in a manner that affects processing of text.

The ISO 10646 standard has not been put onto the Web. It can be bought in digital (PDF) form via
the site http://www.iso.org. For practical purposes, the same information is in the Unicode standard.
In practice, people usually talk about Unicode rather than ISO 10646, partly because we prefer
names to numbers (especially in speech), partly because Unicode is more explicit about the meanings
of characters. However, if you write a document for a national standardization body, for example, it
is appropriate to cite ISO/IEC 10646 rather than Unicode, although you might mention Unicode in
parentheses.

Some ISO standards are divided into "parts," which can in fact be rather independent (though
interrelated) standards, such as ISO-8859-1 and ISO-8859-2. The part number is written after the
basic number and separated from it with a hyphen. Previously, there were two parts in the ISO
10646 standard: ISO 10646-1 defined the overall structure and the characters in the Basic
Multilingual Plane (BMP), whereas ISO 10646-2 defined the other planes (see the section "Coding
Space" later in this chapter). However, in 2003, the parts were combined into one.

Full references to ISO standards mention the year of issue of the version of the standard, such as
ISO/IEC 10646:2003. The versions do not directly correspond to Unicode versions, since changes
that mean a new version of Unicode are often implemented as documents called amendments on the
ISO side.

Within the ISO, work on ISO 10646 belongs to the scope of the Joint Technical Committee (JTC) 1,
subcommittee (SC) 2, "Coded Character Sets." The word "Joint" refers to the cooperation between
the ISO and the IEC. The web site of JTC 1/SC 2 is http://std.dkuug.dk/jtc1/sc2/.

4.1.6. Why Go Beyond 16 Bits?

The original design defined Unicode as a 16-bit code, and you can still find references that describe it
that way. A structure of 16-bit codes for all characters internally is very simple and it is in many ways
efficient, at least in processing of data, if not always in storage and transmission. It was once
regarded as sufficient for all commercially important characters in the world. Thus, there must have
been good reasons to go beyond it.

There are several reasons why 16 bits, or 65,536 code positions, were not enough:

The Chinese-Japanese-Korean (CJK) ideographs, used by a very large number of people,
constitute a larger collection than was expected. Although all the commonly used ideographs fit
into the 16-bit coding space, there are many characters that are less frequently used, yet
should have a code position. Moreover, Japanese and Korean versions of the characters may
differ from the Chinese versions to an extent that requires separate codes for them.

There are many ancient scripts as well as mathematical, scientific, technical, musical, and other
special symbols that may need to be coded.

http://www.iso.org
http://std.dkuug.dk/jtc1/sc2/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

In order to act as a superset of all character sets, Unicode needs to contain all the characters
that have ever been coded in character codes. This means that Unicode needs to have
provisions for preserving many distinctions between characters that would be regarded as the
same otherwise. It also means that many precomposed characters have to be included.
Moreover, no characters will ever be removed from Unicode.

Allocation of code points to characters, though arbitrary in principle, follows some general rules
in practice, leaving much of the coding space unused. Areas and blocks have been reserved for
collections of characters, using a unit of 256 characters as minimum amount of allocation. To
allow future additions, the allocations must be rather generous.

It would have been possible to deal with all of these problems by using special extension mechanisms
such as surrogate pairs. It was ultimately decided, however, that a unified approach is better.

4.1.7. Does Unicode Contain All Characters in the World?

Quite often, Unicode is said to contain all characters used by humans. Although Unicode contains the
vast majority of commonly used characters, it is far from all-encompassing. However, we can say
that characters that cannot currently be written in Unicode are exceedingly rare, in terms of the
number of users at present and the amount of modern printed matter or material in digital form.

The most important kinds of exceptions to the coverage of Unicode are:

Not all special characters used in science, technology, mathematics, and other areas have been
included. New special characters are introduced fairly often, and many of them gain enough
usage to justify their inclusion in Unicode.

Unicode does not contain every Chinese character. A large number of rare characters, used in
names, have been omitted from Unicode as well as other character codes.

There are some individual omissions that are noted from time to time. For example, when
analyzing a script, researchers may have misanalyzed its character structure and omitted
something that needs to be added later.

There are small languages that use characters that have not been included in Unicode yet.

There are many archaic writing systems that have not been included in Unicode yet, such as
Egyptian and Mayan hieroglyphs.

The Unicode standard is therefore under continuous development. For example, Version 4.1 of
Unicode (March 2005) introduced 1,273 new characters, including some complete (archaic) scripts.

The goal is to include all characters used in writingi.e., in textsas opposed to all possible graphic
symbols. For example, the symbols of card suits are originally not text characters, but they are

widely used in texts, such as bridge columns ("a contract of 3 , with 9 lead"), and therefore the
symbols are defined as Unicode characters. Many archaic writing systems contain characters that
have been or will be included into Unicode due to their use in texts, such as digitized versions of old
documents and modern research papers that discuss such documents and their language. On the
other hand, characters of the fictional Klingon language are not commonly used in texts, so they
have not been included into Unicode so far. The language's fictional nature is no obstacle per se;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

what matters is actual use in books, magazines, web pages, or elsewhere.

As a different issue, Unicode does not contain and does not aim at containing all characters as
separately coded characters with their own code points. Instead, characters with diacritic marks can
be represented as a character sequence consisting of a base character and one or more combining
diacritic marks.

4.1.8. Identity of Characters

In Chapter 1, we discussed the concept of character and described how Unicode defines particular
characters by assigning a code number, a Unicode name, and various properties to it and by showing
a representative glyph. Here we consider some of the more technical aspects of defining characters.

4.1.8.1. Characters as elementary units of text

If we consider normal English text, it looks rather obvious what the elementary units of text are:
letters, digits, spaces, punctuation marks, and a few special characters like $. These units look
indivisible, atomic, at any structural level. None of the characters appears to be a composition of
other characters, or of any parts.

Things get more complicated in other writing systems, and we need not consider anything more
complicated than accented letters e.g., letter e with acute accent, é. Is it a character on its own, or is
it a combination of "e" and an acute accent? Unicode codes it in both waysi.e., allows é to be
represented as one character or as two characters. In the latter representation, we are in fact
treating the acute accent as a separate character.

However, Unicode does not always consider letters with marks as decomposable into a letter and a
mark. For example, the Arabic letter sheen (shin) ش (U+0634) is visually the same as the letter seen
(sin) س (U+0633) with a special mark (three dots) on it. Unicode codes them as completely separate,
with no mapping between them. This corresponds to the way in which people using the Arabic script

understand these letters. Similarly, the letter L with stroke (U+0141) is not decomposable. On the

other hand, Unicode defines the Cyrillic letter short i (U+0439) as decomposable into the Cyrillic

letter i (U+0438) and a diacritic mark (breve), although people who use these letters hardly see
things that way.

Different ligatures are handled differently, too. The typographic ligature can be written as a single
character, but it is only a compatibility character. On the other hand, æ is treated as a separate
character with no decomposition, although it is historically a ligature and is still used as a typographic
alternative to "ae" when writing Latin words.

A digraph i.e., a combination of two characterscan be treated as a basic unit of text, even if its shape
is not ligature-like but the two glyphs are clearly distinct. For example, in some languages, the
digraph "ch" is treated as a letter, with a position of its own in the alphabet. Even if the digraph is not
understood as a letter in every way, it might be treated separately when putting words into a
dictionary order. Although this is not the case in English, speakers of English understand "ch" as a
combination with a typical phonetic value, so it has more identity than a casual combination of
characters has.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As we have already discussed in Chapter 1, Unicode often defines separate characters in situations
where there is little or no visible difference. It is a matter of convention, history, and structure of
writing systems that we regard the letter "A" as different from the capital Greek letter alpha, which
normally looks just the same. As another example, we often treat lowercase and uppercase letters
"the same" without even thinking about it; for example, we usually expect searches to be case-
insensitive.

Thus, the abstract character concept does not always correspond to the intuitive notion of a
character in people's minds. Sometimes it helps to use the phrase Unicode character to emphasize
that we are referring to a character as coded in Unicode, even if many people would treat it as just a
part of a character, or a combination of characters, or "the same" as some other Unicode character.

4.1.8.2. Unicode numbers

As described in Chapter 1, Unicode assigns two immutable identifiers to a character that has a code
point: a number and an alphanumeric string called the Unicode name of the character. For example,
$ has the number 24 (hexadecimal) and the name "dollar sign."

The range of possible Unicode numbers has been defined so that the numbers can be expressed
using 21 bitsi.e., as strings of 21 zeros and ones representing the number in binary (base 2)
notation. However, the full range of numbers representable in 21 bits is not used. Instead, Unicode
limits the range to just over one million numbers, as expressed more exactly in Table 4-1 in different
number systems. In the Unicode context, we mostly use the base 16 system, which was described in
Chapter 1.

Table 4-1. Range of Unicode numbers, expressed using different bases

Number system Base Range of possible code numbers in Unicode

Binary 2 0 to 100001111111111111111

Hexadecimal 16 0 to 10FFFF

Decimal 10 0 to 1,114,111

There are still many documents that describe Unicode as a "16-bit code," but that has not been true
for a long time. Neither is Unicode a "32-bit code," although this misconception is less serious. In
practice, Unicode code numbers usually appear as represented using units of 8, 16, or 32 bits
according to some well-defined scheme. However, if you need to characterize Unicode as an "n-bit
code," the best choice for n is 21.

The assignment of numbers to characters is arbitrary in the sense that the number has no
relationship with the meaning of the character. For example, digit zero does not have the number 0
but the number 48 (in decimal). This is the same as its number in ASCII and many other character
codes, but other than that, there is no way you could have guessed it.

In particular, the Unicode numbers should not be treated as significant in comparing characters. If
the number of a character is smaller than the number of another character, this does imply that one

http://lib.ommolketab.ir
http://lib.ommolketab.ir

is before the other in the alphabet or collating sequence in some language. It happens that the code
number of "a" is one less than the code number of "b," but you would get the order quite wrong if
you alphabetized, for example, French words on the assumption that the code numbers tell the order.
For example, all words beginning with é would be sorted after all words that begin with any
unaccented letter, since the code number of é is greater than the code numbers of all basic Latin
letters.

Unicode numbers are identifying labels, permanently attached to characters,
rather than numbers in the mathematical sense.

In practice, the allocation of Unicode numbers is not random or arbitrary, even though it may look
messy. Characters are organized into blocks, and within each block, the allocation usually reflects
some traditional order. The allocation is discussed in more detail in the section "Coding Space" later
in this chapter.

4.1.8.3. Unicode names of characters

The Unicode name of a character is defined as follows:

With the exceptions described below, a character has an explicitly assigned name, which is
mentioned in the code charts and in the UnicodeData.txt file in the Unicode database. The
names are often rather long, such as "LATIN CAPITAL LETTER A WITH GRAVE."

Unified CJK ideographs have names of the form "CJK UNIFIED IDEOGRAPH-n," where n is the

code number in decimal. For example, the name of U+4E00 is "CJK UNIFIED IDEOGRAPH U-
4E00."

Hangul (Korean) syllable characters U+AC00..U+D7A3 have names that are constructed from
their decompositions as defined in the Unicode standard in section 3.12 "Conjoining Jamo
Behavior." A character is algorithmically decomposed, and then the short names (as defined in
Jamo.txt) of the components, such as "P," "WI," and "LH," are concatenated. The result is
prefixed with the words "HANGUL SYLLABLE," giving names like "HANGUL SYLLABLE PWILH."

Control characters have no official name. (They have the text "<control>" in the database in
place of a name.)

Private use characters, unassigned code points, and noncharacter code points have no names in
Unicode.

The Unicode names of characters are based on the English language, with many loanwords taken
from other languages. Interpreted as an expression in English, the Unicode name of a character is
usually descriptive, but it might be uninformative, and sometimes even misleading.

The Unicode name is called the formal name in the Unicode standard, to distinguish it from an
alternative name (alias). Alternative names are mentioned in the code charts, and they also appear
in the NamesList.txt file in plain text. They are comment-like and can be changed or removed. For

http://lib.ommolketab.ir
http://lib.ommolketab.ir

example, the Unicode standard once mentioned "hyphus" as an alternative name for hyphen-minus,
but this was an attempt at coining a new word rather than be descriptive, and it was silently removed
from the standard.

For some characters, a Unicode 1.0 name is mentioned, too, such as "period" for "full stop" and
"slash" for "solidus." As the examples show, the Unicode 1.0 names often correspond better to the
names normally used in U.S. English. A Unicode 1.0 name is essentially just an alternative name,
although it is written in uppercase in the code charts. Formally, it differs from other alternative
names by its appearance in the UnicodeData.txt file. The Unicode 1.0 names reflect the
harmonization of Unicode with ISO 10646: in Version 2.0, Unicode adapted ISO 10646 names for
characters if there was a mismatch of names, and the old names were preserved as comments.

The Unicode name proper (the formal name) is fixed partly because it may have been used in
programming. It is usually not a good idea to identify characters by their names in program code, but
such approaches have been used, especially in old times.

The Unicode names are identifying strings rather than normal text, but for the purposes of reading
them aloud, they are English. They contain both English words and words from many other
languages, adapted into English orthography. As the names "full stop" and "solidus" indicate, the
English language in the names is basically British English. This is reflected in spellings like "centre"
and "diaeresis." In this book, the Unicode names are spelled as defined, of course, although words
like "dieresis" appear in U.S. English spelling when used in the prose text.

4.1.8.4. Using the names

Despite many problems with the official (formal) Unicode names of characters, they are very useful.
When you need to specify exactly which character you are referring to, it is usually a good idea to
mention both its Unicode name and its Unicode number.

When writing for general audience, it might be best to use just commonly used names about
characters. For example, if you are giving instructions on using a special symbol in some particular
way when using some program, you could just tell people to use #, without mentioning its name.
People know it by so many different names that they might get confused, even though they know the
character when they see it. If you specify a name, you could list some commonly used names along
with the Unicode name. You could tell people to use # (number sign, also known as hash and
octothorpe).

When referring to rare characters, names become essential. If you write style instructions for
technical papers, for example, just telling people to use in some context will not work well. Most of
them will think that you mean the character ø that can be conveniently found among the Latin 1
characters. It is better to tell them to use the DIAMETER SIGN (U+2300), though they may still
need instructions on typing it.

Software tools for selecting characters, such as the characters maps discussed in Chapter 2, often
identify characters by their code numbers and Unicode names. This is in many cases insufficient, and
it has caused misunderstandings. Some names are misleading or too vague, and some names are
theoretical rather than commonly used names. They are often hard to understand to people who do
not speak English as their native language. In the future, language-dependent names for characters
might be defined in the Common Locale Data Repository (CLDR) discussed in Chapter 11. Meanwhile,
most characters have no official or established names in most languages. This is one reason why the
Unicode names are used so often.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Use Unicode names when referring to characters, but do not rely on them
alone.

The Unicode names are useful when searching for information, using Google, for example. Most
Internet search engines treat all or most non-alphabetic characters as irrelevant (skippable,
punctuation) or as special operators. Thus, you cannot search directly for ¶, for example. Instead,
you might search for "section sign," once you know the character by its Unicode name. Of course, not
all documents that use the character or even those that say something about it, mention it by that
name. The alias names mentioned in the Unicode standard are often very useful, too.

Generally, documents that seriously discuss a character can be expected to mention its Unicode
name. This implies that as an author, you would do wisely to mention the Unicode name (spelled
exactly right), if you write about a character. Mentioning the Unicode number in the U+2300 style is
useful, too, since people might use it, too, and have success in searches.

4.1.8.5. Characters used in character names

The characters that may appear in a Unicode name are:

Letters AZ (case insensitively, in practice)

Digits 09

Space (U+0020)

Hyphen-minus "-" (U+002D)i.e., the common hyphen (as in ASCII)

This simple repertoire makes it usually rather straightforward to construct identifiers that correspond
to character names, for use in computer programs, database entries, etc. Usually identifier syntax
disallows spaces, but you can replace spaces by low line (underscore) "_" characters without
ambiguitye.g., using COMMERCIAL_AT. The hyphen-minus character can be more problematic, if
identifier syntax disallows it.

Digits have been avoided in Unicode names; even the digits themselves have names like "digit zero."
Some names, however, contain digits, because they have been generated algorithmically, by
enumeration (e.g., "Greek vocal notation symbol-1"), or using the code number as part of the name
(e.g., "CJK unified ideogram-4E00"). Such names are not very practical, and they have been included
just to give every character a formal name. Braille pattern character names contain digits that
indicate the positions of dotse.g., "Braille pattern dots-1245." A few names contain digits because
they refer to the shapes of digitse.g., "double low-9 quotation mark."

4.1.8.6. Case of letters in names

Technically, the standard defines the letters used in Unicode names as uppercase. No ambiguity can
arise, however, from using lowercase. The variation should be considered as typographical only, since
the case of letters is not significant in Unicode names. Any processing that takes such a name as

http://lib.ommolketab.ir
http://lib.ommolketab.ir

input should thus first normalize the spelling to uppercase or lowercase or perform all comparisons in
a case-insensitive manner. In a user interface that shows Unicode names, it is probably a good idea
to make the case a user-settable option, with uppercase as default.

4.1.8.7. Notational issues

The number of a character is usually written in hexadecimal notation, using at least four digitse.g.,
"0040." It is often preceded by "U+" for claritye.g., "U+0040." The "U+" prefix may help both human
readers and computer programs to distinguish character numbers from other numbers or digit
sequences in a document.

The original idea was to use a special character, multiset union U+228E, , in front of a code
number. This character, consisting of the symbol of union of sets and a plus sign, was meant to
symbolize the nature of Unicode as a union of character sets, and more. However, for practical
reasons, the symbol was soon replaced by the two ASCII characters "U+."

There is more variation in the writing style of the name. The standard uses mostly all uppercasee.g.,
"COMMERCIAL AT." If you use this style in a publication, it is a good idea to try to use a small caps
font or a normal font in a smaller size (e.g., COMMERCIAL AT), to avoid making the names all too
prominent. Another style, used in the standard for alias names and in annotations, is all lowercase,
even for words that are capitalized in normal English, as in "greek question mark."

4.1.8.8. UCS Sequence Identifiers (USI and named character sequences)

Combining diacritic marks, discussed in Chapter 7, create a general method for forming new
characters from a base character (such as "e") and one or more diacritic marks, producing a
character like é or ë. This creates a new problem of identity: although characters like é and ë already
exist as separately coded characters in Unicode, most potential combinations do not; should each of
them be still regarded as a character, or just as a character sequence? For example, does letter "e"
with a combining acute accent and a combining dieresis constitute a single character, or just a
sequence of three characters, although rendered using one glyph?

The short answer is that such a sequence is technically a character sequence in Unicode, but it can be
regarded as a single character in other contexts and frames of reference. Unicode is capable of
representing the character, though as a sequence of Unicode characters and not as a single
character.

The general idea is that the existing repertoire of precomposed characters in Unicode will normally
not be extended. This saves work and coding space, and it helps to avoid long discussions. After all,
commonly used characters with diacritic marks have already been incorporated into Unicode as
precomposed characters, so the rest are rather specialized, and few people would be competent in
deciding on them.

This has caused some controversy. If you speak a language that needs such a combination, you
might be dissatisfied with the statement that it is and will remain a character sequence, not a
character. You might want better "characterhood" for the element of your language. Partly for such
reasons, the concept of UCS Sequence Identifier (USI) was introduced in ISO 10646.

A USI is of the form <UID1,UID2,...> where UID1 and so on are short identifiers for characters,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

usually in the U+nnnn notation. For example, <U+012B,U+0300>.

USIs also serve the purpose of assigning distinguishable identity to other sequences, such as the
character pair "ch," which may appear as a single unit to many. In some languages, "ch" has both a
special pronunciation and a special role in ordering, where it might appear as if it were a letter after
"c" (so that words beginning with "ch" are ordered after all other words beginning with "c").

Unicode takes a further step in assigning "characterhood" to character sequences by introducing the
notion of a named character sequence, defined in Unicode Standard Annex (UAX) #34 at
http://www.unicode.org/reports/tr34/.

A named character sequence is simply a name for a USI. The name follows the general syntax of
Unicode names of characters, though with some special restrictions. For example, the sequence
<U012B,U+0300> has the name "Latin small letter i with macron and grave," which looks very much

like a Unicode name for a character. Thus, when someone says that such a character (`) should be
added into Unicode, one can say: it can be written using existing Unicode characters, and the
sequence has even got a name, so you can treat it as a character.

This strategy has not been as successful as you might think. There is a fairly small number of named
character sequences currently defined. The registry of definitions for them is the text file
http://www.unicode.org/Public/UNIDATA/NamedSequences.txt. The approach might still turn out to
be useful, especially in giving advice to font designers about sequences that might need a separately
designed glyph.

http://www.unicode.org/reports/tr34/
http://www.unicode.org/Public/UNIDATA/NamedSequences.txt
http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.2. Versions of Unicode

Unicode versions are numbers much the same way as program versions, using a hierarchic number
of the form m.n.p, where m is the major version number (which usually remains the same for years), n
is the minor version number, and p is the update version number. For a detailed description, refer to

http://www.unicode.org/versions/. The format of citing Unicode and its versions is discussed in
Chapter 5.

In practice, the minor version number 0 is often omittede.g., "Unicode 4.1" instead of "Unicode
4.1.0." In this book, "Unicode" means Unicode 4.1.0 unless otherwise stated.

Unicode Version 1.0 used somewhat different names for some characters than ISO 10646. In Unicode
Version 2.0, the names were made the same as in ISO 10646. However, the Version 1.0 names
(such as "period" for "full stop") are still preserved as alternate names, mentioned both in code
charts and in the Unicode database.

New versions of Unicode are expected to add new characters mostly, though changes and
clarifications are possible. However, there is a firm policy that no characters will be removed, no code
numbers changed, and no Unicode names changed. Annotations, including alternate names, and
properties of characters may change.

The growth of Unicode is summarized in Table 4-2, which shows the number of characters (code
positions assigned to characters, including 65 control characters) and blocks in each version. (Minor
versions that did not add any new code position assignments have not been included.) The issue date
is specified in year-month notation. The jump in the number of characters in Version 3.1 is mainly
caused by the addition of the CJK Unified Ideograms Extension B block (42,711 characters).

Table 4-2. Unicode versions

Version Issued Characters Blocks

1.0 1991-10 7,161 57

1.0.1 1992-06 28,359 59

1.1 1993-06 34,223 63

2.0 1996-07 38,950 67

2.1 1998-05 38,952 67

3.0 1999-09 49,259 86

3.1 2001-03 94,205 95

3.2 2002-03 95,221 107

4.0 2003-04 96,447 122

http://www.unicode.org/versions/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Version Issued Characters Blocks

4.1 2005-03 97,720 142

Version 5.0 is to be published in the third quarter of 2006. Information on it is available at
http://www.unicode.org/versions/Unicode5.0.0/. It is intended to add 1,365 characters, for the needs
of some living languages (e.g., in India), for mathematics, and for academic use, particularly for
coding cuneiform and other ancient texts.

4.1 2005-03 97,720 142

Version 5.0 is to be published in the third quarter of 2006. Information on it is available at
http://www.unicode.org/versions/Unicode5.0.0/. It is intended to add 1,365 characters, for the needs
of some living languages (e.g., in India), for mathematics, and for academic use, particularly for
coding cuneiform and other ancient texts.

http://www.unicode.org/versions/Unicode5.0.0/
http://www.unicode.org/versions/Unicode5.0.0/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.3. Coding Space

Coding space, or "codespace" to use the Unicode standard terminology, is the range of integers that
can be used as numbers for characters. In an 8-bit encoding, the coding space is the range from 0 to
255. In Unicode, the coding space ranges from 0 to 10FFFF in hexadecimal, 1,114,111 in decimal.
Some numbers in the range correspond to characters, some have been excluded from such usage,
and some are currently unassigned.

Acode point, also called code position, is simply a value in the coding space. It may or may not have
a character assigned to it.

The way Unicode uses the coding space is, strictly speaking, a technicality that does not affect the
identity or properties of any character. In that sense, the allocation is independent of other design
decisions. It is surely important to people who develop the Unicode standard, since the amount of
characters makes some logical planning and allocation principles necessary. But does it interest
others?

Understanding the principles of using the coding space helps in locating characters. Many tables and
utilities present Unicode characters as organized according to the coding space structure and usage.
Typically, you see blocks of characters, so you need to know what a block is. It also helps to know
how blocks are organized internally, though we can list only rather general principles.

4.3.1. Planes

For practical reasons, the coding space has been divided into parts called planes . You can visualize a
plane as a huge sheet of paper with 65,536 (256 times 256) squares, each of which might contain a
character. Then imagine a pile of 17 such sheets. There you have the Unicode coding space.

Originally, Unicode was designed to be a 16-bit code and ISO 10646 a 32-bit code, divided into 16-bit
planes. When they were harmonized, it was decided to use the ISO 10646 approach as the basis.
However, an agreement between ISO and the Unicode Consortium guarantees that only the first 17
planes will ever be used. This effectively means that the coding space consists of the numbers that
can be expressed in 21 bits, with the first 5 bits specifying the plane and the rest the position inside a
plane.

Until recently, the use of Unicode has mostly been limited to BMP consisting of the range 0..FFFF,
corresponding to the original design of Unicode. The other planes are 10000..1FFFF, 20000..2FFFF,
etc., up to 100000..10FFFF.

Nowadays, there are many characters allocated on other planes as well, and rarely used characters
(such as characters used in extinct writing systems, appearing in historical documents only) are being
added to Unicode that way. Thus, Unicode was first theoretically, and then practically extended
beyond a limitation to 16 bits (i.e., to code numbers that can be expressed as 16-bit integers).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Currently, and in the foreseeable future, only the first three planes are used for assigning characters
in the standard. The big picture is the following, using hexadecimal numbers for the planes (with
decimal numbers in parentheses):

Plane 0, Basic Multilingual Plane (BMP), contains most characters used in modern writing
systems (and many from historical systems).

Plane 1, Supplementary Multilingual Plane (SMP), contains characters used in archaic writing
systems as well as various collections of special symbols, including many mathematical symbols.

Plane 2, Supplementary Ideographic Plane (SIP), contains less-common Chinese-Japanese-
Korean (CJK) characters that do not fit into BMP for practical reasons.

Planes 3 through D (= 13) are currently unassignedi.e., reserved for eventual future
assignments.

Plane E (= 14) is called Supplementary Special-Purpose Plane (SSPP) and reserved for purposes
such as code points for control functions.

Planes F and 10 (= 15 and 16) are designated for use as Private Use Planes. This means that
the standard does not and will not define their use, any more than by saying that they can be
used upon private agreements.

4.3.2. Allocation Areas

Between the plane level and the next formally defined levels of allocationrows and blocks there is an
auxiliary and informal structuring level, allocation areas . The areas are mainly an organizational
device for Unicode development, but they may also help you to get an overview of the use of coding
space. An area may contain a set of writing systems of similar type or some other large set. The
current allocation areas are:

On plane 0 (BMP):

General Scripts (Latin, Greek, Cyrillic, Armenian, and many others)

CJK Miscellaneous (different characters used in East Asian scripts)

Asian Scripts (Yi script and Korean Hangul)

Asian Scripts (Yi script and Korean Hangul)

Surrogates (reserved)

Private Use (for use by agreements outside the standard)

Compatibility and Specials (presentation forms etc., and a few formatting characters and
special code points)

On plane 1 (SMP):

http://lib.ommolketab.ir
http://lib.ommolketab.ir

General Scripts (various small archaic scripts)

Notational Systems (musical, mathematical, and divination symbols)

On plane 2 (SIP):

CJK Unified Ideographs Extension B

CJK Compatibility Ideographs Supplement

4.3.3. Rows and Blocks

Each plane contains 65,536 (216) code points, which can be divided into 256 (28) parts called rows.
The term can be misleading, since such a row is often presented visually as an array (matrix) with 16
rows and 16 columns.

The division of a plane to rows corresponds to splitting the last four hexadecimal digits in a code
number into two parts consisting of two hexadecimal digits. For example, U+1234 belongs to row 12
(hexadecimal), where it occupies the relative position 34 (hexadecimal). We can say that for
characters in the BMP, the first two of the four hexadecimal digits select the row, and the last two
select the position within a row.

We will not use such a row concept much, and it is not very common in the Unicode context. There is
a more important concept of a block. A block is a contiguous range of code points, which have similar
characteristics in some sense and which has a name assigned to it in the Unicode standard. A block
may contain code points that are unassigned or designated as noncharacters.

Rows and blocks are two different ways of dividing a plane into parts: a technical (or mathematical)
way and a logical way. A block may be just part of a row, and vice versa.

The first block is called "Basic Latin " and it occupies the range U+0000 to U+007F. It has been
formed simply because it contains the ASCII characters, with code numbers equaling those in ASCII.
The block "Arrows," U+2190 to U+21FF, is much more homogenous: it contains different arrow

characters (, , etc.) and nothing else. The block "Mathematical Operators," U+2200 to U+22FF,
contains a mixed collection of operator symbols used in mathematics, but it does not contain all such
symbols that have been included in Unicode. There are many additional mathematical blocks around
the coding space. Unicode blocks are described in more detail in Chapter 8.

Thus, the names of blocks should be understood by implying the word "Some" rather than "The" at
the startfor example, the block Currency Symbols is not the block for the currency symbols but a
block for some currency symbols. Many currency symbols appear in other blocks, including $ in Basic
Latin.

Although a block may consist of a collection of characters of the same kind,
blocks cannot be meaningfully used for classification of characters. Instead, use
the General Category property and other formally defined properties (see
Chapter 5).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In many cases, a block corresponds to a row in the sense described in the previous paragraphs. For
example, the block "Cyrillic" is U+0400 to U+04FFi.e., row 4 (of plane 0). As the other examples
show, however, a block may correspond to a part of a row only. On the other hand, a block may
extend over several rows. For example, the block "Mathematical Alphanumeric Symbols," which is a
relatively recent addition to Unicode, occupies the range U+1D400 to 1D7FF, therefore spanning rows
D4 to D7 of plane 1.

4.3.4. Unicode as Extension of ISO-8859-1

Unicode can be regarded as an extension of practically any character code, in the sense that the
Unicode character repertoire contains all characters that appear in at least one character code.
However, the code numbers are generally different, of course.

Unicode is an extension of ISO-8859-1 (ISO Latin 1), and thereby an extension of ASCII, in a
different, much stronger sense. The code numbers of ISO-8859-1 characters are exactly the same in
Unicode as in ISO-8859-1. The range U+0000 to U+00FF has thus been directly copied from ISO-
8859-1, although it has been divided into blocks: Basic Latin (U+0000 to U+007F) and Latin-1
Supplement (U+0080 to U+00FF).

Beware that Unicode is not an extension of Windows Latin 1 (windows-1252, often misleadingly called
"ANSI") in the same sense. Unicode contains all Windows Latin 1 characters, of course, but
characters with numbers 80 to 9F (hexadecimal) in Windows Latin 1 have quite different numbers in
Unicode. They have in fact been scattered around in different blocks, although many of them appear
in the General Punctuation block. The reason for this that in Unicode, range U+0080 to U+009F is
reserved for control characters, as in ISO-8859-1.

The special role of ISO-8859-1 of course makes many things technically simpler to people and
applications for which ISO-8859-1 has been suitable. If they need some additional characters, they
can switch to Unicode smoothly, to some extent.

Conversion from ISO-8895-1 to Unicode requires a change in data representation, though. A file of
ISO-8859-1 characters consists of 8-bit units, octets, in a manner that is different from Unicode
encoding forms. If the data contains ASCII characters only, no change in representation is needed: a
file of ASCII characters can be treated as a file of Unicode characters (in the Basic Latin block) in the
UTF-8 encoding.

Since ISO-8859-1 is a mixture of rather different characters, the decision to use it as the model for
the first two blocks in Unicode has implications for other blocks. The ISO-8859-1 characters do not
appear as duplicates in other blocks, even though they would semantically belong there. For
example, the plus sign +, once included in ASCII, does not appear in the Mathematical Operators
block.

4.3.5. Internal Structure of Blocks

The internal structure of a block is not something that you need to know to use Unicode. Just as
numbers of characters are in principle just labels permanently attached to characters, the mutual
order and position of characters (by their code numbers) in a block is "arbitrary" in a sense. For

http://lib.ommolketab.ir
http://lib.ommolketab.ir

example, letters might or might not appear in alphabetic order. Although the standard guarantees
that assigned code numbers will never change, it is usually not a good idea to base processing of
characters on the mutual relationships of their code numbers.

Unicode blocks are usually shown as arrays with 8 or 16 columns. The code charts in the Unicode
standard organize the arrays so that they need to be read by column, if you wish to follow the code
number order. For example, Figure 4-1 shows the start of the code chart for the Cyrillic block.
Characters U+0400, U+0401, etc., appear in the first column, under the column heading "040." The
order looks rather random, if you read the array by row, but if you read by column, and hence by

code number order, it has parts where the order corresponds to the alphabetic order in Russian: ,

, ,....

Each block is meant to contain a collection of characters that belong together in an essential way.
Often the collection and its internal order have been taken from an older, 8-bit character code
designed for some language or purpose, though with modifications. In this context, official
international (ISO) standards have been preferred to vendor-specific codes, even when the latter
have been more common in actual use.

For example, the Cyrillic block is based on the ISO 8859-5 code, which we discussed in Chapter 3.
Characters in the block have the same relative positions as in ISO 8859-5. However, ISO 8859-5
characters, such as Latin letters, that already exist in Unicode in

Figure 4-1. Excerpt from the code chart for the Cyrillic block

other blocks were not included in the Cyrillic block. (Many characters in Figure 4-1 look like Latin
letters, but they are Cyrillic letters.) This might be described so that the characters in ISO 8859-5
with code numbers A1 to FF were directly copied to Unicode range U+0401 to U+045F, but
characters that exist in other blocks (such as Basic Latin and Latin-1 Supplement) were omitted. The
rest of the range U+0400 to U+04FF (U+0400 and columns 046 through 04F in the code chart
illustrated in Figure 4-1) was used for Cyrillic characters not present in ISO 8859-5.

The omission of already coded characters follows the principle of not coding the same character
twice, even though this prevents simple correspondence between other character codes and Unicode.
If the Cyrillic block were just a copy of the ISO 8859-5 code table, shifted to a different range,
transcoding between ISO 8859-5 and Unicode would be trivial. However, many other things would

http://lib.ommolketab.ir
http://lib.ommolketab.ir

have become more complex, if such an approach had been taken. For example, all ASCII characters
would appear in many copies in different blocks. This would waste coding space and make even
simple tests like "is this character 'X'?" more complicated: the data being tested would need to be
tested against all the appearances of "X" in different blocks.

This explanation was meant to emphasize that Unicode blocks are not similar or comparable to 8-bit
code, even in the relatively common case where a block consists of one "row" of 256 code points and
has been defined with some 8-bit code in mind. Using Unicode, you don't switch between blocks by
selecting (in some special way) first some block, then another; you just use characters from different
blocks.

Unicode blocks are not "code pages."

Some blocks contain characters from one script (writing systems, see Chapter 7) only, and might be
named according to the script, such as "Devanagari." However, in general there is no one-to-one
mapping between blocks and scripts. Blocks may contain characters from several scripts, and many
scripts have been divided into several blocks.

The block concept and the principle of not coding the same character twice can be illustrated by
looking at the block Superscripts and Subscripts. It contains the following code points :

U+2070 superscript zero

U+2071 superscript Latin small letter "i"

U+2072 (reserved, with a cross reference note to U+00B2 superscript two)

U+2073 (reserved, with a cross reference note to U+00B3 superscript three)

U+2074 superscript four

etc., up to U+2079 superscript nine

This looks odd, since we would expect that the superscript digits appear in consecutive code
positions. There is a "hole" where we would expect superscript two and superscript three to appear,
but the code points are reserved. The reason is that those characters, 2 and 3, already exist in the
Latin-1 Supplement block. The positions where they would otherwise appear were intentionally left
unassigned. This made it explicit that those superscripts do not appear in the block where one might
expect to find them, but elsewhere.

So why isn't U+2071 reserved analogously, with reference to U+00B9 superscript one? You don't
want to hear the full story, but originally it was reserved, an then allocated to superscript "i" in
Unicode Version 3.2 after a long debate. In Unicode terminology, "reserved" means "unassigned (for
now)," instead of guaranteeing that the code point will remain unassigned.

4.3.6. Noncharacter Code Points

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The last two code points of the BMP, namely U+FFFE and U+FFFF, as well as the corresponding
points on other planes, have been explicitly defined as forbidden in Unicode data. By definition, they
do not denote any character or control function, and their occurrence in character data may be
treated as an error. However, they may appear in a data stream that contains character data; they
would then indicate noncharacter data.

The reason for disallowing U+FFFEin any Unicode data is that such a convention helps to detect
common errors caused by different byte orders. If a Unicode text file begins with a byte order mark
(BOM, U+FEFF), then an attempt to read the file on a system or application that implies the opposite
byte order will result in an immediate error. The byte order mark will be read with octets swapped,
U+FFFE, and some error recovery can be applied. Byte order is a matter of encoding, to be discussed
in Chapter 6. Briefly, byte order specifies the order of octets within a four-octet unit of data.

In a sense, this might be seen as assigning U+FFFE a meaning: it could be interpreted as a "reversed
byte order mark," so that an application can simply reverse the order when reading the data. Such
things happen when error processing is defined exactly or is obvious from context. An error becomes
a feature then.

The code point U+FFFF corresponds to the number -1 when interpreted as a signed integer in two's
complement notation. Making it a noncharacter continues an old tradition. Even in the ASCII world,
the corresponding code point FF is often treated the same way. Programs that were written to
process ASCII data only, but using at least 8-bit storage units, were often made to treat an octet
with the first bit set as indicating the absence of character datae.g., the end of an array of characters
or the end of input stream. It was most natural to use an octet with all bits setFF, for this purpose. In
particular, an input routine that returns a character can use U+FFFF as its return value, to indicate
that no character was received.

Moreover, code points U+FDD0..U+FDEF have been defined as noncharacters, and applications may
use them for different sentinel or indicator purposes. Similarly to U+FFFE and U+FFFF, they should
not appear in character data. However, in a program, a function that normally returns a character
may return one of these values to signal "no character" and some additional information. These code
points can also appear in a data file as long they are not interpreted as characters.

When a program encounters a noncharacter code point in character data, the Unicode standard
allows several options:

It may be treated internally as an indicator or sentinel.

An error may be signaled.

It may be ignored.

It may be removed from the data stream (that the program passes forward).

It may be treated as an unassigned code pointe.g., so that if a function for getting the value of
a property for a character is called with a noncharacter argument, the function would return the
same value as for an unassigned code point.

4.3.7. Classification of Code Points

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Not all code points in the Unicode coding space correspond to characters. There are the following
possibilities:

Assigned

The code point is assigned to a character. Such an allocation will never be removed or
changed, though the properties of the character may be changed. The character might be
declared as deprecated, but it will remain a Unicode character. The word "character" is to be
interpreted in a broad, Unicode sense: it covers normal characters with graphic appearance,
combining diacritic marks (which are normally shown as small marks on a base character),
different spaces, formatting characters such as line break indicators, and control characters, to
be defined in other standards.

Private use

The code point is reserved for "private" usei.e., for use by a specific agreement between
interested parties. This, too, is a permanent allocation. Applications may use the code point for
their own purposes, such as representing a character that has not been included in Unicode.

Noncharacter

The code point is designated as not corresponding to any character ever. This is permanent:
the code point will never be assigned to a character. For historical reasons, some such code
points are called "surrogate" code points.

Unassigned

The code point is currently unassigned. It may be allocated in the future. Use of the code point
for any purpose is unwise: if you use it for private purposes now, it may later become assigned
to a character in the Unicode standard. To emphasize this, unassigned code points are called
"reserved."

For example, code point U+0021 is assigned to a character, the exclamation mark. Code point
U+E000 is reserved for private use; it is the first code point in a large range of private use
characters. Code point U+D800 does not correspond to any character; it corresponds to a "high-
surrogate" value but does not represent any character. Code point U+0380 is unallocated in Unicode
4.1; it might be assigned to a character laterprobably to a Greek character, since it belongs to a
block of Greek characters.

Previously, the situation was more complicated due to so-called surrogates. Terminology and
concepts around them were confusing, but the surrogate concept has now been moved from the code
point level to the encoding level, to be discussed in Chapter 6. The old approach is still reflected in
the names "high-surrogate code point" and "low-surrogate code point."

This probably sounds rather confusing. Table 4-3 is meant to illustrate the classification. The column
"Category" lists the short symbols of General Category values (to be explained in Chapter 5) for code
points that belong to the type.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 4-3. Classification of code points

Type Description Example Category

Graphic A visible character "A" U+0041 L, M, N, P, S, Zs

Format Invisible, formatting Line feed U+000A Cf, Zl, Zp

Control Control code, defined elsewhere Backspace U+0008 Cc

Private use Use by "private" agreement U+E000 Co

Surrogate Reserved, should not appear U+D800 Cs

Noncharacter Reserved for noncharacter use U+FFFF Cn

Reserved Unassigned (for now) U+05FF Cn

Depending on your viewpoint, you might say that only code points of type "graphic" correspond to
characters proper. You might take a broader view and call also "format," "control," and "private use"
code points as representing characters. Other code points do not correspond to characters, although
reserved code points may do so in future versions.

To illustrate the use of the coding space, Table 4-4 shows the number of code points as defined in the
Unicode 4.1 standard and as planned for the Unicode 5.0 standard. The counts are given separately
for the Basic Multilingual Plane and other planes.

Table 4-4. Number of different code points in Unicode

Ver. 4.1 5.0 (plan) Type of code points

51,640 51,980 Assigned graphic characters (BMP)

35 35 Assigned format characters (BMP)

65 65 Assigned control characters (BMP)

6,400 6,400 Private use code points (BMP)

2,048 2,048 Surrogate code points (BMP)

34 34 Noncharacters, other (BMP)

5,314 4,974 Unassigned (reserved) code points (BMP)

45,875 46,904 Assigned graphic characters (supplementary planes)

105 105 Assigned format characters (supplementary planes)

131,068 131,068 Private use code points (supplementary planes)

32 32 Noncharacters (supplementary planes)

871,496 870,467 Unassigned (reserved) code points (supplementary planes)

1,114,112 1,114,112 All code points together

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.3.8. Surrogates

Unicode uses the word "surrogate" in a particular technical meaning. To avoid confusion, it is best to
avoid this word in its loose everyday meaning; use words like "replacement" instead if you just want
to write about using a character in the role of another character.

Originally, surrogates were invented as a method of overcoming the limitations of the 16-bit coding
space. To represent characters outside that space, you would reserve some ranges of 16-bit values,
called high and low surrogates, and represent a character as a pair of such values. Naturally, the
number of characters that you can represent in the 16-bit coding space itself was decreased, since
the high and low surrogates must not be used to represent characters, except in pairs as defined.

In Unicode as defined now, surrogates are not to be used as code points. The ranges allocated for
high and low surrogates exist in the coding space, as U+D800..U+DB7F and U+DC00..U+DFFF, but
code points in those ranges are not supposed to appear in Unicode data as such. Instead, one
particular encoding, UTF-16, uses code units (16-bit quantities) with values in the surrogate ranges
as a method of encoding characters outside the Basic Multilingual Plane.

Thus, when a program reads data in UTF-16 encoding, it needs to interpret any pair of surrogate
code units as a single Unicode character. After this interpretation, the data contains the character
with its designated code number (> FFFF hexadecimal), with no trace of any surrogates.

If a code point in a surrogate range is encountered in processing Unicode data (assuming it has been
decoded from an eventual encoding such as UTF-16), the situation should be handled as an error. If
it's not a high surrogate immediately followed by a low surrogate, there might be no way to handle
the situation meaningfully, since we cannot know what happened. But if there is a surrogate pair,
odds are that the data was in fact UTF-16 encoded and it was not decoded properly, so you might
interpret the data according to UTF-16.

When using UTF-8 (8-bit code units) or UTF-32 (32-bit code units), there is no use for surrogates in
any sense.

4.3.9. Unassigned Code Points and Private Use

Unassigned code points are simply points that have neither been allocated for any use nor declared
as noncharacters or private use points. You might visualize them as white areas on a map, or as
unoccupied rooms in the coding space. Programmers often use such "free" positions for their own
purposes, but that would be wrong here; the unassigned code points are not free at all. They are
reserved for eventual future extensions.

By using unassigned code points, you would violate the Unicode standard. On the practical side, you
would take an unnecessary risk. It is quite possible that a future version of Unicode will assign a
specific meaning to the code point. This would involve properties that you cannot anticipate.

Even if the characters you need have some planned or proposed area where there might be placed in
a future version of Unicode, it would be a serious mistake to use code points in such an area. The
Roadmaps to Unicode at http://www.unicode.org/roadmaps/ show some possible allocations of

http://www.unicode.org/roadmaps/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

areas, but they exist for the purposes of planning future versions of Unicode. If you need to use
hieroglyphs, for example, you might naively look at the roadmaps and see that the code range
U+14000 to U+16BFF has been tentatively allocated for Egyptian and Mayan hieroglyphs, with some
more detailed ideas on its internal structure. Using any code point there would be even worse than
picking up an unassigned code point at random, since it is probable that some hieroglyphs will be
allocated there, and this would almost certainly conflict with the way you would assign characters to
code points.

The Unicode standard reserves 6,400 code points in the BMP for so-called private use, for "user-
defined characters." This should be more than enough in most cases, but there are 131,068
additional private use code points in other planes. More exactly, the Private Use Area (PUA) consists
of the following code points:

U+E000 to U+F8FF (on plane 0i.e., BMP)

U+F0000 to U+FFFFD (on plane F hexadecimal)

U+100000 to U+10FFFD (on plane 10 hexadecimali.e., the last plane)

Here the word "private" has a wider meaning than in common language. For example, two large
public institutions could agree on the use of some private use code points for their information
interchange. You could use private use code points even in data that you distribute in public, as long
as you make it clear that the interpretation and processing of the data requires knowledge about
special definitions you have made.

You should not use unassigned code points even for internal purposes like bookkeeping or "sentinels"
such as indicators of end of character data or separators between blocks of character data. For such
purposes, you can often use code points assigned to control characters or declared as noncharacters.

Do not use unassigned code points for anything. If you need a code point for a
character that cannot be expressed in Unicode (yet), use private use code
points.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.4. Unicode Terms

The Unicode standard and related documents contain a large number of special terms, often
consisting of common words in highly specialized meanings. In this book, the presentation of the
terms has been spread across the material, into contexts where the terms can be illustrated and
exemplified. To check the meaning of a particular term, it is therefore simplest to consult the index.

In this section, some special Unicode terms are presented. The terms refer to concepts that don't
quite belong to the core of Unicode and don't belong to special sections either.

4.4.1. Deprecated and Obsolete Characters

A deprecated character is a character that has been included in Unicode but declared as deprecated
in the Unicode standard. This indicates a strong recommendation that the character not be used. It
remains in Unicode, though, due to the stability principle. For example, a character may be declared
deprecated if it turns out that it was introduced into Unicode in error. There is a machine-readable list
of deprecated characters in the document http://www.unicode.org/Public/UNIDATA/PropList.txt. In
Unicode 4.1, there are few deprecated characters: the combining marks U+0340 and U+0341, the
Khmer characters U+17A3 and U+17D3, and the formatting characters U+206A..206F.

In many other standards, the term "deprecated" contains a warning that deprecated constructs may,
and probably will, be removed in future versions of the standard. In the Unicode standard, there is no
such idea; on the contrary, deprecated characters are guaranteed to remain in the standard.

An obsolete character is a character that is not used in new texts anymore but has been included into
Unicode due to its historical usage. Obsolete characters are not deprecated, as a rule. It is quite
appropriate to use an obsolete character when writing text that discusses old texts that contain the
character. For example, Latin small letter long "s," • (U+017F), is an obsolete character that was
used in Gothic (blackletter) writing instead of "s" in some positions. In a broader sense, a character
can be regarded as obsolete if it is no longer used in some language, even if other languages may
use it.

These concepts are quite different from concepts like "noncharacter" or "unassigned code point."
Deprecated and obsolete characters fall into the category of graphic characters in the basic
classification of code points, but they are pragmatically different from normal characters.

4.4.2. Digraphs

A digraph is a combination of two successive characters treated as a unit in some sense, such as "ch"
in many languages (e.g., when used to indicate one sound) or "ll" in Spanish, where it denotes a
particular sound and might be treated in sorting as if it were a single character. Thus, a digraph is a
pragmatic concept, not a formal one, and it is an example of a text element (see next subsection).

http://www.unicode.org/Public/UNIDATA/PropList.txt
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Speakers of a language may intuitively understand a digraph as "one character," especially if the
ordering rules of the language treat it that way. This is especially true for digraphs that are used as
replacements for characters, such as "ae" for ä when writing German (under conditions where one
cannot or dare not use ä). From the Unicode perspective, it's still two characters.

However, there are many Unicode characters that are originally digraphs but are now treated as one
character. Examples include characters that are completely independent in Unicode, such as small
Latin letter ae æ (U+00E6) (even though an English reader may well see it just as a way of writing

"ae" together) as well as compatibility characters such as Latin small ligature ij " " (U+0133), which
decomposes into "i" followed by "j."

Thus, a digraph is normally written as two separate characters in Unicode. Treating them as a unit is
up to an application. A digraph may or may not be presented visually as a ligaturei.e., as a single
glyph that contains the two characters "melted together."

Similarly, a trigraph is a sequence of three characters treated as a unit, as "sch" in German, where it
denotes roughly the same sound as the digraph "sh" in English.

4.4.3. Text Elements

The concept of text element is informal: it means a sequence of characters (including the special case
of one character) that is treated as a unit in some processing. In typical character input and output,
characters are text elements . In layout processes, syllables might be treated as text elements, since
line breaks are usually allowed between syllables but not within them. When you form a text
concordance (a list of occurrences of wordse.g., in alphabetic order), a word is a text element.

The concept is sometimes confused with a combining character sequencei.e., a sequence consisting
of a base character and one or more combining characters (such as combining accents). Although a
combining character sequence could also be a text element, that's casual. A text element is whatever
an application regards as a text element.

4.4.4. Unicode Strings

The term "Unicode string" has a more technical meaning than you might expect. It does not refer to
a string (sequence) of Unicode characters (code points) but to a sequence of code units. Thus, the
components of the string are of fixed size in bits (in practice, 8, 16, or 32 bits). In many
programming languages, Unicode strings have a code unit size of 16 bits. This does not limit the
range of characters, since such a string could be interpreted according to UTF-16.

Thus, a component of a Unicode string need not correspond to a character. A code unit could be part
of the representation of a character (say, the second octet of a two-octet representation in UTF-8).
Even if a code unit as such represents a code point, it can be a noncharacter or an unassigned code
point.

Although a Unicode string is often in some encoding, this is not a requirement. It is possible to
consider any sequence of octets as a Unicode string, even if the sequence does not correspond to the
rules of any Unicode encoding (in practice, UTF-8 in this case). You could also have a sequence of 16-
bit (double byte) code points containing isolated surrogates.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The point here is that "Unicode string" is a technical concept for use in programming, and it is
intended to be very simple for such use. A program or function that accepts a Unicode string as input
need not check its internal structure and may process in any suitable way. If the output is a Unicode
string, it need not correspond to any encoding.

The reason behind this is efficiency. Software designers can make programs check for the integrity of
a Unicode string as representing a sequence of characters, but they can do it at the point they prefer.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.5. Guide to the Unicode Standard

The newest version of the Unicode standard itself should be your ultimate reference in matters of
Unicode. It is, however, very large and partly very technical and hard to read, though many parts are
enjoyable and smoothly written. Perhaps most frustratingly, it is often difficult to find the place or
places where some topic is covered; the information might be scattered to different sections of the
standard. To help you to find the relevant information and to make use of it, here is a brief guide to
the standard.

4.5.1. Accessing the Unicode Versions

The Unicode standard is available online (mostly in PDF format), but not necessarily as a simple
consolidated version. You may need to combine information from a major base version with later
modifications issued as minor versions. At the time of this writing, the current version is 4.1.0, and
its content is defined cumulatively by the following documents:

The Unicode standard, Version 4.0

http://www.unicode.org/versions/Unicode4.0.0/

Unicode 4.0.1, an update to the previous

http://www.unicode.org/versions/Unicode4.0.1/

Unicode 4.1.0, another update (minor version)

http://www.unicode.org/versions/Unicode4.1.0/

The Unicode database reflects the newest version, but the prose text and code charts may need to be
read along with the update documents.

A previous version of the standard, Unicode 3.0, is available online, too, and it might be interesting
for comparison: http://www.unicode.org/unicode/uni2book/u2.html. There are also many old
database files available via http://www.unicode.org/versions/.

4.5.2. What Material Constitutes the Unicode Standard?

The Unicode standard is available as a book, though there can be a delay between issuing the

http://www.unicode.org/versions/Unicode4.0.0/
http://www.unicode.org/versions/Unicode4.0.1/
http://www.unicode.org/versions/Unicode4.1.0/
http://www.unicode.org/unicode/uni2book/u2.html
http://www.unicode.org/versions/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

standard and printing it. The online version contains PDF documents that correspond to the chapters
of the book. But these alone are not self-contained presentations of the standard. There are several
points to note. As mentioned earlier in the chapter, there can be incremental updates (minor
versions):

On the Unicode web site, there's a page titled "Updates and Errata," which lists official
corrections to the standard. As new versions are issued, corrections are incorporated into them,
and the "Updates and Errata" page is effectively cleared. The page is
http://www.unicode.org/errata/.

There is a series of documents called "Unicode Technical Reports," some of which are called
"Unicode Standard Annexes," (UAX), and regarded as integral part of the standard but
published as separate documents. They are available on the CD-ROM that accompanies the
book as well as (as possibly updated versions) on the Unicode web site, at
http://www.unicode.org/unicode/reports/.

There is the "Unicode Character Database," which defines many properties for characters, in a
manner suitable for automated processing. The database and the description of its structure are
available via http://www.unicode.org/ucd/.

4.5.3. Viewing the Standard Online

As mentioned earlier in the chapter, the online standard is mostly in PDF format. Thus, you need
some software that can display PDF files, such as Adobe Reader. The online version cannot be printed
using normal methods, so you may still have a reason to buy the printed standard. Copying of texts
is possible: using Adobe Reader's text select tools, you can copy text onto the Windows clipboard.

The main table of contents of the online version consists of the following parts:

Front Matter

This includes a table of contents as in a book, in PDF format, but also "Unicode 4.0 Web
Bookmarks," which is a very handy hypertext table of contents. It is in HTML format, with links
pointing to locations in the PDF files.

Chapters

The main text of the standard. See below for an explanation of its structure.

Appendices and Back Matter

Material such as a glossary (in PDF format).

Unicode Standard Annexes

The number of the annexes varies by standard version, since annexes may get incorporated

http://www.unicode.org/errata/
http://www.unicode.org/unicode/reports/
http://www.unicode.org/ucd/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

into the main text when creating new versions.

The Unicode Character Database (UCD)

Consists of HTML and plain text files.

Related Links

The links point to additional material on the Unicode site, such as Glossary of Unicode Terms
(updated and modified, in HTML format).

4.5.4. The Chapters of the Standard

The breakdown of chapters is as follows:

Chapter 1: Introduction

This is a short chapter, and it gives a good overview of some basic ideas.

Chapter 2: General Structure

This gets more detailed and more technical than the Introduction. It presents the fundamental
principles of Unicode, but it is rather hard to read. After finishing this book, though, you can
probably understand this chapter.

Chapter 3: Conformance

This is a rather technical chapter, which is important to Unicode implementers. For a "normal"
reader, there are some useful explanations of basic concepts like character semantics and code
values.

Chapter 4: Character Properties

Describes how the standard defines some general properties for characters, such as General
Category (letter, number, separator, etc.) or case mappings (e.g., what character, if any, is
the uppercase equivalent of a lowercase letter).

Chapter 5: Implementation Guidelines

As the name says, this is mainly for implementers. But reading 5.1, "Transcoding to Other
Standards," can be useful to anyone, and browsing through the headings is a good idea, too.
Note in particular that this chapter describes some general principles according to which
programs might recognize grapheme, word, line, and sentence boundaries (e.g., to implement
a command for moving forward one sentence in text processing). It also explains the problems

http://lib.ommolketab.ir
http://lib.ommolketab.ir

of sorting and searching, which are more language-dependent than you may have thought.

Chapter 6: Punctuation and Writing Systems

This is the first one of the chapters (6 through 15) that describe the various sets of characters.
They contain quite a lot of practical information about the use of various characters and
comparisons between characters (e.g., a comparison of different dash-like characters). Note
that the sets do not necessarily correspond to blocks. For example, there are punctuation
symbols scattered around into various blocks, in addition to the General Punctuation block. This
chapter begins with an overview of writing systems, also known as scripts.

Chapter 7: European Alphabetic Scripts

Latin, Greek, Cyrillic, etc.

Chapter 8: Middle Eastern Scripts

Hebrew, Arabic, Syriac, Thaana.

Chapter 9: South Asian Scripts

Devanagari, Bengali, etc.

Chapter 10: Southeast Asian Scripts

Thai, Lao, etc.

Chapter 11: East Asian Scripts

Han (especially Chinese-Japanese-Korean (CJK) unified ideograms), Hiragana, Katakana,
Hangul, Bopomofo, Yi.

Chapter 12: Additional Modern Scripts

Ethiopic, Mongolian, Osmanya, Cherokee, Canadian Aboriginal Syllabics, Deseret, Shavian.

Chapter 13: Archaic Scripts

Ogham, Runic, and other historical scripts.

Chapter 14: Symbols

This includes a rich set of characters used as symbols that are relatively language-independent,
such as currency symbols, letterlike operators (which are letters taken into some special use),
number forms, mathematical, technical, geometric, and other symbols.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 15: Special Areas and Format Characters

This chapter discusses codes used for various control purposes, the "private use" area, the
"surrogates" area (based on the idea of using two 16-bit values to present one character), and
the special code points at the end of the Unicode range (e.g., byte order mark).

Chapter 16: Code Charts

This "chapter" presents the character themselves, and it constitutes about half of the volume.
It begins with a short legend and explanations. Then the blocks are presented, in code number
order. For most blocks, a chart of (typical) glyphs for the characters in it is given first, followed
by a list of the characters, with their code numbers, glyphs, names, and possibly alternate
names, references to similar (but distinct) characters, decompositions (compatibility or
canonical), and usage notes. These descriptions do not list all the properties of the characters
as defined in Unicode; they do not include all the information in the Unicode database.

Figure 4-2. A search from the Zvon database by character name has
found the character, and a link to information on it is included

Chapter 17: Han Radical-Stroke Index

For the Chinese-origin ideograms. "To expedite locating specific Han ideographic characters
within the Unicode Han ideographic set, this chapter contains a radical-stroke index." The Han
Radical-Stroke Index itself is available as a separate document.

Thus, Chapters 1 through 5 form the general part. Their essential content is covered in this book. The
relevance of the other parts depends on what kinds of characters you work with.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.5.5. How Do I Find All the Information About a Character?

If you are looking for the most adequate Unicode character for some particular use, there is no
simple answer. You might browse through the chart for the block where you expect the character to
appear; for example, a mathematical symbol is probably in the Mathematical Symbols block. You can
also use more systematic search methods. A few alternatives are described in the following sections.

4.5.5.1. The Zvon database

If your clue to the character is its name, or its Unicode number, you could use the online Zvon
character database: http://www.zvon.org/other/charSearch/PHP/search.php. The database, although
not authoritative, is based on information at the Unicode site. Beware that the name you have in
your mind might not be the one under which the character is known in Unicodethe name might have
been assigned to a different character there.

The information in the Zvon database (of which an example is shown in Figure 4-3) is the same as in
the Unicode code charts, including the annotations (called "Comment" in

Figure 4-3. Information on a character in the Zvon database

Zvon), and some additional derived information such as the XML character reference. The information
does not include the notes made in the prose text of the standard.

4.5.5.2. Using Unibook

Unibook is software for offline browsing of information about characters, using a graphic user

http://www.zvon.org/other/charSearch/PHP/search.php
http://lib.ommolketab.ir
http://lib.ommolketab.ir

interface, in a Windows environment. It can be downloaded for free from
http://www.unicode.org/unibook/, and it has detailed instructions for installation and use. It has no
technical support, though. Figure 4-4 is a snapshot of using Unibook: the user has searched for "lira
sign" (using Ctrl-F to invoke a Find dialog) and has got the character highlighted in its position in a
code chart. Clicking on the character causes information to be displayed in a pop-up window, as
shown in Figure 4-5.

4.5.5.3. Using the Unicode standard

Assuming that you know the code number of a character, at least as a tentative answer to the
question "Which character should I use?", you can consult the following to see what the Unicode
standard says about it:

Its description in the code charts .

Its properties as defined in the database. Note that this means several different properties,
defined in different files of the database.

Any additional explanations you might find in the standard, at various places. There is no
systematic way to locate such information, but at least you should look at the applicable part in
Chapters 6 through 15. They often contain information that is often similar to the general
descriptions preceding the code chart (in Chapter 16), just placed elsewhere.

Let us take a simple example: suppose we need all the information on the character U+2206. Since it
falls into the range U+2200..U+22FF, we find it in the Mathematical

Figure 4-4. Using Unibook, the Unicode character browser

http://www.unicode.org/unibook/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Operators block. This suggests that it is a mathematical symbol in some sense. The formal
confirmation for this is that the Unicodedata.txt file in the character database contains the following
entry for it:

2206;INCREMENT;Sm;0;ON;;;;;N;;;;;

The file consists of lines, each of which gives information about a character, with information fields
separated by semicolons. The fields are summarized in Table 4-5 and described at
http://www.unicode.org/Public/UNIDATA/UCD.html in more detail. (See also Chapter 5 for a
description of the general format of Unicode database fields.) Thus, the example tells that character
U+2206:

Has the name INCREMENT.

Belongs to general category Sm, which is an "informative" (as opposite to "normative")
category. The abbreviation stands for "Symbol, math." Chapter 5 explains what categories
mean in general; note that the categories are referred to when defining various properties, such
as line breaking properties (UAX #14).

Belongs to canonical combining class 0, which roughly means just "base character"; see section
4.3 of the standard.

Belongs to bidirectional category ON, "Other Neutrals."

Has the Bidi mirrored property value of N, which means "not mirrored."

Figure 4-5. Viewing character information in Unibook

http://www.unicode.org/Public/UNIDATA/UCD.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 4-5. Fields in the Unicodedata.txt file

Field name Default Meaning of the field

0 Code number of the character (hex.)

1 Name Unicode name of the character

2 General Category Cn Overall classification for the character

3 Canonical Combining Class 0 Used in the Canonical Ordering Algorithm

4 Bidi Class L,AL,R Defines the bidirectional behavior

5 Decomposition Mapping = Canonical or compatibility decomposition

6 Numeric Value (none) Numeric value, if the character is numeric

7 Numeric Value (none) Numeric value, if digit but not decimal

8 Numeric Value (none) Numeric value, if decimal digit

9 Bidi Mirrored N Y (yes), if mirrored in bidirectional text

10 Unicode 1 Name (none) Old name, defined in Unicode Version 1.0

11 ISO Comment (none) Comment in the ISO 10646 standard

12 Simple Uppercase Mapping = Uppercase version as single character

13 Simple Lowercase Mapping = Lowercase version as single character

14 Simple Titlecase Mapping = Titlecase version as single character

Figure 4-6. Description of character U+2206 in a code chart

The Unicodedata.txt file is a handy reference to some properties of characters.
Using a suitable text editor, you can find information on characters quickly, if
you download a copy of the file from
http://www.unicode.org/Public/UNIDATA/UnicodeData.txt.

http://www.unicode.org/Public/UNIDATA/UnicodeData.txt
http://lib.ommolketab.ir
http://lib.ommolketab.ir

We find additional information on our sample character in the code chart for the Mathematical
Operators block, as shown in the extract in Figure 4-6.

The description characterizes some uses of the character by listing "Laplace operator" and "forward
difference" as synonyms for it (in some usage). Obviously, the primary name suggests the use as an
increment symbol in some sense. Note that this does not constitute an exclusive list of uses for the
character by any means, or that it would be obligatory to use this character for those purposes even
when it is available in the repertoire. The actual usage is a decision made by mathematicians.

The description also clarifies that this is not the same character as Greek letter capital delta or a
white up-pointing triangle (in the Geometric Shapes block). Note that an arrow means in principle
just "cross reference," but quite often its specific purpose is to make it explicit that two characters
are not equal, although they may have identical or similar glyphs.

Then let us check what the corresponding general description in Chapter 12 says. The relevant part in
the standard, section 14.4, contains a clarifying note. It says that the INCREMENT character is one of
the mathematical operators derived from Greek characters that "have been given separate encodings
because they are used differently from the corresponding letters." It adds: "These operators may
occasionally occur in context with Greek-letter variables." (In contrast, Unicode 3.0 said that these
characters "have been given separate encodings to match usage in existing standards.") In practice,
there are borderline cases: when a character with the shape of a capital delta occurs in printed form
only, or in an encoding that lacks a code corresponding to U+2206, it can be difficult to say whether
it should be interpreted as the Greek letter (U+0394) or as U+2206. For example, what about the
delta amplitude function or the symbol for the area of a triangle?

There are also dozens of other properties defined for characters than those defined in the
Unicodedata.txt file, as explained in Chapter 5. Although not all properties are practically relevant for
all characters, many of them form part of the meaning of a character in a broad sense. They affect
behavior like line breaking and writing direction. For U+2206, there are really no surprises in the
properties. For example, in line breaking, it behaves the same way as letters, which should be
suitable. On the other hand, for the en dash "" U+2013, for example, the Unicode line breaking rules
allow a break after it (e.g., an expression like "58" could be broken as "5" on one line and "8" on the
next). In borderline cases at least, such things might matter in the choice of character.

Thus, the identification of a symbol as a particular Unicode character is not really an exact science.
There are matters of interpretation, and there is no comprehensive index to all information on a
character in the standard.

4.5.6. Additional Reference Material

The Unicode standard and its annexes is partly rather large and complex, and it is not always suitable
for quick checks or efficient searches. You may therefore wish to consult other references as well,
even though they are not authoritative. To a large extent, other references have been constructed
automatically from material issued by the Unicode Consortium, but this does not guarantee that they
are error-free; programs have bugs.

Some practical references were listed in Chapter 1. The following online material is more technical or
more specialized:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Die Unicode-Datenbank by Jürgen Auer

This site (http://www.sql-und-xml.de/unicode-database/) lists Unicode 4.1 characters by block
but also by the 30 categories, by additional properties, and by bidirectional value. It also
mentions for each character the version of Unicode in which it was introduced, helping to
estimate how well it is supported. The explanations are in German, but you can mostly use it
without knowing German.

Unicode Charts by Mark Davis

This site (http://www.macchiato.com/unicode/charts.html) lists only Unicode 3.0 characters,
but it has some useful features. It lets you search for the code of a character by typing or
pasting a character into a text box and hitting Enter. You can also view the GIF images of
characters instead of the rendering of your browser using some font on your computer.

Unicode Character Properties Excel Workbook

This site (http://scripts.sil.org/ExcelUnicodeData) presents the contents of several Unicode
database files as a single file that you can open in MS Excel or in Excel Viewer.

DecodeUnicode, a wiki activity

This site (http://www.decodeunicode.org) combines data extracted from the Unicode site with
additional data contributed to different people using the wiki approach: anyone can write and
edit anything. Therefore, the site contains a mixture of descriptive information. The user
interface is not intuitive, and much of the material is in German only.

http://www.sql-und-xml.de/unicode-database/
http://www.macchiato.com/unicode/charts.html
http://scripts.sil.org/ExcelUnicodeData
http://www.decodeunicode.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.6. Unicode and Fonts

One of the 10 design principles is that Unicode encodes characters, not glyphs. Thus, Unicode is not
about fonts . Although proper presentation of some Unicode text requires a font that contains the
characters actually used in the text, any such font will do. You can even use a mixture of fonts. The
font selections have to be made outside Unicode.

4.6.1. Unicode as Plain Text

Unicode is basically for plain text, or text as such, without formatting features, structural indicators,
or processing commands. Plain text can be characterized as a universal, simple, and portable data
format. You can save text data as plain text and expect people to be able to read it after a hundred
years, as long as the text is physically preserved. Would you bet on the format used by your favorite
word processor to do the same, given the past experience with incompatible data formats?

This doesn't mean that Unicode wants everyone to use plain text. On the contrary, much of work
with Unicode has been pragmatically motivated by the advance of markup like XML as well as
databases that store text in complex formats. Unicode is used more and more in data formats where
characters and strings appear as constituents of higher-level constructs.

Unicode deals (in principle) exclusively with the plain text level of data representation, because it was
designed to do just that. Some specification must do that, and it would be impractical to let each data
format define its own idea of characters. It has turned out to be easier to manage complex things by
dividing them into simpler parts, such as levels of data representation.

Plain text is not always quite plain. First, it usually has a division into lines. It may contain spaces,
which are not always just plain separators between words but may involve formatting purposes,
especially when consecutive spaces or fixed-width spaces are used. There are other deviations from
the plain text principle, such as characters for tabbing or affecting ligature behavior. Moreover, some
typographic variation can be encoded into the choice of a character.

4.6.2. Font Variants as Characters

Despite the "characters, not glyphs" principle, some Unicode characters are effectively variants of

other characters, in the sense of font variation. For example, the character script capital "H"
(U+210B) is equivalent compatibility-wise to Latin capital letter "H" H (U+0048). The equivalence is
defined using the notation 0048. This means that it is a font variant of "H" in a sense, but in a
rather abstract sense: no specific font is implied, just the general idea of using a script (handwriting)
style.

In practice, programs do not select a glyph for the script capital "H" by picking up the glyph for
capital "H" from some special handwriting-style font. Instead, they pick up a glyph for U+210B from
a font that has a glyph in that position (such as Arial Unicode MS or some other large font).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Apart from such compatibility characters, there is no way to give any font information in Unicode.
This is not a flaw but a conscious decision to handle different issues at different levels and in different
standards. Plain text can be presented in any suitable font, but if you wish to change font in the
midst of text, you are not using just plain text, and you need additional tools (see Chapter 9).

4.6.3. Variation Selectors

A relatively recent addition to the Unicode standard introduced the concept of a Variation Selector,
which is an invisible character that is meant to affect the choice of glyph for the preceding character.
Thus, a Variation Selector is comparable to font markup or to the choice of font in a word processor,
though its effect is generic. It does not specify any particular font but rather the general
characteristics of a glyph.

For example, the intersection (U+2229) is usually presented with a glyph without serifs (i.e.,
without short lines perpendicular to the two ends below), even if the glyph is from a serif font. You
can explicitly request that a glyph variant with such serifs be used by inserting Variation Selector 1
(VS1) U+FE00 after the character U+2229.

The currently available standard variants that can be requested for some characters are listed in
http://www.unicode.org/Public/UNIDATA/StandardizedVariants.html. They consist of variants of
some mathematical operators and some Mongolian characters.

Support for Variation Selectors in current software is very limited. Programs might just treat them as
unknown graphic characters, displaying some generic symbol.

4.6.4. Affecting Font Usage

The use of Unicode characters may indirectly affect font choices made by programs:

If the font chosen for text does not contain all the characters in the text, the program may
decide to use some other font(s) as fallback. Therefore, some characters may appear in a font
different from the surrounding text. A choice between characters that are compatibility
equivalent, or even canonically equivalent, can be relevant in this sense. For example, Latin
capital letter "A" with ring Å (U+00C5) is probably available in most fonts you might use. If you

use the angstrom sign (U+212B), which is canonically equivalent to U+00C5, the appearance
can be different, since this character appears in some fonts only. Consider this as a problem,
not as a formatting tool!

Some Unicode (control) characters prevent or suggest the use of ligatures or joining
behaviori.e., presenting the surrounding characters together. A program may or may not
display characters "f" and "i" in succession using a ligature, if available in the current font. But it
must not do that if there is a specific invisible control character between them that prevents a
ligature.

4.6.5. Ligatures

http://www.unicode.org/Public/UNIDATA/StandardizedVariants.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

A ligature is a visible presentation of two or more characters as a unit. The origin of ligatures is in
cursive handwriting, where characters are generally joined together. For printing, ligature types were
produced to solve problems in both the visual appearance and in the mechanics of printing. Text does
not look good if, for example, the upper part of the "f" is close to dot of the "i" as in "fi," so it can be
better to create a type that fuses the two characters together.

In English, we normally use ligatures mostly for "fi," "fl," and "ffl" only, and usually in print only.
Many other scripts use ligatures far more often.

Ligatures as discussed here should not be confused with characters that originate from ligatures. For
example, capital Latin letter "ae" æ (U+00E6) is an independent letter in Norwegian and Danish,
although it is originally a ligature of "a" and "e" and is sometimes used just as a typographic variant
of "ae" in English when writing Latin words. Unicode recognizes this character as a letter that is not
decomposable into anything, although its old name used the phrase "ligature ae." In general, the
word "ligature" in a character's name can be misleading.

For most purposes, Unicode treats ligatures as belonging to typographic issues that are not
addressed by the Unicode standard. A word containing "fi" may or may not be rendered using a
ligature for this character pair, and this does not affect the way in which the word is represented as a
sequence of Unicode characters. The ligature behavior can often be affected by the commands and
tools of a page layout program. For example, a layout program may present some character
combinations as ligatures by default. For example, in computer code represented in monospace font,

a ligature " " probably looks odd (compare cora. with ficora.fi). You would need to use some
program-specific command to prevent such behavior in general or for some selected text.

However, there are some constructs specifically related to ligatures in Unicode:

For compatibility with other standards, Unicode contains a few ligatures coded as characters.

For example, there is Latin small ligature "fi" (U+FB00), which is defined as equivalent
compatibility-wise to "f" followed by "i." Characters in the Alphabetic Presentation Forms block
(U+FB00..U+FB4F) include ligatures for "ff," "fi," "fl," "ffi," and "ffl."

The character zero width non-joiner U+200C, abbreviated ZWNJ, specifically instructs that
characters before and after it shall not be joined as a ligature or in a cursive (handwriting-style)
connection.

The character zero width joiner U+200D, abbreviated ZWJ, specifically instructs that characters
before and after it should be joined as a ligature or in a cursive manner.

The characters ZWNJ and ZWJ are effectively invisible control characters. They are meant to be used
for exceptional overrides only. Do not confuse these characters with the word joiner (WJ) character,
which relates to line breaking issues; see Chapter 5.

Support for ZWNJ and ZWJ is not common for most scripts. You should not expect to be able to

produce, say, an ligature that way, though the ZWJ and ZWNJ characters may be effective in
scripts where they are really needed, such as the Arabic script. In text formatting, ligatures should
normally be generated on other basis, such as program-specific commands or information on the
language of the text and typographic conventions for the language.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In MS Word, you can use the Insert Symbol function to add special
characters that allow or prevent a line break. However, Word uses ZWNJ and
ZWJ for this, contrary to their meanings. If text written that way is processed
with another application, you should check what happens to these characters.

4.6.6. Vowels as Marks

Several writing systems indicate vowels as marks attached to consonants rather than as separate
letters. In Hebrew and Arabic writing, short vowels may be indicated that way, though they are
mostly just omitted, to be inferred by the reader.

A different method is applied in writing systems calledabugida (or sometimes alphasyllabary), such

as the Devanagari (Devan gar) script used for Hindi. The idea is that a basic character alone
denotes the consonant sound followed by an implied vowel, namely "a." Other combinations of a
consonant and a vowel are indicated by attaching a special mark to the basic character.

For example, the Devanagari letter pa (U+092A) and the Devanagari vowel letter uu (U+0942),

when appearing in that order, combine into the appearance (read as "puu" or "p"). If the next
character is the Devanagari letter ra (U+0930), it joins without any break: . It depends on the
implementation whether the rendering is achieved by using glyphs that join suitably or by mapping a
sequence of characters into a single glyph that represents them as "melted together."

4.6.7. Operations on Glyphs

In Chapter 1, we described the simple idea of characters and glyphs: a character is an abstract
entity, though with a general idea of what it looks like, whereas a glyph is a particular appearance of
a character. This mental model needs to be broadened, since visible presentation of text may involve
much more that just mapping each character to a glyph.

The use of ligatures in presenting texts can be described as glyph mapping. If some text contains the
abstract characters "f" and "i" in succession, they are first mapped to glyphs for them, and then the
adjacent glyphs might be mapped to a ligature glyph.

In some cases, the mapping could be performed at the character level. For example, software for

printing text might first map the sequence of "f" and "i" to Latin small ligature "fi" (U+FB00), and
then map this to a glyph. However, since combined glyphs do not generally have character
equivalents, it is best to operate uniformly at the glyph level.

Glyph mapping may involve many other operations, such as:

Selecting between stylistically different glyphs ("aesthetic variants") for a character, using
information expressed outside the plain text

Selecting an appropriate contextual variant of a glyphe.g., for Arabic letters, which need to be
shown in different glyphs depending on their position in a word

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Operations on glyphs are beyond the scope of this book. To get a somewhat more detailed idea of
them, in the context of OpenType fonts, see the web page "GSUB - The Glyph Substitution Table" at
http://www.microsoft.com/typography/otspec/gsub.htm.

4.6.8. Unicode Versus Font Tricks

When you write text in Unicode, you can normally use any font available in the system. Some fonts
are "Unicode fonts, " some are not, but this refers to technicalities. Even if a font has been designed
for rendering data that is represented in an 8-bit encoding, the software you use can probably handle
the mappings internally, so that the font can be used for Unicode text as well.

Whether you can vary the font in your text depends on the tools and data formats you use. In plain
text, there is no font variation, but word processors work with other formats. They usually have some
simple tool for, for example, selecting some words and setting their font to something different than
the surrounding text.

However, some special tricks have often been used in an attempt to extend character repertoire by
font settings. In Chapter 3, we noted that you could type, on your word processor, the letters "abc"
and then select them and use the font-changing command to set the font to Symbol to get "αβχ"
(i.e., three Greek lowercase letters). We analyzed this from the viewpoint of character encoding, but
here the emphasis is on comparing such tricks with the Unicode approach.

Logically, the Symbol font is a collection of mostly wrong glyphs for characters (e.g., an α glyph for
"a"). Of course, the same trick works for Unicode text, too, unless the software you use refuses to
perform the illogical move. After all, the Symbol font does not contain the letters "abc," so any
request to use it for them should be ignored.

Anyway, using Unicode, such tricks are completely unnecessary and pointlessly risky. A change of
font never changes the identity of characters, in the logical sense, so even if you see "αβχ," it's still
"abc." This can be checked by changing the font to something else. There's no reason to take the
slightest risk of having your data passed through some process that changes the font and distorts
what you meant. In Unicode, you simply use the right characters, using some suitable input method.
To help you in such a conversion, Appendix A contains a table of Unicode equivalents of Symbol font
glyphs.

This should not be confused with font changes needed to make some correctly entered characters
visible. For example, if you use any of the methods described in Chapter 2 to enter the Greek letter
alpha α, it might still fail to display properly. If the current font does not contain a glyph for alpha,
you need to change the font locally (or globally) to something else, such as Arial Unicode MSbut any
font containing the alpha will do.

http://www.microsoft.com/typography/otspec/gsub.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.7. Criticism of Unicode

Unicode has been criticized on several accounts, from very different perspectives. The following
discussion tries to summarize most of the arguments and comment on them. The presentation is not
apologetic; it will admit that there are good points in the criticism.

Criticism of lack of tools for indicating semantic structures is not discussed here. It is indirectly
addressed in section "Why Not Markup in Unicode?" in Chapter 9.

4.7.1. Overall Complexity

Although the basic principles and structure of Unicode are simple, Unicode as a whole is complex,
with difficult concepts, definitions, and algorithms. Is it too complex?

The writing systems that people use are complex, especially when considered as a collection of
systems that may be combined in texts. Some writing systems have myriads of characters; some use
diacritic marks extensively; some use contextual forms for characters; and experts on different fields
keep inventing new symbolisms. It was possible to make many old character codes much simpler
than Unicode just because they ignore most of the reality of different writing systems, languages,
and notation systems.

Moreover, Unicode was not created in a vacuum. It was designed to deal with and to interoperate
with a multitude of other character codes. The main implication was the introduction of compatibility
characters, but this in turn required new concepts, definitions, and techniques such as compatibility
decompositions and normalization forms. Another implication is that Unicode tries to preserve some
of the internal structure of other codes in its coding system. The most obvious symptom of this is
that the very first block in Unicode is the same as the ASCII set, with a mixed collection of
characters.

Unicode is complex because it deals with complex phenomena. In fact, much of the other criticism is
aimed at Unicode's attempts at simplification of the complexity! But it remains true that if you are
willing to limit yourself to one writing system with a fixed repertoire of characters, you could deal with
it in a simpler and more efficient way.

Many things could have been done differently, and perhaps in a simpler way. On the other hand,
simplicity is relative: when the reality to be dealt with is complex, doing things the simple way in one
respect may bounce back elsewhere. Moreover, as support for Unicode becomes more mature, most
of the complexity will be hidden from almost all people, behind applications and subroutine libraries.

4.7.2. Inefficiency?

Fairly often, people say that Unicode is too inefficient, since it uses two bytes for each character. We
cannot afford doubling the size of each text file, and the duration of any text transfer, can we? There

http://lib.ommolketab.ir
http://lib.ommolketab.ir

is also a more modern version of this claim, saying that Unicode needs four bytes for a character.

As we have noted, and as will be discussed in detail in Chapter 6, Unicode has several encoding
forms. Using UTF-8, for example, the size of a text file remains exactly the same as in ASCII, one
octet (byte) per character, as long as the data consists of ASCII characters only. If you use other
characters, then you "pay" for them: each of them requires two, three, or four octets.

The inefficiency argument has a point, though. If you have Modern Greek text, for example, you can
represent it in some 8-bit encoding, using just one octet per character. In any Unicode encoding,
each Greek letter requires at least two octets. For languages like French, the effect is smaller, since
the majority of characters used in French are ASCII characters.

In processing character data in Unicode, inefficiency is caused either by the overhead of interpreting
an encoding like UTF-8 or by the use of an encoding (such as UCS-2), which is simpler to process but
wasteful in terms of storage. Moreover, if you really process character data in a Unicode-conforming
way, you need to observe several mandatory rules, due to normative properties of characters. In
reality, however, you can process Unicode data without making your application Unicode-conforming.

To summarize, Unicode may imply some inefficiency as compared to simpler character codes, but
usually the problem is small when compared with the gain. When the problem becomes important,
various compression methods can be used. This may mean either general purpose compression or
the special purpose compression schemes described in Chapter 6.

4.7.3. Is It Reasonable to Require Support for 100,000 Characters?

The character repertoire of Unicode is large and expanding, and in most applications, only a small
part thereof will be used. Wouldn't it be more reasonable to use, say, a code with 1,000 characters
than to use a standard that requires support to 100,000 characters? After all, about 1,000 characters
is sufficient for all European languages and the most common symbols.

This criticism is based on a wrong assumption on the impact of the character repertoire. Surely
Unicode contains more characters than most people will ever need. Many characters have been
included for use in very limited environments, such as a language spoken by a few hundred people in
the world, or an extinct language. But the number of characters is a much smaller burden than you
might expect.

Software that conforms to the Unicode standard need not be capable of rendering all Unicode
characters. It need not contain a font that has glyphs for all characters. Not even all the fonts on a
system combined need to cover all of Unicode. The conformance requirements in the Unicode
standard say that an application may be ignorant of a character, as long as it does not destroy or
distort characters that it does not understand.

Unicode-enabled software need not even recognize all Unicode characters. You can implement
systems that use Unicode but have been designed to process some collection of characters only.

Thus, a program that supports Unicode may well support only a subset of Unicode characters. Upon
reading a character outside the subset, it may indicate, in some suitable way showing a question
mark in a box, its inability to display the character. It must not, however, simply omit the character
or replace it by another character (like "?") when it reads data and passes it to further processing.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The normative properties of characters constitute a burden, since an application is required to honor
the properties even if it cannot render the characters. This, however, can be handled by using the
machine-readable files available from the Unicode Consortium's web site. You are not supposed to
hand code the processing of 100,000 different characters. Instead, you use the character's code
number as an index to a table of properties, directly or via a system utility.

4.7.4. Cultural Bias

Unicode has often been criticized for being culturally biased so that it favors languages of Western
European origin, and specifically English. The history of character codes is largely a story of
extensions, starting from a very limited set of characters that were suitable for some technical needs
and for coarse writing of English. At each step, care was taken to guarantee efficient processing of
already encoded characters, thereby often making the processing of new characters less efficient.

4.7.4.1. Lack of precomposed characters

Despite the large amount of assigned characters, Unicode does not contain all characters in all
languages. Although almost all living languages are covered, some of their characters are covered

only indirectly. For example, you cannot express the letter ` ("i" with both a macron and a grave
accent) as a single character in Unicode. It needs to be represented using combining diacritic

markse.g., as followed by a combining grave accent. You can contrast this with the fact that all
characters with diacritic marks as used in Western European languages, such as é and â, are included
in Unicode as separate (precomposed) characters.

One could say that Unicode was once open to the inclusion of precomposed characters as needed, but
was then closed, after all "important" languages had been covered. The coding space would surely
allow the inclusion of many additional precomposed characters to meet the needs of other languages,
but a policy decision says otherwise. This means a cultural bias, but the practical importance of the
issue is small. Because of the needs of special notations (in mathematics, linguistics, etc.), Unicode
needs a general mechanism of using combining diacritic marks. The same mechanism can be used to
cover the needs of some natural languages.

4.7.4.2. East Asian languages

Although most assigned code positions are for characters used in East Asian languages, it has been
claimed that Unicode still discriminates against such languages and the CJK (Chinese, Japanese, and
Korean) characters. Originally, Unicode was squeezed into 16 bits at the cost of omitting a large
number of less important CJK characters and "unifying" different characters into one.

The key issue is Han unification i.e., the treatment of characters of Chinese origin. In a long historical
process, those characters had been adopted by other peoples and adapted to their languages. This
often involved changes (such as simplification) in the shapes of characters. In defining Unicode, the
characters were analyzed, and if, say, a Chinese character and a Japanese (kanji) character were
deemed variants of the same character, a single Unicode code point was allocated for it. The general
idea was that information about language could be used to decide on the particular shape of the
character, and to some extent, this idea really works. In practice, for Japanese text you choose a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

font that contains Japanese versions of CJK characters, etc. If the same text contains both Japanese
and Chinese, font variation or language markup (perhaps resulting in font variation; see Chapter 7)
might be used.

However, Han unification has been regarded as an artificial and even barbaric method. We can
perhaps understand the feelings of people who say so, if we think about the possibility that, had
Unicode been designed in East Asia, perhaps the Latin, Cyrillic, and Greek alphabets would have been

unified, making, for example, Latin "b," Cyrillic , and Greek β just glyph variants of a single Unicode
character. After all, they have the same origin, and language information could have been used to
select between the glyphs!

The issue of Han unification is not, however, a case of East Asian peoples against the Western world.
Many arguments were presented by East Asians in favor of the unification. If Unicode contained
several clones of many Han symbols, many people would find it less manageable to work with
different East Asian languages. The inclusion of unified CJK characters into Unicode does not prevent
the addition of language-specific variants in other code positions, but that would work against
Unicode principles.

4.7.4.3. Favoring UTF-8

Several documents specify UTF-8 as the preferred encoding for Unicode, especially in Internet
contexts. Technically UTF-8 has many benefits especially for texts that contain mostly basic Latin
letters and other ASCII characters, and it works relatively well for the additional Latin letters used in
languages of West European origin. For other languages, it does not work that well.

Even for Greek text, UTF-8 uses a lot of space: data size is, roughly speaking, double the size it
would need in a suitable 8-bit encoding. The same applies to most languages that are written using a
relatively small repertoire of non-Latin letters.

For East Asian texts, it's worse. Some non-Unicode encodings for them are rather efficient, since they
have been optimized for such use. For plain text in Chinese, even UTF-16 is more efficient than UTF-
8. In UTF-16, all commonly used characters take two octets. In UTF-8, all characters except ASCII
characters take at least two octets. Moreover, for fast character-by-character processing, UTF-8
needs to be internally transcoded into UTF-16 or some other representation where all or most
characters occupy a fixed amount of octets.

4.7.5. Excessive Unification

The unification principles and practices have raised many objections. Unification prevents people from
making distinctions that they might wish to make at the level of plain text. In some situations, a
distinction could be made, but not reliably.

Problematic unification cases include the following (in addition to Han unification, which was discussed
earlier):

The character ü as an independent letter indicating a particular sound (as in Swedish) versus ü
as "u" to which a diacritic mark has been added (as in Spanish). Many people regard these as

http://lib.ommolketab.ir
http://lib.ommolketab.ir

different characters. In Unicode, you could try to distinguish between the two by using the
precomposed character U+007C (Latin small letter "u" with dieresis) in the first case and the
two-character sequence U+0075 (Latin small letter "u") U+0308 (combining dieresis) for the
latter. However, these are canonically equivalent, and you cannot expect that software
conforming to the Unicode standard makes the difference. On the contrary, it normally
shouldn't, and it normally doesn't.

The character æ is a separate letter in Danish and Norwegian. In some other contexts, including
some styles of writing Latin words used in English, it is just a ligature of "a" and "e" (as in
"Cæsar" for "Caesar"). There is no way to make this distinction in Unicode, although between
the lines we can read the idea that ligatures should be handled at other protocol levels, not at
the character level (i.e., you would use just "ae" in text and use, for example, styling
information to suggest rendering it as a ligature).

The right single quotation mark, ', is recommended for use as a punctuation apostrophe as well,
as in the expressions "don't" or "Jane's." This means that two characters with essentially
different meanings have been unified, just because usually the same glyph is used for both. As
a consequence, the properties of the character cannot be very descriptive, since they need to
take both uses into account. When you set up general rules for processing a character like the
single quotation mark, you need to make them such that they are suitable, or at least tolerable,
even when the character is actually used as an apostrophe. Note that quotation marks normally
surround words or larger expressions, whereas the apostrophe is usually part of a word.

Thus, it is impossible to make, for example, apostrophes look different from right single quotation
marks simply by using different code numbers for them and a font in which they are different.
According to the Unicode standard, you should code both of them the same way, as U+2019. You
would have to use methods above the character level to have them display differently, and this would
be too clumsy for many purposes. Yet, people might wish to make the distinction, perhaps because
an expression like 'don't' would look better that way.

However, unification can be justified on several grounds:

It often corresponds to human intuition, since characters that are unified are usually recognized
as "basically the same" by people who know them.

It keeps the number of characters smaller, which helps in coding characters in a practical
manner (e.g., keeping common characters in Basic Multilingual Plane if possible).

It makes it easier for people to recognize which character they wish to use, when they need not
look for tiny differences.

It helps font design, since designers need not think whether very similar characters should have
identical glyphs or different glyphs, which are difficult to implement, since they should then be
sufficiently different (to avoid making the difference look like an error).

In programming, unification might seem to make things simpler, since there are fewer different
characters to be considered. However, it also creates problems. For example, recognizing quotations
from a piece of text becomes more difficult, because you cannot know, without extra analysis, that
U+2019 is used as a quotation mark and not as an apostrophe.

4.7.6. Semantic Disambiguation Frowned Upon

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Unification itself means that in many cases a character has two or more essentially different
meanings. In addition, even when different meanings of a graphic symbol have been coded as
separate characters, Unicode mostly does this only by defining compatibility characters.

For example, the letter "I" is also used as a Roman numeral that means "one." You are supposed to
use the Latin letter capital "I" in that meaning too, in Unicode. Although Unicode also contains the
character Roman numeral one (U+2160), it is equivalent compatibility-wise to normal "I," and it
has been included only for compatibility with other character code standards. You are not supposed
to use it in new data.

Consider the expression "Charles I." To a human reader, it is usually obvious that "I" is a numeral
and shall be read as "the first." To a computer, this is not obvious at all. For example, a speech
synthesizer probably reads "I" the way we read the pronouni.e., the same way as "eye." There are
various ways to address such problems, but they can be complex or have an ad hoc nature (e.g.,
explicit pronunciation instructions), and they are not portable across data formats and applications.

It would be better in many ways if we could disambiguate characters at the character level, by using,
for example, Roman numeral one (U+2160) in "Charles I," or by using a separate character, rather
than the Greek letter pi, when we mean π as a number (3.14...). Even in cases where such
disambiguation is possible in Unicode, it is not recommended in the standard; rather, the standard
advises against it. Therefore, we cannot expect most software make any use of it.

The Unicode policy in this issue is understandable, however. Semantic disambiguation at the
character level would require a large number of new characters, and most people would probably not
want to make the distinctions, or would make mistakes in trying it.

4.7.7. Misleading Names of Characters

Some Unicode names of characters are misleading, misspelled, or even completely wrong, when
considered as a descriptive name. This has caused many protests. It is understandable that when
you find a character that you know well and you notice an error in its name, you want it to be fixed.
Yet, the response is always: Unicode names are fixed and will never be changed.

To take a relatively harmless example, the character U+2118 has been named "script capital p."
However, it is neither script nor capital; whether it is a "p" is debatable: it is historically based on the
letter, but as a Unicode character, it is defined as a letterlike symbol. By shape, it is a calligraphic

variant of lowercase p, . By meaning, it is a conventional symbol for a certain mathematical
function. It's thus a character with well-defined semantics, quite independent of the name. The name
becomes a problem only if it is taken too seriously.

Some cases are more problematic, however. Some names for characters in scripts that are not well
known in the Western world are just wrong: a name might be one that is commonly used to refer to
a character in the script, but to another one. To make things worse, some of the bad names have
been caused by cultural misunderstandings and by naming a character "from outside"i.e., by people
who do not live in the culture in which the character is used. Some of these names have even been
interpreted as insults. Moreover, reluctance to change the names has been interpreted as an even
worse insult.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is an unfortunate situation, but the conclusion is that you should try to avoid getting offended
either by the Unicode names or by requests to change them. It is futile to suggest changes to
individual names. Suggestions to remove or deprecate the entire system of Unicode names might
some day lead to something, but this is not likely.

The alias names for characters, mentioned in the code charts, are often no better than the official
Unicode names. For example, the commercial at @ (U+0040) has the annotation "Klammeraffe
(common, humorous slang German name)," which is seldom useful to a serious English-speaking
person who is uncertain of the character's identity. The solidus / (U+002F) is adequately explained by
specifying "slash" as an alternate name, but the further explanation "virgule, shilling (British)" is
misleading. The word "virgule" is rare, but "shilling" is worse. The solidus does not mean "shilling,"
though it was once used in British English to separate the shilling digits from the pence digits, as in
2/6 (two shillings and sixpence) or in 2/- (two shillings). The asterisk * (U+002A) has the annotation
"star (on phone keypads)," but the use of the word "star" is not limited to phone contexts, and do we
really need to identify all keypad symbols with characters? The capital letter "G" has the annotation
"invented circa 300 B.C.E. by Spurius Carvilius Ruga, who added a stroke to the letter C." Interesting
as this trivia might be, it is of little value in establishing the identity of the character in the modern
world. Besides, it's not necessarily correct; the invention has also been attributed to Appius Claudius.

Thus, the idea that the annotations could be used as boilerplate texts presented to users, when
displaying information on characters, is not very feasible. Although the Unicode databases specify
many properties of characters, there is no single and uniform source of information on their identity
and meaning (usage).

4.7.8. Concepts and Definitions

Although the Unicode standard contains parts that can be regarded as rather complex and
theoretical, it has also been criticized for not being theoretical enough. It has been remarked that the
fundamental concepts, even the concept of character, have been defined more or less vaguely and
even inconsistently. The Unicode standard contains several different ingredients: the prose text, the
code charts, the property tables, and different annexes and reports.

For example, Unicode Technical Report #17, "Character Encoding Model," defines "character
repertoire" as "an unordered set of abstract characters to be encoded" and adds that the word
"abstract" means "that these objects are defined by convention." The question arises then: what is a
character that is not defined by convention? It seems that the word "abstract" in the Unicode
material is just an attribute that has been thrown in for different purposes in different contexts.

In defense of Unicode, it needs to be said that Unicode's starting point was challenging. Many of its
compromises, and confusions in terminology, come from several decades of a wilderness of
"character sets" or "code pages." Unicode was designed to cover all characters in commonly used
character codes, and it was natural to adopt terminology from older standards. Besides, Unicode
disambiguates a lot by using terms like octet, code point, glyph, etc., instead of using the word
"character" in a wide range of meanings as in ordinary language.

The organization of the Unicode standard has been described as practically confusing, too.
Information on characters is partly scattered around the standard. Moreover, the update procedures
make it troublesome to find out the exact content of the standard at a given moment of time, if there
are any updates since the last major version.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.7.9. Illogical Division into Blocks

For historical reasons, many Unicode blocks are essentially copies of ranges of characters in other
standards. This has led to somewhat strange allocations especially in the first two blocks. Many
characters in Basic Latin (ASCII) and Latin-1 Supplement would logically belong to other blocks, such
as General Punctuation. Thus, when you try to get an idea of the punctuation characters in Unicode,
for example, you need to look at several blocks.

If no previous character codes had been taken into account when defining Unicode, the use of the
coding space would undoubtedly be different. It would be based on grouping by usage. The order of
blocks would probably be different too. Now the CJK characters, for example, have been distributed
into blocks in a manner that looks rather random.

The reasons for making the first two blocks essentially copies of ASCII and ISO 8859-1 are both
technical and cultural. Such an assignment helps in efficiency; consider how ASCII characters are
representable each as one octet in UTF-8, still keeping UTF-8 simple. They also help in continuity,
since people who have worked with ASCII and ISO 8859-1 can find their characters easily.

The evolving nature of Unicode also makes some illogical assignments more or less necessary. New
needs have led to allocation of blocks and ranges in a manner that cannot be smoothly integrated
with old allocations. All the different extension blocks reflect the gradual incorporation of scripts and
characters into Unicode.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.8. Questions and Answers

The Unicode web site contains a Frequently Asked Questions (FAQ) section, divided into topics and
categories, at http://www.unicode.org/faq/. You will probably find it very useful, especially if you take
some time now to have a look at its table of contents, so that you roughly know what you can expect
to find there. The following list of questions and answers does not try to compete with the Unicode
FAQ. Rather, it discusses some general questions in some depth, partly dealing with same questions
as the FAQ, but explaining the answers in a more tutorial-like manner.

4.8.1. Where Can I Find Tools for Using Unicode?

Software tools for Unicode, such as Unicode-capable word processors, editors, subroutine libraries,
and converters, exist both as commercial products and as freeware under varying license conditions.
Many tools have been developed for a particular environment, such as Windows XP, Macintosh, or
Linux, though there are also tools that have been implemented for several environments. You may
also encounter more or less obsolete tools that support some old version of Unicode only, although
even an old tool might be sufficient for a limited purpose. Thus, there are probably many places to
look, and the choice depends on your goals and resources. The Unicode FAQ points to two resources
at the Unicode site in its answer to the question:

Useful Resources (http://www.unicode.org/onlinedat/resources.html)

This link list contains the following parts: Fonts and Keyboards, Linguistics and Script Specialty
Sites, Organizations and Other Standards, and Using Unicode. You will find tools for Unicode
through the Using Unicode section, though it is rather mixed, and many links point to sites that
just exemplify Unicode use.

Unicode Enabled Products (http://www.unicode.org/onlinedat/products.html)

The page presents a large sample list of products (in a broad sense) that are more or less
Unicode-enabled, divided into categories: Databases and Repertoires, Fonts and Printing
Software, Internationalization Libraries, Operating Systems, Programming Languages and
IDEs, Search Engines, Standards, Translation Systems, and Other Systems and Products. As
you may guess, the list partly exists to demonstrate how widely Unicode can be used. If you
intend to create Unicode-enabled software, the International Libraries part is a good start in
estimating how to find suitable building blocks.

Although the "Other Systems and Products" part of the latter resource also contains many Unicode
editors and word processors, you get a better picture of such software from the resource mentioned
in Chapter 2: http://www.alanwood.net/unicode/utilities.html.

http://www.unicode.org/faq/
http://www.unicode.org/onlinedat/resources.html
http://www.unicode.org/onlinedat/products.html
http://www.alanwood.net/unicode/utilities.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.8.2. Why Do People Call Unicode a 16-Bit Code?

Unicode was originally designed to be a 16-bit code, it can be represented in a 16-bit encoding (UTF-
16), and all widely used characters are in the BMP range, where code numbers can be presented as
16-bit integers. Before Unicode Version 3.0 (March 2001), all characters were in the BMP, so that
although the structure of Unicode allowed a much wider code space, only a 16-bit subspace was in
use.

Besides, people read books, articles, and messages that call Unicode a 16-bit code. The idea has the
properties of a very successful meme (an idea that people receive and pass forward): within a certain
scope (information technology), the idea is simple, easy to understand and remember, and it sounds
new and interesting.

Yet it would be incorrect to say that Unicode is a 16-bit code in practice, or for most practical
purposes. It's not a 16-bit encoding: Unicode is widely used in an 8-bit encoding, UTF-8. It's not a
16-bit coding space: planes outside the BMP have increasing importance.

4.8.3. How Can I Have a Character Added to Unicode?

If you would like to have a character, or a collection of characters, added to Unicode, you will likely
analyze the issue and find out that you can use existing characters. For example, proposals to add
new precomposed characterscombinations of a base character and some diacritic(s)will almost surely
be rejected. If you know a character that looks different from any existing Unicode characters, it is
probably a variant of an existing character and should be treated that way. It may well be a common
character in an uncommon font. If you think your company's symbol counts as a character, the
Unicode Consortium will most probably disagree. Ligatures and typographic variants will normally not
be accepted either.

If you still think you have a character that needs to be encoded, check the instructions on submitting
characters on the Unicode web site. Their basic content is that a proposal must be sent in writing and
it must contain:

At least one image of the proposed character, normally from a printed source (and including
several images will help in illustrating the character)

Substantial documentation that justifies the proposal (explaining, among other things, how the
character is used in texts and why it needs to be recognized as different from existing Unicode
characters)

Identification of the sponsor(s), with contact information (postal and email address and phone
number)

You should normally first send an informal query on the matter to the public Unicode discussion list
(email list), described at http://www.unicode.org/consortium/distlist.html. You might take a look at
the document registry http://std.dkuug.dk/jtc1/sc2/wg2/ to see what the proposals look like and how
detailed they are.

http://www.unicode.org/consortium/distlist.html
http://std.dkuug.dk/jtc1/sc2/wg2/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.8.4. How Can I Check That I've Understood the Principles?

The principles of Unicode aren't something you need to learn by heart. Rather, you learn them when
you read more about Unicode and work with it. Still, it might be a good idea to sit down and check
whether you can write down the 10 principles of Unicode. Specify each of them for yourself with a
word or two that name the principle, and then write a simple sentence that says something about it,
maybe just an example. Then check your list against the list given in the section "Design Principles"
in this chapter, or against the description in the Unicode standard (in Version 4.1, it's in section 2.2).

As a different test, read the very short description of Unicode, "What is Unicode?" or one of its
translations at http://www.unicode.org/standard/WhatIsUnicode.html. Read it with a critical mind,
and ask yourself the following questions:

If you had to use the description as a basis when talking about Unicode, could you back up any
general statement there with at least one concrete example? (This tests your general
understanding of Unicode, not just this chapter.)

If you had to explain Unicode at elementary school, which parts of the description would you
omit?

The description says that "Unicode provides a unique number for every character." What does
"every character" really mean here?

Name at least three essential problems of using Unicode that are not mentioned in the
description.

http://www.unicode.org/standard/WhatIsUnicode.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Properties of Characters
Unicode contains about 100,000 characters and is still growing. To manage the multitude of
characters, we need to assign useful classifying and other properties to them. The Unicode standard
defines a large number of properties, related to things like decompositions, collation, sorting,
directionality, and line breaking, as well as Unicode normalization forms. Some of the properties are
answers to simple questions like "Is the character a digit?" or (for letters) "What is the corresponding
uppercase letter?" Many properties are more technical and intended for use in formal specifications
and in programming.

This chapter concentrates on properties in a rigorous sense: properties defined for characters in the
Unicode standard in an exact, objective, formalized manner. All the properties discussed here differ
from purely verbal descriptions of characters in the standard, such as the description of possible
glyph variation. For example, the description that the ASCII quotation mark " (U+0022) has a
vertical glyph is surely relevant, but not formalized. The same applies to other similar notes in the
text of the standard and the annotations in the code charts.

The Unicode standard designates some properties as normative. Such a property is prescriptive in the
sense that if a conforming implementation uses the property, it must do so in accordance with its
definition. The non-normative properties are called informative. Character properties, even normative
properties, are not guaranteed to remain stable, and in practice, some properties have been changed
between Unicode versions.

The properties discussed here have different uses:

They help you to understand correctly the meaning and intended use of a character.

They specify default processing rules for characters. Programs can and should implement the
rules, so that the rules will be overridden only when application-specific reasons make this
sensible.

They are used to construct machine-readable information on characters. You can use such
information with viewers that let you search and display it, but also via programs and
subroutine libraries, which let you use the information in programs that you design.

Figure 5-1. Viewing characters and their properties in Uniview

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 5-1 illustrates the use of an online service, Uniview, for viewing some key properties of
characters with a graphic user interface. In the figure, the character itself is shown on the right, with
some property values listed under it. Uniview lets you browse and search characters by general
category or other properties. Uniview is available at http://people.w3.org/rishida/scripts/uniview/.

http://people.w3.org/rishida/scripts/uniview/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.1. Character Classification

We will first consider one important property of characters in Unicode, namely General Category (or
gc, for short). This will illustrate the definition and usefulness of properties, as well as some problems
in defining them.

5.1.1. The Purposes of Classification

Characters can be classified in several ways, for different purposes. The Unicode standard defines a
basic classification by assigning the General Category property to each character. Other properties
imply classifications that are more specific, such as by the "age" of characteri.e., by the Unicode
version in which it was encoded.

The General Category property, defined for all characters, constitutes a fundamental classification
into letters, numbers, punctuation, mathematical symbols, etc. For several frequently used
characters, this classification is not very natural, since they have multiple uses. For example, the
hyphen-minus "-" can be used as punctuation, as a minus sign, or as a special symbol. The reason
behind this is the history and design of Unicode: it contains many "legacy characters," which have
ambiguous semantics and mixed usage.

The classification is generally useful, though. For example, when writing pattern-matching routines,
you often need to work with concepts like "letter" or "digit." Instead of dealing with a huge amount of
letters individually, you work with the classification.

The definition of a computer language (e.g., programming, markup, or data description language)
typically involves a "name" or "identifier" concept. The rules typically allow an identifier to start with a
letter and otherwise contain both letters and digits, and perhaps some special characters like _. Such
a rule can be written easily, if we restrict ourselves to ASCII. That means, however, that most people
in the world cannot use words of their native language in identifiers. To define a generalized concept
of identifier, it is simplest to use the General Category and other properties, rather than list a huge
number of characters. We return to this topic in Chapter 11.

If you define things like identifier syntax using the Unicode properties and specify that the newest
Unicode version be used, the syntax is automatically updated when Unicode is. This means flexibility,
but it also means instability in the sense that strings that were previously not identifiers by the
syntax become identifiers later. The opposite is not probable, but possible; most Unicode properties
are not guaranteed to remain the same, once defined for a character. For such reasons, definitions of
computer languages may fix identifier syntax in a manner that does not depend on Unicode versions,
at the cost of making it impossible to use newly added characters in them. For example, in XML,
identifier syntax has been fixed to use the properties of characters as defined in Unicode 2.0.
Technically, the XML specification does not refer to the properties but explicitly lists its own definitions
of character classes (see http://www.w3.org/TR/RECxml/ #CharClasses), but they are based on
Unicode 2.0.

http://www.w3.org/TR/RECxml/ #CharClasses
http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.1.2. General Category Values

The classification is hierarchical: the General Category property indicates both a major class of a
character and a subclass. The property is expressed with a two-letter code such as Lu so that:

The first character is an uppercase letter indicating the major class, which is Letter, Mark,
Number, Separator, Other, Punctuation, or Symbol.

The second character is a lowercase letter that specifies the subclass.

The General Category values are shown in Table 5-1, together with sample characters or code points.
Characters in class Mn are nonspacing and combining, and the sample character is shown as
combined with a space (see "Diacritic marks" in Chapter 8).

Table 5-1. General Category values

Code Description Sample character

Lu Letter, uppercase A

Ll Letter, lowercase a

Lt Letter, titlecase (U+01C5)

Lm Letter, modifier (U+02B0)

Lo Letter, other (including ideographs) (alef, U+05D0) א

Mn Mark, nonspacing ̀(U+0300)

Mc Mark, spacing combining (U+0903)

Me Mark, enclosing (U+06DE)ق

Nd Number, decimal digit 1

Nl Number, letter (U+2163)

No Number, other ½ (U+00BD)

Zs Separator, space (space, U+0020)

Zl Separator, line (line separator, U+2028)

Zp Separator, paragraph (paragraph separator, U+2029)

Cc Other, control (carriage return, U+000D)

Cf Other, format (soft hyphen, U+00AD)

Cs Other, surrogate (surrogate code points)

Co Other, private use (U+E000)

Cn Other, not assigned (including noncharacters) (U+FFFF, not a character)

Pc Punctuation, connector _ (low line, U+005F)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Code Description Sample character

Pd Punctuation, dash - (hyphen-minus, U+002D)

Ps Punctuation, open (

Pe Punctuation, close)

Pi Punctuation, initial quote " (U+201C)

Pf Punctuation, final quote " (U+201D)

Po Punctuation, other !

Sm Symbol, math +

Sc Symbol, currency $

Sk Symbol, modifier ^ (circumflex accent, 0+005E)

So Symbol, other ©

The names "Punctuation, initial quote" and "Punctuation, final quote" are misleading, since characters
in both categories may act as an opening or closing quotation mark, depending on the language. For
example, in Swedish, a quotation starts and ends with U+021D (e.g., "Stockholm").

Characters with ambiguous semantics have General Category values that are meant to reflect their
typical use in normal text. Thus, for example, hyphen-minus is classified as "Punctuation, dash,"
although it is often used as a mathematical symbol.

5.1.3. Use of General Category in Programming

To illustrate the use of this property in programming, let us consider the following simple task: read a
text file and print all lines that contain an uppercase (capital) letter. Using a modern version of the
Perl programming language, with Unicode support, you can do this with a three-liner (which could be
written as a one-liner if you like):

while(<>) {
 if (m/\p{Lu}/) {
 print; }}

This program contains a loop that reads an input line and prints if the condition m/.../ is truei.e., if a
substring of the input line matches the expression between the slashes. The Unicode thing here is the
expression, \p{Lu}, which by definition matches any character whose General Property value is Lu.
This covers Latin uppercase letters with or without diacritic marks (A,Â, etc.) as well as Greek,
Cyrillic, and other uppercase letters. An approach that uses the character properties is of course
much simpler than writing program code that tests all the different possibilities separately. Whether
the broad concept of "uppercase letter" corresponding to the General Property value Lu is really
adequate in a particular situation depends on the context and application.

Pd Punctuation, dash - (hyphen-minus, U+002D)

Ps Punctuation, open (

Pe Punctuation, close)

Pi Punctuation, initial quote " (U+201C)

Pf Punctuation, final quote " (U+201D)

Po Punctuation, other !

Sm Symbol, math +

Sc Symbol, currency $

Sk Symbol, modifier ^ (circumflex accent, 0+005E)

So Symbol, other ©

The names "Punctuation, initial quote" and "Punctuation, final quote" are misleading, since characters
in both categories may act as an opening or closing quotation mark, depending on the language. For
example, in Swedish, a quotation starts and ends with U+021D (e.g., "Stockholm").

Characters with ambiguous semantics have General Category values that are meant to reflect their
typical use in normal text. Thus, for example, hyphen-minus is classified as "Punctuation, dash,"
although it is often used as a mathematical symbol.

5.1.3. Use of General Category in Programming

To illustrate the use of this property in programming, let us consider the following simple task: read a
text file and print all lines that contain an uppercase (capital) letter. Using a modern version of the
Perl programming language, with Unicode support, you can do this with a three-liner (which could be
written as a one-liner if you like):

while(<>) {
 if (m/\p{Lu}/) {
 print; }}

This program contains a loop that reads an input line and prints if the condition m/.../ is truei.e., if a
substring of the input line matches the expression between the slashes. The Unicode thing here is the
expression, \p{Lu}, which by definition matches any character whose General Property value is Lu.
This covers Latin uppercase letters with or without diacritic marks (A,Â, etc.) as well as Greek,
Cyrillic, and other uppercase letters. An approach that uses the character properties is of course
much simpler than writing program code that tests all the different possibilities separately. Whether
the broad concept of "uppercase letter" corresponding to the General Property value Lu is really
adequate in a particular situation depends on the context and application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.2. An Overview of Properties

For overview and quick-reference purposes, we will present an alphabetic table of properties here,
followed by a list of explanations of the meanings of the properties. Many of the concepts used there
will be explained later, or need to be consulted from the Unicode material, for issues that are too
specialized to be discussed in this book.

The word "property" can have several meanings. For example, the shape of a character can be
regarded as its property, and so can a statement about its use. However, in Unicode, the word
"property" normally refers to formally defined properties. Often the definition is given as a table that
lists characters and values of the property for each character.

The overall structure is described in the document "Unicode Character Database,"
http://www.unicode.org/Public/UNIDATA/UCD.html. The Unicode Character Database (UCD) itself is a
collection of plain text files in fixed, well-defined formats, which are suitable to automated processing.
These files are available at addresses that begin with http://www.unicode.org/Public/UNIDATA/, and
they specify the values of properties for each character, either by explicitly assigning a value or by
implying a default value.

We have previously mentioned the database file Unicodedata.txt, which is important indeed, and a
basic file in a sense. However, contrary to what its name may suggest, it does not contain data for all
properties. The tendency in the development of the standard has been to divide property definitions
into separate files, so that Unicodedata.txt contains just some fundamental properties that can be
described compactly.

Some properties are derived properties, which means that their values have been algorithmically
deduced from other properties. Thus, derived properties are logically redundant: anything that you
can express with them can be expressed using other properties. Derived properties have been
included for convenience, to make some tests, definitions, and operations easier to write. For
example, the property Alphabetic is derived, but it corresponds to an intuitive and important concept.
It is more natural to say "if a character is alphabetic" than to say the same in terms of more primitive
Unicode concepts (different categories of letters and characters comparable to letters). Each property
has a set of values, or type, which is one of the following:

A property name, which may contain spaces; often (especially in programming) the name is
written with spaces replaced by low lines (underscores)e.g., Bidi_Class instead of Bidi Class

An abbreviation (code), defined in the PropertyAliases.txt file in the Unicode database

A description of the meaning, given in prose, and further refined by rules that refer to the
property (e.g., line-breaking rules define what line-breaking properties really mean)

A status as normative or informative (descriptive)

The enumeration values and the catalog values are short, somewhat mnemonic strings like AL. The
same value may have different meanings for different properties, so a value as such is not unique.

http://www.unicode.org/Public/UNIDATA/UCD.html
http://www.unicode.org/Public/UNIDATA/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

There are longer, more mnemonic names defined for the values in the PropertyValueAliases.txt file.
For example, AL has the longer name Arabic_Letter when used as a value of the property Bidi Class
and the longer name Alphabetic when used as a value of the property Line Break.

In addition to the properties discussed here, there are many properties defined for Han (Chinese-
Japanese-Korean) characters. They are regarded as provisional, which means a property "whose
values are unapproved and tentative, and which may be incomplete or otherwise not in a usable
state." The properties are described in the document "Unihan Database,"
http://www.unicode.org/Public/UNIDATA/Unihan.html.

5.2.1. Summary of Properties

The following list describes briefly all the 88 properties defined in Unicode 4.1.0. For each property,
the list specifies the following:

The abbreviation (short name)

The long name, as defined in the PropertyNames.txt file; for some properties, this is the same
as the abbreviation

The type of the values of the property (yes/no, enumeration, etc.)

The status as normative or informative; for some properties, the status is "normative or
informative," which means that the property is normative for some values, informative for
others

The database file where the property values are specified; to access the file on the Web, prefix
the name with http://www.unicode.org/Public/UNIDATA/

The list is in alphabetic order by the abbreviation of the property, since the abbreviation is what you
normally see in program code, regular expressions, and other compact notations.

age = Age, catalog, normative or informative, DerivedAge.txt

The number of the Unicode version in which the character was added to Unicode, such as "1.1"
or "4.0."

AHex = ASCII Hex Digit, yes/no, normative, PropList.txt

Indicates whether the character is an ASCII character used in hexadecimal numbers. This
means letters "A" to "F" and "a" to "f" and digits "0" to "9."

Alpha = Alphabetic, yes/no, informative, DerivedCoreProperties.txt

Indicates whether the character is alphabetici.e., a letter or comparable to a letter in usage.
True for characters with gc value of Lu, Ll, Lt, Lm, Lo, or Nl and additionally for characters with

http://www.unicode.org/Public/UNIDATA/Unihan.html
http://www.unicode.org/Public/UNIDATA/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

the OAlpha property.

bc = Bidi Class, enumeration, normative, UnicodeData.txt

The category of the character in the Bidirectional Behavior Algorithm.

Bidi C = Bidi Control, yes/no, normative, PropList.txt

Indicates whether the character has a special function in the Bidirectional Algorithm.

Bidi M = Bidi Mirrored, yes/no, normative, UnicodeData.txt

Specifies whether the character shall be represented using a mirrored glyph when it appears in
right-to-left text.

blk = Block, catalog, normative, Blocks.txt

Name of the block to which the character belongs.

bmg = Bidi Mirroring Glyph, string, informative, BidiMirroring.txt

Suggests a character that can be used to supply a mirrored glyph for this character; see
property Bidi M. For example, "(" mirrors ")," and vice versa.

ccc = Canonical Combining Class, number, normative, UnicodeData.txt

Specifies, with a numeric code, how a diacritic mark is positioned with respect to the base
character. This is used in the Canonical Ordering Algorithm and in normalization. The order of
the numbers is significant, but not the absolute values.

CE = Composition Exclusion, yes/no, normative, CompositionExclusions.txt

Specifies whether the character is explicitly excluded from composition when performing
Unicode normalization.

cf= Case Folding, string, normative, CaseFolding.txt

The case-folded (lowercase) form of the character. This is a derived property.

Comp Ex = Full Composition Exclusion, yes/no, normative, DerivedNormalization-Props.txt

Indicates whether the character is excluded from composition when performing Unicode
normalization.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dash = Dash, yes/no, informative, PropList.txt

Indicates whether the character is classified as a dash. This includes characters explicitly
designated as dashes and their compatibility equivalents.

Dep = Deprecated, yes/no, normative, PropList.txt

Indicates whether the character is deprecated. Deprecated characters will remain in the
standard, but their use is strongly discouraged.

DI = Default Ignorable Code Point, yes/no, normative, DerivedCoreProperties.txt

Indicates whether the code point should be ignored in automatic processing by default.

Dia = Diacritic, yes/no, informative, PropList.txt

Indicates whether the character is diacritici.e., linguistically modifies another character to which
it applies. A diacritic is usually, but not necessarily, a combining character.

dm = Decomposition Mapping, string, normative, UnicodeData.txt and Normal-izationCorrections.txt

The decomposition of the character. The property dt indicates the type of decomposition.

dt = Decomposition Type, enumeration, normative, UnicodeData.txt

The type of the decomposition (canonical or compatibility) specified by the property dm. The
possible values are listed in Table 5-3, later in the chapter.

ea = East Asian Width, enumeration, informative, EastAsianWidth.txt

The width of the character, in terms of East Asian writing systems that distinguish between full
width, half width, and narrow. See UAX #11, "East Asian Width."

Ext = Extender, yes/no, informative, PropList.txt

Indicates whether the principal function of the character is to extend the value or shape of a
preceding alphabetic character.

FC NFKC = FC NFKC Closure, string, normative, DerivedNormalizationProps.txt

Indicates whether the character requires extra mappings for closure under Case Folding plus
Normalization Form KC.

gc = General Category, enumeration, normative, UnicodeData.txt

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The type of the character according to a specific classification, as described in section
"Character Classification" later in this chapter.

GCB = Grapheme Cluster Break, enumeration, informative, auxiliary/Grapheme-BreakProperty.txt

Indicates the category of the character for determining grapheme cluster breaks.

Gr Base = Grapheme Base, yes/no, informative, DerivedCoreProperties.txt

Indicates whether the character is regarded as a base grapheme, for the purposes of
determining grapheme cluster boundaries.

Gr Ext = Grapheme Extend, yes/no, informative, DerivedCoreProperties.txt

Indicates whether the character is regarded as extending grapheme, for the purposes of
determining grapheme cluster boundaries.

Gr Link = Grapheme Link, yes/no, normative, PropList.txt

Indicates whether the character is regarded as grapheme link, for the purposes of determining
grapheme cluster boundaries.

Hex = Hex Digit, yes/no, informative, PropList.txt

Indicates whether the character is used in hexadecimal numbers. This is true for ASCII
hexadecimal digits and their fullwidth versions.

hst = Hangul Syllable Type, enumeration, normative,HangulSyllableType.txt

Type of syllable, for characters that are Hangul (Korean) syllabic characters.

Hyphen = Hyphen, yes/no, informative, PropList.txt

Indicates whether the character is regarded as a hyphen. This refers to those dashes that are
used to mark connections between parts of a word and to the Katakana middle dot.

IDC = ID Continue, yes/no, informative, DerivedCoreProperties.txt

Indicates whether the character can appear as the second or subsequent character of an
identifier.

IDS = ID Start, yes/no, informative, DerivedCoreProperties.txt

Indicates whether the character can appear as the first character of an identifier. See
"Identifier and Pattern Syntax," available at http://www.unicode.org/reports/tr31/, and

http://www.unicode.org/reports/tr31/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 11.

IDSB = IDS Binary Operator, yes/no, normative, PropList.txt

Indicates whether the character is a binary operator in Ideographic Description Sequences.

IDST = IDS Trinary Operator, yes/no, normative, PropList.txt

Indicates whether the character is a trinary (ternary) operator in Ideographic Description
Sequences.

Ideo = Ideographic, yes/no, informative, PropList.txt

Indicates whether the character is an ideographic CJK (Chinese-Japanese-Korean) character.

isc = ISO Comment, miscellaneous, informative, UnicodeData.txt

The content of the comment field for the character in the ISO 10646 standard.

jg = Joining Group, enumeration, normative, ArabicShaping.txt

The group of characters that the character belongs to in cursive joining behavior. For Arabic
and Syriac characters.

Join C = Join Control, yes/no, normative, PropList.txt

Indicates whether the character has specific functions for control of cursive joining and ligation.

jt = Joining Type, enumeration, normative, ArabicShaping.txt

Type of joining of glyphs: R (right), L (left), D (dual), J (join causing), U (non-joining), or T
(transparent). For Arabic and Syriac characters.

lb = Line Break, enumeration, normative or informative, LineBreak.txt

Line-breaking class of the character. Affects whether a line break must, may, or must not
appear before or after the character.

lc = Lowercase Mapping, string, informative, UnicodeData.txt and SpecialCasing.txt

The lowercase form of the character.

LOE = Logical Order Exception, yes/no, normative, PropList.txt

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Indicates whether the character belongs to the small set of characters that do not use logical
order and hence require special handling in most processing.

Lower = Lowercase, yes/no, informative, DerivedCoreProperties.txt

Indicates whether the character is a lowercase letter.

Math = Math, yes/no, informative, DerivedCoreProperties.txt

Indicates whether the character is mathematical. This includes characters with Sm (Symbol,
math) as the General Category value, and some other characters.

na = Name, miscellaneous, normative, UnicodeData.txt and Jamo.txt

The Unicode name of the character. Guaranteed to remain stable.

na1 = Unicode 1 Name, miscellaneous, informative, UnicodeData.txt

The old name of the character in Unicode version 1.0, if significantly different from the Unicode
name (value of the Name property).

NChar = Noncharacter Code Point, yes/no, normative, PropList.txt

Indicates whether the code point is a noncharacteri.e., guaranteed to never denote a
character.

NFC QC = NFC Quick Check, enumeration, normative, DerivedNormalizationProps.txt

Indicates whether the character can occur in Normalization Form C. Values: N = No, M =
Maybe, Y = Yes.

NFD QC = NFD Quick Check, enumeration, normative, DerivedNormalizationProps.txt

Indicates whether the character can occur in Normalization Form D. Values: N = No, Y = Yes.

NFKC QC = NFKC Quick Check, enumeration, normative, DerivedNormal-izationProps.txt

Indicates whether the character can occur in Normalization Form KC. Values: N = No, M =
Maybe, Y = Yes.

NFKD QC = NFKD Quick Check, enumeration, normative, DerivedNormal-izationProps.txt

Indicates whether the character can occur in Normalization Form KD. Values: N = No, Y = Yes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

nt = Numeric Type, enumeration, normative, UnicodeData.txt and Unihan.txt

This property has the value Decimal = De for decimal digits, Digit = Di for other digits, Numeric
= Nu for other number denotations (e.g., fractions), and None = None for everything else.

nv = Numeric Value, number, normative, UnicodeData.txt and Unihan.txt

The numeric value corresponding to the character. This is defined for different digit characters
but also characters such as Greek letters, which are used to denote numbers according to a
non-positional system. If this field is empty for a character in the database, the value defaults
to "Not a Number" (NaN).

OAlpha = Other Alphabetic, yes/no, informative, PropList.txt

Indicates whether the character is alphabetic but with a General Category value other than Lu,
Ll, Lt, Lm, Lo, or Nl. Used to derive the Alphabetic property.

ODI = Other Default Ignorable Code Point, yes/no, normative, PropList.txt

This property is used to derive the property DI.

OGr Ext = Other Grapheme Extend, yes/no, normative, PropList.txt

This property is used to derive the property Gr Ext.

OIDC = Other ID Continue, yes/no, normative, PropList.txt

This property is used to derive the property IDC.

OIDS = Other ID Start, yes/no, normative, PropList.txt

This property is used to derive the property IDS.

OLower = Other Lowercase, yes/no, informative, PropList.txt

This property is used to derive the property Lower.

OMath = Other Math, yes/no, informative, PropList.txt

This property is used to derive the property Math.

OUpper = Other Uppercase, yes/no, informative, PropList.txt

This property is used to derive the property Upper.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Pat Syn = Pattern Syntax, yes/no, normative, PropList.txt

Indicates whether the character is or might be used in the pattern syntax for pattern matching
as defined in "Identifier and Pattern Syntax," available at
http://www.unicode.org/reports/tr31/. See the section "Identifier and Pattern Syntax" in
Chapter 11.

Pat WS = Pattern White Space, yes/no, normative, PropList.txt

Indicates whether the character is treated as whitespace in patterns.

QMark = Quotation Mark, yes/no, informative, PropList.txt

Indicates whether the character is used as a quotation mark in some language(s).

Radical = Radical, yes/no, normative, PropList.txt

Indicates whether the character is a radical (in ideographic writing).

SB = Sentence Break, enumeration, informative, auxiliary/SentenceBreakProperty.txt

Indicates the category of the character for determining sentence breaks.

sc = Script, catalog, informative, Scripts.txt

The script (writing system) to which the character primarily belongs to, such as "Latin,"
"Greek," or "Common," which indicates a character that is used in different scripts.

scc = Special Case Condition, string, informative, SpecialCasing.txt

The condition under which a special case-mapping rule is applied. The condition is expressed as
a space-separated list of locale IDs or contexts. For example, a value of tr means that the rule
is applied for Turkish-language texts only.

SD = Soft Dotted, yes/no, normative, PropList.txt

Indicates whether the character contains a dot that disappears when a diacritic is placed above
the character (e.g., "i" and "j" are soft dotted).

sfc = Simple Case Folding, string, normative, CaseFolding.txt

The case-folded (lowercase) form of the character when applying simple folding, which does
not change the length of a string (and may thus fail to fold some characters correctly). This is a
derived property.

http://www.unicode.org/reports/tr31/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

slc = Simple Lowercase Mapping, string, normative, UnicodeData.txt

The lowercase form of the character, if expressible as a single character.

stc = Simple Titlecase Mapping, string, normative, UnicodeData.txt

The titlecase form of the character, if expressible as a single character.

STerm = STerm, yes/no, informative, PropList.txt

Indicates whether the character is used to terminate a sentence.

suc = Simple Uppercase Mapping, string, normative, UnicodeData.txt

The uppercase form of the character, if expressible as a single character.

tc = Titlecase Mapping, string, informative, UnicodeData.txt and SpecialCasing.txt

The titlecase form of the character.

Term = Terminal Punctuation, yes/no, informative, PropList.txt

Indicates whether the character is a punctuation mark that generally marks the end of a
textual unit.

uc = Uppercase Mapping, string, informative, UnicodeData.txt and SpecialCasing.txt

The uppercase form of the character.

UIdeo = Unified Ideograph, yes/no, normative, PropList.txt

Indicates whether the character is a unified CJK ideograph. Used in Ideographic Description
Sequences.

URS = Unicode Radical Stroke Count, miscellaneous, informative, Unihan.txt

A radical/stroke count quantity describing a Han (CJK) ideograph.

Upper = Uppercase, yes/no, informative, DerivedCoreProperties.txt

Indicates whether the character is an uppercase letter.

VS = Variation Selector, yes/no, normative, PropList.txt

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Indicates whether the character qualifies as a Variation Selector used to specify the glyph
variant of a graphic character.

WB = Word Break, enumeration, informative, auxiliary/WordBreakProperty.txt file

Indicates the category of the character for determining word breaks.

WSpace = White Space, yes/no, normative, PropList.txt

Indicates whether the character should be treated by programming languages as a whitespace
character when parsing elements. This concept does not match the more restricted whitespace
concept in many programming languages, but it is a generalization of that concept to the
"Unicode world."

XIDC = XID Continue, yes/no, informative, DerivedCoreProperties.txt

As IDC, but for a somewhat different definition for "identifier." See Chapter 11.

XIDS = XID Start, yes/no, informative, DerivedCoreProperties.txt

As IDS, but for a somewhat different definition for "identifier." See Chapter 11.

XO NFC = Expands On NFC, yes/no, normative, DerivedNormalizationProps.txt

Indicates whether the character expands to more than one character in normalization to C
form.

XO NFD = Expands On NFD, yes/no, normative, DerivedNormalizationProps.txt

Indicates whether the character expands to more than one character in normalization to D
form.

XO NFKC = Expands On NFKC, yes/no, normative, DerivedNormalizationProps.txt

Indicates whether the character expands to more than one character in normalization to KC
form.

XO NFKD = Expands On NFKD, yes/no, normative, DerivedNormalizationProps.txt

Indicates whether the character expands to more than one character in normalization to KD
form.

5.2.2. Normative and Informative Properties

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Unicode standard defines somewhat vaguely what it means to designate a property as
normative. It does not mean that an implementation must know about the property and use it. But if
it does, it must use it as specified in the standard. Thus, an implementation may not interpret the
property values as it likes. A non-normativei.e., informativeproperty is provided for use on an "as you
like" basis: the property and its values have defined meanings and they stay at your disposal, but
you may use them for your own purposes as you like.

For example, an implementation may be ignorant of Hebrew and Arabic letters and all directionality
problems. But if it processes Hebrew or Arabic in a manner that involves visual presentation, it must
apply the directionality principles of Unicode, and this means using the Bidi Class property according
to the standard.

Some properties are partly normative, partly informative. The LineBreak property is normative for
values that indicate a forced line break, for example, but informative for many other values.

Being normative does not imply a guarantee that the property value will not change in future
versions of Unicode. Such changes are expected to be rare, though.

Generally, even a normative property can be overridden by a so-called higher-level protocol (see
Chapter 9). For example, the visual rendering of a document must normally obey the normative
values of the LineBreak property; line breaks can be prohibited or caused by tools external to plain
text, such as stylesheets or explicit formatting instructions. Similarly, you can use informative
properties to map lowercase letters to uppercase, yet override the mapping for some characters due
to some language-related or even application-specific conventions. Of course, you are supposed to
override the properties only if you know what you are doingi.e., there is a well-defined reason.

A normative property can be designed as non-overridable. This means that no modification is allowed
at any level. The reason for this is to guarantee that some basic operations are carried out in a
guaranteed manner that other software may rely on. In particular, the decomposition properties are
non-overridable. When canonical or compatibility decomposition is applied, the program doing so is
not allowed to throw in its own decomposition rules or ignore or modify the rules specified in the
standard. This means that if your program purports to deliver data in normalized form, you are
guaranteeing that Unicode normalization rules and no other have been applied.

5.2.3. Structure of Database Files

As mentioned earlier in this chapter, the Unicode Character Database consists of plain text files, so it
does not correspond to how many people understand the word "database." On the other hand, the
files can be used to construct a database that can be used with suitable database software for
searches, extracts, reports, etc. The files can also be used to generate mapping tables and other data
structures needed for creating general purpose subroutines that can be used in programming, so that
a programmer can work at a reasonable level of abstraction.

Largely for such purposes, the structure of the files follows some general principles, in addition to
specific rules described in each file (in comments) or in the Unicode standard. The principles are:

The files are in UTF-8 encoding, except NamesList.txt,which is ISO-8859-1. However,
characters outside the ASCII range (Basic Latin block) appear in comments only, except when
noted otherwise in the description of the file. Thus, in most cases, you can view and process the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

files as if they were ASCII encoded, at least if you ignore the comments.

A comment starts with # and ends at the end of line. A comment does not belong to the data
itself but describes it.

One line corresponds to one logical record, typically specifying the value of a property for one
character.

Fields of a record are separated by semicolons. In some files, there is a semicolon after the last
field, too. When the fields are referred to in text, they are considered as numbered starting
from zeroas common in programming, since programming language designers think in terms of
displacements from a base address.

Leading and trailing spaces in a field are not significant.

The first field of a record usually indicates a code point or code point range. The other fields
specify property values for the code point(s).

Code points are expressed in the usual hexadecimal notation but without the "U+" prefix, using
at least four digits for a code number, with leading zeros as necessary.

A code point range is described by writing two periods (..) between code pointse.g.,
0000..007F.

However, in the UnicodeData.txt file, a different method is used to specify values for a range of
code points. A notation involving the words First and Last is used so that one line specifies the
start and the next line specifies the end of the range. For example, the following two lines there
specify that all code points from U+AC00 to U+D7A3 denote Hangul syllable characters, with
the same properties as the first and last character of the range: (In such situations, the Unicode
names of characters are algorithmically derivable; in this case, the names can be derived from
an algorithmic decomposition into Unicode characters with known names.)

AC00;<Hangul Syllable, First>;Lo;0;L;;;;;N;;;;;
 D7A3;<Hangul Syllable, Last>;Lo;0;L;;;;;N;;;;;

A sequence of consecutive code points is expressed by writing them as separated with space.
Thus, 0066 0069 means U+0066 "i" followed by U+0069 "j"i.e., "ij" without any space.

A property value may be omitted (still preserving semicolons between fields), thereby implying
a default value. If the value is of string type, the default value is the character itself; for
example, for case mappings, the default is that a character does not change in the mapping. For
other types of values, the default is specified in a comment in the database file.

Abbreviations and names of properties are written using underline (underscore) instead of a
spacee.g., Bidi_Control instead of Bidi Control.

In a file that may specify different properties for characters, the abbreviation of a property is
given in one field, its value in another. For example, the following line (from
DerivedNormalizationProps.txt) says that for character U+037A, the value of the property
FC_NFKC is the two-character sequence U+0020 U+03B9:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

037A ; FC_NFKC; 0020 03B9 # Lm GREEK YPOGEGRAMMENI

In a file that specifies binary (yes/no) properties, the name of a property is given in one field,
without a value, implying a "yes" value (True) for the character. For such properties, the value
"no" (False) is implied for all characters that are not mentioned. For example, in the PropList.txt
file, there are only the two lines quoted below that mention the Bidi_Control property
(comments omitted from this quotation). This implies that for the two characters U+200E and
U+200F and for the five characters U+202A to U+202E, the value of the Bidi Control property is
"yes" (True), and for all other characters, it is "no" (False):

200E..200F ; Bidi_Control
 202A..202E ; Bidi_Control

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.3. Compositions and Decompositions

The 10 design principles of Unicode, presented in Chapter 4, contain one principle on dynamic
composition and another principle on equivalent sequences. For example, the letter é can be
represented as a single Unicode character, or dynamically composed as a two-character string (letter
"e" followed by a combining acute accent). The single character é is said to have a canonical
decomposition consisting of two characters, and this relationship implies canonical equivalence .

Unicode lets you combine a base character with an unlimited number of combining diacritic marks. In
practice, there's most often just one diacritic, sometimes two, but there is no limit. For example,
phonetic or mathematical notations may deploy several diacritic marks on one character. As a base
character, you can use any character that does not itself combine with preceding characters and that
is neither a control nor a format character.

Unicode would be simpler, if all letters with diacritic marks were represented using dynamic
composition. For different practical reasons, another approach was taken, and this implies that we
need to deal with precomposed forms and with conversions between them and decomposed forms.

Characters may have decompositions in a different sense, too. Many characters have compatibility

decompositions . For example, the small Latin ligature "fi," , has a compatibility decomposition that
consists of the two characters "f" and "i."

5.3.1. The Impact of Diacritic Marks

A diacritic mark is an additional graphic such as an accent (as in è or é) or cedilla (as in ç) attached
to a character. It may affect the pronunciation of a character, or the meaning of a word, or both. It
appears visually close to the base character, often above or below it, possibly crossing over its line,
but it is treated as a logically separable part.

A diacritic mark can be treated in different ways when defining a character repertoire. You could
define a character like é (letter "e" with acute accent) as a separate character, or you could define
the base character "e" and the diacritic ´ as two distinct characters. In the latter approach, you
would need to define the diacritic as combining (nonspacing), or otherwise indicate that it be
rendered as attached to the character, not as a separate character after it.

For example, the ISO-8859-1 character code contains a collection of letters with diacritic marks, such
as é, but no combining marks. It contains the acute accent ´, but as a normal (spacing) character,
which is not combined with any other character in any way.

The Unicode standard uses nonspacing mark as a term that covers diacritic marks but can be seen as
somewhat more general in nature. The term "diacritic mark" is often used to denote accents and
other marks attached to Latin, Greek, Cyrillic, and other letters, whereas "nonspacing mark" also
covers Hebrew points, Arabic vowel marks, etc. In this book, "diacritic mark" is used in a broad
sense, as a synonym for "nonspacing mark."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.3.1.1. Precomposed and decomposed form

In Unicode, a character with a diacritic mark can often be represented in two ways. You can express
é as a precomposed character or as decomposedi.e., as a character pair consisting of "e" and a
combining acute accent. Both representations are possible for a large number of commonly used
characters, though not for all characters with diacritics.

This means flexibility, but it also creates a pile of problems. What happens if a database contains é as
decomposed but a search string typed by the user contains it as precomposed? This is just the
beginning of the problems. For example, a character with several diacritic marks can be represented
as several different decompositions.

Unicode contains separate characters called combining diacritical marks . The general idea is that you
can express a vast set of characters with diacritics by representing them so that a base character is
followed by one or more combining (nonspacing) diacritic mark(s). A program that displays such a
construct is expected to do rather clever things in formattinge.g., selecting a particular shape for the
diacritic according to the shape of the base character.

In Unicode, a combining diacritic mark always follows the base character in data. It may visually
appear above, below, or on either side of the base character. The logical order differs from the order
in many methods of typing characters with diacritic marks. For example, on many keyboards, you
could first press a key labeled ´, and then the "e" key, to produce é. However, if this letter is
represented in data as decomposed, it has the combining diacritic mark after the base letter "e."

The order in typing mechanisms reflects the methods used on mechanical typewriters. They may
contain a ´ key, which is non-advancingi.e., the writing position is not moved forward. Therefore, the
next character will overprint the symbol, resulting in a coarsely constructed accented letter. In
Unicode, combining diacritic marks are supposed to be rendered as combined with the preceding
character in a more elaborate way.

5.3.1.2. Combining marks: powerful, but still poorly supported

Many programs currently in use are totally incapable of doing anything meaningful with combining
diacritic marks. However, there is at least some simple support for them in word processors and web
browsers, for example. Regarding advanced implementation of the rendering of characters with
diacritic marks, consult Unicode Technical Note #2, "A General Method for Rendering Combining
Marks," http://www.unicode.org/notes/tn2/.

Using combining diacritic marks, we have wide range of possibilities. We can put, say, a dieresis on a
gamma, although "Greek small letter gamma with dieresis" does not exist in Unicode as a character
with a code position of its own. The combination U+03B3 U+0308 consists of two characters,
although its visual presentation looks like a single character in the same sense as ä looks like a single
character. A word processor may display it as γ , which might be of poor quality (the dieresis is not
correctly placed with respect to the base character), but probably legible. Many programs fail to
display it at all. For practical reasons, in order to use a character with a diacritic mark, you should
primarily try to find it as a precomposed character.

A precomposed character, also called a composite character or a decomposable character, is one that
has a code position (and thereby identity) of its own but is in some sense equivalent to a sequence of

http://www.unicode.org/notes/tn2/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

other characters. There are lots of them in Unicode, and they cover most of the needs of the
languages of the world, but not all. Special notations, such as the International Phonetic Alphabet by
IPA, may require several different diacritic marks that can be combined with characters, in a manner
that makes it quite infeasible to try to define all the combinations as precomposed characters.

For example, the Latin small letter "a" with dieresis ä (U+00E4) is, by Unicode definition,
decomposable to the sequence of the two characters: Latin small letter "a" (U+0061) and combining
dieresis (U+0308). Almost always, however, the letter ä is entered in its precomposed form, though
it might then internally be decomposed. Generally, by decomposing all decomposable characters, you
could in many cases simplify the processing of textual data, and the resulting data might be
converted back to a format using precomposed characters.

5.3.1.3. Features that are not diacritic marks

Many letters that do not contain a diacritic mark in the Unicode sense have historically been formed
from a base letter by adding some mark to it. For example, the Norwegian and Danish ø is originally
an "o" with a slanted line over it. Its name, "Latin small letter o with stroke," reminds of this and
could even be read as suggesting that it is a combination of an "o" and a diacritic mark called

"stroke." Similarly, the letter , "Latin capital letter L with stroke," used in Polish, would seem to be
an "L" with the same diacritic, though with a different visual shape.

Although such letters are often understood as letters with diacritic marks, they are classified as

independent letters in Unicode. The characters ø and are not decomposable in any way. They have
no defined relationships with "o" and "L" in Unicode, except in the sense that in the default collating
order (see the section "Collation and Sorting" later in this chapter), o is sorted in the same primary

position as "o," and is sorted in the primary position as "L."

This approach does not exclude the possibility of treating such characters in some special way in
application programming or in language-dependent general rules. Since they are intuitively
understood as variants of some base characters, it would be natural to define input methods that
relate to such intuition. For example, in MS Word, you can produce ø by using the sequence Ctrl-
Shift-7 o. This is relatively easy to remember if your keyboard has the solidus / as Shift-7, so that
you can think you are using Ctrl-/ o.

5.3.2. Compatibility Mappings and Canonical Mappings

The Unicode character database defines a decomposition mapping for each character. This mapping
associates another character or a sequence of characters with the given character, and this
association is indicated as a canonical mapping or as a compatibility mapping, also called
decomposition. Typical cases include the following:

A character with a diacritic mark has a canonical mapping to a sequence of a base character
and a combining diacritic mark. For example, é has a canonical mapping to "e" followed by a
combining acute accent.

A ligature has a compatibility mapping to a sequence consisting of the constituent letters. For

example, ligature has compatibility mapping to "f" followed by "i."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A character that is treated as a variant of another character often has a compatibility mapping
to it, although sometimes the mapping is defined as being canonical. For example, many
characters have so-called fullwidth forms for use in East Asian texts, where normal forms of
symbols like $ might look odd, when other characters are "wide" (basically, designed to fit into
a square). These forms, such as fullwidth dollar sign (U+FF04), have compatibility mappings to
the normal characters.

5.3.2.1. Difference between canonical and compatibility mappings

Canonical and compatibility mappings are rather fundamental in Unicode, and they are commonly
confused with each other. One reason for this is that in many cases, the choice of the mapping type
was debatable, if not arbitrary. For example, the micro sign µ has compatibility mapping to the Greek

small letter mu, but the ohm sign has canonical mapping to the Greek letter capital omega. Yet
both of them are basically Greek letters that have been taken to special usage, perhaps modifying
the shape of the glyph a little.

In some notationse.g., in the Unicode code chartsthe character (identical to, U+2261) is used to

indicate canonical mappinge.g., U+2126 Ω U+03A9. Handy as this may be, it can be
misleading, since the two characters are not identical, though they may be treated as essentially
similar by programs. The relation expressed by the symbol here isn't even symmetric, contrary to
its normal use in mathematics. The symbol is best read as "has canonical mapping to."

Similarly, the character (almost equal to, U+2248) is often used to indicate compatibility

mappinge.g., µ U+00B5 µ U+03BC. This symbol is best read as "has compatibility mapping to."

The short characterizations are:

If A has canonical mapping to B, then A and B are really two different ways of encoding the
same symbol in Unicode. As codes or sequences of codes, they are different, but they have the
same ultimate meaning and normally the same rendering.

If A has compatibility mapping to B, then A and B denote fundamentally similar characters,
which may differ in rendering, as well as in scope of usage. In practice, they may differ in
meaning, too.

The Unicode Normalization Form C (discussed in the section "Normalization") is often applied to
Unicode data. It applies all canonical mappings (e.g., loses the distinction between ohm sign and
capital omega), but not compatibility mappings (e.g., it keeps micro sign and small mu as distinct).

Although compatibility mapping is not meant to imply semantic difference, the Unicode standard
admits (in UAX #15): "However, some characters with compatibility decompositions are used in
mathematical notation to represent distinction of a semantic nature; replacing the use of distinct
character codes by formatting may cause problems." A simple example of this is the superscript two
2, which has compatibility mapping to the digit two, 2. Applying this compatibility mapping in, for
example, the expression 52 yields 52 and therefore distorts the meaning. In some cases, this can be
fixed by using markup or formatting instructions, but in plain text, that's not possible.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.3.2.2. Canonical and compatibility equivalence

Although canonical and compatibility mappings are one-directional and do not mean equivalence, we
can define equivalence relations based on them. Canonical and compatibility equivalence are defined
for sequences of characters (i.e., strings), naturally regarding a single character as a special case.
The exact definitions will be given later in this chapter, but the basic idea is the following. Strings are
canonical equivalent,if their canonical decompositions, obtained by applying all canonical mappings,
are the same. Thus, in particular, if A has a canonical mapping to B, then A and B are canonical
equivalent. Compatibility equivalence is defined in a similar way, except that both compatibility and
canonical mappings are applied.

The term "canonical equivalent" is from the Unicode standard, so we use it in
this book, instead of the grammatically more correct expression "canonically
equivalent."

5.3.2.3. The meaning of canonical mapping

We already mentioned that canonical mapping does not mean identity, despite the symbol commonly

used to denote it. A relationship like U+2126 Ω U+03A9 is a relation between two distinct
characters. We should expect that programs often make no distinction between them, but a
distinction may be made.

For example, a program might recognize U+2126 but not U+03A9, or vice versa. It would then
behave differently for them, of course. If it recognizes both, it need not treat them the same way,
but any program conforming to the Unicode standard may do so. Thus, if a program sends another
program the character U+2126 and the latter acknowledges having received U+03A9, it is accepted
behavior, and the sender should be prepared for this.

5.3.2.4. Differences in glyphs for equivalent characters

A character may be visually distinct from its compatibility mapping. For example, a font that contains
both U+2126 and U+03A9 may have different glyphs for them, although we would expect them to
have the same basic shape. The Unicode standard explicitly says that replacing a character with its
compatibility mapping may lose formatting information.

In practice, a character may visually differ from its canonical mapping, too, although the general idea
is that this shouldn't happen. For example, many fonts have different glyphs for ΅ U+00B5 and µ
U+03BC. In some cases, there is no difference in any font, but the appearances may still differ! For
example, if a font contains the Kelvin sign (U+212A), it looks just the same as the Latin capital
letter "K," K, in that font. But if you create, for example, a web page containing the Kelvin sign, it will
often look different from the letter "K," since a browser uses its default font for the letter "K" and
picks up the Kelvin sign from a different font.

5.3.2.5. How the mappings are defined

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When you need to know about the canonical or compatibility mapping of a particular character, you
can consult some of the resources mentioned in Chapter 4, which also described the overall structure
of the Unicode database.

The UnicodeData.txt file in the Unicode database contains, for each character, a field (the sixth one)
that specifies whether the character has a decomposition mapping, as well as the specific
decomposition and its nature (canonical or compatibility). Let us consider the following line at
http://www.unicode.org/Public/UNIDATA/UnicodeData.txt:

00B5;MICRO SIGN;Ll;0;L;<compat> 03BC;;;;N;;;039C;;039C

Here, the notation <compat> 03BC means that the character has compatibility mapping to U+03BC.
Instead of <compat>, the field could also contain a more specific notation, such as <super>, which also
indicates the nature of the presentational difference. For example:

00B2;SUPERSCRIPT TWO;No;0;EN;<super> 0032;;2;2;N;SUPERSCRIPT DIGIT TWO;;;;

Superscript two (2) is an ISO Latin 1 character with its own code position in that standard. In the
Unicode way of thinking, it would have been treated as a superscript variant of digit two (2), if there
had not been a particular reason to do otherwise. This does not mean that in the Unicode philosophy
superscripting (or subscripting, italics, bolding, etc.) would be irrelevant; rather, it is to be handled at
another level of data presentation, such as some special markup or styling. Since the superscript two
character is contained in an important standard, it was included into Unicode, though only as a
compatibility character, with <super> 0032 in the sixth field in its entry in the database. The practical
reason is that now one can convert from ISO Latin 1 to Unicode and back and get the original data
unchanged.

The sixth field might also contain just the number of a character, or numbers of characters, without
any indication of compatibility. For example:

212B;ANGSTROM SIGN;Lu;0;L;00C5;;;;N;ANGSTROM UNIT;;;00E5;

The field 00C5 means that the angstrom sign U+212B has canonical mapping to the Latin capital
letter "A" with ring above Å (U+00C5). Since no notation like <compat> or <super> is present in the
field, it indicates canonical mapping and not compatibility mapping.

You can also find information on decomposition mappingials in the Unicode code charts, where they
appear more legibly, as illustrated in Figure 5-2, though divided into a large number of PDF files. In
the charts, characters at the start of an item under a character's name have meanings as follows:

Figure 5-2. Descriptions of four characters in a code chart

http://www.unicode.org/Public/UNIDATA/UnicodeData.txt
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 indicates canonical mapping.

 indicates compatibility mapping.

= indicates a synonym (not any mapping).

• indicates an informal note (not any mapping).

 is a cross reference, which can be read as "compare with"; it does not mean any mapping,
and it explicitly warns against confusing the character with another one.

The last example in Figure 5-2 illustrates that a character does not always have a decomposition
even if it greatly resembles another character. The estimated symbol is surely derived from the letter
"e," but it is treated as an independent character in Unicode.

The compatibility formatting tag <super> looks like an HTML or XML tag, but it is just a notation used
in the Unicode database to indicate the value of the property dt = Decomposition Type. The "tags" do
not appear in actual data, of course. On the other hand, characters with such mappings can often be
replaced by markup elements that contain the non-compatibility character. For example, modifier
letter small "h" (U+02B0) with compatibility mapping "<super> 0068," might be replaced by the
markup ^h in HTML, though this is often debatable (see Chapter 9).

The meanings of compatibility formatting tags used in the compatibility mappings are given in Table
5-2. The words "narrow" and "wide" refer specifically to presentation forms used in East Asian writing
systems.

Table 5-2. Compatibility formatting tags

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Tag Meaning

<circle> An encircled form

<compat> Otherwise unspecified compatibility character

<final> A final presentation form (Arabic)

 A font variant (e.g., a blackletter or italics form)

<fraction> A vulgar fraction form, such as ½

<initial> An initial presentation form (Arabic)

<isolated> An isolated presentation form (Arabic)

<medial> A medial presentation form (Arabic)

<narrow> A narrow (hankaku) compatibility character

<noBreak> A no-break version of a space, hyphen, or other punctuation

<small> A small variant form (CNS compatibility)

<square> A CJK squared font variant

<sub> A subscript form

<super> A superscript form

<vertical> A vertical layout presentation form

<wide> A wide (zenkaku) compatibility character

5.3.3. Canonical Decomposition and Compatibility Decomposition

Canonical and compatibility decomposition are based on the canonical and compatibility mappings
discussed earlier, but decompositions may consist of successive application of the mappings. For
example, the angstrom sign Å (U+212B) has canonical mapping to Latin capital letter "A" with ring Å
(U+00C5), which in turn has canonical mapping to letter "A" followed by a combining diacritic.
Successive application of mappings is often called "recursive," but it's really not recursion, rather it's
iteration.

Decomposition replaces a character by a sequence of characters that are in some sense more basic.
From the perspective of the Unicode standard, decomposition is something that you may or may not
perform, just as you find suitable for your purposes. Other standards and rules may make
decomposition compulsory in some contexts.

There are two kinds of decomposition defined in the Unicode standard: canonical and compatibility.
They relate to the two kinds of mappings, although in a somewhat more complex way than you might
expect.

5.3.3.1. Canonical decomposition

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Canonical decomposition of a character means the following: if the character has a canonical
mapping, you replace it with the character or string in the mapping. Then you check whether any
character in the result has a canonical mapping, and you proceed until no further mapping exists. The
mappings have of course been defined so that the process ends after a finite number of steps,
without going to a loop.

For example, the canonical decomposition of the angstrom sign Å (U+212B) is the two-character
sequence U+0041 U+030A (letter "A" and combining ring above). As explained previously, two
mapping steps are taken in this case.

In fact, canonical decomposition involves two additional algorithms. By definition, canonical
decomposition consists of the following:

Successively apply all the canonical mappings defined in the UnicodeData.txt file and by the
Conjoining Jamo Behavior, until no such mapping can be applied. The Conjoining Jamo
Behavior, defined in section 3.12 of the Unicode standard, deals with Hangul (Korean)
characters and describes an algorithm for decomposing a Hangul syllable character.

1.

Then reorder nonspacing marks according to Canonical Ordering Behavior. This deals with
situations where two or more nonspacing marks appear in succession.

2.

5.3.3.2. Canonical Ordering Behavior

Canonical Ordering Behavior is based on the ccc = Canonical Combining Class property, which
assigns an integer to each character. For nonspacing marks, this value describes the position of the
mark with respect to the base character, and it is also used for ordering the marks. For characters
other than nonspacing marks, this value is zero.

The Canonical Ordering Behavior, described in detail in section 3.11 of the Unicode standard, reorders
consecutive nonspacing marks in increasing order by their Canonical Combining Class property. This
removes some variation. For example, the letter "e" with a circumflex above and a dot below can be
represented in five ways in Unicode:

As a fully composed character: Latin small letter "e" with circumflex and dot below Ç (U+1EC7)

As fully decomposed in two ways, using two different orders for the combining marks

As partly composed in two ways: ê followed by combining dot below, or ¹ followed by combining
circumflex accent

In canonical decomposition, canonical mappings remove part of the variation: the result is fully
decomposed. However, the combining marks may appear in two different orders, depending on the
initial data. Canonical Ordering Behavior removes this variation, if the combining marks belong to
different combining classes. In our example, combining circumflex accent (U+0302) has combining
class 230, whereas combining dot below (U+0323) has combining class 220. The one with lower class
comes first, so canonical decomposition changes the five ways in the above list to a single
representation: U+0065 U+0323 U+0302 (letter "e," combining dot below, combining circumflex
accent).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Canonical decomposition does not remove all variation in the order of combining marks. If two marks
belong to the same combining class, their mutual order is not changed. The reason is that the order
can be significant, since being in the same class, the marks may interact typographically, and this
interaction may depend on the mutual order. For example, U+0065 U+0306 U+0302 and U+0065
U+0302 U+0306 (letter "e" followed by combining breve and combining circumflex accent in either
order) remain as different after decomposition. The combining breve and the combining circumflex
accent both have combining class 230, because they are in essentially the same position with respect
to the base character. Thus, an adequate rendering process will produce different visual results: "e"
with a breve above it and with a circumflex above the breve, or "e" with a circumflex above it and a
breve above it. (A poor implementation produces an "e" with a breve and circumflex overprinting
each other.)

5.3.3.3. Canonical equivalence

The Unicode character defines canonical equivalence of strings, and it is an equivalence relation in the
mathematical sense. It is reflexive (i.e., any string is equivalent to itself); it is symmetric (i.e., if A is
equivalent to B, then B is equivalent to A); and it is transitive (i.e., if A is equivalent to B and B is
equivalent to C, then A is equivalent to C).

Strings are by definition canonical equivalent, if their canonical decompositions are identical. For
example, the five ways of representing "e" with dot below and circumflex discussed in the previous
section are all canonical equivalent.

5.3.3.4. Compatibility decomposition and equivalence

Compatibility decomposition is defined the same way as canonical decomposition, except that
compatibility decomposition includes canonical decomposition. Canonical decomposition of a string
consists of the following:

Successively apply all the compatibility mappings and canonical mappings defined in the
UnicodeData.txt file and by the Conjoining Jamo Behavior, until no such mapping can be
applied.

1.

Then reorder nonspacing marks according to Canonical Ordering Behavior.2.

For example, the compatibility decomposition of the (rather artificial) string "½ µé," where µ is the
micro sign, is the string "1/2 µe/," where µ is the Greek letter mu and / denotes the combining acute
accent.

Compatibility equivalence of strings is defined in the obvious way: strings are compatibility
equivalent, if their compatibility decompositions are identical. It follows from the definitions that
canonical equivalent strings are compatibility equivalent, too.

5.3.3.5. Canonical and compatibility decomposable characters

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Unicode standard uses a large number of rather redundant terms. We need to mention them,
since you may encounter them when reading about Unicode: A character that is canonical equivalent
to something other than itself is said to be canonical decomposable . Similarly, if a character is
compatibility equivalent to something other than itself, it is compatibility decomposable. Often such
decomposability really means that a character can be decomposed into constituentse.g., ä can be
decomposed into "a" and a combining dieresis. However, many of the "decompositions" just map one

character to another character, as in the case of U+2126 Ω U+03A9, mentioned earlier in the
chapter.

5.3.4. Compatibility Characters

Unicode contains a large number of characters described as "compatibility characters ." Many of them
are variants of other characters. The overall tone of the standard is that compatibility characters
should be avoided, except in legacy data. However, it does not explicitly deprecate them; on the
contrary, it says: "The status of a character as a compatibility character does not mean that the
character is deprecated in the standard." There is a separate concept of deprecation, for characters
that really should not be used at all but have been preserved in Unicode according to its design
principles.

Compatibility characters were included into Unicode for compatibility with other character codesi.e.,
just because the characters exist in one or more character code. One reason for this is that data
presented using some other code can be converted to Unicode and back, or from one character code
to another using Unicode as an intermediate code, without losing information. The Unicode standard
says:

Compatibility characters are those that would not have been encoded except for compatibility
and round-trip convertibility with other standards. They are variants of characters that already
have encodings as normal (that is, non-compatibility) characters in the Unicode Standard.

Many, but not all, compatibility characters have compatibility decompositions, which specify the
character's relationship to other characters. There has been some confusion around this, since not all
compatibility characters have such decompositions. The Unicode standard itself mentions that the
phrase "compatibility character" is also used in a narrower sense, which refers to compatibility
decomposable charactersi.e., those characters that have compatibility decompositions. The phrase
"compatibility composite (character)" is also mentioned as a synonym, but that sounds quite
redundant and confusing.

For example, the micro sign µ (U+00B5) is a compatibility decomposable character. It has
compatibility mapping to the Greek small letter mu µ (U+03BC).

The Unicode character database rigorously defines for each character whether it is a compatibility
decomposable character, as well as the eventual decomposition. The same information is presented

in a more readable form in the code charts, where the character indicates canonical
decomposition, as illustrated in Figure 5-3. The question exclamation mark (U+2048) is defined as a
separate character, but with compatibility mapping to the character pair U+003F U+0021i.e., ?
followed by !.

The more general concept of compatibility character is defined in prose only, and it includes, for
example, deprecated alternate format characters, which have no

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 5-3. Sample definition of a compatibility decomposable character

decomposition, as well as CJK compatibility ideographs, which have canonical decompositions, not
compatibility decompositions. This wider concept of compatibility character is basically just
descriptive; rules and algorithms operate on the decompositions.

The concept "compatibility decomposable character" has been defined formally,
whereas the concept "compatibility character" is informal but sometimes
important. If a character is a compatibility decomposable character, it is a
compatibility character; the reverse is not true.

For example, as discussed previously, the angstrom sign Å (U+212B) is defined so that it has a
canonical decomposition, not a compatibility decomposition. Yet, it is a compatibility
characterbecause it has been declared as such in the prose of the Unicode standard. Generally, when
a character is defined to have canonical mapping to a single character, the explanation is that it has
been included into Unicode for compatibility only and it is regarded as so similar to the other
character that their renderings are expected to be the same.

Thus, canonical mapping means different things in different cases, depending on whether a character
has canonical mapping to one character or to a sequence of characters. For example, Latin capital
letter "A" with ring above Å (U+00C5) has canonical mapping to U+0041 U+030A (letter "A" followed
by combining ring above), but it is not a compatibility character. It is simply a "normal" character
that is decomposable into two "normal" characters.

5.3.5. Compatibility Decomposable Characters

Replacing a compatibility decomposable character by the corresponding normal character or
sequence of characters does not, by Unicode definition, change the meaning of text, but it may
change formatting and layout. For example, the micro sign and the small mu are expected to look
similar, but not necessarily identical.

This definition is subject to some criticism, though. It can be argued that the micro sign is quite
different in meaning from the small mu. The micro sign unambiguously denotes a multiplier of a unit.
The small mu is a letter of the Greek alphabet, and it is normally used when writing Greek words,
although it could also appear in a variety of special meanings. The Unicode standard does not
recommend that such distinctions should be made, or that they should not be made. Rather, the
micro sign is included for compatibility with old character codes and it in fact implies that the
distinction can be made, if desired.

Many compatibility characters are in the Compatibility Area but others are scattered around the
Unicode coding space. They belong to different types, such as the following:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Variants of letters used in specialized meanings, such as the micro sign

Variants such as superscripts (e.g., 2 as variant of "2")

Ligatures, such as

Contextual forms of Arabic letters

Fullwidth forms of ASCII characters, for use in East Asian writing systems

Special-purpose combinations of characters, such as care of (which has compatibility
mapping to c/o)

Fixed-width space characters like thin space, used for typographic purposes

5.3.6. Avoiding Compatibility Characters

The general idea in the Unicode standard is that compatibility characters should be avoided in new
data, but it expresses this somewhat indirectly. However, in subsection 3.7, "Decomposition," the
standard is rather explicit about compatibility decomposable characters:

Compatibility decomposable characters ... support transmission and processing of legacy data.
Their use is discouraged other than for legacy data or other special circumstances.

In practice, it is not always feasible to avoid compatibility characters in plain text. If plain text
contains the string 32, the normal interpretation is that it means 3 to the power 2. Replacing the
superscript two with the corresponding non-compatibility character would turn the data into 32,
which means something completely different.

In formats other than plain text, it is often possible and suitable to avoid compatibility characters by
using markup or other tools. There is a document titled "Unicode in XML and other Markup
Languages," at http://www.w3.org/TR/unicode-xml/, produced jointly by the World Wide Web
Consortium (W3C) and the Unicode Consortium. It discusses characters with compatibility mappings:
should they be used, or should the corresponding non-compatibility characters be used, perhaps with
some markup and/or stylesheet that corresponds to the difference between them? The answers
depend on the nature of the characters and the available markup and styling techniques. For
example, for superscripts, the use of sup markup (as in HTML) is recommendedi.e., ² is
preferred over the superscript two character 2 (and its representation as an entity, ²). This is a
debatable issue, partly because superscripting has two essentially different uses: semantic, as in
mathematics, or stylistic, as in abbreviations like 1st for "first" or French Mlle for "mademoiselle." This
will be discussed in more detail in Chapter 9.

In practice, compatibility characters are widely used in new Unicode data, too. Many of them work
more reliably than the corresponding "normal" characters. For example, the micro sign belongs to
ISO Latin 1 and therefore appears in almost any font used in the Western world, whereas the letter
mu has less support. Existing software for processing measurement data may well recognize "µm" as
denoting micrometer but fail to recognize "µm" (where the letter mu is used).

In using characters, it's often best to do what everyone else does. Suppose, for example, that you

http://www.w3.org/TR/unicode-xml/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

decide to use the letter mu instead of the micro sign as a unit prefix. If people open your document in
a program and use the program's search function, the odds are that they type "µm" using the micro
sign. (After all, it's often easier to write than the letter mu.) They would not find anything, unless the
search function uses advanced techniques that handle compatibility mappings somehow.

5.3.7. Compatibility Characters for Ligatures

Some compatibility characters have compatibility decompositions consisting of two or more
characters so that it can be said that they represent a ligature of those characters. For example,

Latin small ligature "fi" (U+FB01) has the obvious decomposition consisting of letters "f" and "i." It
is a distinct character in Unicode, but in the spirit of Unicode, we should not use it except for storing
and transmitting existing data that contains the character. One practical reason for this is that most
programs do not treat a ligature as matching the corresponding sequence of characters in
comparisons, searches, etc.

As mentioned in Chapter 4, Unicode has two control characters for affecting ligature behavior, zero-
width joiner ZWJ U+200D and zero-width non-joiner ZWNJ U+200C. This is intended to prevent the
use of a ligature or cursive connection. Formally, ligature characters such as U+FB01 are not defined
in a manner that involves a zero-width joiner. Instead, U+FB01 has compatibility mapping to U+0066
U+0069 (i.e., "f" followed by "i"), although it might conceivably have been declared as having
mapping to U+0066 U+200D U+0069.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.4. Normalization

In data processing, normalization generally means conversion of data to a form that has been defined
as normal form, among different possibilities. This does not mean that other forms would be incorrect
or nonstandard. On the contrary, the normal form is usually just one of the correct forms. In some
contexts, there is a difference between "normal form" and "normalized form," but we will treat them
as synonyms here.

Consider the Latin small letter "e" with acute accent é. This character can be represented in Unicode
as a separate character with a code point of its own, U+00E9. Equivalently, in the sense of canonical
equivalence, it can be represented as a two-character sequence: Latin small letter "e" (U+0065)
followed by combining acute accent (U+0301). The rendering should be exactly the same, and we
might say that well-designed software should handle them bothand identically. Due to its design
goals, Unicode contains a lot of ways to represent things in canonically equivalent ways.

However, processing of data becomes easier if the variation is reduced. For some purpose and
context, we might decide that one of the forms is the normal form. We might then use preprocessing
software that converts the data to the normal form. This would make the coding of the actual
processing easier. For example, text searching is easier if we can assume that all data has been
normalized, so that when a search for é is performed, we know exactly what to look for.

Normalization operates at the level of code points, not encodings. Different encodings, such as UTF-8
and UTF-16, will be discussed in Chapter 6. Encoding issues are independent of normalization.

5.4.1. Normalization Versus Folding

In the Unicode context, the term "normalization" is used only to denote normalization forms that deal
with canonical and compatibility decompositions and compositions. For example, the representation
of é as U+00F9 or as U+0065 U+0301 is a normalization issue in this narrow sense. Mapping, for
example, É to é for case-insensitive comparisons or ignoring diacritic marks (mapping é, è, etc., all to
"e") is not called normalization but folding, although the goals are often the same as for
normalization.

Folding issues are discussed in the Draft Unicode Technical Report (UTR) #30, "Character Foldings,"
http://www.unicode.org/reports/tr30/. Typically, the foldings described there are mappings that
perform some of the canonical or compatibility mappings, such as removal of canonical duplicates or
subscript folding, which turns subscript characters to corresponding normal characters. However,
they also include quite different mappings, such as accent removal.

According to UTR #30, all folding operations involve canonical decomposition, and they may involve
composition as the last step. The general idea is to apply folding rules, then canonical decomposition,
and then to repeat these steps until the data is stablei.e., does not change anymore in these steps.
Thus, folding resembles normalization but contains additional operations.

http://www.unicode.org/reports/tr30/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.4.2. Overview of Normalization Forms

Unicode defines several normalization forms, which can be used for different purposes. They are
summarized in Table 5-3. The principles are simple: first decomposable characters are decomposed,
using either canonical or compatibility decomposition. This may be followed by canonical composition,
as described later in the detailed descriptions of Normalization Forms C and KC.

Table 5-3. Unicode normalization forms

Code Name Meaning

NFD Normalization Form D Canonical decomposition

NFC Normalization Form C Canonical decomposition, canonical composition

NFKD Normalization Form KD Compatibility decomposition

NFKC Normalization Form KC Compatibility decomposition, canonical composition

In the codes, "D" stands for decomposition, "C" for composition, and "K" for
compatibility. Composition implies prior decomposition.

For example, consider the word " ancé" written so that it starts with the ligature (U+FB01) and
ends with the composite character "e" with acute accent (U+00E9). These characters have
compatibility and canonical mappings, respectively. The normalization forms of the word are
presented in Table 5-4, denoting a combining acute accent U+0301 by the acute accent ´ for clarity.

Table 5-4. Normalization forms of the sample word " ancé"

Form " ancé" normalized Explanation

NFD a n c e´ é has been decomposed (canonical)

NFC a n c é é was decomposed but then composed back

NFKD f i a n c e´ Both and é have been decomposed

NFKC f i a n c é Only has been decomposed (compatibility)

In the example, the NFC form is the same as the original string. This is typical, since NFC deals with
canonical mappings only, and it first decomposes, and then composes. The NFKD form is fully
decomposed, whereas in the NFKC form, the character é was first decomposed, then composed back
(canonical composition).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Unicode data may contain characters such as é in both precomposed and decomposed form.
Normalization to NFD (or NKFD) ensures that they will all be in (completely) decomposed form.
Normalization to NFC (or NKFC) ensures that they will all be in precomposed form if possible. The "if
possible" part comes from the fact that not all characters with diacritic marks have precomposed
forms in Unicode.

No normalization form performs any "compatibility composition." For example, normalization never

composes the letters "f" and "i" into the ligature .

For quick checks on the normalization forms of individual characters, you can use the Normalization
Charts at http://www.unicode.org/charts/normalization/. They show the four normalization forms for
each character, except for those that are invariant under all normalizations. The charts are illustrated
in Figure 5-4. Note that the glyphs are usually the same although the normalization forms (code
number sequences) differ, so the most relevant information is in the code numbers below the glyphs.
Generally, normalization to the C or D form should not change the rendering of a character, whereas
normalization to KC or KD form may change it, since they involve compatibility mappings.

There is also an offline tool for checking the normalization forms of a string, Charlint. It can be
downloaded from http://www.w3.org/International/charlint. It corresponds to Unicode Version 3.2,
so newer characters cannot be checked.

Figure 5-4. The Normalization Chart for some Cyrillic characters that
have canonical decompositions

http://www.unicode.org/charts/normalization/
http://www.w3.org/International/charlint
http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.4.2.1. Use of normalization forms

In practice, the different normalization forms have rather different usage:

Normalization Form C (NFC) is favored as the basic form, for example, by the World Wide Web
Consortium (W3C) in the Character Model for the Web, for use in XML and related formats; see
http://www.w3.org/TR/charmod/. Some general purpose subroutine libraries and utilities
require that their input be in NFC.

Normalization Form D (NFD) can be useful in situations where you prefer to process all
characters with diacritics as decomposede.g., because you wish to simply ignore all diacritics.

Normalization Forms KD and KC (NFKD, NFKC) should be used with caution, after a careful
analysis of the possible effects, since these normalizations may lose essential information (e.g.,
by normalizing 42 to 42). They can be useful in applications where you intentionally want to
simplify character data.

5.4.2.2. Invariance of Basic Latin characters

The Basic Latin block in Unicode, corresponding to ASCII, has been designed so that strings
consisting of Basic Latin characters only are not changed in any normalization. That is, they have no
decomposition mappings, and there are no compositions that operate on sequences of Basic Latin
characters. Therefore, the basic syntactic constructs in programming and markup languages remain
invariant in normalization, as long as they use Basic Latin characters only. This goal explains why, for
example, the grave accent ' does not have canonical mapping to space followed by the combining
grave accent, although for example, there is a canonical mapping for the acute accent ´ (which is
outside Basic Latin, in the Latin-1 Supplement).

5.4.3. Normalization Form C

As mentioned, NFC means canonical decomposition followed by canonical composition. This may
sound odd: why decompose something that will be composed back again? The explanation is that
decomposition ensures, among other things, that multiple diacritic marks will be handled in a uniform
manner.

The exact definition of canonical composition requires some auxiliary concepts:

Starter

A character is called a starter, if its combining class is 0i.e., the value of the property ccc =
Canonical Combining Class for the character is zero. This includes all characters that are not
combining characters as well as some combining characters.

http://www.w3.org/TR/charmod/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Blocked

In a string that begins with a starter, a character C is said to be blocked from the starter S, if
there is a character B between them such that either B is a starter or it has a combining class
value as at least as high as C's.

Primary composite

A character is said to be a primary composite, if it has a canonical mapping and it has not been
explicitly excluded from composition by assigning the value yes (True) to the property CE =
Composition Exclusion for the character. See subsection "Composition Exclusions" later in this
chapter.

We can now define that the construction of the NFC for a string consists of the following:

Construct the canonical decomposition of the string. (Note that this includes reordering of
consecutive nonspacing marks.)

1.

Process the result by successively composing each character with the nearest preceding starter,
if it is not blocked from it. Composing character C with a starter S means that if there is a
primary composite Z that is canonically equivalent to the string consisting of S followed by C,
then S is replaced by Z, and C is removed.

2.

This is a bit complicated, so let us consider a simple example. Assume that the initial string is
U+00EA U+0323i.e., ê followed by combining dot below. The process of converting it to NFC is
presented stepwise in Table 5-5. For clarity, the combining diacritic marks are visualized as ^
(denoting circumflex above) and . (denoting dot below). The operations in the composition phase are
based on the canonical mappings defined for U+1EB9 and U+1EC7.

Table 5-5. Normalization Form C step by step

Phase
Representation of e with circumflex above and
dot below

Comments

Original data U+00EA ê U+0323 . Partly composed

Decomposition U+0065 "e" U+0302 ^ U+0323 . Canonical decompose ê

Decomposition U+0065 "e" U+0323 . U+0302 ^ Reorder nonspacing marks

Composition U+1EB9 ? U+0302 ^
Compose mark with starter
"e"

Composition U+1EC7 Ç Compose second mark

5.4.4. Normalization Form KC

http://lib.ommolketab.ir
http://lib.ommolketab.ir

NFKC is defined in a manner very similar to the definition of NFC. The only difference is in step 1,
which involved compatibility decomposition instead of canonical decomposition. The construction of
NFKC for a string consists of the following:

Construct the compatibility decomposition of the string. (Note that this includes applying both
canonical and compatibility mappings and then reordering of consecutive nonspacing marks.)

1.

Process the result by successively composing each character with the nearest preceding starter,
if it is not blocked from it. Composing character C with a starter S means that if there is a
primary composite Z that is canonically equivalent to the string consisting of S followed by C,
then S is replaced by Z, and C is removed.

2.

5.4.5. Composition Exclusions

As defined in the previous section, characters with a "yes" value for the CE = Composition Exclusion
property are excluded from composition in normalization, because they are by definition not primary
composites. These characters are listed, with comments, in the Unicode database file
CompositionExclusions.txt. They are divided into the following groups:

Script-specific precomposed characters that are generally not the preferred form for particular
scripts and therefore declared as to be excluded from composition. Currently these include
some Devanagari, Bengali, Gurmukhi, Oriya, Tibetan, and Hebrew characters.

Post Composition Version precomposed characters, which means precomposed characters
added after Unicode Version 3.0. By Unicode policy, such characters are always excluded from
composition. There are just a few symbols in this group.

Singleton Decompositionsi.e., characters whose canonical decomposition consists of a single
character; e.g., the ohm sign (with capital omega as its decomposition).

Non-Starter Decompositionsi.e., characters whose canonical decomposition starts with a
character with a nonzero combining class. There are just a few of such characterse.g.,
combining Greek dialytika tonos U+0344, which represents two combining diacritic marks
(dialytika and tonos).

5.4.6. Definition of Compatibility Decomposable Character

We can now formally define what it means to be compatibility decomposable: it means that a
character's compatibility decomposition differs from its canonical decompositioni.e., its normalization
form D is different from its normalization form KD. That is, character c is compatibility decomposable,

if NFKD(c) NFD(c).

For example, the micro sign is compatibility decomposable, since it has compatibility mapping to the
Greek letter small mu, which is thus its NFKD, whereas its NFD is the micro sign itself (since it has no
canonical mapping to anything). On the other hand, the ohm sign is not compatibility decomposable,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

since it has canonical mapping to the Greek letter capital omega, thus having that character as its
NFKD and as its NFD.

Not all compatibility characters are compatibility decomposable. Many of them
have decompositions that are canonical.

5.4.7. W3C Normalization

The World Wide Web Consortium (W3C) favors Normalization Form C on the Web, and it additionally
suggests stronger normalization rules in HTML and XML documents. The stronger rules are external
to Unicode, since they relate to markup, not plain text. They are briefly described here due to their
practical impact. The rules are described in more detail in the document "Character Model for the
World Wide Web 1.0: Normalization," http://www.w3.org/TR/charmod-norm/. However, it needs to
be noted that document is officially a Working Draft (work in progress) only.

The W3C normalization rules require that text be in NFC and additionally forbid the occurrence of
character references and entity references that would make the text non-normalized, if replaced by
the characters that they denote. For example, by Unicode rules, NFC does not allow the appearance
of "e" followed by a combining acute accent, since this combination must be replaced by the
precomposed character é. The W3C normalization rules also forbid the indirect appearance of the
combination, for example, as in é (where ́ is a character reference that denotes the
combining acute accent U+0301).

On the Web, expressions like é are rarely used in practice, since the corresponding
precomposed character (either written as such or as a character reference like é or é or as
an entity reference like &#eacute;) works much better. However, suppose that you have a database
that contains characters in decomposed form. Unless you are careful, software that presents data
extracted from it in HTML or XML format might treat data like U+0065 U+0301 so that U+0065 is
represented directly as "e" (which should cause no problems), whereas U+0301 is converted to
́ for safety. This would result in data that is not W3C normalized, and this involves
unnecessary risks. A simple way to avoid this is to normalize (to NFC) the character data extracted
from the database before making any decisions on using character references to represent some
characters.

http://www.w3.org/TR/charmod-norm/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.5. Case Properties

Some writing systems, such as Latin, Greek, and Cyrillic, make a distinction between cases of letters.
Historically, uppercase letters, also known as capital letters or as majuscules, reflect the original
shapes of letters. In the middle ages, lowercase letters, also known as small letters or as minuscules
were invented to make writing by hand faster. Uppercase letters were preserved for special usee.g.,
for emphasis, for abbreviations, and for use as initials in proper names and in the first word of a
sentence.

Usually an uppercase letter is larger than the corresponding lowercase letter. In some cases, this is
the only essential difference; e.g., compare "O" with "o." Usually there is also a shape difference,
which can be considerable; e.g., between "E" and "e." If you see letters of a script unknown to you,

you might have difficulties in recognizing their case . For example, which of and is uppercase?
(Hint: uppercase letters usually do not extend below the baseline of text, in most fonts.)

Not all writing systems make a case distinction, even if they use letters. For example, there is no
such distinction, even though the shape of a letter may vary considerably for other reasons (by
position within a word).

The use of uppercase letters varies by language. For example, German writes all nouns with initial
capitals, and most European languages write names of months in all lowercase, unlike English. There
is also considerable stylistic variation; in some styles, headings and even entire paragraphs are
written in all uppercase. The Unicode standard does not try to describe such variation. Instead, it
describes properties that can be used to deal with the variatione.g., to recognize or convert the case
of a letter.

5.5.1. Recognizing Uppercase, Lowercase, and Titlecase

The Unicode names of letters generally contain the word "capital" for uppercase letters and the word
"small" for lowercase letters . However, there are exceptions to this, and there is no reason to rely on
the names. Instead, you can use several defined properties of characters, such as the General
Category property values, listed in Table 5-1. The value of the property is Lu for uppercase letters, Ll
for lowercase letters, Lt for the few letters that are of a special titlecase form, and Lm or Lo for
letters that make no case distinction.

"Titlecase" refers to a character used at the start of a word written with a capital initial, as common
for most words in titles of books, articles, etc., in English. Note that the capitalization conventions of
English do not apply to some words like prepositions; thus, not all words in a title begin with a
titlecase letter. For most characters, titlecase is the same as uppercase. However, for some letters
that are originally ligatures, only the first component is in uppercase version in the titlecase form. For
example, if you have the letter (U+01C6), converting it to uppercase gives (U+01C4), but
conversion to titlecase gives (U+01C5).

If you find it more convenient, you can also use the derived Boolean (yes/no) properties Uppercase

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and Lowercase. There is no derived property for detecting titlecase, though.

5.5.2. Case Mappings

Suppose that you have a file or database containing character data and you wish to create a program
for searching data from it using simple searches by keywords. If your data contains the word
"Newton," you would probably like to make a search find it even if the user enters the word as
"newton" or "NEWTON." In effect, you wish to perform a case -insensitive match in the search. That
is what people intuitively expect from a search.

You could use case folding, converting all your data to uppercase, or to lowercase, and doing the
same for any user input. This would usually be awkward, since you normally want to display the data
normally, in mixed case. Therefore, you might wish to perform delayed case folding: keep both the
data and the user input in mixed case but convert them to a single case just before performing a
comparison (matching) in the search. You might also avoid any case folding and just use a routine
that performs a case-insensitive search (although it might internally perform case folding for the
purpose).

Mapping (converting) characters from lowercase to uppercase or vice versa is more complex than
you might expect. The Unicode database contains, in the basic file Unicodedata.txt (described in
Chapter 4), values for the properties Simple Uppercase Mapping, Simple Lowercase Mapping, and
Simple Titlecase Mapping. The word "Simple" is there for a reason. The properties are intentionally
limited to character-to-character mappings. For example, the Latin small letter sharp "s" ß (U+00DF)
has no Simple Uppercase Mapping definedi.e., it remains invariant in such a mapping. However, such
behavior violates the rules of the only language where the character is used (German): the rules say
that the uppercase equivalent is the character pair "SS" (e.g., "Fuß" becomes "FUSS").

Simple case mappings are meant to be used only when it is not possible to
perform the correct case mappingse.g., because the length of a string cannot
be changed in the mapping. In practice, however, existing software often
performs simple case mappings only.

There are additional mapping rules in the SpecialCasing.txt file. They are meant to be used in order

to override and augment the simple mapping rules. For example, the Latin small ligature "fi"
(U+FB01) has no simple uppercase or titlecase mapping, since it is not possible to present them as
single characters. The SpecialCasing.txt file however contains:

FB01; FB01; 0046 0069; 0046 0049; # LATIN SMALL LIGATURE FI

This line specifies that for U+FB01, the lowercase form is the character itself, the titlecase form is
U+0046 U+0069 (i.e., "F" followed by "i"), and the uppercase form is U+0046 U+0049 (i.e., "F"
followed by "I").

In addition to letters like ß and ligature characters with no single-character uppercase mappings, the
additional mapping rules cover letters with diacritic marks, in situations where the uppercase form
does not exist as a precomposed character. There are also conditional mappings, such as mapping

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Greek capital letter sigma Σ to lowercase by a special rule for its use at the end of a word: there

lowercase sigma is as opposed to the normal σ. Some mappings are language-dependent (for
Lithuanian, Turkish, and Azerbaijani). Of course, they can be applied only in situations where the
language of text is known.

In different languages, styles, and applications there are other deviations from the general principles,
and they need to be handled separately. It is rather common (though perhaps disapproved by
language authorities) to omit diacritic marks from uppercase letters, especially when writing words in
all uppercase. This means that you would post-process the result of conversion to uppercase by
removing the marks.

5.5.3. Case Folding in Unicode

In Unicode, case folding mostly maps everything to lowercase, but there are some complications. The
case folding mapping is separately defined in the Unicode database file CaseFolding.txt by explicitly
giving the case folded form for each character that changes in case folding. This mapping is defined
formally as independent of other mappings, but in practice, there is logic behind it, connecting the
mappings.

We can conceptually think of the case folding mapping as mapping everything to uppercase, and then
to lowercase. The reason for this apparently absurd complexity is that otherwise the case folded form
would not do its job in removing case distinctions. For example, the sharp "s" ß has "SS" as its
uppercase equivalent in full case mapping. Therefore, it is mapped to "ss" in full case folding.
Otherwise, full case folding would not map "Fuß" and "FUSS" (which differ in case only) to the same
string.

The CaseFolding.txt file contains rules for both simple and full mappings, as opposed to the use of
two distinct files as for uppercase, lowercase, and titlecase mappings. The file contains lines like the
following:

00DE; C; 00FE; # LATIN CAPITAL LETTER THORN
00DF; F; 0073 0073; # LATIN SMALL LETTER SHARP S

Here, as usual in the Unicode database, the first item on a line is the code number of the character to
which the mapping applies, and anything from # onward is a comment. The lines say that U+00DE is
case folded to U+00FE (which is Latin small letter thorn) and U+00DF is case folded to U+0073
U+0073 (which is "ss"). The letter in the second field, here "C" or "F," specifies the applicability of the
rule as follows:

"C" means "Common"i.e., the rule is always applied in case folding.

"F" means "Full"i.e., the rule is applied in full case folding only.

"S" means "Simple"i.e., the rule is applied in simple case folding only.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 5-5. Viewing Case Charts for some Greek letters

"T" means "Turkic," which means that the rule is optionally selectable for use in case folding by

the principles on handling dotted and undotted "i" ("i" versus " ") in Turkish and Azerbaijani.

5.5.4. Viewing the Mappings

If you just want to view the mappings for different characters, the Unicode Case Charts at
http://www.unicode.org/charts/case/ are very handy, as illustrated in Figure 5-5. They show the
uppercase, lowercase, titlecase, and case folded form for each character that has any difference
between the forms. As usual in such matters, the rendering of glyphs can be problematic due to font
problems, especially on Internet Explorer.

5.5.5. Character Case Mappings Versus Visual Mappings

The mappings discussed in the previous section need to be distinguished from purely visual mappings
. You could store and process character data as such in mixed case and perform mapping to
uppercase, lowercase, or titlecase in visual rendering only. Usually you would map to uppercase in
order to highlight a piece of text as a heading or just for emphasis.

The difference between character-level mappings and visual mappings is illustrated by two functions
in MS Word:

http://www.unicode.org/charts/case/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you select a piece of text, and then use the command Format Change case, you can have
the text case mapped to uppercase, lowercase, titlecase, or "sentence case," which means that
the first word is in titlecase, other words are in lowercase. Such operations are irreversiblei.e.,
there is no general way to get the original form back, except naturally in the sense that you
might do the Undo operation next.

If you select a piece of text, and then use the command Format Font and check (on the
Font pane) the checkbox "All caps" (under "Effects"), then the text will be displayed in all
uppercase. The character data is preserved as such, however, so if you later select the text
again and uncheck the checkbox, the original form becomes visible. You can also use this
approach when defining a style in MS Word, since the style settings have font formatting
options, too.

Both of these mappings might perform simple mapping only, so they should be used with caution;
e.g., for texts in German and Turkish. Also note that mapping to titlecase does not produce
grammatically correct results for English, since it capitalizes every word, but by English rules, words
like "a" and "to" should be left lowercase.

In HTML or XML authoring, you might use a Cascading Style Sheet (CSS) declaration like text-
TRansform: uppercase. Applied to a string, it performs a conversion to uppercase when selecting
glyphs for rendering the characters. The other values of the property are lowercase, capitalize (=
titlecase), and none.

Such operations can be a better choice than conversions at the character level, since keeping the
data itself in mixed case helps in editing, spellchecking, etc. Moreover, character-level case mappings
are irreversible: there is no way to deduce the original form from the case-mapped string.

Such an approach also lets you use different stylesheets for the same data, using conversion to
uppercase only when it is judged to be the best waye.g., for headings (typically, due to lack of better
typographic possibilities). However, beware that such transformations might not work by Unicode
rules for all characters and that they might apply simple mappings. CSS specifications do not specify
how the mappings are performed. In practice, if you write <h1>Fuß</h1> in HTML and have the rule h1
{ text-transform: uppercase } in CSS, you probably get "FUß" or even "FUS" (incorrect) depending
on the browser, instead of the full case folded result "FUSS."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.6. Collation and Sorting

Sorting is a well-known concept: we put data into a specific order, such as alphabetical order.
Collating order is a more technical concept, but closely related: the collating order of characters and
strings is the order by which sorting of character data takes place. The collating order says, for
example, that "a" < "b" or that "&" < ".", using the less than sign to mean "precedes (in the
ordering)." Sorting is often called "alphabetizing," although it generally operates on strings in
general, not just alphabetic characters.

Sorting is relevant when we present a large amount of text data to users and the data has some key
component, such as a person's name in a telephone catalog or a term in a glossary. People are used
to scanning through lists and tables, expecting them to be in an alphabetic order (or, more generally,
collating order) they have learned at school. In the global context, it is important that different
people have learned different orders.

The relative importance of sorting has diminished due to the advance of automatic searching tools.
When you use a CD-ROM encyclopedia, you can type a word and expect a program to show you the
corresponding entry; alphabetic order is irrelevant here. However, you might be uncertain of the
spelling and would like to browse through consecutive entries.

Sorting still has many other uses as well. For example, when you need to present countries in some
order, difficult political problems may arise unless you can apply some reasonably neutral or
traditional order, such as alphabetic order by the name of the country in French. Moreover, even for
small amounts of entriese.g., in a list of linksalphabetic order is often the best, when there is no other
natural order. It is then easy to a user who is looking for a particular entry to check whether it is the
list. Sorting is also relevant to operations that extract a range of values from some data.

5.6.1. Sorting Characters Versus Sorting Strings

For sorting, we need an order for characters, but this may not be sufficient. A trivial method for
ordering strings, once a character order has been established, is to compare the first characters of
the strings, then the second characters, until a difference is found. The first difference found will
determine string order. Thus, "AAB" < "AAC", since "B" < "C". This simple method is often called
lexicographic order or dictionary order .

However, when you look at a real dictionary, you may notice that entries are often ordered in a more
complex manner. As an alternative to "letter by letter" ordering, a "word by word" ordering can be
applied. Technically, such matters are reflected in the treatment of spaces, hyphens, and other
punctuation marks. It is often better to ignore them, in order to produce an order that corresponds to
readers' expectations. For example, it might be better to treat "cat eyed," "cat-eyed," and "cateyed"
as basically the same in sorting.

For such reasons, the Unicode definitions related to collation are somewhat complex. They specify
methods for applying special rules in addition to the simple lexicographic order, in a manner that
allows different sets of rules to be used.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.6.2. Collation and Unicode

The Unicode standard does not define a collating order. Thus, Unicode characters have no inherent
order, but they can be sorted according to different orders.

The Unicode Consortium has issued a separate standard on collation: "Unicode Collation Algorithm,"
Unicode Technical Standard #10, http://www.unicode.org/reports/tr30/. It is an independent
standard: conformance to it is not required for conformance to the Unicode standard.

Figure 5-6. Viewing Unicode Collation Charts

The Consortium has also prepared collation charts, which present the collating order visually. The
charts are at http://www.unicode.org/charts/collation/, and they can be used as a handy checking
tool, as is illustrated in Figure 5-6. There you can see some of the characters that are historically
based on the letter "A," in collating order. Much of this order is a matter of arbitrary decisions that
just had to be made. (Due to font limitations, not all characters are displayed correctly when viewing
the charts; this is why there are question marks and boxes.)

5.6.3. Layered Model of Collation

http://www.unicode.org/reports/tr30/
http://www.unicode.org/charts/collation/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Collation order is language-dependent, and it may vary even within a language. For example, in
German, the letter ö is placed after "o," and the difference between them is made only for words that
are otherwise the same. In Swedish, ö is the last letter in the alphabet, after "z," å, and ä. Thus,
when looking for a word like "Öhman" in an alphabetic list, different people start at different places.
Moreover, in some countries, different sorting principles are applied in different contextse.g., in
dictionaries versus telephone catalogs.

Technically, we can say that collating order depends on a locale, which can be defined as a cultural
environment, or as a collection of cultural conventions. For example, the combination "ch" was
traditionally regarded as a single letter in Spanish, so that all words beginning with "ch" were placed
after the set of all other words beginning with "c." People might still prefer the old stylei.e., to use a
Spanish locale with the old sorting rules. Part of the Common Locale Data Repository (CLDR) activity
(described in Chapter 11) is the collection of data on such variation, for use in implementing tools
that automatically perform collation in a locale-dependent manner.

Ultimately, a locale is a matter of user preferences, based on a user's cultural and personal
background, habits, views, and decisions. For example, should "foo" appear before or after "Foo" in
collation? There might be standards on such matters, but in practice, they depend on what you are
accustomed to or you find most natural.

Collating order should meet user expectations, rather than the standards of the
information producer. Ideally, it would be customizable by users.

The variation between locales is described as exceptions to a default collating order, which should
thus be understood as a useful tool for defining language-specific orders, rather than an attempt at a
universal order to be used everywhere. On the other hand, definitions of collating orders often deal
with many special characters that are usually not very relevant in sorting. For example, indexes in
books are usually alphabetic but may contain entries with special characters, such as "% operator" in
a book on programming. They need to put somewhere, and different authors, publishers, and
standardizers have handled them differently. We can expect that the situation will become more
uniform: language-specific orders will mostly cover only characters commonly used in a language,
and all the rest is easiest to order according to default collating order.

More generally, the modern approach to collation is based on a layered model, where each layer may
modify or replace the rules set on lower layers. For example, the layers could consist of the following,
in descending order of priority:

Application-specific rules, such as "treat v and w as identical" (for some particular reason)1.

Company-specific rules; e.g., reflecting the traditions and decisions of a publishing house in
their glossaries

2.

Locale-specific rules; e.g., describing the collation rules of Swiss German, to the extent that
they deviate from pan-European rules

3.

Rules common to many locales by tradition or convention, such as pan-European rules4.

5.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.

Universal default rules, such as Unicode default collating order5.

Thus, Unicode collating order is not meant to unify sorting rules across languages and cultures. On
the contrary, it constitutes an essential part of a model designed to support cultural variation,
providing the lowest layer of rules. It simplifies the definition of locale-specific sorting, since only
deviations from default rules need to be specified. It also ensures that the collating order is defined
for all characters, no matter how rare and little known they are.

5.6.4. Code Point Order Versus Collating Order

Code points are numbers (integers), and therefore they have an order defined by the normal
ordering of numbers (0, 1, 2,...). However, this order is not meant to be used as collating order,
except for special purposes.

5.6.4.1. Code point order is unnatural

It would be impossible to allocate code points so that their order, as numbers, would match the
collating order of characters. Different languages have different collating orders. For example, the
character ö is treated as a separate letter at the end of the alphabet in some languages but as a
variant of "o" in many other languages. Moreover, the structure of the Unicode coding space imposes
serious limitations, since the grouping of characters into blocks largely reflects old practices and other
character standards.

Some small subsets of Unicode have code points that correspond to the mutual order of the
characters. For example, the Latin letters A through Z are in consecutive code points in the "right"
order in Unicode, as well as in ASCII and most other character codes. However, even for the basic
Latin letters, the code point order is not suitable as a collating order, since all lowercase letters
appear after all uppercase letters. In code point order, A < B < ... < Z < a < b ... < z, but the normal
collating order has A < a < B < b < ... < Z < z (so that "A" and "a" are equivalent at the primary
level, etc.). As we proceed to Latin letters with diacritics, it becomes even more obvious that code
point order differs from collating order.

5.6.4.2. Using code point order as a fallback in definitions

Some definitions of collating order have defined things so that they specify meaningful order only for
characters that are expected to appear in normal data. They use Unicode code point order for the
rest, just to have it sorted out somehow, in some known order.

Although you can define your collating order as you like, it is usually not necessary to use anything as
arbitrary as code point order. You can use Unicode default collating order instead. Both of these
orders are more or less arbitrary, but the default collating order tries to pay attention to sorting
principles in human languages.

5.6.4.3. Code point order sorting for technical reasons

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sometimes you might decide to use code point order as the collating order simply because you need
some known order. For example, some algorithms require that data be placed in some order, but it
does not matter which. Code point order is easy to implement, and it can be described easily. The
simplicity of description is essential, if data sorted by a program will be processed by another
program that expects sorted data.

Although code point order is technically very simple, it poses some problems when the data is in
encoded form, as opposed to just a sequence of code points. Some Unicode encodings, described in
Chapter 6, are very easy in this respect, since they use fixed-size storage units for all characters. The
encodings used in practice tend to be more complicated. Methods for performing code point order
sorting on UTF-8 and other Unicode encodings are described in the Unicode standard in section 5.17
"Binary Order." It discusses the even more technical orders based on numeric ordering of code units
(such as octets that constitute UTF-8 encoded data) rather than code numbers.

5.6.4.4. Problems of legacy software

In simple programming tasks, comparisons of character and string data are sometimes based on
comparisons of code points. This applies basically to basic Latin letters in contexts where it can be
assumed (or it just is assumed) that we need not deal with any other letters and that the case of
letters is fixed (e.g., due to previous case folding). This explains code like if((ch >= 'A') & (ch <=
'Z')) for testing whether the value of ch is an (uppercase) letter. Such code can be efficient, but
nowadays it is usually better to use library subroutines (e.g., if(isletter(ch))), making the code
more readable and more portable without sacrificing efficiency. We will discuss such methods in
Chapter 11.

As a user of programs, you may encounter sorted data and sorting routines that apply to simple code
point order. For example, if you use a tool for automatic generation of an index for a publication, you
might notice that the index will be sorted that way. If the entries are dominantly English words, the
result may look mostly OK, but the handling of spaces, punctuation marks, special characters, and
case of letters may differ from the applicable rules of sorting. Therefore, you may need to fix the
order separately, "by hand." Make sure you first know the rules; there are differences that depend on
language, style, and publisher.

5.6.5. Unicode Collation Algorithm

The Unicode Collation Algorithm (UCA) uses multilevel comparison in order to deal with the
complexities of sorting. Instead of simply putting all characters in a single order and defining the
collating order of strings according to their first difference (simple lexicographic ordering), UCA
defines different levels of ordering between characters. For example, you can define the difference
between "o" and ö as primary (as in Swedish) or as secondary (as in German). By default, UCA
works with three levels:

Alphabetic ordering (e.g., "a" < "b")1.

Diacritic ordering (e.g., "a" < "á" < "à")2.

3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.

2.

Case ordering (e.g., "a" < "A")3.

Surprisingly, UCA uses by default a case ordering where lowercase precedes uppercase, resulting in,
for example, mime < Mime < MIME. The usual dictionary is opposite to this.

Canonical equivalents are essentially different ways of representing the same character (e.g., ö as a
precomposed character or as an "o" followed by a combining dieresis). It is therefore natural to
expect them to behave identically in collation. However, when desired, a distinction between them
can be made, when everything else is the same ("tie-break situation").

A collation algorithm needs to be able to work on text elements larger than individual characters, in
order to be suitable for general use. For example, in some languages, the letter æ might be treated
as a separate letter, different from other letters at the primary level, but in other languages or
contexts, it might be treated as equivalent to the letter pair "ae." In English, æ is often understood as
just a ligature of "a" and "e," even though Unicode defines it differently. Thus, in sorting material in
English, you might wish to make "Cæsar" appear where "Caesar" would appear, not after "cat."

Formally, UCA is described as an algorithm that takes as input a string and aCollation Element Table,
which contains mapping data for characters. The output is a sort key, which is a sequence of 16-bit
integers. These integers are not code numbers (though they may coincide with the character's code
number) but weights that describe the position of the input string in the collation order, in a manner
that lets us sort strings by their sort keys. Comparison of sort keys means simple comparison by
numeric values. By convention, the 16-bit integers are written in hexadecimal, using four digits.

The algorithm can be used for different collating orders by using different Collation Element Tables.
The UCA definition contains theDefault Unicode Collation Element Table (DUCET), which you may
choose to use as such or as a basis for defining your own table. In particular, you may define
collating order for characters that are important in your application and leave all rest as in DUCET.
This ensures that the collating order is defined for all Unicode characters.

A Collation Element Table maps characters (code points) tocollation elements . A collation element is
a sequence of three or more weights (16-bit integers), and the order of the weights corresponds to
their levels. Thus, the first integer indicates the primary weight, which typically corresponds to the
basic alphabetic order. The principles of interpreting collation elements are the following:

The order of elements is the order of their primary (first level) weights, if these weights are
different. If the weights are equal, the order of the secondary (second level) weights is used,
etc.

However, a weight of 0000 means that the collation element is ignorable at the level of that
weight.

The DUCET table is available at http://www.unicode.org/Public/UCA/latest/allkeys.txt. It does not
contain mappings for all characters, since UCA defines weight derivationi.e., calculation rules for
weights that are not explicitly listed in a table.

A simple example of an entry in DUCET:

0041 ; [.0F6C.0020.0008.0041] # LATIN CAPITAL LETTER A

http://www.unicode.org/Public/UCA/latest/allkeys.txt
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The example defines the mapping for "A" U+0041. The weights are given in square brackets,
separated with periods. The primary weight is 0F6C, etc. The text starting with # is a comment, as in
the Unicode database in general.

The first character inside brackets has a special meaning. If it is a period . as above, the collation
element is a normal one. If it is an asterisk *, the collation element is variable. Variable elements
include spaces, punctuation marks, and most symbols. They have defined weights, but an
implementation of UCA may support alternate weightings. This means that a program switch called
avariable weighting tag can change the status of variable elements so that they are ignored, except
in the absence of other differences between strings.

For example, consider the following entry in DUCET:

002D ; [*0221.0020.0002.002D] # HYPHEN-MINUS

This means that the hyphen-minus character "-" has primary weight 0221, putting it among many
other punctuation marks and symbols, before any letters. This makes, for example, "X-men" sort
before any string that begins with an "X" and a letter, such as "Xanadu." When alternate weighting is
used, the hyphen-minus is more or less ignored, making "X-men" sort basically the same way as
"Xmen." The setting of the variable weighting tag affects this behavior as follows:

Blanked (ignorable)

This setting sets the weights of variable collation elements to zero at the first three levels. This
makes collation work as if variable collation elements were not present at all. However, as the
last resort, Unicode code number order of character will be used for tie-breaking. Therefore,
this would result, for example, in the order "X men" < "X-men" < "Xmen" < "Xmen" (with en
dash) while all of these would be treated as "Xmen" with respect to other strings.

Non-ignorable

Variable collation elements have their weights unchanged. Thus, for this value, an
implementation supporting alternate weightings behaves the same way as an implementation
that does not.

Shifted

The first three weights are set to zero, as for Blanked, but the original primary weight is made
the fourth-level weight. In this case, all non-variable collation elements get the maximal fourth-
level weight of FFFF. Therefore, we would get an order like "X men" < "X-men" < "Xmen" <
"Xmen," since now the mutual order is not by code number order but by the original first-level
weight (which is 0209 for space, 0221 for hyphen-minus, and 0227 for en dash).

Shift-trimmed

This is the same as Shifted except that all trailing FFFF weights are trimmed from the sort key.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This feature is intended to simulate POSIX behavior. The effect is similar to that of Shifted, but
with the strings containing variable collation elements placed after an otherwise identical string
without them. For example, "Xmen" < "X men" < "X-men" < "Xmen."

Control and formatting characters, except line breaks and horizontal tabs (which count as
whitespace), are completely ignored in the default order.

We have discussed some general principles of UCA only, and you need to consult UTS #10 for the
detailed algorithm and notations. In practice, you will probably not work with Collation Element
Tables directly. Rather, you will use higher-level constructs, such as the Collator and
RuleBasedCollator classes in Java programming. These classes let you specify your modifications of
the default collating order using simple, readable notations like "c < ch < d," which says that "ch" is
to be treated as if it were a character between "c" and "d."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.7. Text Boundaries

In text processing, we often need to work with text elements larger than individual characters. For
example, we might need operations like "delete next word" or "move one sentence forward in the
text." Therefore, we need to recognize boundaries between elements of text, collectively called text
boundaries .

Text boundary principles are defined in a separate document, Unicode Standard Annex (UAX) #29,
"Text Boundaries." It specifies boundaries for three types of text elements:

Grapheme cluster, which is characterized informally as "user character"

Word, which partly corresponds to the word concept in natural languages

Sentence, which is recognized from punctuation by some coarse rules

The concept "grapheme cluster" is the most obscure of the three. It is meant to correspond to the
idea of a character as a user sees it, on the basis of her cultural background. For example, it could be
a digraph (two-character combination) like "ch" if understood as a single letter in some language, or
a combination of a base character and one or more diacritic marks, or a sequence of Unicode
characters that represent one syllable and are displayed as a unit. Therefore, "grapheme cluster"
depends on the writing system and on conventions, but UAX #29 still tries to specify how to
recognize it in general. Expressions like "grapheme" and "logical character" have been used too, but
all names seem to be prone to misunderstanding. In particular, this is not a matter of graphemes in
the linguistic sense.

The default, or language-independent, boundary rules are specified in UAX #29 at the general level,
referring to certain special properties of characters. The values of these properties are defined in the
Unicode database files GraphemeBreakProperty.txt, WordBreakProperty.txt, and
SentenceBreakProperty.txt. The general approach in the definitions is the same as for line breaks, as
described in section "ine-Breaking Properties" later in this chapter.

To illustrate the nature of boundary rules, which are not yet widely implemented along these lines in
existing software, we will consider the word boundaries. Described informally and somewhat loosely,
the principles are:

Treat consecutive alphabetic characters as belonging to the same word. This applies to
characters for which the Alphabetic property has the value "yes" (True), except characters
belonging to Thai, Lao, or Hiragana writing system, as well as to the no-break space character
(somewhat surprisingly?).

Treat digits and other numeric characters as comparable to alphabetic characters (e.g., treat
"3A" as one word).

Do not break a numeric string at a character that has a LineBreak property value of IN = Infix,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

numeric (except for ":"). For example, treat "1.000,00" as one word.

Treat connector punctuation such as "_" (with General Category value of Cp = Connector,
punctuation) as comparable to alphabetic characters (e.g., treat "foo_bar" as one word).

Treat a grapheme cluster as if it were one character.

Regard the following as part of word when they appear between alphabetic characters:
apostrophe ' (U+0027), right single quotation mark ' (U+2019), middle dot · (U+00B7),
hyphenation point (U+2027), colon : (U+003A), and Hebrew punctuation gershayim ״
(U+05F4).

For example, the principle mentioned last in the list works well for some strings that need to be
treated as words, such as "cat's" and "c:a" (an abbreviation of a word in Swedish). On the other
hand, the principle also brings things together although they should be treated as separate words, as
in the Italian expression "dellarte" (where "dell'" is a contraction of a preposition).

The default boundary rules in UAX #29 are not meant to work as a basis of advanced processing of
natural languages, such as syntactic analysis. Rather, they are meant to help in implementing useful
operations in editing. For example, you can typically double-click in a word processor to select a
"word," and perhaps triple-click to select a "sentence." The text boundary rules are meant to define
what is selected that way.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.8. Directionality

You might never encounter problems with directionality, if all texts you work with are written
exclusively left to right. But when you need to work with other texts, you may have considerable
conceptual problems. Therefore, in order to be prepared to meet such problems, it is useful to gain
some basic understanding of directionality. Moreover, the topic is culturally interesting in itself.
People may think that left-to-right writing is the only possibility, or the only natural way, and
consequently think that right-to-left writing is unnatural or wrong.

Directionality as discussed here deals with horizontal writing direction. Vertical writingi.e., writing a
text line from top to bottom (or from bottom to top)is a different issue and handled outside Unicode,
although it has some implications for Unicode, as we'll see in Chapter 7.

5.8.1. Writing Direction of Text

Right-to-left writing is older than left-to-right writing. Hieroglyphs and oldest Greek were mostly
written right to left, though alternating direction was used, too. Arabic and Hebrew scripts have
preserved the original direction. The Greek script changed the direction, and the Latin writing system
was derived from a version of Greek writing system that already had established left-to-right writing
direction.

Figure 5-7. Progress or regress?

The writing system that we learn in our childhood and use throughout our life makes us think that
things progress in a particular way in the horizontal direction. If we write left to right, we think that
movement rightward means progression in time: given "AB," we think that "A" is before "B" in a
natural order of things.

Even if we consider purely graphic presentation, our built-in way of reading left to right or right to left
will affect our understanding. If you think left to right, you probably see Figure 5-7 as indicating

http://lib.ommolketab.ir
http://lib.ommolketab.ir

growth of some kind. If you are accustomed to reading right to left, you might see a decrease there.
Naturally, the interpretation depends on the context, such as the presence of left-to-right or right-to-
left text. Presented in isolation, graphic presentation can be thoroughly misunderstood: your attempt
to describe "before" and "after" situations might be read the other way around.

When you read about writing direction, you probably read about it in English, or in another language
written left to right. Therefore, the mental model of "natural" writing order is in front of your eyes
even in texts that try to give you a broader view. When I say that, in Hebrew, the letters alef (aleph)
the explanation is confusing. The letters have ,אב in that order are written as ב and bet (beth) א
already appeared in the English sentence in a particular order horizontally, so now it looks like the
order was reversed.

I wrote אב in MS Word by using the Insert Characters command, first selecting א from the
Character Map, and then selecting ב. Word displays the combination as אב, since it knows that these
characters must be written right to left. Things would have gone all wrong if I had thought that I
need to reverse the order. Directionality is about visual order, so it is best handled by software that is
responsible for formatting text on screen or paper.

Using Unicode, you type characters in the logical orderi.e., in the order in which
they would be mentioned if words were spelled out. In simple cases, properties
of characters and the software you use take care of writing direction. When
punctuation and special characters intervene, you may need to add control
characters to make writing directions correct.

5.8.2. Bidirectionality

Using exclusively left-to-right writing, or exclusively right-to-left writing, is relatively simple to
handle. When you have a document that contains, say, both English and Arabic, it becomes
challenging to deal with changes in writing direction. Problems arise, among other things, from
punctuation characters that are used in different writing systems and therefore need to have their
directionality set by the context. The Unicode way of handling such things is described in Unicode
Standard Annex #9, "The Bidirectional Algorithm," http://www.unicode.org/reports/tr9/.

5.8.3. Directionality and Character Codes

There are several ways to deal with directionality in an environment where both writing directions
may appear:

Specify that the content of a file or string is to be always written left to right, and arrange things
so that characters appear in an order suitable for that. This is sometimes applied to Hebrew
texts: a file contains the character in a completely reversed order, but when written left to right,
the order becomes correct (for reading right to left). Confusingly, data is then said to be coded
in "visual order," implying eye movement from left to right!

Indicate the direction explicitly with invisible control characters. At the simplest, one control
character says that subsequent characters are to be written left to right, and another control

http://www.unicode.org/reports/tr9/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

character switches the direction to the opposite.

Assign inherent directionality to characters.

Although the first approach may look most natural and the third one most complicated, Unicode uses
inherent directionality, enhanced with the possibility of using control characters for exceptions.

5.8.4. Directionality of Characters

The Unicode approach to writing direction is based on the inherent directionality defined for each
character. For example, Latin and Greek letters have inherent left-to-right directionality; Hebrew and
Arabic letters have inherent right-to-left directionality. Programs that display text need not know the
language, at least not for directionality purposes. They use the much more technical information that
is contained in the Unicode database: a table that assigns directionality to each character.

It would even be incorrect to deduce directionality from language information. The HTML specification
explicitly says that browsers must not deduce the directionality of text from its declared language
(the lang or xml:lang attribute, if present). This is natural if you think about transliterated Arabic, for
example. When an Arabic word is written in Latin letters according to some transliteration scheme, it
is still an Arabic word, but it is to be written left to right (except in some scientific contexts).

Figure 5-8. English text with an Arabic word in it, with reading directions
marked with arrows

The directionality issue is complicated by the use of directionally neutral characters. Some
punctuation and other characters are used both in left-to-right and in right-to-left writing. Further
complication is caused by merging texts written in different directions. For example, an English
document may quote some Arabic in Arabic writing, or Arabic text may contain English words in Latin
letters. The reader is assumed to be able to change the reading direction: when she sees some Arabic
writing like مغرب, she jumps to the right end of that part of the text, reads leftward, and then jumps
back to the right over the Arabic writing she had read. This is illustrated in Figure 5-8.

To deal with the complications, the directionality property of a character has several possible values,
not just two. These values classify characters so that bidirectional algorithm can handle most
situations well. Officially, the directionality property is called BiDi Class, referring to bidirectionality.

The values are named in Table 5-6, where the second column indicates whether the value indicates
strong (S), weak (W), or neutral (N) directionality.

Table 5-6. BiDi Class values (directionality property values)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Code Name Characters that have this value

AL S Arabic Letter Arabic, Syriac, and Thaana letters, etc.

AN W Arabic Number Arabic-Indic digits, etc.

B N Paragraph Separator Line feed, carriage return, etc.

BN W Boundary Neutral Most formatting and control characters

CS W Common Number Separator Comma, full stop, colon, NBSP, etc.

EN W European Number European and some other digits

ES W European Number Separator Plus sign, minus sign, hyphen-minus, etc.

ET W European Number Terminator Degree sign, currency symbols, etc.

L S Left-to-Right Most letters, ideographs, etc., and LRM

LRE S Left-to-Right Embedding LRE

LRO S Left-to-Right Override LRO

NSM W Non-Spacing Mark Characters in General Category Mn or Me

ON N Other Neutrals Characters not belonging to other classes

PDF W Pop Directional Format PDF

R S Right-to-Left Hebrew letters etc., and RLM

RLE S Right-to-Left Embedding RLE

RLO S Right-to-Left Override RLO

S N Segment Separator Horizontal tab

WS N Whitespace Spaces, form feed, etc.

5.8.5. Control Characters for Directionality

There is small collection of control characters that affect directionality. They are not needed in pieces
of text that contain only left-to-right characters (e.g., Latin letters) or only right-to-left characters
(e.g., Arabic letters). These characters have been placed into the General Punctuation block,
somewhat illogically, since they are not visible punctuation marks but invisible controls. Due to their
meaning, these characters should be ignored in any processing except visual rendering.

The characters are presented in Table 5-7, along with their HTML and CSS equivalents, to be
discussed shortly.

Table 5-7. Control characters for directionality

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Code Name Abbr. Entity HTML CSS

U+200E Left-to-right mark LRM ‎ direction: ltr;

U+200F Right-to-left mark RLM ‏ direction: rtl;

U+202A
Left-to-right

embedding
LRE dir="ltr"

unicode-bidi:

embed; direction: ltr;

U+202B
Right-to-left

embedding
RLE dir="rtl"

unicode-bidi:

embed; direction: ltr;

U+202D
Left-to-right

override
LRO <bdo dir="ltr">

unicode-bidi:

bidi-override;

direction: ltr;

U+202E
Right-to-left

override
RLO <bdo dir="rtl">

unicode-bidi:

bidi-override;

direction: rtl;

U+202C Pop directional formatting PDF Suitable end tag

The left-to-right mark and the right-to-left mark set the directionality for preceding and following
characters with weak or neutral directionality . Thus, you cannot change the writing direction of a
string like "ABC" with these marks. Technically, these marks are zero-width (i.e., invisible) characters
with strong directionality.

The override characters, left-to-right override (LRO) and right-to-left override (RLO), have a stronger
effect. They affect the directionality of all characters, up to the next override or embedding or pop
directional formatting (PDF) character. Thus overriding any natural directionality, they can be used
even to make normal English text run right to left. The LRO character or the corresponding markup is
needed for "visual Hebrew"i.e., Hebrew written backwardso that modern programs still show it the
intended way.

The embedding characters, left-to-right embedding (LRE) and right-to-left embedding (RLE), start
and end a new level in directionality, in the following sense: Text between an LRE and a PDF, or
between an RLE and a PDF, is treated as embedded (as a whole) inside the surrounding text.
Embedding can be nested: you can, for example, have English text with an embedded Arabic
quotation, which contains an embedded English word.

The pop directional formatting (PDF) character acts as a closing symbol that terminates the effect of
preceding and matching LRO, RLO, LRE, or RLE.

5.8.6. Bidi Mirroring

Many characters can appear both in left-to-right and in right-to-left writing but with different glyphs

http://lib.ommolketab.ir
http://lib.ommolketab.ir

depending on the writing direction. For example, the greater than sign > points to the smaller of its
operands, when seen as an arrowhead. To preserve this relationship in right-to-left writing, the
character must be displayed as mirrored. A glyph for the less than character < can be used for this.

For example, consider an expression like "a > b" when written in Hebrew text and using Hebrew
letters instead of "a" and "b." If you type the Hebrew letter alef א, the greater-than sign >, and the
Hebrew letter bet ב, you should get the visual appearance א<ב assuming that the program supports
the Unicode bidirectional algorithm or the writing direction has been explicitly set to right to left. The
character that looks like a less-than sign there is still the greater-than sign; it just has a mirrored
glyph.

In many cases, mirroring can be described superficially as a character-level correspondence. We can
say that > and < correspond to each other in mirroring, and so do "(" and ")." However, it is really a
glyph-level correspondence: the rendering engine just uses a normal (i.e., normal in left-to-right
writing) glyph for a character to render another character.

Not all mirrored characters can rendered by "borrowing" a glyph from another character. For some
characters, such as angle (U+2220), a separate mirrored glyph needs to be used. This means that
an implementation that supports the character and supports both writing directions must have two
different glyphs for it. However, this is not common in practice, since it requires both adequate
programming and a suitable font using advanced font technology.

The Bidi Mirrored property is a normative binary (yes/no) property that simply tells whether a
character is mirrored or not. The Bidi Mirroring Glyph property is an informative property that
suggests, for many mirrored characters, a character whose glyph might be used to render the
mirrored character in right-to-left writing. For example, the following lines in the file BidiMirroring.txt
suggest that a glyph for) can be used to render (as mirrored, and vice versa:

0028; 0029 # LEFT PARENTHESIS
0029; 0028 # RIGHT PARENTHESIS

5.8.7. Directionality in HTML and CSS

We will briefly discuss directionality in HTML, since the topic is often neglected, or presented
incorrectly, in HTML material. In HTML authoring, you have three ways to affect directionality:

Insert Unicode control characters; this is discouraged in UTR #20 (see Chapter 9) except for the
left-to-right mark and the right-to-left mark (which you can write in different ways, including
the entity references ‎ and ‏).

Insert HTML markup to indicate directionality (dir attribute for setting directionality inside an
element, and bdo element for bidirectional override).

Use Cascading Style Sheets (CSS) rules (direction and bidi-override properties) on a suitable
markup element, introducing extra markup for that if needed.

For example, to make the string "ABC" written right to left, you could use any one of the following
constructs in HTML (where the last one uses essentially CSS):

http://lib.ommolketab.ir
http://lib.ommolketab.ir

‮ABC‬
<bdo dir="rtl">ABC</bdo>
ABC

Setting the dir attribute in HTML for any element but bdo corresponds to using left-to-right mark and
therefore does not affect characters with strong directionality. Thus, ABC
would appear as ABC. Similarly, the direction property in CSS does not override natural strong
directionality, unless the bidi-override property is set as well.

HTML specifications explicitly warn that the declaration of the language used in a document, via lang
or xml:lang attribute, shall not set directionality. The overall default in HTML is left-to-right
directionality. Thus, a document in Arabic should normally have <html dir="rtl"> as its first tag.
Using the attribute lang="ar" there as well can be useful for other purposes, but it does not set
directionality.

Web browsers, especially Internet Explorer, have flaws in directionality features. For example, text
that contains only right-to-left characters and neutral characters should be displayed correctly
without any extra markup, but this does not always happen. Using logically redundant markup with
dir attributes may help.

HTML authors who create right-to-left or mixed-direction content should use
dir attributes even in contexts where they are not required by the
specifications.

For additional explanations, examples, and advice, please consult Andreas Prilop's "Bidirectional text"
at http://www.unics.uni-hannover.de/nhtcapri/bidirectional-text.html.

5.8.8. Directionality of Formatting

The dir attribute in HTML and the direction property in CSS should be used with caution, since they
do not affect the directionality of characters only. They also affect the direction of document
formatting. This is natural in many ways. If you have, say, a bulleted list, then the bullet should
apparently be placed near the start of each item. If the character directionality in the items is right to
left, this means that the bullets should appear on the right and the text should be right-aligned.
Setting directionality in HTML or CSS affects the following:

Writing direction of text as just described

The layout direction of blocks that appear side by side

The layout direction of columns in tables

The direction of horizontal overflow, when content does not fit into its block

The default value of horizontal alignment of text lines (the align attribute in HTML, the text-
align property in CSS)

http://www.unics.uni-hannover.de/nhtcapri/bidirectional-text.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The alignment of the last line of a block of text that is justified on both sides

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.9. Line-Breaking Properties

The need for line breaking arises from the simple fact that horizontal space is usually limited by
factors such as paper or screen width. In addition, for readability, line length should be kept within
reasonable limits. Typographic recommendations usually suggest a maximum of 80 or 90 characters
and an optimum of 55 to 60 characters. On small devicese.g., when displaying text messages in a
mobile phonethe line length can be very small, for example, 13 characters.

Plain text is often preformatted so that it is divided into lines with explicit line breaks, typically
making lines shorter than 80 characters. Such text may need to be reformatted, though, due to
changing requirements on line length. Moreover, it is nowadays very common to avoid preformatting.
In word processors, web authoring, and even in plain text, explicit line breaks are often omitted,
marking just paragraph boundaries. Therefore, paragraphs need to be dynamically formatted into
lines.

In old manual typography, line breaks were decided by professional typesetters with years of
experience. In the modern world, line breaking of prose text is mostly automated, though sometimes
people inspect and check the results. This may mean preventing undesirable line breaks, suggesting
line-breaking opportunities, or adding forced line breaks. It might also be possible to do such things
even in the writing phase, and this is the only feasible way if the author cannot see the formatted
results (e.g., in normal web authoring).

Preformatted text is still used in many contexts, such as poetry. Typically, forced line breaks of some
kind are used to create lines, when using lines so short they need not be broken in any normal
circumstances.

5.9.1. Conformance Criteria

Line breaking is a very complex issue, and the Unicode standard deals with it at a rather technical
and low level only. Unicode has, in addition to explicit line break characters, some special control
characters for suggesting or prohibiting line breaks at specific points and some general line-breaking
rules. The rules mostly operate very locally only, for a single character or a pair of consecutive
characters. Therefore, these rules constitute just a coarse technical basis, which often needs to be
augmented and overridden by higher-level rules, such as language-specific hyphenation. Moreover,
they are just an optional basis. Some features in line breaking are normative (i.e., must be obeyed if
line breaking is performed at all), but the algorithm as a whole is not.

Conformance to the Unicode standard does not require conformance to the Line
Breaking Algorithm. The algorithm specifies default rules that software
designers may wish to use as a basis.

A program can separately claim conformance to the Unicode Line Breaking Algorithm. Even then, the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

algorithm may partly be overridden by higher-level rules, or as "tailored," provided that the existence
of such rules is mentioned. Detailed documentation is not required; a statement like the following is
acceptable: "This program uses the Unicode Line Breaking Algorithm as specified in Version 4.1.0 of
the Unicode Standard, as tailored to the Vogon language."

5.9.2. Characters for Special Control over Line Breaking

Let us first look at some Unicode characters that are meant for controlling line breaks in text, either
by preventing an undesired break or by suggesting a break. The general idea is that programs divide
text into lines according to some general principles, such as the default Unicode rules for line-
breaking or application-specific rules. Characters that can be used to override general rules are
presented in Table 5-8. Some of the characters are control characters; some are graphic characters
with special line-breaking properties. Note that here we do not discuss forced line breaks, generated
with line break characters such as Carriage Return; they will be discussed in Chapter 8.

Table 5-8. Characters for special control over line breaking

Code Unicode name Description

U+00A0 No-break space Like space U+0020, but prevents line break

U+2011 Non-breaking hyphen Like hyphen U+2010, but prevents line break

U+00AD Soft hyphen Invisible; indicates allowed hyphenation point

U+200B Zero-width space Invisible; indicates allowed line break

U+2060 Word joiner Invisible; prevents line break

5.9.2.1. Preventing line breaks

The word joiner (WJ) character exists for the sole purpose of preventing a line break. It can be used
when general line-breaking rules would allow a line break but a break is considered inappropriate. Do
not confuse it with the ZWJ U+200D and the ZWNJ U+200C, which relate to ligature behavior.
Unfortunately, there is such confusion in several versions of MS Word. When you select Insert
Symbol and select the Special characters pane, there are options like "No-Width Optional Break" and
"No-Width Non Break." Selecting them means actually ZWJ and ZWNJ, respectively. MS Word treats
them the way it describes, but if the text is transferred to a program that conforms to the Unicode
standard in this issue, their effect changes essentially.

Previously, the zero-width no-break space (ZWNBSP) U+FEFF has been defined as an invisible
character that prevents line break. However, such usage is not recommended anymore; instead, the
word joiner should be used. The zero-width no-break space retains its use in an unrelated purpose,
as a byte order mark.

Only a few characters, such as the space, have "non-breaking clones." Technically, the "clones" are
characters with a compatibility decomposition containing the <noBreak> tag, indicating that a line

http://lib.ommolketab.ir
http://lib.ommolketab.ir

break is prohibited after the character. In practice, there can be other differences, too, between a
character and its "non-breaking clone" (see notes on no-break space in Chapter 8).

For other characters, different techniques must be used. To disallow a line break after a solidus /, for
example, you cannot use a non-breaking version of that character. Instead, you can use the normal
character and add a word joiner character after it.

5.9.2.2. Suggesting line break opportunities

The zero-width space (ZWSP) allows a simple line break, without adding any hyphen. It is typically
used in strings that are not words, although in the Thai script, it can be used to separate words. It
may be useful, for example, when a long URL is mentioned in text. You can add ZWSP in places
where a line break is acceptable.

The soft hyphen is supported by some programs, ignored by some, and treated as a visible hyphen
by some other software. When supported according to the Unicode standard, it suggests (allows)
hyphenationi.e., division of a word so that a hyphen is placed at the end of the first line.

For example, if you insert a soft hyphen U+00AD between "c" and "d" in "abcdef," you allow the
string to be divided so that "abc-" appears at the end of a line. If you insert a zero-width space
U+200B instead, you allow the string to be divided so that "abc" without a hyphen appears at the
end of line. In the latter case, the reader cannot really know (except from an explicit explanation or
by guessing right) that the text contains "abcdef" and not "abc def."

5.9.2.3. Limited support

Software like Microsoft Word may not interpret all line-breaking control characters as defined in the
Unicode standard. Program-specific tools, which operate at levels other than character level, can be
more effective in practice. Some techniques are mentioned later in this chapter, and Chapter 9
presents some ways to prevent line breaks in markup languages like HTML.

Characters in Table 5-7 are inconsistently supported in popular software such
as word processors. Check the software documentation, or run some tests,
before taking them into use, and stay tuned to problems in data transfer
between programs. The no-break space is well supported, though.

5.9.3. Principles of Line Breaking

In very simple processing of English texts, line breaking consists of breaking between words.
Technically, this means the principle that a line break is allowed after a space but not elsewhere.
Conceptually, this means that there is a space at the end of a line but it is ignored (not even counted
as lengthening the line). Many text editors, browsers, and other programs still apply such a simple
model. They may treat a hyphen (or hyphen-minus) as an allowed break point, too.

In the Unicode context, the problem is more complex, since not all writing systems use spaces

http://lib.ommolketab.ir
http://lib.ommolketab.ir

between words. Moreover, technical or otherwise special texts can contain long strings of symbols
with no spaces. There are six basic modes of line breaking (although the Unicode standard lists only
the first, the fourth, and the fifth as "principal styles"):

Westerni.e., word-oriented (without hyphenation)

A line break may be introduced after a space, and possibly after a hyphen as well. This can be
applied to Latin, Greek, Cyrillic, and many other scripts that have a concept of written word
that consists of letters, with words separated by spaces.

Western with hyphenation

Additional line breaks may be introduced on the basis of hyphenation of words so that a word is
broken to two lines and a hyphen is added at the end of a line to indicate this. Hyphenation
may be based on language-specific algorithms, on hyphenation dictionaries, or on invisible
hyphenation hints.

Symbolic

Line breaks should generally be avoided, but when necessary, line breaks can be introduced
between major components of a construct, such as a mathematical expression, a chemical
formula, a pathname of a file, or a URL. Quite often, simpler methods are needed, and they are
often based on allowing breaks after certain characters.

East Asian

Line breaks are allowed everywhere except after or before certain characters. This is used for
East Asian languages written using an ideographic or syllabic system. Korean, however, uses
spaces between words.

South East Asian

Line breaks are allowed at syllable boundaries, to be detected in a morphological analysis. This
is used for languages like Thai, written without spaces between words and allowing a line break
between syllables in general.

Emergency breaks

A line break is made as required by an imposed maximum line length when the limit is reached,
irrespectively of any line-breaking rules. Emergency breaks are normally applied as the last
resort only, when there is a long string that cannot be broken at all by the line-breaking rules
being applied.

If you use a program that applies Western-style line breaking, it is clear that East Asian or South East
Asian texts won't work well, even if you could type them in that program. In such a case, short
fragments of symbolic text work reasonably, but long expressions can be difficult to handle,
especially if you cannot use spaces in them.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In all modes, special characters for explicit line break control can be used as an additional device, if
supported as defined in the Unicode standard. Sometimes they might be entered automaticallye.g.,
by processing URLs by programs that insert invisible line break control characters.

Unicode line-breaking rules are mostly oriented toward handling Western, Symbolic, and East Asian
modes. Thus, the rules address just a relatively small part of the problem. On the other hand, being
defined in a uniform manner, they let you work with documents containing a mixture of scripts and
languages. This has partly been achieved by somewhat artificial decisions. It is easy to start defining
line-breaking rules so that Latin letters and other characters used in Western scripts have properties
suitable for the Western mode, etc., but there are many borderline cases, especially since many
characters are used in several scripts, or for several essentially different purposes within a script.

5.9.4. Emergency Breaks

The oldest forms of alphabetic writing can be described as using emergency breaks as the normal
mode. Words were written with no space between them, and the entire available writing width was
used, with no regard to word boundaries. This saved writing material, which was very expensive
(e.g., parchment). We can see such things (although with spaces between words) happen again, for
example, on small devices where the line length is small. Applying emergency break mode
throughout makes things unambiguous, if readers know about it and if a space is written even when
a line break occurs between words. Applying emergency breaks as the last resort may introduce
ambiguity. In particular, it means breaking a word without displaying a hyphen, even when the
normal mode is (or the user may think it is) Western with hyphenation.

When a program applies some line-breaking rules and observes that a line would exceed the allowed
width, since there is no line-breaking opportunity within a long string, there are several ways to
handle the situation, such as the following:

Emergency break

Break the line so that the maximum width is used and continue at the start of the next line,
with no indication that a break has occurred.

Visible overflow

Let the line exceed past the allowed width (to a page margin, on paper).

Horizontal scrolling (on screen)

Only the part of the line that fits is visible, but a scrollbar can be used to see the entire line.

Invisible overflow

Make the part of text that exceeds the width invisible, perhaps thereby making the last visible
character appear in part only.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Truncation

Similar to invisible overflow, but indicated with some symbol like "..." at the end of a line.

Negative kerning

Reduce the spacing between characters or words or both, making the text fit within the width
at the cost of reduced legibility.

All these approaches have considerable drawbacks, so a choice between them is usually about the
lesser of evils. The problem is particularly difficult when the data comes from an unpredictable
source. For example, discussion forums on the Web can be sabotaged by entering a message with
very long strings that are unbreakable by the rules that web browsers apply. On the other hand, a
message could meaningfully contain such a stringe.g., a URL. Therefore, displaying the message in
an area that has horizontal scrollbar when needed is probably the best option, as a rule. (You would
use overflow: scroll in CSS for this.)

When processing data to be presented on paper, it is best to perform at least some preprocessing to
decide whether there will be long unbreakable strings. For example, if you know that the rendering
engine does not perform any hyphenation and does not observe Unicode line-breaking rules (as a
whole), you can estimate that any string that has no spaces in it and is longer than, say, 30
characters will probably cause serious problems. You could then modify the string by adding an
explicit line-breaking opportunityi.e., zero-width space U+200Bafter some special characters that you
expect to be common in such strings. Of course, you would first need to make sure that the
rendering engine understands U+200B. (Otherwise, you might insert something that has a similar
effect in a particular situation, perhaps the nonstandard tag <wbr> in HTML authoring.) The special
characters should be chosen so that a break after them is not too disturbing and could be understood
by the users. If you expect the long strings to be usually URLs, you could insert a break opportunity
after any /, ?, and &, for example.

5.9.5. Unicode Line-Breaking Rules

The Unicode standard specifies "line-breaking behavior" of characters in an apparently complex way,
but the rules really operate at the level of individual characters and character pairs. The rules answer
questions like "is it permissible to break between these two characters" with no regard to what
appears before or after them.

Previously, there were different descriptions of "line-breaking behavior" in different parts of the
Unicode standard. The assignments of line-breaking property values to characters, too, have changed
between Unicode versions. This is one reason why you should not expect to find complete
implementation of the rules even in layout software. However, for new software, a designer might
decide to use a subroutine library that implements the rules (such as Unicode::Wrap in the CPAN
archive for the Perl language). In that case, care should be taken to check which version of line-
breaking rules it implements.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Unicode line-breaking rules have not been widely implemented yet. Programs
typically implement at most a part of them, possibly according to some older
version of the rules.

The definitions have now been collected into Unicode Standard Annex (UAX) #14, "Line Breaking
Properties." Despite being issued as a separate document, it is an integral part of the standard. It
discusses the line-breaking rules in different ways. It is not obvious which parts are the ultimate
definitions. The longish Chapter 5, "Line Breaking Properties," is explanatory, or "narrative" as it calls
itself, and Chapter 7, "Pair-table Based Implementation," with a tabular presentation of some of the
rules, is descriptive, too: it explains a possible implementation.

The authoritative specification of line-breaking properties (both normative and informative) consists
of the first part (before Table 1) of Chapter 2, "Definitions," and the formalized rules in Chapter 6,
"line-breaking Algorithm," of UAX #14 and the LineBreak.txt file. The former describes the rules in
terms of LineBreak properties; the latter assigns a LineBreak property to each character. All the rest
is attempted explanations or illustrations, and might be just confusing.

5.9.5.1. Values of the LineBreak property

Although the values of the LineBreak property are meant to be somewhat mnemonic (e.g., PR stands
for "Prefix (Numeric)"), they are not meant to constitute a classification in a general meaning (like
the General Category property). For example, the dollar sign $ has the LineBreak value of PR, but
this just reflects its treatment as a prefix character in line-breaking, due to common use in front of a
number in English usage. The mnemonic interpretations names should be read with the implied text
"treated as ... in the context of line-breaking" around them.

The values are briefly described in Table 5-9. The descriptions are meant to be illustrative, not part of
the formal definitions. What really constitutes the defined meaning of the values is the set of rules
that use these values to describe line-breaking opportunities. The descriptive names in the second
column, though taken from the standard, are not even defined synonyms of the values, just concise
characterizations.

Table 5-9. LineBreak property values

Value Descriptive name Example(s) of characters

AI Ambiguous (Alphabetic or Ideographic) ½, x, ¡

AL Ordinary Alphabetic and Symbol A, >

B2 Break Opportunity Before and After ' (em dash)

BA Break Opportunity After Thin space, soft hyphen

BB Break Opportunity Before ´ (U+00B4), (U+02CC)

BK * Mandatory Break LS (U+2028), PS (U+2029)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Value Descriptive name Example(s) of characters

CB * Contingent Break Opportunity U+FFFC

CL Closing Punctuation),]

CM *
Attached Characters and

Combining Marks
Combining grave accent (U+0300)

CR * Carriage Return CR (U+000D)

EX Exclamation/Interrogation !, ?

GL * Non-breaking ("Glue") No-break space (U+00A0)

H2 Hangul LV Syllable 가 (U+ AC00)

H3 Hangul LVT Sy llable 각 (U+ AC01)

HY Hyphen - (hyphen-m inus)

ID Ideograph ic Chinese ideographs

IN Inseparable hor izontal el lipsis: .. .

IS In fix Separator , (comm a) , . (ful l stop)

JL Hangul L Jam o ㄱ (U+ 1100)

JT Hangul T Jamo ㄲ (U+ 11A9)

JV Hangul V Jamo ㅏ (U+ 1161)

LF * Line Feed LF (U+000A)

NL * Next Line NL (U+0085)

NS Non Starter Small kana letters (in Japanese)

NU Numeric 0, 1

OP Opening Punctuation (, [

PO Postfix (Numeric) "%", "¢"

PR Prefix (Numeric) $, +

QU Ambiguous Quotation " and other quotation marks

SA Complex Context (South East Asian) ก (Thai character ko kai)

SG * Surrogates (should not appear)

SP * Space " " (space)

SY Symbols Allowing Breaks /

WJ * Word Joiner WJ (U+2060)

XX Unknown Private use code points

ZW * Zero Width Space ZWSP (U+200B)

Some of the descriptive names are slightly misleading. In particular, "Inseparable" does not mean

CB * Contingent Break Opportunity U+FFFC

CL Closing Punctuation),]

CM *
Attached Characters and

Combining Marks
Combining grave accent (U+0300)

CR * Carriage Return CR (U+000D)

EX Exclamation/Interrogation !, ?

GL * Non-breaking ("Glue") No-break space (U+00A0)

H2 Hangul LV Syllable 가 (U+ AC00)

H3 Hangul LVT Sy llable 각 (U+ AC01)

HY Hyphen - (hyphen-m inus)

ID Ideograph ic Chinese ideographs

IN Inseparable hor izontal el lipsis: .. .

IS In fix Separator , (comm a) , . (ful l stop)

JL Hangul L Jam o ㄱ (U+ 1100)

JT Hangul T Jamo ㄲ (U+ 11A9)

JV Hangul V Jamo ㅏ (U+ 1161)

LF * Line Feed LF (U+000A)

NL * Next Line NL (U+0085)

NS Non Starter Small kana letters (in Japanese)

NU Numeric 0, 1

OP Opening Punctuation (, [

PO Postfix (Numeric) "%", "¢"

PR Prefix (Numeric) $, +

QU Ambiguous Quotation " and other quotation marks

SA Complex Context (South East Asian) ก (Thai character ko kai)

SG * Surrogates (should not appear)

SP * Space " " (space)

SY Symbols Allowing Breaks /

WJ * Word Joiner WJ (U+2060)

XX Unknown Private use code points

ZW * Zero Width Space ZWSP (U+200B)

Some of the descriptive names are slightly misleading. In particular, "Inseparable" does not mean

http://lib.ommolketab.ir
http://lib.ommolketab.ir

that the character cannot be separated from other characters by a line break. It only means
inseparability from some types of characters.

The property is normative for the following values: BK, CB, CM, CR, GL, H2, H3, JL, JT, JV, LF, NL,
SG, SP, WJ, ZW, denoted by an asterisk * in Table 5-8. The property is informative for other values.
Basically, normative values must be applied as defined by conforming implementations, if they do line
breaking at all, whereas informative properties are just suggested defaults. However, even the
normative values can be overridden at levels other than plain texte.g., by explicit formatting
instructions.

Characters with same LineBreak property value are said to constitute a line-breaking class. Some
classes are very small (e.g., the class corresponding to the value SP contains the space character
only), because some characters need to have very specific line-breaking behavior.

5.9.5.2. The format of LineBreak.txt

The LineBreak.txt file is of rather simple format, explained on comment lines (starting with #) at the
start of the file itself. Each entry consists of one line, containing three fields: Unicode value (code
number, four hexadecimal digits); value of the LineBreak property, two characters; and Unicode
name, which is purely a comment here, since the code number identifies the character uniquely.
Consider the following line:

00B0;PO # DEGREE SIGN

It says that for the Unicode character U+00B0 (which has the name degree sign), the value of the
LineBreak property is POi.e., the character belongs to line breaking class PO (which is by the way
abbreviated from the word "postfix"not very mnemonic, is it?).

Character ranges are denoted as in the Unicode database in general. Example:

4E00..9FBB;ID # <CJK Ideograph, First>..<CJK Ideograph, Last>

This means that all characters between U+4E00 and U+9FBB, inclusively, have the value ID
(ideographic) for the LineBreak property.

All code points, assigned and unassigned, that are not listed explicitly are given the value XX.

The following is an extract of LineBreak.txt, covering the printable characters in the ISO Latin 1
range (U+0020 to U+007E and U+00A0 to U+00FF) and excluding letters with AL as the value of the
LineBreak property (e.g., basic Latin letters). Note that not all letters have that value and not all
characters with that value are letters in a normal sense:

0020;SP # SPACE
0021;EX # EXCLAMATION MARK
0022;QU # QUOTATION MARK

http://lib.ommolketab.ir
http://lib.ommolketab.ir

0023;AL # NUMBER SIGN
0024;PR # DOLLAR SIGN
0025;PO # PERCENT SIGN
0026;AL # AMPERSAND
0027;QU # APOSTROPHE
0028;OP # LEFT PARENTHESIS
0029;CL # RIGHT PARENTHESIS
002A;AL # ASTERISK
002B;PR # PLUS SIGN
002C;IS # COMMA
002D;HY # HYPHEN-MINUS
002E;IS # FULL STOP
002F;SY # SOLIDUS
0030;NU # DIGIT ZERO
 ...
0039;NU # DIGIT NINE
003A;IS # COLON
003B;IS # SEMICOLON
003C;AL # LESS-THAN SIGN
003D;AL # EQUALS SIGN
003E;AL # GREATER-THAN SIGN
003F;EX # QUESTION MARK
0040;AL # COMMERCIAL AT
005B;OP # LEFT SQUARE BRACKET
005C;PR # REVERSE SOLIDUS
005D;CL # RIGHT SQUARE BRACKET
005E;AL # CIRCUMFLEX ACCENT
005F;AL # LOW LINE
0060;AL # GRAVE ACCENT
007B;OP # LEFT CURLY BRACKET
007C;BA # VERTICAL LINE
007D;CL # RIGHT CURLY BRACKET
007E;AL # TILDE
00A0;GL # NO-BREAK SPACE
00A1;AI # INVERTED EXCLAMATION MARK
00A2;PO # CENT SIGN
00A3;PR # POUND SIGN
00A4;PR # CURRENCY SIGN
00A5;PR # YEN SIGN
00A6;AL # BROKEN BAR
00A7;AI # SECTION SIGN
00A8;AI # DIAERESIS
00A9;AL # COPYRIGHT SIGN
00AA;AI # FEMININE ORDINAL INDICATOR
00AB;QU # LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
00AC;AL # NOT SIGN
00AD;BA # SOFT HYPHEN
00AE;AL # REGISTERED SIGN
00AF;AL # MACRON
00B0;PO # DEGREE SIGN
00B1;PR # PLUS-MINUS SIGN
00B2;AI # SUPERSCRIPT TWO

http://lib.ommolketab.ir
http://lib.ommolketab.ir

00B3;AI # SUPERSCRIPT THREE
00B4;BB # ACUTE ACCENT
00B5;AL # MICRO SIGN
00B6;AI # PILCROW SIGN
00B7;AI # MIDDLE DOT
00B8;AI # CEDILLA
00B9;AI # SUPERSCRIPT ONE
00BA;AI # MASCULINE ORDINAL INDICATOR
00BB;QU # RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
00BC;AI # VULGAR FRACTION ONE QUARTER
00BD;AI # VULGAR FRACTION ONE HALF
00BE;AI # VULGAR FRACTION THREE QUARTERS
00BF;AI # INVERTED QUESTION MARK
00D7;AI # MULTIPLICATION SIGN
00F7;AI # DIVISION SIGN

5.9.5.3. The formal rules

The line-breaking rules themselves in the standard (in UAX #14) consist of formal rules accompanied
by verbal notes. The notes try to explain the content of the rules as well as their motivation, though
much of the motivation is explained in the descriptions of the values. The formal rules use values of
the LineBreak property to indicate any character with that value and the symbols specified in Table 5-
10. There is no particular reason for using these specific symbols, but you may think of ! as
commanding (a break), x as joining characters together, and ÷ as permitting division (into lines).

Table 5-10. Operators used in line-breaking rules

Symbol Meaning Example

! (exclamation mark) Mandatory break LF ! means: always break after linefeed

x (multiplication sign) No break allowed x QU means: never break before quote

÷ (division sign) Break allowed ZW ÷ means: allow break after ZW

The rules are numbered LB1, LB2, etc., but there are holes in the numbering. When rules are
removed in an update to the Unicode standard, the numbering of other rules is kept the same. The
rules are in order of priority. The general idea is to specify a set of rules that forbid some line breaks,
and then allow everything else (using the special symbol ALL to refer to all characters). This may
sound strange, but the rules explicitly forbid line breaks between alphabetic characters, for example.
Thus, when checking whether a line break is allowed at a particular point, the final rule that says
"break everything else" will be applied rather rarely (for English text, for example).

The rules are presented in Table 5-11. The first column contains the rule number, the second column
contains the rule itself, and the third column explains the rule in loose prose, perhaps using just
example characters. The symbol "sot" means start of text, and "eot" means end of text. For brevity,
the verb "break" alone indicates that a line break is allowed, whereas "always break" means an

http://lib.ommolketab.ir
http://lib.ommolketab.ir

obligatory line break. A notation of the form (A | B) is used to denote "A or B." An asterisk * after a

value indicates that a character in the corresponding class may appear zero or more times.

Table 5-11. Line-breaking rules

Nr. Formal rule Informal description

1
Resolve AI, CB, SA, SG, and XX into

other line-breaking classes

Use external info to decide what to do with
ambiguous classes.

2 a x sot No break at the start of text.

2 b ! eot Always break at the end of text.

3a BK ! Always break after LS or PS.

3b CR x LF No break between CR and LF.

 (CR | LF | NL)! Always break after CR, LF, and NL.

3c x (BK | CR | LF | NL) ! No break before hard line break.

4 x (SP | ZW) No break before space or ZWSP.

5 ZW ÷ Break after zero-width space.

7b
Treat X CM* as if it were X, for any class X except

BK, CR, LF, NL, SP, or ZW
Bind combining marks with the preceding
character.

7c Treat any remaining CM as if it were AL
Treat an isolated combining mark as

alphabetic.

8 x (CL | EX | IS | SY) No break before), !, ;, /.

9 OP SP* x
No break after (, even when it is followed
by spaces.

10 QU SP* x OP
No break between a quote and (, even if
spaces intervene.

11 CL SP* x NS
No break between (and small kana, even if
spaces intervene.

11a B2 SP* x B2
No break between em dashes, even if
spaces intervene.

11b x WJ No break before word joiner.

 WJ x No break after word joiner.

12 SP ÷ Break after a space.

13 x GL No break before a Glue.

 GL x No break after a Glue.

14 x QU No break before a quote.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Nr. Formal rule Informal description

 QU x No break after a quote.

14a ÷ CB Break before Contingent Break Opp.

 CB ÷ Break after Contingent Break Opp.

15 x (BA | HY) No break before a hyphen.

 x NS No break before small kana.

 BB x No break after an acute accent.

16 (AL | ID | IN | NU) x IN
No break between alphabetic etc. and an
ellipsis.

17 ID x PO No break between ideograph and %.

 AL x NU No break between letter and number.

 NU x AL No break between number and letter.

18 CL x PO No break in)%.

 (HY | IS | NU) x NU No break in -9 or .9 or 89.

 NU x PO No break in 9%.

 PR x (AL | HY | ID | NU | OP) No break in +a or +-, etc.

 SY x NU No break in /9.

18b JL x (JL | JV | H2 | H3) No break inside a Korean syllable.

 (JV | H2) x (JV | JT)

 (JT | H3) x JT

18c (JL | JV | JT | H2 | H3) x (IN | PO)
No break between Korean syllable block
and "..." or %.

 PR x (JL | JV | JT | H2 | H3)
No break between + and a Korean syllable
block.

19 AL x AL No break between letters.

19b IS x AL No break in :a.

20 ALL ÷ Break after anything else.

 ÷ ALL Break before anything else.

Note that rules that appear before LB12 and prohibit a line break before a character (e.g., x CL)
imply that a break is not allowed even if the character is preceded by a space. This means that if
normal text contains a special notation starting with a special character like a period (e.g., "use the
.htaccess file"), the rules forbid breaking the text so that the special character appears at the start of
a line. The reason is such rules beat out rule LB12, which allows a line break after a space.

As an example of the motivation behind the rules, explained to some extent in UAX #14, consider the
following statements there in the description of the class IS:

 QU x No break after a quote.

14a ÷ CB Break before Contingent Break Opp.

 CB ÷ Break after Contingent Break Opp.

15 x (BA | HY) No break before a hyphen.

 x NS No break before small kana.

 BB x No break after an acute accent.

16 (AL | ID | IN | NU) x IN
No break between alphabetic etc. and an
ellipsis.

17 ID x PO No break between ideograph and %.

 AL x NU No break between letter and number.

 NU x AL No break between number and letter.

18 CL x PO No break in)%.

 (HY | IS | NU) x NU No break in -9 or .9 or 89.

 NU x PO No break in 9%.

 PR x (AL | HY | ID | NU | OP) No break in +a or +-, etc.

 SY x NU No break in /9.

18b JL x (JL | JV | H2 | H3) No break inside a Korean syllable.

 (JV | H2) x (JV | JT)

 (JT | H3) x JT

18c (JL | JV | JT | H2 | H3) x (IN | PO)
No break between Korean syllable block
and "..." or %.

 PR x (JL | JV | JT | H2 | H3)
No break between + and a Korean syllable
block.

19 AL x AL No break between letters.

19b IS x AL No break in :a.

20 ALL ÷ Break after anything else.

 ÷ ALL Break before anything else.

Note that rules that appear before LB12 and prohibit a line break before a character (e.g., x CL)
imply that a break is not allowed even if the character is preceded by a space. This means that if
normal text contains a special notation starting with a special character like a period (e.g., "use the
.htaccess file"), the rules forbid breaking the text so that the special character appears at the start of
a line. The reason is such rules beat out rule LB12, which allows a line break after a space.

As an example of the motivation behind the rules, explained to some extent in UAX #14, consider the
following statements there in the description of the class IS:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Characters that usually occur inside a numerical expression may not be separated from the
numeric characters that follow, unless a space character intervenes. For example, there is no
break in "100.00" or "10,000", nor in "12:59".

Infix separators are sentence ending punctuation when not used in a numeric context.
Therefore they always prevent breaks before.

The first statement explains the rule IS x NU, which is part of LB 18. It also explains the name IS,
which is short for Infix Separator. The use of IS characters in a quite different meaning, in normal
sentence punctuation, is the reason for the rule x IS, which is part of LB 8. There is also a comment
saying that rule IS x AL (LB 19b) prevents abbreviations like "e.g." being broken. This may sound
complicated, and it really is, because the rules deal with characters with multiple usage, with no way
to differentiate between them except coarsely on the basis of adjacent characters.

5.9.5.4. Applying the rules

In principle, it is relatively straightforward to apply the Unicode line-breaking rules. Consider for
example the question of whether line breaks are allowed within the string " / % 7 e j "
(without the quotation marks). The LineBreak properties of the characters in the example string can
be found in the LineBreak.txt file:

002F;SY;SOLIDUS
0025;PO;PERCENT SIGN
0037;NU;DIGIT SEVEN
0065;AL;LATIN SMALL LETTER E
006A;AL;LATIN SMALL LETTER J

Then, taking the characters in order and applying the rules in Line Breaking Algorithm in order (as
they have been specified to apply), we find:

Between / and %, a line break is permitted, since no rule forbids it and the last rule LB 20 says
"break everywhere else."

Between % and 7, a line break is permitted on the same grounds.

Between 7 and "e," no line break is allowed, according to rule LB 17: NU x AL.

Between "e" and "j," no line break is allowed, according to rule LB 19: AL x AL.

This explains, in part, why you might see printed matter containing a URL like
http://www.cs.tut.fi/%7ejkorpela/ divided into lines in an odd way, http://www.cs.tut.fi/% and
7ejkorpela/.

Somewhat surprisingly, a line break is not allowed before / even after a space (rule LB 8). Thus, if
you have text like "it's in directory /usr/spool" and you would like to allow a line break after the word
"directory," you would need to insert a zero-width space U+200B before the first /. This works
because the rule permitting a line break after a zero-width space appears before the other rules
discussed here, hence has a higher priority. On the practical side, although you may observe the

http://www.cs.tut.fi/%7ejkorpela/
http://www.cs.tut.fi/%
http://lib.ommolketab.ir
http://lib.ommolketab.ir

problem on some web browsers for example, the cures may not work; instead of a zero-width space,
you could use the nonstandard HTML tag <wbr> to suggest a permitted line break.

At each step in considering whether a line break is permitted before two consecutive characters A and
B, we need to consider the LineBreak properties of both characters. If there is no rule (formulated in
terms of the LineBreak property values) that forbids a line break between A and B, or after A in
general, or before B in general, then a line break is permitted between them.

5.9.5.5. Pair table implementation

For efficiency reasons, the line-breaking algorithm is usually implemented using table lookup
techniques. UAX #14 describes how most of the rules can be implemented using a pair table that
tells, for any pair of line-breaking classes, whether a break between two characters is allowed. The
table does not deal with character pairs only but also situations where characters have one or more
spaces between them. The pair table cannot express all aspects of line-breaking behavior, though.

A pair table, shown as Table 5-12, can also be used for quick checks.

Table 5-12. Pair table for line-breaking behavior

 OP CL QU GL NS EX SY IS PR PO NU AL ID IN HY BA BB B2 ZW CM WJ

OP ^

CL ÷ ^ ^ ^ ^ ^ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ^ ^

QU ^ ^ ^ ^ ^ ^ ^

GL ^ ^ ^ ^ ^ ^

NS ÷ ^ ^ ^ ^ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ^ ^

EX ÷ ^ ^ ^ ^ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ^ ^

SY ÷ ^ ^ ^ ^ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ^ ^

IS ÷ ^ ^ ^ ^ ÷ ÷ ÷ ÷ ÷ ÷ ^ ^

PR ^ ^ ^ ^ ÷ ÷ ÷ ÷ ÷ ^ ^

PO ÷ ^ ^ ^ ^ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ^ ^

NU ÷ ^ ^ ^ ^ ÷ ÷ ÷ ÷ ^ ^

A L ÷ ^ ^ ^ ^ ÷ ÷ ÷ ÷ ÷ ^ ^

ID ÷ ^ ^ ^ ^ ÷ ÷ ÷ ÷ ÷ ÷ ^ ^

IN ÷ ^ ^ ^ ^ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ^ ^

HY ÷ ^ ^ ^ ^ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ^ ^

BA ÷ ^ ^ ^ ^ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ^ ^

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 OP CL QU GL NS EX SY IS PR PO NU AL ID IN HY BA BB B2 ZW CM WJ

BB ^ ^ ^ ^ ^ ^

B2 ÷ ^ ^ ^ ^ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ^ ^ ^

ZW ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ^ ÷ ÷

CM ÷ ^ ^ ^ ^ ÷ ÷ ÷ ÷ ÷ ^ ^

WJ ^ ^ ^ ^ ^ ^

To check whether a line break is permitted between two characters, you first look up their line-
breaking classes and then use them as row and column index to the table. The symbols in the table
have the following meanings (note that the notations here differ somewhat from those used in UAX
#14):

" " (space, empty cell in the table)

Indirect break opportunity only; this means that no line break is allowed if the characters
appear in succession, but a break is allowed if one or more spaces intervene.

÷

A direct break opportunityi.e., a line break is allowed (even when no space intervenes).

^

A prohibited break, in the sense that no break is allowed even if spaces intervene; formally,
A^B means A SP* x B, where SP is the space character.

Line-breaking behavior for pairs involving the following line-breaking classes must be resolved
outside the pair table: AI, BK, CB, CR, LF, NL, SA, SG, SP, and XX.

For example, suppose you need to check whether a line break is permitted between an exclamation
mark ! (U+0021) and a horizontal ellipsis ... (U+2026). You would first find their line-breaking
classes, EX and IN, from the Unicode database file or some other source. Then you would find the
row EX and the cell in column IN on that row, and find ÷, which means that a line break is permitted.

5.9.5.6. Tailoring

Unicode line-breaking rules can cause highly undesirable line breaks or prevent quite adequate line
breaks. The rules have been written mainly with "normal" text in mind. For specialties like technical
notations and mathematical expressions, the rules may result even in ridiculous results. Even
relatively normal expressions often cause problems, if they are short and contain nonalphabetic
characters. For example, "c/o" can be broken into "c/" and "o" by the algorithm, since a break after /
is generally permitted.

BB ^ ^ ^ ^ ^ ^

B2 ÷ ^ ^ ^ ^ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ^ ^ ^

ZW ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ^ ÷ ÷

CM ÷ ^ ^ ^ ^ ÷ ÷ ÷ ÷ ÷ ^ ^

WJ ^ ^ ^ ^ ^ ^

To check whether a line break is permitted between two characters, you first look up their line-
breaking classes and then use them as row and column index to the table. The symbols in the table
have the following meanings (note that the notations here differ somewhat from those used in UAX
#14):

" " (space, empty cell in the table)

Indirect break opportunity only; this means that no line break is allowed if the characters
appear in succession, but a break is allowed if one or more spaces intervene.

÷

A direct break opportunityi.e., a line break is allowed (even when no space intervenes).

^

A prohibited break, in the sense that no break is allowed even if spaces intervene; formally,
A^B means A SP* x B, where SP is the space character.

Line-breaking behavior for pairs involving the following line-breaking classes must be resolved
outside the pair table: AI, BK, CB, CR, LF, NL, SA, SG, SP, and XX.

For example, suppose you need to check whether a line break is permitted between an exclamation
mark ! (U+0021) and a horizontal ellipsis ... (U+2026). You would first find their line-breaking
classes, EX and IN, from the Unicode database file or some other source. Then you would find the
row EX and the cell in column IN on that row, and find ÷, which means that a line break is permitted.

5.9.5.6. Tailoring

Unicode line-breaking rules can cause highly undesirable line breaks or prevent quite adequate line
breaks. The rules have been written mainly with "normal" text in mind. For specialties like technical
notations and mathematical expressions, the rules may result even in ridiculous results. Even
relatively normal expressions often cause problems, if they are short and contain nonalphabetic
characters. For example, "c/o" can be broken into "c/" and "o" by the algorithm, since a break after /
is generally permitted.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

UAX #14 allows tailoring, as long as the normative values of LineBreak are implemented as defined.
Examples of tailoring include changing the line-breaking class of some characters, adding rules, and
modifying rules. It is also possible to try to recognize some special constructs, like URLs or
mathematical formulas, and process them by quite different rules.

In a program designed for displaying text written in a script that uses spaces between words,
probably the most useful simple tailoring would consist of a rule that prevents breaking a very short
"word" or by separating just one or two characters from a "word." Here "word" means just a string of
characters not containing any space or other whitespace. Most people probably would not like to see
"w/o" divided at all, or "Formula/X" divided after the "/" even if they might agree on treating "/" as a
break opportunity in general. The implementation of such restrictions requires an approach that does
not work just at the level of character pairs, of course.

5.9.5.7. Some background and criticism

Years ago, the Internet Explorer 4 browser was observed to use very strange line breakse.g.,
breaking a string like "a-b" to "a-" at the end of a line and "b" at the start of the next line, or even
breaking "-b" to "-" and "b." Newer versions of the browser have exhibited the problems in varying
forms, with no documentation. This has caused a lot of frustration. Attempts to use characters for
explicit line break control, such as word joiner, were generally unsuccessful, due to lack of support for
such characters. Other browsers have had similar problems to some extent. For details on the
problems, please refer to the web page http://www.cs.tut.fi/~jkorpela/html/nobr.html.

The problem is that web browsers may apply Unicode line-breaking rules blindly, indiscriminately.
Although breaking after a hyphen-minus "-" is very often suitable, perhaps even desirable, it is
absurd to apply the rule permitting it to a very short string like "a-b." Unfortunately, the Unicode
standard does not mention such considerations.

The Unicode line-breaking rules are largely based on estimates (or maybe just guesses) on the
suitability of line breaks before or after a character or between two characters. It may well be that in
most cases, a line break after the / character is acceptable whereas a line break before it is not. But
rules formulated that forbid quite a many perfectly reasonable line breaks, like before the solidus in
"it's in directory /usr/spool," and allow some really absurd breaks, like after either solidus in our
example or in "c/o."

It is very confusing to see a string broken into lines just because some mechanical rules have allowed
it. A string that is mixture of Latin letters, digits, and various symbols is most probably part of some
special notation, such as a URL, or a variable in a programming language, or some code. It is
unacceptable to have a string like foo%bar broken, especially when it occurs with no indication of
what has happened. It can even distort information or corrupt data. For example, if you write about a
programming language that uses the character % at the start of variable names, you will not be
pleased by line-breaking rules that break "%foo" into "%" and "foo" on separate lines.

"Customization" or "tailoring" can be used to solve such problems, when you design or modify
software. This does not help against more or less general purpose software that implements just the
Unicode line-breaking algorithm and cannot realistically be modified to suit the needs of different
types of text.

It would probably be best to remove all prohibitions against line breaks after spaces. After all, the no-
break space can be used instead of a normal space in such cases, or language-specific higher-level
protocols can be applied (e.g., to prevent line breaks in French text between a space and a question

http://www.cs.tut.fi/~jkorpela/html/nobr.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

mark).

Rules for breaking things like URLs (when they appear as text) to two lines to prevent too long lines
belong to higher protocol levels. It is probably best to override Unicode line-breaking rules in such
situations, using a few carefully selected principles, such as breaking primarily after /, ?, or &, and
never after - (to avoid ambiguity on whether the hyphen-minus is part of the URL).

Any breaking of a URL to several lines should be accompanied with the use of suitable delimiters, as
recommended in Appendix E of RFC 3986. It recommends surrounding a URL with whitespace
(spaces or line breaks) or, when used in text, enclosing a URL in quotation marks or between the
characters < and >. Many publishers use yet another method: they print a URL in a font that differs
from the normal font. Similar considerations can be applied to strings other than URLs: avoid
breaking a string without indicating somehow that the parts belong together.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.10. Unicode Conformance Requirements

As mentioned in Chapter 4, full presentation of the conformance requirements relies on concepts
related to character properties, and it was therefore postponed to be given here.

Conformance to the Unicode standard is voluntary. The motivation for making software conformant is
that it can then be honestly marketed as Unicode conformant and it can be expected to cooperate
with other Unicode conformant software in a predictable manner.

Note that wording like "this program supports Unicode" does not really make a claim on
conformance. In practice, this often means just that the software internally operates on Unicode
representations of characters. Conformance to the Unicode standard means more: several rules on
the interpretation and processing of characters must be satisfied.

On the other hand, conformance does not require the ability to deal with all Unicode characters. You
could write a program that conforms to the Unicode standard but processes and displays just a small
repertoire of characterssay, ASCII characters or Thai letters. If such a program interfaces with other
software, participating in a chain of programs where it receives input from a previous program in the
chain and sends output to the next one, it must correctly pass forward all Unicode characters it
receivesunless, of course, its defined task includes acting as a filter.

There is currently no mechanism for officially certifying a claim on conformance. The conformance
requirements are rather exact, though, so in most cases, it can be determined objectively whether
some software conforms or not.

5.10.1. An Informal Summary

Before presenting the conformance requirements, let's list their essentials in an informal manner. The
Unicode FAQ contains a brief summary of the requirements at
http://www.unicode.org/faq/basic_q.html; the following list is a somewhat different formulation. Here
"you" refers to software that is meant to be conforming, although intuitively you can read it as
referring to people who create or modify such software:

You don't need to support all Unicode characters.

You may be ignorant of a character, but not plain wrong about it.

You can modify characters if that's part of your job, but not arbitrarily.

Don't just garble what you don't understand.

Treat unassigned code points as taboo: don't generate, don't change.

Surrogates are unassigned as code points, but you must recognize surrogates as code units in
UTF-16.

http://www.unicode.org/faq/basic_q.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Noncharacters, including U+FFFE and U+FFFF, are not characters. If you get one, pass it
forward, or drop it.

Canonical equivalents should normally be treated as the same character, but they may be
treated as technically different.

Interpret and generate UTF-8 & Co. according to specifications.

Treat ill-formed input (violating UTF-8 & Co. rules) as errors.

Recognize the byte order mark (BOM) on input, and imply big-endian, if there is no BOM.

If you include Arabic or Hebrew, you need to implement the bidirectional algorithm.

If you include normalization, apply it by the standard.

If you do things with the case of letters, follow Unicode rules.

5.10.2. Notations and Terms Used in the Requirements

The conformance requirements will be presented here as annotated quotations from the Unicode
standard. The quotations contain somewhat difficult language, but due to their authoritative role,
they have been preserved verbatim. The annotations (explanations) use simpler and more common
terms. The numbering (C4, C5,...) is the same as in the standard, which preserves the numbering of
previous versions of the standard. Therefore, some numbers are missing, since some old
requirements have been superseded. This is why the first requirement is currently C4. Some
numbers have letters attached to them, since requirements have been inserted without changing the
numbering of old requirementse.g., C12a was added between C12 and C13.

The requirements use the termabstract character in an attempt to be exact, but actually this causes
some vagueness. In Chapter 1, we discussed the various meanings of this term. An abstract
character need not have a code number of its own in Unicode; it may consist of a character followed
by one or more diacritic marks, for example.

The word process is used a lot in the conformance requirements, but it is not defined in the Unicode
standard. It can mostly be understood as meaning software in a broad sense that covers
applications, databases, etc.

5.10.3. Unassigned Code Points

C4 A process shall not interpret a high-surrogate code point or a low-surrogate code point as an
abstract character.

Although Unicode contains two large blocks for so-called surrogates, the code points in those blocks
are not meant to be used at all in character data. Instead, the corresponding code units may be used
in the UTF-16 encoding. This sounds confusing, but the gist is that the idea of representing some
Unicode characters as "surrogate pairs" consisting of two values operates at the encoding level only.
If surrogate code points are detected at the character levele.g., after an encoding has been
interpreted as a sequence of code points (and thereby characters)an error of some kind has

http://lib.ommolketab.ir
http://lib.ommolketab.ir

occurred.

The conformance requirements do not specify any particular error processing in such a situation, but
they disallow the treatment of surrogate code points as characters:

C5 A process shall not interpret a noncharacter code point as an abstract character.

Noncharacter code points (e.g., U+FFFF) are code points in the Unicode coding space that are
permanently defined as not denoting any characters ever. They are thus logically impossible in
character data. In practice they may appear in data as indicators (e.g., as indicating, upon return
from an input routine, that no input was obtained), sentinel values, or structural delimiters between
strings:

C6 A process shall not interpret an unassigned code point as an abstract character.

This is similar to the previous requirement but applies to code points in the Unicode coding space that
have not (yet) been assigned in any way. They are free locations that may later be filled with
something, in an update to the standard, and this is the reason for disallowing their use at present,
and for now.

A conforming program may use code points in "private" meaningse.g., to represent characters that
have not yet been included in Unicode. But it must not use unassigned code points for that; instead,
private use characters should be used.

5.10.4. Interpretation

C7 A process shall interpret a coded character representation according to the character
semantics established by this standard, if that process does interpret that coded character
representation.

"Coded character representation" means a sequence of code points, say U+0041 U+0301. A program
is not required to interpret it, but if it does, it must do so in accordance with the normative properties
of U+0041 and U+0301:

C8 A process shall not assume that it is required to interpret any particular coded character
representation.

This effectively means that software need not assume that it has to understand all Unicode
characters. Thus, this is not really a requirement, but permission to implement software that
supports just a subset of Unicode characters. It need not even document that subset, although it's
often wise to do so, to help users as well as future developers:

C9 A process shall not assume that the interpretations of two canonical-equivalent character
sequences are distinct.

This requirement does not mean that software has to treat canonical equivalent sequences (such as ä
and its decomposition, "a" followed by combining dieresis) as the same. It is allowed to treat them
differently. The general idea in the Unicode standard is that canonical equivalent sequences should be
treated identically and as denoting the same abstract character. The standard mentions, however, in
this context, that "there are practical circumstances under which implementations may reasonably
distinguish them."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For example, it is permissible, though usually not wise, to treat a character differently from its
canonical decomposition on display. A program might render ä using a glyph for the character in the
current font but the canonical equivalent decomposition by displaying "a" and putting a dieresis over
it, using some algorithm for the placement. You may actually see such things happen; it's a bit
simpler to implement things that way.

It is allowable, for a program that conforms to the Unicode standard, to fail to interpret combining
diacritic marksi.e., to treat them as unknown characters. Such a program would probably render ä
well when represented in precomposed form but as "a" followed by some indication of unknown
character when in decomposed form.

Conforming software must not rely on having the distinction made in other conforming software. A
program that prepares data to be sent to another program for further processing shall not assume
that the other program treats, for example, ä and its decomposition as different.

5.10.5. Modification

C10 When a process purports not to modify the interpretation of a valid coded character
representation, it shall make no change to that coded character representation other than the
possible replacement of character sequences by their canonical-equivalent sequences or the
deletion of noncharacter code points.

A conforming program may interpret character data in many ways, of course. It might even be a
decipherment program! The requirement, however, discusses a situation in which a program makes a
claim that it does not modify the interpretation of character data. In that case, the data itself must
not be modified except perhaps by:

Replacing a string with a canonical equivalent string (e.g., by replacing a precomposed
character like ä with its decomposition, or vice versa)

Removing code points that are defined as not denoting any characters, such as U+FFFF

This means that (under the given condition) a program must not remove any characters, such as
characters that it does not recognize. For example, if a program "collapses" consecutive space
characters into a single space (as web browsers do), this constitutes a modification of the
interpretation of character data.

On the other hand, transcoding is allowed. That is, the representation of data may be changed from
one encoding to another, perhaps changing the byte order.

5.10.6. Character Encoding Forms

C11 When a process interprets a code unit sequence which purports to be in a Unicode
character encoding form, it shall interpret that code unit sequence according to the
corresponding code point sequence.

Code units are storage units used for the low-level representation of character data, and their size
varies by encoding. The size is 8, 16, or 32 bits for UTF-8, UTF-16, and UTF-32, respectively. The

http://lib.ommolketab.ir
http://lib.ommolketab.ir

requirement says that conforming software must be able to deal with Unicode encodings and must do
so according to the specification of each encoding.

C12 When a process generates a code unit sequence which purports to be in a Unicode
character encoding form, it shall not emit ill-formed code unit sequences.

Here "ill-formed" means a sequence that is prohibited by the encoding used, as defined in the
specification of the encoding. This is, of course, part of generating data as correctly encoded.

C12a When a process interprets a code unit sequence which purports to be in a Unicode
character encoding form, it shall treat ill-formed code unit sequences as an error condition, and
shall not interpret such sequences as characters.

This corresponds to the previous requirement but relates to input. Note that although ill-formed data
is to be treated as an error, there are no requirements on error processing, except that such data
must not be treated as characters. A program is not required to issue an error message. It may just
ignore the data. The standard explicitly permits representing an ill-formed code unit with a marker
such as U+FFFD, though this seems unnatural, since that special character is defined to indicate an
unrepresentable character rather than ill-formed data.

Conformance clauses C12 and C12a do not mean that programs should never process ill-formed code
units. The phrase "purports to be" is interpreted freely in the standard. A conforming program may
read data "as such"i.e., as a sequence of octets or other storage units, without paying any attention
to its internal structure. For example, copying Unicode data as such, preserving its internal
representation, can most efficiently be performed as raw copying. This could mean copying octets in
a loop, or a block copy instruction, depending on computer or communication architecture. The point
is that the copying software need not check the data, if it does not try to interpret it according to
some encoding.

5.10.7. Character Encoding Schemes

C12b When a process interprets a byte sequence which purports to be in a Unicode character
encoding scheme, it shall interpret that byte sequence according to the byte order and
specifications for the use of the byte order mark established by this standard for that character
encoding scheme.

The requirement is a verbose way of saying that byte order rules be observed. This means that a
program, when reading UTF-16 encoded data, must recognize the byte order as defined in the
specification of UTF-16, and apply it, instead of implying some particular fixed byte order.

Byte order specifies whether the most significant byte (octet) or the least significant byte comes first
in a 2-byte quantity. If the most significant byte comes first ("big end first"), the order is called "big-
endian"; otherwise, it is "little-endian." A conforming program must be able to handle both, no
matter which byte order is used in the "native" data format of the system where the program runs.

5.10.8. Bidirectional Text

C13 A process that displays text containing supported right-to-left characters or embedding

http://lib.ommolketab.ir
http://lib.ommolketab.ir

codes shall display all visible representations of characters (excluding format characters) in the
same order as if the bidirectional algorithm had been applied to the text, in the absence of
higher-level protocols.

This requirement relates to the display of characters that belong to writing systems that are written
right to left (e.g., Arabic), as well as to the use of explicit codes (control characters) for setting the
writing direction. Conforming programs that perform such operations are effectively required to
implement the Unicode bidirectional algorithm, which is defined in Unicode Standard Annex #9.
Technically, the formulation of the requirement is more abstract: it is sufficient that the program
behaves as if it used that algorithm.

5.10.9. Normalization Forms

C14 A process that produces Unicode text that purports to be in a Normalization Form shall do
so in accordance with the specifications in Unicode Standard Annex #15, "Unicode Normalization
Forms."

C15 A process that tests Unicode text to determine whether it is in a Normalization Form shall
do so in accordance with the specifications in Unicode Standard Annex #15, "Unicode
Normalization Forms."

C16 A process that purports to transform text into a Normalization Form must be able to
produce the results of the conformance test specified in Unicode Standard Annex #15, "Unicode
Normalization Forms."

This is a way of requiring conformance to the specification of Unicode normalization forms . The
formulation is somewhat complex, since a conforming program need not understand normalization at
all. The requirement says that if it plays with normalization (in the sense of producing normalized
data, testing for data being normalized, and transforming to normalized form), it must play by the
rules in the annex.

5.10.10. Normative References

C17 Normative references to the Standard itself, to property aliases, to property value aliases,
or to Unicode algorithms shall follow the formats specified in Section 3.1, Versions of the
Unicode Standard.

Informally, for example, when saying "I Unicode," you can use whatever style you prefer to refer
to Unicode. The same applies even to official documents, as long as you are not making a normative
reference. A normative reference claims or requires conformance. For example, in a contract on
building some software, you might wish to specify that the product will conform to the Unicode
standard, and then you should be exact. This means that you refer to a specific version, and do that
unambiguously. For safety, you may wish to use the exact citation format specified in the standard,
such as the following:

The Unicode Consortium. The Unicode Standard, Version 4.1.0, defined by: The Unicode
Standard, Version 4.0 (Boston, MA, Addison-Wesley, 2003. ISBN 0-321-18578-1), as amended
by Unicode 4.0.1 (http://www.unicode.org/versions/Unicode4.0.1/) and Unicode 4.1.0
(http://www.unicode.org/versions/Unicode4.1.0/).

http://www.unicode.org/versions/Unicode4.0.1/
http://www.unicode.org/versions/Unicode4.1.0/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note that a conformance claim does not imply support to all characters defined in a particular version
of Unicode. There is not even a formal requirement to specify the repertoire supported. In order to
know what a software vendor really promises when it claims conformance to Unicode, you need
check what it says about the repertoire.

References to properties should use long names (aliases), not abbreviations, and should cite the
standard version as well. The example given is the following, followed by an exact reference to the
standard version:

The property value Uppercase_Letter from the General_Category property, as defined in
Unicode 3.2.0

This makes the references rather verbose, of course. What is important in practice is to use long
names, not abbreviations like "Lu" and "gc," which can be rather cryptic. Specifying the Unicode
version is important to definiteness, since properties and their values may change, though they
usually don't.

References to Unicode algorithms (see below for a definition) should specify the name of the
algorithm or its abbreviation and cite the version of the standard, as in this example:

The Unicode Bidirectional Algorithm, as specified in Version 4.1.0 of the Unicode Standard.

See Unicode Standard Annex #9, "The Bidirectional Algorithm,"
(http://www.unicode.org/reports/tr9/).

Where algorithms allow tailoring, the reference must state whether any such tailorings were applied
or are applicable:

C18 Higher-level protocols shall not make normative references to provisional properties.

A property may be designated as provisional in the standard. This means that it has been included as
potentially useful but immature. Officially, it is a "property whose values are unapproved and
tentative, and which may be incomplete or otherwise not in a usable state."

The phrase "higher-level protocol" means any agreement on the interpretation of Unicode characters
that extends beyond the scope of the Unicode standard.

For data, there is no defined format for claiming or requiring conformance. When you say, for
example, that an application accepts Unicode data as input, the meaning of this statement depends
on what Unicode version is implied or expressed.

5.10.11. Unicode Algorithms

C19 If a process purports to implement a Unicode algorithm, it shall conform to the specification
of that algorithm in the standard, unless tailored by a higher-level protocol.

The term Unicode algorithm is defined as "the logical description of a process used to achieve a
specified result involving Unicode characters." Despite the broad definition, it is meant to refer only to
algorithms defined in the Unicode standard.

Although the word "algorithm" is used, the essential meaning is the result, not the execution of
specific steps in a specific manner. This means that an implementation may use some other

http://www.unicode.org/reports/tr9/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

approach, as long as the results are always the same.

The term tailoring refers to a different kind of allowed variation. Even the logical descriptioni.e., the
relationship between input and output datamay differ from the one specified in the algorithm, if the
algorithm is defined to be tailorable. For example, the algorithms for normalization and canonical
ordering are not tailorable, whereas the bidirectional algorithm allows some tailoring.

5.10.12. Default Casing Operations

C20 An implementation that purports to support the default casing operations of case
conversion, case detection, and caseless mapping shall do so in accordance with the definitions
and specifications in Section 3.13, Default Case Operations.

The basics of casing were described in the section "Case Properties" earlier in this chapter. The casing
may be simple or full, and it must be based on the Unicode case mappings. Conformance to the
standard does not exclude language-specific tailoring of the rules. Testing the case of a string must
be logically based on normalizing the string to NFD and then case mapping it. However, an
implementation may perform the test more efficiently, if the results are the same. Similarly, caseless
(case insensitive) comparison of strings must logically involve mapping both strings to lowercase.

5.10.13. Unicode Standard Annexes

Conformance to the Unicode standard requires conformance to the specifications contained in the
following annexes of the standard. The annexes contain both descriptive (informative) and normative
material; only the normative parts are relevant to conformance.

UAX #9: "The Bidirectional Algorithm"

UAX #11: "East Asian Width"

UAX #14: "Line Breaking Properties"

UAX #15: "Unicode Normalization Forms"

UAX #24: "Script Names"

UAX #29: "Text Boundaries"

The annexes are available via http://www.unicode.org/reports/. The page contains links to other
Unicode Technical Reports (UTR), too. However, only a UTR designated as UAX is part of the Unicode
standard. There are also Unicode Technical Standards (UTS), which are normative documents issued
by the Unicode Consortium, but separate from the Unicode standard. Conformance to them is not
required for conformance to the Unicode standard. Moreover, there are UTR documents labeled as
UTR! Such documents are informative (descriptive), not normative. Thus, we can loosely describe the
relationships between these types of documents by the formula UTR = UAX + UTS + UTR, naturally
reflecting the two meanings, broader and narrower, of "UTR."

There are also Unicode Technical Notes (UTN), at http://www.unicode.org/notes/, but they have no
normative or otherwise official status whatsoever. In contrast with a UTR, which is produced by the

http://www.unicode.org/reports/
http://www.unicode.org/notes/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Unicode Technical Committee even if the UTR is not normative, a UTN can be one person's product,
which is just made available through the Unicode web site. In practice, the author of a UTN is an
expert, and a UTN can be a helpful tutorial, an interesting proposal, an in-depth treatise of a special
topic, or otherwise useful.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.11. Effects on Choosing Characters

In Chapter 1, we discussed some reasons to be strict (or picky) in choosing the right character, as
opposed to using a character that only looks right. At this point, we can return to such issues with a
better technical background: what is the impact of the formally defined properties of characters?

We discussed the simple example of using the letter sharp "s" ß (U+00DF) as a replacement for the
Greek small letter beta β (U+03B2). The idea might be tempting, and it has been applied, in
situations where you can safely use the ISO Latin 1 repertoire of characters (as you can very often)
but not the Greek letters, and you have just a casual need for a beta. Yet, even ignoring all the other
arguments, if you compare the formally defined properties of the characters, you can see that they
are fundamentally different. They are both letters, but from different scripts, and they have quite
different uppercase mappings. Of course, in many contexts, you might get away with this, if no
program processes the text in any manner where the differences in properties matter.

Even if you try to avoid any tricks based on visual similarity, trying to use the right character, you
may find yourself puzzled. Unicode has about 100,000 characters, and even though very large
portions thereof can be classified as belonging to particular scripts, there is still quite a lot to choose
from. This applies in particular to characters that can be classified as "symbols" in the sense that they
do not belong to any particular script, though perhaps to a very specialized area of application like
some branch of science or technology.

5.11.1. Example: Some Mathematical Operators

As a simple example, consider scalar and vector products in mathematics (and physics). They are
operations on entities called vectors and conventionally denoted by bold face letters. Normally the

scalar (or dot) product of vectors a and b is denoted as a b, and their vector (or cross) product is
denoted as a x b. Mathematical handbooks and standards do not usually identify these operators as
characters in some codee.g., by their Unicode code number. (The world is changing in this respect,
but slowly.) This leaves us rather uncertain about the correct way to represent these characters.

There are two obvious candidates for the symbols: the middle dot · (U+00B7) and the multiplication
sign x (U+00D7). This is a convenient choice, since the characters belong to the ISO Latin 1
repertoire. In fact, it is very often the best choice, given the existing limitations. It would be

theoretically more adequate to use the dot operator (U+22C5) and the vector or cross product x
(U+2A2F), respectively, since they have more specific meanings. In practice, these characters
(especially the latter) are available far less often, due to font limitations and other problems. We
might regard the more common, mixed-usage characters as just as good. However, if we look at the
properties of characters, we see many differences, as illustrated in Table 5-13. Generally, the
property values of the dot operator correspond to its specific meaning as mathematical operator,
whereas the middle dot, with multiple semantics (described in Chapter 8 to some extent), has less
informative, more neutral property values.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 5-13. Comparison of properties of two "dot-like" characters

Property Value for middle dot Value for dot operator

General Category (gc) Po (Punctuation, other) Sm (Symbol, math)

Line Break (lb) AI (= alphabetic/ideographic) AL (= alphabetic/symbol)

Math (= mathematical) No Yes

Word Break (WB) MidLetter Other

East Asian Width (ea) A (= ambiguous) N (= narrow)

Most people probably don't even consider using the dot operator, since they've never heard of the
character. After careful analysis, you might decide to do the same, since the practical benefits of
using the middle dot are more important than the considerations of semantics and properties. The
line-breaking property values, for example, are not essentially different: default line-breaking rules
will not break before or after a middle dot or a dot operator, unless a space intervenes.

Consequently, people often use characters that are not "quite right" and do not have the properties
that the theoretically most adequate characters would have. When processing texts, you need to be
prepared to deal with input where "wrong" characters are used. For example, if you edit a
mathematical journal, you should expect that authors use different characters as symbols for scalar
and vector product. Authors might use almost anything that looks close enough to them, using, for
example, a bullet operator • (U+2022) or even the normal period (full stop) "." as a symbol of dot
product. It would be your responsibility to unify the notations (or to make a conscious decision not to
do that), and this might mean that you need to use a program that lets you check the codes of the
characters in the text easily.

Similarly, any attempt to process mathematical texts should not assume much about the use of
characters, unless it has been carefully verified. You cannot expect, for example, that characters
used to denote mathematical operators have the appropriate formal properties. Their general
category might be something quite different from "Sm" (Symbol, math), for example "Po"
(Punctuation, other).

Any processing by the formal properties of characters should be made with
care. It might be suitable as a fallback, after you have dealt with all "expected"
characters, including characters commonly used as replacements for newer,
semantically exact characters.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Unicode Encodings
This chapter describes UTF-8 and other encodings for Unicode in detail, including the algorithmic
descriptions and the practical considerations on choosing an encoding. It concentrates on the UTF-8,
UTF-16, and UTF-32 encodings, which are the current official Unicode encodings. However, some
older encodings are described as well, even though not all of them are formally character encodings
in a strict sense.

If you are not interested in the technicalities of encodings, you might read just the last section of this
chapter ("Choosing an Encoding"). It summarizes the practical criteria, but they can really be
understood well only if you know the technical foundations.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.1. Unicode Encodings in General

As described in Chapter 3, an encoding is a mapping from code numbers (which represent
characters) to sequences of code units. A code unit is in practice an octet (8-bit byte), a double octet
(16-bit quantity), or a quadruple octet (32-bit quantity). The reason for using such units is that
modern computers have been designed to work on such data objects efficiently.

Thus, the simplest encoding for Unicode is to map each code number to a quadruple octet
representing the number as a single integer in binary notation. Such an encoding, UTF-32, is however
too inefficient for most practical purposes.

Within a code unit of 16 or 32 bits, the order in which the octets are interpreted depends on "endian-
ness," which belongs to the level of encoding scheme in the Unicode terminology. Often the encoding
scheme is coupled with the encoding even in the name, so that we use, for example, the name "UTF-
16LE" to refer to the UTF-16 encoding represented with a little-endian (LE) encoding scheme.

The names of the encodings contain abbreviations "UCS" for "Universal Character Set" and "UTF" for
"Unicode Transformation Format." These expansions should not be taken too seriously; treat the
names as historical oddities.

For illustration, Figure 6-1 shows the string "pâté" in some encodings. The string is represented used
precomposed characters, so that there are just four characters in it. As a

Figure 6-1. Some encodings of the string "pâté"

Figure 6-2. Encodings of a character (U+1D405) as displayed by
FileFormat.info

http://lib.ommolketab.ir
http://lib.ommolketab.ir

sequence of code points, the string is U+0070 U+00E2 U+0074 U+00E9. Each box indicates a code
unit, with its content expressed in hexadecimal digits, paired so that each pair corresponds to one
octet.

To check the representation of a character in one or more Unicode encodings, you can use the
service http://www.fileformat.info/info/unicode/char/search.htm. It lets you type in the code number
and get information that contains the encodings, among other data, as illustrated in Figure 6-2.

Technically, Unicode encodings are defined as representations ofUnicode scalar values as sequences
of code units. This somewhat odd (and practically rare) term refers to all Unicode code numbers
except those corresponding to surrogates. This means in practice the ranges U+0000 to U+D7FF and
U+E000 to U+10FFFF. The in-between range from U+D8000 to U+DFFF is the surrogates area, and
those code points need not be represented, since they are not meant to appear in Unicode data.

On the other hand, the Unicode encodings are defined for noncharacters and for unassigned code
points, too. If some data contains, for example, the code point U+FFFF, which is defined to be a
noncharacter, the data is incorrect as Unicode character data. However, it is processed in a well-
defined way when encoding the data in UTF-8, UTF-16, or UTF-32 . This guarantees that conversions
between Unicode encodings do not remove such errors but allow them to be detected.

The encodings UTF-8, UTF-16, and UTF-32 are all self-synchronizing . This feature, also known as
auto-synchronization, means that if malformed data (i.e., data that is not possible according to the
definition of the encoding) is encountered, only one code point needs to be rejected. The start of the
representation of the next code point can be recognized easily. This helps guard against errors
caused by data corruption in transfer or storage: the effects of errors are local. If you have data like
"Foobar" and the character "b" is corrupted in storage or transfer, the data appears as "Foo?ar"
(where ? indicates corrupted data). In some other encodings, all data following a corrupted character
might appear as corrupted.

Sample program code, in the C language, for conversions between the Unicode encoding forms is
available at http://www.unicode.org/Public/PROGRAMS/CVTUTF/.

http://www.fileformat.info/info/unicode/char/search.htm
http://www.unicode.org/Public/PROGRAMS/CVTUTF/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.2. UTF-32 and UCS-4

UTF-32 uses a 32-bit code unit to represent a code number (and hence a character). That is, a code
unit is simply a sequence of 32 bits (four octets) that represents the code number as an integer in
binary notation. Since Unicode code numbers are guaranteed to fit into 21 bits, this wastes space;
the most significant 11 bits in a code unit are always zero.

On the other hand, addressing of 32-bit units is efficient in modern computers. UTF-32 is otherwise
suited for data processing, too, since it allows fast data access. To address the nth character of a
string, a program would just add 4 x (n - 1) to the base (start) address of the string.

UTF-32 is robust in the sense that if a code unit is corrupted, all the rest of the data remains intact.
Each code unit represents a code number, independently of other code units.

Since the Unicode coding space is limited to 21 bits, and since UTF-32 does not use surrogate code
units (only UTF-16 does), UTF-32 encoded data contains code units from the following ranges only
(expressed in hexadecimal): 0000 to D7FF and E000 to 10FFFF. This can be used as a basis for a
rough check: if you take a reasonably large file that contains other than UTF-32 data and interpret it
as 32-bit units, the odds are that there are many values outside those mentioned earlier in this
chapter.

UCS-4 is effectively the ISO 10646 equivalent of UTF-32. The registered MIME name of UCS-4 is ISO-
10646-UCS-4. Previously, UCS-4 and UTF-32 were different in principle, since UCS-4 operated on a
31-bit coding space, UTF-32 on a 21-bit coding space. The decision to stick to 21-bit coding space
removed the distinction. The difference is now nominal, and it is more natural to use the name UTF-
32.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.3. UTF-16 and UCS-2

The UCS-2 and UTF-16 encodings use 16-bit code units. In these encodings, all characters in the
Basic Multilingual Plane (BMP), and hence most characters that people use these days, are
represented directly: a character is represented as one code unit. It represents the code number of
the character as one unsigned 16-bit integer. Thus, the encodings are structurally simpler than UTF-
8.

6.3.1. UCS-2 Is BMP Only

UCS-2 is by definition limited to BMP. It is therefore not a full Unicode encoding: you cannot
represent all Unicode data in UCS-2. On the other hand, UTF-16 is basically UCS-2 enhanced with a
mechanism (surrogate pairs) for representing Unicode characters outside BMP. If you don't use such
characters, UTF-16 effectively behaves as UCS-2.

Thus, UCS-2 can be regarded as mainly historical. It is however still part of the ISO 10646
standardbut not part of the Unicode standard. The registered MIME name of UCS-2 is ISO-10646-
UCS-2.

6.3.2. Surrogate Pairs in UTF-16

UTF-16 uses surrogate pairs to overcome the 16 bit limitation. This means that some 16-bit values
have been reserved for use as a high (leading) or low (trailing) value in a pair of code units. Together
these values denote a Unicode character outside BMP. The word "surrogate" is not very descriptive,
and it has caused much confusion; in reality, the "surrogates" are simply an extension mechanism.

More exactly, a high surrogate is a code unit in the range D800 to DBFF, and a low surrogate is in the
range DC00 to DFFF. We use hexadecimal numbers here without the "U+" prefix to emphasize that
the surrogates are code units, not code points. Two consecutive surrogate code units together denote
one code point, which is outside BMPi.e., in the range U+10000 to U+10FFFF.

Surrogate code units have a defined meaning only when they appear in a pair of a high surrogate and
a low surrogate. Otherwise, they have no defined meaning, and they are data errors.

A surrogate code unit pair is constructed by the following algorithm:

Given a Unicode code point outside BMPi.e., with value > FFFFrepresent it as a 21-bit integer,
with leading zeros as necessary.

1.

Divide this sequence of 21 bits to parts with 5, 6, and 10 bits; denote the parts with u1, u2, and
u3, respectively.

2.

3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.

Subtract 1 from u1, and consider the result as a 4-bit sequence. Note that this loses no
information, since the original u1 is at most 10000 (because the Unicode range ends at 10FFFF
hexadecimal, 100001111111111111111 binary).

3.

Construct the high surrogate code unit as 110110u1u2 (by simple catenation of bit sequences).4.

Construct the low surrogate code unit as 110111u3.5.

For example, consider the code point U+1D405. (It denotes mathematical bold capital "F," but its
meaning is irrelevant here.) Writing it as a 21-bit binary integer, we get 000011101010000000101.
When split, this gives u1 = 00001, u2 = 110101, and u3 = 0000000101. After subtraction, u1 = 0000.
Now we can construct the surrogate code units: 1101100000110101 and 1101110000000101. In
hexadecimal, they are D835 and DC05.

The example calculation was performed only to illustrate the algorithm. In practice, we don't do such
calculations by hand or even write program code for them, except perhaps as an assignment when
learning programming. We use existing software such as conversion programs and routines.

The algorithm implies the following arithmetic relationship between a code number U and the
corresponding surrogate pair consisting of H (high surrogate) and L (low surrogate):

U = (H - D800) x 400 + (L - DC00) x 10000

Here all numbers are expressed in hexadecimal. Although the formula contains multiplications, they
contain multipliers that are constant and powers of two. Such multiplications can be implemented
efficiently as shifts that move bits to the left, which is essentially faster than normal multiplications on
a computer.

6.3.3. Some Properties of UTF-16

Using UTF-16, you cannot access the nth character of a string directly. You need to scan the string

and count the characters, since some characters (those in BMP) occupy one code unit, others take
two code units. UTF-16 is robust, though, in the same sense as UTF-32: if a code unit is corrupted,
then only one character is corrupted. If a normal code point is corrupted so that it becomes a high
surrogate, for example, the next code unit will still be interpreted correctly. Since it is not a low
surrogate, we can know that the previous code point is erroneous data.

If you access a code unit in a UTF-16 string, you can immediately recognize it as a BMP character or
as a component of a surrogate pair, simply by checking whether it falls within the ranges for
surrogates. If it is a high surrogate, you need to read the next code unit to determine a character. If
it is a low surrogate, you need to read the preceding code unit.

Since conformance to the Unicode standard does not require support for all Unicode characters, it is
quite permissible for an implementation to be ignorant of all characters outside the BMP. It could be
incapable of rendering any of them or processing them in any useful way. However, for conformance,
an implementation must be able to recognize that there is a surrogate code unit pair UTF-16 encoded
data. It must not treat the code units in it as two characters but as a representation of one character,
although perhaps a completely unknown character.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.4. UTF-8

UTF-8 uses 8-bit code units, and it represents characters in the Basic Latin (ASCII) range U+0000 to
U+007F efficiently, one code unit per character. On the other hand, this implies that all other
characters use at least two code units, which all have the most significant bit seti.e., they are in the
range 80 to FF (hexadecimal). More exactly, they are in the range 80 to 9F. This means that when
there is a code unit in the range 00 to 7F in UTF-8 data, we can know that it represents a Basic Latin
character and cannot be part of the representation of some other character.

These structural decisions imply that UTF-8 is relatively inefficient, since it leaves many simple
combinations unused. There is yet another principle that has a similar effect. In a representation of
any character other than Basic Latin characters, the first (leading) code unit is from a specific range,
and all the subsequent (trailing) code units are from a different range.

6.4.1. UTF-8 Encoding Algorithm

For a character outside the Basic Latin block, UTF-8 uses two, three, or four octets. You might
encounter specifications that describe UTF-8 as using up to six octets per character, but they reflect
definitions that did not restrict the Unicode coding space the way it has now been restricted.

The UTF-8 algorithm is described in Table 6-1. The first column specifies a bit pattern, in 16 or 21
bits, grouped for readability. The other columns indicate how the pattern is mapped to code units
(octets), represented here as bit patterns.

Table 6-1. UTF-8 encoding algorithm

Code number in binary Octet 1 Octet 2 Octet 3 Octet 4

00000000 0xxxxxxx 0xxxxxxx

00000yyy yyxxxxxx 110yyyyy 10xxxxxx

zzzzyyyy yyxxxxxx 1110zzzz 10yyyyyy 10xxxxxx

uuuww zzzzyyyy yyxxxxxx 11110uuu 10wwzzzz 10yyyyyy 10xxxxxx

Thus, the UTF-8 encoding uses bit combinations of very specific types in the octets. If you pick up an
octet from UTF-8 encoded data, you can immediately see its role. If the first bit is 0, the octet is a
single-octet representation of a (Basic Latin) character. Otherwise, you look at the second bit as well.
If it is 0, you know that you have a second, third, or fourth octet of a multioctet representation of a
character. Otherwise, you have the first octet of such a representation, and the initial bits 110, 1110,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

or 1111 reveal whether the representation is two, three, or four octets long.

Thus, interpreting (decoding) UTF-8 is straightforward, too. You take an octet, match it with the
patterns in column "Octet 1" in Table 6-1, and read zero to three additional octets accordingly. Then
you construct the binary representation of the code number from the bit sequences you extract from
the octets. Naturally, nobody wants to do this by hand, but the point is that this can be implemented
efficiently, as operations on bit fields. A correct implementation of Unicode has to signal an error, if
there is data that does match any of the defined patterns.

A quick way to find out the UTF-8 encoding of a string is to visit http://www.google.com on any
modern browser, type the string into the keyword box, and hit Search. Then just look at the address
field of the browser. For example, if you type pâté, the address field will contain

http://www.google.com/search?hl=en&lr=&q=p%C3%A2t%C3%A9, so you can see that â is
encoded as the octets C3 A2 and é as octets C3 A9. (In some situations, this does not work since
Google does not use UTF-8. In that case, use the URL http://www.google.com/webhp?ie=UTF-8 to
force the input encoding to UTF-8.)

6.4.2. UTF-8 Versus ISO-8859-1

UTF-8 is not compatible with ISO-8859-1, and still less with windows-1252 (which is often, but
incorrectly, called "ANSI"). The Basic Latin (ASCII) range is treated the same way, but the Latin 1
Supplement (the upper half of ISO-8859-1) is represented as one octet per character in ISO-8859-1,
and two octets per character in UTF-8. The octets that denote Latin 1 Supplement characters in ISO-
8859-1 have their first bit set to 1, and such octets are used as components of multioctet
representations of characters in UTF-8.

If UTF-8 encoded data is by mistake interpreted as ISO-8859-1 encoded, a Latin 1 Supplement
character will appear as Â or Ã followed by another character. The reason is that the first octet of the
encoded form is 11000010 or 11000011 in binary, C2 or C3 in hexadecimal, which means Â or Ã in
ISO-8859-1. The second octet has "10" as the first 2 bits, so it would be interpreted as some Latin 1
Supplement character or as a C1 Control. For example, if you type the text "Here is my résumé." and
send it with a program that UTF-8 encodes it but does not adequately specify the encoding, the
recipient may well imply ISO-8859-1 or windows-1252 encoding and display your text as "Here is my
rÃ©sumÃ©." The text looks strange, but with some guesswork and experience, it is legible.

6.4.3. Some Properties of UTF-8

Due to the algorithm, the octets appearing in UTF-8 are limited to certain ranges, as shown in Table
6-2. In particular, octets C0 and C1 and F5 through FF do not appear in UTF-8. Other octets may
appear in specific contexts only. This means that if you have a large file that is not, in fact, character
data in UTF-8 and you try to read it as UTF-8, it is most probable that errors will be signaled.

Table 6-2. Octet ranges in UTF-8

http://www.google.com
http://www.google.com/search?hl=en&lr=&q=p%C3%A2t%C3%A9
http://www.google.com/webhp?ie=UTF-8
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Code range Octet 1 Octet 2 Octet 3 Octet 4

U+0000..U+007F 00..7F

U+0080..U+07FF C2..DF 80..BF

U+0800..U+0FFF E0 A0..BF 80..BF

U+1000..U+CFFF E1..EC 80..BF 80..BF

U+D000..U+D7FF ED 80..9F 80..BF

U+E000..U+FFFF EE..EF 80..BF 80..BF

U+10000..U+3FFFF F0 90..BF 80..BF 80..BF

U+40000..U+FFFFF F1..F3 80..BF 80..BF 80..BF

U+100000..U+10FFFF F4 80..8F 80..BF 80..BF

Similarly to UTF-16, UTF-8 makes it impossible to access the nth character of a string directly. UTF-8

is robust, though: if a code unit is corrupted, other characters will be processed correctly. The reason
is that UTF-8 has been designed so that a code unit starting the representation of a character can be
recognized as such, even if the preceding code unit is in error.

Although the authoritative definition of UTF-8 is in the Unicode standard, with content as described
here, there is also a description of UTF-8 as an Internet standard, STD 63. It is currently RFC 3629,
"UTF-8, a transformation format of ISO 10646," and available at http://www.ietf.org/rfc/rfc3629.txt.
It contains additional recommendations (by the IETF) regarding the use of UTF-8 on the Internet,
especially with regards to protocol design.

http://www.ietf.org/rfc/rfc3629.txt
http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.5. Byte Order

A unit that consists of two or four octets, such as the code units in UTF-16 and UTF-32, has a logical
order of octets. For example, if you interpret a two-octet unit as a single unsigned integer (in the
range 0..FFFF in hexadecimal, 0..65,535 in decimal), one of the octets is treated as more significant
than the other.

Strange as it may sound, the physical order of octets within a unit may differ from their logical order.
This might be compared to storing a string like "42" so that "2" appears first in storage, then "4."
Specifically, the physical order of octets in a two-octet unit might be less significant octet first. For a
four-octet unit, you might in theory define several possible orders. In practice, unless the natural
order from the most significant to the least significant is used, it's the exactly opposite order.

The term byte order refers to the mutual order of octets (bytes) within a unit of two or four octets.
Computers that use a reverse order (least significant to most significant) of octets within a storage
unit are called little-endian. Those with the logical order are called big-endian.

Within a single computer, endian-ness seldom causes trouble. In programming, if you access
individual octets, you may need to know the endian-ness. However, for most practical purposes, the
softwareincluding library routinesthat you use can be expected to handle the endian-ness, so that
you can work with the logical order only.

In data transfer, on the other hand, endian-ness becomes a problem. Suppose that you create a file
in UTF-16 encoding, for example, on a big-endian computer and send the file to a little-endian
computer. How does the recipient know that it needs to reverse the order of octets within a code
unit? There are three possible approaches:

The recipient might try to interpret the data according to either byte order, and if the data does
not m ake sense that way, switch to the other order. This is of course very unreliable. How can
you make a program analyze whether some arbitrary string of characters makes sense?

You might indicate the byte order explicitly when sending the datae.g., in email message
headers or HTTP headersmuch the same way as you indicate the encoding. In fact, there are
encoding names that have byte order information embedded into theme.g., "UTF-16LE," where
"LE" means "little-endian."

The byte order could be indicated in the data itself. This may sound impossible, since you need
to know the byte order before you can interpret the data in the first place. In reality, since there
are just two possible orders, a rather simple method will do: we use a byte order mark at the
start of data.

The second approach can be applied in the context of Unicode encodings by using the encoding
names UTF-16LE and UTF-16BE. They denote UTF-16 in little-endian and big-endian byte order,
respectively. In these encodings, no byte order mark is allowed. Using just UTF-16 means an
unspecified byte order, but so that big-endian is implied, if the data itself does not indicate the byte
order. Similarly, for UTF-32, you can use the specific names UTF-32LE and UTF-32BE.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Although the second approach looks logical, it is not universal. One problem with this is that not
everything is sent with Internet message headers. Even if you can declare the byte order outside the
data, things might get separated and your data might need to be processed without any outside
declaration.

For example, data received as an email attachment or via HTTP may have headers that specify the
byte order, but when it is saved locally, this information may get lost. Filesystems often lack tools for
saving information about encoding and byte order. Indicating the byte order in the data itself, using a
byte order mark, helps quite a lot.

When you use UTF-16, it is safest to use a byte order mark at the start of data.

The way to indicate the byte order in the data itself is to start the data with abyte order mark (BOM).
This means a Unicode code point reserved for this specific purpose, namely U+FEFF. Note that you
use the same code point, irrespective of byte order. When your data is represented in UTF-16
encoding in a specific byte order, the first two octets will be either FE FF or FF FE. From this, the
recipient can infer big-endian or little-endian byte order, respectively.

In practice, the byte order mark also works as a strong indication of the fact that the data is UTF-16
in the first place. This is useful in situations where the software has no direct information about the
encoding. If a program opens a disk file, it might guess from the filename extension (such as .txt)
that it is a text file, but how can it guess the encoding?

If the first two octets are FE and FF, in either order, it is very unlikely that the data is any other
encoding but UTF-16. It cannot be ASCII encoded, since the octets are not in the ASCII range. If it

were ISO-8859-1 or windows-1252 encoded, the file would start with the character pair " ÿ" or "ÿ ."
These characters are rather rare, and their combination is impossible in any natural text. (The thorn,

, is used in a few languages like Icelandic, and "y" with dieresis, ÿ, is used only in Frenchafter a
vowel.) The data cannot be UTF-8 encoded either, since UTF-8 does not use either FE or FF (see
Table 6-2).

Note that although the octet sequence FF FE may thus appear in UTF-16 encoded data, the code
point U+FFFE is not allowed; it is defined to be a noncharacter. If you receive data claimed to be in
big-endian UTF-16 and the first two octets are FF FE, you know that something is wrongprobably the
claim about byte order is wrong.

Similarly, when data is known or expected to be in UTF-32 encoding, but in unspecified byte order, it
should start with the octets 00 00 FE FF or 00 00 FF FE, from which you can deduce the byte order
(big-endian or little-ending, respectively). If it does not start in either way, it should be assumed to
be big-endian without BOM.

The Unicode standard does not require the use of BOM. Other standards or specifications may require
or recommend its use. In general, there's no reason not to use BOM in UTF-16 and UTF-32. It is a
cheap way to help in correct interpretation of data.

In UTF-8, there is no byte order issue, since the code unit size is one octet. Therefore, using BOM
serves no purpose. It is nevertheless allowed, though discouraged. The most common situation for its
presence is that data has been converted from UTF-16 or UTF-32 without removing BOM. (In UTF-8,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

BOM is the octet sequence EF BB BF.)

The BOM is to be treated as indicating the byte order only, not as part of the data. Previously, code
point U+FEFF was defined to have the meaning of a zero width no-break space (ZWNBSP), too, and it
could appear in the middle of text, too. This usually did not cause problems, but such usage has now
been deprecated. In theory, when you detect U+FEFF at the start of UTF-8 data, you cannot know for
sure whether it is meant to be a byte order mark or just a no-break space as part of the data proper.
In practice, this seldom makes a difference, since an initial no-break space doesn't really matter.
However, if you concatenate files, for example, it might matter.

If U+FEFF is encountered within text, it should be treated as ZWNBSP, which acts as invisible "glue"
that prevents a line break between characters. However, you should not use it that way in new data;
the recommended "glue" character is word joiner U+2060. Unicode implementations are allowed to
convert U+FEFF (inside data) to U+2060.

There is no way in Unicode to change the byte order within a file. If U+FEFF appears anywhere else
except at the start of character data, it must be interpreted according to the no-break space
semantics (or not be interpreted at all).

Due to the stability principles of Unicode, code point U+FEFF preserves "zero width no-break space"
as its Unicode name.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.6. Conversions Between Unicode Encodings

When you need to convert data between UTF-8, UTF-16, and UTF-32 encodings, you normally use
tools like programs or routines that can read and write text data in the different encodings, as
described in Chapter 3. For an overview of these encodings and their use, we will however discuss the
nature of the conversions here. A conversion from UTF-32 to UTF-16 means the following:

Characters in the BMP are represented by omitting the two most significant octets (which are
zero in UTF-32 for BMP characters).

Other characters are replaced by surrogate code unit pairs. This means replacing one 32-bit
code unit by two 16-bit code units.

A conversion in the opposite direction naturally means extension with two zero octets for BMP
characters and decoding a surrogate code unit pair into a code number, to be represented as a 32-bit
quantity.

A conversion from UTF-32 to UTF-8 simply means that the UTF-8 encoding algorithm, as presented in
Table 6-1, is applied. The reverse conversion is straightforward, too, since it can operate octet by
octet, using the first few bits of an octet to determine its role.

Conversions between UTF-8 and UTF-16 are best performed via an intermediate representation that
corresponds to UTF-32. This does not require the creation of an actual UTF-32 coded representation
of the file or data stream. Instead, you can operate on just the code points: read code units from
UTF-8 (or UTF-16) encoded data as much as needed to determine the Unicode code number that
they represent, and then encode this number in UTF-16 (or, respectively, in UTF-8).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.7. Other Encodings

In addition to the encodings defined in the Unicode and ISO 10646 standards, there are several
encodings that have been used or at least proposed for Unicode data. We will discuss some of them,
summarized in Table 6-3 in alphabetic order by name. For completeness, the table contains also the
previously discussed UTF and UCS encodings.

Table 6-3. Encodings used for Unicode data

Name of encoding Nature and usage of the encoding

Base64 General purpose encoding, used as "transfer encoding"

BOCU-1 A compression scheme for Unicode; not used much

CESU-8 A mixture of UTF-8 and UTF-16 for special usage

GB18030 "Chinese Unicode," technically a separate character code

Modified UTF-8 Used in Java programming; CESU-8 with an additional change

Punycode An encoding for Internationalized Domain Names (IDN)

Quoted Printable Transfer encoding especially for email

SCSU A standardized compression scheme for Unicode; little used

UCS-2 A two-octet encoding, restricted to Basic Multilingual Plane

UCS-4 ISO 10646 equivalent of UTF-32

URL Encoding Special encoding for URLs and form data on the Web

UTF-1 Obsolete, historic only

UTF-7 Obsolete encoding; little used; not part of the Unicode standard

UTF-8 A standard Unicode encoding, very widely used

UTF-16 A standard Unicode encoding, widely used

UTF-16BE As UTF-16, but with Big Endian byte order fixed

UTF-16LE As UTF-8, but with Little Endian byte order fixed

UTF-32 A standard Unicode encoding; wastes space, easy to process

UTF-32BE As UTF-32, but with Big Endian byte order fixed

UTF-32LE As UTF-32, but with Little Endian byte order fixed

UTF-EBCDIC Designed to be compatible with IBM computers using EBCDIC

Uuencode General purpose encoding of data; sometimes used for text

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.7.1. SCSU Compression

SCSU is defined in Unicode Technical Standard (UTS #6), "A Standard Compression Scheme for
Unicode," http://www.unicode.org/reports/tr6/. SCSU was designed to achieve compactness
comparable to language-specific 8-bit encodings. It has not been widely adopted, but some
organizations use it internally.

SCSU works best when the text contains mostly alphabetic characters from one or a few scripts. It
can be described as switching between blocks of characters and using efficient one-octet references
to characters within a block. SCSU internally switches to UTF-16 to handle non-alphabetic languages.

Although SCSU is registered as a character encoding in the MIME sense, it is not suitable for subtypes
of the MIME type text. For example, SCSU cannot be used directly in email and similar protocols.
Moreover, for good performance, SCSU requires an implementation with a lookahead in the character
stream.

This encoding, like the next one, has been designed as a compression method rather than encoding.
However, their usefulness is limited by the fact that widely used general purpose compression
mechanisms, such as zip and bzip2, can produce better results, rather independently of encoding
issues. SCSU is useful for short strings of text, where general compression mechanisms would require
many octets of overhead.

6.7.2. BOCU-1 Compression

BOCU-1 is also a compression scheme for Unicode, and it has been registered as an encoding in the
MIME sense. It is defined and described in the Unicode Technical Note (UTN) #6, "BOCU-1: MIME-
Compatible Unicode Compression," available at http://www.unicode.org/notes/tn6/. Thus, its official
status is lower than that of SCSU.

The name "BOCU" comes from "Binary Ordered Compression for Unicode." The encoding preserves
code point order.

6.7.3. CESU-8

CESU-8 mixes UTF-8 and UTF-16 so that it uses UTF-8 for all characters in the Basic Multilingual
Plane (BMP) but switches to UTF-16 for other characters. CESU-8 is oriented toward systems that
internally process characters as 16-bit entities. It is defined in Unicode Technical Report #26,
"Compatibility Encoding Scheme for UTF-16: 8-Bit (CESU-8)," http://www.unicode.org/reports/tr26/.
The report says about CESU-8:

It is not intended nor recommended as an encoding used for open information exchange. The
Unicode Consortium does not encourage the use of CESU-8, but does recognize the existence of
data in this encoding and supplies this technical report to clearly define the format and to
distinguish it from UTF-8. This encoding does not replace or amend the definition of UTF-8.

Instead of encoding a character outside the BMP as a sequence of four octets according to the UTF-8

http://www.unicode.org/reports/tr6/
http://www.unicode.org/notes/tn6/
http://www.unicode.org/reports/tr26/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

algorithm, CESU-8 first represents it as a pair of surrogate code points as in UTF-16), and then
encodes these individually, each with three octets. This implies that CESU-8 uses six octets for any
non-BMP character. More exactly, CESU-8 encoding consists of the following:

Replace any character outside the BMP with the surrogate pair that represents it according to
UTF-16.

1.

Encode the data according to the UTF-8 algorithm as presented in Table 6-1. Note that only
mappings that result in one, two, or three octets will be used, since there are only 16-bit values
to be encoded.

2.

For example, consider the three-character string U+004D U+0061 U+10000. In UTF-8, its encoding
is 4D 61 F0 90 80 80, since the two characters in the Basic Latin block are represented each as one
octet, and the non-BMP character U+10000 is mapped to a sequence of four octets by the algorithm.
In CESU-8, the first two characters are treated the same way, but U+10000 is first replaced by the
surrogate pair U+D800 U+DC00. (Here we speak of surrogates as if they were code points and
denote them that way, and this reflects the thinking behind CESU-8, but in principle, they are just
code units in an intermediate representation.) The components of the pair are then each encoded by
the UTF-8 algorithm: U+D800 gives ED A0 80 and U+DC00 gives ED B0 80. Thus, the final CESU-8
encoded string is 4D 61 ED A0 80 ED B0 80.

CESU-8 has the same binary collation as UTF-16. That is, if you compare strings by comparing their
encoded representations as raw data, as bit sequences, you get the same order in CESU-8 as in UTF-
16. CESU-8 is designed and recommended only for systems where such collation equivalence is
important.

6.7.4. Modified UTF-8

Although UTF-8 could be modified in different ways, the phrase "Modified UTF-8" is a term that
denotes a specific modification. It differs from UTF-8 in two ways: it mixes UTF-16 into UTF-8 the
same way as CESU-8, and it has special treatment for U+0000.

Modified UTF-8 is used in the Java programming language . Java uses UTF-16 internally, but it
supports a nonstandard modification of UTF-8 for writing and reading text data as "serialized" to an
octet stream.

Modified UTF-8 represents the null character (NUL) U+0000 in a special way, as two octets C0 80i.e.,
11000000 10000000 in binary. This combination does not appear in UTF-8, but as you can see from
Table 6-1, it is what you would get if you encoded U+0000 according to the branch of the UTF-8
algorithm that applies to the range U+0080..U+07FF. In UTF-8, the null character is encoded as one
octet with value 0.

Such a representation of the null character means that there are no octets with value 0 ("null bytes")
in the encoded data. This guarantees that the encoded string can be processed by routines that treat
an octet with value 0 as a string terminator, according to the old convention in the C language and its
many derivatives.

The second difference is that Modified UTF-8 represents characters outside the BMP the same way as
CESU-8. The reason behind this is the difference between modern Unicode and the Java character

http://lib.ommolketab.ir
http://lib.ommolketab.ir

model. In Java, a character is 16 bits long, reflecting the design of Unicode before the merge with
ISO 10646 and expansion of the coding space. Thus, in Java, you process "Java characters," which
are identical with Unicode characters for the BMP but cannot directly correspond to anything outside
the BMP. In effect, Java treats surrogate code points as "Java characters." When a Java program
reads a string in Modified UTF-8, the decoding process produces a string of "Java characters."
Additional program logic is then needed to deal with them by Unicode rules, since a program needs to
recognize any surrogate pair and treat it as indicating one Unicode character.

The Java routines that write or read in Modified UTF-8 format also produce or recognize a byte count
before the start of the data itself (see Chapter 11).

6.7.5. Base64 Encoding of Data

Base64 is not really a character encoding. It is a general encoding mechanism, which can be used to
represent any data (any sequence of octets) as a string of characters from a subset of ASCII. Since
those characters in turn are represented as octets, by the ASCII encoding, Base64 logically defines a
mapping from sequences of octets to sequences of octets. As you may guess, the length of the
sequence increases, by the ratio 4:3.

The role of Base64 in the representation of characters is that it can be used as an encoding applied to
data that is already in an encoding, such as UTF-8, UTF-16, ISO-8859-1, or ASCII. Base64 lets you
represent data in a format that can safely be transmitted and processed in situations where, for
example, some octets used in UTF-8 might cause trouble. Base64 is used especially in email.
Technically, it is not regarded (or registered) as a character encoding but as a "content transfer
encoding."

The name "Base64" reflects the idea of using a positional number system with base 64. To convert
data to Base64, you take three octetsi.e., 24 bits of dataand represent the 24-bit integer in a base 64
number system. As digits, you use basic Latin letters (uppercase and lowercase), digits, and two
other characters.

To express the idea in another way, without reference to number systems, and somewhat more
exactly, we can say that data is encoded into Base64 as follows:

Pick up the next 24 bits (three octets) from the input. If there is not enough data left to encode,
fill the missing bit positions with zeros.

1.

Divide the bits to four groups of 6 bits.2.

Interpret each of the groups, in succession, as a 6-bit unsigned integer (in the range 0 to 63)
and map it to a character by using it as an index to the (64-character) string
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/".

3.

If there were only one or two octets (instead of three) available at the last step of processing
input data, replace, respectively, the last two or one characters generated in step 3 with the =
character.

4.

Represent the characters according to the ASCII code.5.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.

For example, if you take the string "Here's my résumé." and encode it in UTF-8, then apply Base64
encoding and interpret the result as ASCII, you get the following:

SGVyZeKAmXMgbXkgcsOpc3Vtw6kuDQoNCg==

When interpreted as ASCII data, a Base64-encoded string looks like a random alphanumeric string,
perhaps interspersed with the occasional + or / and possibly terminated one or two = characters.
Therefore, Base64 encoding is sometimes used as a poor man's encryption method. It is of course
trivial to experts to break the "encryption." Moreover, email programs are typically capable of
decoding Base64 automatically.

The choice of the number 64 is based on the fact that 64 is a power of two, and this makes the
algorithm fast, since it essentially works with shift operations. The next higher power of two is 128,
which is too large, since there are not that many printable ASCII characters. The characters used in
Base64 are very "safe": they belong to the invariant subset of ASCII. Naturally, the method relies on
the distinction between uppercase and lowercase letters.

Many programs can do Base64 encoding and decoding, but there are also online tools for the
purpose. You can find them by entering the search string "base64 converter".

There are several variations of the Base64 encoding, including the following:

In MIME email, a line break is inserted after every 76 characters of Base64 encoded data, to
keep the line length acceptable to all email software.

The padding = characters at the end may be omitted, when the length of the data is known to
the recipient from other information.

The characters + and /, which might be unsafe in some contexts where Base64 is used (e.g., in
filenames), are replaced by other characters in some variations.

In particular, "URL and filename safe" Base64 alphabet uses the hyphen-minus "-" instead of +
and the underline _ instead of /.

When Base64 is used to produce encoded strings that will be used as XML name tokens, the
underline _ and the colon : might be used instead of + and / in order to meet the requirements
of XML name syntax. However, the colon has a special meaning in XML names.

The Base64 encoding and some similar encodings are described in the informational RFC 3548, "The
Base16, Base32, and Base64 Data Encoding."

6.7.6. Quoted Printable Encoding

Quoted Printable (QP), too, is a content transfer encoding, not a primary encoding of characters. It is
widely used especially for delivery of non-ASCII data by email. QP is defined in the MIME
specifications, namely in RFC 2045, "Multipurpose Internet Mail Extensions (MIME) Part One: Format
of Internet Message Bodies."

Like Base64, QP encodes any data, any octet stream. When used for character data, this means that

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the data is already in some encoding, and QP applies another encoding on top of it. In particular, you
can have UTF-8 encoded data but encode it with QP to make it safer for sending it through software
that might munge octets with the first bit set.

Logically, QP maps an octet string to an octet string, but we usually describe the result string in
terms of ASCII characters. If the original data is ASCII encoded, QP leaves most printable characters
intact. Similarly, if the data is UTF-8 encoded, most printable characters in the ASCII range remain
unchanged.

QP uses an escape notation of the form = xx, where xx are two hexadecimal digits, for representing
non-ASCII characters as well as some ASCII characters. The digits xx indicate the numeric value of

the octet. The escape notation must be applied even to many ASCII characters (all code values are
expressed here in hexadecimal):

Most control characters must be escaped. For example, the ASCII form feed, code value C,
must appear as =0C.

If the data contains a line break, it shall be represented as CR LF (carriage return, line feed), as
such (octets in ASCII encoding, not encoded).

The horizontal tab character (code 9), need not be escaped (as =09), unless it appears at the
end of a line.

The space character (code 20) may be represented as such, except at the end of a line, where it
must be escaped (as =20).

The equals sign = (code 3D) must be escaped (as =3D), to avoid confusing it as data character
with its use in escape notations.

The maximum line length in QP coded data is 76 characters (counted by characters, or octets, in the
encoded form). Therefore, QP has a special "soft line break" convention: a line can be ended with an
equals sign = alone, and neither that character nor the line break after it will be treated as part of the
data itself.

For example, suppose you configure your email program to send messages as UTF-8 encoded, using
QP as the transfer encoding. You could write a message body that contains just "Here's my résumé."
(with a typographically correct apostrophe ' U+2019 instead of the ASCII apostrophe ' U+0027). A
recipient who looks at the raw data of your message interpreted as all ASCII characters would see
the body as follows:

Here=E2=80=99s my r=C3=A9sum=C3=A9.

Looking at the message headers, the recipient would see, among other things:

Content-Type: text/plain;charset="utf-8"
Content-Transfer-Encoding: quoted-printable

This contains information for adequate interpretation of the message. Of course, most people would
never directly apply such information. We normally use email programs that do such things for us,
recognizing the headers, decoding the data, and displaying just the characters for us. Mostly we

http://lib.ommolketab.ir
http://lib.ommolketab.ir

would know nothing about the encoding issues, unless something goes wrong. (However, too often
something really goes wrong.)

In the example, the letter é (U+00E9) appears as =C3=A9, which is the QP encoded form of the two
octets C3 and A9 that constitute the UTF-8 encoded form of U+00E9. As you probably remember,
UTF-8 uses at least two octets for any character outside the ASCII range, even for Latin 1
Supplement characters. (If you had sent email as ISO-8859-1 encoded, with QP encoding, the letter
é would appear as =E9.) The character ' (U+2019) appears as =E2=80=99, which is the QP encoded
form of the three octets that constitute the UTF-8 encoded form of U+2019.

QP has often been criticized for being "quoted unreadable" and unnecessarily messing things up.
There is a good point here. Quite often, QP is used in wrong contexts, like Usenet messages, where
8-bit characters work better. However, much of the criticism is unjust. When viewed on a program
that does not support QP, you may still get a fairly good picture of the content. The data looks
messy, because there is so much readable in the text. Base64, for example, is completely
unreadable, if not interpreted properly.

6.7.7. Uuencode

QP and Base64 are just examples of content transfer encodings, but they were selected due to their
relatively common use for character data, especially in MIME email. Other transfer encodings, such
as Uuencode, Binhex, and yEnc, are typically best known for their use in embedding binary data such
as images or executable programs into text. However, they can also be used for text data. You could,
for example, first encode text as UTF-8, and then apply Uuencode to the octets, to get a
representation that can safely be transmitted over connections, gateways, and software that might
mess up UTF-8 as such.

Here we will only consider Uuencode, which has lost importance but can still be found as one option
for data transmissione.g., in email programs. The us in the name "Uuencode" do not refer to Unicode
but to Unix: it's originally "Unix to Unix encode." Uuencode was designed to make it possible to send
any data from one Unix computer to another with tools like old email systems, which process only
ASCII data (octets in the range 0 to 7F hexadecimal) reliably. On virtually any Unix system, you can
find a command uuencode for performing the encoding and uudecode for decoding it.

Uuencoded data appears as a block of the following form:

begin mode filename

data lines
end

Here mode is the "file mode" in the Unix sense, specifying the file's read, write, and execute
permissions as three octal digits, and filename is the name to be used when saving the decoded data

into a file. Although there is no indication of the media type or primary encoding of the data, some
guesses can be based on the filename extension that was chosen when generating the encoded data.

The encoded data itself is first constructed as follows (cf. to Base64 encoding):

1.

2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Pick up the next 24 bits (three octets) from the input. If there is not enough data left to encode,
fill the missing bit positions with zeros.

1.

Divide the bits to four groups of 6 bits and interpret the groups as integers in the range 0 to 63
(decimal).

2.

Add 32 (decimal) to each of the integers. After this, the range is thus 32 to 95 in decimal, 20 to
5F in hexadecimal.

3.

Represent the characters according to the ASCII code.4.

ASCII characters greater than 95 may also be used; however, only the six right-most bits are
relevant. This means that number 64 decimal, 40 hexadecimal may be added to the ASCII code. For
example, instead of a space (20 hexadecimal), a grave accent (60 hexadecimal) may be used.

When all the data has been processed that way, the algorithm continues as follows:

Write each group of 60 output characters (corresponding to 45 input octets) as a separate line
preceded by an encoded character that gives the number of octets in the original data that are
represented on that line. For all lines except the last, this will be the letter "M" (ASCII code 77 =
32+45).

1.

Finally, a line containing just a single space (or grave accent ') is output, to be followed by one
line containing the string end that terminates the encoded data.

2.

Sometimes each data line has extra dummy characters (often the grave accent) added to avoid
problems with software that strips trailing spaces. These characters are ignored when decoding the
data.

For example, if you have a file that contains the string "Hello world!" and you Uuencode it, specifying
hello.txt as the filename to be used, you get the following:

begin 644 hello.txt
,2&5L;&\@=V]R;&0A
end

Thus, Uuencode produces an encoded form that is completely unintelligible without decoding. On the
other hand, the initial and final line indicate the presence of encoded data in a recognizable way, and
some email programs can recognize Uuencoded data embedded into the body of a message.

6.7.8. UTF-7

UTF-7 is an obsolete encoding, which is not part of the Unicode standard. However, it is a registered
encoding, and you might still encounter it somewhere.

Analogously with UTF-8, UTF-16, and UTF-32, we can regard UTF-7 as an encoding that uses 7-bit
code units. In practice, the code units are stored and transmitted as 8-bit bytes (octets), usually with
the first bit set to zero. In principle, the first bit could be used for other purposese.g., as a parity bit

http://lib.ommolketab.ir
http://lib.ommolketab.ir

for checking. In any case, it is considered external to the encoding.

The idea was to define an encoding that can be safely transmitted over 7-bit connections, notably
data transfer systems that cannot be trusted to pass 8-bit bytes correctly. Such connections existed,
in particular, for transmitting ASCII data. You could even send UTF-7 data over an old email
connection that had been designed to work with ASCII only. Of course, UTF-7 is not ASCII, but since
UTF-7 uses octets in the ASCII range only, the transfer works fine. It is then up to the recipient to
know how to interpret it.

UTF-7 uses up to eight octets per character. Characters in the ASCII range remain unchanged,
except for the plus sign +, which is escaped as +- due to its special role in the encoding. Other
characters are represented using modified Base64 encoding and surrounded by octets corresponding
to characters + and -.

For example, the string "£500" is "+AKM-500" in UTF-7 (when we represent the octets of UTF-7
representation as ASCII characters). The characters "500" are unchanged, but the pound sign £
(U+00A3) becomes "+AKM-" as follows: The code point 00A3 is first represented by octets 00 A3,
which means 00000000 10100011 in binary. The bits are grouped and the 6-bit groups are mapped
to ASCII characters according to the Base64 algorithm, giving 000000 (decimal 0) A, 001010
(decimal 10) K, and 001100 (decimal 12) M. The last zeros in 001100 are fill bits.

The UTF-7 encoding is defined in the informational RFC 2152, "UTF-7: A Mail-Safe Transformation
Format of Unicode."

6.7.9. UTF-1

UTF-1 was the first transfer encoding for the Universal Character Set (hence the number "1"). It was
defined in the ISO 10646 standard, and it was formally registered as an encoding in the MIME sense,
under the name ISO-10646-UTF-1. It never gained much use; it was removed from ISO 10646, and
it has been obsolete for years.

UTF-1 used one to five octets per character. One of the reasons for its failure was inefficiency: the
algorithm required integer divisions, which are much slower than operations on bit fields. It also
lacked the "self-synchronizing" feature.

6.7.10. UTF-EBCDIC

The EBCDIC code, briefly described in Chapter 3, has been widely used on large IBM computers. To
facilitate the use of Unicode on such computers, using EBCDIC as their "native" character code, UTF-
EBCDIC, was designed. It is defined in the Unicode Technical Report #16, "UTF-EBCDIC,"
http://www.unicode.org/reports/tr16/.

UTF-EBCDIC is "EBCDIC-friendly Unicode." It is similar to UTF-8 but uses EBCDIC codes for some
characters and handles code points U+0080 to U+009F in a special way, in order to make the control
characters used in EBCDIC have the same representations as in EBCDIC. More exactly, the algorithm
is:

1.

http://www.unicode.org/reports/tr16/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Starting from a sequence of Unicode code points, construct first an intermediate format, called
"UTF-8-Mod" or "I8," using a special mapping that resembles the UTF-8 algorithm. The mapping
represents U+0000 to U+009F each as one octet and other code points as two to five octets.

1.

Map the octets 00 to 9F to the octets that represent the characters U+0000 to U+009F in the
EBCDIC code (with some modifications on line break conventions), and map other octets to
remaining octets according to a specifically designed table. As a whole, this step is a simple
table-driven operation.

2.

This allows some old EBCDIC applications to handle Unicode data to some extent. To them, UTF-
EBCDIC looks like EBCDIC, and although the meanings of some octets are different, the printable
characters in the ASCII repertoire as well as the EBCDIC control characters are the same. Problems
may still arise due to differences between variants of EBCDIC.

UTF-EBCDIC is intended for use in homogeneous systems and networks that use EBCDIC. It is not
meant for use in public networks. In reality, UTF-EBCDIC is not used much. EBCDIC-based IBM
mainframes generally use UTF-16 for Unicode support.

6.7.11. GB 18030, "Chinese Unicode"

GB 18030 has been characterized as the Chinese equivalent of UTF-8, with a capability of
representing all Unicode code points and maintaining compatibility with GB 2312/GBK, and older
character code for Chinese. However, GB18030 also defines a character code (code points) in a
manner that differs from Unicode. In practice, due to the well-defined mappings, we can informally
describe GB 18030 as "Chinese Unicode."

GB 18030 is formally called "Chinese National Standard GB 18030-2000: Information Technology --
Chinese ideograms coded character set for information interchange -- Extension for the basic set."
The letters GB are short for "Guojia Biaozhun," which is a transcription of the Chinese words for
"National Standard." Support for GB 18030 is mandatory for all computer operating systems sold in
the People's Republic of China.

The MIME name of the encoding has no space: "GB18030."

There is a more detailed description of GB 18030 and its background available at
http://examples.oreilly.com/cjkvinfo/pdf/GB18030_Summary.pdf.

6.7.12. Punycode, Encoding for Domain Names

Punycode is an encoding, or an escape scheme (depending on how you look at it), for a specific
purpose: implementing Internationalized Domain Names (IDN) . The idea is that people can use
Unicode characters in Internet domain names through special conventions that map strings to ASCII
strings. Software that supports IDN is expected to recognize certain types of constructs in domain
names as indicating that they should not be interpreted as such but by the special conventions.

Suppose, for example, that we would like to register the Internet domain name "härmä.fi," reflecting
the Finnish name "Härmä." Previously, such issues were resolved simply by dropping the diacritic
marks (e.g., "harma.fi") or by using some replacement notation (e.g., writing "muenchen" instead of

http://examples.oreilly.com/cjkvinfo/pdf/GB18030_Summary.pdf
http://lib.ommolketab.ir
http://lib.ommolketab.ir

"München"). This is rather unsatisfactory, if the diacritics really make a difference in a language. For
languages that use a non-Latin script, the situation was even more problematic.

Since it would not have been realistic to change the entire domain name system to use Unicode as
such, a tricky method was developed. Special notations that start with "xn--" (letters "x" and "n" and
two hyphen-minus characters) are used to signal that the method, Punycode is used. You would
register, for example, the domain name "x n - - h r m - q l a c . f i," which contains
ASCII characters only and therefore does not create technical problems. Web browsers are expected
to behave so that if the user types "härmä.fi," the browser internally applies Punycode to it,
producing "xn--hrm-qlac.fi." Then the browser uses this name to ask a domain name server to tell
the numeric IP address to be used. The browser is expected to show "härmä.fi" in the address field,
so that from the user point of view, the non-ASCII characters seem to work smoothly in the domain
name.

There is no reason to use two consecutive hyphen-minus characters in a normal domain name.
Therefore, the Punycode convention will hardly clash with meaningful non-Punycode domain names.

Technically, Punycode converts a sequence of Unicode characters to a form that contains only
characters that are allowed in components of domain names: ASCII letters, digits, and hyphen-
minus. For example, in the Punycode form "xn--hrm-qlac.fi," the string "xn--" and the hyphen "-" are
delimiters, and between them, you have the ASCII characters of the field "härmä." The "qlac" part is
the Punycode way of representing the two occurrences of the non-ASCII character ä and their
positions within the string. As you may guess, this involves some relatively sophisticated
computation.

Punycode is defined in RFC 3492, which carries a long name: "Punycode: A Bootstring encoding of
Unicode for Internationalized Domain Names in Applications (IDNA)."

Old browsers may need an update in order to support Punycode. Partly for such reasons,
organizations that acquire an internationalized domain name also keep or acquire a simplified, pure
ASCII domain name (such as "harma.fi").

There is an online service for Punycode conversions at http://mct.verisign-grs.com/.

Punycode has raised some serious security issues, as any method of using Unicode in domain names
would. There have long been attempts to mislead users by reserving Internet domain names that
resemble others. For example, someone might try to register the domain name "orei11y.com" and
send bulk email containing a link to a web site in that domain. Users might think they are visiting
oreilly.com, especially if they see the domain name in a font that does not make a clear distinction
between "1" (digit one) and "l" (lowercase letter "l"). When the character repertoire is extended,
there are much more possibilities for such tricks. For example, if you wrote "oreilly.com" so that the
first "o" is the Cyrillic small letter "o," it would look exactly the same as "oreilly.com" in all Latin
letters, since no usual font distinguishes between Latin "o" and Cyrillic "o." Yet, the characters are
distinct, and so are the domain names. In Chapter 10, we will discuss attempts at preventing abuse
of IDN without restricting ease of use too much.

6.7.13. URL Encoding

URL Encoding relates to Uniform Resource Locators (URL), often loosely called "web addresses," but
it is not limited to them. It has an important role in encoding form data, when the user has filled out

http://mct.verisign-grs.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

a form on a web page and submits it to processing. The encoded form data may in fact constitute a
URL, but it need not.

6.7.13.1. Introduction: URL Encoding for form data

Suppose that you use Google search and enter the word Dürst into the text box. (You can do this

even if your keyboard has no ü key; see Chapter 2 for some methods.) Looking at the result page
that Google produces, you might see its address (URL) as:

http://www.google.com/search?hl=en&q=D%C3%BCrst&btnG=Google+Search

You might be somewhat disappointed at the results, since by default Google treats "Dürst" and
"Durst" as basically the same (when the user language is set to English; the matching principles of
Google vary by language). To make Google look for "Dürst" only and not for "Durst," you would
prefix the string by a plus sign, which means "exact match" to Google: +Dürst. But this was a

digression, although perhaps a useful one.

The point in mentioning the URL is that the letter ü appears as %C3%BC in it. To be honest, this
depends on your browser and its settings, but what we discuss here is the most common case in
modern browsers. The browser has actually encoded your string according to UTF-8 (namely as
octets C3 and BC), and then applied another encoding to the result.

6.7.13.2. The original URL Encoding

Originally, URL Encoding was defined for data that is restricted to ASCII, and the reason for the
encoding was that not even all ASCII characters are "safe" in all contexts. In addition to national use
variation (described in Chapter 3), some characters were deemed "unsafe" because some software
was known to use them for special purposes. The encoding mechanism is simple: for an "unsafe"
ASCII character, use the notation %xx, where xx is the ASCII code number of the character in two

hexadecimal digits. Naturally, this implies that the percent sign % itself needs to be escaped (as
%25). In a %xx notation, uppercase and lowercase letters are equivalent; e.g., %5B is equivalent to %5b.

URL Encoding is meant to be applied to all use of URLs, both in plain text and elsewheree.g., in HTML
and in HTTP. For example, if a URL contains a space, the space must always appear as URL Encoded,
as %20. When a browser follows a link containing such a URL, the browser should not decode %20 in
any way but keep it in the request it sends to the server. Only the server is allowed to interpret %20
as a spacee.g., when mapping a URL to a filename.

URL Encoding was also used as a basis for defining the format in which form data is sent by default. A
browser is supposed to collect all the relevant fields of a form and their values and construct a data
set from them, and then URL Encode the data set. However, there is one modification: before
applying URL Encoding, the browser is required to replace any occurrence of a space by a plus sign,
+.

6.7.13.3. To encode or not to encode?

http://www.google.com/search?hl=en&q=D%C3%BCrst&btnG=Google+Search
http://lib.ommolketab.ir
http://lib.ommolketab.ir

During the history of URL specifications, which have been issued as RFCs, the definitions have
become more permissive. Fewer characters are declared as "unsafe" than in the original specification.
Moreover, what is "safe" depends on the contexti.e., the part of a URL where a character appears.
The situation has stabilized, since now the general syntax of URLs, including the URL Encoding
mechanism, is defined in an Internet Standard, STD 66, "Uniform Resource Identifiers (URI): Generic
Syntax." Currently STD 66 is RFC 3986. "URI" is a theoretical concept that is a generalization of URL.

According to STD 66, the characters that are always "safe" in URLs are letters "A" to "Z" and "a" to
"z," digits 0 to 9, hyphen-minus -, period ., underline _, and tilde ~. These characters need not, and
should not, be encoded using a %xx notation. For historical and practical reasons, the tilde is still often

encoded (as %7E). Characters outside the "safe" set may need to be encoded, depending on context.

URL Encoding is special in the sense that the need for encoding characters depends on the context,
and the same character might even appear as such or as encoded, with a difference in meaning.
When a character is defined as constituting part of URL syntax, as a punctuation character in it, it
need not and it must not be encoded. For example, a URL may contain a query part that begins with
? and consists of parts of the form name=value, separated from each other by ampersand & (as in

our previous Google example). In such constructs, the characters ?, =, and & must not be encoded,
since they appear in special meanings. If, however, a value in such a construct needs to contain one

of those characters (e.g., because the user input in a Google search contained such a character), it
needs to be encodedotherwise, it could be mistakenly regarded as part of the syntax and not part of
the value.

6.7.13.4. Generalized URL Encoding

There is an obvious way to generalize URL Encoding to strings in an 8-bit encoding such as ISO-
8859-1 or windows-1252. You would just use %xx for values of xx up to FF, instead of the upper limit

of 7E (as defined by the range of printable ASCII characters). This means that you would encode, for
example, ü (U+00FC) as %FC, using its code number in ISO-8859-1. Although such a technique works
in many situations, the problem is that the character encoding of a URL is unspecified, and we don't
want to give ISO-8859-1 a special status. Besides, ISO-8859-1 is insufficient for true
internationalization.

6.7.13.5. Modern, UTF-8-based URL Encoding

The modern approach to allowing a wide repertoire of characters in URLs uses UTF-8 together with
URL Encoding of octets. The proposed convention, generally supported by modern browsers, is the
following:

Encode the characters in a URL using UTF-8. This of course leaves ASCII characters intact, but
for example, ü becomes the octet pair C3 BC.

1.

Encode octets from 80 to FF (as well as "unsafe" ASCII characters) using the %xx mechanism.

For example, octets C3 BC become encoded as %C3%BC.

2.

You may wonder how it is possible that both this modern way and the old way, implying ISO-8859-1
or some other encoding, can work in browsers. How can the browser know how to interpret the data?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The HTML specification recommends that upon processing a link with a URL with a %xx notation

outside the ASCII range, browsers should first try to interpret it the modern, UTF-8-based way. If the
result does not resolve to a working address, the browser could try to interpret the notation
according to the character encoding of the document in which the link appears.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.8. Auto-Detecting the Encoding

The encoding of data should be explicitly told to any potential recipient. In particular, on the Internet,
special headers have been designed for informing the encoding of a web page or a message, as
described in Chapter 10.

However, quite often we are faced with data that is known or suspected to be in a Unicode encoding,
but we don't know which. Moreover, we might not wish to trust the indication of the encoding without
performing some simple checks. Table 6-4 presents basic methods for guessing the encoding from
the first few octets of data. Beware that the result is at best a good guess. The second column shows
how the first few octets, shown in column one in hexadecimal, look when interpreted according to the
ISO-8859-1 encoding (which is what many simple editors and software for dumping data in text
format use by default). If the data starts in some other way, it could still be in a Unicode encoding,
but without a byte order mark.

Table 6-4. Heuristics for detecting Unicode encoding

First octets of data ISO-8859-1 view Probable encoding

FE FF ÿ UTF-16

FF FE ÿ UTF-16LE

00 00 FE FF (nul)(nul) ÿ UTF-32

00 00 FF FE (nul)(nul)ÿ UTF-32LE

EF BB BF ï»¿ UTF-8

0E FE FF (Ctrl-N) ÿ SCSU

DD 73 73 73 Ýsss UTF-EBCDIC

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.9. Choosing an Encoding

The Unicode standard explicitly says that the Unicode Consortium "fully endorses the use of any of
the three Unicode encoding forms [UTF-8, UTF-16, and UTF-32] as a conformant way of
implementing the Unicode Standard." As far as the Unicode standard is concerned, it expresses no
preference and leaves the choice is up to you.

The forms are not equally suitable in practice, though. For use on the Internet, the Internet
Engineering Task Force (IETF) has expressed a strong preference for UTF-8. In programming, you
may find UTF-16 (or sometimes UTF-32) most suitable due to its simplicity. There are also efficiency
differences.

UTF-8, UTF-16, and UTF-32 all support exactly the same repertoire of
characters, the full Unicode repertoire. Thus, they can all be used for all
languages. However, the language of the text matters when you consider which
encoding is most efficient.

6.9.1. Storage Requirements

The storage requirements for the encodings in octets are summarized in Table 6-5. If almost all
characters in the text are Basic Latin characters, as in English, UTF-8 is clearly the most compact.
The second class of characters, range U+0080 to U+07FF, currently contains the following blocks:
Latin-1 Supplement, Latin Extended-A, Latin Extended-B, IPA Extensions, Spacing Modifier Letters,
Combining Diacritical Marks, Greek and Coptic, Cyrillic, Cyrillic Supplement, Armenian, Hebrew,
Arabic, Syriac, Arabic Supplement, and Thaana. Thus, for this collection of alphabetic scripts, UTF-8
and UTF-16 use the same number (2) of octets per character.

Table 6-5. Size of characters in UTF encodings, in octets

Class of characters Range of characters UTF-8 UTF-16 UTF-32

Basic Latin (ASCII) U+0000 to U+007F 1 2 4

Latin 1 Suppl., ..., Thaana U+0080 to U+07FF 2 2 4

Rest of BMP U+0800 to U+FFFF 3 2 4

Outside BMP U+10000 to U+10FFFF 4 4 4

Storage requirements naturally affect data transfer time as well. For example, for a document
distributed on the Internet, the use of disk space (on a server, and on users' workstations) is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

relatively unimportant, unless the document is very large. However, the time required for
transmission over the network is almost proportional to file size, at least unless some compression is
applied. The transfer time is important especially on slow connections and for files that are requested
very often. On the other hand, the size of text files is often a relatively small factor in material that
contains images, videos, and other nontext files.

6.9.2. Efficiency of Processing

What you lose in use of storage might be gained in processing simplicity and speed. In UTF-32, you
have one character per code unit, and a 32-bit code unit typically corresponds to the integer type in
modern computer architectures. If you process BMP characters only, as you probably do, UTF-16
sounds tempting, especially since UTF-16 is the representation form of characters in many
programming languages, such as Java. However, when dealing with arbitrary data, you cannot really
be sure of never getting any characters beyond BMP.

UTF-16 is internally used in all modern versions of Windows. This makes it efficient for system-
oriented programming, or generally for programming that uses the built-in functions of Windows.
Subroutine libraries have often been written to assume UTF-16 (or perhaps just UCS-2)
representation of character data.

In processing, UTF-32 has the benefit of using exactly one code unit per Unicode character. UTF-16
shares this property for BMP characters, which constitute the vast majority of all characters that you
process. However, the simple correspondence between code units and characters is somewhat
illusionary. Even using UTF-32 and UTF-16, something that constitutes a character in the user's
thinking need not correspond to a single code unit. For example, the character é might be
represented in decomposed form, as two code points (for letter "e" and a combining mark), hence as
two code units. Thus, even a simple operation like "move one character forward" might need to be
more complicated than just proceeding to the next code unit.

UTF-8 is also suitable for work with old programming languages like C, where the character data type
is identified with an octet (byte) concept. When you use a string in such a language, you can store
UTF-8 encoded data as such, but you need to handle the interpretation (decoding) of octet sequences
as characters yourself.

6.9.3. Specific Limitations

In any of UTF-8, UTF-16, and UTF-32, octets with the most significant bit set may appear. Thus, they
cannot be safely transmitted over connections or software that are not "eight-bit-clean" but may
mask out the most significant bit, interpret it as a sign bit or parity bit, or otherwise process it
incorrectly. In such situations, you could use UTF-7, but it is usually better to use some of the
standard UTF encodings and an additional transfer encoding, usually Base64 or Quoted Printable.

The software you use may impose restrictions on the use of encodings. However, if a program can
handle any of UTF-8, UTF-16, and UTF-32, it can probably handle the others as well. Some old
software, reflecting the original 16-bit design of Unicode, might effectively support UCS-2 only, which
means that you can use UTF-16 but you need to limit the character repertoire to the BMP.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.9.4. Favoring UTF-8 on the Internet

UTF-8 is typically the preferred encoding form for Unicode data on the Internet, including web pages
in HTML format. UTF-8 is explicitly recommended by the Internet Engineering Task Force (IETF). The
document "IETF Policy on Character Sets and Languages," published in 1998 as RFC 2277 and also
labeled as Best Current Practice (BCP) 18, is written basically as a policy on Internet protocols:

Protocols MUST be able to use the UTF-8 charset, which consists of the ISO 10646 coded
character set combined with the UTF-8 character encoding scheme...for all text.

Protocols MAY specify, in addition, how to use other charsets or other character encoding
schemes for ISO 10646, such as UTF-16, but lack of an ability to use UTF-8 is a violation of this
policy....

In practice, web browsers generally accept both UTF-8 and UTF-16, if they handle Unicode at all (as
the great majority of browsers do). However, important software like the Google search engine has
been reported to fail to recognize UTF-16 properly.

UTF-32 is not suitable for use on the Internet. For example, Internet Explorer 6 does not recognize it
at all. Moreover, UTF-32 wastes storage and transfer time.

However, there is nothing wrong with using UTF-16 or even UTF-32 internally in databases, for
example. If desired, you can store the data in such a format and operate on it but accept user input
and present results to the user in UTF-8, or in any encoding that suits the user.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Part III: Advanced Unicode Topics
Each of the chapters in this part covers a specialized topic, and the chapters can be read in any
order. The chapters discuss language issues with characters, the use of some practically
important classes of characters, the character level versus other protocol levels, characters in
Internet protocols (including encoding issues on the Web), and characters in programming.

Chapter 7, Characters and Languages

Chapter 8, Character Usage

Chapter 9, The Character Level and Above

Chapter 10, Characters in Internet Protocols

Chapter 11, Characters in Programming

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Characters and Languages
The chapter describes some IT-related requirements of different languages and writing systems, such
as how to deal with right-to-left writing (a common source of confusion). This includes transliteration,
transcription, and simplifications. The interaction between encoding, language, and font settings is
described. Moreover, language codes, language metadata, and language markup are described,
illustrated with XML examples.

Information about the language of text is more important when using Unicode than with older
character codes. The reason is that the unification principle of Unicode (described in Chapter 4)
removes many distinctions between language-dependent variants of characters. For example,
Unicode often uses the same code position for a Chinese character and a historically and semantically
related but different Japanese character. To express the difference, you would include information
about languagee.g., by using markup.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.1. Writing Systems and IT

In information technology, we often deal with text just as any data, with no regard to its internal
structure or meaning. When sending a plain text file, for example, we consider at most issues like
efficiency, encoding, and checking that the data arrives unchanged. However, operations like page
layout, searching, indexing, and word processing need to be sensitive at least to some features and
variation of writing systems.

7.1.1. Internationalization (i18n) and Related Issues

Character code problems are part of a topic calledinternationalization, jocularly abbreviated as i18n,
where 18 stands for the 18 letters between "i" and "n" in this difficult word. It is really not a matter of
being international; rather, a matter of letting people use their national languages and notations.
Typically, international communication on the Internet is carried out in English, but
"internationalization" is meant to create realistic possibilities for communication in any language.

Internationalization mainly revolves around the problems of using various languages and writing
systems (scripts). It includes questions like text directionality, which was discussed in Chapter 5. This
book discusses mostly just the character-level aspects of internationalization.

Internationalization is related tolocalization, sometimes abbreviated as l10n. Localization means that
data and systems are adapted to specific linguistic, cultural, and local habits and rules, collectively
called a locale. In the modern approach, localization is usually based on internationalization. It is
often much better to start from a neutral basis and develop mappings to different locales than to map
from a specific locale to another.

The word globalization is used to denote the general idea of making things work globally as well as
different practical methods and aspects. Quite often, this means internationalization followed by
localization. However, it can also mean things like supporting different repertoires of characters, for
any use whatsoever. The terms are often used interchangeably, or vaguely, but perhaps a useful
division is the following:

Internationalization turns the internal representation of data into a neutral, easily processable
and well-defined format. For example, for processing monetary data, we aim at using an
internal format that always identifies the currency but does not fix the way in which such data is
displayed.

Localization implements the presentation of data to users in a manner that adapts to their
expectations and preferences. A sum of money stored in an internationalized format as the
number 42.5 and the currency code USD (U.S. dollar) might be presented as "$42.50" to a U.S.
user and as "42:50 $" to a Swedish user.

Globalization is an umbrella term that covers internationalization, localization, and other ways of
making data presentation and processing truly global, so that different languages, notations,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and conventions can be used.

Note that most people and most documents probably use the word "internationalization" in a broad
sense that roughly corresponds to our definition of "globalization." Sometimes "globalization" is used
as a very specific term to refer to software that has been internationalized and that supports
localization at runtimei.e., switching between locales without restarting the program.

7.1.2. Aspects of Writing and Their IT Impact

In information technology, we usually do not need to know about the sound values of letters and
other symbols. Obvious exceptions to this include language processing such as automatic speech
synthesis or loose comparison of strings by their phonetic similarity (e.g., in search systems).
Similarly, the meanings of words formed from characters are irrelevant to most data processing
applications. There are, however, somewhat more technical aspects of writing that can be significant.

7.1.2.1. Writing direction

In normal text processing, some basic features of the writing system used in the text are significant.
The problem of left-to-right versus right-to-left writing was discussed in the section "Directionality" in
Chapter 5. The writing direction affects text rendering in many ways, though many people do not
realize this, since they have always used left-to-right writing only.

Vertical writing means writing text in lines that run vertically from top to bottom, or sometimes from
bottom to top. Whether such vertical linesi.e., columnsrun right to left or left to right is a different
issue. East Asian writing has traditionally been vertical, but horizontal writing is now used, too, partly
because many computer systems have been unable to produce vertical layout. Another reason is that
it makes it easier to insert text (such as names and formulas) in Latin letters into a document.

Vertical writing as such is handled outside Unicode and above the character level in general, using
layout tools that produce it. However, the possibility of writing vertically has some impact. The shape
of some Japanese punctuation marks is different in vertical writing ; for example, the colon, :, is
rotated 90 degrees. This should be handled by the rendering software as a glyph selection issue.
However, there are some variants of such characters for vertical text, vertical forms, in the CJK
Compatibility Forms block. Moreover, there are half-width and fullwidth variants of ASCII characters,
for use in vertical writing, which in practice requires characters to be of fixed width. This width is
either the width of a display cell (square) or half of it.

7.1.2.2. What does a language setting really set?

The language of text is crucial for many data processing tasks, though much of processing is
completely independent of language. The effect of languages has been greatly obscured by software
and documents that mix quite separate concepts with each other: writing system, language,
character repertoire, character encoding, keyboard layout, etc. These are interrelated but
fundamentally different things. In particular, it is crucial to distinguish between the following
language settings:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The language of a program's user interface, affecting menus, error messages, etc.

Keyboard settings, which have usually been designed for some particular language and named
according to it (e.g., "French keyboard")

The language of a document being written, viewed, or otherwise processed, perhaps with
variation inside a document (since it may contain texts in several languages)

The user's preferred language for accessing some content, in situations where a document is
available in several languages

These are all logically independent of each other, and of character encoding as well as of fonts.

The user interface language is often fixed by the program designer, according to the estimated user
community. Many programs are available as different language versions, and, in some cases, you
might even be able to buy a multilingual version, where the language can be changed on the fly, or
at least between sessions with the program.

In Chapter 2, we discussed how the different needs of different languages could be taken into
account in keyboard design, especially when using virtual keyboards. The current keyboard setting is
often displayed at the bottom of the screen, using language codes like "EN" for English, etc. However,
such settings really relate to the keyboard only. I am writing this with the keyboard set to "FI"
(Finnish), even though I am writing in English and have the language set to English in the word
processor. The reason is that I want my keyboard keys work the way that the keycaps suggest. The
user interface language of the word processor (e.g., the language of commands like "File," "Edit,"
etc.) is yet another thing. Finally, if I visit a web page, I might have set my browser to ask primarily
for a German version of a page, if available, if my native language were German.

We will next discuss the two other meanings of "language settings" by simple examples.

7.1.3. Setting the Language in Word Processing

Advanced word processors typically support more than one language, and they need to know or to
guess the language of the text. The support might include:

Automatic operations on punctuation to match the rules of the language

Hyphenation and language-sensitive line breaking in general

Spellchecking (while typing, or upon specific request)

Grammar checks

Hints on synonyms for a word upon request

Translation tools of varying kinde.g., showing translations for a word upon request

When you acquire a word processor or other text-related software, it is important to consider not
only the user interface language but also the language support you will need. However, you might be
able to buy extra modules later, extending the program with support to new languages.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.1.3.1. Automatic operations on punctuation

As an example, if you type the data "foo" in MS Word, with suitable language packs installed if

needed, you will see and your document will actually contain:

"foo" if the document language is set to English

« foo » if the document language is set to French

"foo" if the document language is set to German

"foo" if the document language is set to Danish

This means that you can use an ordinary keyboard with just one key for a quotation mark, since the
program converts it to language-specific characters. There will be some other examples on fixing
punctuation by language-specific rules later in this chapter.

This is just fine when it works right. However, several things can go wrong. If the word processor has
a wrong idea of the language of the text, it will not perform the conversion at all, or it will perform a
wrong conversion, which is even worse. When editors combine texts from different authors and
sources, they might fail to check such things. As a result, a publication might contain a mixture of
styles (like "foo" and "foo" and "foo"). Unfortunately, there is often no simple way to fix such things,
since the conversions take place when typing; changing the language for already typed text does not
change its punctuation.

On the other hand, sometimes a conversion, although correct for the language used in the text in
general, is not correct in some specific occasion. Your English text might contain a block quotation in
French, and inside it, French punctuation should be used. (Whether quoted text should preserve its
original punctuation is a matter of style and rules. The point here is that situations exist where people
wish to preserve it.)

Sometimes a conversion of quotation marks is not desirable at all. You may need to use ASCII
quotation marks, since you are writing about a computer language. In that case, you can use Ctrl-Z
immediately after typing a quotation mark that was converted by MS Word. The reason is that such
operations undo the automatic replacement. Thus, to produce "foo" with straight quotes, you would
type "^Zfoo"^Z where ^Z denotes pressing Ctrl-Z. Alternatively, you could change the MS Word

settings to disable any automatic replacement of quotation marks.

7.1.3.2. Spelling and grammar checks

Word processors and other text-oriented software often contain automatic tools for spellchecking,
perhaps even for grammar and style checks. A spellchecker typically detects misspelled words and
may suggest corrections. A grammar or style check operates on constructs larger than a word, and it
is based on some linguistic analysis of sentences. A grammar check could detect, for example, the
lack of a predicate verb in a sentence.

Opinions on the usefulness of such checks vary greatly, and so does the quality of checkers. When

http://lib.ommolketab.ir
http://lib.ommolketab.ir

writing specialized text with many special terms and rare words, a spellchecker typically flags a large
number of words as potentially misspelled. It may also suggest alternatives to such words, often
letting the user fix his error easily, but sometimes presenting something absurd.

When writing for a wide audience, spellchecking is a very good idea. If a spellchecker does not
recognize some special word that you use, odds are that many readers won't either.

When you set the text of language in a word processor, the effect depends on the extent of support
for that language in the program. Perhaps the program simply records the information about
language without using it in any way. It might still pass the information forward when the text is
transferred to another program. Moreover, other versions of the program might use the information
in a useful way. Support to a language might consist of some simple operations on punctuation
marks, as described earlier. It might also include a spellchecker, grammar checker, style checker,
readability checker, synonym dictionary, etc.

If you set the language and see something useful happening (e.g., quotation marks turning to
chevrons when the language has been set to French), the program might still fail to do any
spellchecks, even if you have enabled checking in general. The software might lack a spelling
dictionary and other spelling support for a language. An easy way to check this is to write something
nonsensical, like qffqgfq, and see whether the program flags it as an error.

7.1.3.3. Determining the language of text

A word processor could deduce the language of a document or a fragment of a document in different
ways. In particular, MS Word uses the following techniques:

Heuristic recognition

MS Word analyzes the text and deduces the language by statistical analysis. This feature can
be disabled, though. When it is enabled, you can start typing text, and after a few words, MS
Word probably guesses the appropriate language and switches to it. You may observe that
words indicated first as misspelled or suspicious with a red wavy underline turn into normal
words.

Explicit information from user

As a user, you can click on the language indicator text at the bottom of MS Word window (e.g.,
the word "English" there). This opens a small window as in Figure 7-1, and there, you can
select a language. This will apply to text you will type, until the language setting is changed. If
you have first selected some texte.g., by double-clicking or paintingonly that fragment of text
will be affected. Thus, if you have typed some text in English, and then noted that MS Word
flags a name like Rhône as potentially misspelled, you can select the word by double-clicking
on it and set the language to Frenchfor that word only. (You can also right-click after the
selection, to get a pop-up menu with language settings as one of the available functions.)

Embedded information

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you open an existing MS Word document, it contains language information corresponding to
what was deduced or expressed when writing it. MS Word will read and use that information.
Similar things may happen with some other document formats as welle.g., when opening an
HTML document in MS Word.

7.1.3.4. Exercise

This exercise requires MS Word or some other word processor with some support for different
languages. You also need to know some basic functions in it, or to consult a manual on learning
about them. With these premises, this exercise may illustrate the benefits of indicating the language:

Open some small document in a word processor.1.

Select all text in the document (e.g., with Ctrl-A in MS Word) and perform a spellcheck on it.2.

Set the word processor to check spelling when typing.3.

Then add some long word in another language supported by the program. Insert the word in
several places. You should now see the word indicated as misspelled.

Figure 7-1. Setting the language of text in MS Word (the style and
content of this window depends on the version of MS Word and

previous use of languages in a document)

4.

Set the program to use justification on both sides and word division as needed. You should now
see the long word incorrectly divided, or left undivided. (If this does not happen, add it to
suitable places.)

5.

Click on one of the occurrences of the long foreign word and set its language to the correct one.6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You should now see the misspelling indication vanish and the word split correctly, provided of
course that its language is sufficiently well supported by the word processor.

6.

This paragraph illustrates the topic of the exercise. It contains the longish word Haupteigenschaft. If
a word processor does not treat it as a German word, it probably leaves the word undivided, often
causing poor formatting (too much or too little spacing between words), or divides it improperly. The
proper division points are as in Haupt-ei-gen-schaft. When the word processor knows the language,
the writer need not know the hyphenation rules of that language, except perhaps to fix the
hyphenation of some special words.

7.1.4. Setting Language Preferences in Browsers

We will briefly discuss the language settings in web browsers. Although they are usually not very
important (they relate to "language negotiation" described in Chapter 10), they have caused some
confusion that needs to be cleared up. In particular, they have been confused with other, more
important language settings.

A dialog for setting language preferences in Mozilla Firefox can be invoked with the command Tools
 Options General Languages, and the dialog window is shown in Figure 7-2. In IE 6, you

would enter a similar dialog by selecting Tools Internet Options General Languages
Language Preferences. As we mentioned in Chapter 1, these

Figure 7-2. Setting language preferences in Firefox

preferences are typically coupled with the setting of the default encoding (to be implied for pages that

http://lib.ommolketab.ir
http://lib.ommolketab.ir

do not specify their encoding), which is something quite different.

The settings may include one or more languages, in order of preference. In the dialog, the user can
typically add (or remove) languages and move them up and down in the order. Ideally, the user
should list all languages she understands to some extent at least. Such settings are sent by the
browser when it sends a request to a web server. The server may then use the information to select
a particular language version of the requested page. Examples of this include http://www.debian.org/
and http://www.altavista.com. However, this is rare, and most bilingual or multilingual sites do not
use such technology but typically just explicit language versions.

The language preferences in browsers have no effect except when a web page
is available in several languages, using a particular protocol.

For completeness, we need to mention, though, that Netscape and Mozilla software may include
information about the user's language preferences (into message headers), when such software is
used to post an article to Usenet. This is in principle a threat to privacy.

7.1.5. Script = Writing System

The word "script" is often used instead of "writing system," and we follow suit in this book, even
though some confusion is possible. To many people, "script" means a (small) program or a command
file, which is very different from a writing system for human languages. Here "script" means basically
a collection of letters and other characters, meant for writing human languages in a systematic way.

A script, as a writing system, is not an exact concept but matter of judgment and convention. We say
that languages such as English, German, Icelandic, and Vietnamese use the Latin script, although
they have different repertoires of characters. German has, in addition to the basic Latin letters "a" to

"z," letters like ä. Icelandic has accented letters like á and the extra letters and , which are
regarded as Latin letters by convention. Vietnamese uses multiple diacritics, although they are often
dropped due to technical limitations or ignorance.

Thus, "Latin script" is a broad concept. It contains much more characters than most people imagine.
What is common is the historical basis, the letters used in writing classical Latin. Different diacritic
marks and even completely new characters have been added, to deal with sounds that cannot be

conveniently expressed using the basic Latin letters. The reason why the Icelandic and are
counted as Latin letters is not in their shape but their use in a language that uses letters "a" to "z" as
the basis of the alphabet. The Latin script also contains, by convention, a large set of phonetic (IPA)
characters, although some of them have been rather directly derived from Greek letters, such as
Latin small letter gamma (U+0263).

Other scripts include Greek, Cyrillic, Arabic, Hebrew, Hangul (Korean), and Han (Chinese) script.
Although many scripts have common ancestors'in fact, the scripts used by mankind can be traced
back to just a few different original scriptsthey may have diverged considerably. The Greek and
Cyrillic scripts, for example, resemble the Latin script quite a lot, but there are so many changes in
the alphabet as a whole that they are classified as separate scripts. For information on the nature
and use of different scripts, consult the web site http://www.omniglot.com/writing/.

http://www.debian.org/
http://www.altavista.com
http://www.omniglot.com/writing/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Many languages use and have always used a particular script. For some languages, the script has
been changed to another in course of time. Turkish was once written in the Arabic script, now in the
Latin script. Some languages have changed script several times, often for political reasons. Since
changes often take time, a language might have two scripts in use at the same time, and such a
situation might become even relatively permanent.

7.1.5.1. Categories of Scripts

In the section "Variation of Writing Systems" in Chapter 1, we described some basic categories of
scripts: alphabetic, consonant, syllabic, and ideographic. The differences between these categories
are more difficult to handle in automatic processing than the variation of character repertoires. For
example, Greek text is displayed basically the same way as English: you put one character after
another, left to right, with lines running bottom up, and breaking lines between words, unless you
have some hyphenation routine. Displaying Arabic, on the other hand, requires writing right to left
and selecting the shape of a character according to its position in a word. Much data-processing
software and systems has been designed with the implicit assumption that everything is written
pretty much the same way as English, although perhaps with some other letters.

7.1.5.2. Need for script information

In some contexts, it is useful to be able to specify the script used in a document or part of a
document in a manner suitable for automatic processing. Moreover, most characters can be classified
as belonging to one script only. For example, suppose that a document has been specified to be in
the Latin script, or has been inferred to be in the Latin script by an analysis of its content. If the
document contains an isolated Cyrillic letter, this could be an error (e.g., a user has entered a Cyrillic
"A" by mistake), and in any case, it is something special that may need human attention.

Script information can also be used in pattern matching. For example, you might wish to use a
pattern that corresponds to any sequence of characters in the Cyrillic script. In practice, patterns
should normally also include the script name "Common," which refers to characters that appear in
several scripts. Script information can be specified at different levels:

Document

The script of a document can be expressed informally, in prose (e.g., "this document contains
old Turkish, written in the Arabic script"), or it can be guessed from the context, language, or
even encoding. In the future, the script can also be specified formally as part of the language
code specified for the document.

Fragment of a document

This could be a section, a paragraph, a sentence, or even an individual word, or other part of a
document. For example, a scholarly work could be written in English but with Greek quotations
in Greek letters. You might be able to use markup or out-of-the-band information to indicate
the script of a fragmente.g., as part of language code.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Character

This level is covered well in the Unicode standard. As we can see, the standard assigns each
character a script.

Although many blocks in Unicode contain characters from one script, and might have been named
according to a script, there is no one-to-one correspondence between blocks and scripts. Some
blocks contain characters from different scripts, and some scripts have been divided into several
blocks (e.g., Basic Latin, Latin-1 Supplement, Latin Extended-A, etc.). Therefore, the Unicode
standard defines a separate property that specifies the script of a character, Script (sc).

7.1.5.3. Scripts and spoofing

Script information has become more important due to use of mixing characters from different scripts
in order to misguide people by "spoofing." The idea in the kind of spoofing discussed here is to
present text to the user in a format that looks correct but internally means something different.
Spoofing is possible even within one script. The familiar example is the use of "l" (lowercase letter "l")
instead of "1" (digit one), or vice versa, making use of the fact that in many fonts, they are hard to
distinguish. Another old example is the confusion between "O" (capital letter "o") and "0" (digit zero),
although they are rather different in most modern fonts, when you see both of them.

Spoofing is a relatively modern phenomenon, since it revolves around the difference between visible
shapes of characters and their internal digital representation. In the old times, it did not matter much
if you typed "O" for "0" in a number, since the character you entered existed only on paper and was
judged only on its appearance. In fact, some old typewriters forced people to type that way, since
they lacked digits "0" and "1" altogether. In the modern world, it matters a lot whether an address, a
password, or a variable name contains the letter "l" or the digit "1," since they have completely
separate internal representations.

Spoofing might be accidental: people make mistakes in typing and confuse characters with each
other. Spoofing might also be used with good aims: some instructions on choosing good passwords
suggest that you spoofe.g., use "l" in place of "1"to make it more difficult to steal your password
from a casual glimpse of it or to crack it with dictionary attacks.

For the most part, spoofing is used in attempts to break into systems or otherwise compromise their
security. Perhaps the best known form of spoofing is to use Internet domain names that misleadingly
resemble another. If there is a widely known web server at www.paypal.example, an attacker might
set up www.paypa1.example and send, say, a million copies of an email example asking people to
login at the following site: http://www.paypa1.example. They are then asked to change their
password, to protect their account against some threat. The attacker would have set up a server that
looks and acts like the real service being imitated but actually steals the user ID and password given
on login. Such operations have often succeeded even when they rely on something as simple as the
similarity of "l" and "1" in many fonts.

The particular form of spoofing that is used to mislead people into logging in somewhere and giving
their confidential information is called "phishing." Users could resist such attacks by refusing to click
on addresses shown in email messages, but many people are careless and lazy. It's so much easier
to click (or cut and paste) than to type.

Unicode, with its large repertoire of characters, has opened new possibilities for spoofing. This is

http://www.paypa1.example
http://lib.ommolketab.ir
http://lib.ommolketab.ir

relevant in cases where national characters are used in Internet domain names. (Their use in web
addresses otherwise might be relevant, too, but usually it's the domain name part, the server name,
that is crucial in spoofing.) If you were able to distinguish "paypa1" from "paypal," perhaps because

you were using a font that makes the difference obvious, how about "p yp l"? This string actually
contains two occurrences of the Cyrillic small letter "a" (U+0430). It is highly unlikely that you would
be able to distinguish them from the Latin small letter "a" by their appearance only, since in
practically all fonts, they look exactly the same.

Proposed solutions include the display of URLs or strings in general in a manner that highlights any

abnormal changes of scripte.g., by bolding any Cyrillic letter that appears between Latin letters (p

yp l), or showing it in red. Alternatively, such mixtures might be banned completely, forbidden in
some contexts like domain names. For a discussion of the problems and solutions, see the Unicode
Technical Report #36, "Security Considerations for the Implementation of Unicode and Related
Technology." In any case, such methods require easy access to machine-readable information about
the script of each character.

7.1.5.4. Codes and names for scripts

A script can be identified in several ways, described in some detail below:

A four-letter code, such as "Grek" (for use in many contextse.g., in language codes)

A longer and more natural code name, such as "Greek"

A three-digit numeric code, such as "200" (not used much)

A name in some natural language; the name in English often coincides with the longer code

name, but for other languages, it could be completely different (e.g., "Griechisch" or "

")

There are two systems of codes for scripts, and they differ in some details: the international standard
ISO 15924, "Code for the Representation of Names of Scripts," and the Unicode Standard Annex
(UAX) #24, "Script Names," which is available from http://www.unicode.org/reports/tr24/. The
Unicode Consortium is the Registration Authority for ISO 15924; see
http://www.unicode.org/iso15924/.

UAX #24 defines both four-letter codes (such as "Latn" and "Cyrl") and more legible longer, more
name-like codes (like "Latin" and "Cyrillic") for scripts. The four-letter codes match those used in ISO
15924, and they are used as components of language codes. Both types of codes are listed in the
Unicode database in http://www.unicode.org/Public/UNIDATA/PropertyValueAliases.txt.

The ISO 15924 standard defines codes for some scripts that can be regarded as variants of a basic
script, such as "Latf" and "Latg" for old Fraktur and Gaelic variants of the Latin script. The reason for
this is existing bibliographic classification, where different versions of a book printed in normal Latin
(Roman), Fraktur, or Gaelic letters are recorded separately. In the UAX #24 approach, such variation
is not considered as a script difference but as something to be handled at the font and glyph level.
Therefore, UAX #24 defines just "Latn" as the generic identifier for the Latin script.

Somewhat similarly, UAX #24 has just the generic "Hani" script for CJK (Han) characters, whereas

http://www.unicode.org/reports/tr24/
http://www.unicode.org/iso15924/
http://www.unicode.org/Public/UNIDATA/PropertyValueAliases.txt
http://lib.ommolketab.ir
http://lib.ommolketab.ir

ISO 15924 lets you differentiate between "Hant" (traditional Chinese) and "Hans" (simplified
Chinese).

On the other hand, UAX #24 basically defines the codes for scripts as used when identifying the script
of a character as a member of the Unicode set of characters. In other contexts, more specific codes
(referring to typographic variants) may be used.

The registry of ISO 15924 contains a table of script codes together with their "names" in English and
French, at http://www.unicode.org/iso15924/iso15924-codes.html. Some of the "names" are actually
short descriptions, and they may differ from the longer codes. For example, there is a script with the
short code "Ital," the long code "Old_Italic," and the English name "Old Italic (Etruscan, Oscan, etc.)"
and the French name "ancien italique (étrusque, osque, etc.)." The standard also defines three-digit
numeric codes, which are not used much, but they might be used internally, if you need integer-
valued identifications for scripts.

When information about the script of a character, fragment, or document is presented to a user, it
should preferably be presented in the user's own language. The Common Locale Data Repository
(CLDR), described in Chapter 11, contains names of scripts in different languages. A large comparison
chart of such localized names is available at
http://www.unicode.org/cldr/data/diff/by_type/localeDisplayNames_scripts.html. There are two
special script codes:

Common (Zyyy)

This value is assigned to characters that are used in several scripts, such as punctuation
characters and special symbols. Most letterlike symbols, such as the copyright sign ©, are
classified as Common, not by the script of the letter from which they have been derived. Such
symbols are typically used across scripts. Unassigned code points, too, have this value.

Inherited (Qaai)

This indicates that the character is to be assumed to be in the same script as the (logically)
preceding character. This value is assigned to nonspacing marks. For example, the script of the
combining acute accent (U+0301) is Inherited, so that when it follows a Latin letter, it is
treated as belonging to the Latin script, and when it follows a Greek letter, it is treated as
belonging to the Greek script.

In technical and scientific contexts, Greek letters may appear in the midst of text otherwise written in
the Latin scripte.g., in names like "β-carotene" and "γ rays." Although the Greek letters usually
appear in specialized meanings as symbols, Unicode treats them as Greek letters, belonging to the
Greek script. However, there are exceptions for symbols encoded as separate characters. For
example, the micro sign µ (U+00B5), although compatibility equivalent to Greek small letter mu, is
defined as belonging to the Common script. Thus, replacing a character with its compatibility
equivalent may change the script.

The short (four-letter) and long codes for scripts are summarized in Table 7-1. The table also acts as
an overview of writing systems, although it does not include all the historic scripts that have been
used. The short code in the first column is the ISO 15924 code, and the second column contains the
longer code as defined in UAX #24, using an underline character instead of a space.

http://www.unicode.org/iso15924/iso15924-codes.html
http://www.unicode.org/cldr/data/diff/by_type/localeDisplayNames_scripts.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 7-1. Short and long codes for scripts

Code Property value alias Explanations

Arab Arabic Used for Arabic, Persian, and other languages

Armn Armenian Used for the Armenian language

Bali Used for Balinese in Indonesia

Batk Used for Batak languages in Indonesia

Beng Bengali Used for Bengali, Assamese, etc.

Blis Bliss symbols; easy-to-learn pictorial symbols

Bopo Bopomofo An alphabetic writing system for Chinese

Brah Brahmi, an ancient script used in India

Brai Braille Braille; symbols touchable by fingertips

Bugi Buginese, used in Sulawesi, Indonesia

Buhd Buhid Used for Buhid in the Philippines (island of Mindoro)

Cans Canadian _Aboriginal Unified Canadian Aboriginal Syllabics

Cham Cham, used in Cambodia and Vietnamese

Cher Cherokee A syllabic script for the Cherokee language

Cirt Cirth, a Runic-like script invented by J.R.R. Tolkien

Copt Coptic; was used for ancient Egyptian, now liturgic

Cprt Cypriot An ancient script used in Cyprus

Cyrl Cyrillic Cyrillic; used for many Slavic and non-Slavic languages

Cyrs Cyrillic, Old Church Slavonic variant

Deva Devanagari Used for several languages in India, including Hindi

Dsrt Deseret
Invented in the 1850s (for English), still used by

Mormons

Egyd Egyptian demotic

Egyh Egyptian hieratic

Egyp Egyptian hieroglyphs

Ethi Ethiopic Used for several languages in Ethiopia

Geok Khutsuri, a script previously used for Georgian

Geor Georgian Used for Georgian (Mkhedruli), spoken in the Caucasus

Glag Glagolitic (Glagolitsa), an old script for Slavic languages

Goth Gothic Was used for a now-extinct Germanic language

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Code Property value alias Explanations

Grek Greek Greek (both ancient and modern)

Gujr Gujarati Used for the Gujarati language in western India

Guru Gurmukhi Used for the Panjabi language in northern India

Hang Hangul The currently most common script for Korean

Hani Han Chinese-Japanese-Korean, known as Hanzi, Kanji, Hanja

Hano Hanunoo Used for Hanunóo in the Philippines (island of Mindoro)

Hans Chinese, Simplified writing system

Hant Chinese, Traditional writing system

Hebr Hebrew Used for Hebrew, Yiddish, Ladino, etc.

Hira Hiragana A cursive syllabic script for writing Japanese

Hmng Pahawh Hmong, used for Hmong in East Asia

Hrkt Katakana _Or _Hiragana Alias for Hiragana + Katakana

Hung Old Hungarian, a Runic system used before AD 1000

Inds Indus (Harappan); ancient script

Ital Old _Italic Ancient Italic (Etruscan, Oscan, etc.)

Java Javanese, used for the Javanese language in Indonesia

Kali Kayah Li, used in Burma (Myanmar)

Kana Katakana A non-cursive syllabic script for writing Japanese

Khar Kharoshthi, an ancient script that was used in Asia

Khmr Khmer Used for the Cambodian language

Knda Kannada Used for Kannada (Kanarese) in southern India

Laoo Lao Used for Lao, the main language of Laos

Latf Latin, Fraktur (Gothic) variant

Latg Latin, Gaelic variant

Latn Latin Used for a wide range of European and other languages

Lepc
Lepcha (Róng), used to write a Tibeto-Burman

language

Limb Limbu Used for Limbu, a Tibeto-Burman language

Lina Linear A, an ancient script used on Crete

Linb Linear _B Linear B, an ancient script used to write a form of Greek

Mand Mandaean, used for Mandaic, a Semitic language

Maya Mayan hieroglyphs

Mero Meroïtic, used for a now-extinct language in Egypt

Grek Greek Greek (both ancient and modern)

Gujr Gujarati Used for the Gujarati language in western India

Guru Gurmukhi Used for the Panjabi language in northern India

Hang Hangul The currently most common script for Korean

Hani Han Chinese-Japanese-Korean, known as Hanzi, Kanji, Hanja

Hano Hanunoo Used for Hanunóo in the Philippines (island of Mindoro)

Hans Chinese, Simplified writing system

Hant Chinese, Traditional writing system

Hebr Hebrew Used for Hebrew, Yiddish, Ladino, etc.

Hira Hiragana A cursive syllabic script for writing Japanese

Hmng Pahawh Hmong, used for Hmong in East Asia

Hrkt Katakana _Or _Hiragana Alias for Hiragana + Katakana

Hung Old Hungarian, a Runic system used before AD 1000

Inds Indus (Harappan); ancient script

Ital Old _Italic Ancient Italic (Etruscan, Oscan, etc.)

Java Javanese, used for the Javanese language in Indonesia

Kali Kayah Li, used in Burma (Myanmar)

Kana Katakana A non-cursive syllabic script for writing Japanese

Khar Kharoshthi, an ancient script that was used in Asia

Khmr Khmer Used for the Cambodian language

Knda Kannada Used for Kannada (Kanarese) in southern India

Laoo Lao Used for Lao, the main language of Laos

Latf Latin, Fraktur (Gothic) variant

Latg Latin, Gaelic variant

Latn Latin Used for a wide range of European and other languages

Lepc
Lepcha (Róng), used to write a Tibeto-Burman

language

Limb Limbu Used for Limbu, a Tibeto-Burman language

Lina Linear A, an ancient script used on Crete

Linb Linear _B Linear B, an ancient script used to write a form of Greek

Mand Mandaean, used for Mandaic, a Semitic language

Maya Mayan hieroglyphs

Mero Meroïtic, used for a now-extinct language in Egypt

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Code Property value alias Explanations

Mlym Malayalam Used for Malayalam in southern India

Mong Mongolian Used for Mongolian; a cursive script, complex shaping

Mymr Myanmar Used for Burmese in Burma (Myanmar)

Nkoo N'Ko, used for Mandekan languages in western Africa

Ogam Ogham Was used in the fifth and sixth centuries for early Irish

Orkh Orkhon, used to write Uyghur, a Turkic language in China

Orya Oriya Used for the Oriya language in eastern India

Osma Osmanya Used for the Somali language in Africa

Perm
Old Permic (Abur), previously used for the Komi

language

Phag
'Phags-pa, was used for Mongolian and other

languages

Phnx Phoenician, an ancient consonantal alphabet

Plrd Pollard Phonetic, used to write the Miao language in China

Qaaa Reserved for private use (start)

Qabx Reserved for private use (end)

Roro Rongorongo, was used on the Easter Island

Runr Runic A historic European script

Sara Sarati, a "Middle Earth" script invented by J.R.R. Tolkien

Shaw Shavian Shavian (Shaw), invented for phonetic writing of English

Sinh Sinhala Used for Sinhala (Sinhalese) in Sri Lanka

Sylo Syloti Nagri, used for Sylheti in Bangladesh and Indica

Syrc Syriac Used for the Syriac language, but also for Arabic

Syre Syriac (Estrangelo variant)

Syrj Syriac (Western variant)

Syrn Syriac (Eastern variant)

Tagb Tagbanwa
Used for Tagbanwa in the Philippines (island of

Palawan)

Tale Tai _Le Tai Le (Dehong Dai), used in southwest China

Talu New Tai Lue, used to write Lue in East Asia

Taml Tamil Used for the Tamil language in India, Sri Lanka, etc.

Telu Telugu Used for the Telugu language in southern India

Teng Tengwar, a script invented by J.R.R. Tolkien

Mlym Malayalam Used for Malayalam in southern India

Mong Mongolian Used for Mongolian; a cursive script, complex shaping

Mymr Myanmar Used for Burmese in Burma (Myanmar)

Nkoo N'Ko, used for Mandekan languages in western Africa

Ogam Ogham Was used in the fifth and sixth centuries for early Irish

Orkh Orkhon, used to write Uyghur, a Turkic language in China

Orya Oriya Used for the Oriya language in eastern India

Osma Osmanya Used for the Somali language in Africa

Perm
Old Permic (Abur), previously used for the Komi

language

Phag
'Phags-pa, was used for Mongolian and other

languages

Phnx Phoenician, an ancient consonantal alphabet

Plrd Pollard Phonetic, used to write the Miao language in China

Qaaa Reserved for private use (start)

Qabx Reserved for private use (end)

Roro Rongorongo, was used on the Easter Island

Runr Runic A historic European script

Sara Sarati, a "Middle Earth" script invented by J.R.R. Tolkien

Shaw Shavian Shavian (Shaw), invented for phonetic writing of English

Sinh Sinhala Used for Sinhala (Sinhalese) in Sri Lanka

Sylo Syloti Nagri, used for Sylheti in Bangladesh and Indica

Syrc Syriac Used for the Syriac language, but also for Arabic

Syre Syriac (Estrangelo variant)

Syrj Syriac (Western variant)

Syrn Syriac (Eastern variant)

Tagb Tagbanwa
Used for Tagbanwa in the Philippines (island of

Palawan)

Tale Tai _Le Tai Le (Dehong Dai), used in southwest China

Talu New Tai Lue, used to write Lue in East Asia

Taml Tamil Used for the Tamil language in India, Sri Lanka, etc.

Telu Telugu Used for the Telugu language in southern India

Teng Tengwar, a script invented by J.R.R. Tolkien

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Code Property value alias Explanations

Tfng Tifinagh, used to write Berber languages like Tamasheq

Tglg Tagalog Was used to write Tagalog and other Filipino languages

Thaa Thaana Thaana, for the Dhivehi languages (in the Maldives)

Thai Thai Used for Thai, the main language of Thailand (Siam)

Tibt Tibetan Used for Tibetan, spoken in Tibet and Bhutan

Ugar Ugaritic An ancient cuneiform script used to write Ugaritic

Vaii Vai, a syllabary used to write the Vai language in Liberia

Visp Visible Speech, a phonetic and "organic" script

Xpeo Old Persian Cuneiform

Xsux Cuneiform, Sumero-Akkadian

Yiii Yi A large syllabary used to write Yi (Lolo) in China

Zxxx Code for unwritten languages

Zyyy Common Code for undetermined script

Zzzz Code for uncoded script

7.1.5.5. The Script property: the script of a character

The data file that specifies values of the Script (sc) property, i.e. the script of each Unicode character,
is http://www.unicode.org/Public/UNIDATA/Scripts.txt. It uses the longer names for the scripts. Its
entries look like the following:

0993..09A8 ; Bengali # Lo [22] BENGALI LETTER O..BENGALI LETTER NA

This sample line says that characters U+0933 through U+09A8 belong to the script "Bengali." Such
information is sufficient for automatic classification of characters by script. The rest is a comment,
mentioning the general category (Lo), the number of characters in the range (22), and the range
expressed by names of characters.

For readability, the data in the file has been grouped by script. This lets you see quickly which
characters are contained in a given script, but it makes it more difficult to find the script of a given
character.

Tfng Tifinagh, used to write Berber languages like Tamasheq

Tglg Tagalog Was used to write Tagalog and other Filipino languages

Thaa Thaana Thaana, for the Dhivehi languages (in the Maldives)

Thai Thai Used for Thai, the main language of Thailand (Siam)

Tibt Tibetan Used for Tibetan, spoken in Tibet and Bhutan

Ugar Ugaritic An ancient cuneiform script used to write Ugaritic

Vaii Vai, a syllabary used to write the Vai language in Liberia

Visp Visible Speech, a phonetic and "organic" script

Xpeo Old Persian Cuneiform

Xsux Cuneiform, Sumero-Akkadian

Yiii Yi A large syllabary used to write Yi (Lolo) in China

Zxxx Code for unwritten languages

Zyyy Common Code for undetermined script

Zzzz Code for uncoded script

7.1.5.5. The Script property: the script of a character

The data file that specifies values of the Script (sc) property, i.e. the script of each Unicode character,
is http://www.unicode.org/Public/UNIDATA/Scripts.txt. It uses the longer names for the scripts. Its
entries look like the following:

0993..09A8 ; Bengali # Lo [22] BENGALI LETTER O..BENGALI LETTER NA

This sample line says that characters U+0933 through U+09A8 belong to the script "Bengali." Such
information is sufficient for automatic classification of characters by script. The rest is a comment,
mentioning the general category (Lo), the number of characters in the range (22), and the range
expressed by names of characters.

For readability, the data in the file has been grouped by script. This lets you see quickly which
characters are contained in a given script, but it makes it more difficult to find the script of a given
character.

http://www.unicode.org/Public/UNIDATA/Scripts.txt
http://www.unicode.org/Public/UNIDATA/Scripts.txt
http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.2. Character Requirements of Languages

Although Unicode contains almost all characters used in currently used languages, it is still and will
always be relevant to consider the character requirements that different languages impose. Here we
will first list some of the reasons for this, and then analyze the concept of "character requirements,"
and finally study some specific languages.

7.2.1. The Impact of Character Repertoire

As mentioned in the section "Definitions of Character Repertoires" in Chapter 1, there are good
reasons to try to estimate the repertoire of characters that will appear in a document or in an
application. In more detail, the reasons include the following:

A font typically supports a limited character repertoire only. Full Unicode fonts are rare, and
usually not suitable for copy text.

In particular, artistic or otherwise special fonts, such as those used for headings and buttons,
often have a very limited character repertoire.

A program that will be used for processing your document in some way might be prepared to
handle a limited repertoire only.

Special characters in normal text often result from mistyping or other errors. When checking
input data, it is often useful to detect any "unusual" characters and issue warnings about them.

In particular, character recognition (in scanning text or in processing handwritten characters)
works best if the assumed repertoire is small. It can be very difficult to distinguish between

similar-looking characters like and ("a" with breve and "a" with caron). Things are much
easier if you can expect only one of them to occur.

At the technical level, there is also the consideration that if you restrict yourself to a small repertoire
of characters, you have more options when choosing the encoding. For example, if you use just the
characters normally used in English, you can use almost any encoding, including ASCII, ISO 8859
encodings, etc. If you decide that the copyright symbol © is needed, too, then you exclude both
ASCII and several of the ISO 8859 encodings (unless you can use "escape notations" like © in
HTML).

Such technical limitations are slowly losing their importance, but other limitations persist. For
example, when designing methods for user input, we should focus on characters that will be used
frequently, support some less common characters in a reasonably easy way, and leave the rest up to
some generic way, which is not very convenient. In a sense, it is good to make the entry of rarely
used characters difficult; thereby they will not appear by mistake so often.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.2.2. Languages and Characters

Languages have very varying requirements on the repertoire of characters. English can be written
using less than a hundred different characters, whereas Chinese needs thousands of characters, or
tens of thousands, if you count the rare characters too. Moreover, the needs are difficult to analyze.
Is é needed in English, because it appears in words like "fiancé"? Normal English text, even in a

newspaper, may contain special characters like µ on science pages, in a bridge column, and ® in
an advertisement.

7.2.2.1. What constitutes a character?

Language affects the way people look at characters and what they identify as a single character. This
primarily applies to a person's native language. If English is your native language, you may well
classify the œ in the French word "œuvre" as just a way of writing "o" and "e" together. After all, in
English, expressions like "hors d'oeuvre" are commonly written with separate "o" and "e." If French is
your native language, you might treat œ as a single letter and "oe" just as a replacement that is used
out of necessity. Perhaps an even better example is æ, which is certainly a separate letter to people
who speak Danish and Norwegian but just a typographic variant of "ae" to many English-speaking
people, who either never noticed æ or saw it only in contexts where it is apparently just a way of
writing "ae" (e.g., in "Cæsar" for "Caesar").

The way we identify characters affects how we count characters. How many letters are there in the
string "Cæsar"? This makes instructions, limitations, and operations on character count relative. If
you are prompted for some information, to be written in less than 42 characters, how do you know
how some program counts characters? When exactness is important, as it might be in contracts, it
might be suitable to define explicitly that characters are counted by the number of Unicode
characters when the text is in Unicode Normalization Form C. Unfortunately, few people understand
what that means, but the same applies to many other exact definitions.

7.2.2.2. Does Unicode support all languages?

Short descriptions of Unicode often present it as more universal than it really is. They might, in
particular, claim that Unicode supports all languages, or at least all living languages, or that it
contains all characters used by humanity.

The question "Does Unicode support all languages?" is vague on several counts. To begin with, does
"Unicode" refer to the collection of Unicode characters, or to the Unicode standard, or to the Unicode
Consortium? What does "support" mean? And what do you mean by "language," and specifically by
"all languages"?

Thus, any reasonable answer needs to clarify the question. Here is an attempt at a short answer:
Almost all living languages, and many dead languages, can be written in their normal writing
system(s) using Unicode characters. However, this might not quite mean what you intuitively expect
it to mean. Note, in particular, the following points:

Some languages use characters that cannot be represented as single Unicode characters but
need to be written as combinations (sequences of Unicode characters). For example, some
accented characters cannot be written as a single character but as base characters followed by

http://lib.ommolketab.ir
http://lib.ommolketab.ir

some combining diacritic mark(s). In this sense, the claim that Unicode "provides a unique
number for every character" (as the Consortium's page "What is Unicode?" says) is somewhat
misleading.

Some orthographic and typographic differences that could be expressed in plain text cannot be
expressed in Unicode. This results from the unification policy, which often treats, for example,
the differences between Chinese and Japanese characters as typographic.

Some of the properties of characters as defined by the Unicode standard do not correspond to
their behavior in different languages. For example, Unicode line-breaking rules previously
permitted a line break after a colon :, but some languages use it inside words, and a line break
after a colon can seriously violate the rules of the language.

Unicode is meant to describe plain text only, so it generally lacks any support that might be
needed for display and processing of text by language-specific rules.

These points reflect the design of Unicode, not failures or incompleteness in achieving its goals. On
the other hand, there are also some characters used in living languages that have not yet been
included in Unicode. Those languages are used by very small communities, and your odds of ever
seeing them written are rather small, unless you are an ethnologist or linguist. For example, Unicode
4.1 lacks some Cyrillic characters that are used by some ethnic groups (Enets, Chukchi, etc.) in
Russia.

The first point means that when writing some languages, we cannot use a single Unicode character
(code point) to denote what people intuitively understand as one character in that language. For
example, a language may have the letter "i" with macron and grave accent, but in Unicode, it can
only be written using two or three characters. In Chapter 4, we described some concepts and
techniques meant to help with this. Yet, people may think that Unicode puts such languages to a
different position than others.

As a thought experiment, let us suppose that the letter "w" had not been included into ASCII or other
character codes but written as "vv," and that Unicode had not changed this. When people would then
ask for the letter "w" to be included into Unicode, the answer would be that it is just a typographic
variant of "vv" written as a ligature (as it historically is, in fact). Maybe after much debate, we would
then be told to use the combination of three Unicode characters, "v," word joiner, and "v." Maybe we
could officially register this as a character sequence. Yet, could we then really say that Unicode
supports the English alphabet, for example?

The discussion above deals with "living languages," a subject that is itself a somewhat vague concept.
There are extinct languages that are not used as anyone's native language, or otherwise in normal
speech or writing, but might still be used quite a lot in scholarly documents, or perhaps used by
hobbyists who wish to revive a language. Constructed (artificial) languages have usually been created
for use as people's second (or maybe even first) language, but the great majority of them have no
actual use, or no use outside a very small circle. Esperanto is the best-known exception; it is well
covered by Unicode. Finally, there are languages that might be classified as fictional, such as the
Klingon language (from the Star Trek TV series) and the languages of Middle Earth (from the books
of J.R.R. Tolkien). Such languages may lack full description, actual usage by human beings, and an
established writing system. If fictional languages cannot be written in Unicode, the reason may well
be that they are not written at all, but it is also possible that they can be classified as written
languages, perhaps with some characters that wait for inclusion into Unicode.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.2.2.3. Attempts at technical definitions of character requirements

In 1995, an Internet draft titled "Characters and character sets for various languages" was composed
by Harald Alvestrand. Although it expired soon and was in many ways incomplete, it was long used
for checking character requirements. After all, if you were asked to design software that can handle
characters in some languages that you don't know, you have to start somewhere. The draft is still
available at the address http://www.eki.ee/i t s t a n d a r d/docs/draft-alvestrand-lang-
char-03.txt. For some languages, it listed "important characters" in addition to "required characters."

There was an attempt at creating a "cultural registry" that describes character requirements along
with some other information about languages. The structure was described in the ISO 15897
standard (approved in 1999). The registry was not populated with much data, except for some Nordic
languages, and the information in it was not used much. The registry technically still exists, at
http://anubis.dkuug.dk/cultreg/, but it has not been updated for years. Probably the main reason for
the failure was lack of interest and participation by major software vendorsi.e., the organizations on
which the wide use of such information mainly depends.

The Common Locale Data Repository (CLDR), described in Chapter 11, contains two data fields for
describing a language's character requirements with regards to letters:

Basic characters (exemplarCharacters)

Letters needed for normal writing of the language. For English, this consists of the letters a to z
only. (Uppercase forms are implicitly included.)

Auxiliary characters (exemplarCharacters with type="auxiliary")

Additional letters that may appear in texts in the language, typically in (relatively) common
foreign words. For English, this currently consists of the following set: áà éè íì óò úù âêîôû æœ

äëïöüÿ åø çñß. As you can see, it is a rather mixed collection and contains
several characters outside the Windows Latin 1 repertoire.

The description of the CLDR database makes it clear that the basic exemplarCharacters set should be
rather narrow:

In general, the test to see whether or not a letter belongs in the set is based on whether it is
acceptable in that language to always use spellings that avoid that character. For example, the
exemplar character set for en (English) is the set [a-z]. This set does not contain the
accented letters that are sometimes seen in words like "résumé" or "naïve", because it is
acceptable in common practice to spell those words without the accents.

The content of the exemplarCharacters fields in the CLDR is available, formatted as a table, at
http://www.unicode.org/cldr/data/diff/by_type/characters.html.

The structure of the CLDR is being developed, and the descriptions of character requirements will
probably evolve quite a lot. On the other hand, even at the present stage, the CLDR constitutes the
best available overall description of such matters. It should however be used with caution due to the
following problems:

http://www.eki.ee/i t s t a n d a r d/docs/draft-alvestrand-lang-
http://anubis.dkuug.dk/cultreg/
http://www.unicode.org/cldr/data/diff/by_type/characters.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The description, with just two levels of requirements, is too coarse (see below).

The description only covers letters, not, for example, punctuation.

Not all data has been checked sufficiently carefully by authorities and experts on a language.

The data is insufficiente.g., with regards to the description of auxiliary characters, which have
been specified for a few languages only.

7.2.2.4. Which characters does a language need?

Questions like "Which characters does language X need?" are both very important and very difficult.

It isn't even a well-defined question before you spend quite some time on it. Yet, it affects, or should
affect, keyboard design and settings, font choices, input checks, text scanning, etc. Even though
Unicode lets you use any characters, roughly speaking, it is still relevant to know which characters
will actually be used, or needed.

People may disagree on what really belongs to a language, even at the character level. Orthographic
rules on punctuation have often been defined so that it is debatable what Unicode characters are
meant. For example, the rules may discuss "dash" without telling whether it is an em dash or an en
dash or whether either of them could be used. There can also be dispute on whether a character
difference should be made between some letters that look very similar to each other.

Instead of trying to find a one-dimensional answer, we can specify classes of characters needed in a
language in a layered manner. Some characters are essential, some are auxiliary, and some are rare
visitors. In a closer analysis, we might consider the following classes:

Core characters

This class includes the characters that are regarded as absolutely necessary for normal writing
of the language. It roughly corresponds to the "exemplarCharacters" definition in CLDR. For
English, this class contains small and capital letters "a" to "z," digits 0 to 9, some punctuation
marks, and a few special characters like $ and &. The exact repertoire of punctuation marks is
debatable, since we are accustomed to using, for example, the ASCII quotation mark " instead
of proper quotation marks. We can often include ASCII special characters like *, due to their
wide availability, even though they are not common in ordinary texts.

Commonly used other characters

These are less common characters that can be regarded as belonging to the language in the
broad sense, such as é due to its occurrence in words of French origin, @ due to its appearance
in the Internet context as well as in unit price indications, and the ellipsis, "...". Most of these
characters can be replaced by the use of core characters, with some loss in typography and
style. (For example, "e" could be used for é, and three period characters "..." could be used
instead of the ellipsis "...".)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Additional characters in foreign words and names from "neighboring" languages

These are characters that belong to other languages but appear relatively often due to cultural
connections. In English, it is not uncommon to use loanwords and names taken directly from
French, Spanish, and German, for example. Therefore, characters like è, ñ, and ü are often
needed in English texts. Their relevance depends on the nature of the text as well as cultural
context. Typically, these characters are letters with diacritic marks, and the marks can usually
be omitted without making the text incomprehensible, but it is regarded as good style to
preserve them.

Other characters of the same script

This class differs from the preceding one on cultural and historical grounds, often with
technological connections. In English, it is common to omit diacritic marks from, e.g., Polish or

Czech names (writing, e.g., ód as Lodz), partly because such characters might not belong
to ISO Latin 1, partly because they are regarded as culturally more remote than, for example,
French letters.

Additional symbols

In different types of text, many additional characters other than letters are needed. The need
greatly depends on the topic area. It is difficult to specify which characters might be needed in
"normal" text as opposite to specialized scientific or technical usage. Their repertoire also

varies by time, and in the modern world, previously unknown or rare characters like \ or
have become known to many people from technical contexts. We can probably include, e.g.,
Greek letters α and π into this class due to their use as symbols (rather than letters) in several
special contexts.

Characters from other scripts

This class is the most marginal: it includes characters that are almost never used in the
language, since they belong to completely different writing systems. For English and other
languages written in Latin letters, this includes Cyrillic, Thai, and Chinese characters, for
example. The reason is that Russian, Thai, or Chinese words are normally written as
transliterated or transcribed when used in English texts. Rare exceptions appear in some
linguistic and other scientific use and textbooks of foreign languages. However, the situation is
somewhat asymmetric: letters of the Latin script are relatively often used in other scripts, for
writing names and other notations.

7.2.3. Language Coverage of ISO Latin Alphabets

The ISO Latin alphabets are defined by ISO 8859 standards as listed in Table 7-2. There are other
ISO 8859 standards, but they define character sets that contain the ASCII characters and some
collections of non-Latin letters (see Chapter 3). Note that ISO Latin 5, 6, 7, 8, 9, and 10 correspond
to ISO 8859-9, -10, -13, -14, -15, and -16, respectively.

The ISO Latin alphabets were primarily designed to meet the needs of some languages used as

http://lib.ommolketab.ir
http://lib.ommolketab.ir

official or regional languages in Europe and written in Latin letters. Table 7-2 summarizes the
suitability of ISO Latin alphabets for them. The information is mainly derived from the ISO 8859
standards. For example, the table says that Croatian can be written in ISO Latin 2 or in ISO Latin 10
(i.e., ISO-8859-16).

As a side effect, all or some of ISO Latin alphabets cover other languages as well, such as Afrikaans,
Indonesian/Malay, Swahili, and Tagalog. This issue will not be explored here.

Support to a language in some repertoire of characters is often subject to interpretation and even
debate. In particular, the descriptions in the ISO 8859 standards deal with the availability of letters,
not punctuation marks. Moreover, the considerations are limited to modern forms of the languages
and to use "for general purpose applications in typical office environments," as ISO 8859 standards
put it. To point out some other problems, some entries are marked with an asterisk *, with
explanations after the table.

Table 7-2. Coverage of European languages by ISO Latin alphabets

Language ISO Latin Notes

Albanian 1 2 5 8 9 10

Basque 1 3 5 8 9

Breton 1 5 8 9

Catalan 1 3 5 8 9

Cornish 1 5 8

Croatian 2 10

Czech 2

Danish 1 4 5 6 7 8 9

Dutch 1 5 9 ij ligature?

English 1 2 3 4 5 6 7 8 9 10

Esperanto 3

Estonian 4 6 7 9

Faroese 1 6 9

Finnish 1* 2 3 4 5* 6 7 8* 9 10 , ?

French 1* 3* 5* 8* 9 10 œ, ?

Frisian 1 5 9

Galician 1 3 5 8 9

German 1 2 3 4 5 6 7 8 9 10

Greenlandic 1 4 5 6 8 9

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Language ISO Latin Notes

Hungarian 2 10

Icelandic 1 6 9

Irish 1 5* 6* 8 9* 10* New orthography

Italian 1 3 5 8 9 10

Latin 1 2 3 4 5 6 7 8 9 10

Latvian 4 7

Lithuanian 4 6 7

Luxemburgish 1 5 8 9

Maltese 3

Manx Gaelic 8

Norwegian 1 4 5 6 7 8 9

Polish 2 7 10

Portuguese 1 5 8 9

Rhaeto-Romanic 1 5 8 9

Romanian 2* 10 Diacritics on s, t?

Sámi 4* 6* Not Skolt Sámi

Scottish Gaelic 1 5 9

Slovak 2

Slovenian 2 4 6 7 10

Sorbian 2

Spanish 1 3 5 8 9

Swedish 1 4 5 6 7 8 9

Turkish 3* 5 3 deprecated

Welsh 8

Explanations to Table 7-1:

Dutch has (arguably) an ij ligature, which does not belong to any ISO Latin alphabet.

Finnish official orthography contains and , which are not covered by ISO Latin 1, 5, and 8.

French has the letter œ and capital , which are not covered by ISO Latin 1, 3, 5, and 8.

Hungarian 2 10

Icelandic 1 6 9

Irish 1 5* 6* 8 9* 10* New orthography

Italian 1 3 5 8 9 10

Latin 1 2 3 4 5 6 7 8 9 10

Latvian 4 7

Lithuanian 4 6 7

Luxemburgish 1 5 8 9

Maltese 3

Manx Gaelic 8

Norwegian 1 4 5 6 7 8 9

Polish 2 7 10

Portuguese 1 5 8 9

Rhaeto-Romanic 1 5 8 9

Romanian 2* 10 Diacritics on s, t?

Sámi 4* 6* Not Skolt Sámi

Scottish Gaelic 1 5 9

Slovak 2

Slovenian 2 4 6 7 10

Sorbian 2

Spanish 1 3 5 8 9

Swedish 1 4 5 6 7 8 9

Turkish 3* 5 3 deprecated

Welsh 8

Explanations to Table 7-1:

Dutch has (arguably) an ij ligature, which does not belong to any ISO Latin alphabet.

Finnish official orthography contains and , which are not covered by ISO Latin 1, 5, and 8.

French has the letter œ and capital , which are not covered by ISO Latin 1, 3, 5, and 8.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Irish can be written with the indicated alphabets when the new orthography is used. ISO Latin
5, 6, 9, and 10 are not suitable when the old orthography is used.

Romanian uses letters "s" and "t" with a diacritic mark below them. According to the Romanian
Standards Institute, this diacritic mark is not a cedilla but a comma below. According to this
interpretation, no ISO Latin alphabet except the ISO Latin 10 is suitable for Romanian.
However, according to ISO 8859-2, Latin alphabet No. 2 can be used "subject to the agreement

of originator and receiver in information exchange." Effectively, "s" and "t" with cedilla (,)
can be used as substitutes.

Sámi is a collection of languages that have partly different spelling systems. ISO Latin 4 and 6
cover the requirements of most Sámi orthographies, but for Skolt Sámi, no ISO Latin alphabet
is sufficient.

Turkish can be written in ISO Latin 3 and ISO Latin 5, but the use of ISO Latin 3 for Turkish is
deprecated.

We will next consider in more detail the character requirements of two languages, French and
Spanish. They are rather similar in their writing systems and use of characters, as compared with the
variation of world's languages. Yet, problems emerge in the details.

7.2.4. Example: Spanish

The basic character requirements of Spanish include (in addition to ASCII characters):

Accented characters á, é, í, ó, and ú (and their uppercase forms)

The letter ü (and Ü)

The letter ñ (and Ñ)

Inverted exclamation mark ¡, used at the start of an exclamation

Inverted question mark ¿, used at the start of a question

Characters ª and º, used when an ordinal number has been written with digits (e.g., 2ª =
segunda "second (feminine)" and 2º = segundo "second (masculine)"

Em dash "'"

Quotation marks: double angle quotation marks («bien»), double quotation marks as in English
("bien"), and single quotation marks as in English ('bien'), with some differences in usage

Except for the dash and the curly quotation marks, Spanish is covered by the ISO Latin 1 character
repertoire, and the Windows Latin 1 repertoire adds the missing characters, as well as the euro sign,
€. For the purposes of writing Spanish, ISO Latin 9 (ISO 8859-15) is the same as ISO Latin 1 with the
addition of the euro sign, but ISO Latin 9 is little used. Some other ISO Latin alphabets could be used
for Spanish, too, but most of them lack the inverted exclamation mark and the inverted question
mark.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Spanish also uses ellipsis points, "puntos suspensivos," but they are usually unspaced, unlike in
recommended English practice. Therefore, they can be represented as sequences of three periods
(U+002E U+002E U+002E) rather than as the horizontal ellipsis character (U+2026).

MS Word helps in writing Spanish, if it has recognized the language from the text or you tell it via
Word commands. In Spanish mode, MS Word does not convert three periods to English-style ellipsis
as it would otherwise do. It also changes an ! or ? at the start of a sentence to an inverted
exclamation or question mark, and it changes, for example, "2a" to "2ª." Somewhat strangely, MS
Word produces English-style quotation marks ("bien") in Spanish mode, even though Spanish literary
usage favors guillemets («bien»).

In Spanish, the acute accent indicates the vowel as stressed, and this may imply a difference in
meanings of words. However, in names, the accent rarely has a distinctive meaning. Accented letters
are not counted as separate letters in the alphabet, and the accent is taken into account in alphabetic
ordering at the secondary level only (i.e., for words that are otherwise the same). By the official
rules, accents are used in uppercase letters, too, although it is not rare to deviate from this.

Traditionally, the combinations (digraphs) "ch" and "ll" (which denote specific phonemes in Spanish)
have been regarded as separate letters, as components of the alphabet position between "c" and "d,"
and "l" and "m," respectively. However, in 1994, the association of academies for the Spanish
decided to accept the treatment of these combinations as pairs of letters, in alphabetic ordering.
Previously Spanish had, for example, "correo" < "chico," since "c" < "ch," but now the official sorting
rules follow the international pattern.

The details of official Spanish orthography can be found in the document "Ortografía de la lengua
española," available online via http://www.rae.es/.

7.2.5. Example: French

The basic character requirements of French include (in addition to ASCII characters):

Several vowels with diacritic marks: à, â, é, è, ê, ë, î, ï, ô, ù, û, ü, ÿ (and their uppercase forms)

The letter ç (and Ç)

The letter œ (and Œ)

Debatably, the letter æ (and Æ), in words of Latin or Greek origin (e.g., "ægosome")

Em dash "'"

Quotation marks: double angle quotation marks (« bien »), double quotation marks as in
English ("bien"), and single quotation marks as in English ('bien'), with some differences in
usage

Except for the character œ, the dash, and the curly quotation marks, French is covered by the ISO
Latin 1 character repertoire, and the Windows Latin 1 repertoire adds the missing characters, as well
as the euro sign, €.

However, there is an essential feature in French orthography that cannot be properly addressed in

http://www.rae.es/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

plain text even using Unicode. The orthography rules require thin space (espace fine) after or before
some punctuation markse.g., before an exclamation mark. Naturally, such a space should be
nonbreaking. This problem is discussed in the section "General Punctuation" in Chapter 8.

The letter œ, "oe" ligature, has often been written as the character pair "oe" due to character code
limitations. The letter œ was one of the reasons for defining the ISO-8859-15 code (ISO Latin 9),
which has not gained much popularity, since you can use œ in windows-1252, and naturally in any
Unicode encoding. A normal French keyboard still has no key for œ, so some special technique is
needed to type it.

There is no simple way to type æ either on a French keyboard. In practice, "ae" is very often used
instead, although the dictionary of the French Academy uses æ spellings.

MS Word helps in writing French, for example, by turning, in French mode, the ASCII quotation mark
to French-style quotation marks (e.g., turning the input "bien" into « bien »). Like Spanish, French
uses unspaced periods for ellipsis.

Diacritic marks are essential in French, and should be used on uppercase letters, too, according to
the recommendation of the French Academy. However, there are differences of opinion and
expectations in this area. Therefore, programs often contain a user-settable option for allowing or
disallowing accents on capital letters in French text. When they are disallowed, conversion of "égalité"
to uppercase would produce "EGALITE." In MS Word, the setting is Tools Options Edit
Allow accented uppercase in French. The default setting for this may depend on the version of French
(e.g., so that it is normally off for the French of France, but on for Canadian French).

On a typical French keyboard ("azerty keyboard "), the methods for typing letters with a diacritic
mark are different for different characters. In particular, there is no obvious way to enter the capital
letters É and Ç, so the user needs to know and to use some special technique (such as Alt-0201 and
Alt-0199, or Ctrl-' E in Word). The letter œ (or Œ) cannot be typed in any obvious way either.

Since French uses several diacritic marks, it's easier to get them wrong than in Spanish. For example,
"e" with grave, è, and "e" with acute, é, are often confused with each other by foreigners, even
though their main purpose is to indicate a difference in pronunciation. When spellchecking is enabled
and French is supported in it, such confusion will almost always be detected.

There was a large reform of the use of diacritic marks in French in the 1990s. Generally, their use
was reduced. Old texts and even old programs (e.g., spellcheckers) might still reflect the old rules.
The new rules are described in the document "Rectification de l'orthographe,"
http://www.academiefrancaise.fr/langue/orthographe/plan.html.

http://www.academiefrancaise.fr/langue/orthographe/plan.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.3. Transliteration and Transcription

A conversion between essentially different writing systems, such as writing Greek names in Latin
letters, operates at a higher level than the character level. It presupposes the existence of characters
and some methods of rendering them. For example, you could take some piece of Unicode-encoded
Greek text and replace the Greek letters with Latin letters according to some simple scheme. This
would produce a file that is Unicode-encoded, too, so that the scheme could be described as a
mapping from the set of Unicode characters into the same set. If the encoding is changed in this
context, it would be something logically quite distinct from the replacement operation. Thus, the
operation would be similar to modifying text with some editing commands, and generally outside the
scope of character set standards.

Conversions between writing systems produce, however, some specific problems in the use of
characters. The conversion schemes, especially those used in science, often use diacritic marks and
special characters. Writing Greek or Japanese in Latin letters may mean that you use letters like "o"

with macron, , which is more problematic than basic Latin letters. Writing Arabic in Latin letters
according to a scientific scheme requires apostrophe-like characters, which need to be distinguished
from similar-looking characters. Moreover, when considering how to automate conversions, it is
essential to distinguish between simple character-to-character conversions and more complicated
schemes.

The conversions discussed here need to be distinguished from adaptation of names and other words

from one language into another. For example, name of the capital of Russia, , can be
written in Latin letters as "Moskva," but many languages have their own form for the name, such as
"Moscow," quite independently of any conversion schemes. However, such adapted forms
(sometimes called exonyms) are mostly used for very common names only. The general trend
among cartographic and other authorities is to use original names of places, in latinized form when
needed, instead of adapting them in different ways to different languages.

7.3.1. Solutions to Readers, Problems to Implementers

Transliteration and transcription convert text from one writing system to another. For example, the

Modern Greek name Ηρ κλειο (for the capital of Crete) might be transliterated as Herakleio, H

rákleio, or rákleio, or transcribed as Iraklio. The transliterations correspond to the written form,
although in different ways, whereas the transcription tries to tell the pronunciation.

When the target writing system is a Latin script, transliteration or transcription is often
calledromanization or latinization. There are often technical reasons for using romanization: Latin
letters, especially the basic letters A to Z, are widely available on computer keyboards and character
encodings. You might even find Greek people communicating with each other in Greek using some
romanization, since their computers do not allow them to type and read Greek letters.

Transliteration and transcription make foreign names much easier to read to people who do not know

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the original writing system. They also make texts typographically more uniform. Even in English texts
written for people who know Greek well, it is customary to transliterate or transcribe Greek names
and other words, except perhaps in linguistic texts that discuss the Greek language itself.

In addition to convenience to readers, transliteration and transcription may help writers. It is easier
to work with English text when you need not consider the problems of using Greek letters. However,
this issue has lost some of significance.

In processing character data, transliteration and transcription are often problematic, since several
mutually incompatible schemes are used. Moreover, most schemes are not reversiblei.e., you cannot
always reconstruct the original form from a transliterated form, still less from a transcribed form.
This means that if you receive, say, data containing Greek words from different sources, you have a
big problem in unifying their spelling into any well-defined single system.

Since different transliterations and transcriptions are used, it is often a good idea to include the

original spelling of a word in parenthesese.g., "Then take the road to Iraklio (Ηρ κλειον)." If you
write a travel guide, your readers may appreciate such spellings even if they do not know the foreign
script. In science, such notes are often needed for exactness. This means that a document otherwise
in English and in Latin letters only might need to contain foreign letters, and perhaps to use a
Unicode encoding.

If you need to transliterate texts programmatically, the main problem is the choice of a
transliteration scheme. Can you use a simple, systematic scheme, or do you need to use a less
systematic but more widely understood scheme? Once a scheme has been decided on, the rest is
usually simple. Pure transliteration is just a simple one-to-one mapping that can be efficiently
implemented using a table. Other transliteration schemes may require some contextual
considerations, such as omitting a character at the end of a word but mapping it to a character
elsewhere.

7.3.2. Transliteration Converts Letters

Although the terminology varies, we use the word transliteration to denote a transformation that
replaces letters in an alphabet with letters of another alphabet and transcription to denote any other
transformation between writing systems. Often "transliteration" is used as a term that covers both
kinds of transformations.

There is no strict border between transliteration and transcription. For example, a pure transliteration
of Arabic would produce an almost unreadable result, since short vowels are normally not written in
Arabic. For practical reasons, most transliteration systems for Arabic express the implied short
vowels; therefore, their application requires good understanding of the text.

Sometimes the word "transliteration" is used to denote code conversion (transcoding), but such
usage is very confusing. Transliteration is often coupled with code conversions. For example, when
transliterating from Cyrillic to Latin script, it might be practical to change the data representation
from one 8-bit encoding to another. Yet transliteration is independent of character encoding:
transliteration is a mapping between abstract characters.

Transliteration does not always mean a simple one-to-one mapping from one alphabet to another. In
fact, most transliteration systems use digraphs or trigraphs (combinations of two or three letters) for

a single character in the source alphabete.g., "sh" for the Cyrillic letter sha, . They may also map
two or more distinct letters of the source alphabet to a single letter in the target alphabet, thereby

http://lib.ommolketab.ir
http://lib.ommolketab.ir

losing information of course. In transliterating Greek, for example, both omicron (ο) and omega (ω)
might be mapped to "o."

Most of the international transliteration schemes defined by ISO, the International Organization for
Standardization, are different: they strive for an ideal, one-to-one mapping. Consequently, they
typically require additional letters, often making heavy use of diacritic marks. This is one reason why
ISO schemes have not been used muchmostly just in some scholarly texts and to some extent in
cartography. On the other hand, such schemes are easy to implement in software, they require no
understanding of the text, they lose no information in the transliteration, and they are fully
reversiblei.e., the original spelling can be unambiguously constructed from the transliterated text.

For example, Table 7-3 shows the transliteration of a Ukrainian name, , in a few
systems. The ISO 9 scheme is very logical: each Cyrillic letter is mapped to one Latin letter, and the
result has six letters, just as the original. However, the result is unrecognizable to anyone who has
not separately learned this system. The other systems produce forms that are known to people in
some cultural environments and reflect the orthographies of different languages. English-speaking
people are used to understanding "sh" as a particular sound, the French recognize "ch" similarly, the
German "sch," and so on. If the transliteration systems get mixed, confusion arises.

Table 7-3. Sample transliterations of a Ukrainian name

Transliteration System (scheme)

Û enko ISO 9 (current, 1995 version)

Ju enko Previous version of ISO 9

Yushchenko Common system in English texts

Juschtschenko Common system in German texts

Iouchtchenko Common system in French texts

Jusjtjenko Common system in Swedish texts

Ju t enko Finnish standard

There are many transliteration tables as well as transliteration software available. There is a
collection of transliteration and transcription tables at http://transliteration.eki.ee/. They are in PDF
format and often contain a comparison of different transliteration systems.

The reliability and usefulness of transliteration tables varies greatly. In particular, the tables, even in
standards, often describe the mappings on paper only, identifying characters just by showing some
glyphs. Therefore, it can be difficult to identify them as Unicode characters. Although letters,
including diacritics, can usually be interpreted unambiguously, the same is not true for special
characters. This applies especially to apostrophe-like characters that have several interpretations.

Transliteration is widely used in libraries, which mostly apply schemes developed for bibliographic
use. These include the ALA-LC romanization tables of the U.S. Library of Congress,
http://www.loc.gov/catdir/cpso/roman.html. These tables cover several scripts, and they are applied
outside libraries, too. They use USMARC codes to identify characters, and these codes have defined

http://transliteration.eki.ee/
http://www.loc.gov/catdir/cpso/roman.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

mappings to Unicode numbers. The mappings can be found via
http://www.loc.gov/marc/specifications/.

Descriptions in the Unicode standard and elsewhere suggest the following interpretations of
transliteration standards and tables, at least in scientific transliteration:

In transliteration of Cyrillic texts, the soft sign (U+044C) is transliterated as the modifier
letter prime (U+02B9).

Similarly, the hard sign (U+044A) is mapped to the modifier letter double prime
(U+02BA).

In transliteration of Arabic texts, the hamza ء (U+0621) (or, in some systems, the alef ا ,
U+0627) is transliterated as the modifier letter right half ring (U+02BE).

Similarly, the ain (ayn) ع (U+0639) is mapped to the modifier letter left half ring (U+02BF).

In simplified transliterations, these characters are often replaced by the ASCII apostrophe, the ASCII
quotation mark, the right single quotation mark, or the left single quotation mark, respectively. In
even more simplified transliterations, these characters are omitted, or the single quotation marks are
replaced by the ASCII apostrophe.

7.3.3. Transcription Converts Sounds

In practice, transcription is usually based on some method of expressing sounds in some writing
system. This usually means converting text from one system to another, but it can also mean
recording spoken language as text, even for a language that is normally not written at all.

For example, in Russian, foreign names are usually transcribed. Instead of trying to replace Latin
letters with Cyrillic letters according to some scheme, the pronunciation is taken as the basis, and
then the word is written as you would write any Russian word. This means that the sounds are
mapped to their closest Russian equivalents. However, some double letters may be preserved to

reflect the Latin spelling; e.g., the name Scott would become , even though doubling the
consonant has no effect in Russian. In transcription, some sounds of English or other languages can
be interpreted in different ways. For example, Russian has no "w" sound, and Russian has a system

of vowels that is rather different from English. Thus, the name Walter may become or

. This example also illustrates what may happen if such a transcribed word is
transliterated to Latin script instead of recognizing it as an English name, for example; it would
become Valter, Valter, or Uolter.

Romanization of Chinese needs to be transcription, since the Chinese writing system is not alphabetic
at alli.e., there are no letters to start from. Different transcription systems have been developed. The
Wade-Giles system used to be common, but now there is a strong tendency to use the pinyin system
everywhere. The two systems are rather different, and neither of them corresponds well to the
English writing system. Instead, the letters and letter combinations denote sounds by special
conventions. For example, the Chinese name of the capital of China is "Pei-ching" in Wade-Giles,
"Beijing" in pinyin, but you really cannot guess the Chinese pronunciation from either of these.

In the Western world, pinyin is usually applied in a simplified form, omittingtone marks . Chinese is,

http://www.loc.gov/marc/specifications/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

however, a strongly tonal language where the tonei.e., the melody of a syllableplays a very important
role. The tone can be expressed in pinyin by using a diacritical mark on a vowel or, less satisfactorily,

with a superscript digit after the vowel. For example, the word "pinyin" itself should be written as "p

ny n" (or "pin1yin1"), where the macron on the vowels (or superscript 1 after the syllables) indicates
high level tone. Other tones are indicated with acute accent (high rising tone), caron (low dipping
tone), and grave accent (high falling), so that the shape of the diacritic suggests the nature of the
tone. When storing Chinese names in a romanized form in a database, it is probably best to store

them in full p ny n with diacritics, and drop the diacritics on output if needed. There's a service at
http://www.pin1yin1.com for checking the romanization, if you know how to input a name in Chinese
characters.

Transcription may require a thorough understanding of the language being processed and its
pronunciation. It is generally not possible to implement phonetic transcription without lexical
informationi.e., detailed data about the words of a language and their pronunciation. Outside
elaborated linguistic applications, it is often best to record the original form and the transcribed form
of a name separately, without assuming that one can be constructed from the other. Similarly,
recognizing transcribed names requires good understanding of the text.

7.3.4. Phonetic Transcription in IPA

The IPA is the most widely used system of phonetic writing. It is used for describing the pronunciation
of languages that have some writing system but also to express individual and contextual variation of
speech. Moreover, the IPA is used to write languages that have no ordinary writing systemi.e., those
that exist only in spoken form.

The abbreviation "IPA" stands both for "International Phonetic Association" and for "International
Phonetic Alphabet," which is the most important product of the association. In the latter meaning, the
IPA actually contains many writing principles such as the use of diacritic marks, not just a collection
of letters. Yet, as mentioned earlier, the IPA is not regarded as a script of its own. All the IPA letters
are classified as belonging to the Latin script. They are effectively caseless, and their shapes
resemble lowercase letters, and their names may carry the words "small letter."

The IPA is widely used in scientific contexts. Worldwide, it is also used in teaching foreign languages,
in dictionaries and grammars, and in pronunciation instructions in encyclopedias. Some IPA
characters have even been taken into use as letters in normal writing, when designing an
orthography for a previously unwritten language. In such situations, the letters usually have separate
lowercase and uppercase forms. For example, the Latin small letter schwa (U+0259) is originally
just an IPA character, denoting a neutral vowel, but due to its use in some orthographies, it has an
uppercase form as well: Latin capital letter schwa (U+018F).

In the English-speaking world, the public does not know the IPA very well, since dictionaries and
reference books generally use varying notations for pronunciation information. Often the notations
are based on the rules of English, with many additional conventions and added marks, so they might
not be more intuitive than the IPA. However, British publishers often use the IPA.

The IPA uses many basic Latin letters in meanings that correspond to their phonetic values in English
and in many other languages. However, to express sounds exactly and systematically, the IPA uses
many additional symbols as well. For example, the common British pronunciation of the word
"international" in English is [nt næ n l] when written in the IPA. The vowels are denoted by
unambiguous symbols, and the stress is indicated with a special symbol before a stressed syllable.

http://www.pin1yin1.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The French word "amber" is [~b] in the IPA. Here the tilde indicates nasalization. Diacritic marks
can be used to indicate detailed variants of pronunciation, but in nonscientific works, rather coarse
transcriptions are used.

The main problem with using the IPA on computers has been the lack of suitable fonts. Although
fonts that cover a practically useful part of the IPA are widely available, the commonly installed fonts
might be insufficient. Moreover, linguists have often used software that lacks Unicode support, or
they have for other reasons used tricky implementations of the IPA, typically with some ad hoc 8-bit
encoding. In many forms of communication, such as email and Internet discussion groups, it is
common to use some "IPA ASCII" systemi.e., some convention on representing the IPA characters
using ASCII characters only (e.g., letting @ stand for). One common "IPA ASCII" system is
described at http://www.kirshenbaum.net/IPA/.

On modern computers, the IPA can usually be used, with some caution. In addition to general
caveats on the recipients' ability to deal with rich character repertoires and Unicode encodings, there
are some technical details:

The stress mark mentioned earlier, modifier letter vertical line (U+02C8), does not belong to
some fonts that have otherwise relatively good IPA support. It is therefore common to use the
ASCII apostrophe ' (U+0027) instead.

The length mark, modifier letter triangular colon (U+02D0) is even more problematic. It is
often replaced by the ASCII colon : (U+003A). Although the symbols are rather different, no
ambiguity arises, since the colon is not used in the IPA.

All diacritic marks work more or less unreliably, although in most cases, a single diacritic on a
letter works sufficiently well.

The web site of the association, http://www.arts.gla.ac.uk/ipa/ipa.html, contains detailed information
about the IPA. In particular, the page "The International Phonetic Alphabet in Unicode,"
http://www.phon.ucl.ac.uk/home/wells/ipa-unicode.htm, is very useful if you need to write or
interpret IPA notations. The reason is that the original definition documents do not identify the IPA
symbols in Unicode terms.

7.3.5. Transcription Inside a Script?

Usually no transliteration or transcription is applied to a foreign word when both the original spelling
and the surrounding text use the Latin script. Thus, "Churchill" is "Churchill" even in languages that
use "ch" to denote a different sound (e.g., the "k" sound as in Italian) or do not use it all. Although
letters may have quite different phonetic values, it would just cause too much confusion to change
the spelling. However, there are some exceptions:

Diacritic marks are often omitted, though usually due to ignorance or technical difficulties rather

than conscious decisions. Thus, " gure" may become "Zigure."

Diacritic marks might even be replaced by other diacritic marks, which are more widely known

to the audience (or the writer) or easier to produce. For example, (i with macron) might be
written as î, which is often far easier to type. Such practices easily cause confusion, at least if

http://www.kirshenbaum.net/IPA/
http://www.arts.gla.ac.uk/ipa/ipa.html
http://www.phon.ucl.ac.uk/home/wells/ipa-unicode.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

not explained in the document.

Letters with diacritic marks are sometimes replaced with letter combinations. The most common
cases are probably "ae" for ä or æ, "oe" for ö or ø, "ue" for ü, and "aa" for å. These
replacements are more or less accepted for German, Danish, and Norwegian words.

Additional letters that do not belong to the basic alphabet are often replaced by other notations.

For example, in Icelandic names, the letters (eth) and (thorn) are often replaced with "d"
and "th." Such letters are officially regarded as (additional) Latin letters, but they look odd to
many. However, the real reason is often the writer's unwillingness to spend time to check how
to type the strange letters. This is also reflected by the common use of "ae" for æ and "oe" for
œ.

In some languages, foreign names are often transcribed so that they are written according to
the language's own system, even if both writing systems are Latin-based. For example, Turkish
uses the Latin script with some additions, but sometimes changes the spelling of foreign

namese.g., "Churchill" into "Çörçil." Similarly, the name is often written as " er il" in some
Slavic languages that use the Latin script.

Some widely known names have different forms in different languages. This mostly applies to
geographic names but also to names of kings and popes as well as first names of other famous
people. Thus, the city that Italians call "Venezia" is "Venice" in English, "Venedig" in German,
etc. This is really a different issue, since we are talking about the change of a word, not just
spelling. But there are borderline cases: sometimes just dropping a diacritic is all that happens
when a name is adapted to a language. Usually the difference is clear: "München" is a German
name, "Munich" is the English name for the city, and "Munchen" is just a misspelling.

Loanwords are usually, but not always, adapted to the language's own orthography. Sometimes
unadapted and adapted (and intermediate) forms coexist, such as "rôle" and "role" in English,
but orthography and style guides usually favor one of the alternatives. This, too, is about
adapting words, not just spelling, though it looks like transliteration, if only the spelling is
affected in particular cases.

The first two points imply that although we should try to be careful in using the right diacritic marks,
we need to be prepared to process data that does not contain them. Moreover, people inevitable
make mistakes in using diacritic marks: trying to be correct, they put such marks even where they
do not belong. Thus, in particular, string matching should often be made without regard to diacritic
marks. This is what most search engines do, for example, though they may have optional tools for
more specific searches, too.

When using the Cyrillic script, all foreign words are usually transcribed, even if the original spelling
uses the Cyrillic script. Thus, text in Bulgarian that mentions the name Yushchenko does not use the

original Ukrainian spelling but writes it according to Bulgarian orthography:

.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.4. Language Metadata

Metadata is data about data. For example, the string "elf" is text data, and we can associate with it
the metadata that the text is in English. This does not change the identity of characters in the data,
but it may affect the interpretation and processing of the data. If accompanied with metadata that
says that the string "elf" is in German, the correct interpretation would be that it is a numeral that
means "11" (the word is a cognate of English "eleven").

Normally metadata is invisible, when represented using a digital data format that has provisions for
metadata. In plain text, you cannot make a distinction between data and metadata. You can write
"This document is in English" if you like, but structurally that would be just part of the text. In
markup languages and in data formats used by word processors, metadata can be stored and
processed separately.

It is difficult to specify what constitutes a language, but in this context, "language" means definitely
"human language" as opposite to computer languages such programming, command, and data
description languages. Text in a computer language may be characterized as belonging to some
human language, to some extent. For example, for the purposes of speech synthesis, comments and
variable names in computer source programs need to be interpreted as belonging to some human
language.

7.4.1. Need for Language Information

In data processing, there are several situations where information about the language of text is
necessary or useful. Typical examples include spelling and grammar checks, speech synthesis, and
limiting searches to documents in a particular language. For example, if you are looking for
information about elves and therefore search for documents containing the word "elf," you will not be
very happy to see hits where the string "elf" appears as a German word that means "eleven."

Information about the language of text (either a document as a whole, or a larger or smaller part
thereof) could in principle be used for the following purposes, but beware that most of the uses are,
in most situations, just possibilities rather than reality:

Choice of fonts and glyphs (to suit language-specific typographic conventions, including
appropriate use of ligatures)

Spellchecks

Grammar and style checks

Restricting searches for texts in particular languages

Speech synthesis

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Presentation of text on Braille devices (as dot patterns, to be read with fingertips), since the
methods of such presentation are language-dependent

Automatic operations on texte.g., fixing punctuation to match the rules of a language, showing
synonyms or dictionary definitions of a word to the user, or automatically translating words or
fragments of text

Informing the user about the language (e.g., responding to a user action that corresponds to
the question "What's the language of this strange word?")

Hyphenation and language-sensitive line breaking in general

Language-dependent exceptions to collating(sorting) rules should not depend on the language of the
text being sorted. Instead, they should depend on the locale setting (see Chapter 11). For example,
the index of a book should be alphabetized according to the rules of the language of the book, not by
the rules of the languages of the words in the index.

In the Unicode context, the importance of language information is increased by the unification
principle (discussed in Chapter 4). Since Unicode, when encoding text, often loses the distinction
between variants of a character as used in different languages, it becomes important to be able to
indicate the language. This is particularly relevant to East Asian languages. The same string of
Unicode characters should be rendered differently depending on whether it is Chinese or Japanese,
and this cannot generally be deduced from the characters themselves.

In practice, the user can make the choice of language-dependent presentation "manually" by using a
program command or switch. However, this won't work for multilingual documents containing a
mixture of Chinese and Japanese, for example. Although such documents are mostly scholarly, they
might appear, for example, in user interfaces for language selection as well. This calls for a method
for detecting language changes within a document, from markup or otherwise. It needs to be said,
though, that often the typographic context dominates. For example, Chinese quotations in Japanese
dictionaries usually use Japanese-style characters.

7.4.2. Methods of Determining Language

The language of a document or a part of a document can be determined from:

Human user's view of the textual content

Automatic analysis of the contenti.e., recognition of language

Internet message headers for the document

Language markup, such as the lang attribute in HTML or xml:lang attribute in XML

Language tag characters, which are defined in Unicode, but not used much

For example, a speech synthesizer might start reading a document, but then the user realizes that
it's all wrong, and he changes the program's mode so that it starts reading by French rules. Some
speech synthesizers are able to read different languages, but they usually need to be told which
language the text is in.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Automatic analysis is widely applied by search engines like Google and AltaVista. They can search for
documents in a particular language, and for this, they need to recognize the language of each
document. The methods they use have not been disclosed to the public, but they are probably simple
statistical methods. Word processors, too, are often able to recognize the language and select their
operating mode such as hyphenation algorithm or spellcheck vocabularies and methods accordingly.
There are even "language guesser" demos and services on the Web. Typically, one line of text is
sufficient for guessing the language rather well.

Unfortunately, search engines seem to be immune to explicit metadata about language. If Google
misanalyzes your Norwegian page as Danish (thereby preventing people from finding it when they
restrict the search to pages in Norwegian), there is no simple way to tell Google to reclassify it. It
may help to check the spelling of your text and to make sure that there are not too many foreign
words (e.g., foreign names) near the start of the document.

Internet message headers are not used much for determining language. The Content-Language
header has been defined for indicating the language of the intended audience, and some authoring
software generates it. However, "consumers" like browsers do not use it, except in rare cases and
inconsistently.

7.4.3. Language Markup

Language markup has been discussed much in different specifications and guides, but it is not widely
used in practice yet. It has the obvious drawback that it can only be used in markup systems, not in
plain text, and only in markup systems that have been designed with language markup in mind.
Moreover, software for processing marked-up text usually makes little or no use of language markup.
For example, if Google misanalyzes your Danish web page as being in Norwegian, you cannot fix this
by explicitly declaring its language in markup. Yet some programs, such as word processors and web
browsers, make some use of language markup.

7.4.3.1. Attributes for language in HTML and XML

In HTML markup, the attribute for indicating language is lang, whereas in XML, it is xml:lang. In
XHTML, you can use both. The attributes can be used for practically any markup element for which it
could possibly make sense to declare its language. There are also methods for language markup in
other data formats, such as XSL, SVG, SMIL, RTF, and DocBook, but here we will concentrate on the
common case of HTML and XML.

The value of the attribute is a language code, according to a system that will be explained shortly.
Mostly the language code is just a two-letter code, such as "en" for English, "fr" for French, and "de"
for German (derived from Deutsch, the name of the language in the language itself).

For example, if you have the tag <html lang="en"> near the start of your HTML document, you are
saying that the textual content of your document is in English, except perhaps for inner elements
that have their own lang attribute. If the document contains a block of quoted text in French, you
can use the markup <blockquote lang="fr">...</blockquote> for it.

There is also a defined way of specifying the language of a document in Dublin Core (DC) metadata,
see http://www.dublincore.org. The DC metadata can also be embedded into HTMLe.g., <meta

http://www.dublincore.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

name="DC.Language" content="en">. However, DC metadata is not used much, and it only applies to a
document as a whole.

Language markup is by essence logical (descriptive), not prescriptive markup. It simply says, for
example, "this is in French," instead of giving any specific processing instructions. Programs may use
the information the way they like, or ignore it. A good implementation will use language markup in
any operations where language might matter. For example, if a program performs word division or
generates speech, it is natural to expect that it uses the information about language given in markup,
if available. Yet, it is possible that the program you use can perform language-specific word division
or language-sensitive speech generation, yet lack support for French there. You might expect that at
least a warning is given, but usually your expectations would not be met.

The working draft "Authoring Techniques for XHTML & HTML Internationalization: Specifying the
language of content" at http://www.w3.org/TR/i18n-html-tech-lang/ discusses several problems of
language markup and its implications.

7.4.3.2. The impact of language markup

Despite all the potential uses for information expressed in language markup, web browsers mostly
ignore it or use it for font selection only. Actual usage includes the following:

Several browsers recognize the language of text for the purposes of choosing the font to be
used when a document does not specify the font or the text contains a character that is not
present in the specified font.

Some speech-based browsers recognize some language codes and are able to select the correct
reading mode automatically.

Some browsers show the language in an element in a pop-up window, if the user requests
information about an element (typically, by right clicking on it and selecting a suitable action).

Some browsers support language selectors in CSS stylesheets, allowing easier creation of styles
that display different languages differently.

Some online translator programs, when asked to translate an HTML document, make some use
of language markup (especially in the root element, <html lang="...">) to recognize the source
language.

The font selection features imply that it is generally not useful to use language markup for

transliterated or transcribed text. Logically, the name remains a Russian
word if transliterated as Dostoyevsky (or in some other way). Yet, if you use language markup like
lang="ru" for it, browsers may display it in a font different from the normal font of the text, since
they use a font assigned to Russian text. This could make the name stand out in a distracting way.

7.4.3.3. Granularity of markup

Language markup is very easy in simple cases. You just add an attribute to the tag for the root
element of a document (in HTML, the <html> tag). If you have quotations in another language, you

http://www.w3.org/TR/i18n-html-tech-lang/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

add language markup for them. The same applies to names of books and other longish fragments of
text. However, as you get down to the level of individual words, what should you do with words like
"status quo" (that's Latin, isn't it?) or "fiancé" (French, even if used in English text?) or with proper
names of people and things? For example, the Web Accessibility Initiative (WAI) recommendations
say that you should indicate all changes of language in a document, and this is a Priority 1
requirement. Yet, the WAI documents themselves don't do that for proper names.

Thus, language markup is easy for large portions of text and doesn't take much time, but in such
cases, programs could well deduce the language by heuristic methods. Using language markup for
very small fragments of text, like words and even parts of a word, would take much time and
markup. Yet, it would be essential for detecting changes in language, since a program can hardly
deduce from a lone word that it is in a language different from that of the surrounding text. If a
document in English mentions that the French word for "garlic" is "ail," it is unrealistic to expect that
programs will recognize this (without any markup) and treat that "ail" as a French word and not an
English word.

Somewhat similarly, it might be impossible to deduce from a medium-size piece of text whether it is
supposed to be U.S. English or British English. The text might contain spellings like "colour" and
"favor," but how could a spellchecker know which one is right and which one is misspelled. The
language would need to be expressed in markup using a more specific code than "en" (which
indicates English in general), namely "en-US" for U.S. English or "en-GB" for British English. Although
this would be easy if the author of a document knows it, you would need to add extra markup if your
document in U.S. English quotes British authors, or vice versaand most writers hardly think that they
need to indicate the language of quoted text if they quote text in English in a document in English.

The paradox of language markup: it's easy when it's not needed.

Taken to the extremes, or applied logically, language markup would apply even to parts of words in
many cases. After all, if you take, say, an English word and use it in a language that uses suffixes for
inflexion, the suffix and the base word logically belong to different languages. For example,
"Smithin," the genitive form of "Smith" when used in Finnish, would be marked up as Smithin inside a document in Finnish. This would be awkward to do even with
good authoring tools, and it could in practice make things worse. A speech synthesizer, for example,
might pause between the base word and the suffix, when it switches mode.

There are many other problems in using detailed language markup. Thus, it is best to limit it to major
parts of a document only, such as expressions longer than a few words.

7.4.4. Language Codes

In order to express the language of some text in a machine-processable way, we need a system of
language codes . Preferably, the codes should be easy to recognize in a program, but most
importantly, they need to be systematic. We cannot really work with information about language
expressed in everyone's own style and language, like "English," "anglais," or "engl."

7.4.4.1. The confusion of codes

Just as there is a confusion of languages in the world, there is a confusion of language codes. Several
incompatible systems are used to encode information about language in a short identifier, typically a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

two- or three-letter alphabetic code or a number. To some extent, the codes can be mapped to each
other. However, there is no universally accepted list of languages, or anything close to that.
Language code systems in use include:

The ISO 639 standard (see below), with two- and three-letter alphabetic codes as well numeric
codes

The Ethnologue system, also known as SIL code, with three-letter codes; see
http://www.ethnologue.com

MARC Code, used in libraries; see http://www.loc.gov/marc/languages/

Systems used in various computing environments; see the draft list "Language Codes: ISO 639,
Microsoft and Macintosh," available at
http://www.uni c o d e . o r g/unicode/onlinedat/languages.html, and the "List of
Windows XP's Three Letter Acronyms for Languages," found at
http://www.microsoft.com/globaldev/reference/winxp/langtla.mspx

The definitions of language code systems typically identify a language by its name in English (and
perhaps in French, too). However, the same name might be used about different languages in
different code systems. One code's language might be another code's dialect, or another code's
group of languages. There isn't even a universally approved operative definition of what constitutes a
language in principle. The oft-quoted statement "a language is a dialect with an army and a
navy"which exists in different variants; e.g., requiring an air force as wellmight describe some of the
social and political aspects involved, but it isn't really a serious definition.

7.4.4.2. ISO 639

Frustrating as the confusion might be, there is luckily some uniformity in those language codes that
are relevant at the character level. Such codes are generally based on the ISO 639 family of
standards, often augmented by additional definitions and principles given in RFC documents about
the use of language codes on the Internet.

ISO 639, titled "Codes for the representation of languages," currently has two parts. ISO 639-1
defines two-letter codes for a relatively small set of languages, and ISO 639-2 defines three-letter
codes for the same languages and many additional languages. There is however work in progress to
extend the standard with new parts, which is shown in Table 7-4. In particular, ISO 693-3 is meant
to cover all languages of the world, which means thousands of languages as opposed to hundreds of
languages as in ISO 693-2. This is expected to be largely based on Ethnologue codes, for languages
that have not yet been covered by existing ISO 693 codes.

Table 7-4. Parts of ISO 639, current and planned

Part Content Notes

ISO 639-1 Alpha-2 code Example: "en"

http://www.ethnologue.com
http://www.loc.gov/marc/languages/
http://www.uni c o d e . o r g/unicode/onlinedat/languages.html
http://www.microsoft.com/globaldev/reference/winxp/langtla.mspx
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Part Content Notes

ISO 639-2 Alpha-3 code Example: "eng"

ISO 639-3 Alpha-3 code for comprehensive coverage of languages Planned, 2006?

ISO 693-4 Implementation guidelines and general principles Planned, 2007?

ISO 693-5 Alpha-3 code for language families and groups Planned, 2006?

For 22 languages, ISO 639-2 defines two three-letter codes, bibliographic (ISO 639-2/B) and
terminological (ISO 639-2/T), such as "fre" and "fra" for French. In practice, this does not matter
much, since these languages also have two-letter codes (such as "fr") defined in ISO 639-1. Policies
on language codes on the Internet favor ISO 639-1 codes.

By ISO 639-2, Alpha-3 codes from "qaa" to "qtx" have been reserved for local use. Thus, they will
not be assigned to languages in a standard, and they can be used for special purposes by
agreements between interested parties.

The registration authority for ISO 639-2 is the U.S. Library of Congress, and the up-to-date list of
codes is at http://www.loc.gov/standards/iso639-2/. The list contains the ISO 639-1 codes as well.
Some widely used ISO 639-1 codes are listed in Table 7-5.

Table 7-5. ISO 639-1 codes for some languages

Language Code Comments

Afrikaans af Spoken in South Africa

Arabic ar Exists in several forms that differ substantially by country

Chinese zh Much variation by dialect and writinge.g., zh-Hant and zh-Hans

Dutch nl Spoken in the Netherlands, in Belgium, etc.

English en Difference between en-US and en-GB relevant in spelling

Esperanto eo The most widely used constructed (artificial) human language

French fr Some variation existse.g., between fr-FR and fr-CA (Canadian)

German de Orthographic differences exist between language forms

Greek el Modern Greek (Ancient Greek has three-letter code "grc")

Hebrew he Written in Hebrew script

Hindi hi Spoken in India

Italian it Spoken in Italy

Japanese ja Written using different scripts

Korean ko Currently mostly written in specific Korean script, Hangul

Latin la Used for ancient, medieval, and modern Latin

Polish pl Spoken in Poland; a Slavic language written in the Latin script

ISO 639-2 Alpha-3 code Example: "eng"

ISO 639-3 Alpha-3 code for comprehensive coverage of languages Planned, 2006?

ISO 693-4 Implementation guidelines and general principles Planned, 2007?

ISO 693-5 Alpha-3 code for language families and groups Planned, 2006?

For 22 languages, ISO 639-2 defines two three-letter codes, bibliographic (ISO 639-2/B) and
terminological (ISO 639-2/T), such as "fre" and "fra" for French. In practice, this does not matter
much, since these languages also have two-letter codes (such as "fr") defined in ISO 639-1. Policies
on language codes on the Internet favor ISO 639-1 codes.

By ISO 639-2, Alpha-3 codes from "qaa" to "qtx" have been reserved for local use. Thus, they will
not be assigned to languages in a standard, and they can be used for special purposes by
agreements between interested parties.

The registration authority for ISO 639-2 is the U.S. Library of Congress, and the up-to-date list of
codes is at http://www.loc.gov/standards/iso639-2/. The list contains the ISO 639-1 codes as well.
Some widely used ISO 639-1 codes are listed in Table 7-5.

Table 7-5. ISO 639-1 codes for some languages

Language Code Comments

Afrikaans af Spoken in South Africa

Arabic ar Exists in several forms that differ substantially by country

Chinese zh Much variation by dialect and writinge.g., zh-Hant and zh-Hans

Dutch nl Spoken in the Netherlands, in Belgium, etc.

English en Difference between en-US and en-GB relevant in spelling

Esperanto eo The most widely used constructed (artificial) human language

French fr Some variation existse.g., between fr-FR and fr-CA (Canadian)

German de Orthographic differences exist between language forms

Greek el Modern Greek (Ancient Greek has three-letter code "grc")

Hebrew he Written in Hebrew script

Hindi hi Spoken in India

Italian it Spoken in Italy

Japanese ja Written using different scripts

Korean ko Currently mostly written in specific Korean script, Hangul

Latin la Used for ancient, medieval, and modern Latin

http://www.loc.gov/standards/iso639-2/
http://www.loc.gov/standards/iso639-2/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Language Code Comments

Polish pl Spoken in Poland; a Slavic language written in the Latin script

Portuguese pt Orthographic differences between pt-PT and pt-BR (Brazilian)

Russian ru Written in the Cyrillic script

Spanish es Spoken in Spain, Latin America, and elsewhere

Vietnamese vi Currently mostly written in Latin letters, with many diacritics

7.4.4.3. Language codes on the Internet

In 1995, RFC 1766 was issued under the title "Tags for the Identification of Languages." Here "tag"
really means "code." The idea was to specify that an ISO 639 conformant language code is used as
the primary code, optionally followed by a hyphen and a subcode, which is usually a two-letter
country code as defined in ISO 3166 .

ISO 3166 defines code systems for countries and some other territories. Among the systems, the
two-letter alphabetic code (e.g., "FR" for France) is most widely used. Usually, but not always, this
code coincides with the code used in the two-letter code of the Internet domain of the country (e.g.,
".fr").

Both language codes and country codes are case-insensitive. However, the recommendation is to
write language codes in lowercase, country codes in uppercase. For example, the language code for
Italian is usually written as "it," whereas the country code for Italy is written "IT." As in this example,
a language code is often the same as the country code for a country where the language is common.
There are many exceptions, though. For example, Chinese is "zh" but China is "CN."

Thus, for example, "en-US" means English as spoken in the U.S., and "en-GB" means British English,
or English as spoken in the United Kingdom of Great Britain and Northern Ireland, commonly known
as the U.K. Note that the ISO 3166 country code is "GB," while the Internet domain for the U.K. is
".uk."

Although some primary language codes are the same as country codes, the two
code systems are separate. In general, there is no one-to-one mapping
between languages and countries.

Several Internet protocols refer to RFC 1766, but the references should probably be interpreted as
referring to the newest definition of language codes. In 2001, RFC 1766 was superseded by RFC 3066
. There is work in progress to create the successor of RFC 3066, see
http://www.w3.org/International/core/langtags/rfc3066bis.html.

The general structure of language codes according to RFC 3066 is the following: a language code
consists of a primary code ("primary subtag") and optionally one or more additional codes
("subtags"), each preceded by a hyphen-minus character "-". In practice, an underline is often used
as a separator instead of a hyphen-minuse.g., "en_US"since in many contexts, the syntax of codes
does not allow a minus-hyphen. The principles on primary language codes according to RFC 3066 are
the following:

Polish pl Spoken in Poland; a Slavic language written in the Latin script

Portuguese pt Orthographic differences between pt-PT and pt-BR (Brazilian)

Russian ru Written in the Cyrillic script

Spanish es Spoken in Spain, Latin America, and elsewhere

Vietnamese vi Currently mostly written in Latin letters, with many diacritics

7.4.4.3. Language codes on the Internet

In 1995, RFC 1766 was issued under the title "Tags for the Identification of Languages." Here "tag"
really means "code." The idea was to specify that an ISO 639 conformant language code is used as
the primary code, optionally followed by a hyphen and a subcode, which is usually a two-letter
country code as defined in ISO 3166 .

ISO 3166 defines code systems for countries and some other territories. Among the systems, the
two-letter alphabetic code (e.g., "FR" for France) is most widely used. Usually, but not always, this
code coincides with the code used in the two-letter code of the Internet domain of the country (e.g.,
".fr").

Both language codes and country codes are case-insensitive. However, the recommendation is to
write language codes in lowercase, country codes in uppercase. For example, the language code for
Italian is usually written as "it," whereas the country code for Italy is written "IT." As in this example,
a language code is often the same as the country code for a country where the language is common.
There are many exceptions, though. For example, Chinese is "zh" but China is "CN."

Thus, for example, "en-US" means English as spoken in the U.S., and "en-GB" means British English,
or English as spoken in the United Kingdom of Great Britain and Northern Ireland, commonly known
as the U.K. Note that the ISO 3166 country code is "GB," while the Internet domain for the U.K. is
".uk."

Although some primary language codes are the same as country codes, the two
code systems are separate. In general, there is no one-to-one mapping
between languages and countries.

Several Internet protocols refer to RFC 1766, but the references should probably be interpreted as
referring to the newest definition of language codes. In 2001, RFC 1766 was superseded by RFC 3066
. There is work in progress to create the successor of RFC 3066, see
http://www.w3.org/International/core/langtags/rfc3066bis.html.

The general structure of language codes according to RFC 3066 is the following: a language code
consists of a primary code ("primary subtag") and optionally one or more additional codes
("subtags"), each preceded by a hyphen-minus character "-". In practice, an underline is often used
as a separator instead of a hyphen-minuse.g., "en_US"since in many contexts, the syntax of codes
does not allow a minus-hyphen. The principles on primary language codes according to RFC 3066 are
the following:

http://www.w3.org/International/core/langtags/rfc3066bis.html
http://www.w3.org/International/core/langtags/rfc3066bis.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Any two-letter primary code shall be as defined in ISO 639-1.

Any three-letter primary code shall be as defined in ISO 639-2. Such codes must not be used
for languages that have a two-letter code (e.g., "eng" is not allowed, since English has the ISO
693-1 code "en").

The primary code "i" is reserved for language codes registered at the Internet Assigned
Numbers Authority (IANA). Such registrations have not been made much. Codes so registered
should not be used, if an ISO based code is available.

The primary code "x" can be used by agreements between interested parties.

No other primary code shall be used.

The rules for the secondary code ("second subtag") in a language code are:

No one-letter code shall be used.

Any two-letter code shall be a country or other territory code as defined in ISO 3166.

A code of length three to eight may be registered at IANA. It may indicate a dialect or other
variant. The registry is at http://www.iana.org/assignments/language-tags.

Codes longer than eight characters should not be used.

In practice, only a few combinations of a primary code and a secondary code have practical
significance at present. Although the structure of language codes permits more complicated codes,
such as de-AT-1996 (Austrian variant of German, orthography as reformed in 1996), they have even
less use. However, any software that processes language codes should be prepared to parse a
structured code, instead of just performing simple string matching against primary codes like "en,"
"fr," etc.

This work on the development of language codes as used on the Internet will probably result in some
additional specific rules on the use of additional codes. In particular, several additional codes could be
used according to the following principles:

The additional codes, if present, would appear in the order language-script-region-variant-
extension-privateuse.

Additional codes may be omitted, and mostly the lengths of codes resolve any ambiguities. For
example, "en-US" has language and region only, with the script omitted (implied).

The script can be indicated by using a four-letter code. However, it should be omitted (implied)
for languages that are normally written in one script only. There will be a registry of such cases.
For example, "en" implies the Latin script, "Latn," and the code "en-Latn" should not be used.
On the other hand, it would be adequate to use "ru-Latn" for transliterated Russian text, though
this would still be vague, since you would not be able to express the transliteration scheme
used.

The region code can be a two-letter country or territory code (as by ISO 3166) or a three-digit
code, to be interpreted according to an IANA registry that contains a subset of numeric codes

http://www.iana.org/assignments/language-tags
http://lib.ommolketab.ir
http://lib.ommolketab.ir

for areas (such as continents) according to a system developed by the United Nations.

Variant codes can be used for well-recognized variants of a language, such as dialects. They are
at least five characters long if they start with a letter and at least four characters long if they
start with a digit. For example, in "de-1996" the code "1996" identifies the orthographic variant
of German defined by the reform in 1996. Specifying this variant, or the "1901" variant
(referring to the older orthography), for German can be essential to having spellchecks
performed as intended. (At present, you use settingsapplicable to the entire documentof a word
processor to select between such orthographic variants, if it supports them at all.)

Extension codes are application-oriented and start with a code consisting of a single letter. A
registry is to be set up for extension codes.

Private use codes indicate distinctions in language important in a given context by private
agreement and they start with a code consisting of the letter "x." Thus, in the code "en-GB-a-
some-stuff-x-foobar," "a-some-stuff" is an extension part, and "x-foobar" is a private use part.

7.4.4.4. Language codes and user interfaces

Language codes are based on names of languages, although often on the English name rather than
the name in the language itself. When presented to users, language codes should preferably be
mapped to localized language namesi.e., names in the language that the user prefers. For such
purposes, the CLDR database (discussed in Chapter 11) contains localized names for languages.

In practice, user interfaces like language selection menus often identify the languages either by
English names or by two-letter ISO 639 codes, or both (as in Figure 7-2 or on the main page of the
European Union web site http://www.eu.int/). Short codes are used especially in contexts where
several languages need to be expressed compactly. Sometimes flags of countries are used, raising
many objections. For example, on the page http://www.google.com/language_tools, flags are used
adequately to indicate countries, whereas the choice of language is by language name.

The most logical method for selection between versions of documentation in different languagesfor
example, in a document that acts as an entry page onlywould be to use the name of each language
in the language itself. Of course, this often requires a rich repertoire of characters. It also raises the
problem that people get confused with the mixture of languages, especially if they see "strange
characters" and cannot easily figure out what the information is about. Ordering the languages is
difficult too; often they are ordered by the ISO 639 code.

7.4.5. Language Tags in Unicode

There are special characters for language tagging in Unicode, but their use is strongly discouraged, in
general. Language tag characters are control characters that contain metadata about text. They are
invisible, although they may indirectly affect the rendering of normal characters. They are meant for
use in plain text (as opposed to HTML or XML, for example) and in special circumstances only.

The block Tags, U+E0000..U+E007F, is used for the purpose. It contains clones of ASCII characters,
defined as invisible tag characters and used to indicate language using language codes such as "en"
or "en-US." For example, to indicate that subsequent text is in English, you would use the two
characters U+E0065 U+E006E (clones of "e" and "n"). Any software that does not recognize

http://www.eu.int/
http://www.google.com/language_tools
http://lib.ommolketab.ir
http://lib.ommolketab.ir

language tag characters probably behaves oddly upon encountering theme.g., trying to render them
visibly, instead of just ignoring them.

There is a free utility LTag for constructing language tags, to be used with plain text editors in
Windows. It is available from http://users.adelphia.net/~dewell/ltag.html.

http://users.adelphia.net/~dewell/ltag.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.5. Languages and Fonts

Although languages using the same script may have different typographic conventions and practices,
setting the language of text (in markup or with a word processor command) will usually not affect the
visible rendering of text. When desired, such typographic issues need to be handled at the font level.
This typically means that you select the font so that its typographic features are suitable for the main
language of your text. However, most widely used fonts are intentionally rather "neutral." In
OpenType technology, it is possible to have language-dependent variants of a character as different
glyphs within the same font. Software that makes use of such possibilities is still rare.

7.5.1. Example: Shape of the Acute Accent

In Polish typography, the acute accent is more vertical than the acute accent used, for example, in
French. It is also positioned differently: more to the right. Commonly used fonts typically make
compromises but are closer to the French typography. Compare, for example, the French-style é of
Times with the mixed-style é of Georgia and the rather Polish style é of Arial. In practice, selecting a
font on such grounds is seldom possible, since there are so many other issues to consider. However,
it is one criterion to be considered.

The situation is so frustrating to some people that they claim that the Polish diacritic is not an acute
accent at all but a separate diacritic, "kreska." See, for example, the illustrated description at
http://www.twardoch.com/download/polishhowto/kreska.html. However, it is unlikely that Unicode
will be amended by the kreska. This means that the difference cannot be made at the character level.

In some distant future, we might be able to use fonts that have acute accents of different shapese.g.,
Western, Polish, and Greeksimply by setting the language of the text. At present, don't expect
anything like that to happen. There are, however, issues in East Asian languages that can sometimes
be handled by making language-dependent font choices, to some extent.

7.5.2. Chinese Characters and Language Information

Due to the nature of the Chinese writing system and its unification in Unicode, it is in principle useful
to indicate the language of text containing Chinese-Japanese-Korean (CJK) ideographs. This allows
the selection of appropriate glyphs as intended, either by the choice of a font or by the choice of
glyphs within a font that supports variation by language.

For Chinese, there are two major writing systems, called "Traditional" and "Simplified." The latter is
much more common especially in mainland China. In addition to simplifying the shapes of many
characters, it removes some distinctions made in the Traditional script by mapping two or more
characters into one. For an illustrated explanation, see http://people.w3.org/rishida/scripts/chinese/.

The CJK ideographs share a common origin but may differ between the languages. The unification

http://www.twardoch.com/download/polishhowto/kreska.html
http://people.w3.org/rishida/scripts/chinese/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

process recognized some differences as so essential that different code points were assigned for
characters that originate from one old Chinese character. In such cases, it is of course an author's
responsibility to use the correct code points; font settings will not help. However, most differences
were deemed typographic only. In such cases, a reader is expected to recognize a character in any of
the variants (most important, Japanese, Chinese Traditional, and Chinese Simplified). Despite this, it
is natural to try to make the text appearance correspond to the user's expectations.

In practice, authors mostly decide on the representation of CJK ideographs by selecting a specific
font. In particular, when setting the style of some element in a word processor, you might see
separate settings for "Asian" or "East-Asian" and other text. There you can select a font that is
suitable for the language you are using. In web authoring, you could similarly set a specific font, or a
list of alternative fonts, in a stylesheet.

Although explicit font settings are still often the most effective way, there are some problems with
them. The author's font choice might be ignored or overriddene.g., because the document has been
sent to a computer that lacks the chosen font. The user may dislike a font and may wish to override
author-supplied font settings. Moreover, setting a specific font normally means setting it by the
name, and many fonts exist in different versions (with different character coverage) under the same
name.

In web authoring, you can set the language of text in markup, instead of or in addition to suggesting
specific fonts. The idea is that browsers may then map different languages to different fonts.

For Japanese and Korean, there is no fundamental problem: you would use language codes "ja" and
"ko," respectively. For Chinese (code "zh"), things are different, since it is relevant to indicate the
difference between the writing systems, "Traditional" and "Simplified." Usually a font that contains
CJK characters has them as according to one of these systems, or as in Japanese, or as in Korean.

The language codes "zh-CN," "zh-TW," and "zh-HK" have often been used to specify the version of
Chinese used. The real purpose has usually been to specify Simplified

Figure 7-3. Effect of language markup on CJK characters on Firefox

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chinese when using "zh-CN" and Traditional Chinese in the other cases. The reason in that in
mainland China (code CN), the Simplified system is normally used, whereas in Taiwan (code TW) and
Hong Kong (code HK), the Traditional system is more common.

It is in principle more adequate to use script codes, since the issue is really about scripts, not
territories. The codes "zh-Hans" and "zh-Hant" denote Simplified and Traditional Chinese,
respectively. Modern software often recognizes them, though some programs might recognize only
the previously mentioned notations with territory codes. As you can guess, "s" stands for Simplified,
"t" stands for Traditional; "Han" is one of the names of the Chinese writing system.

The potential effect of language markup is illustrated in Figure 7-3, which shows how language
markup alone (with no font settings on a web page) may affect the display of CJK ideographs. You
may need to take a close look at the ideograph glyphs to see how they differ. In this case, the
browser, Mozilla Firefox, uses Japanese glyphs by default. The actual fonts used depend on the
settings of the browser.

The effect of language markup on the rendering of CJK ideographs depends on several things,
including the browser, its font settings, and its internal logic in selecting glyphs. See some data on
this at http://www.w3.org/International/tests/results/langandcjkfont.

At the end of Chapter 1, we mentioned how browsers may let the user select different fonts for
different scripts. The script concept used there is not the same as the script concept described in this
chapter. Rather, it involves the script proper, the encoding of the page, and other factors. One of the
factors might be the script as declared in HTML markup, using, for example, the attribute lang="zh-
Hans". Such markup may enable the automatic selection of different fonts for different parts of a
document. It is however questionable whether this is useful. For example, a Japanese user might
prefer seeing even Chinese text written using Japanese glyphs.

http://www.w3.org/International/tests/results/langandcjkfont
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Character Usage
This chapter describes different character blocks and collections that are practically important,
especially in the Western world. The first section is of a more generic nature and discusses the
relationship of character standards, orthography, and typography. All the Unicode blocks are briefly
characterized to give an overview, but the emphasis is on ASCII, different Latin supplements,
General Punctuation, and mathematical and technical symbols.

For information on ideographic characters and processing of East Asian
languages, see Ken Lunde's CJKV Information Processing (O'Reilly).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.1. Basics of Character Usage

The use of characters has many aspects, but here we are mainly interested in selecting the most
suitable character, when there is a choice between similar-looking characters. The choice may affect
the appearance of text, but also the processing of text.

8.1.1. Orthography Sets Rules for Writing

Orthography, or "correct writing," sets rules for using characters. This is largely a matter of writing
words correctly, according to rules that some authority has set, or according to established habits
and conventions. You might use dictionary and spellcheckers for this. But there are also rules that
relate to grammar rather than dictionaries. For example, English orthography has rules for
quotations, and different forms of English have somewhat different rules. In U.S. English, you usually
"quote," but in British English, you normally 'quote' with single quotation marks.

Although the orthography rules themselves are beyond the scope of this book, there are issues that
relate to the identity and coding of characters. For example, the rules of a language might say that a
dash is used in some contexts, such as a range notation "040." The rules might not identify what
"dash" means, and they might even explicitly leave the length of a dash unspecified, to be regarded
as a typographic issue. For the purposes of writing text on a computer, you simply have to decide on
the identity of a dash. In coded character sets, there is no dash as such. You need to use the em
dash, the en dash, or some other specific dash character. Modern orthographic guidelines resolve
such issues.

8.1.2. Typography Is About Appearance

Typography is about typesetting and other tuning of text appearance. Typography deals with fonts,
spacing, and line length, for example. Typographic rules suggest, for example, that an expression like
"040" should have some small spacing on both sides of the dash, so that it does not touch the
surrounding digits. Usually this does not mean the insertion of any characters. Instead, you might
use program-specific tools, such as those mentioned in Chapter 2.

In many writing systems, typography is an essential part of writing, not just optional fine-tuning. In
English, we may worry about fonts, word division, etc., or we might just unconsciously accept the
default settings of a program. Arabic writing, on the other hand, requires the use of appropriate
forms for each character according to its immediate context. In typesetting mathematical texts,
typography is often essential for readability and understandability. You may need to combine
characters from different fonts, and you need to make sure that the intended meaning is clear in
spite of this.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.1.3. Liberal in What You Accept

An old principle in Internet protocol design is "be conservative in what you send, liberal in what you
receive." This was formulated in 1981 as follows by Jon Postel in RFC 791:

The implementation of a protocol must be robust. Each implementation must expect to
interoperate with others created by different individuals. While the goal of this specification is to
be explicit about the protocol there is the possibility of differing interpretations. In general, an
implementation must be conservative in its sending behavior, and liberal in its receiving
behavior. That is, it must be careful to send well-formed datagrams, but must accept any
datagram that it can interpret (e.g., not object to technical errors where the meaning is still
clear).

The principle applies to characters and strings as well as datagrams (certain types of messages), and
between programs as well as in Internet communication. The idea is that you should play strictly by
the rules but not assume that others always do so.

For example, consider the expression of a temperature in centigrade (degrees Celsius). By
international standards, the orthographically correct way is to use a space between and the number
and the degree sign and to use the character degree sign U+00B0 followed by the letter C, as in
"42 °C." Moreover, you should prevent line breaks between the number and the unit, by using a no-
break space or by other tools.

However, when reading or otherwise processing data, you should expect to see different temperature
notations, such as "42°C" or "42 C." The variation that you can and should deal with depends on the
circumstances. For example, if you detect that "42 ºC" actually contains a masculine ordinal indicator
º and not the degree sign °, it is practically certain that you still know what was meant. If you design
a program that detects such a situation, it should probably process the data under the assumption
that the degree sign was meant, without even issuing a message about thisalthough sometimes it
might be suitable to issue a mild warning. On the other hand, "42 C" is a more difficult case, since it
could conceivably be the correct notation for 42 coulombs, for example.

Similarly, if a program reads a Unicode text file and interprets its content as numeric data, it should
recognize, for example, "-42" (with hyphen-minus), "42" (with en dash), and "-42" (with minus sign)
all as indicating a negative number. That is, you should not be picky about the use of the minus sign
but accept characters that are widely used in the role of a minus sign. Note that common library
routines for reading numeric data, like scanf in C, generally treat only the hyphen-minus character as
a minus signi.e., they reflect the old and widespread usage and do not accept the "real" minus sign
even as an alternative.

8.1.4. Conservative in What You Send

The note in the previous section illustrates the difficulty of being conservative with characters. If you
prepare data for an application that is fully equipped to process Unicode data, the conservative way is
to use the Unicode minus sign to denote a negative number. It is the most adequate character for
the purpose in that context. On the other hand, if you prepare data for an unknown application or a
multitude of applications, it is probably much better to use a hyphen-minus character "-" as a
replacement for the minus sign.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Even if the immediate target application is Unicode-capable, your data might be transferred from it to
something much more limited. For example, a multilingual database could (and normally should)
internally use Unicode, but it might be accessed using connections, software, and devices that
seriously limit the output and input possibilities. Ideally, the database should contain all text data in
the most appropriate Unicode format, and various restrictions on character repertoire should be
taken into account when data is sent from it or received by it. As practical principles in being
conservative in this sense, we can recommend:

In email messages, use ASCII (Basic Latin) only, by default, unless working with a community
that can be expected to be able to deal with other encodings.

In communication within a language community that generally uses a particular character
repertoire, use it. For example, in French, German, or Spanish, use Latin 1 Supplement in
addition to ASCII (i.e, use ISO Latin 1).

When a wider character repertoire is indispensable, try to limit the use of characters to a subset
of Unicode that is known to work widely. For example, in European multilingual contexts and in
simple mathematical and technical texts that need special symbols, try to restrict the repertoire
to the Minimum European Subset 2 (MES-2). As a more practical criterion, use characters in the
Windows Glyph List 4 (WGL 4), which is what the most common fonts cover, more or less.

For text-processing and publishing purposes, try to identify and document in advance the set of
characters you will need, and test how the relevant software can handle it. This will help you in
identifying the fonts that can be used.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.2. ASCII (Basic Latin)

In Chapter 3, we briefly described the ASCII characters and their encoding. Here we go into the
details of the meanings of these characters. For technical reasons, ASCII characters are widely used
even when more appropriate characters exist in Unicode. This is partly caused by the history, partly
by the fact that ASCII characters are well-known and easy to type and process, and they work
reliably across platforms. But this implies that many of the characters have multiple uses or, to put it
in other words, multiple semantics.

In the Unicode framework, ASCII characters constitute the very first block of Unicode, called Basic
Latin and ranging from U+0000 to U+007E.

8.2.1. Names of ASCII Characters

The names of ASCII characters have a long history, and they can be rather misleading. For example,
" (U+0022) is called "quotation mark," although it is not a correct quotation mark in English or
human languages in general. The name "grave accent" for ' (U+0060) reflects one of the original
intended uses, rather than actual practice. Many of the special characters in ASCII have a large
variety of names in common usage, and the name used in Unicode usually corresponds to the choice
made in ASCII.

Generally, the Unicode name of an ASCII character might be suitable in some official contexts, but
not necessarily in more normal usage. As an example of the differences, Table 8-1 presents some
ASCII characters for which the Unicode name and the name normally used in O'Reilly books are
different.

Table 8-1. Some variation in names of ASCII characters

Chararcter Code Unicode name Name(s) used in O'Reilly books

U+0023 Number sign Hash sign, sharp sign

. U+002E Full stop Period, dot

/ U+002F Solidus Slash

@ U+0040 Commercial at At sign

\ U+005C Reverse solidus Backslash

^ U+005E Circumflex accent Caret, circumflex

' U+0060 Grave accent Backquote, backtick

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.2.2. Alphanumeric Characters

The ASCII set contains the uppercase characters AZ and the lowercase characters az as well as the
common digits 09. The letters are often called basic Latin letters, though

Figure 8-1. Different renderings of common digits

Latin has no "w" letter. It is more adequate to refer to the ASCII letters as letters of the English
alphabet. The digits 09 are often called Arabic digits, but they differ from the original Arabic digits
(0,1,2,3, etc., also called Arabic-Indic digits), which are still in wide use in the Arabic world.

In many computer languages, the ASCII alphanumeric characters are what you can use in names
(identifiers), usually with the added requirement that the first character must be a letter. However,
quite often a computer language allows more latitude, such as the use of the underline character "_"
and possibly other characters as well in identifiers. Typographically, there are different presentations
of digits, illustrated in Figure 8-1:

Uppercase versus lowercase digits

Uppercase digits all have the same height, usually the same as the height of uppercase letters.
They are also called modern style or lining digits (or figures or numbers). Lowercase digits vary
in height and have ascenders and descenders. They have been traditionally used in print
typography in running texts. They are also known as old style or non-lining digits. According to
typographic rules, lowercase digits should not be used in an expression formed from digits and
uppercase letters, like "ABC-123."

Equal-width (tabular) versus varying-width digits

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In tabulated data, digits normally need to be of equal width to produce good appearance where
numbers line up. Inside text, the widths of digits may vary. Often only the digit "1" has a width
different from other digits.

Unicode, or character standards in general, does not make either of these distinctions. Thus, in plain
text you cannot have both lowercase and uppercase digits. The distinction can be made at font level,
when suitable fonts are available. Expert fonts may contain two sets of digits, lowercase and
uppercase. Some techniques use Private Use characters for thisi.e., allocate, for example, lowercase
digits to code positions that have been reserved for use by private agreements only. This is risky
because the data becomes cryptic if information about the particular agreement is lost in data
transfer and processing.

Most fonts commonly used in computers have equal-width uppercase digits. However, the Georgia
font has lowercase varying-width digits. If you use such a font in the text of your document, you
should use a different font for tabulated numbers.

8.2.3. Parentheses

ASCII contains three sets of paired parentheses:

Common parentheses, (and)

Called left parenthesis and right parenthesis in Unicode. They are widely used both in natural
languages and in computer languages. In natural languages, they usually enclose a parenthetic
(less important) remark. In computer languages, they have different uses that might not have
anything to do with importance. For example, arguments of a function are usually written in
parentheses, as in mathematicse.g., f(42, x+y).

Square brackets, [and]

Called left bracket and right bracket in Unicode. They are sometimes used in natural languages
in special contexts (such as in a parenthetic remark inside a parenthetic remark [like here], or
to indicate an addition or change in quoted text). In phonetics, brackets are used to denote
that pronunciation is specified. In mathematics, square brackets are sometimes used as outer
parentheses when parentheses are nested, as in 2[(a + b)/c]. In computer languages, brackets
have a wide range of uses, often including the use in subscripted variables or array component
selectors like a[i].

Braces, { and }

Called left curly bracket and right curly bracket in Unicode. They are rare in natural languages
but relatively common in computer languages. In mathematics, they are sometimes used when
parentheses are nested several levels. More commonly, they are used to denote sets; e.g., {5,
42, 83} is a set of three numbers.

The Unicode names of these characters have the attributes "left" and "right," although they are
logically treated as opening and closing parentheses (and called that way in some standards). This is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

relevant because the physical appearance adapts to the writing direction of the text (see Chapter 7).
Thus, if you have Arabic or Hebrew text containing a parenthetic expression, then the "left
parenthesis" is located to the right of the enclosed expression and the "right parenthesis" is on the
left side, since the text generally runs right to left. On the other hand, the parentheses are displayed
as mirror images, so that the opening "left" parenthesis looks like a right parenthesis.

The characters < and > are often used in a parenthesis-like manner and referred to as left and right
angle bracket. Such usage, as well as "real" angle brackets, is discussed in the section "General
Punctuation" later in this chapter.

8.2.4. Other Graphic Characters

The other graphic characters in ASCII will be described here in alphabetic order by their Unicode
name, which deviates from the common name in some cases.

8.2.4.1. Ampersand & (U+0026)

In natural languages, this character normally means just "and." In some programming and command
languages, it has a comparable meaning, as logical AND operator, as bitwise AND operator, as string
concatenation operator, or as a sequential operator. But the ampersand also appears in many
technical uses that have nothing to do with the meaning "and." For example, in the C programming
language, &x denotes the address of x.

The visual appearance of this character varies a lot. In some designs, the character's origin as a
ligature of "ET"the Latin word for "and"can readily be seen.

8.2.4.2. Apostrophe ' (U+0027)

This character has mixed usage, usually as a punctuation character. In normal text, it is used either
as an apostrophe as in the English word don't or as a single quotation mark. (In Unicode Version 1.0,
this character was named "apostrophe-quote" to reflect this.) In both types of usage, the apostrophe
is just a replacement used to overcome character repertoire limitations. It should not be confused
with the typographically correct apostrophe, and it can be called "ASCII apostrophe " to emphasize
this.

With regards to use as a single quote, compare to notes below on the use of the quotation mark.
Analogously with the quotation mark, the apostrophe is defined (in Unicode) as having a "neutral
(vertical)" glyph. This reflects its use as both an opening single quote and a closing single quote.
However, in practice it may get displayed as slanted or even curved. As with the quotation mark, it is
sometimes difficult to find out what really happens, since word processors may convert an
apostrophe to a different character, often to a language-specific quotation mark.

Unicode defines modifier letter prime (U+02B9) and prime ' (U+2032) as distinct characters. The
former is used mainly in linguistics to denote primary stress or palatalization (e.g., when
transliterating Cyrillic soft sign). The latter is used to denote minutes or feet, and in mathematics, to
denote a derivative (differentiation). When only ASCII (or only ISO Latin 1) is available, the
apostrophe can be used as a surrogate for those characters. It might look natural to use the acute

http://lib.ommolketab.ir
http://lib.ommolketab.ir

accent ´ (which is slanted) for some of such purposes, but since the whole idea is to use a
replacement due to character repertoire restrictions, it is best to use a replacement that works most
widely (due to being an ASCII character).

In ASCII, the apostrophe was intended to have secondary usage as acute accent, to be overprinted
on a letter. This explains, in part, why the glyph is often slanted.

8.2.4.3. Asterisk * (U+002A)

The asterisk has a wide range of uses, including the following:

In natural languages, an asterisk or a sequence of asterisks is sometimes used as a reference to
a footnote or a margin note*. Several other symbols, such as daggers and (superscript-style)
digits and letters, are used for such purposes too. Due to glyph problems discussed below, it is
probably best to avoid the use of asterisks for such purposes and use some other notations.
*The footnote or margin note itself begins with the asterisk or sequence of asterisks.

The asterisk is sometimes used when indicating the year or date of birthe.g., * 1952.

Especially in command languages, the asterisk is often used as a wildcard character that
matches any string of characters. For example, *.txt as a command argument might refer to
all filenames ending with .txt.

In regular expressions, the asterisk often denotes possible repetition. For example, depending
on the particular regexp syntax, xy* might denote the set of strings consisting of an x followed
by any number (including zero) of y'si.e., x, xy, xyy, xyyy, etc.

In mathematics, the asterisk has several uses as an operator symbol of some kind. Generally,
such uses are surrogate notations for various star-like symbols with more specific semantics. A
double asterisk ** sometimes indicates exponentiation.

In linguistics, a leading asterisk before a word can be used to indicate a reconstructed form
(e.g., "the word king probably derives from old Germanic *kuningaz"); it may also indicate an
ungrammatical expression.

In Usenet postings and some other plain text contexts, the asterisk may also be used for
emphasis (though using _underlines_ is more common).

One of the early uses was to make a series of asterisks a "check protector," to flank the amount
of a check so one could not kite or change the value. That method was applied in punch cards
and printers too, and it's still often used, for example, in password input, to help the user count
characters but protect the password from prying eyes.

The asterisk is sometimes used to indicate a "masked out" character, as in "G*d."

In several programming languages, asterisk is the multiplication symbol, but it may also have
other uses. For example, int *p; declares p as a pointer to int in C.

When writing or quoting expressions in computer languages that have the asterisk as part of
language syntax, the asterisk shall be preserved of course. On the other hand, such usage should not
be extended to other contexts, unless the limitations of the character repertoire prevent the use of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

better symbols. Specifically, in ISO Latin 1 there is a separate multiplication sign. In some contexts
the middle dot (·) is, somewhat arguably, an adequate multiplication symbol.

The glyphs for the asterisk vary, but generally it appears in a more or less superscript style, perhaps
in a rather small size. It is difficult to say what an asterisk should look like, given its mixed usage.
When used as an operator of some kind, it should be vertically positioned the same way as, for
example, the plus sign. When used as a reference sign, and perhaps in some other uses too, it should
appear in superscript style. It seems that most font designs reflect the latter style, making
expressions like a*b look somewhat odd. If you cannot use a symbol with less ambiguous meaning,
you might try to help things by using a font where the asterisk looks more operator-like, such as the
Courier font, though even the Courier * is somewhat raised. Quite often it might be better to use a
monospace font for all expressions (like a*b) quoted from programming and command languages,
etc.

The Unicode standard mentions that asterisk is called "star" on phone keypads. It also mentions that
the asterisk is distinct from Arabic five-pointed star m (U+066D), asterisk operator (U+2217), and
heavy asterisk (U+2731). Note that this list of Unicode characters resembling the asterisk in
appearance is far from complete; there are many more, especially in the Dingbats block.

8.2.4.4. Circumflex accent ^ (U+005E)

This character, often called just "circumflex" or "arrow," is used for a variety of technical
purposese.g., in programming and command languages. It might, for example, be used as an
exponentiation operator in linear notation (a^b = ab). In regular expression syntax (see Chapter 11),
the circumflex matches the start of a string.

This character was introduced into ASCII for several purposes, including the use as a diacritic mark,
with overprinting techniques. This never became common, and the usual shape of the character
reflects much more the technical use: it is operator-like, relatively large, and rather different from a
circumflex accent as used in a character like â. The name of the character is thus rather misleading.

In ASCII, this character has the primary name "upward arrow head," and "circumflex accent"
appears there as a secondary name only.

8.2.4.5. Colon : (U+003A)

This character is used as a punctuation symbol in natural and other languages. The rules for using it
vary from one language to another, and even from one authority to another.

The colon is also used when presenting ratios (proportions) as in "2:3," but in Unicode, you can use a
more specific character, ratio U+2236.

8.2.4.6. Comma , (U+002C)

Primarily this character is a punctuation symbol in natural languages. The rules for using it vary from
one language to another and even from one authority to another.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In numbers, some languages (mainly English) use comma as thousands separator (e.g., "1,234"
means one thousand two hundred thirty-four) whereas in many other languages it is used as a
decimal point (e.g., "1,234" means the same as "1.234" in English). The Unicode standard mentions
"decimal separator" as another name for the comma.

In ASCII, the comma was intended to have secondary usage as cedilla.

The comma should not be confused with the Unicode character single low-9 quotation mark "'"
(U+201A), which is used in quotations in some usages.

8.2.4.7. Dollar sign $ (U+0024)

This character is a famous currency symbol, but its exact meaning is not quite clear. The Unicode
standard explicitly says that this character is unambiguously dollar sign, not a generic currency
symbol. On the other hand, this is not meant to limit the use to only those currencies that are named
"dollar," still less the U.S. dollar only. The Unicode standard mentions "milreis" and "escudo" as
alternative names for dollar sign, so obviously the symbol can be used to denote those currencies,
too.

According to the Unicode standard, a glyph for the dollar sign may have one or two vertical bars.
That is, the number of bars is a glyph difference, not character difference.

In computing, the dollar sign has secondary uses that may have nothing to do with any currency. For
example, it can be a character that is allowed in identifiers, perhaps used to signal a reserved or
otherwise special identifier.

8.2.4.8. Commercial at @ (U+0040)

This character was originally used in English in conjunction with unit prices in the meaning "each." Its
name still reflects such usage, which is relatively rare, and often unknown in other languages.

This character has become most widely known as a separator in Internet email addresses, where it
can be read as "at" rather naturally, as in jkorpela@cs.tut.fi. It has many other special uses, too, for
example, in Perl to indicate that a symbol denotes an array.

There are many names in use in different languages for this character. Many of the names use words
that try to describe the visual appearance or connotations, such as a monkey or a sitting cat and a
long tail.

8.2.4.9. Equals sign = (U+003D)

This character is used to denote equality both in mathematics (as in 2 + 2 = 4) and in other areas. It
is distinct from the Unicode character (identical to U+2261).

In programming languages, the equals sign very often means assignmente.g., a = b + c means that
the sum b + c is computed and the result is assigned to the variable a. This means that usually some
other operator (such as ==, eq, or .EQ.) is used in a logical expression to test for equality.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.2.4.10. Exclamation mark ! (U+0021)

This character is basically used as a punctuation character at the end of an exclamation. It is also
used in mathematics to denote a factorial (as in "5!," which denotes 1x2x3x4x5). Many other special
usages exist; e.g., in the C programming language, the exclamation mark denotes a "not" operator
(negation)! The Unicode standard mentions the alternate names "factorial" and "bang."

This character is also used as a substitute for a similar-looking character, Latin letter retroflex click
(U+01C3) used in the orthography of some African languages, to denote a click sounde.g., in the
name "!Kung" (denoting a people in southern Africa). In principle, the two characters are distinct,
despite similarity in glyph appearance.

8.2.4.11. Full stop "." (U+002E)

In U.S. English, this character is known as "period" (which was the name used for it in Unicode
Version 1.0). It is commonly used as a punctuation character but also for other purposes. The
Unicode standard mentions the alternative names "dot" and "decimal point."

The Unicode standard uses this character to illustrate the principle that "a character may have a
broader range of use than the most literal interpretation of its name might indicate" and admits that
the name of a character can be misleading. It says: "U+002E full stop can represent a sentence
period, an abbreviation period, a decimal number separator in English, a thousands number
separator in German, and so on." Note that the use of the full stop as a thousands separator is
discouraged in several standards, which recommend the use of some space character instead.

In addition to such usages, programming languages and other notations often use the full stop for
purposes that do not correspond to natural-language punctuation (or the name "full stop"!) at all. In
particular, it is often used as a separator between components of a hierarchic name, so that foo.bar
could denote the bar component of a structure named foo (which might be read as "foo's bar").

The Unicode standard mentions that this character "may be rendered as a raised decimal point in old
style numbers." This is to be taken as a warning against interpreting such a character as a middle dot
(·).

8.2.4.12. Grave accent ' (U+0060)

This character, often called just "grave," is used for a variety of technical purposese.g., in
programming and command languages. For example, in many Unix shells, the grave accent is a
quoting character with a special meaning, "command substitution" (sometimes even called "grave
command"!). In such a case, the value of the expression 'foo' is the output from executing the
command foo.

This character was introduced into ASCII for several purposes, including the use as a diacritic mark,
to produce characters like è with overprinting techniques. This never became common. The technical
uses of the character also remained relatively limited because the character is not very visible and
because it is easily confused with some other characters.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sometimes the grave accent is used in normal text as a single quote, especially to create the
appearance of "smart" (asymmetric) quotes. In such style, people use the grave accent instead of an
opening single quote and either the apostrophe or (less often) the acute accent ´ instead of a closing
single quote, as in 'this' or 'this´. In some fonts, this looks relatively correct because the glyphs for
the grave accent and the acute accent are (rather questionably) curly, quote-like. In processing
natural language texts, it is usually reasonable to assume that a grave accent is meant to act as a
quotation mark of some kind, since there is not much other usage for it in normal text. However,
sometimes, for example, e' might be used to mean è.

When the American National Standards Institute adopted ASCII as national standard, it added a
provision for overloading the code positions 60 and 27 (hexadecimal) with the typographic characters
left and right single quotation mark. This practice become widely used in some communities in the
United States and is now found in numerous and still even some contemporary English-language
ASCII files. Naturally, unless output routines specifically handle the issue, this means that text meant
to display as 'foo' will appear as 'foo'. The design of the grave accent and the ASCII apostrophe in
fonts may reflect attempts to make things less distracting by making them resemble single quotes.

8.2.4.13. Greater-than sign > (U+003E)

This character primarily denotes a mathematical relation. It is widely used for some secondary
purposes as well, such as in the role of a closing angle bracket, as described earlier.

Some programming languages avoid using > as an operator, or use it for some data types. A
language might even have, say, > and "gt" as different "greater than" operators.

The character pair >= has often been used to mean "greater than or equal to." In Unicode, you can

use the character greater-than or equal to (U+2265) instead.

8.2.4.14. Hyphen-minus "-" (U+002D)

This is a dual-purpose character: it can be used as a hyphen (punctuation character) or as a minus
sign (mathematical symbol). It is usually called "hyphen" or "minus" depending on the context and
meaning. The term "hyphen-minus" is used mostly in character standard contexts only. The Unicode
standard mentions "hyphen or minus sign" as a synonym, but it is best avoided, since it often makes
statements ambiguous.

Unicode contains two characters that can be used instead of the hyphen-minus character to resolve
the ambiguity at character level: hyphen (U+2010) and minus sign (U+2212). This may help to
produce a better visual appearance, too. Usually the hyphen is relatively short and the minus sign is
rather long, comparable to an en dash. One of the problems with hyphen-minus is that its glyph is
usually so short that it does not look good and prominent enough in expressions like "-1" (for "minus
one").

It is common to use a hyphen or two hyphens "--" as a replacement for an en dash "" or em dash "'",
when the dashes cannot be used. There are other hyphen-like characters in Unicode as well, to be
discussed later in the Punctuation section.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.2.4.15. Less-than sign < (U+003C)

This character primarily denotes a mathematical relation. It is widely used for some secondary
purposes as well, such as in the role of an angle bracket, as described earlier.

Some programming languages avoid using < as an operator, or use it for some data types. A
language might even have, say, < and "lt" as different "less than" operators.

The character pair <= has often been used to mean "less than or equal to." In Unicode, you can use

the character less-than or equal to (U+2264) instead.

8.2.4.16. Low line _ (U+005F)

This character is usually known as "underline" or "underscore."

Probably the most typical use of this character is to make long identifiers more readable in
programming languages. Due to their general syntax, such languages generally do not allow spaces
in identifiers; but several programming languages allow underscores in identifiers. For example, one
could write number_of_events in such languages.

In plain texte.g., in Usenet discussionsit is customary to use a low line before and after a word or
phrase to indicate underlining of enclosed text, usually to denote emphasis (e.g., "this is _very_
important") due to lack of better methods. Some software automatically recognizes the notation and
renders the expression in a more advanced way (e.g., "this is very important" or "this is very
important").

One of the original ideas was to use the low line for underlining text using overprinting. This is
irrelevant these days, but the character might be used to create a horizontal line in plain text. It
depends on the font whether successive underline characters are joined (____) or not (_ _ _ _).

8.2.4.17. Number sign # (U+0023)

The name of this character reflects its use to mean "number," as in "item #42" (meaning "item
number 42, the 42nd item"). Such usage is mostly limited to U.S. English. More often, the word
"number" is abbreviated as nr., no., n., or No. In U.S. English, the character is sometimes used to
denote pound as a unit of weight (mass)e.g., in the paper industry "70#" means "70 lb."

In computer languages, this character has many different uses, and it is usually called a hash. In
some of these uses, it relates to ordinal numbers. For example in HTML and XML, &#n; denotes the
character that occupies code position n in Unicode. Mostly the # character is just a separator (e.g.,

indicating the rest of the line as comment) or has some special meaning assigned to it more or less
arbitrarily, with no connection with numbering. It is used in web addresses (URL references), and the
URL syntax specification calls it "crosshatch" character. Many other names are used as well, such as
"octothorpe."

The number sign character unambiguously occupies code position 23 hexadecimal in ISO Latin 1 and
in Unicode. The Unicode standard mentions "pound sign" as an alternative name, but here "pound"
means the unit of weight, not currency. Further confusion has been caused by the varying definitions
of ASCII and ISO 636, since some definitions allow the position 23 to be used either for # or for £

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(the pound sterling sign), as "agreed between interested parties." Some programs and devices might
still reflect this in their behavior (displaying £ when the data contains #).

In Unicode (and ISO Latin 1), the pound sign £ (as a currency symbol) is a completely independent
symbol in its own code position, U+00A3.

The number sign has also been used as a surrogate for music sharp sign U+266F, due to some
similarity in appearance.

8.2.4.18. Percent sign % (U+0025)

This character is used after numbers, in the meaning "in the hundred" or "of each hundred." It is
commonly used immediately after a number (e.g., 50%), but quite often, the official spelling requires
a space (e.g., 50 %), although this depends on authority. In computer language notations, a space is
often disallowed. For example, in a CSS stylesheet, width: 50% is correct, whereas width: 50 % would
be incorrect. On the other hand, in natural languages, as well as in notations related to the
International System of Units (SI), the official recommendations often require a space. If a space is
used, it should be a no-break space, for obvious reasons.

In some situations, expressions like "o/o" are used instead of the percent sign. This might be a

practical choice in a context where the per mille sign (U+2030) would be needed too but cannot
be used due to technical restrictions. You might then use "o/oo" as a replacement, and therefore
"o/o" too, for uniformity. However, contrary to popular belief, the percent sign has not evolved from
"o/o" or "0/0" but from an abbreviation of the Latin words "pro cento," which mean "for a hundred."

In computer languages, the percent sign has very different uses, which might have nothing to do
with percentages. For example, % is a modulus operator in C, and it indicates an identifier as a hash
in Perl.

8.2.4.19. Plus sign + (U+002B)

This is the well-known plus sign, primarily used to denote addition and as a unary plus. It has many
technical uses that have little or nothing to do with addition. It may indicate string concatenation, for
example.

8.2.4.20. Question mark ? (U+003F)

This character is basically used as a punctuation character at the end of a direct question. The
detailed rules for using it vary from one language to another and even from one authority to another.
In some languages, some space is left before the question mark. In formal notations such as regular
expressions, the question mark has special meanings. It could, for example, be a wildcard character
that represents any single character.

8.2.4.21. Quotation mark " (U+0022)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This punctuation character is a "symmetric" quotation mark as opposite to "smart" or "asymmetric"
quotation marks. That is, when this character is used to mark quotations, the opening quote is
identical with the closing quote. Its glyph should be "neutral" (vertical) to reflect this. The Unicode
standard explicitly says about it: "neutral (vertical), used as opening or closing quotation mark."
However, in practice, the appearance varies, and some fonts have a slightly slanted glyph for the
quotation mark.

It is sometimes difficult to find out what really happens, since text-processing programs (word
processors) like MS Word typically convert a quotation mark to a different character, as described in
Chapter 2. Pressing the " key often inserts a language-specific quotation mark, perhaps to a "smart"
(curved) quotation mark in English text, a chevron (« or ») in French text, etc. Note that this means
a replacement at the character level: the different quotation marks are different characters, not just
different glyphs.

The name "quotation mark" is a historical relic: this character was the only double quotation mark
used in computers when ASCII was developed. It was natural to call it just "quotation mark," and this
name was kept even in Unicode. This creates problems, since often we need to talk about quotation
marks in general (as we will do later in the section "General Punctuation"), but there is no official
name for U+0022 that would let us identify it in such contexts. Thus, we may need to identify it by its
code, or use an unofficial name like "ASCII quotation mark" or "machine quotation mark."
Typographers may call the character an inch symbol, but this is actually incorrect: although the
ASCII quotation mark is often used as a substitute for an inch symbol, the appropriate Unicode
character for inch is the double prime U+2033.

When typewriters were designed, several simplifications were made to the use of characters. For
physical and economic reasons, the character repertoire was kept small. Early typewriters often
lacked even the digits 0 and 1, on the grounds that you could use letters "O" and "l" instead!
Similarly, only one double quotation mark was included. The key cap might actually have a curved
glyph like ", to confuse us more. This approach was copied to early computer keyboards, and that's
what we still mostly live with.

At the character level, this means that there is a huge amount of text data (both plain text and other
formats) that uses the ASCII quotation mark for normal quotations. The use of ASCII quotation
marks has become so common that you often find it even in printed matter and in other contexts
where the author had no compelling technical reason to do so.

Why would you use the ASCII quotation mark in text processing? Well, if your text discusses C or
JavaScript code or Unix commands, then the ASCII quotation mark is the correct charactere.g., in an
assignment like str = "foo". Using a "smart" (curved) quotation mark would not be smart at all in
such cases.

The Unicode standard explicitly says that "APL quote" is identical with the quotation mark. In addition
to that, the quotation mark is used in many other programming and command languages, typically to
delimit string constants. In some of such languages, a string can be delimited using either quotation
marks or apostrophes with no change in meaning, whereas in some others there is a definite
difference. For example, in the C language, quotation marks delimit string constants whereas
apostrophes delimit character constants; in Perl, quotation marks allow variable substitution within
the string, whereas apostrophes indicate a pure literal.

The quotation mark is often used instead of different symbols such as the inch sign, due to similarity
in appearance. Table 8-2 shows some of them.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 8-2. Symbols that are often replaced by a quotation mark

Name Code Character Proper use

Double prime U+2033 " Inches or (in angles and times) seconds

Ditto mark U+3003 〃 Repetition of information, "the same"

Modifier letter double prime U+20BA E.g., transliteration of Cyrillic "hard sign"

In ASCII, the quotation mark was intended to have secondary usage as dieresis (see section
"Diacritic Marks" later in this chapter). That is, you were supposed to overprint, say, the letter "a"
with a quotation mark to produce something that looks like ä. This was an odd idea, but it may have
affected the design of some fonts.

8.2.4.22. Reverse solidus \ (U+005C)

This character is best known under the name "backslash." It has a wide range of uses in technical
contextse.g., as a separator in hierarchical filenames in Windows and in several "escape notations,"
such as '\n', which denotes line break character in many programming languages (see Chapter 11
for more examples). The reverse solidus was taken into character repertoires for special usage, such
as to allow the construction of symbols \/ and /\ for logical and and logical or from the reverse solidus
and the solidus. This never became common, but quite different other uses were invented.

The reverse solidus is especially suitable for use in "escape notations" just because it is, in a sense,
an artificial creation. Since it is not used in normal text, it will less likely be confused with normal data
characters than other characters that might be used for "escaping." However, confusion may still
arise when different notational systems that use the reverse solidus (for different purposes) are
combined.

In Unicode, the reverse solidus is regarded as distinct from set minus U+2216, which is used in
mathematics as an operator on sets (meaning set difference), but conceivably, \ can be used as a
surrogate for that character.

Rather often, the reverse solidus is confused with the solidus (slash) character, /. They are similar in
shape, just slanted differently. But they are quite distinct characters and have different uses. They
are rarely interchangeable. However, Internet Explorer treats the reverse solidus in a URL (where it is
not permitted by the URL syntax) as the solidus.

8.2.4.23. Semicolon ; (U+003B)

This character is used as a punctuation symbol in natural and other languages. It is often used as a
separator in lists of numbers with commas as the decimal separator (for example, "1,2; 1,3; 1,5,"
corresponding to "1.2, 1.3, 1.5" in common English notation). In many programming languages,
semicolon is the statement separator or terminator.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.2.4.24. Solidus / (U+002F)

The name "solidus" was taken from British English. This character is much more widely known as
"slash" (which was its name in Unicode Version 1.0). It is sometimes called "virgule" or even "shilling"
(which are alternative names mentioned in the Unicode standard) or "diagonal." Do not confuse it
with the reverse solidus (backslash, \). Sometimes the solidus is called "forward slash" to distinguish
it from the backslash.

The solidus is used for many different purposes, typically as a separator of some kind. Ambiguities
easily arise. For example, a date notation like 3/4 might mean the 3rd of April, or the 4th of March.
In the ISO 8601 notation for dates, the solidus is used when expressing a time interval (e.g., 1998-
03-04/04-03 unambiguously means "from 4th of March to 3rd of April in 1998").

Sometimes the solidus separates alternativese.g., on a form, with the suggestion to strike out the
inapplicable alternative(s). In natural languages, the solidus is often used in a very confusing way, so
that "foo/bar" might mean "foo or bar" or "foo alias bar" or "foo and bar," or something else. The
ambiguity created that way might be intentional.

In HTML (and in other SGML- or XML-based markup languages), start and end tags are distinguished
from each other by the presence of a solidus in the end tag, so that, for example, </cite> means
"end of cite element."

In web addresses and other URLs, the solidus is a separator between hierarchic components. This
usage is historically based on similar usage in pathnames in hierarchic filesystems.

Unicode defines fraction slash U+2044 and division slash U+2215 as characters distinct from solidus
and from each other. The fraction slash is meant for use in fractional numbers, whereas the division
sign is a division operator. In Unicode encoded data, you do not need to use these characters with
more specific semantics; Unicode just allows you to make a distinction. The fraction slash may have a
special visual effect, creating a vulgar fraction, as discussed in the section "The Number Forms block"
later in this chapter.

8.2.4.25. Space " " (U+0020)

This is the well-known space character, also known as "blank." The abbreviation SP is often used for
the name of the character. Sometimes the character symbol for space (U+2420) is used in
instructions and descriptions referring to the use of a space. The ISO 8859-1 standard defines the
space character formally as follows:

This character may be interpreted as a graphic character, a control character or as both. As a
graphic character it has the visual representation consisting of the absence of a graphic symbol.

Usually a font contains a glyph for a space, but the glyph is empty (blank): it just takes some space.
The width of a space varies considerably. Programs might also interpret a space as a control
charactere.g., so that instead of using a particular glyph, the program just leaves some empty space.
The width of this spacing may vary by circumstances. In particular, the inter-word gaps can be of
different widths in visual presentation especially when text is justified on both sides. Thus, spaces
might be "stretchable" as well as "shrinkable." This will be discussed in "General Punctuation" later in
the chapter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The term whitespace character is often used in programming and markup contexts. It is a
generalization of the space character and denotes a set of characters, typically including at least the
space, some line break characters, and horizontal tab. The vertical tab is often included, too. For
example, in the C programming language, the standard function isspace() tests for its argument
being a whitespace character, not just a space.

8.2.4.26. Tilde ~ (U+007E)

This character has mixed usage. The word "tilde" is of Spanish origin and refers to a wavy diacritic
mark, as in Spanish ñ (although in Spanish, the word "tilde" often denotes the acute accent, too!).
The name of this character thus reflects one of the originally intended uses. Currently such use has
little to do with tilde as an ASCII and Unicode character. In jargon, names like "squiggle" and
"twiddle" are used.

In practice, tilde is used for a variety of technical purposes according to specific rulese.g., in
programming and command languages. For example, in many Unix shells, ~ denotes the user's home
directory. Reflecting this tradition, on many web servers, people's web pages are named in a manner
that involves the tilde character. In Windows systems, the mapping of Windows filenames to DOS-
compatible filenames ("8+3 characters") uses tilde; e.g., LONGFILENAME.TXT may get mapped to
LONGFI~1.TXT. In the C language, the tilde denotes a bitwise operator that complements each bit. In
Perl, the tilde is used in matching operators.

The glyph for tilde has varying shapes. Sometimes it looks like a diacritic tilde, but much more often
it looks like an operator, placed vertically at the same level as a hyphen "-" or a little higher. The
different uses of the tilde make it impossible to design a glyph that would be suitable for all, or even
most, of the uses.

The overall tone in the Unicode standard is that the tilde character could and should often be replaced
by characters with more specific semantics and more appropriate visual appearance. Care must be
taken, however, since many computer languages explicitly define the tilde as the character to be
used. Thus, the following recommendations apply basically to other contexts, such as prose texts,
and only with caution:

For a symbol for negation in formal logic, use the not sign ¬ (U+00AC).

As a symbol for approximate value, use the almost equal to sign (U+2248).

In other mathematical meanings like "varies with," "is proportional to," "is similar to," etc., use
the tilde operator ~ (U+223C).

As punctuation to denote alternation as well as in dictionary usage to indicate repetition of the
defined term in examples, the visually wider character swung dash U+2053 is preferred in
principle. However, almost all fonts lack this character, which was added to Unicode in Version
4.

As a spacing clone of a diacritic tilde (i.e., spacing counterpart of combining tilde U+0303), use

the small tilde (U+02CD).

In ASCII, the tilde character has the primary name "overline" and a corresponding appearance;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

"tilde" was a secondary name only.

8.2.4.27. Vertical line | (U+007C)

This character is commonly known as "vertical bar" or just "bar." It is most typically used in formal
languages (such as BackusNaur Form, BNF) between alternatives, corresponding to the word "or." In
mathematics, vertical lines are used around an expression to denote its absolute valuee.g., |-42| =
42. In some dictionaries, a vertical line is used to indicate a possible hyphenation point; there is also
a quite different dictionary usage: to separate the invariable part of a word from the rest in a
paragraph that describes several words that begin the same way (e.g., imitat|e ... -ion ... -ive).
Several other usages exist, too, especially in technical contexts. In Unix shells, for example, this
character is used to denote "piping," and the character itself is then often known as "pipe." For
example, in Unix shells, ls | more means "execute the ls program directing its output to the more
program as input."

When discussing characters in general, the name "vertical line" is preferable to "vertical bar," since in
Unicode, there are several other characters named as vertical bar symbols. Among them, even light
vertical bar U+2658 is intended to be thicker than vertical line!

In some old fonts and keyboards, this character appears as a broken vertical line. However, in

Unicode (and Latin 1), the broken bar () is a completely distinct character, though very little used.

8.2.5. ASCII Control Characters (C0 Controls)

Character codes often contain code positions that are not assigned to any visible character but might
be used for control purposes. For example, in communication betwee n a terminal and a computer
using the ASCII code, the computer could regard octet 3 as a request for terminating the currently
running process. Some older character code standards contain explicit descriptions of such
conventions. Newer standards just reserve some positions for such usage, to be defined in separate
standards or agreements such as "C0 controls" (discussed below) and "C1 controls," or specifically
ISO 6429, which is equivalent to ECMA-48, available from http://www.ecma-international.com.

ASCII, Unicode, and other standards reserve some code positions for eventual use for control
purposes. Usually only a few of them, mainly those for line breaks, are defined in the standard itself.
Somewhat confusingly, a standard may assign a name to such a code position. Such names (as in
Table 8-3) may relate to actual or proposed usage, but they must not be taken as defining the
meaning, or even as describing the most common usage.

Unicode does not assign official names to control codes, but in practice, various names and
abbreviations taken from other standards are used. For example, U+000A is commonly called "line
feed" (or "linefeed") or briefly "LF."

8.2.5.1. Control characters or control codes?

It is a matter of rather arbitrary definition whether you regard "control characters " as characters or
just codes (code positions reserved for control purposes). In character code standards, they are
usually called characters. It is however important to realize that a "control character" has no visual

http://www.ecma-international.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

appearance as such (not even emptiness). Instead, their control effects may include visual
formatting.

When people read or write about characters, their idea of character may or may not include control
characters. Usually the context and content will help in resolving this. For example, if someone says
that a font has the same width for all characters, he is clearly excluding control characters, since they
normally have no width.

8.2.5.2. Types of control characters

Control codes can be used for device control such as cursor movement, page eject, or changing
colors. Quite often, they are used in combination with codes for graphic characters, so that a device
driver is expected to interpret the combination as a specific command and not display the graphic
character(s) contained in it. For example, in the classical VT100 controls, ESC followed by the code
corresponding to the letter "A" or something more complicated (depending on mode settings) moves
the cursor up. To take a different example, the Emacs editor treats ESC a as a request to move to the

beginning of a sentence. Note that the ESC control code is logically distinct from the ESC key in a
keyboard, and many other things than pressing ESC might cause the ESC control code to be sent.
Also note that phrases like "escape sequence" are often used to refer to things that do not involve
ESC at all and operate at a quite different level, such as writing \" to include the character " as data,
instead of having it interpreted as a delimiter.

One possible form of device control is changing the way a device interprets the data (octets) that it
receives. For example, a control code followed by some data in a specific format might be interpreted
so that any subsequent octets to be interpreted according to a table are identified in some specific
way. This is often called "code page switching," and it means that control codes could be used to
change the character encoding. It is then more logical to consider the control codes and associated
data at the level of fundamental interpretation of data rather than direct device control. The
international standard ISO 2022 defines powerful facilities for using different 8-bit character codes in
a document. However, such approaches did not gain popularity, and nowadays, Unicode has made
them rather unimportant.

Widely used formatting control codes include carriage return (CR), linefeed (LF), and horizontal tab
(HT), which in ASCII occupy code positions 13, 10, and 9. The names (or abbreviations) suggest
generic meanings, but the actual meanings are defined partly in each character code definition,
partlyand more importantby various other conventions above the character level. The formatting
codes were previously often seen as a special case of device control, but nowadays, they are rather
treated as indicating the line structure of text; see the section "Line Structure Control" later in this
chapter.

The horizontal tabulation HT (TAB) character, or tab for short, was previously used for real "tabbing"
to some predefined writing position (tab stop), as on typewriters. The tab character is nowadays not
used much for such purposes, partly because tab stop settings may vary, partly because more
advanced tools (such as tables) exist. However the tab is often used to indicate data boundaries,
without implying any particular presentational effect. In particular, the "tab separated values" (TSV)
data format is used to transfer data between spreadsheet applications, using line breaks to separate
records (rows) and tabs to separate fields (cells) within records.

8.2.5.3. Visible symbols for control characters

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Although a control character cannot have a graphic presentation (a glyph) in the same way as normal
characters have, we sometimes use visual symbols to indicate the presence of control characters in a
data stream. In Unicode, there is a separate block, Control Pictures, for such purposes. These
characters have different shapes in different fontse.g., or . They are of course quite distinct from
the control codes they symbolize. The symbol for escape (U+241B) is not the same as the escape
U+001B.

In manuals and instructions where you need to explicitly indicate the use of spaces, you might use

the blank symbol (U+2422) or the open box (U+2423). The latter is probably more common
and more easily recognizable. There is no specific character for indicating the Enter or Return key; a
small image probably works best. Sometimes the symbol for newline (U+2424) is used. Beware
that glyphs for it vary considerably, though they generally contain the letters "NL" in some style.

If you display a text file containing octets in the C0 Controls on MS-DOS or in the DOS-like mode in
Windows, you may get graphic characters like . This is because in some Windows code pages (such
as CP 437), octets in that range are treated as graphic characters. For a list, see
http://czyborra.com/charsets/codepages.html.

On the other hand, a control code might occasionally be displayed, by some programs, in a visible
form, perhaps describing the control action rather than the code. For example, upon receiving octet 3
in the example situation just described, a program might echo back (onto the terminal) *** or
INTERRUPT or ^C. All such notations are program-specific conventions. Some control codes are
sometimes named in a manner that seems to bind them to characters. In particular, control codes 1,
2, 3,... are often called control-A, control-B, control-C, etc. (or CTRL-A or Ctrl-A or C-A). This is
associated with the fact that on many keyboards, control codes can be sent to a computer by using a
special key labeled "Control" or "Ctrl" or something like that together with letter keys "A," "B," "C,"
etc. This in turn is related to the fact that the code numbers of characters and control codes have
been assigned so that the code of "Control-X" is obtained from the code of the uppercase letter "X"
by a simple operation (subtracting 64 decimal). However, such things imply no real relationships
between letters and control codes. The control code 3, or "Control-C," is not a variant of letter C at
all, and its meaning is not associated with the meaning of C.

8.2.5.4. Summary of C0 Controls

Although the meanings of control characters depend on specific agreements and often vary greatly,
many of them have typical uses, which are reflected in their commonly used names. The following
table contains additional notes on the usage, especially in text data. If you design an application or
data format that uses C0 Controls, it is up to you to assign meanings to them. It is however
advisable to use assignments that correspond to common usage, partly because this helps to avoid
clashes with assignments in software that might interact with your system.

The C0 Controls consist of the first 32 code positions (U+0000..U+001F) in Unicode and ASCII as well
as the last position in ASCII, U+007F. Table 8-3 lists their ASCII names. The primary Unicode names
are somewhat different: U+0009 is character tabulation, U+000C is line tabulation, and
U+001C..U+001F are information separator four, three, two, and one.

http://czyborra.com/charsets/codepages.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 8-3. C0 Controls

Code Abbr. Name Ctrl-x Typical usage

0000 NUL Null Ctrl-@ Data or time fill, or terminator

0001 SOH Start of heading Ctrl-A Starts a message header

0002 STX Start of text Ctrl-B Starts a message body

0003 ETX End of text Ctrl-C End of text entity

0004 EOT End of transmission Ctrl-D End of sending one or more texts

0005 ENQ Enquiry Ctrl-E Asks for identification

0006 ACK Acknowledge Ctrl-F Affirmative response

0007 BEL Bell Ctrl-G Alarm, often audible (beep)

0008 BS Backspace Ctrl-H One character position backward

0009 HT Horizontal tabulation Ctrl-I Move to next tab stop; separator

000A LF Line feed Ctrl-J One line downward; line break

000B VT Vertical tabulation Ctrl-K Move downward

000C FF Form feed Ctrl-L Page eject; page separator

000D CR Carriage return Ctrl-M Move to start of line; line break

000E SO Shift out Ctrl-N Shift out from alternate code page

000F SI Shift in Ctrl-O Switch to alternate code page

0010 DLE Data link escape Ctrl-P Data transmission control

0011 DC1 Device control one Ctrl-Q Resume data transmission

0012 DC2 Device control two Ctrl-R Special mode of device operation

0013 DC3 Device control three Ctrl-S Pause data transmission

0014 DC4 Device control four Ctrl-T Deactivate ancillary device

0015 NAK Negative acknowledge Ctrl-U Negative response to sender

0016 SYN Synchronous idle Ctrl-V Synchronization of transmission

0017 ETB End of transmission block Ctrl-W Transmission of data in blocks

0018 CAN Cancel Ctrl-X Ignore preceding data

0019 EM End of medium Ctrl-Y End of medium or recorded data

001A SUB Substitute Ctrl-Z Indicates invalid/erroneous data

001B ESC Escape Ctrl-[Starts a control command

001C FS File separator Ctrl-\ Delimits a set of data (file)

001D GS Group separator Ctrl-] Delimits a data group

001E RS Record separator Ctrl-^ Delimits a line or other record

001F US Unit separator Ctrl-_ Delimits a unit (field) of data

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Code Abbr. Name Ctrl-x Typical usage

007F DEL Delete Data or time fill

The DEL character was originally used on punched tapes to delete a character by making all seven
bits to one. This explains its code position. Later it has been used as a fill in a data stream. Do not
confuse it with the effect of a Delete (or Del or Rubout) key, which often sends the code for
backspace (BS, Ctrl-H).

Normal plain text data seldom contains C0 Controls except CR and LF to indicate line breaks,
sometimes HT to indicate tabbing, and rarely VT or FF for vertical spacing. When reading text data in
a program, occurrences of other C0 Controls can typically be treated as symptoms of data errors,
unless there is a special agreement to use them.

C1 Controls include, loosely speaking, the corresponding set of control characters in the upper half of
8-bit character codes, Unicode range U+0080..U+009F. However, there are different assignments for
those positions, see http://www.itscj.ipsj.or.jp/ISO-IR/2-6.htm. Note that in Windows and Macintosh
character sets, many of these positions have been assigned to graphic characters.

007F DEL Delete Data or time fill

The DEL character was originally used on punched tapes to delete a character by making all seven
bits to one. This explains its code position. Later it has been used as a fill in a data stream. Do not
confuse it with the effect of a Delete (or Del or Rubout) key, which often sends the code for
backspace (BS, Ctrl-H).

Normal plain text data seldom contains C0 Controls except CR and LF to indicate line breaks,
sometimes HT to indicate tabbing, and rarely VT or FF for vertical spacing. When reading text data in
a program, occurrences of other C0 Controls can typically be treated as symptoms of data errors,
unless there is a special agreement to use them.

C1 Controls include, loosely speaking, the corresponding set of control characters in the upper half of
8-bit character codes, Unicode range U+0080..U+009F. However, there are different assignments for
those positions, see http://www.itscj.ipsj.or.jp/ISO-IR/2-6.htm. Note that in Windows and Macintosh
character sets, many of these positions have been assigned to graphic characters.

http://www.itscj.ipsj.or.jp/ISO-IR/2-6.htm
http://www.itscj.ipsj.or.jp/ISO-IR/2-6.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.3. Latin-1 Supplement (ISO 8859-1)

The Latin-1 Supplement block in Unicode is the same as the upper half of ISO 8859-1. In ISO 8859-
1, these characters are those that have the most significant bit seti.e., characters in code positions
from 128 to 255 in decimal. This means the range U+0020 to U+00FF in Unicode.

Like the ASCII repertoire, the Latin-1 Supplement contains a mixture of characters for historical
reasons, sometimes for no good reason. This means that many of the characters in it would belong to
other blocks, if blocks were formed purely according to the meanings of characters. For example, the
multiplication sign x would really belong to the Mathematical Operators block. However, Unicode was
designed to preserve all the code point assignments in ISO 8859-1.

While all printable ASCII characters have got some widespread use at least in specialized notations,
many of the Latin-1 Supplement characters have very little use. There was less need for assigning

arbitrary meanings to characters. You will hardly find any use for a character like broken bar , for
example.

The Latin-1 Supplement was designed to cover the needs of most languages spoken in Western or
Northern Europe. These languages use the Latin alphabet as the basis but also contain various
diacritical marks, a few extra letters. In its repertoire of punctuation characters, the Latin-1
Supplement is illogical: it contains, for example, the chevrons (« and ») but not the "smart quotes"
used in English. However, it can be argued that the ASCII quotation mark can be reasonably used as
a substitute for smart quotes but not chevrons.

8.3.1. Diacritic Marks and Letters with Them

The Latin-1 Supplement contains Latin letters with diacritic marks as used in languages of Western
and Northern Europe. It covers only a small fraction of all such characters. As we can see from Table
8-4, the characters do not constitute a systematic grid. Even more unsystematically, the uppercase

form of ÿ (, U+0178) does not belong to the Latin-1 Supplement.

Table 8-4. The unsystematic grid of diacritic marks in the Latin-1
Supplement

Lowercase letters

à á â ã ä å

è é ê ë

ì í î ï

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Lowercase letters

ò ó ô õ ö

ù ú û ü

 ÿ

 ñ

 ç

The use of diacritic marks is strongly language-dependent. It will be discussed later in the section
"Diacritic Marks" (where we mention some additional marks, too).

The following characters are spacing clones of diacritic marks, and they have very little use as
characters (see notes in the section "Diacritic Marks" later in this chapter):

Acute accent ´ (U+00B4), which is a clone of the combining acute accent U+0301.

Cedilla ¸ (U+00B8), which is a clone of the combining cedilla U+0327.

Dieresis ¨ (U+00A8), which is a clone of the combining dieresis U+0308.

Macron ¯ (U+00AF), which is a clone of the combining macron U+0304.

The acute accent is often used as an apostrophe (e.g., "John´s"), since it resembles a typographically
correct apostrophe more than the ASCII apostrophe does. Such usage may confuse both human
readers and computer programs.

The macron occasionally has some special uses. The Unicode standard mentions "overline" and "APL
overbar" as synonyms for this character. Consecutive macrons connect in many fonts, so the
character can be used to create a long line (¯¯¯¯¯).

8.3.2. Other Letters

The feminine ordinal indicatorª (U+00AA) and the masculine ordinal indicator º (U+0 0 B A) can
be regarded as letters, too. These characters are defined as compatibility characters that are
equivalent to letters "a" and "o" in superscript style, but they are meant to be used in specific
contexts only. They are used in Spanish after numbers to indicate an ordinal number of feminine or
masculine gender, respectively. For example, 1ª = primera, 1º = primero, both meaning "first." The
masculine ordinal indicator is very often confused with the degree sign (see "Mathematical, Logical,
and Physical Symbals" later in this chapter).

Characters in Table 8-5 are regarded as independent letters, although some of them are historically
combinations of two letters or a letter and a diacritic. Only the short names are given here; full
names are "Latin capital letter AE," "Latin small letter ae," etc.

ò ó ô õ ö

ù ú û ü

 ÿ

 ñ

 ç

The use of diacritic marks is strongly language-dependent. It will be discussed later in the section
"Diacritic Marks" (where we mention some additional marks, too).

The following characters are spacing clones of diacritic marks, and they have very little use as
characters (see notes in the section "Diacritic Marks" later in this chapter):

Acute accent ´ (U+00B4), which is a clone of the combining acute accent U+0301.

Cedilla ¸ (U+00B8), which is a clone of the combining cedilla U+0327.

Dieresis ¨ (U+00A8), which is a clone of the combining dieresis U+0308.

Macron ¯ (U+00AF), which is a clone of the combining macron U+0304.

The acute accent is often used as an apostrophe (e.g., "John´s"), since it resembles a typographically
correct apostrophe more than the ASCII apostrophe does. Such usage may confuse both human
readers and computer programs.

The macron occasionally has some special uses. The Unicode standard mentions "overline" and "APL
overbar" as synonyms for this character. Consecutive macrons connect in many fonts, so the
character can be used to create a long line (¯¯¯¯¯).

8.3.2. Other Letters

The feminine ordinal indicatorª (U+00AA) and the masculine ordinal indicator º (U+0 0 B A) can
be regarded as letters, too. These characters are defined as compatibility characters that are
equivalent to letters "a" and "o" in superscript style, but they are meant to be used in specific
contexts only. They are used in Spanish after numbers to indicate an ordinal number of feminine or
masculine gender, respectively. For example, 1ª = primera, 1º = primero, both meaning "first." The
masculine ordinal indicator is very often confused with the degree sign (see "Mathematical, Logical,
and Physical Symbals" later in this chapter).

Characters in Table 8-5 are regarded as independent letters, although some of them are historically
combinations of two letters or a letter and a diacritic. Only the short names are given here; full
names are "Latin capital letter AE," "Latin small letter ae," etc.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 8-5. Special letters in Latin-1 Supplement

Glyphs Codes Name Usage notes (not exhaustive)

Æ æ U+00C6, U+00E6 Letter ae Scandinavian languages, English, IPA

 U+00D0, U+00F0 Eth Icelandic (as voiced "th" in English)

 U+00DE, U+00FE Thorn Icelandic (as unvoiced "th" in English)

Ø ø U+00D8, U+00F8 O with stroke Danish, Norwegian, Faroese, IPA

ß U+00DF Sharp s German, denotes unvoiced "s" sound

In modern German orthography, the sharp "s," ß, is used after a long vowel only. It has no
uppercase equivalent. When converting data to uppercase, ß is replaced by "SS."

The following characters are not regarded as letters, despite being historically formed from stylized
letters: ¢, £, ¥, ©, ®, and µ (micro sign).

8.3.3. Superscript Digits (1 2 3) and Vulgar Fractions (¼ ½ ¾)

In Unicode, there are versions of digits used as superscripts or subscripts coded as separate
characters. Only the superscripts corresponding to 1, 2, and 3 belong to Latin-1 Supplement. The
first one is not used much, but the others have common usagee.g., in denoting square meter (m2)
and cubic meter (m3). The others are in the block Superscripts and Subscripts, discussed later. The
Latin-1 Supplement contains two characters that may look like superscript 0: the degree sign (°) and
the masculine ordinal indicator (º).

The so-called vulgar fractions are characters denoting fractional numbers as single characters. In
Latin-1 Supplement, there are such characters for the fractions 1/4, 1/2, and 3/4 (namely ¼, ½, and
¾). This reflects the character repertoire on many typewriters. Depending on the font, the bar (which
corresponds to fraction slash) can be horizontal or slanted.

For usage notes, see the section "Mathematical and Technical Symbols" later in this chapter.

8.3.4. Punctuation

Latin-1 Supplement has just a few punctuation characters:

Left-pointing angle quotation mark « (U+00AB) and right-pointing angle quotation mark»
(U+00BB), often called guillemets or chevrons and used as normal quotation markse.g., in
French, as in the following: Il a dit : « L'État, c'est moi. »

Inverted exclamation mark ¡(U+00A1). It is used in Spanish and some other languages at the
beginning of an exclamation. The exclamation is terminated by a normal exclamation markfor
example: ¡Buenos días, señor!

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Inverted question mark ¿ (U+00BF). It is used in Spanish and some other languages at the
beginning of a question. The question is terminated by a normal question markfor example:
¿Cómo está usted?

Soft hyphen (U+00AD), which is either rendered as normal hyphen-minus "-" or not rendered at
all (and treated as invisible hyphenation hint). It will be discussed later in conjunction with other
hyphen-like characters in the section "General Punctuation" later in this chapter.

8.3.5. Currency Symbols

Cent sign ¢ (U+00A2) is used in many countries. It is most widely known as the symbol for "cent" as
one hundredth of the U.S. dollar. In the English language, this character is written immediately after
a numbere.g., 75¢. It is never used when writing a sum of money that begins with dollar sign ($) ; in
such cases, cents are indicated as fractions of dollare.g., $0.75, $49.95.

The currency unit euro is divided into 100 cents, also known as eurocents . There is no
recommendation on using the cent sign as a symbol for cent in that meaning. Different abbreviations
like "c" and "ct" are used for the eurocent.

Currency sign ¤ (U+00A4) has no definite semantics. It is hardly ever used in normal text. Most
naturally, it is used as a generic currency symbol: a placeholder for actual currency symbols .
Localization settings in software may use the currency sign in patterns used to specify the formatting
of monetary quantities. For example, in such settings, the string "1,1 ¤" might be the way to tell the
system to put the currency symbol (to be specified in another setting) after the number and
separated from it with a space.

When data in ISO 8859-15 encoding is displayed by a program that does not support that encoding
or does not properly recognize information about the encoding, the program typically defaults to
displaying the data as if it were ISO 8859-1 encoded. Thus, an octet intended to represent the euro
sign € would be displayed as the currency sign, ¤.

Pound sign £ (U+00A3) is best known as denoting the pound as the currency unit of the United
Kingdom. It may be used for other currencies as well. The Unicode standard distinguishes the pound
sign from the lira sign £ (U+20A4), which has two crossbars, as opposed to one crossbar in the
pound sign. On the other hand, the standard says that the lira sign is not used much and that the
preferred sign for lira is £ (U+00A3).

Yen sign ¥ (U+00A5) has an alternative name "yuan, "reflecting its dual use for the currencies of
Japan and China. A glyph for the character may have one or two crossbars, with no difference in
meaning.

The euro sign, €, does not belong to the Latin-1 Supplement block but to the Currency Symbols
block, discussed in the section "Other Blocks" later in this chapter.

8.3.6. Mathematical, Logical, and Physical Symbols

There is a limited and rather haphazard set of mathematically oriented symbols in Latin-1
Supplement. Together with the characters in Basic Latin, such as +, -, and /, they let us write very

http://lib.ommolketab.ir
http://lib.ommolketab.ir

simple arithmetic expressions.

Degree sign ° (U+00B0) denotes temperature in degrees (e.g., 100 °F, 38 °C) or degrees when
expressing angles (e.g., 90° angle). Notice that when a temperature is expressed in kelvins, the
degree sign is not used; the symbol of kelvin is simply K (e.g., 311 K).

According to the rules of the SI system of units, a space should be used between a numeric value and
a unit symbol, with the exception of angle notations like 30°22'8". When the degree sign is used for
temperatures, the normal rule applies (e.g., 42 °C). A no-break space can be used instead of a
normal space to prevent undesired line breaks.

In practice, you may find the degree sign used for different other purposes, too. The Unicode
standard even mentions (in 14.2: Letterlike Symbols): "Legacy data encoded in ISO/IEC 8859-1
(Latin-1) or other 8-bit character sets may also have represented the numero sign by a sequence of
'N' followed by the degree sign (U+00B0 DEGREE SIGN). Implementations interworking with legacy
data should be aware of such alternative representations for the numero sign when converting data."
This statement describes legacy data rather than adequate use of the degree sign.

The degree sign is not the same as masculine ordinal indicator (º), although the glyphs for the two
characters may look similar. In Chapter 1, we discussed some of the reasons for being strict in such
issues. The degree sign is not to be confused with superscript zero U+2070 (digit "0" in superscript
style) either.

Division sign ÷ (U+00F7)is a mathematical symbol that mostly denotes division. Its intended scope
of use is unclear. It has been used in school mathematics, as in "100 ÷ 5 makes 20." In some
numeric keypads of computer keyboards, there is a key with the ÷ symbol, which means division in
calculator usage but may generate the solidus / when used for character input.

It is probably best to avoid using the division sign, except in special cases where its meaning can be
made clear. It has no tangible benefits over using the solidus /. Moreover, the symbol ÷ is also used
to denote subtraction in Denmark and elsewhere in Europe.

Micro sign µ (U+00B5) corresponds to the prefix "micro-" and denotes division by one million when
used as prefix of a unit. For example, "µm" is micrometeri.e., one millionth of a meter (previously
called "micron" and denoted by "µ" alone).

This character is historically based on the Greek letter mu. In Unicode, these characters are however
distinct. On the other hand, Unicode defines micro sign as a compatibility character which has Greek
small letter mu U+03BC as its compatibility decomposition.

In Unicode Version 4, the sample glyphs for the micro sign and the letter mu look very similar, if not
identical. In many fonts, however, there are differences, which vary from hardly noticeable to
substantial. In Times New Roman, for example, the glyphs are ΅ (micro) and µ (mu).

Multiplication sign x (U + 00D7) is a mathematical symbol denoting multiplication. Examples: "2x2
makes 4," where x can be read as "times"; "a 5x10 metres area," where x can be read as "by." In
biology, this character is used when naming hybrids e.g., Salix xcapreola indicates that the species
results from hybridization, and Agrostis stolonifera x Polypogon monspeliensis is a "hybrid formula"
that indicates the hybrid of two named species. The Unicode standard mentions an alternative name
"z notation Cartesian product," reflecting the usage for Cartesian (direct) product of sets. Cf. to the
middle dot (·), discussed in "Specialized Characters" later in the chapter.

Not sign ¬ (U+00AC) denotes logical negation, though mostly in formal logic texts only, not in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

programming languages. Even logic texts often use the Basic Latin character ~ (tilde) instead. The
Unicode standard also mentions that in typography, this character is called an "angled dash."

MS Word displays an "optional hyphen" (i.e., an invisible hyphenation hint) as ¬ when in "show
formatting" (Show ¶) mode. It was probably chosen partly because the not sign looks like a hyphen
with a special mark on it, and partly just because it is a conveniently available character that rarely
appears in running text.

Plus-minus sign ± (U+00B1) means "plus or minus." It has different uses:

It is sometimes used to refer to two quantities at the same time, as in "the solutions of the
equation x2 - 4 = 0 are ±2," meaning that the solutions are +2 and -2.

It is also used to indicate an interval of uncertainty in measurements and estimates, as in
"according to the measurements, the weight is 42.4 kg ± 0.5 kg." This means that the weight is
expected to be between 42.4 - 0.5 and 42.4 + 0.5 kilograms. Typically, this does not specify
absolute limits; the quantity after the ± sign is often some statistical measure like standard
deviation. According to rules for using the SI, notations like 42.4 ± 0.5 kg should not be used;
you should either repeat the unit as above or use parentheses: (42.4 ± 0.5) kg to make it
"completely clear to which unit symbols the numerical values of the quantities belong."

Yet another (informal) usage seems to be to let ± denote "about, circa" (e.g., "he is ±50 years
old"), which can be quite confusing.

When the character repertoire is limited to Basic Latin, the string "+/-" is commonly used instead of
±.

8.3.7. Specialized Characters

Broken bar (U+00A6) has no specific meaning. In some old fonts (and keyboards), the vertical line
| character appears as a broken line. For no apparent reason, this variant has been coded as a
separate character in Latin-1. The Unicode standard mentions that an alternative name for the
character in typography is "parted rule."

Copyright sign © (U+00A9) consists of letter C in a circle, and it is used in copyright statements,
such as "© 2006 Jukka K. Korpela." The character can be used instead of or in addition to the word
"copyright," partly because the character is, in principle, language-neutral and universal.

Middle dot · (U+00B7) is a multi-purpose character, which was originally included into Latin 1 due to
its use as punctuation in the Catalan language. It is more often used as a special character, usually
as multiplication sign of a kind. Uses include the following:

In the SI system of units, a middle dot, called "half-high dot" or "raised dot" in that context, can
be used when denoting the product of two or more unitse.g., "N·m" (newton multiplied by
meter). An alternative is to use a space (e.g., "N m"). See notes on multiplication symbols in
"Mathematical and Technical Symbols" later in this chapter.

In mathematics, a middle dot is often used as a multiplication symbol. If such a symbol is
needednote that in algebra it is often implied: ab means a multiplied by bthen it is usually better

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to use the multiplication sign (x).

In chemistry, a middle dot is used in some cases to separate major parts of a complex formula
such as components of a double salt. Example: K2SO4·Al2(SO4)3.

In Catalan, the middle dot is used to distinguish between "ll" and "l·l," which are pronounced
differently. In Unicode, there are separate characters Latin capital letter "l" with middle dot
(U+013F) and Latin small letter "l" with middle dot (U+0140), but they are compatibility
equivalent to letter "L" or "l" followed by the middle dot. However, typographers have differing
views on Catalan middle dots.

In dictionaries, the middle dot is used as a surrogate for hyphenation point U+2027i.e., to
indicate correct word breaking as in dic·tion·ar·ies.

In Greek, the middle dot is often used for a punctuation character "ano teleia," which should
actually appear higher than the middle dot. Unicode has Greek ano teleia (U+0387) as a
separate character, but it has the middle dot as its canonical mapping. However, in several
fonts, Greek ano teleia is an upper dot, not a middle dot, so it is a better punctuation character
for Greek texts when it is available.

Note that a raised decimal point should not be interpreted as a middle dot but as a full stop "."
character in particular usage and style.

The middle dot is distinct from the following characters: bullet (U+2022), one dot leader (U+2024),
bullet operator (U+2219), dot operator (U+22C5), and hyphenation point (U+2027). However, it is
often used as a surrogate for theme.g., as a small list bullet, although it is not visually suitable for
such use, since the glyph for middle dot is typically rather small.

No-break space " " (U+00A0) is used in place of a normal space character as a "binding space," to
prevent a line break between words or other expressions. It will be discussed in detail in "General
Punctuation" later in this chapter.

Pilcrow sign ¶ (U+00B6) is a "section sign in some European usage," as the Unicode standard puts it.
In old manuscripts, there was a tendency to present a new paragraph by writing a pilcrow sign and
continuing in-line, due to the considerable cost of the recording media in those days. However, such
usage is now largely outdated, and the character is used as a marker for special notes.

The pilcrow sign appears as paragraph sign (and is typically called that way) in some U.S. usage, in
much the same way as the paragraph sign (§) is often used in Europe. For example, clause 6 of an
agreement or verdict is referred to by "¶ 6" and clauses from 20 to 28 are referred to by "¶¶ 2028."

Many word processors display paragraph breaks as ¶ when requested to "show formatting." This does
not mean that the data itself (e.g., as saved onto disk) would contain such characters; it is usually
just a visual indication on the screen.

Registered sign ® (U+00AE) consists of letter R in a circle. It is written after a name or other
expression to indicate it as a registered trademark (at least in some country). There is considerable
variation in glyphs for this character. The letter R inside the circle may have different shapes, but in
addition to that, the size and position may vary. For example, in the Lucida Sans Unicode font, ® is a
small superscript, whereas in Verdana, ® extends below baseline (making the R in the symbol line up
with the baseline), and the symbol is relatively large.

Section sign § (U+00A7) is used as a section sign especially in the U.S., and as a paragraph sign in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

some European usage, especially when referring to paragraphs in laws, contracts, rules, etc. For that
reason, § is often used to symbolize law in general. Reflecting the variation, the character is called
paragraph sign in many standards.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.4. Other Latin Letters

The Latin-1 Supplement covers most languages spoken in Western and Northern Europe. There are
many other languages that use a script based on Latin letters. The ISO 8859 set of standards
contains various sets of 8-bit codes with different upper halves that cover some of those languages.
In Unicode, however, the structure is different. It has:

Latin Extended-A block (U+0100..U+017F), which contains a large set of Latin letters with
diacritic marks as well as some additional letters. They appear in a more or less alphabetic order
and include letters used in East European languages written in Latin letters (Polish, Lithuanian,

Czech, etc.): ... •

Latin Extended-Bblock (U+0180..U+024F, which contains a set of additional letters, which are
less widely known and often modified variants of Latin letters:

Latin Extended Additional block (U+1E00..U+1EFF), which is yet another supplement:
 ... ø ù.

When looking for a Latin letter with a diacritic, or a supposedly "Latin letter" in the broad sense, you
should normally look for the Latin 1 Supplement first (especially if the text is in a Western European
language), then the Latin Extended-A block. Sometimes you need to check the other two blocks as
well. This is somewhat inconvenient of course and demonstrates how Unicode has been built up in a
piecewise manner, rather than systematically designed from scratch.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.5. Other European Alphabetic Scripts

There are some writing systems in Europe that have the same structural principle (i.e., that are
alphabetic) as the Latin script but different letters. The letters look partly similar to or even identical
to Latin letters, largely due to common origin. Beware of the differences, though. For example, the

Greek capital letter rho, Ρ, and the Cyrillic capital letter er, , look very similar to the Latin capital
letter "P," but they denote an "r" sound and historically relate to R rather than P.

8.5.1. Greek Script

The letters α, β, γ,... used in modern Greek have been included into the Greek and Coptic block
(U+0370..U+03FF), which is similar to an 8-bit character code, ISO 8859-7. This code, in turn,
deviates from windows-1253 in a few code points, in addition to the difference that windows-1253
contains some extra characters in the range 80..9F. Although there is variation in encodings, the
characters themselves are well supported.

For ancient Greek as written in modern times, however, other characters are needed. They include
vowels with different diacritic marks, indicating three kinds of intonation of stressed vowels. The term
polytonic Greek is used to denote such a form of written Greek. The marks were preserved (until the
20th century) long after the intonation had been lost. Modern Greek has only one type of stress mark
(called tonos), and it is called monotonic Greek.

The additional characters needed for polytonic Greek, as well as some other characters, have been
included into the Greek Extended block, U+1F00..U+1FFF. Basically, you need Unicode to write
polytonic Greek properly. On the other hand, various font-based techniques have been used for
polytonic Greeki.e., encodings implicitly defined by the design of an 8-bit font.

8.5.2. Cyrillic Script

The Cyrillic script is historically derived from a version of the Greek script, with many modifications,
including addition of some characters taken from the Hebrew script. Although you may know the
Cyrillic script primarily as used for Russian, it is used (in many variants) for many other Slavic and
non-Slavic languages as well. Throughout history, the writing system of some languages has been
changed from Latin to Cyrillic or vice versa for political reasons.

The Cyrillic letters as used in Russian are covered by several 8-bit encodings. Among them, the most
common are KOI-8R and windows-1251. KOI8-R is specifically for Russian and does not cover most
other languages that use the Cyrillic script. The ISO-8859-5 and windows-1251 encodings cover the
Cyrillic letters used for Slavic languages, though not many of the letters in other languages using the
Cyrillic script.

Even when Unicode is used, problems may arise. Russian is normally written without accent marks,
despite the fact that the stress is varying and can be distinctive. However, an acute accent is often

http://lib.ommolketab.ir
http://lib.ommolketab.ir

used in dictionaries and textbooks, and occasionally in normal text as welle.g., to distinguish ´

 "bigger" from "big" (with stress on the second syllable). This creates a
problem, since Unicode does not contain Cyrillic vowel letters with acute accent as precomposed
characters. Consequently, you need to use the combining acute accent U+0301 after a vowel letter
and try to use software that can handle this. Unfortunately, the result is often typographically poor,
though there is more and more software that implements combining diacritic marks well.

When Cyrillic text is transliterated into a Latin script, confusion is often caused by varying
transliteration systems. Without knowing the transliteration method, it is impossible to know the
original Cyrillic spelling (and hence pronunciation).

8.5.3. Armenian and Georgian Scripts

Characters needed for writing the Armenian and Georgian languages, spoken in the Caucasus, have
been included into separate blocks named according to the languages. The languages have relatively
small sets of letters, so they can each also be written using an 8-bit encoding.

Modern Georgian makes no case distinction for letters. (Old Georgian had separate upper- and
lowercase, though.) In fact, such a situation is common in the writing systems of the world, though
most European scripts are an exception. It is also older; the case distinction was invented in medieval
Europe.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.6. Diacritic Marks

Diacritic marks are small signs added to letters or other characters, such an acute accent added to
letter "e" to produce é or a tilde added to "a" to produce ã. Usually the mark is placed above the
letter, but it could also appear below the letter, as in ç, or in another position. If your native language
does not use diacritic marks, you might regard them as decorations only. However, they may
fundamentally affect the meanings of words.

8.6.1. Why Diacritic Marks?

Diacritic marks are used to create variants of letters, often because a language that uses Latin letters
has more sounds that can be expressed using the basic letters.

Diacritic marks often originate from letters that were written above another letter. For example, the
tilde was originally a small "n," so that, for example, "an" was first written with a small "n" above the
"a," and then the "n" was simplified, producing ã. When, for example, the sound combination "an"
had changed to a nasalized "a" (i.e., the vowel "a" pronounced through the nose, with no consonant
"n"), it was natural to denote this sound with a single letter, ã.

People who have designed writing systems for previously unwritten languages often find the basic
Latin alphabet insufficient. If there are more essentially different sounds (phonemes) in the language
than there are basic letters, you could invent new letters or take them from other alphabets.
However, the most common solution is to add diacritic marks on letters, often imitating the
orthographies of other languages.

The meanings of diacritic marks vary greatly by language. For example, in French, the acute on é
affects the quality of the vowel in pronunciation; in Hungarian, the acute indicates that the vowel is
long; in Spanish, that the vowel has stress. It is not a matter of small nuances only; the differences
can be crucial to making distinctions in meaning. The French verbs "pêcher" (to fish) and "pècher" (to
sin) are quite different.

Sometimes diacritic marks are used just to make a distinction between words that are pronounced
the same way and otherwise written the same way, but have different meanings. The Italian words
"e" (and) and è (is) are pronounced similarly, but the diacritic marks help readers to see the
difference in meaning from the word itself, without context analysis.

In many languages, diacritic marks have an essential role. Speakers of such languages often regard
characters created with diacritic marks as completely independent letters. For example, in Swedish, ö
is a separate letter, placed at the end of the alphabet. From the Unicode perspective, however, it can
also be regarded as letter "o" with a diacritic, the dieresis.

Diacritic marks can also be combined. Letters with two diacritic marks are rare in European
languages but common in Vietnamese, for example.

In special notations, such as phonetic writing (e.g., IPA notation) and mathematical formalisms,
diacritic marks are often deployed extensively. Their use could not be covered with a reasonable

http://lib.ommolketab.ir
http://lib.ommolketab.ir

number of combinations of a base letter and a diacritic mark. For example, the Uralic Phonetic
Alphabet (UPA) rather routinely uses three or four diacritic marks on a letter to describe various
nuances of pronunciation.

Diacritic marks are often omitted, though, especially by people who are not familiar with the rules of
a language that uses diacritic marks. People might not know how to write the diacritic marks in a
particular program, or they might fearnot without reasonthat diacritic marks cause problems in data
transfer.

Publishers' policies differ on the use of diacritic marks. The most logical and polite approach is to
preserve all diacritic marks in foreign words, excluding those that have been specifically adapted to
another language. Thus, in English you should reserve the diacritic in "Rhône" (name of a river in
France) but may drop it in a loanword like "rôle," for which the spelling "role" is more common in
English. Some names have been adapted in a form without diacriticse.g., "Aland" (Swedish "Åland").
Similarly, the unit name "angstrom" is often written without diacritics, but the scientist's name must
have them: "Ångström."

8.6.2. Early Approaches

In the early days of character data processing on computers, diacritic marks were not used. Later,
attempts were made to produce them in a coarse manner similar to those used on typewriters. To
produce ô, for example, you typed "o" followed by a control character that moves the writing position
backward (to the left), then the character ^ (i.e., the circumflex as a separate character). The
control character used was normally the ASCII backspace, BS.

The results were of course esthetically poor, since the same diacritic was used for all letters,
lowercase and uppercase. Moreover, for economic reasons (like saving keyboard keys and coding
space), the characters used as diacritic marks were often not designed for the purpose. Instead,
existing characters were overloaded with new meanings and uses. For example, ASCII does not
contain an acute accent, but the ASCII apostrophe was meant to be used as an accent too. Since the
ASCII apostrophe had to serve so many different purposes, its appearance had to be neutral, hence
not really suitable for any of the uses.

Once some characters had been introduced for use as overprinting diacritic marks, new uses were
invented for them. After all, there was a very limited character repertoire available. Thus, for
example, since the circumflex ^ looks like an upward-pointing arrow head, it was taken into special
usage such as exponentiation: x^y is often used to denote x to the power y. This in turn implied that
the glyph for the character had to be clearly visible, even in low-quality rendering that was common
at that time. That way, the circumflex became rather big in shape. It then became rather unsuitable
as a diacritic mark, but it mostly wasn't used for that purpose anyway.

8.6.3. Coded Combinations

In Latin-1 and other 8-bit character sets, some character positions were assigned to letters with
diacritic marks as needed for writing particular languages. For example, Latin-1 contains characters
such as é and ü for the needs of Western European languages. Due to the limitations of the coding
space and the practical nature of the character sets, the assignments do not follow very regular
patterns. For example, Latin-1 contains the letter ÿ,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 8-2. Sample glyphs for combining diacritic marks

but not the corresponding uppercase letterthe letter is rare in itself and its uppercase variant is very
rare.

Although Unicode contains "precomposed" characters as well, it turned out to be unsatisfactory to
define all the possible combinations as separate characters. The concept of "combining diacritic
marks" was introduced to allow, in principle, free combinations. You can use almost any character as
a base character and attach any diacritic marks to it. Some of the combinations result in characters
that already exist in Unicode as precomposed, and this raises the problem of dual presentations that
are addressed in the so-called normalization.

The general idea is that new precomposed characters, consisting of a Unicode character and a
Unicode diacritic, will normally not be added to Unicode anymore. This has caused some controversy
for obvious reasons, since precomposed characters, with their own code positions, are often regarded
as "more real" than the combinations. Partly for such reasons, the concept Unicode Sequence
Identifier (USI) was introduced, which is described in Chapter 4.

8.6.4. Combining Diacritic Marks

A combining diacritic mark is a character that is meant to be presented in conjunction with a base
character, not as such. For example, when the combining acute accent U+0301 appears after the
letter "a," this character pair is to be rendered as á. Should you wish to render the combining acute
accent itself, you could put it after the space (or no-break space) characteri.e., combine it with a
graphically empty character. This would normally create the same rendering as the acute accent ´
(U+00B4), which is treated as the "spacing clone" of the combining acute accent. In code charts,
combining diacritic marks are often shown using a dotted circle to symbolize a generic base
character, as in Figure 8-2.

You might think of a combining diacritic mark as corresponding to backspace followed by the
corresponding spacing (noncombining) character. That is, you might regard U+0301 as resembling
backspace U+0008 followed by acute accent U+00B4. Although such thinking paints a picture that is
useful up to a point, it easily becomes misleading after that.

Programs that support combining diacritic marks in rendering are really supposed to do much more

http://lib.ommolketab.ir
http://lib.ommolketab.ir

elaborated operations than backspacing and overprinting. A program is supposed to analyze the base
character and the combining diacritic and pick up a suitable glyph (designed, as an element of a font,
by a typographer), such as á, if possible. As a second option, a program should construct a visual
rendering that places the diacritic on the base character intelligently. For example, to produce á and
Á that way, the program should at least pay attention to the different heights of "a" and "A."

Existing software is often deficient in supporting combining diacritic marks. It might get simple cases
right, but it might also use simplistic methods that correspond to overprinting. This might result in a
rendering where the diacritic is barely visible, or not visible at all. It is currently much safer to use
precombined characters when possible. The Unicode Normalization Form C (see Chapter 5) is suitable
for such purposes.

There is a particular danger when a program has been instructed to use one font as the primary font
and another font, or other fonts, as fallback for characters that do not have glyphs in the primary
font. The data might contain combining diacritic marks that do not appear in the primary font.
Consider what would happen if a program, when presenting the data U+0061 U+0301 (small letter a,
combining acute accent), used the Times font for the first character and Arial Unicode MS for the
latter. Since the proportions of glyphs are different, the diacritic will not be placed well on the letter.
This would result in a´, which is typographically inferior; compare it with the precomposed character in
the two fonts: á and á. A program can avoid this particular case by using the precomposed character,
but in the general case, such a character may not exist, or the basic font used might lack it.

If you use combining diacritic marks, be aware that not many fonts contain
them. Select a suitable font, and make sure it is used for the base characters,
too.

The combining marks used for Latin letters, as well as many other marks, are in the block
"Combining Diacritical Marks" ranging from U+0300 to U+036F. The grouping of these characters is
shown in Table 8-6. The attribute "combining" has been omitted from the character names here for
brevity. The "Ordinary diacritics" group is by far the most common. Note that there are combining
marks outside this block, too.

Table 8-6. Classification of combining diacritic marks

Range Name of group Sample diacritic name

U+0300..U+0333 Ordinary diacritics Grave accent

U+0334..U+0338 Overstruck diacritics Tilde overlay

U+0339..U+033F Additions Right half below

U+0340..U+0341 Vietnamese tone marks (deprecated) Grave tone mark

U+0342..U+0345 Additions for Greek Greek perispomeni

U+0346..U+034A Additions for IPA Bridge above

U+034B..U+34E IPA diacritics for disordered speech Homothetic above

U+034F Grapheme joiner Grapheme joiner

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Range Name of group Sample diacritic name

U+0350..U+0357 Additions for UPA Right arrowhead above

U+035D..U+0362 Double diacritics Double breve

U+0363..U+036F Medieval superscript letter diacritics Latin small letter a

The "ordinary" diacritic marks in the block are listed in Table 8-7, in alphabetic order by name,
omitting the attribute "combining." The first column shows the character as combined with the letter
"a."

Table 8-7. Ordinary combining diacritic marks

Character Code Diacritic mark

á U+0301 Acute accent

a U+0317 Acute accent below

a U+0306 Breve

a U+032E Breve below

a U+032A Bridge below

a U+0310 Candrabindu

a U+030C Caron

a U+032C Caron below

a U+0327 Cedilla

a U+0302 Circumflex accent

a U+032D Circumflex accent below

a U+0313 Comma above

a U+0315 Comma above right

a U+0326 Comma below

a U+0308 Dieresis

a U+0324 Dieresis below

a U+0307 Dot above

a# U+0323 Dot below

a U+030B Double acute accent

a U+030F Double grave accent

a U+0333 Double low line

a U+030E Double vertical line above

a U+031E Down tack below

U+0350..U+0357 Additions for UPA Right arrowhead above

U+035D..U+0362 Double diacritics Double breve

U+0363..U+036F Medieval superscript letter diacritics Latin small letter a

The "ordinary" diacritic marks in the block are listed in Table 8-7, in alphabetic order by name,
omitting the attribute "combining." The first column shows the character as combined with the letter
"a."

Table 8-7. Ordinary combining diacritic marks

Character Code Diacritic mark

á U+0301 Acute accent

a U+0317 Acute accent below

a U+0306 Breve

a U+032E Breve below

a U+032A Bridge below

a U+0310 Candrabindu

a U+030C Caron

a U+032C Caron below

a U+0327 Cedilla

a U+0302 Circumflex accent

a U+032D Circumflex accent below

a U+0313 Comma above

a U+0315 Comma above right

a U+0326 Comma below

a U+0308 Dieresis

a U+0324 Dieresis below

a U+0307 Dot above

a# U+0323 Dot below

a U+030B Double acute accent

a U+030F Double grave accent

a U+0333 Double low line

a U+030E Double vertical line above

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Character Code Diacritic mark

a U+031E Down tack below

à U+0300 Grave accent

a U+0316 Grave accent below

a	 U+0309 Hook above

a U+031B Horn

a U+0311 Inverted breve

a U+032F Inverted breve below

a U+032B Inverted double arch below

a U+031A Left angle above

a U+031C Left half ring below

a U+0318 Left tack below

a U+0332 Low line

a U+0304 Macron

a U+0331 Macron below

a U+0320 Minus sign below

a U+0328 Ogonek

a U+0305 Overline

a U+0321 Palatalized hook below

a U+031F Plus sign below

a U+0322 Retroflex hook below

a U+0314 Reversed comma above

a U+0319 Right tack below

a U+030A Ring above

a U+0325 Ring below

a~ U+0303 Tilde

a U+0330 Tilde below

a U+0312 Turned comma above

a U+031D Up tack below

a U+030D Vertical line above

a U+0329 Vertical line below

Some diacritic marks are often confused with each other. In particular, the caron (hacek) is often
confused with the breve, which typically indicates that a vowel is short. The marks may look rather
similar, but the caron is angular, v-like in shape, often characterized as inverted circumflex, whereas

a U+031E Down tack below

à U+0300 Grave accent

a U+0316 Grave accent below

a	 U+0309 Hook above

a U+031B Horn

a U+0311 Inverted breve

a U+032F Inverted breve below

a U+032B Inverted double arch below

a U+031A Left angle above

a U+031C Left half ring below

a U+0318 Left tack below

a U+0332 Low line

a U+0304 Macron

a U+0331 Macron below

a U+0320 Minus sign below

a U+0328 Ogonek

a U+0305 Overline

a U+0321 Palatalized hook below

a U+031F Plus sign below

a U+0322 Retroflex hook below

a U+0314 Reversed comma above

a U+0319 Right tack below

a U+030A Ring above

a U+0325 Ring below

a~ U+0303 Tilde

a U+0330 Tilde below

a U+0312 Turned comma above

a U+031D Up tack below

a U+030D Vertical line above

a U+0329 Vertical line below

Some diacritic marks are often confused with each other. In particular, the caron (hacek) is often
confused with the breve, which typically indicates that a vowel is short. The marks may look rather
similar, but the caron is angular, v-like in shape, often characterized as inverted circumflex, whereas

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the breve is at least mildly curved, a little bit u-like. Although the visual differences can be very
small, there is a fundamental difference in the coded representations of the characters. Nobody
knows where the name "caron" (used mostly in character standards only) comes from, and the

common name for this diacritic is "hacek" (from the Czech word "há ek").

Combining macron below (U+0331) and combining low line (U+0332) both indicate underlining of a
kind, but the latter is supposed to join on both sides. That is, for two consecutive characters with
combining low line, you would expect the underlining to be continuous. These combining marks
should only be used when underlining is part of a writing systeme.g., when the orthography of a
language uses an underlined letter to indicate something different from the base letter. For
underlining used, for example, for emphasis or decoration, it is much better to use markup, word
processor commands, or other tools.

The double diacritics U+035D to U+0362 are special in the sense that such a diacritic applies to the
two characters around it. This is an exception from the rule that in Unicode, a combining diacritic
appears after its base character. For example, to write an underlined "ts" so that there is just one
long underline that applies to both characters, you would use U+0074 U+035F U+0073 ("t,"
combining double macron below, "s"). The character U+035F is poorly supported, but you might have
better success, for example, with combining double inverted breve U+0361: U+0074 U+0361
U+0073 might produce t s.

The double diacritics are meant to be used in special cases where they belong to a script or notation
(such as IPA). Note that the word "double" occurs in names of diacritics somewhat confusingly. For
example, combining double low line U+0333 is not a double diacritic as discussed here, just a doubled
low line under one character (a).

There are additional diacritic marks in the block "Combining Diacritical Marks for Symbols,"
U+20D0..U+20FF. As the name suggests, they are mainly meant for use with mathematical and
other symbols. They have rather limited support in software and fonts. For example, to write letter
"x" with a rightward arrow above it, you could in theory use "x" followed by combining right arrow
above U+20D7. However, few fonts contain it, and it might even be incorrectly marked as a normal
graphic character , not a combining diacritic mark. Thus, for formulas and texts containing such
symbols, it is probably better to use special software like formula editors, instead of trying to
represent them as plain text.

8.6.5. Variation in Appearance

The visual appearance of a diacritic mark may vary greatly by font. In handwriting, there is even

more variation; for example, a handwritten ä may look like ã or .

The Latin small letter "a" with breve, is often written using a tilde as the diacritic ã. Such
appearances can often be regarded as substitutions of one character for another, and they may have

technical reasons. For example, ã (being an ISO Latin 1 character) might be available where is not.
Whether the variation causes problems depends on the character repertoire of the language and the

context. Although people can use ã instead of in Romanian, since this has become common and

will probably not cause confusion, it would be risky to use , since the reader could not immediately

see whether it stands for or for â, which are both used in Romanian.

Some of the variation is language-dependent. For example, the acute accent in French typically looks

http://lib.ommolketab.ir
http://lib.ommolketab.ir

different from the acute in Polish. This can be reflected in the dislike of fonts and even in labeling
some fonts as "foreign."

Unicode has even unified the modern Greek stress mark, tonos, with the acute accent, although the
name "tonos" appears in the names of characters. For example, the Greek letter small alpha with

tonos (U+03AC) is defined as compatibility equivalent to normal alpha followed by combining acute
accent, U+0301. Despite this, the shape of the diacritic in such characters differs from the acute in,
for example, é. The difference is more striking in, for example, the Greek letter capital alpha with
tonos U+03AB, since in Greek typography, the tonos is positioned to left of the base character in

such a case: .

Some diacritic marks have a regular appearance that deviates from what you might expect from their

name. The Latin capital letter "T" with caron, used in Czech and Slovak, looks as you'd expect: .
However, its lowercase counterpart, Latin small letter "t" with caron U+0165, has a comma-like

diacritic in most fonts: . This means that the diacritic mark looks like a comma or an apostrophe but
it is called caron and treated as caron in Unicode (e.g., in the canonical decomposition). Although this
sounds unnatural, it would also be unnatural to have "T" with caron mapped to, say, "t" with comma
above right in an uppercase-to-lowercase mapping.

8.6.6. Spacing Diacritic Marks

When a combining diacritic mark is applied to a space character, we get the diacritic itself as a visible
character. Alternatively, we might use a character that itself represents a spacing diacritic mark,
often called "spacing clones" of diacritic marks. Such characters appear, for historical reasons, in
different blocks, such as Latin-1 Supplement and Spacing Modifier Letters.

Starting from of Unicode 4.1, the recommendation is to apply a combining diacritic mark to a no-
break space U+00A0 rather than space U+0020. The reason is "potential conflicts with the handling
of sequences of U+0020 space characters in contexts like XML." However, the formal definitions still
to define decompositions using the space. For example, the acute accent ´ (U+00B4) is by definition
compatibility equivalent to a two-character sequence consisting of a space U+0020 and a combining
acute accent U+0301.

Spacing diacritic marks do not have much use. Sometimes we might wish to mention a diacritic in
text, such as "the acute ´ has varying shapes." More often, the spacing diacritic marks are used
mistakenly (or questionably) as replacements for more appropriate characters (e.g., the acute as an
apostrophe).

Some Basic Latin (ASCII) characters are historically derived from diacritic marks but are now treated
as characters on their own. For example, the tilde ~ (U+007E) is not treated as a spacing clone of
the combining tilde U+0303'that would in fact be odd, since the tilde has a rather different

appearance. Instead, there is a separate character, small tilde (U+02DC), which is by definition
compatibility equivalent to U+0020 U+0303.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.7. Letterlike Symbols

This block contains a large number of characters that are historically based on letters or letter
combinations but might be shaped differently and, most important, are used in specialized meanings.
For example, a symbol formed from the letter "R" by doubling its vertical line or all lines () is
conventionally used to denote the set of all real numbers in mathematics. Frequently used characters
of this type include:

Estimated symbol e (U+212E), originally letter "e" in a particular shape but defined by the
European Union as a specific symbol used in packaging to denote that a certain accuracy is
guaranteed in designating volume, mass, or other quantity,

Numero sign (U+2116), used in some languages (with some glyph variation by language) to

mean "number" (e.g., " 1" means much the same as "#1"). Compatibility equivalent to the
letter pair "No".

Trademark sign ™ (U+2122), used much the same way as the registered sign ® but about
unregistered trademarks. Compatibility equivalent to the letter pair "TM" in superscript style,
but glyphs vary a lot.

This block does not contain all Unicode characters that have originally been formed as stylized
variants of letters. Some such characters belong to other blocks due to the history of character
codes.

Some characters in this block are redundant duplicates of normal letters but included into Unicode for
compatibility. For example, although there is a character named "kelvin sign" in this block, it is not
meant to be used instead of the normal letter "K" when expressing thermodynamic temperatures.
The "kelvin sign" has been taken into Unicode only to allow existing data to be converted to Unicode
so that a distinction between normal "K" and a kelvin sign is preserved, if it exists in the original data.

Thus, contrary to what many people think after finding this block, many characters in it are not more
appropriate than the corresponding normal letters. It is true that using "kelvin sign" for example
would contain more semantic information, since the letter "K" as such has a large number of different
uses and interpretations. However, it would not be feasible to disambiguate characters by using
different codes for something that is essentially identifiable as a single character. We will return to
this issue in the discussion of using letters in SI notations.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.8. General Punctuation

The General Punctuation block (U+2000..U+206F) is very important, since many characters in it are
used frequently. It is however a mixed set, and only under a very liberal interpretation can we regard

all characters there as punctuation. For example, the per mille sign (U+2030) is comparable to a
unit symbol rather than the comma or the colon.

On the other hand, there are important punctuation characters elsewhere. The Basic Latin and Latin
1 Supplement blocks contain many very common punctuation characters like the comma. Moreover,
characters that are used in only one script have usually been placed in the same block as the letters
or other characters of the script.

8.8.1. Space Characters

In ASCII, there is only one space character, space. The Latin 1 supplement adds the no-break space,
which is meant to be used instead of a space between words and expressions when line breaking
should be disallowed there. There are several other space characters in Unicode, but they are of
rather limited usefulness and use.

8.8.1.1. Space

The space character U+0020 normally creates horizontal empty space. Depending on the rendering
software, the spacing could be of fixed width (for any particular font), or it could vary, especially in
typesetting when the text is justified on both sides. The spacing might also be affected by commands
of the typesetting program or other means, such as a stylesheet (e.g., using the word-spacing
property in CSS) when authoring in HTML.

Often texts can be reformatted so that spaces are replaced by line breaks or vice versa. In technical
terms, Unicode describes this so that a line break is normally permitted after a space character. The
space that is left at the end of a line is then ignored in formatting.

It is common to omit spaces in situations where orthography rules would require a space but both the
width adjustments and the breakability would cause undesired effects. For example, the rules of the
SI, the International System of Units, require a space between a number and a unit, as in "5 m" (five
meters), but people often write "5m." Of course we don't want a line break between "5" and "m" or
even a wide gap as in "5 m," when text justification requires increased spacing between words.
Usually, however, we can prevent such effects and still comply with orthography rules, by using a no-
break space.

8.8.1.2. No-break space: use it!

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The no-break space character U+00A0 is similar to a normal space but does not allow a line break
after it. That is, if you have "foo bar" with a no-break space between the words, then the words are
kept on the same line when the text is rendered or reformatted. Note that you use a no-break space
instead of a normal space, not in addition to it. The no-break space is also called a "hard space" or
"required space," though these unofficial names may also allude to other meanings, which are often
coupled with the non-breaking behavior.

In addition to its basic meaning, the no-break space usually has the property of being of fixed width,
for any given font. That is, it is neither expanded nor shrunk in text justification. This behavior is not
defined in the Unicode standard, but it is very common. It is probably often caused by the way
programs deal with the no-break space: they treat it as a printable character, just with an empty
glyph (of a particular width), not as a character that controls spacing. It's like an alphabetic
character, just empty.

Some programs, such as web browsers, by default collapse consecutive spaces. That is, any
sequence of space characters might be treated as equivalent to a single space. The programs usually
treat no-break space characters as non-collapsing. This is natural, since no-break space is usually
treated as a fixed width character, as just explained.

The no-break space has some special uses. In the HTML source code if web pages, you might find
table cells that contain nothing but a no-break space, usually written as an HTML entity, . The
reason is that web browsers commonly treat empty cells differently from nonempty cells (e.g., empty
cells may lack borders), and they typically treat a cell with a normal space as empty, a cell with a no-
break space as nonempty.

The no-break space belongs to all ISO-8859 encodings, so it is widely available. However, it is not
used very widely yet, partly because people do not know about it or how to type it simply. When
using MS Word, for example, you can type a no-break space almost as easily as a normal space: just
keep the Ctrl and Shift keys pressed down when you hit the spacebar. You can make no-break
spaces visible in MS Word by selecting the Show ¶ mode (often by clicking on the ¶ button); Word
then shows a no-break space as a degree sign, °. In other programs, things can be different, but
often you can define a keyboard shortcut you can use.

The difficult part is to adopt the habit of using no-break spaces. The following list suggests some
common cases where you might routinely use a no-break space:

Between a number and a unit, as in "5 m"

Between a word and a closely associated number or symbol, as in "section 1" or "letter x"

Within a number or a code that contains spaces, as in "1 000 000" in languages that use a
space as thousands separator, or in phone numbers like "+358 9 888 2675"

In short expressions like "U = V" or "a < 0"

Before the last word of a paragraph, if that word is very short

If you find this too difficult, you might decide to use no-break space only when you notice a
particularly bad line break in your text. However, texts are very often edited and reformatted so that
you cannot predict line breaks well.

On the other hand, when the formatting is important (e.g., in headings and headlines), you might

http://lib.ommolketab.ir
http://lib.ommolketab.ir

use no-break spaces even more extensively. For example, you might wish to prevent a short word
that starts or ends a sentence from being separated from the rest of the sentence. Remember,
however, that preventing line breaks increases the odds for bad formatting in other parts of a
paragraph.

8.8.1.3. Fixed-width spaces: rarely used

Unicode contains a set of space characters, shown in Table 8-8, that are similar to the common space
but have a fixed width. This means that they are normally not adjusted by typesetting programs. On
the other hand, such programs may contain commands for inserting something such as a thin space,
which might not be the Unicode thin space character but an internal code that affects spacing. In that
case, the spacing effect is often controllable via the program's commands in a detailed manner.

Table 8-8. Fixed-width space characters in Unicode

Code Name Width

U+200B Zero width space (ZWSP) Nominally no width, but may expand

U+200A Hair space Defined as "narrower than thin space"

U+2006 Six-per-em space 1/6 em (0.166... em)

U+2009 Thin space 1/5 em (0.2 em) or sometimes 1/6 em

U+205F Medium mathematical space 4/18 em (0.222... em)

U+2005 Four-per-em space 1/4 em (0.25 em)

U+2004 Three-per-em space 1/3 em (0.333... em)

U+2002 En space 1 en (0.5 em)

U+2000 En quad 1 en (0.5 em)

U+2003 Em space 1 em (the size of the font in use)

U+2001 Em quad 1 em

U+2008 Punctuation space The width of a period (full stop) "."

U+2007 Figure space The width of a digit (tabular width)

U+3000 Ideographic space The width of ideographic (CJK) characters

The fixed-width characters have been included into Unicode mostly for compatibility reasons. They
are rarely used in practice. They may have some special uses, however. For example, figure space
could be used for alignment purposes in numerical tables. If you have, say, a column with values like
1.2, 1.151, and 1.41, you could right-pad the values with figure spaces so that they have the same
number of characters to the right of the decimal point. Then aligning the column to the right would
make the values aligned to the decimal point. This is useful in contexts where you have no direct
method for such alignmente.g., in HTML authoring. The Unicode line breaking rules in UAX #14 (see
Chapter 5) specify that the figure space is non-breaking and even recommend it: "This is the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

preferred space to use in numbers. It has the same width as a digit and keeps the number together
for the purpose of line breaking." In practice, it is seldom a good choice, due to lack of support.

In particular, zero-width space (ZWSP) can be used to suggest line breaking possibilities inside a
string that could otherwise cause problems in typesetting. The ZWSP character is basically invisible,
yet allows a line break after it. Do not confuse this with discretionary hyphens; when a string is
broken after a ZWSP, no hyphen is added at the end of a line. For example, a long URL like
http://www.cs.tut.fi/~jkorpela/unicode/spaces.html (when used in text) might be modified to contain
ZWSP after some slash (/) characters. The ZWSP does not prevent increased spacing between the
characters around it, if such spacing is appliede.g., in order to justify text.

Beware that implementations may fail to implement fixed-width spaces according to the Unicode
descriptions. Programs may lack any particular support to fixed-width space characters in the sense
that they would adjust spacing. Instead, programs might just insert a glyph for the fixed-width
character if availableand most fonts lack them, so the result is often a symbol for unrepresentable
character. To make things worse, the glyphs are often incorrect. For example, the thin space can be
narrower or much wider than it should, and most fonts that contain a punctuation space have a far
too wide a glyph for it.

Among commonly used fonts, only a few, such as Arial Unicode MS, Lucida Sans Unicode, and
Code2000, contain glyphs for all or most fixed-width spaces.

Fixed-width spaces should be used only after checking the appearance in the
particular font used and only when you can be reasonably sure that the text will
always be rendered using that font.

The fixed-width spaces just listed (all except the figure space) have the basic semantics of a space in
the sense that a line break is permitted. This is often a problem. For example, French orthography
rules require "fine spaces" around some punctuation characters, as in « Voilà ! ». Although thin
spaces would give roughly the correct spacing, they would also permit highly undesirable line breaks.
Thus, no-break spaces are safer, though this would mean that the amount of spacing should be
controlled elsewhere, above the character level.

8.8.1.4. Adjusting spacing in other ways

As mentioned earlier, fixed-width characters are not used very much. In fact, even if a typesetting
program may have a command for inserting "thin space" for example, this need not mean that the
Unicode thin space character is actually used. Instead, the program might internally adjust spacing
between characters, using tools above the character level. This explains why such programs often let
you modify the width of the "thin space" you insert.

In MS Word, you can use the Format Font command to enter a dialog where you can adjust
character spacing. If you select a string with the mouse and then set character spacing for it that
way, you actually add the specified spacing after each character. In particular, if you do that for a
single character, the spacing before it is not affected. You can also use negative spacing to bring
characters closer to each other, and even overprint each other. This is normally not a good idea if
any other tools are available.

http://www.cs.tut.fi/~jkorpela/unicode/spaces.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

For example, to produce letter "a" with a line (macron) above it, you could try writing "a" and a
macron ¯ (U+00AF), then adjusting the spacing for the "a" suitably so that the macron appears
above it. Such tuning would however depend on the font. Usually better tools exist. You could use the

small letter "a" with macron (), or you could use "a" followed by a combining macron, or you could
use a formula editor.

8.8.1.5. Additional no-break space characters

The character U+202F, narrow no-break space,would appear to address some common problems in
spacing, since it is both narrow and nonbreaking. However, support to it in programs and fonts is still
rather limited. It was included in Unicode (in Version 3.0) for special purposes: for use in the
Mongolian script. It has been defined just as being narrower than a no-break space, without
specifying the width, so it cannot give any precise control even in principle.

Finally, there is U+FEFF, zero-width no-break space (ZWNBSP) . As its name suggests, it is really an
invisible connector. It would prevent a line break inside a string even if a break would otherwise be
permitted. The recommended character for such usage is now U+2060, word joiner (WJ). The reason
is that ZWNBSP also has a different usage: it is used as a byte order mark (see Chapter 6). However,
in practice, ZWNBSP is more widely supported in software at present.

In theory, you could use a "nonbreakable thin space " (e.g., between numbers) by using a thin space
followed by a word joiner, U+2009 U+2060. In addition to being clumsy, this would be unreliable,
since it uses two characters that are not widely supported. Far too often, U+2060 displays as a box
or as a question mark. You would get better results with U+FEFF instead of U+2060, but even then
the method would work with some fonts only.

8.8.1.6. A practical approach to thin spaces

In contexts like French punctuation or the use of a space as a thousands separator (as in 500 000),
we would like to use a thin space character that is non-breaking. Since this is almost impossible at
present at the character level, we have two options, illustrated here with implementations in HTML
and CSS:

Use no-break space characters and adjust the amount of spacinge.g., in a stylesheet; for
example:

500 000

or:
500 000

Use thin space characters and prevent line breaking using a stylesheet or markup; for example:

500 000

http://lib.ommolketab.ir
http://lib.ommolketab.ir

or:
<nobr>500 000</nobr>

The first method, where non-breakability is expressed at the character level and spacing adjustment
is handled otherwise, is usually more practical. The no-break space character is far more widely
supported than the thin space. As a variation of this method, you could use HTML markup rather than
CSS for affecting the amount of spacingfor example, using 500<small> </small>000.

8.8.1.7. Disallowing and allowing line breaks

The Unicode standard recommends the use of WJ when you wish to prevent line breaks and ZWSP
when you wish to allow line breaks, overriding normal line break rules. However, at present such line
break control at the character level does not work very widely and should not be expected to be
portable across text-processing applications. It is often better to use other methods, such as markup,
stylesheets, or typesetting commands. For example, in HTML authoring, people even use
nonstandard but widely supported markup such as <nobr>...</nobr> (prevents line breaks inside) and
<wbr> (allows a line break; corresponds to ZWSP).

8.8.2. Quotation Marks

In Unicode, there are several pairs of asymmetric quotation marks, but of them, only the double
angle quotation marks « and » belong to ISO Latin 1. Notice in particular that the normal quotation
marks in U.S. English, namely left and right double quotation marks (U+201C, U+201D), do not
belong to ISO Latin 1 (although they belong to Windows Latin 1). In Unicode, most quotation marks
belong to the General Punctuation block.

The quotation marks vary greatly from one language to another and even within a language. When
ISO Latin 1 has to be used, there are not many choices: you have to live with ", ', «, and ». It is
better to use these typographically inferior characters for quotations than to try to ''construct´´
smart quotes from characters that are not quotes.

8.8.2.1. Language-specific quotation marks

In Chapter 2, we described how word processors can automatically generate language-dependent
quotation marks. Beware, however, that the applicable rules are somewhat debatable, especially
regarding nested punctuation. This means that the automatically generated marks do not always
comply with official rules. Even versions of the Unicode standard have contained erroneous examples
of the use of quotes. See "Using Common Locale Data Repository" in Chapter 11 for information
about language-specific rules.

The most common quotation marks are listed in Table 8-9. The names are partly misleading, since a
"left" quote does not always appear to the left of the quoted text.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 8-9. Quotation marks

Code Character Name

U+00AB « Left-pointing double angle quotation mark

U+00BB » Right-pointing double angle quotation mark

U+2018 ' Left single quotation mark

U+2019 ' Right single quotation mark

U+201A ' Single low-9 quotation mark

U+201B � Single high-reversed-9 quotation mark

U+201C " Left double quotation mark

U+201D " Right double quotation mark

U+201E " Double low-9 quotation mark

U+201F Double high-reversed-9 quotation mark

U+2039 ‹ Single left-pointing angle quotation mark

U+203A › Single right-pointing angle quotation mark

8.8.2.2. The apostrophe versus the single quotation mark

People often ask how to distinguish the apostrophe, as in "can't," from the right single quotation
mark, as the closing quote in 'hello' (using British-style quotation marks). The short answer is that in
Unicode, you don't. The answer often makes people uneasy, but we cannot really change this
anymore.

Version 2.0 of the Unicode standard said that the preferred character for apostrophe is the modifier
letter apostrophe U+02BC, but this was changed in Version 2.1. The modifier letter apostrophe is
preferred where the character is to represent a modifier letter (for example, in transliterations to
indicate a glottal stop). But as a punctuation apostrophe, as in "We've been here before," the right
single quotation mark (U+2019) is preferred.

This means that in processing text data, you cannot tell a punctuation apostrophe (used as part of a
word) from a right single quote without considering the context. This is practically not very serious,
since there is in any case some variation in the ways that a punctuation apostrophe might be
represented in data. The person who typed the data in the first place may have used the ASCII
apostrophe, or the acute accent.

8.8.3. Hyphens and Dashes

It has become common to use the hyphen-minus character for a wide range of purposes, simply
because it is the only hyphen-like character in ASCII. This is detrimental to typography, since
different hyphen-like characters need different appearance. Sometimes two consecutive hyphens "--"
are used to emulate an em dash, but this results in poor appearance, since the hyphens do not

http://lib.ommolketab.ir
http://lib.ommolketab.ir

connect.

In Unicode, there is a rather large collection of hyphen-like or dash-like characters. Specifically, there
is an official list (in Chapter 6 of the Unicode standard, Table 6-3), which is presented in Table 8-10
as amended with additional reference information. This table also contains the soft hyphen, which
belonged to the corresponding table in Unicode 3 but is just mentioned after the table in the current
version of the standard.

Table 8-10. Hyphens and dashes in Unicode

Glyph Code Name Notes on meaning and usage

- U+002D Hyphen-minus
The well-known ASCII hyphen, with multiple usage, or "ambiguous
semantic value"; the width should be "average"

~ U+007E Tilde The ASCII tilde, with multiple usage; "swung dash"

- U+00AD Soft hyphen "Discretionary hyphen"

 U+058A
Armenian
hyphen

As soft hyphen, but different in shape

- U+1806
Mongolian
todo hyphen

As soft hyphen, but displayed at the beginning of the second line

- U+2010 Hyphen
Unambiguously a hyphen character, as in "left-to-right"; narrow
width

- U+2011
Non-breaking
hyphen

As hyphen (U+2011), but not an allowed line break point

 U+2012 Figure dash As hyphen-minus, but has the same width as digits

U+2013 En dash Used, for example, to indicate a range of values

' U+2014 Em dash Used, for example, to make a break in the flow of a sentence

U+2015 Horizontal bar
Used to introduce quoted text in some typographic styles;
"quotation dash"; often (e.g., in the representative glyph in the
Unicode standard) longer than em dash

 U+2053 Swung dash Like a large tilde; often missing in fonts

 U+207B
Superscript
minus

A compatibility character, equivalent to minus sign U+2212 in
superscript style

 U+208B
Subscript
minus

A compatibility character, equivalent to minus sign U+2212 in
subscript style

- U+2212 Minus sign
An arithmetic operator; the glyph may look the same as the glyph
for a hyphen-minus, or may be longer

� U+301C Wave dash A Chinese/Japanese/Korean character

0 U+3030 Wavy dash A Chinese/Japanese/Korean character

The hyphen bullet U+2043 is not listed among the hyphen dash characters, despite its name. There

http://lib.ommolketab.ir
http://lib.ommolketab.ir

is no cross-reference in the description of the hyphen bullet in the code chart. Apparently, the hyphen
bullet is really meant to be a bullet character that looks like a hyphen (of a kind), rather than
comparable to hyphens and dashes. Note that in ASCII text, the hyphen-minus is often used in the
role of a bullet in a bulleted list. Some typographic conventions favor the use of a hyphen-like bullet
even when a rich character repertoire is available, though the bullet • and dashes like the en dash ""
are more common in such usage. Typically, list bullets are generated by word processors or other
programs, rather than written explicitly into documents.

8.8.3.1. Use of hyphens and dashes

When a sufficient character repertoire is available, the following usage rules are suitable, since they
comply with old typographic and orthographic principles and the defined Unicode meanings of
characters:

The hyphen-minuscharacter should be used only in computer languages and other contexts
where this ASCII character belongs to the language syntax. Thus, for example, the C language
statement a = b - c; must be written using the hyphen-minus character, despite the fact that
it there denotes mathematical subtraction; the reason is that C language has been defined to
use hyphen-minus as such an operator. Similar considerations apply to most programming,
scripting, command, and markup languages, since they generally use ASCII characters only at
least in the core language.

The hyphen character should be used as a normal hyphen in natural languages.

The non-breaking hyphen should be used instead of a normal hyphen when a line break is
undesirable, as in the string "Latin-1."

The minus sign should be used as mathematical minus sign, both as a binary operator and as a
unary operator (or simply as the sign of a number).

The en dash is used to indicate a range of values, such as 20002500. However, there are often
other possible notations, like "2000 to 2500" or "2000...2500."

The em dash can be used to make a breaklike this'in the flow of a sentence, or to make a
parenthetic remark.

The en dash and em dash especially have language-dependent uses. The uses mentioned in this list
(as taken from the Unicode standard) should primarily be taken as typical uses in American English.
For example, in Europe, it is much more common to use an en dash with spaces around it like this for
parenthetic remarks. Historically, the spaces compensate for the shortness of the en dash.

8.8.3.2. The soft hyphen

The soft hyphen is defined as "discretionary hyphen" in Unicode. This means that it is normally not
displayed at all but indicates a permissible hyphenation point. For texts in a Latin script, hyphenation
means that a word may be broken so that the first part appears at the end of a line, with a hyphen
after it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Hyphenation hints useful for words that would not be properly hyphenated by a program's normal
algorithmse.g., for foreign words or for words like "record" that have different hyphenations
depending on meaning (verb "re-cord," noun "rec-ord"). In many programs, the occurrence of a soft
hyphen prevents automatic hyphenation in the wordi.e., the word can only be hyphenated at a soft
hyphen. Thus, for long words, it might be advisable to indicate all hyphenation points.

The reason why Unicode 4 does not list the soft hyphen as a hyphen is that the standard tries to
clarify its meaning: "it marks a position for hyphenation, rather than being itself a hyphen character."

Though supported by some software, the soft hyphen does not work reliably across programs. In
addition to the MS Word specialty discussed below, the soft hyphen is treated as a normal hyphen by
various programs, including some web browsers.

8.8.3.3. MS Word specialties

Microsoft Word has an Insert Symbol function, which was described in Chapter 2. It contains a
quick menu for some commonly used characters: "Special Characters." Some entries there are rather
misleading:

"Nonbreaking Hyphen" (often with shortcut Ctrl-Shift--) does not insert the Unicode character
non-breaking hyphen U+2011 but instead the control character U+001E. Word displays it as a
hyphen and does not break a line after it. If the document is saved as plain text, Word turns the
control character to a hyphen-minus. If you cut and paste text, the character turns into a
question mark, ?.

"Optional Hyphen" (often with shortcut Ctrl--) does not insert the Unicode character soft hyphen
U+00AD. Instead, it inserts the control character U+001F, which is interpreted by Word as
indicating a possible hyphenation point. This information is usually lost when saving in other
formats or when cutting and pasting.

However, when saving data in HTML format, Word 2002 generates ‑ (character reference that
means U+2011) from its internal "Nonbreaking Hyphen" and the U+00AD soft hyphen character from
its internal "Optional Hyphen."

It is possible to insert U+2011 or U+00ADe.g., using the "Symbols" pane or, in sufficiently new
systems, by typing 2011 Alt-x or ad Alt-x, respectively. The non-breaking hyphen U+2011 then

works properly, assuming the font in use contains a glyph for it. The soft hyphen U+00AD however is
displayed as a visible hyphen. Thus, MS Word does not support the soft hyphen as defined in
Unicode. Internet Explorer, on the other hand, supports the soft hyphen, but some other web
browsers do not.

8.8.4. Ellipsis

In English, three spaced dots are often used to indicate omission. The notation can be identified with
the horizontal ellipsis "..." (U+2026), which belongs to windows-1252, too. This character is
compatibility equivalent to a sequence of three period (full stop) characters ("...") with a presentation
that has more spacing between the periods. MS Word automatically converts three periods to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

horizontal ellipsis (by default).

In some other languages, recommendations or practices may favor the use of unspaced periods.
There is no Unicode character for such a combination, so it is naturally written as three periods. MS
Word obeys such conventions: if it has recognized the language, for example, as French or Spanish
(by inference or from an explicit setting of language), it leaves "..." intact.

In mathematics, other ellipsis characters are used, too. The most common of them is midline
horizontal ellipsis " " U+22EF. It is used, for example, in sums like a 1 + a2 + + an.

8.8.5. Angular brackets

There is great confusion about various characters called angle brackets. Here we will refer to them
collectively with the name "angular brackets, " since the words "angle bracket" appear in the names
of specific Unicode characters. Quite often, when someone says "angle bracket," he does not mean
any of those characters but the less-than sign < and the greater-than sign >.

In mathematics and some other special notations, angular brackets are used for special purposes.
Sometimes they are used as an additional type of brackets when you have run out of other typesi.e.,
normal parentheses (), square brackets [], and curly braces { }. More often, angular brackets are
used to denote other things, such as the following:

Pairs, triplets, or n-tuples, instead of the more common use of normal parentheses. For
example, x,y,z might mean an ordered triplet of coordinates, more commonly denoted as
(x,y,z). This is potentially misleading, due to the other uses.

An inner product of two functions or vectors, often denoted as f | g .

Specifically the L2-inner product, also called bracket product.

An expectation value: X is the expectation value of a variable X.

In any case, the identity of angular brackets in terms of Unicode characters usually remains
unspecified. In many references, the less-than sign and the greater-than sign are described as being
angle brackets or as identical in shape to them. Yet, there is considerable difference between those
signs and the usual shapes of angular brackets in good mathematical typography. Usually angular
brackets have a rather obtuse angle.

Further confusion is caused by the fact that the less-than sign and the greater-than sign, being ASCII
characters, have been taken into many computer language for use as delimiters. We can say that
they are used as (i.e., in the role of) angular brackets, but it would be incorrect to say that they are
angular brackets. This includes the well-known use in HTML and XML tags like <body>. Of course, in
such notations you must use the less-than sign and the greater-than sign, since they are part of the
defined syntax. Partly imitating such usage, they are also used as delimiters in Unicode notations like
<small> in compatibility mappings, in writing URLs in text (e.g., as <http://www.w3.org>), in
handwritten typesetting instructions like <sc> for small caps, and in pseudo-markup like <joke> on
Internet discussion forums.

http://www.w3.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

There is some established use of less-than sign and greater-than sign as
delimiters. There are also rare cases where you need typographically correct
angular bracketse.g., in mathematics. Apart from such usage, angular brackets
are best avoided.

The main reason for avoiding angular brackets is that the widely available less-than sign and the
greater-than sign are typographically unsuitable for such use, and they are also heavily loaded with
other meanings and uses. Other characters that might be considered for use as angular brackets are
less widely available; some of them exist in a few fonts only. Moreover, they are easily confused with
each other both by writers and by readers.

Table 8-11 lists several Unicode characters that might be understood as angular brackets in some
sense. For simplicity, only "left-pointing" (or "opening") characters are considered. The corresponding
"right-pointing" character usually appears in the next code position or otherwise close. The glyphs (in
the second column) for the characters are shown in the Arial Unicode MS font; as you can see, some
of the characters are missing even in this relatively large font.

Table 8-11. Unicode angular brackets

Code Glyph Name Block

U+003C < Less-than sign Basic Latin

U+2039 ‹ Left-pointing angle quotation mark General Punctuation

U+2329 Left-pointing angle bracket Miscellaneous Technical

U+276C Medium left-pointing angle bracket ornament Dingbats

U+27E8 Mathematical left angle bracket Misc. Math. Symbols-A

U+29FC Left-pointing curved angle bracket Misc. Math. Symbols-B

U+3008 Left angle bracket CJK Symbols and Punct.

Although angle quotation marks (guillemets, chevrons) have occasionally been used as angular
brackets, as in ‹foo›, such usage is very problematic. Their size and shape differs from typographic
angular brackets, and they might be incorrectly taken as quotation marksnot only by human readers
but also by software, since they are quotation marks by Unicode definitions. Thus, they may confuse,
for example, the automatic processing of quotations.

In the Dingbats block, there are also some other ornamental brackets in addition to U+276C.
Generally, Dingbats characters are unsuitable for normal text and should be considered as
decorations only, unless used by some special convention.

The characters in the blocks Miscellaneous Mathematical Symbols-A and Symbols-B are relatively
new additions to Unicode (added in Version 3.2), and therefore poorly supported. Although U+27E8
(also known as "bra," matching "ket," which is a synonym for mathematical right angle bracket
U+27E9) would theoretically be most adequate for use as an angular bracket, U+2329 is usually a
much more practical choice.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Yet, the Unicode standard says about U+2329 and the right-pointing angle bracket U+232A that they
are "discouraged for mathematical use because of their canonical equivalence to CJK punctuation."
They have indeed been defined as canonical equivalent to U+3008 and U+3009, though displayed as
visually different. The Unicode names of these characters, "left angle bracket" and "right angle
bracket" are misleading, since they give no hint of their nature. They are meant for use in East Asian
writing along with Chinese-Japanese-Korean ideographs. Consequently, they have some surprising
properties.

A glyph for the left angle bracket (U+3008) has to suit its use with ideographs designed to fit into a
square, such as 懌. Therefore, the lef t -point ing angle bracket) (U+ 2329) is much more suitable, for
example, for mathematical texts in English. However, the canonical equivalence means that software
conforming to the Unicode standard may effectively treat them as identical, and mapping to any
Unicode normalization form will replace U+2329 with U+3008.

Thus, if you really need angular brackets (in mathematics, for example):

Use the mathematical brackets U+27E8 and U+27E9, if you can be reasonably sure that these
rarely available characters will be displayed and printed correctly.

1.

Otherwise, use the left-pointing and right-pointing angle brackets U+2329 and U+232A (which
are available in a few fonts), if you can guarantee that no problems will arise from normalization
or other operations based on canonical equivalence.

2.

Both of the above failing, use the less-than sign and the greater-than sign, and give appropriate
explanations so that readers will understand them as delimiters.

3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.9. Line Structure Control

For practical reasons, text usually needs to be divided into lines when presented visually. This is
caused by the properties of media like papyrus scroll, sheet of paper, or computer screen. If we used
continuous tapes for writing, things would be different.

8.9.1. Different Approaches to Line Structuring

When text is presented in digital coded form, it seems natural to leave out the line division. It can be
handled by the rendering software, which selects the line length according to the rendering situation
and styling instructions. This is typically the approach in modern text processing: a paragraph does
not contain any line structure information. The same applies to data formats such as HTML and TeX:
although the source format may contain line breaks, they are normally ignored (treating them as
equivalent to spaces). You would use explicit markup, such as br in HTML, to force a line break.

However, in the early days of computing things were different, and this is still reflected in important
ways. Text data files were line-oriented, since the files were treated more or less as images of a deck
of punched cards (with 80 characters in each card), line printer output (typically consisting of 132
character wide lines), or computer screens (usually 80 characters wide). This means that the digital
files were internally divided into lines as well, using some of the coding methods we will discuss
shortly.

Line structure became semantically important, too. In the absence of more advanced methods, text
was formatted using blank lines between paragraphs and other blocks of text. Indentation was
created by using spaces at the start of a line. Spaces were also used to create table-like display of
data or pictures formed from characters ("ASCII graphics"), and naturally this implied that line
structure is essential.

Line structure is also used for presenting tabular data in formats such as Tab Separated Values (TSV)
or Comma Separated Values (CSV) . They are commonly used for transferring data as text between
spreadsheet programs and other software. A row of a table is presented as one line of text, with a
horizontal tab or comma or other character as separator between cells.

Many computer languages have been designed to be line-structured. Although in most programming
languages (excluding original FORTRAN, Python, and few others), line structuring is just visual
formatting for the human eye, most command languages use a line as a fundamental concept.
Typically, a command consists of one line.

In particular, Internet protocols typically use command (or control) languages that are line
structured. For example, an email message header is a logical line, beginning with a key word and a
colone.g., From: or Subject:and extending to the end of line. In such headers, the continuation line
convention is that a line beginning with at least one space is treated as a continuation of the
preceding physical line.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.9.2. Lines and Records

Lines are often called "records," or "physical records" to distinguish them from a logical record
concept. A logical record may correspond to one physical record or a sequence of physical records
(e.g., a postal address record consists of several lines, or physical records), or the correspondence
can be more complicated. In any case, logical and physical records are at different conceptual levels,
and logical record structure is either not explicit at all or it is expressed using tools above the
character level.

The situation is somewhat more complex, though. Although a physical record (in text data) normally
corresponds to a line, it may actually span several lines. To express this somewhat confusing
situation, we can distinguish between physical line and logical line.

In line-structured languages and data, it may happen that a line needs to be longer than conveniently
fits into one physical line. In such cases, some continuation line convention is applied so that one
logical line can consist of several physical lines. Even in programming languages that are not line
structured, continuation line conventions are useful for constructs that do not permit a line break
inside them, most important, string constant literals. The conventions vary. A common one is that a
reverse solidus \ (backslash) at the end of line indicates that the logical line continues at the start
(character position 1) of the next physical line and the \ itself is not treated as data. In such a
convention, \ before a line break effectively nullifies the line break (and the \ character itself).

Continuation lines are not a Unicode issue, since the continuation line conventions operate at a higher
level. In Unicode, the distinction between physical line and logical line as just described does not
exist.

8.9.3. Methods of Coding Line Structure

Several methods have been deployed for expressing a line structure at the character level:

Precede each line by data that expresses the length of the line in octets. Writing characters
must be line-buffered: they are written to an internal buffer that is flushed out when the line is
complete and its length can be written out before the line itself.

Make all lines of the same, fixed and known length, such as 80 characters, using spaces or
other neutral characters for padding. Essentially, a text file is then structurally equivalent to a
deck of punched cards with no separator between the cards. This is wasteful but simple, and it
was widely used in the early days of computing. You can still find legacy data and even legacy
systems that use such an approach. Care must be taken when dealing with trailing spaces,
since some of them might be significant and not just padding.

Use control characters for start of line and end of line. Although this may seem unnecessarily
explicit, as compared with indicating just line breaks, it is the line structure model used in
SGML, for example. By default, SGML uses line feed as start of line (record start, RS) and
carriage return as end of line (record end, RE). In implementations, it is common to use line
break control as described next, and programs are expected to infer the missing start of line
(and end of line) characters.

Use control characters between lines. The expression "line break" is often used to refer to one

http://lib.ommolketab.ir
http://lib.ommolketab.ir

or more control characters used for the purpose. This is the most common approach nowadays,
but the problem is that there are several line break conventions. Even the last line is usually
terminated by a line break, although it is then ambiguous whether the data ends with an empty
line or not. The control characters used in different environments are listed in the next table.

The line break characters are summarized in Table 8-12. Note that CR and LF, the most common
control characters for line breaks, are seriously ambiguous.

Table 8-12. Line break characters in Unicode

Abbr. Code Unicode name Comments

LF U+000A Line feed Line break or paragraph break; "control-J"

VT U+000B Vertical tabulation Line break in MS Word; "control-K"

FF U+000C Form feed Page break, implying line break; "control-L"

CR U+000D Carriage return Line break or paragraph break; "control-M"

NEL U+0085 Next line Line break in some systems

LS U+2028 Line separator Unambiguous, but used very little

PS U+2029 Paragraph separator Unambiguous, but used very little

Commonly used conventions on line breaks include the following:

Some systems (e.g., Macintosh) use CR between lines.

Some systems (e.g., Unix) use LF between lines; XML follows this practice in the sense that XML
processors canonicalize line breaks to LF.

Many systems use a CR LF pair (carriage return immediately followed by line feed) to indicate a
single line break, and this is a basic convention in most Internet contexts, for example.

On Windows systems, CR LF is normally used as a line break. However, in text-processing software
such as MS Word, CR LF separates paragraphs. In such usage, there is normally no line structure
inside a paragraph, so a paragraph is like a long line, as far as line break controls are considered.

8.9.4. Editors, Word Processors, and Data Transfer

The differences described in the previous section are a common source of problems in data transfer
between programs, even inside a single computer. The programs commonly used for processing text
can be roughly divided into two categories. An editor processes plain text and is often line oriented,
and lines are typically separated by LF (or CR or CR LF). At the simplest, an editor uses one font only,
and it stores no font information in a file it creates. Widely used editors include Notepad and Emacs.
A word processor such as MS Word can handle different fonts, underlining, tabular formatting, and
many other kinds of visual enhancements. This means that it saves data in a particular internal
format that contains formatting data in addition to the text itself.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Normally a text processor can read or write plain text files, too. Thus, data can be transferred
between a text processor and an editor in plain text at least. There are pitfalls, however. Differences
in line break conventions often cause trouble. If you use MS Word and tell the program to save a
document as plain text, there is a considerable difference between "plain text" and "plain text with
line breaks" in the format menu of the "Save As" function. In "plain text," a paragraph is saved as
one long line, and this may cause trouble if you try to open the file in an editor. "Plain text with line
breaks" splits a paragraph into lines, separated with CR LF, according to the current visual rendering
(which depends on the window width). This is usually much more digestible to an editor. It may imply
that information about paragraph breaks is lost, though.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.10. Mathematical and Technical Symbols

There is a large and growing amount of characters that are used as special symbols in mathematical
and technical texts, often in highly specialized meaning and context. The use of mathematical
notations is increasingly common even in social sciences and humanities. Rules for usage are
generally well established, though with some typographic and other variation. See, for example, the
extensive international standard ISO 31-11, "Quantities and Units. Part 11: Mathematical signs and
symbols for use in the physical sciences and technology." The MathWorld web site
http://mathworld.wolfram.com illustrates and explains the conventional mathematical notations.

In Unicode, digits and other numeric symbols appear in different script-specific blocks, including Basic
Latin, of course. There are also some very commonly used mathematical operators and other
symbols in blocks like Basic Latin, Latin-1 Supplement, and General Punctuation. In addition to these,
there are several blocks for mathematical and technical symbols, allocated in a rather confusing way
for historical reasons. An overview of this situation is given in Table 8-13. For more information,
consult the Unicode Technical Report 25, "Unicode Support for Mathematics,"
http://www.unicode.org/reports/tr25/.

Table 8-13. Blocks containing mathematical and technical symbols

Code range Name of block Notes

0000..007F Basic Latin E.g., 0, 1, +, %, =, <

FF00..FFEF Halfwidth and Fullwidth Forms Clones of symbols, for CJK

0080..00FF Latin-1 Supplement E.g., ¬, ±, 2, x, ½

0300..03FF Greek and Coptic Used as symbols, e.g., π

2000..206F General Punctuation E.g., fraction slash, /

2150..218F Number Forms Fractions, Roman numerals

2070..209F Superscripts and Subscripts Digits, parentheses, etc.

2100..214F Letterlike Symbols E.g., , ,

1D400..1D7FF Mathematical Alphanumeric Symbols Bold, italic, etc., variants

2190..21FF Arrows E.g., ,

2200..22FF Mathematical Operators E.g., , �, , ,

2A00..2AFF Supplemental Mathematical Operators Variants of operators, etc.

27C0..27EF Miscellaneous Mathematical Symbols-A Modal logic, etc.

2980..29FF Miscellaneous Mathematical Symbols-B Brackets, fences, angles, etc.

http://mathworld.wolfram.com
http://www.unicode.org/reports/tr25/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Code range Name of block Notes

27F0..27FF Supplemental Arrows-A Long arrows, etc.

2900..297F Supplemental Arrows-B Arrows with strokes, etc.

2B00..2BFF Miscellaneous Symbols and Arrows White and black arrows, etc.

25A0..25FF Geometric Shapes E.g., , , ,

2500..257F Box Drawing E.g., , , , , ,

2580..259F Block Elements E.g., , ,

2400..243F Control Pictures Names of controls, e.g.,

2300..23FF Miscellaneous Technical E.g., , , , , , ,

8.10.1. Superscripts and Subscripts

Superscripts are used partly as stylistic variation, as in writing "first" as "1st" and not "1st." On the
other hand, superscripting is used to indicate exponentiation and other semantic relations; for
example, "23" is certainly not just a stylistic variant of "23." Subscripting is mostly a matter of
established notational convention, as in "H2O."

Both superscripting and subscripting are mostly something applied to character data, rather than part
of the data itself. However, largely reflecting the practices of older character codes, Unicode contains
some characters that are superscript or subscript variants of other characters, usually defined as
compatibility equivalents. Many of them are letters, such as masculine ordinal indicator º (U+00BA),
which is a superscript letter "o," and modifier letter small "h" (U+02B0), which is a phonetic
symbol.

Superscript variants that can be used for mathematical purposes exist in Unicode for digits 09, letters
"i" and "n," plus and minus sign, equals sign, and normal parentheses. For historical reasons,
superscript variants of 1, 2, and 3 are not in the Superscripts and Subscripts block but in the Latin-1
Supplement. Subscript variants exist for digits 09, plus and minus sign, equals sign, and normal
parentheses.

Thus, you could write relatively complicated superscripts or subscripts. However, this is not very
common and it would not take you very far. You would inevitably meet restrictions in writing
superscript or subscript expressions. Normally other methods are used, such as markup languages or
special formatting, as discussed in Chapter 9.

8.10.2. The Number Forms Block

The Number Forms block covers the range from U+2150 to U+218F and contains some relatively
uninteresting characters, which are special presentations of some numerals. Almost all of them are
compatibility characters. Currently the block contains only characters for Roman numerals and for
some vulgar (common) fractions .

27F0..27FF Supplemental Arrows-A Long arrows, etc.

2900..297F Supplemental Arrows-B Arrows with strokes, etc.

2B00..2BFF Miscellaneous Symbols and Arrows White and black arrows, etc.

25A0..25FF Geometric Shapes E.g., , , ,

2500..257F Box Drawing E.g., , , , , ,

2580..259F Block Elements E.g., , ,

2400..243F Control Pictures Names of controls, e.g.,

2300..23FF Miscellaneous Technical E.g., , , , , , ,

8.10.1. Superscripts and Subscripts

Superscripts are used partly as stylistic variation, as in writing "first" as "1st" and not "1st." On the
other hand, superscripting is used to indicate exponentiation and other semantic relations; for
example, "23" is certainly not just a stylistic variant of "23." Subscripting is mostly a matter of
established notational convention, as in "H2O."

Both superscripting and subscripting are mostly something applied to character data, rather than part
of the data itself. However, largely reflecting the practices of older character codes, Unicode contains
some characters that are superscript or subscript variants of other characters, usually defined as
compatibility equivalents. Many of them are letters, such as masculine ordinal indicator º (U+00BA),
which is a superscript letter "o," and modifier letter small "h" (U+02B0), which is a phonetic
symbol.

Superscript variants that can be used for mathematical purposes exist in Unicode for digits 09, letters
"i" and "n," plus and minus sign, equals sign, and normal parentheses. For historical reasons,
superscript variants of 1, 2, and 3 are not in the Superscripts and Subscripts block but in the Latin-1
Supplement. Subscript variants exist for digits 09, plus and minus sign, equals sign, and normal
parentheses.

Thus, you could write relatively complicated superscripts or subscripts. However, this is not very
common and it would not take you very far. You would inevitably meet restrictions in writing
superscript or subscript expressions. Normally other methods are used, such as markup languages or
special formatting, as discussed in Chapter 9.

8.10.2. The Number Forms Block

The Number Forms block covers the range from U+2150 to U+218F and contains some relatively
uninteresting characters, which are special presentations of some numerals. Almost all of them are
compatibility characters. Currently the block contains only characters for Roman numerals and for
some vulgar (common) fractions .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.10.2.1. Roman numerals

The characters for Roman numerals are not meant to be used in normal text. Instead of U+2612
Roman numeral three, , you normally use a sequence of capital letters, "III." The special characters
for Roman numerals have been included in Unicode for compatibility with other character codes.

It has been argued, though, that the special characters for Roman numerals might be preferable due
to their more specific semantics. The character U+2610 Roman numeral one unambiguously denotes
a number, while the Latin capital letter "I" has multiple uses. A speech generator, for example, would
in principle be in a much better position to decide how to pronounce the notation. But this will
probably remain just theory.

8.10.2.2. Fractions

Fractional numbers such as 1/4 (one fourth) are commonly written in linearized notation, using
normal digits and a normal solidus (slash) character. However, in typesetting traditions, fractions are
often presented in a different style, perhaps using special glyphs, like ¼. There are two basic variants
of the style: "shilling" fractions, where the numerator and denominator are separated by a slanted
slash, and "vertical" fractions, where the numerator is right above the denominator and there is a
horizontal line between them.

Some frequently used fractions have been included into Unicode as separate characters. For
example, there is the character U+00BC, vulgar fraction one fourth (¼), which is compatibility
equivalent to the three-character sequence 1/4. In most fonts, the appearance is "shilling" fraction.

The only such fractions in ISO Latin 1 are ½, ¼, and ¾. They appeared in some typewriter keyboards
and may still appear in some computer keyboards. Moreover, when you type, say, the characters 1/4
in succession, your word processor might convert the sequence to ¼, as described in Chapter 2. This
can be undesirable especially if your document contains other fractions, like 1/3, which would appear
in a quite different style.

In Unicode, the Number Forms block contains a few more fraction characters, namely for 1/3, 2/3,
1/5, 2/5, 3/5, 4/5, 1/6, 5/6, 1/8, 3/8, 5/8, 7/8, as well as for numerator one (1/). However, only a
few fonts contain glyphs for them.

As a different approach, you could use the U+2044 fraction slash character. This character, absent in
many fonts, has an appearance similar to that of the common solidus, though it is often more
slanted, even in an 45° angle, as in /. More important, it has special semantics, as suggested by its
name. It unambiguously separates the numerator and the denominator of a fraction and never has
any other meaning. Moreover, a program that is capable of rendering fractions in a classic
typographic style should do that automatically. However, such behavior is not common in programs.
In MS Word, you probably get just something like the following: 1/4 (i.e., normally rendered 1 and 4
separated with the fraction slash).

Thus, if you wish to produce typographically formatted fractions, you mostly need tools above the
character level, such as typesetting commands. The web page "How to create fractions in Word,"
http://word.mvps.org/FAQs/Formatting/CreateFraction.htm, illustrates some techniques in producing
both "vertical" fractions and "shilling" fractions.

http://word.mvps.org/FAQs/Formatting/CreateFraction.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.10.3. Characters in SI Notations

This subsection discusses the character-level issues of presenting values of physical quantities
according to the SI, the International System of Units (Système international). For general
information on the SI, please refer to the Metric System FAQ
http://www.cl.cam.ac.uk/~mgk25/metric-system-faq.txt. Note especially its item 1.12, "What is the
correct way of writing metric units?," which also mentions some practical typing methods not
discussed here.

The organization responsible for the definition of SI units is the General Conference on Weights and
Measures (CGPM), http://www.bipm.org/en/convention/cgpm/. Official information is also available
from the Bureau International des Poids et Mesures (BIPM), see http://www.bipm.org/en/si/, and the
National Institute of Standards and Technology (NIST), see http://physics.nist.gov/cuu/Units/. There
are also international ISO standards and national standards on the use of the SI.

8.10.3.1. Conceptual levels of SI notations

The use of the SI can be considered at different levels, which are defined by different standards,
conventions, and other norms:

Physical definitions of units, established by international conventions; the definitions are often
complicated in order to be exact; and they need to name the units somehow, but the different
language-dependent names are not defined in this context; example: "The meter is the length
of the path travelled by light in vacuum during a time interval of 1/299 792 458 of a second."

Names of units, such as "metre" (British English), "meter" (U.S. English), "Meter" (German),
"metri" (Finnish), etc.; these are defined by various language authorities, or just by common
usage in a language community.

Symbols of units, such as "m" for the meter; these symbols are defined by international
conventions and are intended for international use as such; however, in some cultures,

otherwise applying the SI, language-dependent abbreviations are used as symbols, such as

 for kilogram in Russian.

Use of prefixes for multiples and submultiples of units, such as "km," written as "kilometre" in
British English, for 1 000 m; these are defined by international conventions, but other norms,
such as national standards, have added further recommendations, such as the recommendation
to avoid the prefix "h" ("hecto-" in English), except perhaps for special use; similarly to units,
the prefixes are supposed to have an internationally standardized, language-independent
symbol and language-dependent names (generally sharing a common origin).

Expression of quantities using a numeric value and a unit, perhaps with a prefix, such as "1,5
km" or "1.5 km," depending on language, or maybe, for example, "1.5x103 m"; this is defined
by international conventions, with additional recommendations from other sources, including
national standards and publishers' rules.

The exact identification of characters used to write the expressions. Since the conventions

http://www.cl.cam.ac.uk/~mgk25/metric-system-faq.txt
http://www.bipm.org/en/convention/cgpm/
http://www.bipm.org/en/si/
http://physics.nist.gov/cuu/Units/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

generally do not identify characters except by showing them, this is a somewhat gray area; but
it is the level that we are mostly interested in here.

Typography, such as the width of a space used to separate a number from a unit, or the use of
a particular font to render a character like "m," such as Times New Roman "m" or Arial "m"; this
is generally not standardized but left to typographers, except that there is a strong
recommendation to use "upright" letters and not an italics font.

Here we mostly consider the last but one level, characters, or abstract characters to be more exact.

8.10.3.2. Notes on individual characters

Most characters used in SI notations can easily be identified as abstract characters, or more
specifically, as Unicode characters. For example, the symbol of the meter, "m," is apparently the
character named Latin small letter "m" in Unicode, with the code position 6D in hexadecimal,
therefore it's often denoted by U+006D in Unicode contexts. But the following characters need to be
considered:

The multiplication symbols, which are used in numeric expressions like the alternative notations
"1,5·103" and "1.5x103." They can apparently be identified with the Unicode characters middle
dot (U+00B7) and multiplication sign (U+00D7). The former is also used in symbols for
compound units such as "N·m" (newton meter; often written less suitably as "N m" or
questionably as "Nm"). However, it can be argued that middle dot is a punctuation character
and that the dot used for multiplication (called "half-high dot" in the ISO 31-0 standard) should
be identified with U+22C5 dot operator, which is classified as a mathematical operator. A
practical argument in favor of this is that the representative glyph for dot operator in the
Unicode code chart is a larger dot than that of the middle dot, hence more noticeable and more
suitable for use as an operator. And in the Arial Unicode MS fontone of the few fonts that has a
fairly good repertoire of mathematical symbolsthe situation is the same and dot operator is at a
somewhat higher position. It is positioned in a way that corresponds better to the notion of a
multiplication operator. You can see this from the following samples that contain (in Arial
Unicode MS) the expression for pascal second first using the middle dot, then using the dot

operator: Pa·s Pa s

The division symbol used for constructing derived units like "m/s" (meters per second) is most
logically identified with the division slash U+2215. However, this character is not present in
most fonts, so it is normal to use the ASCII solidus U+002F, also known as slash, character as
surrogate. In theory, division slash would be preferable, since it has a more exact meaning.

The minus sign used before a number (in an exponent, too), is logically to be identified with the
minus sign, U+2212. However, instead of this character, the en dash, U+2013, or (far more
often) the ASCII hyphen-minus U+002D is used. A problem with these is that Unicode line
breaking rules permit a line break after these characters. This creates the risk of having the sign
appear at the end of a line and the number at the start of the next line. (This should not happen
for the real minus sign.) There are various ways to try to avoid this probleme.g., by using the
nonstandard nobr markup in HTML authoring.

The space between a numeric value and a unit (or between unit symbols when multiplication of
units is indicated in this less satisfactory way). It is difficult to say how the space is to be

http://lib.ommolketab.ir
http://lib.ommolketab.ir

interpreted in Unicode, considering the multitude of space characters in Unicode. Presumably,
any space character, excluding those with zero width, is acceptable. Using the no-break space
U+00A0 character would help in preventing undesired line breaks between the number and the
unit. Using the thin space U+2009 character would help in making the space narrower than a
normal space between words. The problem is that these two cannot be combined in a single
Unicode character, in the present repertoire of Unicode. There are different possible
approaches:

The exponents used in some numeric values (such as "1.5x103") as well as in many compound
unit symbols (such as "m2" or "s1"). The numbers 2 and 3 as exponents can easily be
represented using the characters for them, superscript two U+00B2 and superscript three
U+00B3. Unicode contains also other digits and the minus sign as exponent, but these
characters have very limited support in programs and fonts. Hence, it is better to use the tools
of text-processing systems or other methods (such as sup markup in HTML) for superscripting
for them. For typographic reasons, it is best to represent all superscript that way if you need
anything other that just 2 or 3. Otherwise, the visual difference in superscripting of, for
example, 2 and 1 is too disturbing.

The symbol of micro prefix, corresponding to multiplication by 106. An apparent candidate is the
micro sign (U+00B5), µ, which is widely available in fonts. However, Unicode defines micro sign
as a compatibility character that has Greek small letter mu U+03BC as its compatibility
decomposition. This means that the two are distinct characters but the micro sign has been
included for legacy reasons only, and the two are equivalent except perhaps for formatting
information. In practice, the characters are very often similar in appearance. Since the micro
sign is more widely available, it is probably to be preferred. It might also be argued that it has
unambiguous semantics, whereas Greek small letter mu is primarily a letter and has varying
other uses as well.

The symbol for ohm can be identified with the ohm sign (U+2126, in the Symbols Area). It
has a specific meaning, but it is defined as canonical equivalent to Greek capital letter omega Ω
(U+03A9), and the Unicode standard recommends using the latter. The ohm sign has somewhat
wider support in fonts. If a font contains both, they may look somewhat different.

The degree symbol is naturally the degree sign ° (U+00B0). As explained in the description of
the Latin-1 Supplement, it is important to distinguish this symbol from the masculine ordinal
indicator, U+00BA.

The symbols for minutes and secondsin expressions for angles should be identified with the
prime (U+2032) and the double prime (U+2033). However, these characters are rarely
available, so it is common to use the ASCII apostrophe (U+0027) and the ASCII quotation mark
(U+0022) as surrogates. In visual appearance, prime and double prime are clearly slanted,
whereas apostrophe and quotation mark should have straight (vertical) glyphs according to
Unicode, and they often have.

Several letterlike symbolsin Unicode denote characters used in the SI context, in a sense.
However, this is mostly an illusion, and a misleading one. For example, the script small "l"
(U+2113), is often used as a symbol for liter. However, the NIST Guide to SI units explicitly

says: "The script letter is not an approved symbol for the liter." Such confusions will be
separately discussed in the next section.

8.10.3.3. Letterlike symbols and the SI

http://lib.ommolketab.ir
http://lib.ommolketab.ir

People interested in unit symbols and Unicode have become surprised when they have found that, for
example, the unit "degree Celsius" has a symbol of its own, U+2103, presenting °C as a single
character. Similarly, for degree Fahrenheit (a completely non-SI unit of course), there is U+2109; for
siemens, U+2127; and for Kelvin, U+212A, for example, in the Letterlike Symbols block. Educated
people may well think that it is better to use such specific characters, with limited semantics,
especially if dealing with documents that might be read by a text-to-speech converter later on, or
otherwise processed by software that might use semantic information about characters. They might
also be seen as typographically suitable, since they allow detailed formatting that corresponds to the
specific meanings.

But in addition to being poorly supported in most fonts, such characters are inadequate in principle,
by Unicode rules. For example, degree Celsius U+2103 is compatibility equivalent to U+00B0 U+0043
(i.e., degree sign followed by letter C). It has little to do with typographic correctness. Rather, it is a
matter of compatibility, so that data containing that character in some non-Unicode encoding can be
encoded in Unicode without losing the distinction between that character and the U+00B0 U+0043
pair, should someone wish to retain that distinction. This means that the data can also be converted
back to the original encoding and get the original data exactly. It is not recommended for use in new,
originally Unicode data. The Unicode standard says, in the discussion of unit symbols :

Unit Symbols. Several letterlike symbols are used to indicate units. In most cases, however,
such as for SI units (Système International), the use of regular letters or other symbols is
preferred. U+2113 SCRIPT SMALL L is commonly used as a non-SI symbol for the liter. Official
SI usage prefers the regular lowercase letter l.

Three letterlike symbols have been given canonical equivalence to regular letters: U+2126 OHM
SIGN, U+211A KELVIN SIGN, and U+211B ANGSTROM SIGN. In all three instances the regular
letter should be used. In normal use, it is better to represent degrees Celsius "°C" with a
sequence of U+00B0 DEGREE SIGN + U+0043 LATIN CAPITAL LETTER C, rather than U+2103
DEGREE CELSIUS. For searching, treat these two sequences as identical.

Unfortunately, the Unicode standard has wrong information about the symbol for the liter. The official
position in the SI system is that both "l" and "L" are allowed, with no expressed preference (although
in the U.S., "L" is preferred by national authorities).

The special letterlike characters discussed here were taken into Unicode due to their presence in
some character codes used in East Asia, such as the Japanese JIS X 0212. These characters do their
job in allowing conversions between character codes without losing information. Problems arise when
people use utilities like the Character Map (described in Chapter 2) without knowing the background
and looking just at the characters and their names.

To conclude, it is acceptable and recommendable to use normal Latin letters as SI unit symbols, such
as "K" for kelvin.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.11. Other Blocks

Some Unicode blocks of general interest are described here. For information on blocks that relate to a
particular writing system or a specialized application area, please refer to the appropriate section in
the Unicode standard. The overall effect of writing systems on character usage was discussed in
Chapter 7.

8.11.1. Spacing Modifier Letters

Some characters in this block are "spacing clones" of diacritic marks. That is, they are defined as
being compatibility equivalent to space U+0020 followed by a combining diacritic mark. However, this
block includes quite a few other characters as well. They are mostly written after a letter, though
some of them are actually used as independent letterse.g., the different apostrophe-like characters
that are used to transliterate the Arabic character hamza.

For example, the first of the characters in this block, modifier letter small "h" (U+02B0), is used to
indicate aspiration of the preceding consonant in phonetic notations (e.g., in pronunciation
instructions in encyclopedias). This character is a compatibility character, which is defined to be
compatibility equivalent to letter "h" in superscript style. The results of using U+02B0 (from a font
where it exists) and using "h" formatted in superscript style may differ, of course, especially since
programs often implement superscripting simply by decreasing the size of a glyph and putting it in a
higher position. Good font design tries to make the appearance better, perhaps modifying the shape
to suit the needs of small-size rendering. Compare the following ways of denoting an aspirated
pronunciation of "k," using first U+02B0, and then "h" as a superscript: k k h.

8.11.2. Currency Symbols

Currencies can be denoted in several ways: words, currency symbol characters, or various
abbreviations or codes. The optimal choice depends on the context and intentions. When uniqueness,
definiteness, and internationality (as neutrality with respect to national languages) are essential, the
three-letter codes as defined in ISO 4217 should be usede.g., "GBP 42." In localized notations, the
formats varye.g., "£42" versus "42 £"'and so do currency names, of course. The Common Locale
Data Repository, described in Chapter 11, contains extensive information on such localized formats.
Currency symbol characters (general category Sc) appear in different blocks in Unicode:

The dollar sign $ is in the Basic Latin block.

The cent sign ¢, the pound sign £, the currency sign ¤, and the yen sign ¥ are in the Latin-1
Supplement block.

There are several currency symbols in script-specific blocks, such as the Thai currency symbol

http://lib.ommolketab.ir
http://lib.ommolketab.ir

baht ฿ (U+0E3F) in the Thai block.

Other currency symbols are in the Currency Symbols block, U+20A0..U+20CF. It includes
important symbols such as the euro sign € (U+20AC) but also some characters that are
historical only, such as the French franc sign £ (U+20A3). The euro-currency sign (U+20A0)
is not even historical but only a symbol that was once planned and allocated, and it has not
been removed, due to Unicode principles.

8.11.3. Phonetic Characters

Phonetic characters are used in writing systems that indicate the pronunciation. The most widely
known and used phonetic alphabet is the International Phonetic Alphabet (IPA). Originally designed
for use in linguistics, IPA is also used in language teaching and in pronunciation instructions in
dictionaries and encyclopedias, though in English material, other pronunciation notations are more
common. In developing writing systems for languages that previously existed in spoken form only,
some IPA characters are often used along with normal Latin letters.

IPA is a fairly old alphabet and was originally defined by indicating the visible shapes of characters
only. For computer applications, the characters had to be defined more exactly. Some characters
were identified with normal Latin (lowercase) letters, such as "b." Some were identified with other
characters that are used in normal writing too, such as æ (which belongs to the Latin-1 Supplement).
But most IPA characters were separately coded in the IPA Extensions block.

No writing system can accurately describe all details of spoken language. Even IPA notations are just
approximations. Moreover, they are approximations of different degrees. Simple IPA writing can be
used, for example, in dictionaries, whereas transcription of speech in linguistics uses more exact
descriptions, using diacritic marks to indicate nuances.

The needs of IPA transcription differ from conventions of general purpose typesetting. This is not
surprising, since IPA attempts a precision of phonetic representation that is well beyond that of the
normal alphabet of any Latin script language. For this purpose, IPA uses diacritic marks, but it also
assigns a distinctive meaning to forms that in general purpose typography are considered purely
stylistic variants of the same letter. The most obvious case is that IPA includes both the common
(ASCII) letter "a" and a variant of the letter "a" that denotes a vowel of different quality. The latter
letter is oddly named: Latin small letter alpha (U+0251).

For such reasons, IPA characters do not follow typical typographic conventions in the distinction
between roman and italic styles. In simple terms, an italic IPA font needs to be something akin to an
oblique version of roman, rather than a distinct style of lettering. Thus, IPA involves a specialized
technical kind of typesetting, not very different from, for example, mathematical typesetting in the
way that it assigns distinct meaning to stylistic variants of letterforms.

Many characters in the IPA Extensions blocks are turned or otherwise modified versions of Latin
letters. For example, the Latin small letter schwa (U+0259) is originally a rotated image of "e." It
denotes the neutral and often reduced vowel that is so common in English, and it is present in some
fonts that do not otherwise contain IPA Extensions.

For example, the standard British pronunciation of the English word "international" can be written in
IPA as nt næ n l. The character "n" there, for example, is the common Latin letter, whereas
the character æ is the same Latin small letter "ae" (U+00E6) as used, for example, in Danish and old
English. Some other characters, such as the schwa, are from the IPA extensions block. The IPA stress

http://lib.ommolketab.ir
http://lib.ommolketab.ir

mark, modifier letter vertical line (U+02C8), is not common in fonts, and often other characters
such as the (ASCII) apostrophe ' (U+0027) are used instead.

The official description of IPA is available at the site http://www.arts.gla.ac.uk/ipa/ipachart.html.
Since characters used in IPA appear in different blocks in Unicode, you may find the following
document useful: "The International Phonetic Alphabet in Unicode,"
http://www.phon.ucl.ac.uk/home/wells/ipa-unicode.htm.

Due to the heavy use of diacritic marks, IPA transcription often requires implementations that
support combining diacritic marks, since most of the combinations needed do not appear as
precomposed characters in Unicode. However, for simple usage of IPA, relatively simple
implementations of such marks are tolerable.

For simple IPA, the Arial Unicode MS font is sufficient and suitable. For more advanced purposes, you
may wish to use the Doulos SIL font, available from http://scripts.sil.org.

In addition to IPA, there are other phonetic writing systems. One of them, the Uralic Phonetic
Alphabet (UPA), has been included into Unicode. The added characters are in the Phonetic Extensions
block.

8.11.4. Specials

The Specials block contains just a few code positions, U+FFF0 through U+FFFF, and they are indeed
special:

U+FFF0 through U+FFF8 are unassigned (reserved for eventual future use).

U+FFF9 through U+FFFB are interlinear annotation characters, explained below.

U+FFFC is an object replacement character, which is an invisible placeholder for a nontextual
object, such as an image, to be inserted (by some external tools). In code charts, appears in
place of this character.

U+FFFD is a replacement character, for use in data converted from a code other than Unicode,
to indicate a character that has no Unicode counterpart. This is somewhat similar to U+001A
(substitute, Control-Z) in the ASCII range. However, U+FFFD has a visible shape (although it
appears in a few fonts only). In the Java programming language, U+FFFD is traditionally used
to indicate Not a Number (NaN)i.e., undefined result of a mathematical operation; this does not
comply with the meaning of U+FFFD in Unicode.

U+FFFE and U+FFFF are noncharactersi.e., code positions that do not and will not ever
represent any characters. They can be used as sentinels or for checking purposes. Any
occurrence of these code points in character data (i.e., in data being interpreted as characters)
indicates an error of some kind.

Interlinear annotation characters are invisible indicators (control characters, in a sense) that separate
interlinear annotations from normal text. "Interlinear" means "between the lines" and refers to
information presented between normal lines in small font. Interlinear annotations, called ruby
orfurigana, are typically used in Japanese books for children or for foreigners studying Japanese, and
they usually show the pronunciation of words. The name "ruby" is originally the name of a font size.

http://www.arts.gla.ac.uk/ipa/ipachart.html
http://www.phon.ucl.ac.uk/home/wells/ipa-unicode.htm
http://scripts.sil.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Although interlinear annotations primarily relate to East Asian languages, they might conceivably be
used for other purposes as well. They could be used to indicate the pronunciation of foreign words in
English text, or to add editor's or translator's short notes, or even to create documents with lyrics
with guitar chords so that the chords will be displayed above the respective text. However, software
that supports interlinear annotations may do so in a manner designed for annotations of East Asian
textse.g., using a very small font by default.

Figure 8-3. Display of interlinear annotations on IE 6; the first alternative
uses Ruby markup, the second tries to use interlinear annotation

characters in Unicode

Interlinear annotations are best described at higher protocol levels, such as the markup elements in
the Ruby module of XHTML. The Ruby module belongs to XHTML 1.1 and has some limited support in
Internet Explorer (IE) since Version 6.

The interlinear annotation characters in Unicode are of rather limited usefulness. Very few programs
support them. When they are not supported, something odd may appear in their place, and the
annotations would appear in normal text. However, the characters might conceivably be used if you
need to represent the annotations in plain text format and you have (or you can create) software
that supports them. The characters are:

U+FFF9 interlinear annotation anchor indicates the start of normal text that has an annotation
attached to it; corresponds to markup <rb> in Ruby in XHTML.

U+FFFA interlinear annotation separator indicates the end of the text being annotated and the
start of the annotation; corresponds to </rb><rt> in Ruby.

U+FFFB interlinear annotation terminator ends the annotation, so that subsequent characters
will be taken as normal text; corresponds to </rt> in Ruby.

The following piece of XHTML markup uses first Ruby markup, then interlinear annotation characters
(via character references) to add information about the pronunciation of a name. The markup
method is the one that has the best chance of working. This is illustrated in Figure 8-3:

<p>My first name is <ruby><rb>Jukka</rb><rt>Yook-kah</rt><
/ruby>.</p> <p>My first name is ￹Jukka
￺Yook-kah￻.</p>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.11.5. Dingbats

Dingbats are essentially graphics coded as characters. One might say that the meaning of a dingbat
is its graphic appearance. This makes dingbats rather special. On the other hand, in practice, some of
the dingbats have a fairly well-defined logical meaning, and putting them into this block has been a
rather arbitrary decision.

Dingbats are used by switching to a special font. This means that data is typically in an 8-bit
encoding but by font change, characters are visually turned into something quite different. Thus, you

could type the letter "a," and then change the font to a special one, and get checkmark (U+2713).
However, this is not the Unicode way.

This block of Unicode in general does not contain all the graphics that have been implemented in
different specialized fonts. For example, corporate logos are excluded. Many of the symbols in the
Windings fonts commonly available in computers have not been coded as characters in Unicode at all.

8.11.6. Summary of Blocks

Table 8-14 lists all blocks as defined in Unicode Version 4.1 and planned for Version 5.0. The up-to-
date summary information on blocks is in the file Blocks.txt in the Unicode character database,
available online at http://www.unicode.org. Many blocks correspond more or less directly to some
specific scripts (writing systems) discussed in Chapter 7.

Table 8-14. Unicode 4.1 blocks

Code range Name of block Notes

0000..007F Basic Latin ASCII

0080..00FF Latin-1 Supplement Upper half of Latin 1

0100..017F Latin Extended-A

0180..024F Latin Extended-B

0250..02AF IPA Extensions Phonetic symbols

02B0..02FF Spacing Modifier Letters

0300..036F Combining Diacritical Marks

0370..03FF Greek and Coptic

0400..04FF Cyrillic

0500..052F Cyrillic Supplement

0530..058F Armenian

0590..05FF Hebrew

0600..06FF Arabic

http://www.unicode.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Code range Name of block Notes

0700..074F Syriac

0750..077F Arabic Supplement

0780..07BF Thaana

07C0..07FF NKo Proposed (Unicode 5.0)

0900..097F Devanagari For Indic languages

0980..09FF Bengali

0A00..0A7F Gurmukhi

0A80..0AFF Gujarati

0B00..0B7F Oriya

0B80..0BFF Tamil

0C00..0C7F Telugu

0C80..0CFF Kannada

0D00..0D7F Malayalam

0D80..0DFF Sinhala

0E00..0E7F Thai

0E80..0EFF Lao

0F00..0FFF Tibetan

1000..109F Myanmar

10A0..10FF Georgian

1100..11FF Hangul Jamo

1200..137F Ethiopic

1380..139F Ethiopic Supplement

13A0..13FF Cherokee

1400..167F Unified Canadian Aboriginal Syllabics

1680..169F Ogham

16A0..16FF Runic

1700..171F Tagalog

1720..173F Hanunoo

1740..175F Buhid

1760..177F Tagbanwa

1780..17FF Khmer

0700..074F Syriac

0750..077F Arabic Supplement

0780..07BF Thaana

07C0..07FF NKo Proposed (Unicode 5.0)

0900..097F Devanagari For Indic languages

0980..09FF Bengali

0A00..0A7F Gurmukhi

0A80..0AFF Gujarati

0B00..0B7F Oriya

0B80..0BFF Tamil

0C00..0C7F Telugu

0C80..0CFF Kannada

0D00..0D7F Malayalam

0D80..0DFF Sinhala

0E00..0E7F Thai

0E80..0EFF Lao

0F00..0FFF Tibetan

1000..109F Myanmar

10A0..10FF Georgian

1100..11FF Hangul Jamo

1200..137F Ethiopic

1380..139F Ethiopic Supplement

13A0..13FF Cherokee

1400..167F Unified Canadian Aboriginal Syllabics

1680..169F Ogham

16A0..16FF Runic

1700..171F Tagalog

1720..173F Hanunoo

1740..175F Buhid

1760..177F Tagbanwa

1780..17FF Khmer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Code range Name of block Notes

1800..18AF Mongolian

1900..194F Limbu

1950..197F Tai Le

1980..19DF New Tai Lue

19E0..19FF Khmer Symbols

1A00..1A1F Buginese

1B00..1B7F Balinese Proposed (Unicode 5.0)

1D00..1D7F Phonetic Extensions Mostly for UPA

1D80..1DBF Phonetic Extensions Supplement

1DC0..1DFF Combining Diacritical Marks Supplement

1E00..1EFF Latin Extended Additional

1F00..1FFF Greek Extended

2000..206F General Punctuation

2070..209F Superscripts and Subscripts

20A0..20CF Currency Symbols

20D0..20FF Combining Diacritical Marks for Symbols

2100..214F Letterlike Symbols

2150..218F Number Forms

2190..21FF Arrows

2200..22FF Mathematical Operators

2300..23FF Miscellaneous Technical

2400..243F Control Pictures

2440..245F Optical Character Recognition

2460..24FF Enclosed Alphanumerics

2500..257F Box Drawing

2580..259F Block Elements

25A0..25FF Geometric Shapes

2600..26FF Miscellaneous Symbols

2700..27BF Dingbats

27C0..27EF Miscellaneous Mathematical Symbols-A

27F0..27FF Supplemental Arrows-A

1800..18AF Mongolian

1900..194F Limbu

1950..197F Tai Le

1980..19DF New Tai Lue

19E0..19FF Khmer Symbols

1A00..1A1F Buginese

1B00..1B7F Balinese Proposed (Unicode 5.0)

1D00..1D7F Phonetic Extensions Mostly for UPA

1D80..1DBF Phonetic Extensions Supplement

1DC0..1DFF Combining Diacritical Marks Supplement

1E00..1EFF Latin Extended Additional

1F00..1FFF Greek Extended

2000..206F General Punctuation

2070..209F Superscripts and Subscripts

20A0..20CF Currency Symbols

20D0..20FF Combining Diacritical Marks for Symbols

2100..214F Letterlike Symbols

2150..218F Number Forms

2190..21FF Arrows

2200..22FF Mathematical Operators

2300..23FF Miscellaneous Technical

2400..243F Control Pictures

2440..245F Optical Character Recognition

2460..24FF Enclosed Alphanumerics

2500..257F Box Drawing

2580..259F Block Elements

25A0..25FF Geometric Shapes

2600..26FF Miscellaneous Symbols

2700..27BF Dingbats

27C0..27EF Miscellaneous Mathematical Symbols-A

27F0..27FF Supplemental Arrows-A

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Code range Name of block Notes

2800..28FF Braille Patterns

2900..297F Supplemental Arrows-B

2980..29FF Miscellaneous Mathematical Symbols-B

2A00..2AFF Supplemental Mathematical Operators

2B00..2BFF Miscellaneous Symbols and Arrows

2C00..2C5F Glagolitic

2C60..2C7F Latin Extended-C Proposed (Unicode 5.0)

2C80..2CFF Coptic

2D00..2D2F Georgian Supplement

2D30..2D7F Tifinagh

2D80..2DDF Ethiopic Extended

2E00..2E7F Supplemental Punctuation

2E80..2EFF CJK Radicals Supplement

2F00..2FDF Kangxi Radicals

2FF0..2FFF Ideographic Description Characters

3000..303F CJK Symbols and Punctuation

3040..309F Hiragana

30A0..30FF Katakana

3100..312F Bopomofo

3130..318F Hangul Compatibility Jamo

3190..319F Kanbun

31A0..31BF Bopomofo Extended

31C0..31EF CJK Strokes

31F0..31FF Katakana Phonetic Extensions

3200..32FF Enclosed CJK Letters and Months

3300..33FF CJK Compatibility

3400..4DBF CJK Unified Ideographs Extension A

4DC0..4DFF Yijing Hexagram Symbols

4E00..9FFF CJK Unified Ideographs Main block of CJK

A000..A48F Yi Syllables

A490..A4CF Yi Radicals

2800..28FF Braille Patterns

2900..297F Supplemental Arrows-B

2980..29FF Miscellaneous Mathematical Symbols-B

2A00..2AFF Supplemental Mathematical Operators

2B00..2BFF Miscellaneous Symbols and Arrows

2C00..2C5F Glagolitic

2C60..2C7F Latin Extended-C Proposed (Unicode 5.0)

2C80..2CFF Coptic

2D00..2D2F Georgian Supplement

2D30..2D7F Tifinagh

2D80..2DDF Ethiopic Extended

2E00..2E7F Supplemental Punctuation

2E80..2EFF CJK Radicals Supplement

2F00..2FDF Kangxi Radicals

2FF0..2FFF Ideographic Description Characters

3000..303F CJK Symbols and Punctuation

3040..309F Hiragana

30A0..30FF Katakana

3100..312F Bopomofo

3130..318F Hangul Compatibility Jamo

3190..319F Kanbun

31A0..31BF Bopomofo Extended

31C0..31EF CJK Strokes

31F0..31FF Katakana Phonetic Extensions

3200..32FF Enclosed CJK Letters and Months

3300..33FF CJK Compatibility

3400..4DBF CJK Unified Ideographs Extension A

4DC0..4DFF Yijing Hexagram Symbols

4E00..9FFF CJK Unified Ideographs Main block of CJK

A000..A48F Yi Syllables

A490..A4CF Yi Radicals

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Code range Name of block Notes

A700..A71F Modifier Tone Letters

A720..A7FF Latin Extended-D Proposed (Unicode 5.0)

A800..A82F Syloti Nagri

A840..A87F Phags-pa Proposed (Unicode 5.0)

AC00..D7AF Hangul Syllables

D800..DB7F High Surrogates

DB80..DBFF High Private Use Surrogates

DC00..DFFF Low Surrogates

E000..F8FF Private Use Area

F900..FAFF CJK Compatibility Ideographs

FB00..FB4F Alphabetic Presentation Forms

FB50..FDFF Arabic Presentation Forms-A

FE00..FE0F Variation Selectors

FE10..FE1F Vertical Forms

FE20..FE2F Combining Half Marks

FE30..FE4F CJK Compatibility Forms

FE50..FE6F Small Form Variants

FE70..FEFF Arabic Presentation Forms-B

FF00..FFEF Halfwidth and Fullwidth Forms

FFF0..FFFF Specials

10000..1007F Linear B Syllabary

10080..100FF Linear B Ideograms

10100..1013F Aegean Numbers

10140..1018F Ancient Greek Numbers

10300..1032F Old Italic

10330..1034F Gothic

10380..1039F Ugaritic

103A0..103DF Old Persian

10400..1044F Deseret

10450..1047F Shavian

10480..104AF Osmanya

A700..A71F Modifier Tone Letters

A720..A7FF Latin Extended-D Proposed (Unicode 5.0)

A800..A82F Syloti Nagri

A840..A87F Phags-pa Proposed (Unicode 5.0)

AC00..D7AF Hangul Syllables

D800..DB7F High Surrogates

DB80..DBFF High Private Use Surrogates

DC00..DFFF Low Surrogates

E000..F8FF Private Use Area

F900..FAFF CJK Compatibility Ideographs

FB00..FB4F Alphabetic Presentation Forms

FB50..FDFF Arabic Presentation Forms-A

FE00..FE0F Variation Selectors

FE10..FE1F Vertical Forms

FE20..FE2F Combining Half Marks

FE30..FE4F CJK Compatibility Forms

FE50..FE6F Small Form Variants

FE70..FEFF Arabic Presentation Forms-B

FF00..FFEF Halfwidth and Fullwidth Forms

FFF0..FFFF Specials

10000..1007F Linear B Syllabary

10080..100FF Linear B Ideograms

10100..1013F Aegean Numbers

10140..1018F Ancient Greek Numbers

10300..1032F Old Italic

10330..1034F Gothic

10380..1039F Ugaritic

103A0..103DF Old Persian

10400..1044F Deseret

10450..1047F Shavian

10480..104AF Osmanya

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Code range Name of block Notes

10800..1083F Cypriot Syllabary

10900..1091F Phoenician Proposed (Unicode 5.0)

10A00..10A5F Kharoshthi

12000..123FF Cuneiform Proposed (Unicode 5.0)

12400..1247F Cuneiform Numbers and Punctuation Proposed (Unicode 5.0)

1D000..1D0FF Byzantine Musical Symbols

1D100..1D1FF Musical Symbols

1D200..1D24F Ancient Greek Musical Notation

1D300..1D35F Tai Xuan Jing Symbols

1D360..1D37F Chinese Counting Rod Numerals Proposed (Unicode 5.0)

1D400..1D7FF Mathematical Alphanumeric Symbols

20000..2A6DF CJK Unified Ideographs Extension B

2F800..2FA1F CJK Compatibility Ideographs Supplement

E0000..E007F Tags Language tagging

E0100..E01EF Variation Selectors Supplement

F0000..FFFFF Supplementary Private Use Area-A

100000..10FFFF Supplementary Private Use Area-B

10800..1083F Cypriot Syllabary

10900..1091F Phoenician Proposed (Unicode 5.0)

10A00..10A5F Kharoshthi

12000..123FF Cuneiform Proposed (Unicode 5.0)

12400..1247F Cuneiform Numbers and Punctuation Proposed (Unicode 5.0)

1D000..1D0FF Byzantine Musical Symbols

1D100..1D1FF Musical Symbols

1D200..1D24F Ancient Greek Musical Notation

1D300..1D35F Tai Xuan Jing Symbols

1D360..1D37F Chinese Counting Rod Numerals Proposed (Unicode 5.0)

1D400..1D7FF Mathematical Alphanumeric Symbols

20000..2A6DF CJK Unified Ideographs Extension B

2F800..2FA1F CJK Compatibility Ideographs Supplement

E0000..E007F Tags Language tagging

E0100..E01EF Variation Selectors Supplement

F0000..FFFFF Supplementary Private Use Area-A

100000..10FFFF Supplementary Private Use Area-B

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Character Level and Above
In representation of texts, characters form but one protocol level, above which there are higher
levels such as markup level, record structure level, and application level. Guidelines will be given
about the coding of information at different levels when there is choice, such as using markup versus
character difference (largely still an open problem despite the efforts of the World Wide Web
Consortium and the Unicode Consortium). This is particularly important to processing of legacy data
and to avoiding too fine distinctions at character level. The chapter ends with a section on media
types for text and the difference between plain text, other subtypes of text, and application types
such as text processing formats.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.1. Levels of Text Representation and Processing

The Unicode standard defines the termhigher-level protocol as denoting "any agreement on the
interpretation of Unicode characters that extends beyond the scope of this standard." It adds a note:
"Such an agreement need not be formally announced in data; it may be implicit in the context."

For example, an agreement such as the XML specification says that a sequence of characters like
π will be understood as a character reference (denoting the Greek small letter pi π, U+03C0, in
this case). This is an example of a very explicit agreement. The scope of this agreement consists of
XML documents, though it can, by separate conventions, be extended to apply elsewhere as well.

The same information can often be expressed at different protocol levelse.g., at the character level or
in a program-specific data format. There is no simple answer to the question of which level should be
used. Factors to be considered include the following:

What can be expressed at each protocol level? For example, at the character level, you can
specify underlining of a character but not its font size.

Are there recommendations on using the different methods in applicable standards and
specifications? In particular, the Unicode standard defines distinctions that can be made at the
character level but more or less deprecates their use.

How well are the different methods supported by existing software? For example, although you
can express the language of text using special Unicode characters, this is very poorly supported
(in addition to being deprecated).

How will the data be processed and transferred, and is it important that information is saved
when converting the data to plain text or other data formats?

How easy are the methods to people who produce texts? For example, they may know well the
formatting tools of a word processor but not the ways to enter arbitrary Unicode characters.

9.1.1. Plain Text, Rich Text, and Markup

Roughly speaking, we can characterize some basic formats of text as follows, using widely known
software as examples for concreteness:

Plain text is what you write with a simple editor like Notepad, and it's "text as such."

Rich text is what a word processor like MS Word generates when you ask it to save in the RTF
format.

Markup is HTML, XML, or something similar, and you could generate it with web publishing
software like FrontPage or Nvu.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The normal data formats used by word processors are not text at all in the sense discussed here.
This may sound surprising, since when people use such software to create a document with a
filename suffix like .doc, they usually think they work with text. After all, that's the normal way of
typing text to many people. The explanation to this paradox is that such formats (as well as, for
example, PDF documents and text databases) contain text, but their overall data format is not
textual. There is more about this in the last section of this chapter ("Media Types for Text").

When you send a document, or request for a document, by email or otherwise, it is important to
specify the format in an understandable way. Do not assume that most people know the distinctions
described here. It is often best to specify the format exactly (e.g., "RTF format") rather than
generally (e.g., "rich text"), since the specific formats are more widely known. When requesting
documents, it is nice to offer a list of allowed formats. Beware, however, that conversions between
plain text, rich text formats, and markup formats may lose information and may require human
intervention (interaction)i.e., cannot be reliably automated in general.

Data (whether text or not) can be accompanied by information (metadata) that tells how it should be
interpretedi.e., what its data format is. Such information is often included in Internet message
headers, as explained in Chapter 10. It should not be confused with markup, which is part of the data
itself and typically applies to parts of a document, not the document as a whole. The information
about data format should be available before any markup in the document is interpreted, for
example, since the format specifies whether anything in the data is to be treated as markup in the
first place.

9.1.1.1. Plain text

A plain text file, such as a file written with Notepad, is just a sequence of characters. It is true that it
has a line structure, but that structure is expressed using control characters. When displayed, the
text appears in some font, but this is just a choice that can be made for the text as a whole. A plain
text file does not contain any font information.

When we move from plain text to word processinge.g., in MS Wordthe most obvious change is that
we can use different font faces and sizes for different parts of text. Font changes are not encoded
into the characters but expressed using internal data, which is not shown to the user as such but is
used to modify the rendering of characters. If you select File Save As and pick up the plain text
format (*.txt), all the formatting information disappears; only the character data is saved.

In a typical word processor, there is much more data that is not shown as part of the document, such
as authorship information, date stamps, language information, styling information, and perhaps even
a revision history. Styling includes margins, text justification, character and word spacing, etc.

9.1.1.2. Rich text formats

Data that consists of text and associated formatting or structural information is often called rich text.
This general concept should not be confused with particular formats such as Rich Text Format (RTF),
which is a specific format used for interchange of text between word processors so that formatting
information is retained. Rich text is also called styled text.

For example, in the RTF format, underlined text like foo is written as {\ul foo}.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There is no clear line between rich text and markup. Usually, however, we use the name "rich text"
for formats with presentational information that is typically generated by a word processor, email
program, or other software, to encode the effect of the formatting commands that the user has
given. Markup might also be generated in a similar way, but often markup is oriented toward
describing document structures, with some separation of structure from presentation. Markup usually
contains elements for the overall structure and layout of a document, and markup could be
generated programmatically, or even written "by hand" (i.e., using a text editor).

9.1.1.3. Text with markup

If formatting or structural information is written using normal characters, it is usually referred to as
markup. The most widely know markup is the HTML markup used on web pages. For example, the
string <h2>Summary</h2> can be interpreted as containing the textual content "Summary" surrounded
by the two tags, <h2> and </h2>. If a program interprets the data according to HTML rules, it would
treat the textual content as a second-level heading. If it applies some other interpretationfor
example, in an XML contextthe tags might mean something completely different. Anyway, such
interpretations mean that the data is not taken as plain text but as marked-up text. The
interpretation could lead to a particular rendering of the textual content, or it might affect automatic
processing such as the construction of a table of contents. Alternatively, a program could interpret
<h2>Summary</h2> just as a string and display it as such, for example.

One of the practical differences between markup like HTML and the internal formats used by word
processors is that markup can be viewed and edited as text. You can work with HTML using just a
plain text editor and writing all the tags yourself. This is however impractical in many cases. Markup
is often so verbose and complicated that an HTML or XML document is very hard to read as such, as
"source." Instead, people use various specialized tools, like WYSIWYG (What You See Is What You
Get) editors, which handle most of the markup invisibly. In practice, this means that the distinction
between markup and word processors' data formats has been obscuredeven more so when word
processors use an XML-based format, as they often do these days.

9.1.1.4. Quasi-markup

As an intermediary between plain text and marked-up text, people often use notations created with
special characters, such as slash (solidus) characters around a word to simulate writing it in italics.
Some software such as email programs might interpret the special characters in a markup-like
manner, displaying /foo/ as foo in italics (perhaps retaining the slashes: /foo/). This may cause
problems when a message contains the string /foo/ and this should be interpreted and displayed
literally. Most of the time, however, such markup-like conventions in plain text work reasonably well,
even if some readers see them literally and need to understand the underlying convention. Common
conventions of this kind include using asterisks for strong emphasis or bolding (*foo* means foo in
bold face) and underscores (low lines) for underlining or emphasis (_foo_ means foo underlined or
emphasized in a manner that corresponds to using italics: foo).

Thus, we cannot really say that some text is plain text or marked-up text as such. Rather, it can be
interpreted or processed as plain text, or according to some markup rules.

The border between plain text and rich text or marked-up text is not absolute. In a sense,
punctuation characters could be regarded as markup. A good example is the Spanish use of paired

http://lib.ommolketab.ir
http://lib.ommolketab.ir

question marks: the text ¿Cómo? is structurally similar to XML markup like
<question>Cómo</question>. The main reason for not regarding punctuation marks as markup is that
they became a traditional part of writing systems long before the age of computers.

9.1.1.5. Conversion to plain text

You may need to convert rich text or marked-up text to plain text for various reasonse.g., when
filling out a form that accepts plain text only or when inserting text into an email message body that
needs to be plain text. Quite often, you could just cut and paste the text, but you could also open a
text file in a word processor and use the "Save As" command to create a plain text version.

Irrespective of the method, the conversion may lose information, as described later in this chapter. If
you convert 106 (with "6" in superscript style, not as the character superscript six) to plain text, you
get 106, which is all wrong. There is no simple way to check whether such things happen, but
superscripts are a common reason to stay alert.

Moreover, even if the data is reasonably convertible to plain text, there are practical reasons to
consider character encoding issues as well. Often, the reasons for converting to plain text imply the
necessity of restricting the character repertoire as well. In email message bodies, for example, you
often need to stick to ASCII, or at least to ISO-8859-1.

For example, if you use MS Word to save a Word document's content in plain text, you first select File
 Save As. Then, in the menu for file type selection, select "Encoded text" or "Plain text" or

something similar (depending on the version of Word). When you click on "Save" in the dialog, you
will be prompted for the encoding. If you select ASCII, for example, Word performs some conversions
like replacing "smart" quotes with "straight" quotes and dashes with hyphens. The replacements are
rather coarse and mechanic, and for any tailored conversion, you need to use a separate converter or
use the Find and Replace function of a word processor or a text editor.

9.1.2. Example: Nonbreaking Hyphen

As mentioned in section "General Punctuation" in Chapter 8, the common way of inserting a
"nonbreaking hyphen" in MS Word does not insert the Unicode character with that name. Instead,
when you press Ctrl-Shift-hyphen in Word, you insert the control character U+001F. MS Word
displays it as a normal ASCII hyphen.

For an illustration, open MS Word, type an ASCII hyphen, and then Ctrl-Shift-hyphen, and finally
insert a nonbreaking hyphen (U+2011)e.g., by typing Alt-8209. You get something like "---," where
the last hyphen is usually different from the other two. This is because since the nonbreaking hyphen
character is not present in many fonts, Word often needs to take it from another font. When the
nonbreaking hyphen is from another font, a trained eye may notice a disturbing typographic
difference between various hyphens.

Thus, the MS Word approach of using a control character is in some ways safer than using a special
character. It works with any font. On the other hand, it is program-specific. If you save a document
as plain text or cut and paste text containing the control character, you may get nothing, or a space,
or an error, depending on program.

If you use markup such the HTML markup <td nowrap>foo-bar</td>, where the nowrap attribute

http://lib.ommolketab.ir
http://lib.ommolketab.ir

forbids line breaks inside the td (table cell) element, you achieve the same effect as using a
nonbreaking hyphen (<td>foo‑bar</td>). That way, you avoid the risks involved in this
relatively poorly supported character. On the other hand, if the content is saved as plain text from a
browser or copied and pasted, the information in the markup is lost.

9.1.3. Example: Formatting in Word Processing

Suppose that you need to write the notation Ka when composing a document in a word processor.
The practical method is to write the letters "Ka," then select the letter "a" with the mouse and use
the word processor's tools for making text appear as subscript. For example, in MS Word you would
use the command Format Font, and then check the box for "Subscript." The character data, as
Unicode characters, does not change, but formatting information is added to it, in the internal format
that the word processor uses.

You can exchange data between different word processors without losing such formatting
information. Word processors can often read files in formats written by other word processors.
Moreover, you can save the document in the RTF format (Rich Text Format), which preserves the
formatting, including subscripting.

In theory, you could alternatively use the Unicode character Latin subscript small letter "a"
(U+2090). This would let you use subscripts even in plain text. The character U+2090 is, however,
hardly available in fonts that people use. It was added to Unicode in Version 4.1. In some
applications, the approach could be feasible, though. You could, for example, store data using such
characters into a database and make sure that all software that extracts and renders data from it
contains code that deals with the subscript characters. For example, it could be converted into a data
format like the one used by MS Word or, much simpler, into HTML format (_a), for display
with a web browser.

Similar considerations apply to almost all subscripts, superscripts, underlining, italics, and other
formatting, even when it indicates basic differences between symbols and not just emphasis or
styling. Some exceptions to this were mentioned in Chapter 8.

9.1.4. Example: HTML Markup and CSS

Consider the following fragment of markup from a web page. It is rather obvious intuitively what it
means, if you know or guess that nobr means "no break." This is not meant to be an example of
good, modern HTML markup:

<nobr>Hello world</nobr>

When rendered by a web browser, this displays as "Hello world" with the second word in larger font
and in red. Moreover, a line break will never appear between the words. The markup is deprecated
and even nonstandard, but it illustrates the simple idea of inserting markup into a stream of
characters. The font markup affects features that are beyond the scope of character standards, such
as text color and font size. The nobr markup, on the other hand, affects things that could be affected
at the character level too, using a no-break space character instead of a normal space.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In a more modern approach, features of character presentation are not expressed in HTML but in
CSS (Cascading Style Sheets), although CSS constructs could be embedded into HTML, for example,
as follows:

<div style="white-space: nowrap">Hello <span style=
"color:red; font-size: larger">world</div>

We could adopt a more structured approach by moving the CSS code away from the document itself,
making the HTML code, e.g.:

<div class="greeting">Hello world</div>

Figure 9-1. A mathematical equation written with a simple formula editor

In that case, a separate CSS file (which would be referred to in the HTML document) would contain
the formatting instructions, as "out of band" information:

div.greering { white-space: nowrap; }
span.emphatic { color:red; font-size: larger; }

In such an approach, as in the pure HTML approach, the formatting instructions would be completely
independent of the character data. This means that the formatting is not preserved when data is
transferred as plain text. The formatting information might be converted as part of conversion to
another data format, such as RTF or PDF, but this requires specific conversion software.

9.1.5. Linear Text Versus Mathematical Notations

Although several character repertoires, most notably Unicode, contain mathematical and other
symbols, the presentation of mathematical formulas is much more than just a character level issue.
At the character level, symbols such as integral and n-ary summation can be defined, and their code
positions and encodings defined, and representative glyphs shown, and perhaps some usage notes
given. However, the construction of real formulase.g., for a definite integral of a functionis a different
thing, no matter whether one considers formulas abstractly (how the structure of the formula is
given) or presentationally (how the formula is displayed on paper or on screen).

To mention just a few approaches to such issues, the TeX system is widely used by mathematicians
to produce high-quality presentations of formulas, and MathML is an ambitious effort for creating a
markup language for mathematics so that both structure and presentation can be handled. In

http://lib.ommolketab.ir
http://lib.ommolketab.ir

practice, people often use simpler tools such as formula editors, some of which are included in word
processors.

To illustrate how the problems of mathematical notations exceed the character-level, consider the
relatively simple formula shown in Figure 9-1. The formula was created using the built-in formula
editor of MS Word, invoked via the Insert Object command. In plain text, even using full
Unicode, you cannot come closer to approximating the appearance of the formula than "m = m /

(1 - (v/c)2)." Moreover, this plain text representation uses characters that are not widely available
in fonts, especially the subscript zero.

If you use a formula editor to produce expressions that will appear as separate blocks, you have the
problem that symbols that you use in text may look rather different from the same symbols in the
blocks. For example, your formula editor might let you express subscript zero or a square root nicely,
but in text paragraphs, you would need to resort to other

Figure 9-2. A sample from MathWorld, containing text as images

Figure 9-3. MathWorld sample with increased font size

methods, like the square root character, . At worst, your readers might not recognize the symbols
in the text as the same as those in separate formula blocks.

Similar considerations apply to the use of images. Especially in web publishing, it is common to
present any complicated formulas as images, created using, for example, a formula editor or the TeX
software. For example, MathWorld (available at http://mathworld.wolfram.com) contains an
impressive amount of mathematical expressions, but almost exclusively as images. Probably partly to
prevent mismatch between symbols in text and in block formulas, the site uses images even inside
text, "inline images." The pages have been designed so that you might not notice this but think that
those images are normal text characters, as illustrated in Figure 9-2.

However, if you change the font size (this may require a special override of document-specified font

http://mathworld.wolfram.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

sizes)e.g., because you cannot read small textyou notice a difference. The images are not scaled, as
illustrated in Figure 9-3. Note that apart from one use of a subscript, all symbols used in the text
could well be written in characters.

You will often be forced to use images for text, especially in formulas. As the example shows, it might
be the lesser of evils to use special characters and not images inside linear text, within reasonable
limits, even though this might make a symbol in text look different than a symbol in a formula block.
For high-quality typesetting, you would need to use software that avoids both problems.

9.1.6. Unicode and Mathematics

Unicode can't do math, of course. You can't compute even 1 + 1 in Unicode. You can only write
mathematical expressions in Unicode. As explained in the previous section, even this has serious
limitations, since much of the conventional mathematical notations are not linear texti.e., text that
can be written simply as lines.

In addition, there is very large (and increasing) number of mathematical symbols that are
typographic variants of letters, with specialized meanings, such as the mathematical sans-serif italic
small "a" U+1D4B6 (which more or less looks like a). Although many mathematical symbols have
been included in Unicode, they are not widely supported in fonts or in programs.

The crucial question is whether it is necessary and possible to make the distinction between a normal
letter and a mathematical symbol in plain text. Quite often, other data formats are more suitable,
such as HTML, TeX, or MathML. In HTML, for example, maybe you should not use U+1D4B6 (or the
equivalent reference 𝒶) but markup like <i style="font-family: sans-serif">a</i>. The
latter surely works more widely in current browsers, but is the meaning the same? We will discuss
such problems, in a more general framework, in the section "Selecting the Appropriate Level of
Expression" later in this chapter.

There are other issues, too, in presenting mathematical notations. They are discussed in the Unicode
Technical Report UTR #25, "Unicode Support for Mathematics,"
http://www.unicode.org/reports/tr25/. Much of the material there is largely theoretical at present,
due to lack of support in software, and it competes with other approaches, such as MathML, the
mathematical markup language.

To take a simple example, you probably know that even in elementary algebra, we often write a
product without using any multiplication symbol. We can write the product of a and b as axb or as a·b,
but also as ab, when there is no ambiguity. This is problematic in processing, since how could a
computer program know that ab here denotes a product, instead of just being a variable or

something else? In a markup language, you could indicate it as a product using, for example, the
following (made-up) markup:

<product><factor>a</factor><factor>b</factor></product>

Using markup, you could express the structure, to be potentially used in any program that recognizes
the markup, without necessarily affecting rendering in the least. Software that recognizes markup in
general but not this particular markup could simply ignore the tags and use just the textual content.
In order to allow such information to be expressed in plain text as welli.e., even when no markup is
availableUnicode contains the character invisible times (U+2062). As the name suggests, it is

http://www.unicode.org/reports/tr25/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

invisible (has no width), and it is basically defined as having a logical meaning only. In essence, it
corresponds to logical markup. Similar characters exist for a few other logical constructs as well, such
as the function application (U+2061), which you could use before the left parenthesis in an
expression like f(a+b) to indicate the presence of a function invocation rather than, for example, a

product or other use of parentheses.

You may ask, what's the point of using invisible markup-like characters? And that's a good question.
Their usefulness will probably be limited to applications where you need to work with plain text (e.g.,
in a database or in the internal strings in a program) but need to include structural information
expressible with those characters. On output or on transfer of data to other applications, you would
probably need to remove those characters, possibly inserting equivalent markup.

9.1.7. Characters Outside the Repertoire

The available repertoire of characters is limited by several factors:

The character code used

The input mechanisms you can use to enter characters

The font(s) used

Data processing and transfer software, which may fail to accept, or even pass forward,
characters that you might otherwise use

Methods for exceeding different limitations are discussed in various parts of this book. Here we ask
what to do if no such method helps.

The ultimate limitation is the character code. Naturally, you can often override such a limitation by
switching to another character code, such as from ASCII to an ISO 8859 code or to Unicode. It is,
however, possible that such solutions cannot be applied, perhaps because the character you need is
not even in Unicode. You might need a very rare charactere.g., because it appears in an old
manuscript that you need to convert to a digital form, or because you want, or someone else wants,
to introduce a new symbol for use in mathematical, technical, or otherwise special text. You probably
cannot wait several years until the character can be added to Unicode and implemented in fonts.

9.1.7.1. Different workarounds

Independently of the nature of the limitation that you need to overcome, there are three basic ways
to use a character outside the available repertoire:

Design a font that contains a glyph for the character, and encode the character using a Private
Use code point in Unicode.

Create an image that represents the character, and embed the image into text.

Represent the entire paragraph or block of text as an image, and insert it between normal text

http://lib.ommolketab.ir
http://lib.ommolketab.ir

blocks.

The first approach can work only in an environment where you can control font usage. The approach
as such does not violate Unicode principles, if you use the Private Use area instead of code points
allocated to characters in the Unicode standard. Naturally, the approach would depend on "private
agreement," and texts using it would not be portable across systems and applications.

The second approach has mostly been used in situations where the character repertoire is limited by
practical constraints that do not allow the use of full Unicode. You can still find web pages that
represent special characters as images, since authors do not know about Unicode, or since they
estimate that the characters are not widely enough available on users' systems. Thus, a character

like black spade suit (U+2660) might be represented using a tag for image embedding, , rather than the character as such or the character reference
♠. The image would need to represent the character in a size that matches the font size.
Using a stylesheet (CSS), you could specify that the size be scaled so that it depends on the font size,
but the scaling performed by browsers can be rather coarse. Moreover, it is difficult to make the
embedded image appear smoothly as if it were a character; its shape and exact size might not match
the font design, and the spacing around it may differ from normal character spacing.

Some of the typographical problems are avoided in the third approach, which represents an entire
paragraph or other block, such as a long mathematical equation, as a single image. The idea is to use
a tool such as a formula editor or a typesetting program to produce nicely formatted text, containing
special characters, as an image that can be embedded into a document where the character set is
more limited. This approach is often used when presenting mathematical expressions on web pages.

9.1.7.2. Using a character versus using a small image

Quite often, people insert characters as small images, typically in GIF format. This looks like a simple
solution to the problem of presenting special characters, and it has several benefits:

You can use it to present any character.

You can select the specific shape of the character, using an image of your choice.

You can use a multicolor image.

The method works in any data format where images can be embedded.

On the other hand, the method has several drawbacks:

The image normally has a fixed size in pixels, so it does not scale automatically when the font
size of the text is changed.

The image may cause uneven line spacing; note that the image normally needs to have a height
smaller than the font size to prevent this (since the image is normally placed on the baseline of
text but the font size includes descenders, too).

The method fails when the data is converted to plain text (though some data formats let you
specify alternate texte.g., in HTML using the alt attribute in an tag).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When the data is transferred to another program, the image may cause problems, because the
conversion routine cannot handle it properly.

A publisher's rules or a publishing program may prevent you from using images embedded into
text.

You often need to design and implement the image yourself, and this is more difficult than it
may sound.

It is particularly difficult to select or design an image that matches the design of the font of the
text.

9.1.7.3. Button-like symbols

A typical case of using an image in place of a character is in an instruction manual where you need to
refer to a particular symbol in a button or other user interface. You may need to write, for example,

"then press the key" or "look for places marked with the symbol." The symbols used in the
examples actually exist in Unicode as characters (erase to the left U+232B and place of interest sign
U+2318), but you might need to use symbols that have not been encoded in Unicode. You might also
wish to use images for symbols that exist in Unicode but are not well supported in fonts or have
shapes too different from what suit your needs.

Consider the case of an instruction manual where you need to tell the user to press a particular
button, labeled with a symbol that is not in Unicode. It is normally vain to hope that the symbol will
be added to Unicode. Generally, Unicode contains characters used in text, not graphic symbols in
general. Although some symbols that you might wish to use may conceivably appear in many texts
like instruction manuals, the same applies to virtually all small graphic symbols. There would be no
end to adding characters that might casually appear in text as depicting graphic symbols.

There are some Unicode characters that seem to contradict the above, such as the watch
(U+232A), but they have mostly been included due to their presence in other character codes or for
some special reasons. Computer keyboard symbols and common symbols seen on a computer screen
seem to have made their way to Unicode relatively easily, perhaps due to their assumed need to be
included in written instructions.

A graphic symbol that is essentially iconici.e., an image that imitates another image (such as
something engraved into a button)is best regarded as a symbol that is not a character. The imitated
image may have a symbolic meaning (e.g., it could stand for "pause" in a key that makes something
pause), but this does not make it a character. If it is used in texts only to stand for the imitated
image, it is still essentially an image. If people started using it as a general shorthand notation for the
concept or word "pause," effectively turning it into an ideograph, it would become a character. For
example, people nowadays often use a heart symbol in text to mean love (e.g., "I Unicode"),
and this would justify encoding it, if it did not exist in Unicode already (white heart suit, U+2661).

Suppose, for example, that you are writing an instruction manual for a device that has a control
panel with physical buttons, with some symbols on them. For example, it might have a double
vertical rectangle on a pause button'a common convention, though the specific shape varies. There is
one possible form of such a button in Figure 9-4. Such a symbol does not exist in Unicode. It might
be added some day to Unicode, but that's questionable. What benefits would it produce? You could
use it in texts, assuming you have a font that contains it, so you could write some things in some

http://lib.ommolketab.ir
http://lib.ommolketab.ir

instructions using plain text, instead of embedding an image. However, this would mean that the
shape of the character varies. When writing a manual for a particular device, it would be better to
use the specific shapes (and perhaps colors) that appear on its buttons. On such grounds, it is better
to use embedded images instead of, for example, a Private Use character or a simulation of the
shape using Unicode characters with similar appearance, such as the box

Figure 9-4. A pause button symbol, not available as a character

drawings double vertical (U+2551) or two copies of the medium vertical bar (U+2759). When
limited to plain text, you could just explain the image verbally, perhaps using a very coarse
approximation of the shape as an auxiliary hinte.g., "Looks somewhat like ||" (where || is just two
copies of a common ASCII character, the vertical line U+007C).

Computer keyboard symbols are a somewhat different issue, since people may wish to use generic
symbols when writing, for example, a manual for software that may be used with different
keyboards. The same applies to symbols in some other equipment, such as telephones, and to
symbols that may appear on screen with variation in shape but with a recognizable identity. It can be
useful to be able to write "press the option key " using a character (option key, U+2325) rather
than a small image, since you wish to refer to generically to a key assumed to exist in the user's
keyboard as marked with a symbol, but in varying shapes. This is one reason why there are several
such symbols in Unicode, especially in the Miscellaneous Technical block.

Sometimes the name of a Unicode character suggests a more "iconic" use than it is meant for. The
eject symbol (U+23CF) consists of a solid triangle above a horizontal bar, and it might be understood
as a symbol of a button. However, it is described under the heading "Keyboard and UI symbols" and
with the note "UI symbol to eject media." Thus, it relates to user interface (UI) symbols used in
computer software. There are also some keyboard symbols from the ISO 9995-7 standard, for
example. Generally, button-like symbols are available as Unicode characters only when they are
computer-oriented. Even in such cases, the use of images is often a better choice, since the
characters are relatively new and do not belong to most fonts.

9.1.7.4. Using an image for esthetic reasons

For example, in many widely used fonts such as Times New Roman, the male and female sign, and

, look somewhat disproportionate. Their appearance in Arial () is even worse. Therefore, it
might be esthetically better to use small well-designed images when visual quality is important,
unless you can ensure that some font with a better design for these characters will be used.

Many of the aspects discussed here also apply to the use of images to present texts like a heading, a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

product name, or button text. For example, in order to make letters multicolored (as in the Google
logo), you need to use an image.

9.1.8. Selecting the Appropriate Level of Expression

We often have a choice between expressing some information at the character level and expressing it
in text formatting, markup, or other methods. Some specific questions of this type have been
discussed previously in this chapter, and there will be some further discussion in the section
"Characters and Markup" later in the chapter. Here we will consider some general criteria and the
impact of different choices.

As an example, consider the expression m2. It normally means "square meter," though in
mathematics or physics, it might have other meanings, too. There are several ways to express the
superscript in a document:

Use the character superscript two 2 (U+00B2).1.

Use the character superscript two but write it using some notation like the character reference
² in HTML or XML or the entity reference ² in HTML.

2.

Use the character digit two "2" (U+0032) (writing "m2"), but use a word processor's formatting
or styling tools for making it a superscript.

3.

Use the character digit two, but surround it with markup that indicates it as superscript. For
example, in HTML, you could write m².

4.

Use the character digit two, with the explicit or implicit instruction to readers to understand
"m2" as m2.

5.

Similarly, assuming you wish or need to conform to the convention that a number and a unit be
separated by a space, you could write an expression like "5 m" (for "five meters") in several different
ways. The ways depend on whether you wish to express that the space should be non-breakable
(i.e., a line break between "5" and "m" is not permitted) and whether you wish to affect the exact
amount of spacing. The ways also depend on whether you try to express these things at the
character level or elsewhere. Some ways were discussed in the section "General Punctuation" in
Chapter 8.

There is no universal answer to the question about the choice between character level and other
protocol levels. It depends on many aspects, some of which are summarized in Table 9-1. You could
well use different strategies in the same document. For example, you could write "5 m2" using the
superscript two character but using a normal space, expressing the non-breakability and the width of
spacing in a stylesheet. Checking the criteria in the table, it is relatively easy to see the benefits of
using the superscript two character, whereas the no-break space could be more problematic. (For
example, it can cause surprises in text justification, since it is typically of fixed width.)

Table 9-1. Pros and cons of expressing information at the character level

http://lib.ommolketab.ir
http://lib.ommolketab.ir

or at a higher protocol level

Issue Character level Higher protocol levels

Does it work in
practice?

Greatly depends on the rarity and novelty
of the character used.

Depends on the software used to
process the data.

Requirements on
encoding

You often need to use a Unicode encoding. You can often use 8-bit encodings.

Maintainability of
data

You need to know the Unicode characters
used in order to work with data (e.g., edit
it).

It is sufficient to know the
formatting tools or markup used.

Preserving the
information

Usually well preserved in processing,
except perhaps in normalization.

Often lost when converting to other
data formats (e.g., between word
processors).

Ease of coding
Often clumsy, if the character is needed
repeatedly, though defined keyboard
shortcuts may help.

Often easily manageable in a
centralized mannere.g., in a style
definition.

Side effects
May result from ambiguous semantics of
characters and their Unicode properties.

Usually rare; e.g., usually "bolding"
means just bolding.

Tuning the
rendering

Rather limited possibilities, mostly just
font choice.

Often good possibilities; e.g., via a
stylesheet.

When information is expressed at the character level, by the choice of specific Unicode code points,
the information persists through all processes that correctly preserve the identity of plain text
characters. For example, cut and paste operations may or may not preserve formatting information
(such as fonts), but they can be expected to preserve character identity. If the target of pasting is in
a program that does not support Unicode, characters may be lost. However, an implementation of
Unicode is required to preserve characters, instead of, for example, dropping out characters that it
does not recognize. It may well fail to display them, but they should be available in the data by other
means.

For example, for the expression m2, the first two methods just discussed imply that in cut and paste,
the result preserves the information: m2. (For method 2, we assume that you cut from the formatted
document, not from XML or HTML source.) For methods 3 and 4, cut and paste normally converts the
text to "m2," unless the operation takes place inside a program or between programs that recognize
the method used. Thus, if you copy and paste the string "m2" where "2" is formatted as a
superscript, the formatting is preserved when working inside a word processor, but not when copying
from it into a plain text editor like Notepad. When method 5 is used, the data copied is of course
"m2."

Similarly, when data is read by a program, information expressed at the character level is always
available to the program, though it may not make use of it. Information expressed in markup is
normally available, too, since programs normally read the markup source, but they would need to
recognize the markupat least to the extent that it can skip it, instead of treating markup as data!
Reading data in a word processor's internal format is possible, too, but requires complicated
software. Mostly, if you wish to process, say, Word or PDF documents programmatically (e.g., to
compute word concordances or to compute statistics on the text), you would first convert the
document to plain text or some other easily processable format.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Availability of information at the character level is not always an asset. It may imply that a program
for processing the data must deal with a larger variation of characters. For example, if the expression
"5 m2" is written using the no-break space and the superscript two, what will happen if the
expression is used as input to a program that is prepared to handle ASCII data only? If you wish to
write a program that can handle all the ways in which the expression could be written in Unicode, in
principle, you have lots of cases to consider. For example, someone might write the letter "m" using
the fullwidth Latin small letter "m" (U+FF4D), for some good reason. Even if you have no use for the
information involved in this choice, you would need to deal with this possibility. You might convert the
data to a suitable normalization form (prior to other processing) to reduce the variation considerably.

The following list suggests guidelines on choosing the level where information is given, with an
emphasis on what should or should not be done at the character level:

Color

The color of text cannot be expressed at the character level, except in the sense that in a few
cases, there are "white" and "black" versions of a symbol in Unicode, such as white chess
knight and black chess knight (where the distinction is essential: it indicates which
player's piece is referred to). "Black" and "white" in characters really mean "foreground color"
and "background color," which can usually both be set using word processor tools or markup.

Size

The size of characters isn't expressible at the character level either. The size of a character
depends on the font size but also on the font face, since the relative sizes of characters vary
greatly by font design. (For example, "m" in Times is considerably smaller than m in Verdana,
using the same font size.) Exceptionally, some symbols have been coded in Unicode as

separate characters with size difference, such as the tilde ~ (U+007E) and the small tilde
(U+02DC), but usually this involves differences other than just size. For many characters,
there are narrow and wide forms, but this relates to East Asian typography that needs to adapt
foreign characters to the principles of ideograph usage. Note that reduction of font size inside
text has varying meanings, and this affects the kind of markup you would use for it; in English,
reduced font size usually means less important text, while in some other writing systems, it
means more important. Size variation may have other semantics, too.

Spacing

Horizontal spacing between characters can be affected to some extent at the character level,
especially using fixed-width spaces. However, they often work inconsistently or do not work at
all. Modern typography uses formatting tools at higher protocol levels. For other spacing, such
as line height and margins, higher levels are usually the only feasible option. (Sometimes
spaces and extra line breaks are used for such spacing, but such methods are very coarse.)

Underlining and overlining

In almost all cases, use higher-level protocols. The possibilities of using combining marks to
achieve underlining or overlining are mostly theoretic.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Italics, bolding, and other font variation

Generally, use higher-level protocols, except perhaps for some special symbols (e.g., in
mathematics). If you try to make, for example, words in normal text italicized by the use of
Unicode characters of italics shape, you will end up with something very unreliable and clumsy.

9.1.9. Subscripts and Superscripts

The need for subscripts or superscripts is one of the most common cases where plain text appears to
be insufficient. Most subscripts and superscripts that are needed in practice could be written as
Unicode characters, but such an approach is often not feasible. As described in Chapter 8, the
repertoire of such characters is relatively large, but only superscripts 1, 2, and 3 are widely
supported.

The use of subscripts and superscripts can be classified as follows:

Purely stylistic

Superscripting is used in many languages as a conventional device in writing some expressions,
like ordinal numbers in English (1st, 2nd, etc.) and abbreviations like Mlle in French. Somewhat
more debatably, the subscripting in common chemistry formulas like H2O could be regarded as
stylistic only, since there is no change in meaning and no ambiguity if a normal number is used
instead (H2O). In notations like 14C (for carbon-14, an isotope), ambiguities could arise if
superscripting were removed.

Structural

The use of superscripts as exponents is clearly structural, and in general, removing the
superscripting may completely change the meaning (e.g., turning 23 to 23). In many cases,
though, no real ambiguity arises (e.g., when writing m2 as m2 in ordinary text). In phonetics,
superscripting of letters is structural, too: a superscripted letter has a phonetic value that is
different from that of the normal letter.

In-between usage

Much of the use of subscripts and superscripts falls between purely stylistic and purely
structural. In mathematics, if you name variables a1, a2, etc., subscripting might be treated as
stylistic, so that your variables are really just a1, a2,.... But if you then refer to ai, using a
generic index i, we need to regard subscripting as more or less structural. A mathematical
notation like "A*" (with * as an operator placed after its operand) might be understood as using
superscripting for stylistic reasons only, but in "A+" superscripting is more essential, to avoid
confusion with other uses of a + sign.

Purely stylistic superscripting or subscripting is best handled above the character level, in styling of
some kind. Structural superscripting or subscripting should be handled at markup level when

http://lib.ommolketab.ir
http://lib.ommolketab.ir

possible, and expressing it at the character level is better than making it purely stylistic, though often
impractical. The in-between cases are more difficult, and we can only give some general guidelines
about them. Many notations are mostly unambiguous even if subscripting or superscripting is
removed, but they may create a risk of confusion in special cases. For example, notations for
isotopes in chemistry, such as 14C, conventionally use a superscripted number, but omitting the
superscripting does not usually cause any ambiguity. In rare cases, however, the text might also
contain notations like 14C in a completely different meaning (e.g., as codes of some kind or perhaps
as hexadecimal numbers). It is probably best to treat in-between usage as structural, unless there
are good reasons to treat it as presentational. Note that in chemistry, notations like C-14 are
recommended when superscripting is impossible.

9.1.9.1. Visual appearance of subscripts and superscripts

When considering the use of subscript or superscript characters in Unicode, note that the appearance
will in general be different from what you get by using other tools. The characters have a fixed
appearance in each font. You have no tools for affecting, for example, the vertical position of the
superscript with respect to the base letter, except coarsely by trying different fonts. Superscripts are
typically more legible in sans-serif fonts than in serif fonts; compare, for example, a2 in Times with a2

in Arial.

If you use font formatting commands in a word processor to create subscripts and superscripts, the
appearance is different from subscript and superscript characters. Moreover, the appearance can be
modified with the tools of the program more flexibly. Compare, for example, the expressions m2 and
m2. The appearance of the latter, containing the digit two in superscript style, can be modified with
styling commands. For example, in MS Word, you could select the "2" and choose Format Font to
set the font size smaller or to make the character appear in a lower or higher position. This may look
clumsy, but general purpose style settings can make this easier. When the superscript two character
is used, its glyph shows the digit in smaller size and in a raised position, and the details of such
features depend on the font and are difficult to modify.

Similar notes apply to using sub or sup markup in HTML or similar markup in other markup
languages. Their appearance and effect can be tuned in CSS by using the properties font-size,
vertical-align, and line-height. If you create your own markup system that has elements for
subscripts or superscripts, these three properties should be set suitably in your CSS stylesheet.

When different methods for expressing subscripts or superscripts are mixed, the result is usually
typographically poor due to style variation. Therefore, do not express superscript and subscript
numbers using the Unicode characters unless you can be reasonably sure that you can consistently
use that method for all superscripts and subscripts in the document.

9.1.9.2. Replacement notations for superscripts and subscripts

Since superscripting is often structural, especially in mathematics, different methods have been used
to describe superscripting in plain text. To express x to the power y, xy, programming languages
typically use x^y or x**y or a functional notation like pow(x,y).

Such notations are often used even in normal text, but you should not expect people to know them in
general without explanations, or find them natural. Notations like x y or power(x,y) might be
somewhat more understandable, though the upward arrow (U+2191) is often not available when

http://lib.ommolketab.ir
http://lib.ommolketab.ir

you are limited to plain text. Note that the circumflex accent ^ is essentially computer programming
jargon and has multiple uses as such.

Subscripting can often be removed without affecting the basic meaning, but if you need some
replacement, an underscore might be best, writing ai as a_i when needed.

9.1.9.3. Suggested policy on subscripting and superscripting

There is really no simple general answer to the question of whether you should use subscript and
superscript characters or other methods, such as word processor commands or markup. Some
guidelines can be given, though:

If you only need digits 1, 2, and 3 as superscripts (e.g., you just need m2 and m3), use the
characters for them. Being Latin 1 characters, they work widely.

Otherwise, use markup when available, or other techniques. Be consistent: represent even
superscript 1, 2, and 3 using the same method as you use for other superscripts.

When restricted to plain text, omit superscripting and subscripting when they are presentational
only or they can be inferred from the context (e.g., 1st, H2O, m2), and use special notations
instead of them when they are structural (e.g., 2n could be written as 2 n, 2^n, 2**n, or
super(2,n)).

If you need or wish to affect the specific visual appearance of subscripts and superscripts, such
as their size and vertical position with respect to the baseline of text, it is probably better to use
higher-level protocols rather than subscript and superscript characters. For example, in a word
processor, you can probably use its styling tools to specify a common style for all text that you
designate as subscripts or superscripts.

On the other hand, when you use subscript and superscript characters, you need not worry
about line spacing, since their glyphs have been designed for rendering within the height of the
font. Using any other technique for subscripting or superscripting, there is a definite risk of
uneven line spacing. There are usually some tools against that, but they typically mean setting
the overall line spacing larger than normal.

In special casessuch as when your data needs to be stored as plain text (e.g., in a
database)'analyze whether Unicode contains all the characters you'll need as subscripts and
superscripts, and use them. Beware that special processing may be needed on output.

In particular, non-numeric subscripts and superscripts are very poorly supported in fonts. Since
they largely exist for special purposes like phonetic notations, their appearance may not suit
your needs. (Here, "non-numeric" means anything but digits 0 through 9, plus sign, minus sign,
parentheses, and equals sign.)

Note that Unicode characters allow no nested subscripts or superscripts. You can represent the
subscript in "xi" as a character (Latin subscript small letter "i," U+1D62), but not the subscript
in "xi j."

9.1.10. Characters and Accessibility

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Accessibility means making content and services available to anyone irrespective of physical or
mental disability. In a broader sense, accessibility means availability to anyone irrespective of
variation between people and between the situations where they act. There are worldwide
recommendations and national guidelines and even legal rules on accessibility, especially in the digital
and networked environment. There are W3C recommendations on accessibility at
http://www.w3.org/WAI/. In the U.S., the so-called Section 508 legislation makes accessibility
considerations mandatory in some contexts that involve federal funding, see
http://www.section508.gov/.

9.1.10.1. Characters in non-visual presentation

The most commonly presented example of accessibility is how to make web pages and other digital
content available to the blind. Tools used for this usually involve speech synthesis: textual content is
used as input to an automatic speech synthesizer, which reads the text audibly. The synthesizer may
use metainformation presented in markup, for example, in order to read headings emphatically and
to leave pauses between paragraphs. Alternatively, text could be presented via a Braille "display,"
which is a device that renders a character using a combination of dots (a Braille pattern) that can be
sensed by the user's fingertips.

These examples deal with a very narrow part of accessibility, but they illustrate well how accessibility
deals with the character level, too. Unicode is oriented toward characters that are displayed visibly.
The very character concept deals with elements of written text, even though it does not mandate a
particular presentation. Strings of Unicode characters can, however, be presented in other ways, too.

Speech synthesis needs much more than just characters. It must be strongly language-dependent to
be correct or even to get close. Braille display works more directly at the character level, but different
schemes exist for converting text to sequences of Braille patterns. Those patterns have been encoded
into Unicode in a block of their own, but they are defined just as dot patterns, without assigning any
specific character or other meaning to them. Therefore, Braille rendering is language-dependent, too.

Both speech synthesis and Braille rendering were originally designed to handle a small repertoire of
characters, such as a subset of ASCII characters. Therefore, you often have problems in such modes
of rendering even for characters that work well in most visible presentations, like accented letters. In
visible rendering, the user mostly has the option of changing the font in order to see whether some
other font would work better. Perhaps he could even download additional fonts. In non-visual
rendering, problematic characters might not be rendered at all, or they might be indicated by their
names or numbers.

9.1.10.2. Understandability of characters

In all modes of presentation, failures are possible since the user might not understand the character
used, even if it is presented in a technically flawless way. If you write "5 µm," it is quite possible that
the µ character gets messed up in the presentation, but even if it does not, the reader might simply
not recognize and understand it. Similarly, the phonetic symbol , though widely used by linguists, is
unknown to most people, so an essential part of a pronunciation instruction using it might not be
understood at all.

http://www.w3.org/WAI/
http://www.section508.gov/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

There is no simple cure for the problem. We need to be cautious, and we need to explain the special
characters, as well as special notations, that we use. Unicode lets you use a huge number of
characters, but most people understand just a small subset.

Although the understandability of characters and the technical possibilities of rendering them are
quite different aspects, they are interconnected in practice. If you use technically "safe" characters
such as ASCII characters only, for example, the odds are that people understand the characters and
that specialized software, like Braille devices, can handle them well. People and programs understand
the "safe" characters because they are widely used in computers. Even if they don't know exactly
what you mean by an asterisk, *, the character probably looks familiar to them. If you use a more

fancy star-shaped Unicode character, like the black star (U+2605), in your text, it will not work
technically in all circumstances, and it may make people wonder whether it is a typo or something.
Therefore, make sure you have a good reason to take these risks.

9.1.10.3. Explaining characters

When you use characters that are not widely known to your audience, you should try to explain
them. Usually the explanations should be presented in normal textual content, perhaps in the copy
text, perhaps in footnotes or some other way; the choice depends on how important the explanation
is. Identifying characters by Unicode numbers or names or both can be useful in specialized technical
contexts, but it can be alienating when writing for the general public. A mixed explanation like the
following might be useful in a legend, though, if readers may need to use the character themselves
and therefore need its Unicode identification:

The character is a phonetic symbol that denotes a neutral vowel, as the one at the start of
the English word "about." The character is called "schwa," or formally "Latin small letter schwa"
(U+0259) in Unicode.

In hypertext, you could make the "U+0259" a link to a more detailed technical description of the
character, such as http://www.fileformat.info/info/unicode/char/0259/.

http://www.fileformat.info/info/unicode/char/0259/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.2. Characters and Markup

XML (and SGML) markup has often been characterized as "semantic" or "logical," instead of
presentational or physical. However, markup can be used for many purposes, including formatting
and typography. If you need to store text data in a way that contains formatting information, nothing
prevents you from using XML markup for that. To mention examples from HTML, <i> markup is used
to indicate italics, and markup like , though deprecated, is still used to specify
the font family.

On the other hand, many Unicode characters are typographic variants of other characters, coded as
separate characters for different reasons. Many of them are compatibility characters and have been
included only due to their existence in other character codes. However, there are other cases as well.
The difference between normal (upright) and italics style may indicate a semantic distinction in
mathematics or other special notations

Most things that are expressed in markup have no character-level counterpart. For example,
designating some text as a heading, in the logical structure, cannot be done at the character level.
What comes closest to that is writing the heading text in all uppercase with line breaks before and
after, as we often do in plain text. If you consider markup for indicating the structure of a price list
that is never meant to be displayed as such, only through special formatting processes and rules, it
should be obvious that you cannot do anything at the character level to indicate some text as
"product name" and some other text as "unit price" for the product.

Thus, the question of whether information should be expressed at the character level or in markup
primarily deals with presentational distinctions, or distinctions that might at least arguably be
regarded as presentational. It is an important special case of the problem of selecting an appropriate
level of expression in such cases. There are specific guidelines on it suggested in a joint report by the
Unicode Consortium and the World Wide Web Consortium (W3C). Note that text processors
increasingly use XML markup in their data formats, so the principles apply to using their tools, too, at
least indirectly.

9.2.1. Markup and Styling

In this context, "markup" really means "markup and styling," in most cases. Modern markup tends to
be logical rather than presentational, and therefore markup alone does not usually imply any
particular rendering style. In particular, if you use generic XML, inventing tags as you need and with
the intention of specifying rendering in a stylesheet, then no markup has any rendering style as such,
only through the stylesheet.

Although the i markup in HTML, for example, specifically means "italics," we cannot say the same
about the (rarely used) var markup, which means "variable, placeholder." Yet, in contexts where it is
suitable to replace a compatibility character with a normal character and i markup, it can be just as
suitable, if not more so, to replace it by the normal character and var markup, provided that two
conditions are met. First, the intended meaning should correspond to the defined meaning of the
markup. Second, we should have reasonable expectations on having it rendered in italics. The

http://lib.ommolketab.ir
http://lib.ommolketab.ir

expectations might be based on information about typical browser defaults, or on the use of a
stylesheet that explicitly suggests such rendering (var { font-style: italic; }).

9.2.2. Document-wide Versus Local Decisions

The question "character level or markup?" has two levels:

Should you use plain text or marked-up text as the format of some information? Choosing plain
text excludes all markup. Choosing marked-up text does not exclude the possibility of
expressing information at the character level rather than in markup.

Inside marked-up text, should you express some information (say, the use of italics for a
character) in markup, or at the character level, or perhaps both ways?

The alternative "both ways" can usually be excluded. Although it may sound ideal to get the best of
both possible worlds, you easily end up with getting the worst of them. Besides, you might get nasty
cumulative effects. Consider the simple example of writing the expression x (x to the power of 4).
You could use the superscript four (U+2074), or you could use a higher-level protocol, such as
markup (e.g., sup element in HTML) or superscript style in a word processor. Trying to use bothe.g.,
using x^{⁴} in HTMLwill probably combine the drawbacks of both alternatives: in
rendering, it fails whenever U+2074 does not belong to the fonts in use, and it tends to mess up line
spacing the way sup markup often does. Besides, it's illogical. It means double superscripting, and
this will probably make the superscript appear as very small if at all, since a browser uses superscript
4 and reduces its size.

Moreover, as noted earlier in this chapter, if you express some superscripts as superscript characters
and other superscripts using markup, they easily look disturbingly different. Any automated
processing of the data, such as conversion to another format, would need to deal with two
representations of superscripts instead of one.

You can mix markup with formatting information expressed at the character
level, but you should normally not use both ways for the same information in a
document.

There are a few exceptions, though. Sometimes there are two ways to present the same formatting
information so that no harm arises from the duplication. For example, in HTML authoring, you could
write a table cell as <td nowrap>42 m</td> so that the space between "42" and "m" is a no-break
space U+00A0 (which you could write as in HTML). That would mean expressing both at the
character level and in markup, with the nowrap attribute, that the cell content must remain on one
line. Both ways are "safe" in practice. Although there is no particular benefit from using both, no
harm is caused either, so such duplication need not be avoided, for example, when generating table
markup automatically.

9.2.3. Unicode Versus Markup

The document "Unicode in XML and other Markup Languages" has been published as Unicode

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Technical Report UTR #21 at http://www.unicode.org/reports/tr20/ as well as a W3C Note at
http://www.w3.org/TR/unicode-xml/. It is not part of the Unicode standard. It has been approved
just as a Technical Report, though other documents may make normative references to it. In the
W3C terminology, a Note is a document that has been endorsed by a working group but not reviewed
or endorsed by the W3C as a whole (or by "W3C Members").

Nevertheless, UTR #21 is the best available general guideline on whether information should be
expressed at the character level or in markup. We need to use it with discretion, partly because the
report considers markup in general and not the specific features of various markup languages and
systems. For example, in cases where the report recommends markup, the markup language we use
might lack elements that could be used for the purpose, or their implementation in software might be
wanting.

In practice, the report revolves around XML, which covers both generic XML (where you can invent
tags as you go) and specific XML-based markup languages such as XHTML (the XML-ized version of
HTML), MathML, MusicML, or SVG (Scaleable Vector Graphics, a language for two-dimensional
graphics in XML, with a possibility of including text as character data). However, the markup concept
is more general and covers SGML too, including classic HTML, which is nominally SGML-based. Even
notations such as RTF and other rich text systems can be regarded as markup, even though their
general syntax is different.

9.2.3.1. Differences between markup and plain text

Plain text is linear: a character follows another in a sequence. Although the visual rendering can be
more complicatede.g., due to combining diacritic marks and to alterations in writing directionplain
text is still processed linearly. Markup, on the other hand, expresses tree-like structures, even if it is
written linearly. As any good book on markup will tell you, a notation like
<x><y>foo</y><z>bar</z></x> describes a tree structure, with elements y and z as "children"
(subtrees) of x. The marked-up text needs to be processed (parsed) in order to construct the tree
structure, which in turn can be linearized into text. A markup element can be very large. In XML, the
entire document is treated as one element, with subelements, which contain subelements, etc.

Information expressed at character level works on different grounds. Either the difference between
characters as such carries some information (e.g., using 2 instead of 2 expresses that we have a
superscript), or a character affects the interpretation or processing of the preceding or sometimes
the following character. Some characters may set some internal state in interpretation or processing,
such as writing direction. They might be compared to start tags in markup. Even then, such
characters usually affect a state in a simple way, setting it to a specific value. There is normally no
nesting involved as in markup.

Thus, character level is normally useful for rather local information only. On the other hand, it is
generally simple and compact to use when it applies. Compare the simplicity of using a character
(code point) for 2 as opposed to markup like ², where you need start and end tags even
though you are saying something about a single character only.

Obviously, information at the character level is suitable for linear processing where you read a stream
of characters and process them in succession. Similarly, marked-up text, once parsed, is suitable for
structured processing where you start from a tree and process it by the structure.

9.2.3.2. Characters that should not be used in marked-up text

http://www.unicode.org/reports/tr20/
http://www.w3.org/TR/unicode-xml/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

UTR #20 declares some characters, listed in Table 9-2, as "unsuitable for use with markup." Some of
them might have use in plain text or other formats, but not in XML, for example. Most of these
characters would rarely come into your mind anyway when using markup. Note, however, that
U+FEFF has been used to some extent in marked-up text as an invisible joiner (to prevent undesired
line breaks), and in practice, it still does the job more reliably than the suggested replacement,
U+2060.

Table 9-2. Characters not suitable for use with markup

Character(s) Description Reason for avoiding

U+2028..U+2029
Line and paragraph
separator

Use markup (like p and br in HTML)

U+202A..U+202E
Bidi embedding
controls

Use only markup to avoid conflicts; however, see
notes after the table

U+206A..U+206B
Activate or Inhibit

Symmetric swapping
Deprecated in Unicode

U+206C..U+206D

Activate or Inhibit
Arabic

form shaping

Deprecated in Unicode

U+206E..U+206F

Activate or Inhibit
National

digit shapes

Deprecated in Unicode

U+FFF9..U+FFFB
Interlinear annotation
characters

Use Ruby markup (see Chapter 8)

U+FEFF
Zero width no-break

space (ZWNBSP)

Use only as byte order mark (see, however, the
note at the beginning of this section)

U+FFFC
Object replacement
character

Use markup for embeddinge.g., img or object in
HTML

U+1D173..U+1D173A
Scoping for Musical
Notation

Use an appropriate markup language, as it becomes
available

U+E0000..U+E007F
Language tag
characters

Use language markupe.g.,

lang or xml:lang attribute (see

Chapter 7)

As described in Chapter 5, the Line Separator (LS) U+2028 and the Paragraph Separator (PS)
U+2029 were introduced to provide unambiguous means to denote line breaks and paragraph

http://lib.ommolketab.ir
http://lib.ommolketab.ir

delimiters in plain text. This was meant to avoid the ambiguity caused by different uses of ASCII
control characters like Line Feed. In practice, LS and PS have not been used much. If they appear in
plain text being converted to marked-up text, they should be replaced by appropriate markup. In
HTML, you use
 (or
 in XHTML) for a forced line break, and you surround each paragraph
with the tags <p> and </p>. Utr #20 recommends that an occurrence of LS or PS in marked-up text
be treated as whitespacei.e., as equivalent to a space.

According to UTR #20, the Bidi embedding controls U+202A..U+202E (see Chapter 5) are "strongly
discouraged" in the HTML 4 specification, which however actually just warns about possible conflicts
between those controls and equivalent markup. It recommends that preferably one or the other
should be used exclusively, and adds:

The markup method offers a better guarantee of document structural integrity and alleviates
some problems when editing bidirectional HTML text with a simple text editor, but some
software may be more apt at using the UNICODE characters. If both methods are used, great
care should be exercised to insure proper nesting of markup and directional embedding or
override, otherwise, rendering results are undefined.

UTR #20 suggests that markup be used instead of the controls on the following grounds:

The embedding controls introduce a state into the plain text, which must be maintained when
editing or displaying the text. Processes that are modifying the text without being aware of this
state may inadvertently affect the rendering of large portions of the text, for example by
removing a PDF [= Pop Directional Formatting].

Although this recommendation is usually adequate, there are situations where markup cannot be
used for Bidi embedding. Attributes of elements cannot contain markup, only text, and some
elements may contain only text. Thus, if Bidi control is needede.g., a <title> element or an alt
attribute of an elementthe control characters are the only possibility.

9.2.3.3. Formatting characters that may be used in marked-up text

According to UTR #20, the characters listed in Table 9-3 may be used in XML documents or other
marked-up text, even though they are invisible formatting characters or characters with formatting
information. This does not mean that they should be used, or that it would always be appropriate and
best to use them. Rather, they are regarded in principle as compatible with the ideas and practices of
markup. This means that the potential risks of mixing character-level information and markup are not
relevant, or they can be controllable enough. On the practical side, many of the characters listed are
poorly supported or could be replaced by markup. The no-break space U+00A0 is often used and
useful, whereas most of the other characters have little use in texts written in Latin letters, except for
the soft hyphen U+00AD in some word processors.

Table 9-3. Formatting characters acceptable for use with markup

Character(s) Name(s) Notes

U+00A0 No-break space Latin-1 character

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Character(s) Name(s) Notes

U+00AD Soft hyphen Hyphenation hint

U+034F Combining grapheme joiner See explanation below

U+0600 Arabic number sign Subtending mark

U+0601 Arabic sign sanah Subtending mark

U+0602 Arabic footnote marker Subtending mark

U+0603 Arabic sign safha Subtending mark

U+06DD Arabic end of ayah Enclosing mark

U+070C Syriac Abbreviation Mark (SAM) Supertending mark

U+0F0C Tibetan mark delimiter tsheg bstar <noBreak> U+0F0B

U+180B..U+180E
Mongolian variation selectors and vowel

separator
Required for Mongolian

U+200C..U+200D
Zero-width joiner and non-joiner (ZWJ

and ZWNJ)

For ligature behavior; see

Chapter 5

U+200E..U+200F Directional marks (LRM and RLM) See Chapter 5

U+2011 Non-breaking hyphen <noBreak> U+2010

U+202F Narrow No-Break Space Narrow form of U+00A0

U+2044 Fraction slash Or use markup (MathML)

U+2060 Word Joiner Prevents line break

U+2061 Function application Mathematical use

U+2062 Invisible times Mathematical use

U+2063 Invisible comma Mathematical use

U+2FF0..U+2FFB Ideographic character description Graphic characters

U+303E Ideographic variation indicator Graphic character

U+FE00..U+FE0F Variation selectors Glyph selection indicators

U+E0100..U+E01DF Variation selectors Glyph selection indicators

The combining grapheme joiner (U+034F) is a combining mark rather than a formatting character. It
does not affect cursive joining or ligation (as ZWJ and ZWNJ do). Neither does it combine or join
graphemes, so its Unicode name is misleading. It has two uses, related to collation (sorting) of
strings and to canonical reordering of combining marks. See the Unicode FAQ,
http://www.unicode.org/faq/char_combmark.html.

Subtending marks are used in the Arabic and Syriac scripts to indicate that a mark be placed below a
string of characterse.g., below a sequence of digits, to indicate a year. The Syriac abbreviation mark
is used similarly but placed above a string, as a supertending mark, and the Arabic end of ayah is a
similar but enclosing mark. In character data, a subtending mark precedes the affected characters;

U+00AD Soft hyphen Hyphenation hint

U+034F Combining grapheme joiner See explanation below

U+0600 Arabic number sign Subtending mark

U+0601 Arabic sign sanah Subtending mark

U+0602 Arabic footnote marker Subtending mark

U+0603 Arabic sign safha Subtending mark

U+06DD Arabic end of ayah Enclosing mark

U+070C Syriac Abbreviation Mark (SAM) Supertending mark

U+0F0C Tibetan mark delimiter tsheg bstar <noBreak> U+0F0B

U+180B..U+180E
Mongolian variation selectors and vowel

separator
Required for Mongolian

U+200C..U+200D
Zero-width joiner and non-joiner (ZWJ

and ZWNJ)

For ligature behavior; see

Chapter 5

U+200E..U+200F Directional marks (LRM and RLM) See Chapter 5

U+2011 Non-breaking hyphen <noBreak> U+2010

U+202F Narrow No-Break Space Narrow form of U+00A0

U+2044 Fraction slash Or use markup (MathML)

U+2060 Word Joiner Prevents line break

U+2061 Function application Mathematical use

U+2062 Invisible times Mathematical use

U+2063 Invisible comma Mathematical use

U+2FF0..U+2FFB Ideographic character description Graphic characters

U+303E Ideographic variation indicator Graphic character

U+FE00..U+FE0F Variation selectors Glyph selection indicators

U+E0100..U+E01DF Variation selectors Glyph selection indicators

The combining grapheme joiner (U+034F) is a combining mark rather than a formatting character. It
does not affect cursive joining or ligation (as ZWJ and ZWNJ do). Neither does it combine or join
graphemes, so its Unicode name is misleading. It has two uses, related to collation (sorting) of
strings and to canonical reordering of combining marks. See the Unicode FAQ,
http://www.unicode.org/faq/char_combmark.html.

Subtending marks are used in the Arabic and Syriac scripts to indicate that a mark be placed below a
string of characterse.g., below a sequence of digits, to indicate a year. The Syriac abbreviation mark
is used similarly but placed above a string, as a supertending mark, and the Arabic end of ayah is a
similar but enclosing mark. In character data, a subtending mark precedes the affected characters;

http://www.unicode.org/faq/char_combmark.html
http://www.unicode.org/faq/char_combmark.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

the end of the affected range is defined implicitly, usually by the first non-alphanumeric character.
There is currently no markup that can replace these subtending, supertending, or enclosing marks.

Variation selectors were discussed in the section "Unicode and Fonts" in Chapter 4. They are used to
select a glyph variant of the preceding character. Although they could in principle be replaced by
markup and styling (glyph selection), this cannot be done in practice now. UTR #20 comments on
them as "Not graphic characters," which is technically correct: they are not visible characters but
meant to affect the rendering of another character.

9.2.3.4. Characters with compatibility mappings

The characters listed in Table 9-2 and Table 9-3 usually do not cause much of a problem when
deciding what characters to use in marked-up text. Most of them would not be used anyway, and the
rules for them are rather straightforward, though the practical considerations (would this formatting
character work?) might require some study.

The third and last group of characters discussed in UTR #20, those with compatibility mappings, is
more problematic, and more importante.g., in texts in English. As we noted in Chapter 5,compatibility
mappings exist for different reasons and have varying meanings. The difference between a character
and its compatibility mapping can vary from practically ignorable to substantial difference in meaning
or appearance or both. The expression "characters with compatibility mappings" is admittedly
clumsy, but the equivalent term "compatibility decomposable character" is also clumsy, and the
simpler term "compatibility character" does not mean quite the same thing. (There are compatibility
characters that have no compatibility mapping.)

The recommendations on using characters with compatibility mappings in marked-up text may
appear to conflict with general Unicode principles on avoiding such characters in new data (see
Chapter 5). The main reason is that these recommendations mainly deal with marking up existing
character data rather than creation of completely new data. For example, the use of characters for

ligatures (such as " " as one character) in new data should normally be avoided. However, if such
data exists in plain text, it should not be indiscriminately replaced by its decomposition (such as
letters "f" and "l"), especially if we have no idea of how the ligature behavior could be expressed in
markup or otherwise.

The recommendations of UTR #20 are summarized in Table 9-4 and commented (and criticized) after
the table. The report presents them primarily as applicable when XML markup is first added to text
that has no markup. It does not necessarily mean that existing marked-up text should be modified.
The first column in the table specifies a "compatibility tag" as defined in the Unicode database. As
explained in Chapter 5, such tags are metasymbols used to indicate the nature of the compatibility
mapping, and they should not be confused with markup tags. For two tags, the recommended
treatment is different for different characters, and this is indicated by specifying the applicability by
code range in column 2. (For compactness, the "U+" prefix is omitted here.)

Table 9-4. What to do with characters with compatibility mappings

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Tag
Code
range

What to do Description of characters and/or notes

<circled>
Retain, or use list
markup

Circled letters and digits

<compat> 2002..200A Retain Fixed-width spaces; see comments

 2100..2101 Retain and ; used as symbols

 2105..2106 Retain and ; used as symbols

 2121, 213B Retain and facsimile sign

 2160..217F
Retain, or use list
markup

Roman numerals, usually used as list item markers

 2474..249B
Retain, or use list
markup

Parenthesized or dotted number, usually used as list
item marker

 249C..24B5
Retain, or use list
markup

Parenthesized letters, usually used as list item
markers

 3131..318E Retain Compatibility Hangul Jamo

 3200..3229
Retain, or use list
markup

Parenthesized Korean characters and ideographic
numbers

 322A..3243
Retain, or use list
markup

Parenthesized ideographs

 32C0..32CB Retain
Ideographic telegraph symbols

for months

 all other Retain Maintain, semantic distinctions apply

<final> Normalize Arabic presentation forms

 Retain Variant letter forms used as symbols

<fraction> Normalize "As long as fraction slash is supported!"

<initial> Normalize Arabic presentation forms

<isolated> Normalize Arabic presentation forms

<medial> Normalize Arabic presentation forms

<narrow> Retain Half-width characters

<noBreak> Retain Non-breaking variants; see notes below

<small> Retain Small forms of characters; see notes

<square> 3300..3357 Retain
Single display cell cluster containing multiple lines of
kana for vertical layout

 3358..337D Retain Ideographic symbols

 33E0..33FE Retain Ideographic telegraph symbols for days

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Tag
Code
range

What to do Description of characters and/or notes

 all other Retain Symbols used in vertical layout

<sub>
Use markup, or
retain

Subscript characters

<super>
Use markup, or
retain

Superscript characters

<vertical> Normalize East Asian Presentation forms

<wide> Retain Fullwidth characters

In this context, "normalize" means conversion to Normalization Form KC. As described in Chapter 5,
this means compatibility ("K") decomposition followed by canonical composition ("C"). Only a few
types of characters are normalized, according to UTR #20. Most compatibility characters are
retained.

The treatment of characters with compatibility mappings needs to be more complicated than
expressed in the summary table. In fact, there are internal inconsistencies in UTR #20 between the
summary table and the prose explanations. Here it is interpreted according to the prose, which is
more detailed, and some apparent errors have been corrected.

Most important, we need to consider the intended meaning of using a character with a compatibility
mapping. If the purpose is just visual formatting, it should be replaced by the use of normal
characters and markup (and a stylesheet). If there is a semantic difference involved, the character
should be retained. The report illustrates this with a simple example of italicized characters:

It would be inappropriate to use compatibility characters like (U+210E), (U+212F), etc., to
write the word hello in italics. This should be rather obvious on several accounts: the names of
the characters, the variation in their glyphs (which are not based on any uniform "italics
design"), and the rather practical fact that these characters are poorly supported.

On the other hand, the character (U+210E) is adequate for denoting the Planck constant,
used in physics. In fact, "Planck constant" is its name and suggests its meaning. The report says
that we should not use just an italicized "h," or specifically the HTML markup <i>h</i>, to
denote the Planck constant. In practice, we often don't have a choice, due to character
repertoire limitations. But the principle is clear: in cases like this, the compatibility character is
to be preferred. The principle can be criticized, though: why would the Planck constant be an
exception, when we use, for example, just an italicized c to denote the speed of light?

In the following, we present additional rules, explanations, and comments related to Table 9-4,
organized in the same order as the table.

Characters with <circled> mapping

These are circled letters and digits such as (U+2460). They are most often used as list item
markers, as footnote markers, or in text when referring to items in a numbered list. Although
the report suggests in its summary that such characters be retained, the detailed rules rather

 all other Retain Symbols used in vertical layout

<sub>
Use markup, or
retain

Subscript characters

<super>
Use markup, or
retain

Superscript characters

<vertical> Normalize East Asian Presentation forms

<wide> Retain Fullwidth characters

In this context, "normalize" means conversion to Normalization Form KC. As described in Chapter 5,
this means compatibility ("K") decomposition followed by canonical composition ("C"). Only a few
types of characters are normalized, according to UTR #20. Most compatibility characters are
retained.

The treatment of characters with compatibility mappings needs to be more complicated than
expressed in the summary table. In fact, there are internal inconsistencies in UTR #20 between the
summary table and the prose explanations. Here it is interpreted according to the prose, which is
more detailed, and some apparent errors have been corrected.

Most important, we need to consider the intended meaning of using a character with a compatibility
mapping. If the purpose is just visual formatting, it should be replaced by the use of normal
characters and markup (and a stylesheet). If there is a semantic difference involved, the character
should be retained. The report illustrates this with a simple example of italicized characters:

It would be inappropriate to use compatibility characters like (U+210E), (U+212F), etc., to
write the word hello in italics. This should be rather obvious on several accounts: the names of
the characters, the variation in their glyphs (which are not based on any uniform "italics
design"), and the rather practical fact that these characters are poorly supported.

On the other hand, the character (U+210E) is adequate for denoting the Planck constant,
used in physics. In fact, "Planck constant" is its name and suggests its meaning. The report says
that we should not use just an italicized "h," or specifically the HTML markup <i>h</i>, to
denote the Planck constant. In practice, we often don't have a choice, due to character
repertoire limitations. But the principle is clear: in cases like this, the compatibility character is
to be preferred. The principle can be criticized, though: why would the Planck constant be an
exception, when we use, for example, just an italicized c to denote the speed of light?

In the following, we present additional rules, explanations, and comments related to Table 9-4,
organized in the same order as the table.

Characters with <circled> mapping

These are circled letters and digits such as (U+2460). They are most often used as list item
markers, as footnote markers, or in text when referring to items in a numbered list. Although
the report suggests in its summary that such characters be retained, the detailed rules rather

http://lib.ommolketab.ir
http://lib.ommolketab.ir

suggest that when used as list markers, they should be replaced by list markup. On the other
hand, this might be impractical if you wish to preserve the circled appearance of the markers.
As the report warns, such formatting can be difficult or impossible. (In MS Word, for example,
you can set up a numbered list, and then change its appearance to use circled numbers, up to
the value of 20. In HTML or CSS, on the other hand, you cannot format a numbered list that
way in practice.) In any case, if the characters are used both as list markers and in text as
referencing list items, any replacements of the characters should preserve reasonable visual
similarity between the markers and the references.

Characters with <compat> mapping in general

The report vaguely describes that "the <compat> label was given to a set of compatibility
characters whose further classification was not settled at the time the standard was created."
This seems to ignore the possibility of simply replacing the character with its compatibility

mappinge.g., writing as "c/o." Perhaps the idea is to say that if the formatting or the special
meaning is to be preserved, there is usually no other way than to retain the character. In some
situations, such as vertical layout, it is necessary to keep the symbol as single character, and
vertical layout is one of the reasons why the characters have been used in the first place.
Besides, due to relatively poor support in fonts, most characters in this category are rarely
used for purely typographic reasons. Therefore, it might be safest to assume, at least in
automatic conversions, that if these characters appear, there is a particular reason for that, so
they should be retained as such. On the other hand, if you know that, say, the character
Roman numeral seven (U+2166) has been used just for typography or by mistake, it's hard
to see why you could not replace it with the three-character string "VII," optionally with some
styling.

Fixed-width spaces

The report recommends that these characters be retained. However, as described in Chapter 8,
most fixed-width spaces work unreliably and could often be replaced by the use of normal
spaces and formatting commands or stylesheets.

Roman numerals

These characters each represent a Roman numeral, such as "VII," as a single character.
Similarly to characters with <circled> mapping, they are often used as list item marks in a
numbered list, and they could be similarly replaced by list markup. List styling tools (e.g., in
HTML and CSS) usually support well the formatting of numbers as Roman numerals. In other
usage, these characters should be retained; see earlier notes on <compat> mapping in
general.

Parenthesized numbers

These characters, U+2474 to U+2487, have <compat> mappings like "(1)" and consist of a
character in parentheses, such as (U+2474). They are used much the same way as circled
characters, and the report recommends, in its prose, the same approach for them. The
feasibility of replacing these numbers with list markup and styling varies; for example, in CSS,
it is currently not possible to make list markers appear as parenthesized numbers .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dotted numbers

These characters, U+2488 to U+249B, are similar to parenthesized numbers but have
<compat> mappings like "1." (i.e., a number followed by a full stop). Similar considerations
apply. Note that many default renderings of numbered lists have a dot after the number; it can
actually be difficult to get rid of it!

Parenthesized letters

These characters are similar to parenthesized numbers. The summary in the report says "use
list item marker style or normalize," but this is probably an oversight. Instead, if it is infeasible
to use list markup and marker styling, it is best to treat them the same was as other
characters with <compat> mappings: retain them as such, unless you know that they can
safely be replaced by their mappings (i.e., normalized).

Other parenthesized symbols

Characters U+3200..U+3229 and U+322A..U+3243 are parenthesized symbols, often used as
list markers. Due to their scope of use, they are usually best retained.

Ideographic telegraph symbols for months

These characters have <compat> mappings consisting of a number (of month) followed by an
ideograph. Due to their use in vertical layout, they are retained.

Arabic presentation forms

Characters with <final>, <initial>, <isolated>, or <medial> mapping are compatibility
characters that represent specific contextual forms of Arabic writing. The report recommends
that these be normalizedi.e., replaced with the corresponding generic characters. Note that
text using contextual forms is difficult to edit, since the forms would need to be changed, and
search operations are difficult, too. However, some rendering software might be able display
the contextual forms but unable to select appropriate glyphs when normalized text is used. If
you decide to retain contextual forms for such reasons, beware that there are many pitfalls.
For example, you may need to specify directionality explicitly even for purely Arabic text.

Characters with mapping

The report recommends that these be retained. This is cautious policy, based on the fact that
the use of these characters may involve semantic distinctions. For example, the Planck
constant " " (U+210E) belongs to this category. If it has been used properly, it should be
retained, in principle, though you may have good reasons to deviate from this. If, on the other
hand, we can know that this character has been mistakenly used just to produce the letter "h"
in italics style, with no specific semantics, the letter "h" and suitable markup and styling should
be used instead.

Fractions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Characters with <fraction> mapping are "vulgar fractions ." The report somewhat oddly
recommends that they be normalized "as long as fraction slash is supported!" In reality, the
fraction formatting as requested by the use of the fraction slash is poorly supported. When
converting to mathematical markup, fractions should apparently be replaced by the use of
constructs like the general mfrac element in MathML. However, the real choice is usually
between retaining these characters and replacing them with linearized fractions (e.g., mapping
½ to "1/2" so that / is the normal slash, or solidus) or maybe using a different notation instead
of a fraction (e.g., "0.5"). See suggestions on writing fractions in Chapter 8.

Half-width (narrow) characters

Characters with <narrow> mapping are half-width forms of characters, for use in East Asian
writing that normally uses glyphs designed to fit into a full square. There is no equivalent
markup in general.

Non-breaking characters

Characters with <noBreak> mapping are non-breaking variants of characters. Currently this
means Tibetan mark delimiter tsheg bstar (U+0F0C),figure space (U+2007), non-breaking
hyphen (U+2011), and narrow no-break space (U+202F). (In fact, all of these except the
figure space already appear in Table 9-3.) Otherwise, prevention of line breaking needs to be
handled using invisible characters or at a higher protocol level, as explained in Chapter 5. The
report says enigmatically: "The compatibility mapping is merely a way to indicate the
equivalent character that is not non-breaking. The distinction must be preserved." In reality,
there are several alternate ways to express non-breakability, in markup or in a stylesheet. But
non-breakability information should surely not just be dropped.

Small forms

Characters with <small> mapping are versions of some ASCII characters and a few other
characters, for use in East Asian writing. The report says: "Precise usage unknown. Maintain,
but do not generate."

Square forms

Characters with <square> mapping are presentational forms of characters and strings, for use
in vertical layout. Although this category contains different types of characters, the report
recommends that they all be retained. Typically, the characters are symbols composed of Latin
or Japanese kana letters, digits, and slash, designed to fit into a square that can be used as a
single cell. For many simple implementations, this is the only way to present, for example,
metric units (say, "km") and common abbreviations in a manner suitable for vertical text.

Subscript and superscript characters

Characters with <sub> or <super> mapping are subscript or superscript variants of
characters, such as 2. The summary in the report recommends replacing them by the use of
sub and sup markup, respectively, apparently referring to HTML markup or similar markup. (Of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

course, there is no guarantee that an arbitrary XML-based markup language contains such
elements, or that they have these names; in MathML, the names are msub and msup.) As
discussed previously, the situation is rather complicated, and the text of the report
acknowledges many of the problems. In the absence of information about the intended
meaning, it is generally best to retain these characters. The report explicitly says that when
subscripts and superscripts are to reflect semantic distinctions, "it is easier to work with these
meanings encoded in text rather than markup, for example, in phonetic or phonemic
transcription" and that especially for letters, the distinction can be essential (in phonetic
notations, the meaning of "kh" is different from the meaning of "kh").

Vertical forms

Characters with <vertical> mapping are presentational forms of characters, for use in East
Asian writing when it runs vertically and not horizontally. The report recommends that they be
normalized (replaced by the mapping). This is feasible if the rendering software can be
assumed to select vertical forms automatically as needed.

Fullwidth (wide) characters

Characters with <wide> mapping are fullwidth forms of characters, for use in East Asian
writing that normally uses glyphs designed to fit into a full square. There is no equivalent
markup in general.

Figure 9-5. An extract of a table with highly undesirable line breaks

9.2.4. Preventing Line Breaks

We return to the issue of preventing line breaks, discussed in this chapter as well as in Chapter 5 and
Chapter 8. The reason is that it is so common to have poorly formatted data, especially tables, just
because no method for preventing undesired line breaks has been used. Here we summarize the
different methods and present some examples.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To illustrate the problem, consider the extract of tabular data presented in Figure 9-5. It is
localization data from the CLDR (discussed in Chapter 11) and somewhat complicated in itself, but
undesirable line breaks make things much worse. The first row shown in the figure is meant to
specify that for the Farsi (Persian) language (language code fa), a positive monetary amount is
expressed in the format #,##90.00 ¤ and a negative monetary amount in the format "-#,##0.00" ¤.
Here you can see the currency symbol ¤ in actual use: it is a placeholder for a code, name, or symbol
for a currency. The problem here, apart from the difficulty of understanding the notations of the
formats, is that a web browser has broken the string #,##90.00 ¤;"-#,##0.00" ¤ (where the
semicolon is just a separator between the formats) in a disturbing manner. Breaking at the space
obfuscates the data. Similar things happen on the two other rows.

Especially in tables, horizontal space is often a scarce resource. When rendering software tries to fit a
multicolumn table within some limited space, it may squeeze some columns so that even cell content
like "5 m" is broken into two lines. Breaking it to "5" and "m" can be confusing, and it surely makes
the appearance bad. In HTML authoring, specifically, there are many ways of preventing such breaks.
They are presented in Table 9-5. Note that some of the ways are just theoretical, though they may
illustrate techniques that are useful in other contexts.

Table 9-5. Methods of preventing line breaks in an HTML table cell

Description Sample markup Notes

No-Break Space <td>5 m</td> Could use U+00A0 itself, too

Word Joiner <td>5 ⁠m</td> Theoretical alternative

Markup attribute <td nowrap>5 m</td> Deprecated markup in HTML

Markup element <td><nobr>5 m</nobr></td> Nonstandard, widely supported

Style sheet (CSS)
<td style="white-space: nowrap">

5 m</td>
Better done with external CSS

When using a stylesheet, it is usually better to put CSS code into a separate file, rather than embed it
into HTML markup using the style attribute, as in the example. Normally you would use just a <td>
tag without attributes, or such a tag with a class attribute, and the styling would be done outside the
HTML document.

Although all the methods mentioned in Table 9-5 might be expected to have the same effect, the
Word Joiner (WJ) methodwhich might be regarded as theoretically the most adequatefails on almost
any browser. The other methods mostly have the same effect, but if there is an explicit width set for
the table cell, both the markup attribute method and the stylesheet method fail to prevent the line
break. This is just one example of the practically important oddities that you may encounter. Using
the character-level method, no-break space, is usually the simplest and most effective method here.
Note that the use of the entity reference is equivalent to using the no-break space character
itself as data, and we use it here just for clarity.

Things change if you need to consider potential line breaking points other than spaces. In that case,
you usually don't have a character like the no-break space that you could use. In particular, to
prevent a line break after a hyphen, as in <td>555-123</td>, the character level methods (using the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

nonbreaking hyphen or the Word Joiner) hardly work in practice. You would thus use one of the last
three methods mentionedi.e., the nowrap attribute, the nobr element, or a stylesheet (or maybe a
combination of these).

Finally, as a practical observation that often makes things easier, note that it is often sufficient to
prevent line breaks in one cell in a column. Typically, you would work on the cell with largest width
requirement when written on one line. If you prevent a line break in a cell containing "1 000 000 $,"
then surely a cell with "42 $" in the same column won't be broken either.

9.2.5. Breaking the Flow of Text

Markup can be used even for parts of words. Should it affect the way in which the textual content is
processed, such as recognition of words? Consider the (old-fashioned) HTML markup Foo,
intended to make the word Foo appear so that first letter is bold. Could search engines, for example,
treat it as two words, "F" and "oo"?

Search engines generally parse HTML in a manner that effectively ignores most tags. It is however
possible that some programs do otherwise, either because they have poorly written parsers or
because they have intentionally been programmed to honor markup, in a way. The latter would be
quite natural for markup like <p>xxx</p><p>yyy</p>, where the two elements should be treated as
paragraphs and the strings xxx and yyy as separate, not as xxxyyy.

In practice, search engines differ. Google treats Foo as "Foo," whereas AltaVista treats it as
two words, "F oo." Moreover, search engine behavior may vary by situation and version. It is thus
best to avoid using markup that breaks words, unless you have real need for it.

For a markup language like HTML, it would be natural to think that inline (text-level) markup (like b
for bold face font) does not separate characters in any way, whereas block-level markup (like p for
paragraph) acts as a separator. However, neither HTML specifications nor the Unicode standard
discuss this issue, and search engines can hardly be expected to make such distinctions.

In a more general setting, such as XML, things become even more complicated. There is no division
into inline and block-level elements in XML itself, though in XML-based languages, such a division
might be made.

Thus, we should be prepared for both alternatives. In some situations, inline markup could separate
strings. It might also fail to do that even when we would expect that, so markup like
<p>xxx</p><p>yyy</p> is not safe; it is better to insert a space or a line break between the elements.

Similarly, if we write fi, it may happen that the string "fi" is not
presented as a ligature even if a browser would use a ligature when the font markup is not there. If

we use ē in HTML (or XML), we may expect to see (letter "e" and a combining macron,
U+0304), and this may well happen. But if we write ē, the
situation may change, depending on the browser. The font tag might act as an invisible barrier

between a character and a combining diacritic mark. Different browsers could render this as in

normal color, as with a red macron, or as e¯ with a red macron, or even (incorrectly) as just "e."
The example may sound contrived, but people really want to use such markup at timese.g., in
linguistic contexts when drawing attention to a diacritic mark.

In any case, markup used inside words, even for individual characters, tends to make the markup

http://lib.ommolketab.ir
http://lib.ommolketab.ir

hard to read. This is one of the reasons why UTR #20 allows several formatting characters that could
in principle be replaced by markup. Compare, for example, the string foo-bar-1 (where the second
hyphen is the nonbreaking hyphen, U+2011) or even foo-bar‑1 (using a character reference
for U+2011) with the markup foo-bar-1.

9.2.6. Why Not Markup in Unicode?

Unicode contains a large number of characters that are, more or less, typographic variants of more
basic characters. This, and reasons for it, were discussed in Chapter 4. To some extent, such
characters can be explained by the universality principle: they have been taken into Unicode, since
they exist in other character code standards. However, this does not explain the addition of more and
more characters of this kind, especially for the needs of mathematics (e.g., mathematical bold capital
"A," mathematical bold italic capital "A," mathematical sans-serif capital "A," and many, many
others).

Since most of such characters can be described in terms of basic characters and a number of features
such as "bold," "italic," and "sans-serif," it is natural to ask whether a more systematic approach
could have been used. In fact, they could have been implemented more efficiently by adding a limited
number of formatting characters into the Basic Multilingual Plane (BMP). That way, you would use
such a formatting character before or after a normal letter to create a special variant. This would give
much more flexibility, and it would be in accordance with the principles applied to characters with
diacritic marks. The Unicode FAQ answers:

It would have provided too much flexibility, and would have tempted people to use such
characters to create "poor man's markup" schemes rather than using proper markup such as
SGML/HTML/XML. The mathematical letters and digits are meant to be used only in
mathematics, where the distinction between a plain and a bold letter is fundamentally semantic
rather than stylistic.

This means that there are two distinct points:

The Unicode standard intentionally excludes anything resembling general font markup. The
expressed reason is that people should use "proper markup" instead.

The Unicode characters that can be classified as font variants are usually not just typographic
variants but have specific meaning. However, Unicode defines the meaning rather abstractly by
designating characters as "mathematical," for example.

In practice, if you decided to use, say, mathematical bold capital "A" (U+1D400) just to produce a
bold A, you would not break any formal rule of Unicode. But in addition to breaking the spirit, it
would almost always be unwise. The character U+1D400 has very limited support in fonts and in
automatic processing in programs. Besides, programs that recognize it may treat it in a way that
corresponds to its role as a mathematical symbol, rather than just a variant of the common letter
"A."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.3. Media Types for Text

When data is stored in a file or transferred between systems and applications, it is essential to keep
track of the format of data. This is especially important on the Internet, where the recipient of data
may be prepared to handle different formats of data but needs to know the format. For example, if
some data is included in an email message as an attachment, the message should internally carry
information about the format of the data, such as plain text (which can be rendered directly very
simply) or rich text (which needs to be processed in a rather complicated way in order to display it
properly).

Internet media types (MIME types), described in Chapter 10, are used to specify the general nature
of a data set (file), such as image versus text, as well as its more specific format. Here we will
consider the major type text and its subtypes.

9.3.1. The Type text

The MIME specification (RFC 2046) defines the type text as follows:

The "text" media type is intended for sending material which is principally textual in form. A
"charset" parameter may be used to indicate the character set of the body text for "text"
subtypes, notably including the subtype "text/plain," which is a generic subtype for plain text .
Plain text does not provide for or allow formatting commands, font attribute specifications,
processing instructions, interpretation directives, or content markup. Plain text is seen simply as
a linear sequence of characters, possibly interrupted by line breaks or page breaks. Plain text
may allow the stacking of several characters in the same position in the text. Plain text in
scripts like Arabic and Hebrew may also include facilities that allow the arbitrary mixing of text
segments with opposite writing directions.

Beyond plain text, there are many formats for representing what might be known as "rich text."
An interesting characteristic of many such representations is that they are to some extent
readable even without the software that interprets them. It is useful, then, to distinguish them,
at the highest level, from such unreadable data as images, audio, or text represented in an
unreadable form. In the absence of appropriate interpretation software, it is reasonable to show
subtypes of "text" to the user, while it is not reasonable to do so with most nontextual data.
Such formatted textual data should be represented using subtypes of "text."

In most cases, data of type text is completely textual, not just principally textual. However, rich text
formats may contain facilities for embedding images directly into the file format.

This definition might be read so that "rich text" is a catchall name for anything that is text but not
plain text. However, "rich text" normally refers to formats that contain text and formatting
instructions (for italics, bolding, font selection, spacing, etc.). HTML or XML documents are hardly
"rich text," since they mostly do not contain direct formatting instructions.

Data formats such as TSV (Tab Separated Values) aren't really "rich text" either. Rather, they specify
a very simple structure for tabular data: each line of text (separated by line breaks) corresponds to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

one row of a table, and some designated character (typically, tab, semicolon, or comma) is treated
as a separator between cells. Naturally, that designated character must not appear in the data itself.

9.3.2. The Character Encoding

The text type has an optional charset parameter that can be used to specify the character encoding
of the text. For example, text/plain;charset=utf-8 means plain text that shall be interpreted as
UTF-8 encoding.

What happens if the encoding is not specified that way? Since the content is texti.e., charactersthere
is really no meaningful way to process it in any way without knowing, guessing, or implying some
encoding. In Chapter 10, we will take a detailed look at this practically important problem for HTML
documents on the Web. The problem is of a more general nature, though. For example, if you open a
plain text file locally in a system, there is usually no encoding information for the file. Most
filesystems contain no direct data about media types in the MIME sense or about the encoding.

At the general level, there are different ways to deal with a situation where a subtype of text does
not specify the encoding with charset:

Imply an encoding

This has been very common in the past, usually implying ASCII, or (especially on the Web)
ISO-8859-1. According to MIME specifications, the default must be ASCII for all subtypes of
text, but other Internet protocols (e.g., HTTP) impose other rules. Thus, it is unsafe to assume
any specific default. If you open a plain text file on the local disk, the program you use might
imply a system-dependent default.

Specify a default encoding for a subtype

It might be natural to specify a default encoding for a subtype on practical grounds. In
particular, the effective default encoding for text/html is usually windows-1252 or ISO-8859-1.
In principle, this is not the case, and the MIME specification apparently disallows subtype-
specific defaults.

Deduce the encoding from the data itself

Various techniques can be used to try to guess the encoding from the data content. In
particular, some data formats contain mechanisms for specifying the encoding inside the data
(e.g., a meta element in HTML and the XML prologue in XML). Although logically odd, these
mechanisms often work reasonably well.

Let the user decide

Rather naturally, a program could prompt for a user action to choose between encodings, when
adequate information about encoding is not available. If the dialog contains a method for
previewing the content in different encodings, this may work well, when the user is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

experienced.

As an implication, if you have Unicode data in UTF-8 encoding, it is very probable that characters in
the ASCII range get interpreted correctly. All the rest is more or less unsafe. This is one reason why
the basic structural elements of computer languages, such as markup tags, are usually still limited to
ASCII.

According to MIME specifications, if a program does not recognize a subtype of text, it should treat it
as text/plain, provided that it knows how to handle the character encoding (charset). If the
character encoding unrecognized, too, the subtype should be should be treated as
application/octet-stream, which effectively means "lump of binary data." Upon receiving such data
from a network, well-behaved software normally prompts the user for an action, asking her to specify
whether the data should be stored on the local disk or processed in some other user-specified way. In
reality, programs might just imply the ASCII encoding (or some other) instead.

9.3.3. The text Type Versus the application Type

In the type classification, many formats that can intuitively be understood as text formats are defined
as being of major type application. For example, the data formats that word processors normally
use are classified as application types. As a rough rule of thumb, if a format is designed for
processing with a specific program or family of programs, it is classified as an application type.
Formats of text type are meant to be processed with many different programs, and they have been
defined by specifying their structural properties and semantics, rather than technical implementation.

For example, the format used by WordPerfect is application/vnd.wordperfect. Names of subtypes
defined for vendor-specific software start with vnd. in most cases, but there are some exceptions for
historical reasons, such as application/msword.

The PDF format, defined by Adobe, is registered as application/pdf. It is comparable to word
processor formats, in the sense that the content is typically mostly text, but the overall structure is
not textual. PDF is widely used for the interchange and distribution of documents, especially when it
is desirable to deliver them in easily printable format. Officially, "PDF" is short for "Portable Document
Format." PDF is often used for documents that contain special characters, since you can, upon
creating a PDF file, specify that font information be embedded into the data. This means that
recipients can usually view and print the document, even if the fonts on their computers do not
contain all the characters used.

In some cases, the same data format can be classified using different media types. For example, an
XML document may be classified as text/xml or application/xml, and possibly using other media
types as well, depending on the specific markup used.

9.3.4. Subtypes of text

Just as for the application type, the subtype name usually begins with vnd. for vendor-specific
subtypes of text. This does not mean that the subtype is private use only. On the contrary, it has
been registered so that it can be used generallye.g., on the Internet.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 9-6 presents all subtypes of text except those with names beginning with vnd. (see the full
registry at http://www.iana.org/assignments/media-types/text/). The last column identifies the
registration documents, which usually do not describe the format itself; instead, it lists some basic
properties and refers to some documents or organizations for the actual specifications. "I-Draft"
means an Internet-Draft, available from the repository https://datatracker.ietf.org/public/idindex.cgi.
"Registry" means that the definition is in a file in the registry, not published as an RFC or as an
Internet-Draft.

Table 9-6. Registered subtypes of text

Subtype Meaning Definition

calendar iCalendar format, for calendaring and scheduling RFC 2445

css Stylesheet, in Cascading Style Sheets (CSS) RFC 2318

csv Comma Separated Values, for tabular data I-Draft

directory Directory information (e.g., telephone directory) RFC 2425

dns Domain Name System data RFC 4027

ecmascript Obsolete subtype for Ecmascript code I-Draft

enriched A simple rich text typei.e., text with formatting info RFC 1896

html HTML (Hypertext Markup Language) document RFC 2854

javascript Obsolete subtype for JavaScript code I-Draft

parityfec For Real-time Transport Protocol (RTP) RFC 3009

plain Plain text: text as such, with no special agreements RFC 2046

prs.fallenstein.rst For reStructuredText, a simple markup system Registry

prs.lines.tags Consists of lines with simple name: value syntax Registry

red For transport of redundant text data via RTP RFC 4102

rfc822-headers Internet message headers, when sent as data RFC 1892

richtext An obsolete rich text type, see text/enriched RFC 1341

rtf Rich Text Format (RTF), a common rich text type Registry

sgml Standard Generalized Markup Language (SGML) RFC 1874

t140 For transmission of data via RTP using ITU T.140 RFC 4103

tab-separated -
values

TSV format, for tabular data, similar to text/csv Registry

troff Marked-up text, for the troff typesetting programs I-Draft

uri-list A list of URIs (URLs) for URI resolution services RFC 2483

xml XML (Extensible Markup Language) document RFC 2023

xml-external-parsed-

entity

External parsed entity, as defined in the XML specification;
typically, a file of common definitions

RFC 2023

http://www.iana.org/assignments/media-types/text/
https://datatracker.ietf.org/public/idindex.cgi
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Usually, subtypes of application are used for XML documents. However, RFC 2023 recommends that
text/xml (or, in some cases, text/xml-external-parsed-entity) be used, if "an XML documentthat
is, the unprocessed, source XML documentis readable by casual users." As a practical consideration,
software that does not support XML in any particular way will probably treat text/xml as comparable
to text/plain and display it as such. Thus, the question is whether a person who does not know the
specific markup used will be able to understand (some of) the data intuitively. This may well be the
case, if element and attribute names are mnemonic and descriptive, like product and price. Note,
however, that displaying an XML document as unprocessed means that character references such as
ሴ are displayed literally, probably confusing casual users.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Characters in Internet Protocols
This chapter describes how character encoding information is transmitted in Internet protocols,
including MIME and HTTP, and how content negotiation works on the Web, mainly for the purposes of
negotiating on character encoding and language. This constitutes a basis for a presentation of some
fundamentals of multilingual web authoring at the technical level. Moreover, the use of characters in
the protocols themselves, such as in Internet message headers and URLs, is described, with focus on
the partial shift from pure ASCII to Unicode. In particular, the technical basis of Internationalized
Domain Names and Internationalized URLs is described.

A common situation in which people first encounter problems with character encoding is when they
start authoring web pages in new languages. If you have a web site in English, you might never think
about encodings, since you can work with default settings. Then, if you want to add a page in
Japanese or Arabic, you meet several problems at a time:

What authoring tools (software) should I use?

What fonts do I use?

Which encoding should I use?

How do I give information about the encoding?

What tags should I put in my documents to tell the language I'm using?

Many of the difficulties in such situations arise from the common confusion of fonts, encodings, and
languages. Other chapters of this book have explained such issues; in this chapter, we mostly
concentrate on the encodings. A suitable approach is:

Determine the character repertoire that you will need (see Chapter 7). Consider both the needs
of the language(s) you use and the special symbols that might appear.

1.

Select a suitable encoding that covers that repertoire and is suitable for use on the Web.
Chapters 3 and 6 have described the encodings, but in this chapter, we consider the special
conditions of web publishing. In particular, it is possible to use an encoding that does not
support all the characters needed, since you can use special notations like character references
to overcome the limitations of an encoding.

2.

Select software that lets you work conveniently with the encoding and with the characters you
need. In practice, you may need to consider what software is available before you decide on the
encoding. Such topics were discussed in Chapter 2.

3.

Make sure that the web server sends information about the encoding in one way or another,
and possibly in different ways. This is explained in this chapter.

4.

5.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.

Use language markup if you know how to use it properly, but do not rely on it. It mostly has no
effect except possibly on typography (font selection) on some browsers. See Chapter 7.

5.

Worry about fonts if you wish or need to, but do not think that font settings solve any of the
fundamental problems listed here. Rather, setting fonts is like painting a house, once you have
otherwise built it up. Font issues mostly do not belong to the scope of this book. You would
normally use Cascading Style Sheets (CSS) to affect fonts in web authoring, but you might also
create a PDF version of a document, with fonts embedded into it.

6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.1. Information About Encoding

When data is sent over the Internet, it needs to be encoded into digital format, ultimately as octets
and bits. If the recipient program does not know the overall formati.e., how the data has been
encoded, it needs to make guesses, or it might simply fail to do anything sensible with it. A sequence
of octets could be intended to present data other than character data, too. It could be an image in a
bitmap format, or a computer program in binary form, or numeric data in the internal format used in
computers.

Moreover, if the data is text, the recipient needs to know the character encodingi.e., how the octets
will be mapped to characters. If you only look at an octet sequence, you cannot even know whether
each octet presents one character or just part of a two-octet presentation of a character, or
something more complicated. Sometimes the recipient can guess the encoding, but data processing
and transfer shouldn't be guesswork.

Information about the overall format and the character encoding should normally be included into
Internet message headers . The headers contain other information, too. The MIME specification
defines how the format, the encoding, and other information pertaining to character representation
are expressed in Internet message headers. In particular, when non-ASCII data is sent by email,
there should be a header that says the MIME is used in the first place (as opposed to old email
formats, where ASCII was implied) and a header that indicates the data transmission method. For
example:

MIME-Version: 1.0
Content-Type: text/plain; charset=ISO-8859-15
Content-Transfer-Encoding: 8bit

The header Content-Transfer-Encoding: 8bit indicates that the octets representing the data (in this
case, in the ISO 8859-15 encoding) are transmitted as such as 8-bit quantities. The original design of
Internet email postulated the use of 7-bit quantities only. Most email software can handle 8-bit
quantities nowadays, but the octets can be encoded using 7-bit quantities when needed.

10.1.1. What Happens Without Information About Encoding

Because of default settings, you might work with computers and the Internet for quite a while
without ever worrying about formats and encodings. Suppose that you use just English, or some
other language of Western European origin, like Spanish. When you send email, your email program
probably sends your message as plain text encoded in ASCII, ISO-8859-1, or windows-1252
(Windows Latin 1). The program may also automatically include a header that tells the format and
the encoding. A recipient's email program will often find that header and act accordingly, without
bothering its user with any technicalities. In the absence of the header, the program will probably
interpret the data as plain text in windows-1252 encoding, and get it right. (ASCII and ISO-8859-1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

encoded data gets interpreted correctly when interpreted as windows-1252; see Chapter 3.)

Problems arise when defaults clash with each other. Suppose that you send email to Russia. Even if
your message is in English, you might use some non-ASCII characters, such as curved quotation
marks, dashes, or symbols like µ or €. Your email program might therefore decide to send the
message as ISO-8859-1 or windows-1252 encoded. If it does not inform about the encoding, or if the
recipient's program does not use the information, the odds are that the recipient sees the non-ASCII
characters wrong. Some Cyrillic letters or some special characters (but not the right ones) would
appear, when your message is interpreted according to some of the 8-bit encodings commonly used
in Russia. This all works in the opposite direction, too. Someone writing in English in Russia might use

the character to mean "number" (incorrectly but understandably thinking the symbol is used in
English, too), but when his email program sends it, for example, in windows-1251 (Windows Cyrillic)
encoding and your email program interprets it as windows-1252, you will see the symbol as 1.

It is easy to guess wrong and never realize the truth, if the wrong guess affects a few characters
only. This may happen when non-ASCII characters appear only rarely. It also happens when some
commonly used encodings are rather similar to each other but not the same. For example, ISO-8859-
1 and ISO-8859-15 differ in a few positions only. If you get a lump of data and notice that it looks
ISO-8859-1 encoded, you might be quite happy even if the encoding is in fact ISO-8859-15.
However, the data that you pass forward or print or otherwise process might contain some wrong
characters. For example, octet A8 (hexadecimal) means the dieresis ¨ in ISO-8859-1, and since the
dieresis has so little use as a separate character, the texts you look at probably don't contain it. One
day, however, the data you get might contain that octet and you would see it as the dieresis,
wondering what it means. If the encoding is in fact ISO-8859-15, the octet should be taken as

meaning the letter .

When very different encodings are implied by a sending program and a receiving program, the user
will immediately see that there is something wrong. If you send Spanish text (using all accents
correctly) to Russia and the recipient's program interprets it according to some encoding commonly
used in Russia, all non-ASCII letters will appear replaced by Cyrillic letters. If someone sends you a
message in Japanese, using some of the encodings commonly used in Japan for Japanese text, and
your program interprets it according to windows-1252, the result will be completely illegible even you
read Japanese fluently.

When there is no information about encoding or the information is wrong, the user often has to try to
set her program to show the data according to different encodings to find the right one. We discussed
this in Chapter 1, but most users do not know such features or they have problems using them. It is
difficult to find information about these features in documentation of most programs.

10.1.2. Approaches to Specifying the Encoding

For reliable data transmission, a platform-independent method of specifying the general format and
the encoding and other relevant information is needed. Such methods exist, although they are not
always used widely enough. People still send each other data without specifying the encoding, and
this may cause a lot of harm.

Attaching a human-readable note, such as a few words of explanation in an email message body, is
better than nothing. You could write, for example: "The enclosed attachment contains the report you
asked for, as plain text, in ISO-8859-1 encoding."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Before the Web, FTP (File Transfer Protocol) servers were used to make documents available on the
Internet, and they still have some usage. In FTP, there is no way to indicate the format of documents
at the protocol level, except by distinguishing between text ("ASCII") files and all other files,
collectively called binary files. It is therefore common and recommendable to include a text file in a
directory on an FTP server so that this file, often named conventionally as README.TXT, contains a
list of all files in the directory. That's a suitable place for explaining not only the content and purpose
of each file, but also the file formats and character encodings.

However, since data is processed by programs that cannot understand such notes, the encoding
should be specified in a standardized computer-readable form whenever possible. Ideally, computers
would do this automatically when sending data, so that people would not need to know anything
about it, unless they are computer specialists who work on technologies that make such things
possible. In the real world, many people need to know something about the internals of sending
information about encoding.

Thus, in most Internet contexts, the normal and recommendable approach is to specify the encoding
of data in a formalized manner, in a format that can easily be processed by programs. Usually,
Internet message headers are used for the purpose.

10.1.3. Practical Recommendations

Most important, make sure that any Internet-related software that you use to send data (such as an
email program) specifies the encoding correctly in suitable headers. There are two things involved:

Figure 10-1. Normal view of an incoming email message in Thunderbird

The header must be present and it must reflect the actual encoding used.

The encoding used must be one that is widely understood by the (potential) recipients' software.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You often need to make compromises with regards to the latter aim: you may need to use an
encoding that is not yet universally supported to get your message through at all. In practice, this
mainly means that you may need to use UTF-8, even though not all email programs can handle it in
incoming mail. In Chapter 3, we described some of the commonly available encodings and their
suitability. ASCII is safe, ISO 8859 encodings are safe in many contexts (in communication between
people who belong to the same language community), and UTF-8 is usually the best approach when
you need a wide repertoire of characters.

Typically, you should check the headers sent by a program when you first use it, or the first time you
intend to send anything but ASCII characters. We discussed this in Chapter 1. However, you should
also check that the message has appropriate headers, instead of just looking right by accident.

10.1.4. Looking at the Headers

When you view an incoming message normally, as in Figure 10-1, you see just the content, not the
headers. However, some information extracted from the headers may appear; e.g., the "Subject"
and "From" information has been taken from them.

Using some program-dependent method, you can change the display of an incoming email message
so that all the message headers become visible. In Thunderbird, you would just click on the small box
containing + at the start of the line with the Subject of the message, right above the message itself.
The headers then appear before the message, as shown in Figure 10-2, and the content of the box
changes to the minus sign, - (meaning that if you click on it, the headers are removed from the
display).

Figure 10-2. View of an incoming email message with headers in
Thunderbird

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The structure of the email message headers, or MIME headers, will be discussed later in this chapter.
Here it suffices to note that the last three headers specify the following:

The message is in MIME format (specifically, in MIME Version 1.0).

The content is in plain text format, UTF-8 encoded, and it is subject to a specific convention
expressed by format=flowed (which says that the message may be reformatted for display
according to certain rules, as opposite to fixed line structure).

The encoded (UTF-8) content is transferred directly as octets, instead of applying any particular
transfer encoding such as Quoted Printable (see Chapter 6).

Alternatively, when viewing a message in Thunderbird, you could select View Message source, or
simply type Ctrl-U, to see the message as "source," or as "raw format." This means that the message
is displayed as transmitted on the network and as received by an email program. This format
contains first the headers, then a blank line, and then the message itself. Our test message is shown
as "source" in Figure 10-3. In this case, the characters in the message are displayed as such, but if
some special transfer encoding (such as Quoted Printable) had been used, they would appear as
"raw," in the encoded form.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 10-3. View of email message "source" in Thunderbird

Other programs have different methods for making the headers visible or viewing message "source"
or "raw format." Typically, the relevant commands are in a "File" menu or in a "View" menu. In
Outlook Express, for example, you can normally use File Properties to access both the source
and the raw format.

To test that your email program behaves well, you could send a message with several special
characters to a friend who works in a completely different environmente.g., a Linux or Mac
environment, if you use Windowsand ask her to forward the message back to you. Of course, if
something goes wrong, you will not immediately see whether the problem is in your system or in
hers. However, the headers will help in analyzing the situation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.2. Characters in MIME

MIME is a protocol that makes it possible to send text data by email using different encodings, not
just ASCII, which is the original encoding for Internet email. MIME has other purposes and
applications as well, such as sending nontextual data by email.

An email message that uses MIME has special headers as illustrated in the preceding section. The
headers are used to specify the general data format of the message as well as its character encoding.
It may also specify the transfer encoding (see Chapter 6) used for the data.

10.2.1. Media Types

Internet media types, often called MIME types, can be used to specify a major media type ("top level
media type," such as text), a subtype (such as html), and an encoding (such as iso-8859-1). They
were originally developed to allow the use of email for sending formats other than plain ASCII data.
They can be (and should be) also used for specifying the encoding when character data is sent over a
networke.g., by email or using the HTTP protocol on the World Wide Web.

Originally, "MIME" was short for Multipurpose Internet Mail Extensions. The idea was to extend the
capabilities of Internet email from the original content format, which is plain text with ASCII as the
implied encoding. Thus, MIME was developed both to let you include characters other than ASCII into
the message body and to specify methods for including nontext data, such as images, as
attachments. The currently defined major media types are the following:

application

Application-dependent data format. This includes various binary data formats as well as
formats used to represent text in an application-dependent way. The subtype
application/octet-stream denotes binary data with unknown or unclassified structure.

audio

Data representing voice, such as music or speech. For example, audio/basic is a simple audio
format.

image

Data that is meant to be presented in a graphic (visible) form, such as a drawing or a
photograph. For example, the subtype image/gif means an image in GIF format.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

message

An Internet message, such as an email message or Usenet posting, along with its message
headers. The body is normally plain text, but the headers (though textual) are to be treated in
a special way, not as text as such. For example, the subtype message/partial indicates a
message that is a part of one logical message divided into parts for delivery.

model

Modeling data, such as model/vrml, which is data in VRML (Virtual Reality Modeling Language) .

multipart

A format that consists of one or more parts that may be of different formats. For example,
multipart/alternative is a general purpose subtype for data that consists of representations
of the same data in different formats (e.g., as plain text and as rich text).

text

Data that consists of characters only, though possibly with some special conventions on the
interpretation of some characters (e.g., as tags). The subtype text/plain means text without
such conventions.

video

Video datai.e., film-like data (moving pictures, possibly with associated sound). For example,
video/mpeg.

The media type concept is defined in RFC 2046. The procedure for registering types in specified in
RFC 2048. The site http://www.oac.uci.edu/indiv/ehood/MIME/toc.html contains a collection of
interrelated RFCs (20452049) in hypertext format. The official registry of media types is maintained
by the Internet Assigned Numbers Authority (IANA) at
http://www.iana.org/assignments/mediatypes/. Unregistered types are often used, though, especially
for data related to new technologies. In principle, an unregistered media type should have a subtype
that begins with x- (letter "x" and hyphen-minus)e.g., text/x-cooltext, but this requirement is often
violated.

10.2.2. Character Encoding ("charset") Information

The technical term used to denote a character encoding in the Internet media type context is
charset, abbreviated from "character set." This has caused a lot of confusion, since "set" can easily
be understood as repertoire.

Normally, subtypes of message and text need a parameter that specifies the character encoding used,
though this parameter can be omitted (defaulted) in some cases. The parameter is called charset,
and it is written like the following example of an email message header:

http://www.oac.uci.edu/indiv/ehood/MIME/toc.html
http://www.iana.org/assignments/mediatypes/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Content-Type: text/plain; charset=iso-8859-1

This specifies, in addition to saying that the media type is text and subtype is plain, that the
character encoding is ISO-8859-1. Encoding names are case insensitive, and they must not contain
spaces. The spaces after : and ; above are optional and used for clarity only.

The official registry of charset (i.e., character encoding) names is kept by IANA at
http://www.iana.org/assignments/character-sets. This plain text file also contains some references to
documents that define encodings. There is also an unofficial tabular presentation of the registry,
ordered alphabetically by charset name and augmented with some references:
http://www.cs.tut.fi/~jkorpela/chars/sorted.html.

Several character encodings have alternate (alias) names in the registry. For example, the ASCII
encoding can be called ASCII, ANSI_X3.4-1968, or cp367 (plus a few other names). Its preferred name
in MIME context is, according to the registry, US-ASCII. Similarly, ISO 8859-1 has several names; its
preferred MIME name is ISO-8859-1.

10.2.3. MIME Headers

The Content-Type information in the preceding section is an example of information in a message
header, or header for short. Headers relate to some data, describing its presentation and other
things, but are passed as logically separate from it. MIME headers are a special case of Internet
message headers, often called RFC 822 headers, although the classical RFC 822 has now been
replaced by RFC 2822, "Internet Message Format," available as hypertext at http://www.rfc-
ref.org/RFC-TEXTS/2822/. In the specifications, "header line" is used instead of "header," but a
header may be divided into several physical lines.

Adequate headers should normally be generated automatically by the software that sends the data
(such as a program for sending email, or a web server) and interpreted automatically by receiving
software (such as a program for reading email, or a web browser). In email messages, headers
precede the message body. It depends on the email program whether and how it displays the
headers. Typically, just a few commonly used headers are displayed by default. The header names
themselves, such as Content-Type and Date, are fixed by the email protocol, but the information
content of headers might be shown to the user in a localized and customized way. For example, the
content type is usually not shown to the user, since it is technical information for interpreting the
data, whereas the timestamp in the Date header might be shown with any suitable name in a
language understood by the user.

10.2.3.1. Internet message format and MIME

The Internet message format was originally developed for simple ASCII-based email. It has been
extended in content and scope so that, for example, Usenet messages and HTTP messages use the
same fundamental format, though partly with different types of headers.

The general approach of MIME and several essential headers are described in the basic MIME
specification, RFC 2045, "Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet
Message Bodies." There are additional definitions in RFC 3864, "Registration Procedures for Message

http://www.iana.org/assignments/character-sets
http://www.cs.tut.fi/~jkorpela/chars/sorted.html
http://www.rfc-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Header Fields," and RFC 4021, "Registration of Mail and MIME Header Fields."

Internet message headers have a common general syntax (see the example in Figure 10-3):

Message headers appear before the message body, separated from it by one completely empty
line.

A header is of the form name: value normally written on one line. The space after the colon is

optional, but is commonly used for legibility.

A header may be continued to next line by starting the next line with at least one space.

The message header name starts with a letter and contains name characters: ASCII letters,
digits, and hyphen-minus.

Message header names are case insensitive, but are usually written as capitalized (e.g., From,
Subject). Values may or may not be case sensitive, depending on the definition of the header.

The mutual order of Internet message headers is insignificant. Some orders might be more
natural than others, but the meaning is not changed by any reordering. However, for multiple
headers with the same name, the order may be significant.

As in the Internet message format in general, lines are separated from each other by the
character pair CR LF (Carriage Return, Line Feed); see Chapter 8.

The implied character encoding is ASCII (US-ASCII). This means that the headers are written
and processed as ASCII data, though specific encoding mechanisms may be used to include
other characters even in the headings. The headers may specify that the message body be
interpreted in some other encoding.

Within this simple framework, Internet message headers of different kinds can be used for a
multitude of purposes, public and private. In theory, you are supposed to use a header name that
starts with X- (capital "X" and hyphen-minus), if you use a header that is not defined in a published
specification. In practice, people have used "private" or experimental headers without sticking to such
conventions. Attempts have been made to describe the actual usage, but it has been very varying.
For example, many email programs have used headers of their own in a proprietary manner, so that
the same information is often expressed in different headers by different programs.

RFC 3864 establishes a registry, which might clarify the situation:
http://www.iana.org/assignments/message-headers/message-header-index.html. It does not directly
define the headers but cites the defining documents, many of which just cite other documents for the
real definitions.

10.2.3.2. Headers related to characters

The most important headers that we need for character-related issues have already been mentioned.
They are summarized in Table 10-1 along with some other headers. Not all of them relate directly to
representation characters. In particular, the Subject header is mentioned here because it should
contain the subject of the message in a suitable natural language, and this raises the question how
we can represent non-ASCII data there.

http://www.iana.org/assignments/message-headers/message-header-index.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 10-1. Internet message headers related to handling characters

Header name Meaning

Accept-Charset Lists the character encodings accepted (in HTTP).

Accept-Encoding Lists the transfer encodings accepted (in HTTP).

Accept-Language Lists the language preference settings of the user.

Content-Encoding Specifies the transfer encoding of the original data.

Content-Transfer-Encoding Specifies the transfer encoding applied.

Content-Language Specifies the language(s) of the content. Rarely used.

Content-Type Specifies the media type and the character encoding.

MIME-Version Indicates the use of MIME, and a specific version.

Subject Specifies the subject (title) of the message.

TRansfer-Encoding Specifies the transfer encoding of the message body.

10.2.3.3. Headers for transfer encoding

As you can see from Table 10-1, there are several headers that may specify a "content encoding,"
which means an additional encoding such as compression. Those headers differ in their scope of use.
For example, Content-Encoding: gzip might be used by web servers when they send a document as
compressed with the gzip algorithm, for efficiency. Web server software might allow the server
administration to configure the server to automatically use such compression when sending to
browsers that can handle it. This could remove much of the inefficiency involved in some character
encodings.

In MIME email, the Content-Transfer-Encoding header is used to specify the encoding (if any) applied
to octets (as used in some primary encoding, such as UTF-8 or ISO-8859-1) in order to transmit
them in an environment where "raw" 8-bit data might cause problems. The possible values for it are
specified in Table 10-2.

Table 10-2. Content-Transfer-Encoding values (for MIME email)

Value Meaning

7bit 7-bit data sent as such, no transfer encoding

8bit Textual 8-bit data sent as such, no transfer encoding

base64 Base64 encoding (see Chapter 6) has been applied to the octets

binary Arbitrary 8-bit data sent as such, no transfer encoding

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Value Meaning

quoted-printable QP encoding (see Chapter 6) has been applied to the octets

The header Content-Transfer-Encoding: 7bit promises that the message content consists of
relatively short (maximum: 998 characters) lines of text, with CR LF between lines. The characters
CR and LF appear in such pairs only. All octets are in the range 1 to 7F hexadecimali.e., correspond
to ASCII characters excluding NUL.

The header Content-Transfer-Encoding: 8bit makes a similar promise, but octets larger than 7F
may appear. NUL is excluded here, too. Thus, all octets in the range 1 to FF may appear, though CR
and LF appear only in CR LF pairs.

10.2.3.4. The Quoted-Printable (QP) transfer encoding

The MIME specification defines, among many other things, the general purpose "Quoted-Printable"
(QP) encoding, which we described in Chapter 6. Some of the basic points are repeated here, partly
to explain them a bit differently, partly to help readers who skipped Chapter 6 because it was too
technical.

QP can be used to represent any sequence of octets as a sequence of such octets that correspond to
ASCII characters. This implies that the sequence of octets becomes longer, and if it is read as an
ASCII string, it can be incomprehensible to human readers. What is gained is robustness in data
transfer, since the encoding uses only "safe" ASCII characters, which will most probably get
unmodified through any component in the data transfer.

Basically, QP encoding means that most octets up to 7F (hexadecimal) are used as such, whereas
octets with higher values and some other octets are presented as follows: octet n is presented as a

sequence of three octets, corresponding to (ASCII codes for) the equals sign, =, and the two digits of
the hexadecimal notation of n.

If QP encoding is applied to a sequence of octets presenting character data according to ISO 8859-1
character code, then effectively this means that most ASCII characters (including all ASCII letters)
are preserved as such, whereas, for example, the ISO 8859-1 character ä (code position E4 in
hexadecimal) is encoded as =E4. For obvious reasons, the equals sign = itself is among the few ASCII
characters that are encoded. Being in code position 3D in hexadecimal, it is encoded as =3D.

Encoding, for example, ISO 8859-1 data this way means that the character code is the one specified
by the ISO 8859-1 standard, whereas the character encoding is different from the one specified (or
at least suggested) in that standard. Since QP only specifies the mapping of a sequence of octets to
another sequence of octets, it is a pure encoding and can be applied to any character data, or to any
data for that matter.

Naturally, QP needs to be processed (decoded) by a program that knows it and can convert it to
human-readable form. It looks rather confusing when displayed as such. Roughly speaking, one can
expect most email programs to be able to handle QP, but the same does not apply to newsreaders
(or web browsers). Therefore, you should normally use QP in email only.

10.2.3.5. How MIME should work

quoted-printable QP encoding (see Chapter 6) has been applied to the octets

The header Content-Transfer-Encoding: 7bit promises that the message content consists of
relatively short (maximum: 998 characters) lines of text, with CR LF between lines. The characters
CR and LF appear in such pairs only. All octets are in the range 1 to 7F hexadecimali.e., correspond
to ASCII characters excluding NUL.

The header Content-Transfer-Encoding: 8bit makes a similar promise, but octets larger than 7F
may appear. NUL is excluded here, too. Thus, all octets in the range 1 to FF may appear, though CR
and LF appear only in CR LF pairs.

10.2.3.4. The Quoted-Printable (QP) transfer encoding

The MIME specification defines, among many other things, the general purpose "Quoted-Printable"
(QP) encoding, which we described in Chapter 6. Some of the basic points are repeated here, partly
to explain them a bit differently, partly to help readers who skipped Chapter 6 because it was too
technical.

QP can be used to represent any sequence of octets as a sequence of such octets that correspond to
ASCII characters. This implies that the sequence of octets becomes longer, and if it is read as an
ASCII string, it can be incomprehensible to human readers. What is gained is robustness in data
transfer, since the encoding uses only "safe" ASCII characters, which will most probably get
unmodified through any component in the data transfer.

Basically, QP encoding means that most octets up to 7F (hexadecimal) are used as such, whereas
octets with higher values and some other octets are presented as follows: octet n is presented as a

sequence of three octets, corresponding to (ASCII codes for) the equals sign, =, and the two digits of
the hexadecimal notation of n.

If QP encoding is applied to a sequence of octets presenting character data according to ISO 8859-1
character code, then effectively this means that most ASCII characters (including all ASCII letters)
are preserved as such, whereas, for example, the ISO 8859-1 character ä (code position E4 in
hexadecimal) is encoded as =E4. For obvious reasons, the equals sign = itself is among the few ASCII
characters that are encoded. Being in code position 3D in hexadecimal, it is encoded as =3D.

Encoding, for example, ISO 8859-1 data this way means that the character code is the one specified
by the ISO 8859-1 standard, whereas the character encoding is different from the one specified (or
at least suggested) in that standard. Since QP only specifies the mapping of a sequence of octets to
another sequence of octets, it is a pure encoding and can be applied to any character data, or to any
data for that matter.

Naturally, QP needs to be processed (decoded) by a program that knows it and can convert it to
human-readable form. It looks rather confusing when displayed as such. Roughly speaking, one can
expect most email programs to be able to handle QP, but the same does not apply to newsreaders
(or web browsers). Therefore, you should normally use QP in email only.

10.2.3.5. How MIME should work

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Basically, MIME should let people communicate smoothly without hindrances caused by character
code and encoding differences. MIME should handle the necessary conversions automatically and
invisibly.

For example, when person A sends email to person B, the following should happen:

The email program used by A encodes A's message in some particular manner, probably
according to some convention that is normal on the system where the program is used (such as
ISO 8859-1 encoding on a typical modern Unix system).

1.

A's program automatically includes information about this encoding in an email header, which is
usually invisible to both A and B.

2.

The message, with the headers, is then delivered, through network connections, to B's system.
Its content will normally not be modified in the delivery path. Headers may be modified to
reflect the events in the delivery process.

3.

The email subsystem where B's mailbox resides (typically, on a server accessed by B from her
workstation) may perform some encoding conversions on the message, and should indicate this
in the headers.

4.

When B uses her email program (which may be very different from A's) to read the message,
the program should automatically pick up the information about the encoding as specified in a
header and interpret the message body according to it.

5.

Thus, it is by no means necessary that the computers and email programs used by A and B use the
same character code. Conversion (transcoding) to B's code, when needed, could be performed
automatically in phase 4 or in phase 5. Moreover, A's program might in some situations be able to
know what the recipient software wants. In particular, when responding to an email message, your
email program might send (at least optionally) your reply in the same encoding in which the original
message was received. This is however just extra courtesy; the encoding should still be specified in
the headers. Moreover, if there are multiple recipients, you cannot expect all of them to be able to
deal with the encoding that the original sender used.

For example, if B is using a Macintosh computer, B's program would automatically convert the
message into Mac's internal character encoding, Mac Roman, and only then display it. Thus, if the
message was ISO-8859-1 encoded and contained the Ä (uppercase "A" with dieresis) character,
encoded as octet C4 (hexadecimal), the email program used on the Mac should use a conversion
table to map this to octet 80, which is the encoding for Ä on Mac. If the program fails to do such a
conversion, strange things will happen. ASCII characters would be displayed correctly, since they
have the same codes in both encodings, but instead of Ä, the character corresponding to octet 196 in

Mac encoding would appear, namely, the symbol . (This example intentionally refers to the old Mac
Roman to make a point. New Mac software can usually interpret ISO-8859-1 and Unicode encodings
more directly.)

10.2.4. Troubleshooting Examples

Unfortunately, there are deficiencies and errors in software so that users often have to struggle with

http://lib.ommolketab.ir
http://lib.ommolketab.ir

character code conversion problems, perhaps correcting the actions taken by programs. It takes two
to tango, and some more participants to get characters right. This section demonstrates different
things that may happen, and do happen, when just one component is faultyi.e., when MIME is not
used or it is inadequately supported by some "partner" (software involved in entering, storing,
transferring, and displaying character data).

Typical problems that occur in communication in Western European languages other than English
creates situations in which most characters get interpreted and displayed correctly, but some
"national letters" don't. For example, the character repertoire needed in German, Swedish, and
Finnish is essentially ASCII plus a few letters like ä from the rest of ISO Latin 1. If a text in such a
language is processed so that a necessary conversion is not applied, or an incorrect conversion is
applied, the result might be that, for example, the word "später" becomes "spter" or "spÌter" or
"spdter" or "sp=E4ter." Much of the text will be quite readable, but words containing accented letters
look odd.

If the data is in an Internet message, such as an email message, that has appropriate MIME headers,
it is straightforward to interpret the data. You may need to use a special program that can decode
the encoding used, or you may even need to consult a definition or a mapping table for an encoding
or code. Things get worse if there are no headers, or if the headers contain wrong informationi.e., the
data does not make sense even technically when interpreted according to it. You might still be able to
deduce or guess what has happened, and perhaps to determine which code conversion should be
applied, and apply it more or less "by hand."

In the following examples, we assume that you have received (or found) some text data that is
expected to be, say, in German, Swedish, or Finnish and that indeed appears to be such text, but
with some characters replaced by oddities in a somewhat systematic way. We will consider some
situations where you can guess, with reasonable certainty, what has happened. Depending on the
case, you may need information about encodings as presented in Chapters 3 and 6 as well as in
documents cited there.

You may find it useful to try to solve at least some of the problems below, as an
exercise, before reading the explanations.

We will consider the particular letter ä ("a" with umlaut), which is common in all the languages
mentioned. We could try to identify some words that should contain the letter ä but have something
strange in place of it (as in the examples for "später").

Let us now assume that such identification has been madei.e., we know (or at least have guessed
intelligently) what character or string appears where ä (U+00E4) should appear. In the following,
some common cases are analyzed, largely under the assumption that your program interprets the
data in ISO-8859-1 or in Windows Latin 1 encoding:

a

The person who wrote the text possibly just used "a" instead of ä, probably because he thought
that ä would not get through correctly. Although ä is surely problematic, the cure is often
worse than the disease: using "a" instead of ä loses information and may change the meanings
of words. This usage, and the next two cases below, is (usually) not directly caused by

http://lib.ommolketab.ir
http://lib.ommolketab.ir

incorrect implementations but by the human writer; however, it is indirectly caused by them.

ae

Similar to the previous case, this is usually an attempt to avoid writing ä. For some languages
(e.g., German), using "ae" as a replacement for ä is a common workaround, but it is much less
applicable to Swedish or Finnishand loses information, since the letter pair "ae" can genuinely
occur in many words.

a"

Yet another replacement notation. It resembles an old (and generally outdated) idea of using
the quotation mark as a replacement for a diacritic mark, but it is probably expected to be
understood by humans instead of being converted to an ä by a program.

d

The original data was actually ISO 8859-1 encoded or something similar (e.g., Windows Latin
1) but during data transfer, the most significant bit of each octet was lost. (Such things may
happen in systems for transferring, or "gatewaying," data from one network to another. For
example, your terminal device or terminal emulator might have been configured to "mask out"
the most significant bit.) This means that the octet representing ä in ISO 8859-1i.e., E4 in
hexadecimal, 11100100 in binarybecame 01100100 in binary, 64 in hexadecimal, which is the
ISO 8859-1 encoding of letter d.

{

Obviously, the data is in ASCII encoding so that the character { is used in place of ä. It was
once common to use various national variants of ASCII, with characters #, $, @, [, \,], ^, _, ',
{, |, }, and ~ replaced by national letters or symbols according to the needs of a particular
language (see Chapter 3). Thus, they modified the character repertoire of ASCII by dropping
out some special characters and introducing national characters into their ASCII code positions.
It requires further study to determine the actual encoding used, since, for example, Swedish,
German, and Finnish ASCII variants all have ä as a replacement for {, but there are differences
in other replacements.

Ã¤

The data is evidently in UTF-8 encoding. Notice that the characters Ã and ¤ stand here for
octets C3 and A4, which might be displayed differently depending on the program and device
used. Generally, the frequent appearance of uppercase Ã is a strong indication of the problem
that UTF-8 encoded data is being interpreted as ISO-8859-1 encoded.

+AOQ-

The data is in UTF-7 encoding.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Ì

The data is most probably in Roman-8 encoding (defined by Hewlett-Packard).

=E4

The data is in Quoted-Printable encoding. The original encoding, upon which the QP encoding
was applied, might be ISO-8859-1, or any other encoding that represents character ä in the
same way as ISO-8859-1 (i.e., as octet E4 hexadecimal).

ä

The data is in HTML format; the encoding may vary. See Chapter 9.

ä

The data is in HTML or XML format; the encoding may vary.

This character occupies code position E4 in the old Macintosh character code. Thus, what has
probably happened is that some program received ISO-8859-1 encoded data and interpreted it
as if it were in Mac encoding, and then performed a conversion based on that interpretation. It
apparently turned E4 into 89, which is the code position of the per mille sign in the windows-
1252 code. The misbehavior might be caused by specifying the encoding as, for example, ISO-
8859-15 or windows-1250 or anything else unknown to the receiver, but with ä still in position
E4. Some programs refuse to apply the usual ISO-8859-1 to MacRoman transcoding in such a
case.

Σ

This character occupies code position E4 in DOS code page 437. As in the previous case, data
encoded as ISO-8859-1 (or something similar) has been incorrectly interpreted in another
encoding.

(nothing, lack of any character)

Perhaps the data was encoded in DOS encoding (e.g., code page 850), where the code for ä is
84. In ISO-8859-1, octet 84 is in the area reserved for control characters; typically such octets
are not displayed at all, or perhaps displayed as blank. If you can access the data in binary
form, you could find evidence for this hypothesis by noticing that octets 84 actually appear
there. (For instance, the Emacs editor would display such an octet as \204, since 204 is the
octal notation for 84 hexadecimal.) If, on the other hand, it is not octet 84 but octet 8A, then
the data is most probably in Macintosh encoding.

" (double low-9 quotation mark)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Most likely, the data was encoded in DOS encoding (e.g., code page 850), where the code for ä
is 84. Your program is interpreting it according to the Windows Latin 1 code, where this code
position is occupied by the double low-9 quotation mark.

Most likely, the data was in the old Macintosh encoding (Mac Roman), where the code for ä is
8A. Your program is interpreting that octet according to the Windows Latin 1 code, where this

code position is occupied by .

The encodings involved in the examples are largely old encodings that are not used much in modern
computers. The reason is that problems with encodings arise mostly when old systems and old
software are involved.

10.2.5. Character Encoding on the Web

In Chapter 1, we discussed the character encoding problems of web pages from a user's point of
view. Sometimes you need to change your browser settings in order to view a web page correctly,
telling the browser to try a different encoding. Here we discuss the authoring side of the matter. This
explains the background of the problems that users experience, and this is also important to people
who wish to publish something on the Web.

The principles are simple:

Select an encoding for your HTML documents so that it covers most characters you will need.

Make sure that the web server where you put your documents sends correct HTTP headers that
announce the encoding.

Additionally, use meta tags in HTML for specifying the encoding.

The use of HTML forms and processing of data posted via forms raises some difficult additional
problems, which will not be discussed here but in Chapter 11.

10.2.5.1. Headers in HTTP

HTTP is the transport protocol of the Web, as well as in intranets and extranets. Contrary to what the
name expansion "HyperText Transfer Protocol" suggests, HTTP is not limited to hypertext. It can also
transport plain text files, pictures, audio files, executable binaries, etc.

The HTTP technology is based on the client/server model: a client (browser) sends a request to a
server, and the server responds to it, typically by sending the requested data and some headers that
describe the data. The request normally specifies the requested resource by its URL.

A web server is supposed to specify the media type of the data that it sends to a browser, using a
Content-Type header as in email. Normally a browser sends a request without specifying the media

http://lib.ommolketab.ir
http://lib.ommolketab.ir

type of the requested resource. A browser can actually specify its media type preferences using an
Accept header, but that header usually plays no role. Instead, the server sends the requested
resource, along with information about its media type. Usually a browser does not show this
information, just uses it. (Later in this section, we describe tools for viewing the headers.) For
example, when the requested resource is a photograph in JPEG format, the server might send:

Content-Type: image/jpeg

The general idea is that upon receiving such information, the browser immediately knows what to
expect. It can select an appropriate action, possibly affected by user settings that specify how
different data formats are to be handled. In particular, if the header specifies plain text as the media
type, the browser can simply display it as-is. It could also pass the plain text to another program,
such as a simple editor, but browsers normally just show the data in the browser window. The user
may then save it locally, if desired.

Sometimes the server response does not contain such a header, and the browser needs to make a
guess, or report an error. Some browsers make their guesses even in the presence of a Content-Type
header. This mainly applies to Internet Explorer, which uses a relatively complicated scheme to
decide how to interpret a server response, possibly using the suffix of the URL (such as .gif) or an
analysis of the (start of) the content of the resource. Microsoft's own documentation of the
mechanism is available at the address
http://msdn.microsoft.com/workshop/networking/moniker/overview/appendix_a.asp.

Usually this does not cause harm, if the filename suffix matches common conventions and if the file
content is of more or less normal kind. However, if you, for example, wish to make a document
available on the Web as a plain text resource, you will run into problems if its content looks like HTML
markup to IE. Moreover, authors who rely on IE's guessing might fail to check that correct HTTP
headers are sent, and this may imply that the file is not correctly processed by other browsers.

10.2.5.2. Specifying the encoding in HTTP headers

In HTTP, the Content-Type header can be used for specifying both the media type and (optionally)
the character encoding. For an HTML document in particular, a typical header is:

Content-Type: text/html; charset=iso-8859-1

Thus, the encoding is specified in a charset parameter of the media type. The parameter can also be
specified for plain text (text/plain) as well as for other subtypes of text. This sounds very simple,
and it is, but there are several complications.

For various reasons, servers often do not include a charset parameter. We will later in this section
discuss what should happen then. What actually happens is that a browser uses some default
encoding. If that is not the right encoding and the user realizes this, she may try to tell the browser
to use another one, as explained in Chapter 1.

Even when a browser normally honors HTTP headers, you might be able to tell the browser to
override the charset parameter. One reason for this is that servers sometimes send wrong
information about encoding, and users might be able to fix this.

http://msdn.microsoft.com/workshop/networking/moniker/overview/appendix_a.asp
http://lib.ommolketab.ir
http://lib.ommolketab.ir

On Internet Explorer for example, if you simply select View Encoding and then pick up some
encoding, you will make the browser use that encoding only if the server has not announced the
encoding. But if you first uncheck the first item in the encoding menu, "Automatic selection," you
make the browser override any encoding that the server has specified. Try it; visit, say, some page in
French and change the encoding to some Cyrillic encoding, and you see the accented letters turn to
Cyrillic letters. Remember to check "Automatic selection" back again after this test, since otherwise
you will need to select it manually on every page.

The choice of encoding does not affect characters that have been represented using entity or
character references, since they do not depend on the encoding. For example, if an ISO-8859-1
encoded document contains ï as such (octet EF), then the rendering often changes to another
character when the encoding setting is changed. If the character has been written in HTML as ï
or ï or ï, it remains as ï.

10.2.5.3. Which encodings can be used?

In principle, any registered character encoding can be used for documents on the Web. Many
encodings are used, and browsers generally support a few dozen different encodings. However, the
safest encodings are ASCII, ISO-8859-1, and UTF-8. The windows-1252 encoding is rather safe in
practice, too.

Other encodings commonly supported by browsers include several 8-bit encodings in the ISO 8859
and Windows encoding families. However, especially the newest of such encodings might not be
recognized by browsers or by important search engines or other software used for automated
processing of web pages. ISO-8859-2 is probably supported, but ISO-8859-3 or ISO-8859-13 might
be a different matter. Although many search engines can process such encodings, their methods of
recognizing the encoding might be faulty.

Although UTF-8 is fairly safe as far as browsers and search engines are concerned, with few
exceptions, there are problems with authoring software . You can surely find an authoring tool that
lets you create UTF-8 encoded documents, either directly in an authoring program or via some
conversion to UTF-8 format. However, if your documents will be maintained or edited by other
people, you cannot always assume that they have or they can get and learn to use a UTF-8 capable
tool.

There is also a psychological factor involved. If you have a tool that lets you type any Unicode
character comfortably, you will be tempted to use the full Unicode repertoire. You would easily use
characters that many, if not most, users will not see properly.

Thus, if you expect to need just a few characters outside ASCII, you might consider a simple
approach that uses ASCII as the encoding and expresses all other characters using entity or
character references (see Chapter 2). That way, anyone could edit the documents in any
environment, though the references might look somewhat obscure. For understandability, it would be
best to use entity references (like é) for all characters that have one and hexadecimal
character references (like ♀) rather than decimal character references (like ♀) for other
characters. Hexadecimal numbers are somewhat more comfortable than decimal if you need to
interpret character references, since Unicode-related information usually uses hexadecimal. (Some
old browsers do not understand hexadecimal references or all entity references, but the impact of
such considerations is rather small these days.)

Although browsers usually support UTF-16 as well as UTF-8, some important search engines

http://lib.ommolketab.ir
http://lib.ommolketab.ir

apparently do not process UTF-16 correctly. Thus, it is not practical to use UTF-16 on the Web. This
may change if UTF-16 becomes more common on the Web, but there are little signs of such a
development. See also the section "Choosing an Encoding" in Chapter 6.

Opinions differ on the acceptability of windows-1252 (Windows Latin 1). It is widely supported, since
due to its common use, even software on non-Windows platforms has to recognize and interpret it, in
order to work well on the Internet. It is also an officially registered encoding. On the other hand, it is
not an international standard but a proprietary encoding. In HTML authoring, you do not win much by
using windows-1252 instead of ISO-8859-1. The extra characters like dashes and "smart" quotation
marks (see Chapter 3 for details) can be relatively well written using entity references like –.
However, if your data comes from a document produced using a word processor and containing such
punctuation characters, it might be simplest to leave it windows-1252 encoded, if that was the format
when you received the data.

10.2.5.4. HTTP versus HTML

According to the HTTP 1.1 specification (RFC 2626), any subtype of text (such as text/plain and
text/html) has ISO-8859-1 as its default encoding. The HTML 4.01 specification, on the other hand,
says that no default encoding shall be implied. This effectively means that when the encoding has not
been specified, the browser should do its best to guess the encoding from the content, instead of
simply assuming ISO-8859-1.

For further confusion, RFC 3023 (XML Media Types), "XML Media Types," specifies the media type
text/xml so that for it, the default encoding is US-ASCII. That is, if an XML document is sent with a
MIME or HTTP header specifying that media type and without a charset parameter, the recipient
must imply that the encoding is US-ASCII.

In practice, the default encoding that a browser uses for a page (when the server or the page itself
does not specify the encoding) depends on the browser. The default has often been selected to suit
the cultural environment where the browser is used. In any case, if the user has selected the
encoding manually, this setting will usually stay in effect as a default.

The moral is, of course, that an author should try to make the web server send a header that
specifies the encoding, even if it is ISO-8859-1. If the encoding is UTF-8, there is an even greater
reason for specifying it in an HTTP header, of course.

10.2.5.5. Checking the HTTP headers

In order to check the HTTP headers sent by a server, you can use a Telnet program or some similar
software. Unfortunately, the Telnet program included in Windows is very simple, but there is, for
example, the free PuTTY program, which is distributed as a binary executable via
http://www.putty.nl/.

Using PuTTY (or Telnet), connect to the server using the applicable port, which is normally 80 for
HTTP and can be obtained from the URL if not. (If the server name in the URL is followed by a colon
and a number, the number is the port number to be used.) Then you issue a HEAD command and a
HOST command and an empty line (i.e., hit Enter twice), and wait for an answer. In the HEAD
command, the first argument is the relative URL, starting from the solidus character / that follows

http://www.putty.nl/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

the server name in the absolute URL. The second argument specifies the HTTP protocol version. The
HOST command is required (in HTTP/1.1) and repeats the server name. Figure 10-4 shows a dialog in
which the user, after invoking PuTTY so that it is instructed to connect to www.cs.tut.fi at port 80,
requests the HTTP headers for the URL http://www.cs.tut.fi/~jkorpela/chars/.

Alternatively, you can check the headers using Lynx, the text-based browser available for several
environments and often installed on Linux and Unix systems. You would use a command of the form
lynx -head -dump address.

As an author of web pages, you need not check the headers of all of your documents, of course. The
headers are normally constructed by the web server by some general rules. Thus, it mostly suffices
to check things when you start using a server, or when problems appear that might be related to the
character encoding or other things expressed in headers.

Figure 10-4. Requesting HTTP headers in a simple dialog

This, by the way, is one of the reasons why you should try to specify the URL of your page, rather
than just send the contents of a document, when you ask for help with a page. Other people might
find problems that you didn't noticein the headers.

In some situations, you need to check the HTTP headers sent by a browser (to a server). In
particular, so-called content negotiation may involve such headers for the purpose of agreeing
(between a browser and a server) on an encoding to be used. There are services for echoing back the
headerse.g., http://www.cs.tut.fi/cgibin/~jkorpela/headers.cgi and http://www.tipjar.com/cgi-
bin/test. Such services differ in the way they display the headers. Often the header names are
preceded by the string HTTP_, which is not part of the headers; it is added by software like CGI. The
service at http://web-sniffer.net has a particularly detailed and configurable output, and it can show
both the headers sent by the browser in the request and the response headers sent by the server.

10.2.5.6. Server configuration

http://www.cs.tut.fi/~jkorpela/chars/
http://www.cs.tut.fi/cgibin/~jkorpela/headers.cgi
http://www.tipjar.com/cgi-
http://web-sniffer.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

It depends on the web server software and its configuration whether and how an author can affect
the HTTP headers. In typical server software, Apache, the tools for that are simple, though a bit
coarse. For example, to specify that files with names ending with .html in a directory (folder) be sent
with a header that indicates UTF-8, you would create, in that directory, a plain text file with the name
.htaccess(note the period at the start) and with the following line as its content:

AddType text/html;charset=utf-8 html

Thus, for example, if you have some HTML documents that are ISO-8859-1 encoded and some that
are UTF-8 encoded, you have two simple options:

Assign different filename extensions, say .html and .htm, to the two kinds of files, and write two
different AddType instructions in your .htaccess file. Beware that although the filename extension
should not matter to browsers or search engines, it may. The extensions named here are safe,
though.

Put files of one kind in one directory and the rest in another directorye.g., a subdirectory of your
main directory of web pages. Then you just use different .htaccess files in the directories, and
you can use the same filename extension.

As another example, suppose that you need to put plain text files into one directory on a web server,
and some of them are UTF-16 encoded and some are windows-1252 encoded. You could name them
so that they have .u16 and .wtx suffixes, respectively. (These are just suffixes invented for this
purpose; you can use any suffix that has no conventional meaning.) Then you would add the
following lines into the .htaccess file:

AddType text/plain;charset=utf-16 u16
AddType text/plain;charset=windows-1252 wtx

The Apache documentation at http://httpd.apache.org/docs/ explains additional possibilities. For
other server software, different approaches might be needed, though many servers imitate Apache
principles. Links to documentation on other server software can be found via
http://www.serverwatch.com/stypes/.

In practice, many authors have no knowledge about this, and they might even be unwilling to learn
about it. It sounds like programming to many, and words like "server configuration" or being asked to
do something at the "HTTP level" can be intimidating. In any case, it's quite different from HTML or
CSS or the use of a web page editor.

Moreover, a server might have been configured by its maintenance to ignore the settings of individual
authors. Server administration might regard per-directory .htaccess files as a security threat, and
indeed, there are some risky things that authors could do with them to override system-wide
settings. An Internet Service Provider might even disable .htaccess files on normal accounts in order
to charge more for special accounts where they are enabled.

If the server software or administration prevents authors from affecting HTTP headers (e.g., by
disabling the use of .htaccess on Apache), the server should be configured to send HTML documents
with a header that has no charset parameter. Authors should be told how to use meta tags to specify
the encoding. Beware that such tags cannot override the charset parameter specified in HTTP

http://httpd.apache.org/docs/
http://www.serverwatch.com/stypes/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

headers.

There are also other server technologies that can be used to specify the encoding in HTTP headers.
For example, when using PHP, you can write a statement like the following into your document. The
PHP processor, running on your server, will recognize it and send actual HTTP headers for the
document as specified (and will remove this statement from the document that is sent to the
browser):

<?php
header("Content-type: text/html; charset=UTF-8");
?>

10.2.5.7. Using a meta tag

It is possible that a server sends HTML files in a fixed manner with a Content-Type header that
specifies just text/html with no charset indication. In that case, authors can use the workaround of
HTML meta tags, which can be regarded as simulating HTTP headers. For example, the following tag,
inside the head part of an HTML document, would ask browsers to behave as if the HTML document
had been sent with the header Content-Type: text/html;charset=utf-8:

<meta http-equiv="Content-Type" content="text/html;charset=utf-8">

If the HTML used is some version of XHTML, you need to terminate the tag with / > instead of just >.
Technically, such meta tags are ignored according to XHTML specifications, but they may be used as a
method that works on older browsers that process XHTML documents by old HTML rules.

Experts disagree on whether you should use such a meta tag even when the character encoding is
specified in a real HTTP header. On one hand, it is a bad idea to hard-wire information about the
encoding into the file itself. After all, the encoding could be changed later, without noticing that the
tag should be changed too. In principle, the document might be transcoded (i.e., its encoding
changed) on the fly as it passes through a network, though is not likely. On the other hand, the meta
tag is a small insurance against eventual changes in the server. Moreover, if a user saves an HTML
document locally on his disk and later accesses it locally, there will be no HTTP headers to tell the
encoding. Browsers might (and indeed they should) store the information upon saving the file, in a
manner that lets them check it upon any subsequent access. However, browsers do not always
behave that way. This is perhaps the most important point here, so in practice, it's usually safest to
use the meta tag, even if it is redundant.

When using a meta tag to declare the encoding, it is safest to put it before any occurrence of a non-
ASCII character. By HTML rules, you can always ensure this by writing the meta tag as the first tag
inside a document. The tag should apply to the document as a whole, and browsers usually treat it
so. However, some browser might start applying it only after encountering the tag in the sequential
processing of a document. For example:

<meta http-equiv="Content-Type" content="text/html;charset=utf-8">
<title>Liberté, égalité, fraternité</title>

You cannot use meta tags in plain text files, of course. Thus, if you wish to make, for example, a UTF-
8 encoded plain text file available on the Web, you really need to find a way to make the server send

http://lib.ommolketab.ir
http://lib.ommolketab.ir

it with Content-Type: text/plain;charset=utf-8.

10.2.5.8. Resolution of conflicts

According to the HTML 4.01 specification, the character encoding of an HTML document can be
specified in the following ways, in priority order:

In a charset parameter in an HTTP header1.

In the document itself, in a meta tag corresponding to an HTTP header2.

In a charset attribute in a link that refers to a document3.

Browsers have ignored the third alternative, but they implement the two other ways correctly, in
general. This means that if the server sends a charset parameter in an HTTP header, there is no way
to override this in the document itself.

Thus, if you configure a web server and do not want to let authors affect the HTTP headers (e.g.,
with their .htaccess files), you should configure the server to send a Content-Type header without a
charset parameter. It would then be appropriate to tell authors to use meta tags to specify the
encoding, in all HTML files.

10.2.5.9. The effect of XHTML

XHTML, the XML-based formulation of HTML, introduces additional ways of specifying the encoding.
For XML in general, the rules of the game (explained in more detail in the XML specification
http://www.w3.org/TR/REC-xml/) are as follows:

An XML document is treated by default as UTF-8 or UTF-16 encoded. These cases can be
automatically distinguished by the presence or absence of a byte order mark (BOM), under the
provision that UTF-16 be used with BOM.

Otherwise, the encoding must be specified in an XML declaration at the start of the XML
document, such as <?xml encoding='iso-8859-1'?>.

However, the encoding can be overridden at the level of a transport protocol such as HTTP or
MIME. (This is stated implicitly, but clearly, in the XML specification.)

If your XML document is in ASCII encoding, you need not specify the encoding. The reason is that an
ASCII file will be correctly interpreted when it is treated as UTF-8. For ISO-8859-1, however, things
are quite different, and the encoding must be specified, either in an XML declaration, or in an HTTP
header.

In the special case of XHTML, the same principles are applied. There's actually no room for using a
meta tag to specify the encoding. Both an XML declaration and actual HTTP headers are supposed to
override any meta tag, and if neither of them is used, then the file is recognized as UTF-8 or UTF-16.

http://www.w3.org/TR/REC-xml/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is what seems to happen, too. Yet the XHTML 1.0 specification describes, in Appendix C:

In order to portably present documents with specific character encodings, the best approach is
to ensure that the web server provides the correct headers. If this is not possible, a document
that wants to set its character encoding explicitly must include both the XML declaration an
encoding declaration and a meta http-equiv statement (e.g., <meta http-equiv="Content-type"
content="text/html; charset=EUC-JP" />).

The explanation is that although the meta tag is ignored by XHTML rules, it acts as a backup for
browserse.g., Internet Explorer (IE) 6'that do not understand XHTML. Such browsers treat the data
as HTML, ignoring the XML declaration.

For further confusion, there is strong practical reason to avoid using an XML declaration in XHTML
documents on the Web: the XML declaration makes IE 6 go into "quirks mode." This means that IE 6
intentionally simulates previous versions of the browser in the processing of some HTML and CSS
constructs, in a manner that violates their specifications. See http://www.quirksmode.org/ for more
explanations.

The bottom line is that if you wish to serve an XHTML document on the Web, it is best to make it
UTF-8 encoded (so that you can omit the XML declaration). If that is not possible, you should use
actual HTTP headers to specify the encoding.

10.2.5.10. Heuristics of detecting encoding

When none of the methods just described has been used to specify the character encoding, the
browser has to make a guess or give up. Browsers generally try to apply heuristic reasoning rules to
deduce the encoding. At http://www.i18nfaq.com/chardet.html, you can find a Java version of the
heuristic code used in Mozilla.

Remarkably often, browsers make a right guess. It is in principle impossible to determine the
encoding of text from the text alone, but in practice, you can often guess right even using automated
tools. Different encodings have special properties and known areas of application. More important, a
browser knows what to expect.

HTML documents can be expected to start (aside from a possible BOM) with a coded representation
of characters from the ASCII repertoire, even if they then go on to present a document body
containing a wide range of Unicode. Moreover, there are specific constructs (like a document type
declaration and HTML tags) to be expected. There aren't too many different ways of representing the
ASCII repertoire, in encodings actually used, so a heuristic has a good chance of recognizing what's
going on.

Yet, browsers may guess wrong. The principle that either the server or the document itself should
always specify the encoding is not just academic. Browsers have been reported to infer, for a
document sent with no indication of encoding, that the encoding is GB2312, a Chinese encoding,
when it is in fact ISO-8859-1 encoded and contains almost exclusively ASCII characters. If there are
just a few octets with the most significant bit set, the browser might thus think they are part of
ideographs and display them all wrong. Heuristics that are oriented toward distinguishing between
Asian encodings might thus fail miserably for, for example, English text with a few non-ASCII
characters in names.

http://www.quirksmode.org/
http://www.i18nfaq.com/chardet.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.2.5.11. Which encoding should I use?

Here we are primarily interested in HTML documents, though the principles can be applied to plain
text documents as well, with some obvious modifications. In particular, you cannot use character or
entity references in plain text. With regards to CSS files, for example, it is usually best to use ASCII
only in them. In the rare cases where you need non-ASCII characters in CSS (mainly in generated
content), use the CSS escape mechanisms (e.., \201C for U+201C) mentioned in Chapter 2.

The choice of an encoding for documents on the Web is a matter of compromises between different
conflicting needs and limitations. A suggested general policy is presented in Table 10-3. In all cases,
the first column describes the characters that are likely to appear frequently in data. Remember that
other characters can be expressed using character or entity references, no matter what encoding is
used. "Correct punctuation" mainly refers to "smart" quotes, typographers' apostrophes, and dashes
like "" and "'". Potentially suitable 8-bit encodings were discussed in Chapter 3.

Table 10-3. Selecting the encoding for an HTML document

Character repertoire primarily needed Encoding

English text without correct punctuation ASCII

English text, with correct punctuation
windows-1252 or
UTF-8

Text in other Western European languages without correct

punctuation
ISO-8859-1

Text in other Western European languages, with correct

punctuation

windows-1252 or
UTF-8

Many other languages with small character repertoire (< 200 characters),
such as Polish, Russian, modern Greek, Thai, etc.

8-bit encoding (see
Chapter 3)

Japanese text Shift-JIS

Chinese text in Simplified writing GB2312

Chinese text in Traditional writing Big5

A combination of languages in classes above (e.g., French and Greek) UTF-8

Other repertoires, including any text with lots of special symbols UTF-8

There is a similar but more detailed "decision table" at "Checklist for HTML character encoding,"
http://ppewww.ph.gla.ac.uk/~flavell/charset/checklist.html, by Alan Flavell. The document suggests
that if you use ASCII encoding and represent all non-ASCII characters using entity or character
references, you declare the encoding as UTF-8. This is technically correct (an ASCII file is trivially
UTF-8 encoded, too), and it helps some old browsers render the references correctly.

http://ppewww.ph.gla.ac.uk/~flavell/charset/checklist.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.2.5.12. Avoiding the encoding problem

The method of using entity or character references is in principle unnecessary when UTF-8 is used,
except for the few markup-significant characters (<, &, and quotation marks inside attribute values).
However, it is still often a practical approach.

Suppose that you have a document that is ASCII or ISO-8859-1 encoded, containing just English for
example. If you would like to add a paragraph in Polish, what would you do? Switching to ISO-8859-2
would let you use all the accented Polish letters directly, but you might then have problems with
some French letters, if you have used them. Using UTF-8 might require tools and arrangements that
aren't available now.

Using character references avoids problems and lets you keep using the encoding you are using now.
If you need just a few of them, you could simply look them up from some handy reference. If you
have a long paragraph, you would like to use something more automatic. Several conversion
programs can do that.

For example, using MS Word, you can proceed as follows:

Figure 10-5. One version of the Unicode Encoded logo

Open or create a document containing the text to be added in MS Word.1.

Set the language of the text in MS Word, as described in Chapter 7. This step is not necessary,
but it helps to generate markup with correct language information.

2.

Select File Save As.3.

Select the save format as "web page" or, preferably, "web page (filtered)" if available in the
menu. This means that the text is saved as HTML. The filtered option means that more compact
and more manageable markup will be generated.

4.

Open your web page editor, and enter its HTML input mode if needed (i.e., if its normal mode is
"what you see is what you get" and does not show HTML tags).

5.

Insert the data from the HTML file you just created, using your web page editor's tool for file
insertion, or using cut and paste if needed.

6.

For example, suppose that the text is just "This is a Polish name: Wa sa." Working with it in MS

Word, you would click on the name "Wa sa" and set its language to Polish. Saving this small piece
of text as described, you would get the following:

<p class=MsoNormal>This is a Polish name:
Wałęsa.</p>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This can be inserted into an HTML document, irrespectively of its character encoding. (You can
remove the attribute class=MsoNormal, which is only used by Microsoft Office software internally, but
on the other hand, you might as well leave it there.)

10.2.5.13. The "Unicode Encoded" logo

Some web pages that are Unicode encoded display an image with the text "Unicode Encoded," as in
Figure 10-5. The value of such a logo is, however, probably negative on most pages. Visitors are
interested in your content, and perhaps your visual design, and the logo is mostly distracting on both
accounts. The logo might be useful, though, on pages that specifically sell, demonstrate, or promote
Unicode-related products, services, or principles, so that users can be expected to be (or to become)
interested in Unicode itself.

Should you wish to use a "Unicode Encoded" logo, note that there are several alternatives available.
At http://www.unicode.org/consortium/uniencoded.html, you can find specific rules on using them.
The basic principles are:

You are allowed to use a "Unicode Encoded" logo only if your page's encoding is UTF-8 or some
other accepted Unicode encoding.

You are also required to use the W3C HTML Validator to check that the encoding is formally
correct. However, markup validity is not required.

You can select between logos of different design.

You should copy the selected logo image onto the web server you use, rather than refer to the
image on the Unicode site.

You must make the logo a link to the Unicode Consortium web site (main page).

The markup for the logo as suggested on the Unicode site does not quite conform to good web
authoring practices. The following uses more suitable alt and title attributes:

<div><a href="http://www.unicode.org/"
title="The Unicode Consortium (main page)">
<img src="unicode-aqua-onwhite.png" width="100" height="16"
alt="This page is Unicode encoded." border="0"></div>

http://www.unicode.org/consortium/uniencoded.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.3. Content Negotiation and Multilingual Sites

In the web context, content negotiation means automatic selection between alternatives, such as
different language versions or differently encoded versions of web content. The negotiation takes
place between a browser and a server, without direct human interference.

In content negotiation, the browser is supposed to act on behalf of the user, sending the user's
preference settings as needed. This is however the weakest practical point especially in language
negotiation: users generally haven't checked the settings of the browser. In Chapter 7, we described
such features in browsers, but they are not widely known, and the user interfaces are rather
inconvenient even to experienced users.

10.3.1. Introduction to Multilingual Web Sites

A web site can be multilingual in many ways. It may contain information about several languages, or
information on some topic in different languages, but not the same information. Many sites contain
different languages without being multilingual in this sense. It is rather typical that a site contains a
short summary page, or a few summary pages, in Englishbut the content proper is in some other
language only. In such situations, you will not encounter the problems (and possibilities) of a
multilingual site. However, part of a site might be multilinguale.g., when some essential information
needs to be available in many languages.

10.3.1.1. Parallel versions in different languages

In this section, multilingualism of a site means that the same textual content is available to users in
different language versions, for all or at least some of the pages. Even on a multilingual site, each
page is usually in one language only, at least for most of it. This is generally recommendable. Sites
can be multilingual, but languages should not be mixed within a page, as a rule.

Using just one language on one page avoids several problems with character
encoding, or at least gives more options in solving them.

For example, suppose that you have the same content in French and in Russian. If you use separate
pages, the French page can be, for example, ISO-8859-1 encoded and the Russian page, KOI8-R
encoded. If you used a single page insteade.g., with one column in French and another column in
Russianyou could not use either of those encodings, or any 8-bit encoding, without special
arrangements. (You could, for example, use character references like а to refer to Cyrillic
letters in an ISO-8859-1 encoded page, but that would be rather awkward for large amounts of text.)
Using UTF-8 would let you mix French and Russian, but UTF-8 is not always a practical choice.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Thus, in most cases, separate pages in separate languages are needed. This creates a terminological
problem: the word "page" could refer to some content in general, or its expression in different
languages. In the sequel, we will use "page" in the abstract sense, and use expressions like
"language versions of a page" when needed.

10.3.1.2. Pages with a mix of languages

Sometimes multilingualism can be implemented so that one page contains texts in different
languages. This is usually practical only if there are just a few languages and the texts are shorte.g.,
on a page where the main content is an image or a gallery of images, accompanied with short
captions in two or a few languages.

Some content is inherently multilingual . A dictionary is the most obvious example. In the humanities,
it is often appropriate to quote long passages in other languages, since the readers are assumed to
know them. In teaching material, critical reviews of translations, etc., it is often necessary to present
texts in different languages in parallel. For such content, you should select an encoding that lets you
enter text in all the languages directly. Therefore, it is often best to choose UTF-8.

More often, a page contains names or other short expressions in different languages. This includes
links to versions of the page in other languages, since such links are usually best written using words
in the other languages. For short texts, character references are often a feasible way to avoid
problems of encoding.

10.3.1.3. Language negotiation: automatic selection of version

Multilingualism in the sense discussed here normally means that each language version of a page is
in a file of its own and can be referred to using a web address (URL) of its own. But since it would be
difficult to announce the address of a French version to French-speaking people, the address of a
German version to German-speaking people, etc., it would be best if the same address could be used
by all.

The general idea is that you would use a single address that resolves to different specific addresses
automatically. Everyone would get the page in his own language, or in the language among the
available alternatives that is best understood by him. This can be partly achieved using automatic
language negotiation ; on the user side, this only requires that the user specify his language
preferences once in the settings of his browser.

The basic principle of language negotiation is simple. When requesting a web page, by specifying the
URL, a browser sends a header that specifies the languages that the user understands, with weights
that indicate their relative desirability. The web server may then use this information to select one of
several versions in different languages, if it such versions exist. The same basic mechanism can also
be used to negotiate on the content type (media type)i.e., to select between plain text, HTML, and
Word format when available, as well as on character encoding.

However, for several reasons, the language negotiation mechanism is not sufficient (and it is not
indispensable, on the other hand). In any case, the author should write explicit links, through which
the user can movee.g., from a German version to a French version and vice versa. (In some
situations, the user would even want to open them simultaneously to compare them or use them in
parallele.g., if she does not read either language fluently but can make some use of them.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As an example of a multilingual sitewhich by the way discusses the creation of such sitesconsider the
Alis Babel site. Its generic address is http://babel.alis.com/. If the browser supports language
negotiation, as most browsers in use do, then using this address (e.g., by following that link) will give
you a version in English, French, Italian, German, Spanish, Swedish, or Portuguese, according to
which of these languages occurs first in the user's language preferences. If, for example, Swedish is
the first language there, the user gets the Swedish version, which is also accessible via its specific
address http://babel.alis.com/index.sv.html. (Note that the browser does not display that but the
general address, if the general address was used.)

If the server has no version that matches any of the languages in the user's preferences, then the
intent is that the user sees a page that describes the situation and gives a menu of available
alternatives. Some browsers however fail to do that; instead they give the user some of the
alternatives in a rather random fashion. Even this isn't fatal, if that alternative contains links to the
other options.

10.3.1.4. Language versus country

Quite often, page authors try to perform language selection based on the user's country, typically
deduced from the Internet address, more exactly, its top-level domain. This is largely just guesswork
and guaranteed to fail quite often, partly because many top-level domains (.com, .org, etc.) are not
limited to one country. For example, not everyone in the .fr domain (or, more properly, using a
computer in the .fr domain) speaks French as her native language, or at all. Besides, French-
speaking people widely use addresses other than .fr addresses, such as .be (Belgium) or .ca
(Canada).

If you still try to make a language selection guess according to the user's domain, remember that the
guess will quite often be wrong. Thus, it is necessary to make available links through which the user
can find a page in his preferred language.

10.3.2. Links to Language Versions

Language negotiation can greatly improve the usability of a site. It is however not necessary, even if
the pages exist in different language versions. Neither should one regard it as sufficient. In any case,
linking to different language versions is needed.

There are strong reasons to provide links to different language versions even if the server supports
language negotiation and arrangements have been made to use that. The reasons include the
following:

Browser support to language negotiation cannot be trusted. Some browsers have no support,
but most important, the general awareness about the issue among users is still rather limited.
The browser defaults typically reflect the browser's language only. Thus, the information sent by
a browser can be in serious conflict with the actual preferences of the user.

Problems related to caches may cause the browser to get the wrong language version.

Users may wish to compare the different language versions or otherwise make use of them.
Perhaps someone does not understand a statement in a French version even if French is his

http://babel.alis.com/
http://babel.alis.com/index.sv.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

native language, but checking the corresponding statement in an English version may help
(especially in areas where English is dominant in technical terminology).

Some users prefer reading the original version (among some languages that they know), since
they know that something is always lost in translation.

Users may encounter language-specific versions in different waysby following a link, by using a
search engine, or by using an address announced somewhere. This may mean that the entire
language negotiation mechanism is bypassed. So the user might run into a page that is all
Greek to him but that also exists in a language he knows. Thus, if the page has links to the
other versions, it will help.

It is best to start by linking the versions to each other explicitly. After that,
consider whether there is a need and a possibility to use language negotiation,
too.

It is difficult to decide whether language-specific or generic links should be used within the site itself
and in references to its pages from outside. Normally, generic links are preferable. However, such an
approach makes things more difficult, if the user wishes to read pages in a language that is not
topmost in his preferences. For example, if I'd like to know what information exists in Italian at the
site http://www.debian.org, I can select the link to the Italian version on the main page. However,
when I follow links there, I will get versions as determined by the language preferences in my
browser, since the links are generic. I can switch to the Italian version of each page as I wish, using
the explicit link, but I need to repeat this on every page. This however should probably be regarded
as an exceptional case, which should be handled by the usere.g., by temporarily changing the
language preferences in the browser. To summarize, links should normally be generici.e., point to
URLs that are resolved with the language negotiation mechanism.

When you apply the principles suggested here, each page has a language selection menu. You don't
need a separate language selection pagei.e., a page that has no real content

Figure 10-6. A set of language links, using codes

but language links or buttons. Such pages tend to frustrate users and cause unnecessary delays.

10.3.3. Writing Link Texts

When referring to different language versions, it is essential how we choose the link texti.e., the
"thing" that acts as a clickable or otherwise selectable part of a page, through which the link can be
followed. In principle, that "thing" can be an image, too, but usually textual links work best.
Especially in this context, it is not at all a good idea to use an image, since the most natural way to
refer to a version of a document in another language is to use words, or maybe something else

http://www.debian.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

expressed as text. It is a particularly bad idea to use flags of countries as symbols for languages.

There are several alternatives that may work well for language links:

The name of the document in the language

The name of that language, in the language itself (or maybe in English)

A code for the language, such as a two-letter code (see Chapter 7)

A combination of the above

One possible exception to using text links is a situation where the link text would be in a language
that cannot be presented reliably as text, due to character code problems. Thus, for example, when
language names are used as link texts, it might be necessary to use an image to denote Arabic (but
naturally one needs to specify a textual replacement for such an image too, using the alt
attributee.g., alt="Arabic").

The choice depends on the number and nature of the languages involved, as well as on the context.
In some situations, when there are many languages, two-letter or three-letters codes might be a
suitable approach, even though people will have to learn to recognize the codes of the languages that
are relevant to them. But it isn't that difficult to learn that en or eng stands for English. Figure 10-6
shows one set of links, using two-letter codes, pointing to versions of a page on the European Union
(EU) site http://www.eu.int. As you can see, even this compact style requires considerable space. It
is not intuitively clear, since the languages do not appear to be ordered by any apparent principle.

(The secret order is by the native name of the language: castellano, e tina, dansk,....) However, if
the same order is used consistently, people learn to live with it. The approach of using codes has the
benefit of requiring basic Latin letters only.

Unavoidably, when we use the names of the linked page in the different languages as link texts, we
have to create a page with a mixture of languages, if only in the links. This affects the choice of the
character encoding, as described in Table 10-3 (earlier in the chapter). Especially when several
scripts (e.g., Latin and Greek) are mixed, UTF-8 may be the best

Figure 10-7. Using names of languages as link texts

Figure 10-8. Using names of the linked documents as link texts

http://www.eu.int
http://lib.ommolketab.ir
http://lib.ommolketab.ir

option. However, since the link texts are typically relatively short, the use of ASCII and character
references might be feasible, too.

Rather often, multilingual sites use drop-down menus for a language choice. This may sound suitable
when there are many languages and even the two-letter codes would take too much space, in
someone's opinion. However, drop-down menus on web pages suffer from usability problems, and
their primary benefit (saving space by hiding information, until the menu is opened) is also their basic
problem.

A rather verbose approach is illustrated in Figure 10-7, excerpted from a page of the Debian site
http://www.debian.org. It uses the name of each language, in the language itself, as link text, with a
Latin transcription in parentheses for languages that use a non-Latin script. The names are in
alphabetic order by the version in Latin letters. (Chinese appears last, with a variant specifier in
parentheses.) On the positive side, if you know any of the languages listed there, you can find the
right link. The presentation is somewhat messy, because there are no separator characters between
the links.

Yet another approach, which might be the best one for the main page of a multilingual site, is to use
a list of links with the name of the page in each language as the link text. This is illustrated in Figure
10-8, which shows a part of the links on the main page of the EU. Each link is preceded by the two-
letter code of the language, to help with identification. (The language codes could also be used as the
basis for ordering the links.)

Technically, the language codes on the EU page are actually images, but they could be as well, or
better, implemented as styled text. It is probably best to make the code part of the link, since a user
might click on the code and not on the text. This means you could use HTML markup like the
following, plus some CSS to style the appearance:

cs
Portál Evropské unie

An advantage is that when someone who knows just one of the languages visits the page, he can
both identify the link that is the right one for him and get an idea of what the site is about. As a
disadvantage, such links are verbose, and the mixture of languages can be confusing, even
alienating. This is one reason why language negotiation may help: when successful, it takes the user
directly to the version he understands best.

The placement of the language links may vary. Putting them at the start (e.g., in the upper-right
corner) makes them easy to note and use but may disturb in situations where the page is used
linearly, and it may not fit to the visual design either. When placed at the end, they don't disturb
much, but the user might notice them all too late, or not at all.

http://www.debian.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.3.4. Language Negotiation in the HTTP Protocol

The language negotiation mechanism is based on the following idea:

When a browser sends a request to a server, it may specify the user's language preferences in a
certain format.

If the resource that the browser asked for is available in different language versions, the server
can be configured to select one of the versions according to the preferences mentioned earlier in
this chapter.

At the level of the HTTP protocol, the browser sends an Accept-Language header, which lists the
acceptable languages and their relative acceptability. More exactly, it lists the languages so that a
language indicator (code) can be followed by a quality value, which is a number between 0 and 1,
specifying the relative acceptability. For example, the header:

Accept-Language: fr;q=1, en;q=0.2

would say that both French (fr) and English (en) are acceptable, but French is much more
acceptable. (This does not necessarily imply that the server always sends a French version, if it is
available; a server could also consider the relative "goodness" of the versions.) The notation is a bit
strange, since in it, the comma is a stronger separator than the semicolon; additional confusion can
be caused by the rather common way of leaving a space after the semicolons.

10.3.5. Language Negotiation: the Server Side

It depends on the server and its settings whether and how an author can make versions of pages in
different languages available via the language negotiation mechanism. Here we discuss only the
methods that might be used in one widely used server software, Apache, and mainly just one of the
two alternative methods there. For details, consult applicable server software documentation such as
http://httpd.apache.org/docs/.

Apache has two basic methods for content negotiation:

Multiviews

The alternative versions are in the same directory, and they are named in some uniform way.
The author specifies some general rule according to which a generic URL is to be mapped to
filenames referring to different versions.

type-map

For each generic URL, there is a separate file that lists the corresponding language-specific
filenames, possibly with some associated properties (e.g., the encoding of the file).

http://httpd.apache.org/docs/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.3.5.1. Using Multiviews

If Multiviews is enabled on Apache (as it is by default), you can use language negotiation in the
following, though somewhat limited, manner for a directory:

Add something like the following into the .htaccess file in a directory. Use the two-letter
language code as the first argument in these directives, and use whichever suffix you like as the
second argument:

AddLanguage en .en
 AddLanguage fi .fi
 AddLanguage fr .fr

1.

Name the versions of a document so that the normal filename has the additional suffix as just
definede.g., using foo.txt.en for the English version of foo.txt and foo.txt.fr for the French
version. (You don't need to create a file named foo.txt.) Note that language negotiation works
well for plain text files, too; the negotiation does not depend on the data format of the file.

2.

Now you can use a URL like http://www.cs.tut.fi/~jkorpela/multi/foo.txt as a generic URL that
works via language negotiation. The specific language versions, like
http://www.cs.tut.fi/~jkorpela/multi/foo.txt.fr, can be used too whenever desired.

3.

10.3.5.2. Using type-map

The alternative method for content negotiation can perhaps best be described with a simple example.
I have a document in Finnish http://www.cs.tut.fi/~jkorpela/rfct.html and a version of it in English
http://www.cs.tut.fi/~jkorpela/rfcs.html. Into the directory where those files reside, I have written a
file named .htaccess containing the line:

AddHandler type-map var

This makes the server handle URLs ending with .var in a special way. (This might be a system-
default.) I have created, in that directory, a file named rfc.var and with the following content:

URI: rfcs.html
Content-Type: text/html; charset=iso-8859-1
Content-Language: en
URI: rfct.html
Content-Type: text/html; charset=iso-8859-1
Content-Language: fi

This causes the URL http://www.cs.tut.fi/~jkorpela/rfc.var to become operational, so that the server
will respond by sending a Finnish version or an English version, according to the language preference

http://www.cs.tut.fi/~jkorpela/multi/foo.txt
http://www.cs.tut.fi/~jkorpela/multi/foo.txt.fr
http://www.cs.tut.fi/~jkorpela/rfct.html
http://www.cs.tut.fi/~jkorpela/rfcs.html
http://www.cs.tut.fi/~jkorpela/rfc.var
http://lib.ommolketab.ir
http://lib.ommolketab.ir

settings in the user's browser.

10.3.5.3. When negotiation fails

If a browser sends language preferences such that none of the versions is acceptable by them,
Apache sends back the HTTP error code "406 Not Acceptable." By default, the text "Not Acceptable"
will be shown to the user, along with a list of links to the alternative versions. The links are not very
descriptive. This isn't user-friendly error handling.

There are different ways to improve the error handlinge.g., by creating a specific error page for the
error code 406. The best option is, however, probably to append a generic alternative to the list: an
alternative with no Content-Language specified. Such an alternative will be sent by the server as a
response to a request that cannot be satisfied by any other alternative.

The generic alternative should be a page that explains the available alternatives in English, with their
names in their own languages. The page could additionally, for the general benefit of the user, give
the user some advice on setting his browser's language preferences at least by adding English there,
if he understands English.

10.3.6. Language Negotiation: the Browser Side

In Chapter 7, we described the different meanings of "language settings" in software. We mentioned
that one of the meanings is to set language preferences in browsers, and illustrated this a bit. It is
probably a good idea to check your browser's language preferences now. On Internet Explorer, use
Tools Internet options Languages. Note that on IE, you can select either a language
genericallye.g., English (en)'or a country-specific variant, such as U.S. English (en-US). If you choose
a specific variant, it is a good idea to select the language generically, too, as the next option.

The page "Debian web site in different languages," http://www.debian.org/intro/cn, contains
generally useful instructions (in different languages) on setting language preferences in several
browsers.

Most browsers send language preferences to the server according to an ordered list of languages in
the browser settings. The browser computes, by some algorithm, quality values to be associated with
the language codes, starting from 1 for the first one. For example, if you set the list of languages to
Spanish (es), English (en), and Portuguese (pt), your browser might send the following (defaulting
the q value to 1 for the first language):

es,en;q=0.9,pt;q=0.8

Typically the default setting in a browser is that the list consists of one language only, the "own"
language of the browseri.e., the language used in its user interface (menus, buttons, error messages,
etc). This naturally implies that if you install, say, an English version of a browser and do not change
the language preferences, the settings say that you only know English. This usually isn't fatal, but it
usually isn't optimal.

Problems may arise if the same computer and browser is used, at different timese.g., in a classroom

http://www.debian.org/intro/cn
http://lib.ommolketab.ir
http://lib.ommolketab.ir

by different people with different language preferences. There does not seem to be any simple
solution to that at present. The systems could be configured to reset the settings to something
generally reasonable at startup.

10.3.7. Notes on Multilingual Sites

Language negotiation deals with the technical problem of picking up and sending the best possible
alternative among versions of a page in different languages. It does not perform any translation.
Here we will briefly consider some such aspects. Many of them are discussed in more detail at
http://webtips.dan.info/language.html.

10.3.7.1. Producing the translations

When producing different language versions, automatic translation programs might be used to some
extent. However, a competent human translator should be responsible for the translation work.
Optimally the human translator should know the basics of the HTML language so that he can produce
the translation directly as an HTML document. That way, the material to be translated could be
delivered in an HTML document, and the translator would replace the texts, leaving (usually) the
HTML markup as it is.

As another alternative, the text could be given to the translator either as a plain text file or as
displayed by a web browser, for example, as printed on paper. In the latter case, the translator could
deduce some relevant information from the appearance of the text. On the other hand, HTML markup
could better tell the intended structure of the document, which may have some significance in
selecting between alternatives in the translation. In any case, if the translator sends only the
translated text, then someone else has to put it into HTML format, in practice, by merging the text
with HTML markup. This cannot be done without knowing the language of the translation to some
extent.

When working with the HTML format, it is essential to specify the encoding of the documents. The
encoding may be different for different languages. This is one reason why MS Word format is often
used, since the encoding is normally not a problem there. Conversion from that format to HTML may
require quite some work, though.

10.3.7.2. Translation or different content?

The versions of a page in different languages can be "pure translations" of each other; in practice,
that would usually mean that one of the versions is the original one and other versions have been
translated from it. A "pure translation" consists of the original document, with the content and form
strictly preserved, just expressed in another language. This means, for example, that the translation
also contains the same factual errors as the original, the same references to local states of affair, etc.

Quite often, a pure translation is not appropriate for the purposes of the page. On the other hand, it
is not adequate to use a language negotiation mechanism to distribute documents with completely
different content, just with the same topic. It is sometimes difficult to draw the line.

The specification of the language negotiation mechanism does not require that the versions be

http://webtips.dan.info/language.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

exactly equivalent. On the contrary, the mechanism contains the possibility of specifying quality
values, which may result in a selection of a version in a language that is lower in the user's
preferences than another available language, due to quality difference. For example, if the user
knows German a little better than French, he could have specified this in his language preferences; if
the server has a version of the requested document in German but also a considerably more up-to-
date or more extensive version in French, it might respond by sending the latter. In practice, such
situations are probably still rare, partly because popular browsers do not let the users control the
quality values associated by languages, only the repertoire and ordering of languages in the user's
preferences.

10.3.7.3. Indicating what is available in each language

When you have a multilingual site, it is crucial to tell people what is really available in different
languages. For example, if your site is dominantly in German but has a few pages in English as well,
you should make it very clear in the English version that it presents only a small part of the
information available in German. Otherwise, a visitor who knows both languages but prefers English
might never make real use of the site.

It is mostly sufficient to include such information in the main page in each language. But, for
example, if the site contains a news page so that some but not all of the articles are available in
German too, then it would be misleading to make the German version contain those articles only.
Instead, the news page should minimally say that more news articles are available in English
(naturally, the site should include a link with that English page). It could also contain links to English
news articles that have not been translated, merged with the news in German. Preferably, the
headlines of such news should appear as translated, along with a clear indication of the link pointing
to text in English.

10.3.7.4. Naming the versions

When selecting URLs for versions of documents in different languages, a systematic approach is often
desirable, for practical reasons like creating and maintaining the pages. This can be implemented in
different ways; the method could, for example, be either of the following:

The path part of an address contains a separate part that specifies the languagee.g.,
http://www.something.example/en/foo.html (for an English version) and
http://www.something.example/fi/foo.html (for a Finnish version). In practice, this usually
corresponds to having pages in one language in a directory of their own.

At the end of an address, the part immediately preceding the .html (or equivalent) part contains
a hyphen (or other punctuation character) and a language codee.g.,
http://www.something.example/foo-en.html and http://www.something.example/foo-fi.html. In
practice, this usually corresponds to having pages in different languages in the same directory
but with different names, according to a systematic naming scheme.

Both methods have the problem that the "proper name" of the document (in our example, "foo")
should be reasonably understandable internationally. This typically means that you use English words
there, partly because things are much easier if URLs contain only ASCII characters.

http://www.something.example/en/foo.html
http://www.something.example/fi/foo.html
http://www.something.example/foo-en.html
http://www.something.example/foo-fi.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.3.7.5. Language preferences and JavaScript

In the JavaScript language, it is under some conditions possible to determine the browser language.
This however is almost always useless, and it has nothing to do with the user's language preferences.
The browser language is just the language of the browser's user interface.

It is very common to use English versions of browsers just because there are no alternatives or
because versions in other languages have confusing translations for terms. The basic use of a
browser does not require much understanding of the browser language, since most of the basic
functions can be activated using icon buttons or other simple tools so that it suffices to know a very
small repertoire of words.

10.3.7.6. Making use of language preferences in CGI scripts

In CGI scripts, it is possible to use language preferences as sent by browsers. The value of Accept-
Language header as defined in the protocol manifests itself to a CGI script as the environment
variable HTTP_ACCEPT_LANGUAGE (which needs to be written this way, using uppercase letters).

According to the protocol, the value of this variable contains a comma-separated set of parts, each of
which consists of a language code that is optionally followed by the specification of a q value. It is
relatively easy to parse thise.g., in a CGI script written in Perl 'using the split function for division
into parts. The following code sample performs this and sets the variable $preferred to the language
code that corresponds to the language that is primary according to the preferences. Here we set
English as the default language, to be implied, if the browser sends no preferences:

$accept = $ENV{'HTTP_ACCEPT_LANGUAGE'};
@prefs = split(/,/,$accept);
$preferred = 'en';
$prefq = 0;
foreach $pref(@prefs) {
 if($pref =~ /(.*);q=(.*)/) {
 $lang=$1; $qval=$2; }
 else {
 $lang=$pref; $qval= 1; }
 if($qval > $prefq) {
 $preferred = $lang; $prefq = $qval; }}

The result can be used, for example, to index a hash containing language-dependent strings. For
example, if we would like to have a CGI script in Perl which, when dynamically generating an HTML
document, to write texts either in Finnish or in English, we could write the alternate texts into a hash
and pick up the right text from it as the following example shows:

$gen{'en'} = 'Report generated at ';
$gen{'fi'} = 'Raportin luontihetki: ';
 - -
print "<div>$gen{$preferred} $now.</div>";

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.3.8. Types of Negotiation

Although we have concentrated on language negotiation, similar mechanisms work for other types of
content negotiation, though normally without using user preferences:

Media type negotiation

You can make the same information available, for example, as plain text, in PDF format, and in
HTML format. You could then use the type-map mechanism of Apache for language negotiation,
and use different Content-Type headers. The browser is expected to list its media type
preferences in an Accept header. This is not very useful in most cases, since browsers often
express such preferences in a manner that contains too little information or cannot be trusted
in practice.

Encoding negotiation

Similarly, you can make the same information available in different character encodings. Using
the type-map mechanism for example, the Content-Type headers in your definition file would
contain charset parameters that indicate the encoding of each version. The browser is
expected to list its encoding preferences in an Accept-Charset header. However, many popular
browsers do not send such a header at all, which means that they accept any encoding.

Transfer encoding negotiation

Additional transfer encoding (see Chapter 6) can be agreed upon between the browser and the
server. A browser uses Accept-Encoding to specify the transfer encodings it can handle. Figure
10-9 shows how the Opera browser announces that it can handle deflate, gzip, and x-gzip but
nothing else. It accepts "identity," which means no transfer encoding, but assigns a quality
value of zero to everything else.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.4. Characters in Protocol Headers

The original Internet message syntax restricts the character repertoire to ASCII. For most message
headers, this does not cause problems, since the headers names are in ASCII, and most header
values are code-like notations designed to be writeable in ASCII.

There are some exceptions, though, such as the Subject header in email and on Usenet. The header
should tell what the message is about, and naturally, it should be in the same language as the
message content. The sender and recipient headers (such as From and To) contain Internet email
addresses, which are normally in ASCII, but they may contain, as comments, real names of people
and organizations. If your real name is Matti Meikäläinen, you would like to have it expressed as
such, with the ä's, in the From field of your messages. Such practice is often recommended, but it
immediately raises the character problems.

Figure 10-9. Sample HTTP headers echoed (in Opera)

In practice, if you include non-ASCII data in the message headers, things will usually work, if your
program sends your messages by the MIME conventions. The headers will specify the encoding for
the message body, and most programs that can handle MIME will apply the conventions to the
message headers, too. The headers might even contain, for example, Latin 1 Supplement characters

http://lib.ommolketab.ir
http://lib.ommolketab.ir

as "raw" 8-bit data by the ISO-8859-1 encoding, naturally assuming that there is a Content-Type
header that specifies the encoding.

In principle, such methods are not recommended, and they may cause practical problems to some
software. Within a country where some 8-bit encoding, such as one of the ISO 8859 family, is widely
used, you can probably send email with raw 8-bit data in headings without encountering problems
with that. Sending such email to a country where people use dominantly just ASCII may result in
unreadable headers, or even make programs crash, because people use software that cannot handle
such data.

As a consequence, when sending a message in an international group discussion, whether by email
or on Usenet, it is safest to use ASCII only in headers, especially in the Subject line. The reason is
that when people respond to your message, their messages get the Subject line content from the
original message. Although most people's programs can handle MIME properly, sooner or later
someone might respond using a program that cannot. It may mess up the Subject line quite a lot.

10.4.1. The Signature Convention May Help

In some cases, you might avoid the problem by using a simplified version of the spelling of your
name (e.g., From: Matti Meikalainen <mm@fi.example>) and specify the correct version in a
signature. A signature, or "sig," is a short piece of text (recommended maximum length is four lines)
appended automatically at the end of the email and Usenet messages that you send. It is preceded
by a "sig separator," namely two hyphen-minus characters and one space "-- " on a line of its own.
For example:

--
Matti Meikäläinen
freelance generalist

Programs may treat signatures in a special way, distinguishing them from the message body proper.
By the protocols, however, a signature is part of the body and may contain non-ASCII characters the
same way and under the same conditions as the content.

10.4.2. The Q Encoding

The Q encoding is a general mechanism for overcoming the limitation to ASCII in Internet message
headers. Technically, it means that the headers do not crash anything that expects ASCII only, since
all octets are in the ASCII range. However, programs are expected to interpret some patterns as
indicating a particular character encoding. In that case, part of the heading is to be interpreted
according to that encoding. The Q encoding resembles the QP encoding discussed in Chapter 3 but
differs from it in a few essential ways:

Q encoding may be applied in a part of text (header) only.

A Q encoded part starts with the characters =? and ends with ?=.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The initial =? is followed by the name of the encoding and the string ?Q?.

In the data that follows, an octet (to be interpreted in the encoding specified) can be
represented as =xx, where xx is its numeric value in hexadecimal. The octet 20 (corresponding

to space in ASCII) may also be represented as _ (underline). Octets that correspond to printable
ASCII characters, except the space and =, may also be represented as those characters.

Thus, the general format is:

=?encoding?Q?data?=

For example, if you send email (on a MIME enabled program) and specify the recipient name as Matti
Meikäläinen, the program will generate a header like the following:

To: =?ISO-8859-1?Q?Matti_Meik=E4l=E4inen?= <mm@fi.example>

A recipient who uses an old program that cannot handle MIME will see the name literally that way,
but more likely, the recipient's program will interpret the Q encoding and display the name correctly.
Here, as usual, things may fail if the recipient's program cannot handle the character encoding used,
but ISO-8859-1 will probably work fine.

10.4.3. The B Encoding

The B encoding is similar to the Q encoding but uses Base64 encoding for the data. Since that
encoding was described in Chapter 6, we will only give an example here:

Subject: =?UTF-8?B?VMOkbcOkIG9uIMK1LXRlc3RpIGphIM6jLXRlc3Rp?=

The point is that although modern software recognizes this and decodes the data, it is completely
illegible without such decoding. A recipient who is not familiar with encodings might not even realize
that there is some sensible data involved.

10.4.4. Summary: Dealing with Non-ASCII Characters in Headers

If it seems that you need to use characters other than ASCII in email or Usenet messages, you can
choose between the following options:

Use ASCII only

This avoids the technical problems but creates problems in human communication. Consider
how understandable the data is when mapped to ASCII (e.g., replacing ä with "a," or maybe
"ae"; see the section "Escape sequences" in Chapter 2). This is often the only feasible approach

http://lib.ommolketab.ir
http://lib.ommolketab.ir

in international discussion groups, worldwide email distribution lists, etc.

Use Q encoding

Modern software often applies Q encoding automatically, if you include non-ASCII characters in
headers. This is usually adequate when sending messages in a culturally homogenous
environment where the languages normally used need non-ASCII characters, so that most
people have MIME capable software.

Use B encoding

This is hardly useful, since it normally has no significant benefits over Q encoding but serious
drawbacks: when presented as such, B encoded data is illegible. Some programs use B
encoding by default, at least in some situations.

Use 8-bit characters in headers

If the program you use has an option for sending 8-bit characters in headers, this means that it
uses octets larger than 7F there, tooe.g., passing ISO-8859-1 data as such. This is risky but
sometimes works better than Q encoding; for example, some Usenet software ("newsreaders")
can deal with 8-bit data but can not decode Q encoding. To use this feature, you would simply
select that option, but remember that it will remain in effect until you change it.

Some programs like Outlook Express can be used both for email and for posting to Usenet
("newsgroups"), and they have partly separate settings for these two types of use. You could for
example allow 8-bit characters in headers when posting to Usenet but disallow them in email.

It is not possible to give a comprehensive presentation of the ways that email programs should be
configured and used with regards to character encoding. The discussion in this section is meant to
present the basics for an analysis of the various settings that are available in each program. The
bottom line is that anything beyond ASCII in message headers may cause problems, though modern
email programs usually understand whatever another modern email program sends.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.5. Characters in Domain Names and URLs

The use of the Web and the Internet in general has become more genuinely global and multilingual
than it used to be. This has made it more obvious that we need possibilities for using non-ASCII
characters in URLs (web addresses) as well as in Internet domain names . These two are somewhat
connected, but not the same thing. You could have a domain name like école.example that you wish
to use in different contexts, such as email addresses. You could also wish to use a URL like
http://école.example/Noël where you have a non-ASCII character not only in the server part (the
domain name) but also elsewhere.

Internet domain names, especially those of web servers, have become very important in business.
Companies typically advertise their web sites by printing the domain name in their brochures and
ads, and it is essential that potential users see the name as natural, understandable, and easy to
remember. It is therefore understandable that companies and other organizations did not like the
limitation to ASCII. If you company's name contains the word Müller, you don't like the idea of having
to spell it as Muller or Mueller.

Unfortunately, internationalization of domain names and URLs is still a work in progress, though
actually making some progress. Many countries have already allowed the use of non-ASCII
characters in the domains that are registered under the country domain. This addresses some of the
most critical business issues.

10.5.1. Internationalized Domain Names (IDN)

Internationalization of Internet domain names is based on a special ad hoc method. Instead of
extending the character repertoire in any general way, which would mean thorough changes to the
infrastructure, we interpret some special combinations of ASCII characters as indicating non-ASCII
characters. This is in a sense yet another example of escape notations, which we discussed in
Chapter 2.

10.5.1.1. The IDNA implementation

The Internationalized Domain Name (IDN) idea uses character combinations containing two
consecutive hyphen-minus characters (--) for special purposes. Such a combination is hardly
meaningful as such; a single hyphen-minus may well appear in a normal domain name, but why
would anyone use two of them in succession?

Since 1998, different proposals have been made and debated, but in 2005, "Internationalizing
Domain Names in Applications (IDNA) " was chosen as the way to implement IDN. Its basic definition
is in RFC 3490, and it works as follows:

1.

http://�cole.example/No�l
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Start with a domain name that may contain non-ASCII characters. We will here consider the
hypothetical example of "www.härmä.fi."

1.

Divide the name to components separated by periods, and handle each component separately.
In our example, the components "www" and "fi" need no further processing, but "härmä" does.

2.

Apply theNameprep algorithm defined in RFC 3491, as a profile of the more general Stringprep
algorithm. It consists of Unicode normalization to form C (NFKC), case folding (to lowercase),
mapping similar-looking characters together, and eliminating certain restricted code points. In
our example, "härmä" is unchanged. In more abnormal cases, the component may change
essentially.

3.

Apply Punycode (see Chapter 6) to the result. In our example, the component "härmä" is
changed to "xn--hrm-qlac."

4.

The resulting domain name, www.xn--hrm-qlac.fi, is not meant to be written or seen as such.
However, technically, it is an Internet domain name, and it can be used as such. In fact, it is the
domain name in this case. The string "www.härmä.fi" is just a notation that denotes this name, or
maps to it, on software that supports IDNA. Thus, on browsers that support IDNA, you can type
either of the domain names to access the site, but on other browsers, you need to type the awkward
real domain name.

10.5.1.2. Security threats

As we mentioned in Chapter 6, IDNs raise serious security problems. If the full Unicode repertoire
were allowed in IDNs, in any mixture, it would be all too easy to mislead people. For example,
someone might register a domain name that has an IDN form like www.money.example, where the
letter "o" is the Cyrillic small letter "o." Since that letter is indistinguishable from the Latin small letter
"o," people would believe they are visiting www.money.example (with Latin "o") and type their
username and password there. The cheater could then abuse this information to steal money, for
example.

Generally, ease of use tends to imply threats to security, and IDNA is meant to make
internationalized domain names easy to use. Further problems are caused by people's tendency to
follow links in email messages and on web pages, instead of typing in a web address or picking it up
from a list of bookmarks (favorites). A large part of the security problem would be avoided if people
typed in addresses, or used addresses that they have previously typed in. They would access the real
www.money.example and not the fake.

However, since people's habits are difficult to change, guidelines have been designed to reduce the
risks by restricting the variety of characters and combinations in IDNs. There is a draft Unicode
Technical Report #36, "Unicode Security Considerations," which addresses such problems, at
http://www.unicode.org/draft/reports/tr36/tr36.html. The file
http://unicode.org/draft/reports/tr36/data/draft-restrictions.txt contains a draft list of characters to
be excluded, for one reason or another. The general idea is to allow names of the form that is
normally used in a script or language but exclude characters that have no such normal use, such as
phonetic symbols and most mathematical symbols. Of course, there are borderline cases.

10.5.2. Characters in URLs

http://www.unicode.org/draft/reports/tr36/tr36.html
http://unicode.org/draft/reports/tr36/data/draft-restrictions.txt
http://lib.ommolketab.ir
http://lib.ommolketab.ir

In Chapter 6, we described URL encoding, which was originally introduced as a method for using
some ASCII characters that are not allowed as suche.g., encoding a space character as %20. Later, it
was extended to encode octets rather than just ASCII characters. In the modern approach, the
implied primary character encoding is UTF-8, and URL encoding then maps the octets used in UTF-8
to %xx notations if needed.

Although the mechanisms in principle let you create URLs with non-ASCII characters anywhere, it will
take a long time before they work safely. You still need to use addresses that can be written in ASCII
without any special conventions, even if they won't be easy to users or natural.

For example, assume that you would really like to use a URL containing the part "skål," such as
http://www.example/skål/. Maybe you expect your potential visitors to try to type "skål" simply
because they are used to that spelling, even they have seen the URL printed with "skaal." Here is a
possible strategy:

First and foremost, make sure that the address with a simplified spelling ("a" instead of å)
works: http://www.example/skal/.

1.

Consider other ways that people might try to type the name if they just heard it or try to
recollect it. If you know that å is often written as "aa" when only ASCII is available, you might
set things up (on the server) so that http://www.example/skaal/ works too, as an alias for the
same page.

2.

You might also set things up so that http://www.example/sk%e5l/ works, as an alias, because
when people type "skål" into the address box of a browser, the browser may URL encode the
string according to ISO-8859-1, mapping å (U+00E5) to "% e 5."

3.

Then you could make the server recognize http://www.example/sk%c3%a5l/ as well. This is
how http://www.example/skål/ should be URL encoded by modern principles: take the URL
string, encode it as UTF-8, making å the two octets C3 and A5, and then encode these octets as
"%c3" and "%a5."

4.

Additional complications arise if you wish to use uppercase characters or to make lowercase and
uppercase equivalent. Although servers may have options for making the server treat URLs as case
insensitive with regards to basic Latin letters (accepting "foo," "Foo," and "FOO" as equivalent), these
options probably do not apply to other letters: Å would still be different than å. Special operations,
such as URL rewrite rules, would be needed to make them equivalent.

http://www.example/sk�l/
http://www.example/skal/
http://www.example/skaal/
http://www.example/sk%e5l/
http://www.example/sk%c3%a5l/
http://www.example/sk�l/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Characters in Programming
This chapter presents a number of ways to represent character and string data in different
programming languages, such as FORTRAN, C, C#, Perl, ECMAScript (JavaScript), and Java, and also
other languages such as XML and CSS. It explores both the differences and similarities, illustrated
with sample programs to perform simple manipulation of string data. The information is presented to
introduce you to using Unicode in programming in different languages. You will need to study
language manuals and library documentation in order to do some serious programming.

You need to understand some basics of programming to benefit from this chapter. You should be able
to write a program that prints "Hello world," and you should know how to declare variables and
assign values to them, write expressions and conditional statements, and use subprograms. Here we
will discuss the specifics of processing character and string data. One reason for this is that even
people who know programming well may get confused with the fundamental concepts and cannot
distinguish, for example, between an empty string, a space character, the NUL character, and the
digit zero. Programming language tutorials typically discuss the character concept rather briefly,
often assuming that only ASCII data will be used.

The International Components for Unicode (ICU) activity, based on the open source principle, is a
large collection of subroutines and modules for Unicode support and localization, for use in C, C++,
or Java programs. In addition to saving time, the use of ICU helps to create more robust and more
easily localizable software.

The chapter also contains a section on locales and especially the Common Locale Data Repository and
its future use in disciplined programming. However, we first discuss some older styles of working with
characters, mostly to warn about their problems.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.1. Characters in Computer Languages

What do we really mean when we say that a particular programming language has such-and-such a
character repertoire? Ranging from the narrowest to the broadest, the interpretations are:

The characters you need for writing the basic constructs of the language, such as operators and
punctuation. This is almost always a subset of ASCII.

1.

The characters used in the basic constructs and identifiers that the programmer chooses to use
as names for variables, arrays, functions, etc. This too is usually a subset of ASCII, but the
modern trend is to allow a larger repertoire of letters as identifiers. This lets a programmer
name her variables in her native language. The repertoire might even consist of almost all
Unicode characters, with special arrangements to make it possible to parse source code
unambiguously. After all, we need to know the start and end of an identifier and distinguish
identifiers from other symbols.

2.

The characters that can be used in the above constructs or in character and string literals. Most
programming languages do not let you use, for example, an accented letter like é in an
identifier, but they may well allow it in literals like 'é' or "égalité".

3.

All the characters that are allowed in source programs. This includes, in addition to the
characters discussed above, characters than can be used in comments. Usually you can write
anything into comments, but there might be some limitations.

4.

All the characters that are expressible in source programs. This can be a larger repertoire than
the characters that are allowed as such, due to various "escape" mechanisms. Even if a
language might not allow you to enter, say, a Cyrillic letter into a source program (even in a
literal), it may well let you write a character constant that has a Cyrillic letter as its value, such

as '\u042f' (which denotes).

5.

All the characters that can be processed in binary programs created using the language. This
may include characters that are not expressible in any way in source programs but can be read
as input.

6.

Consider the following line in a Perl program:

 $msg = "§ 1: I \x{2665} Unicode! "; # "Testing"

In this example, the dollar symbol, the quotation marks, and the semicolon are basic symbols of Perl
(item 1). The string msg contains characters allowed in a name (item 2). Inside a string constant,
where the rules can be more permissive (item 3), the non-ASCII character § might be allowed,
depending on implementation. Anything following the character # is a comment, so anything goes
(item 4), including "smart" quotation marks, which would not be allowed as string delimiters. The

http://lib.ommolketab.ir
http://lib.ommolketab.ir

string constant contains a notation that refers to U+2665 (black heart suit,), but not that
character as such (item 5). Such a reference might work even in circumstances where that character
cannot appear as such even in a comment, due to restrictions imposed by the character encoding.

In a markup language, the interpretations are similar, except for the last one, which does not exist.
You don't process data in markup. The same applies to various descriptive languages,
metalanguages, etc.

Thus, whenever you see a statement like "language X supports Unicode," you should ask what it

means. Usually it means, at most, that Unicode characters are allowed in the sense expressed in
items 3 to 6, but sometimes also item 2, though with limitations.

Only a few programming languages have been designed to allow (and require) the use of non-ASCII
characters in the basic constructs (item 1). In the early days of computing, some language definitions

used special characters like (logical and, U+2227) as operators. Actual implementations used
various replacement notations. Later, even specifications were written to use ASCII only.

The APL language is an exception. It is oriented toward processing of arrays and matrices, and it uses
a collection of special symbols, all of which have been included in Unicode, some only due to their use
in APL. The use of APL has always been relatively small, partly due to the special techniques (a
special keyboard or special software) needed for writing it.

Work on a language called Fortress has been started, by Sun Microsystems, to create a programming
language that allows the use of symbols and notations as in the tradition of mathematics and

logice.g., a2 A B. However, the language defines ways of using symbols constructed from ASCII
characters instead of the special characters. Information about Fortress is available at
http://research.sun.com/projects/plrg/.

By definition, comments are ignored (skipped) by programming language compilers and interpreters
or, in the case of a markup language, by parsers and browsers. Thus, it is natural to expect that we
can use any characters inside comments, as long as we don't try to use a comment terminator inside
a comment.

char ch = 'X'; /* A comment: I C ? */

However, special characters could cause problems if they are in an encoding that is not recognized by
compilers and interpreters. Interpreted wrongly, they might mess up the processing. This should not
be a problem if you use an ISO 8859 encoding or UTF-8 and the compiler effectively processes it as
ASCII, treating octets outside the ASCII range as unknown characters. It should then simply ignore
such octets in comments.

Some old compilers are known to get confused with octets outside the ASCII range even if they occur
inside comments only. Try to get a better compiler if this occurs.

11.1.1. Common Escape Notations

Many modern computer languages use "backslash escape" notations for characters inside character
and string constants, and possibly in other contexts as well. Escape notations in general were

http://research.sun.com/projects/plrg/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

discussed in Chapter 2.

A rather common set of conventions, historically largely based on the C programming language, is
presented in Table 11-1. Various languages have deviations from and additions to these notations.
Some of the notations, such as \b, are rarely used nowadays but often preserved in the repertoire for
historical continuity. The notations are typically allowed in character and string constants that have
enclosing quotation marks, but depending on the language definition, they might be allowed, for
example, in unquoted values and identifiers, too.

Table 11-1. Widely available escape notations for characters

Notation Unicode value Explanation

\a U+0007 (Audible) alert, BEL

\b U+0008 Backspace (move one position backwards)

\f U+000C Form feed (page eject)

\n Implementation-dependent Newline; see "Line structure control," Chapter 9

\r U+000D Carriage return (move to start of line)

\t U+0009 Horizontal tabulation, tab

\v U+000B Vertical tab

\\ U+005C Reverse solidus (backslash) itself

\" U+0022 ASCII quotation mark

\' U+0027 ASCII apostrophe

The use of \" and \' is relevant in contexts where the quotation mark or apostrophe could otherwise
be taken as terminating a character or string constant. For example, in order to write a string
constant that means the three-character string a"b, you may need to write "a\"b".

Usually "backslash escapes" can also be used to specify characters by their code numbers. For
example, \0 might be used to denote the null character U+0000. However, great care is needed
when you change from one language to another, since there are essential differences. Usually the
implied numbering is according to Unicode, but the range of permitted numbers varies, and might
cover only the ASCII range (0127) or ASCII and Latin 1 Supplement (0255).

Moreover, the notations for numbers vary. For example, in C, the number is interpreted as decimal,
unless it begins with a zero, in which case it is interpreted as octal (base 8). In Java, the number is
interpreted in octal, unless preceded by the letter u, in which case it is interpreted as hexadecimal.
Besides, there can be special rules for the amount of digits.

11.1.2. Characters in Markup Languages and CSS

Although markup languages (such as HTML and XML) and CSS, the stylesheet language, are not

http://lib.ommolketab.ir
http://lib.ommolketab.ir

programming languages, we will discuss them to some extent in this chapter. One reason is that in
dealing with characters, they resemble programming languages in many ways. Moreover, they are
also used in conjunction with programming languages in a manner that often confuses people. Think
about the following attempt at Perl code, meant to generate a piece of HTML code, the tag <p
style="em">:

print "<p style="em">\n"; # This won't work!

This will fail, with an unfriendly error message, because the Perl interpreter treats the second
quotation mark as terminating the quoted string. The problem is that we have a quoted string that
needs to contain a quoted string in another language. In this particular case, there are many simple
solutions, such as using single quotation marks in the HTML code. There are, however, more difficult
situations.

11.1.2.1. Characters in HTML and XML

The methods of using characters, including entity and character references, in HTML and XML were
explained in Chapter 2 and Chapter 10. There are some finer points to be discussed here. What
exactly is the repertoire of characters that you can use? How do HTML notations interfere with those
of programming languages?

HTML and XML derive their escape notationscharacter references and entity references from SGML
(Standard Generalized Markup Language), which is far less known to most people than its
descendants. The escape mechanisms of SGML are rather different from those of programming
languages and include characters that cause some clashes. In a character reference like { in
SGML, the &# and ; parts are just particular instances (though the default instances) of the general
concepts of Character Reference Open (CRO) and Reference Close (REFC) . They can be changed to
other symbols if desired for the needs of a particular markup system based on SGML. However, both
HTML and XML have made such things fixed.

This has some implications especially regarding the ampersand &, which is widely used for special
purposes in programming languages and other notations. In particular, the ampersand is used as a
separator between fields (name = value pairs) in the format of data generated from form submission.

This means that URLs often contain ampersands. When you include a URL into an HTML document,
you must therefore escape the ampersand. For example, to refer to http://www.google.com/search?
hl=en&q=rosebud in a link in HTML, you should write:

...

Contrary to popular belief, entity references are recognized in attribute values, too. This has often
caused confusion, since people have failed to see the difference between a URL (which contains just &
here) and the way of writing a URL in an HTML document.

Luckily, the backslash character \ has no special role in HTML or XML. It is just a normal data
character.

The HTML and XML specifications define that the document character set is ISO 10646 . As explained
in Chapter 4, this is effectively the same as saying that it is Unicode. However, the document

http://www.google.com/search?
http://lib.ommolketab.ir
http://lib.ommolketab.ir

character set relates only to the repertoire of characters that may appear in documents and
specifically to the interpretation of character referencesi.e., notations of the form &#n; or &#xn;. The

document character set is the character code (mapping of integers to characters) according to which
the n in such notations is to be interpreted.

In particular, HTML and XML specifications do not impose Unicode semantics on characters, for two
reasons: they formally refer to ISO 10646, not the Unicode standard, and even if they referred to
Unicode, this would not constitute a requirement on conformance to the standard. Of course,
software that processes HTML or XML documents may apply Unicode semantics and rules, such as
line breaking rules, but this is not a requirement. Only for some features related to directionality do
HTML specifications refer to Unicode rules normatively.

The HTML specifications contain some special restrictions on the use of control characters, as listed in
Table 11-2. There is usually little reason why control characters other than line breaks and
sometimes horizontal tabs would appear in HTML documents. They may, however, appear due to
conversions. The rules for them are somewhat different in HTML up to and including HTML 4.01 and
in XHTML. (Technically, the SGML declaration for HTML 4.01 disallows U+000C, but the prose
discusses it as an allowed character. It would anyway be whitespace and not a page eject character.)

Table 11-2. C0 and C1 Control characters in HTML

Character(s) Explanation Use in HTML

U+0000..U+0008 C0 Controls (part) Forbidden

U+0009 Horizontal Tab A whitespace character, may tabulate

U+000A Line Feed Line break; a whitespace character

U+000B Vertical Tab Forbidden

U+000C Form Feed Obscure in HTML, forbidden in XHTML

U+000D Carriage Return Line break; a whitespace character

U+000E..U+001F C0 Controls (part) Forbidden

U+007F DEL (= Delete) Disallowed in HTML, discouraged in XHTML

U+0080..U+0084 C1 Controls (part) Disallowed in HTML, discouraged in XHTML

U+0085 NEL (= Next Line) Disallowed in HTML, line break in XHTML

U+0086..U+009F C1 Controls (part) Disallowed in HTML, discouraged in XHTML

The specific restrictions in XHTML are derived from the XML 1.0 specification, which has a rigorous
definition of allowed characters, or rather code points. By the specification, an XML processor must
accept any code point (including unassigned code points) except certain control characters, the
surrogate blocks, and two noncharacters, as shown in Table 11-3. On the other hand, the XML 1.0
specification declares some characters as discouraged. Discouraged characters are allowed and must
be accepted by an XML processor, but authors are advised to avoid using them. They are:

All compatibility characters as defined in the Unicode standard.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The ranges U+1FFFE..U+1FFFF, U+2FFFE..U+2FFFF, etc.i.e., the last two code points of all
planes except the BMP. They are noncharacters.

Some other specific ranges of code points; these are indicated in the table as "Discouraged."

Table 11-3. Characters and other code points in XML 1.0

Code point(s) Explanation Status in XML

U+0000..U+0008 C0 Controls (part) Forbidden

U+0009 Horizontal Tab OK

U+000A Line Feed OK (line break)

U+000B..U+000C VT, FF Forbidden

U+000D Carriage Return OK (line break)

U+000E..U+001F C0 Controls (part) Forbidden

U+0020..U+007E Basic Latin (printable) OK

U+007F..U+0084 Control characters Discouraged

U+0085 NEL (= Next Line) OK (line break)

U+0086..U+009F C1 Controls (part) Discouraged

U+00A0..U+D7FF Various BMP characters OK

U+D800..U+DFFF Surrogates Forbidden

U+E000..U+FDCF Various BMP characters OK

U+FDD0..U+FDDF Noncharacters Discouraged

U+FDE0..U+FFFD Various BMP characters OK

U+FFFE..U+FFFF Noncharacters Forbidden

U+10000..U+10FFFF Non-BMP characters OK with exceptions (see above)

In XML 1.1, which has few implementations and less use than XML 1.0, the character concept is
somewhat broader: all characters in the range U+0001..U+D7FFi.e., including most control
characters forbidden in XML 1.0'are permitted. The NUL character U+0000 is forbidden even in XML
1.1, to avoid problems with applications that may treat it as a string terminator. On the other hand,
XML 1.1 allows C0 and C1 Controls (excluding the line break characters and the horizontal tab) only
as character references such as or , not directly as data characters.

11.1.2.2. Problems in generating markup programmatically

When you write a program that generates markup, you often encounter the problem that the
programming language and the markup language have different escape notations. This is, however,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

mostly a conceptual problem: you need to remember the conventions of both notations and not mix
them with each other. Consider the following simple statement in the Perl language:

print "<p style=\"em\">\n";

Here we have solved the previously mentioned problem with quotation marks by escaping the inner
quotation marks. In Perl strings, \" is an escape notation for the quotation mark as a data character.
Usually there are many alternative ways of solving such problems.

Here is a perhaps trickier example:

print "<p>The price is $100.</p>"; # Will print wrong data

The problem is that the dollar sign $, which is just an ordinary data character in HTML, has special
meanings in Perl; for example, it starts a scalar variable, and $100 is a special variable. The program
is in error, and it probably prints "<p>The price is .</p>" (without any error message or warning,
unless you use the -w switch when invoking the Perl interpreter).

When you mix two languages, check your strings for problems with
syntactically special characters and notations in either language.

Problems discussed here can usually be solved by modifying the code in either of the languages,
usually with some kind of an escape notation. Moreover, there are typically two or more ways of
doing that. In the last example, it would be simplest to solve the problem at the Perl level, either by
using single quotation marks (since inside them, the dollar sign loses its special meaning) or by
escaping the dollar sign with backslash:

print '<p>The price is $100.</p>'; # OK, but implies limitations
print "<p>The price is \$100.</p>"; # A better solution

11.1.2.3. Problems in using scripts inside HTML

There is another way to "nest" HTML and a programming language: putting a program inside an
HTML document. You might wish to show program source code in an HTML page if you are writing
about programming or documenting a program. This would mean that the program source code is
normal textual content, so the usual rules for escaping < and & in HTML will apply. Here is an
example of HTML markup, for text containing the (somewhat artificial) C language expression &x<y
(note that the code markup does not affect the interpretation of <, &, etc.):

<p>Consider the statement <code>&x<y</code>.</p>

A more difficult question arises if you wish to use program code to be executed by the browseri.e.,
client-side scripting. You would typically use JavaScript, and you can attach a program (script) to an
HMTL document in three ways:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Write the program into an external file, say zap.js, and refer to it in HTML using an element like
<script type="text/javascript" src="zap.js"></script>. This will avoid all problems
discussed here, since in the external file, no HTML rules apply. The file could contain, for
example, the JavaScript code alert("Hello&bye").

Write the program inside a script elemente.g., <script
type="text/javascript">alert('Hello&bye');</script>. According to HTML specifications up to
and including HTML 4.01, the HTML escape rules are not applied inside a script element, so you
could and would have to write, for example, the ampersand as such, as in the example. In
XHTML, you would need to use the escapes there. This makes things so complicated that it is
much easier to write the code in an external script file (i.e., use the first way).

Write the program inside an event attribute such as onload or onclicke.g., <body
onload="alert('Hello&bye')">. In this case, all HTML escape conventions apply. Moreover,
you cannot use the same quotation mark in the JavaScript code as you have used as the
attribute value delimiter in HTML. The common style is to use the double quote " in HTML, the
single quote ' in JavaScript.

Things can be even more complicated, and that's not even rare. You might have HTML markup that
contains JavaScript that generates HTML markup. For example, consider the following HTML element:

<script type="text/javascript">
 document.write('<div>Hello world<\/div>');
</script>.

In the example, we have written \/, which is a JavaScript escape for the / character. Without such
escaping, the browser would see </div> as an end tag, causing a syntax error in HTML.

You might now carry out a simple exercise: write a HTML document so that when it is opened, the
message "Helloworld" appears in a pop-up window created by the JavaScript function alert. The
basic code has been presented above, and you just need to find out how to express the em dash
character, U+2014. In JavaScript, you can use the escape notation \u2014 for it. But could you also
use an HTML character reference, and how would you do that, in the three ways discussed above?

11.1.2.4. Characters in CSS

A stylesheet written in CSS (Cascading Style Sheets) can use any encoding recognized by a browser
on which it will be used. Usually only ASCII characters are used in CSS, so the encoding is not a big
issue. However, you might wish to use non-ASCII characters for in some special cases:

In commentse.g., /* © 2006 Jérôme Doe */

In identifiers such as element or class namese.g., p.Einführung {...}

In property values such as font namese.g., font-family: Lübeck

In stringse.g., quotes: "\201d""\201d";

CSS code may appear in a separate file or as embedded into an HTML document. In the latter case, it
of course shares the encoding of the HTML document. In the former case, the web server (HTTP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

server) should announce the encoding, as for HTML documents (see Chapter 10). This is problematic,
and for casual use of non-ASCII characters, it might be best to use escape notations.

The basic escape mechanism for characters in CSS is simple and similar to the general mechanisms
in programming languages. You start an escape with a backslash (reverse solidus) \ and then you
write the Unicode code number in hexadecimal. Recognizing the end of the notation is somewhat
problematic. The rules were briefly described in Chapter 2, but here we will present them in more
detail and also list some alternative notations.

CSS has three kinds of uses for the backslash:

A backslash immediately followed by a line break is ignored together with the line break. Thus, a
\ at the end of a line is used for continuation lines. In practice, it is used inside a string that
must not contain a line break, when we wish to keep the physical line length reasonably small.

Any single character but a hexadecimal number can be escaped by prefixing it with a backslash.
This notation is useful when the character itself would not be syntactically permitted or would
have a special meaning. Thus, \\ means the backslash itself as data character, \" means the
ASCII quotation mark, etc.

A backslash followed by one to six hexadecimal digits denotes the character with that code
number. For example, \2013 means U+2013, the en dash "". If the notation is followed by a
character that is a hexadecimal digite.g., you would like to express "14"'the end of the notation
needs to be indicated. There are two ways to do this: use exactly six digits; e.g., 1\0020134; or
put a whitespace character after the last hexadecimal digit; e.g., 1\2013 4. The whitespace
character will be ignored by a program that processes the CSS code, and a CR LF pair will be
counted as one character in this context. This is a convenient method, and you could use an
extra space routinely, even when not needed. However, the convention implies that if the
escape notation should be followed by a real space character, the space needs to be doubled or
escaped. For example, "1 4" would be written as 1 \2013 4 (with two spaces before "4") or as
1 \2013\ 4.

Let us suppose that your HTML document contains <p class="Einführung"> or, equivalently, uses an
entity reference, <p class="Einf&udier;hrung">. If you write CSS code in a suitable encoding, you
can enter the character ü (U+00FC) directly, but you can alternatively use the escape notation \fc
for it, for example:

p.Einf\fc hrung { font-size: 120%; }

The point is that although HTML and CSS have quite different escape mechanisms, you can escape a
character in both languages and have it interpreted the same way. You can also escape a character
in one of the languages and use it as such in the other.

If your CSS code is embedded inside an HTML document, it is better to use CSS escapes rather than
HTML escapes. One reason for this is that the latter are not always recognized:

In a style attribute, as in <p style="font-family: Lübeck">, HTML escapes are recognized. You
could write Lübeck or Lübeck there, but the CSS escaped form L \ f c beck works,
too.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In a style element, as in <style type="text/css">p { font-family: Lübeck }</style>, HTML
escapes are not recognized according to HTML specifications up to and including HTML 4.01. The
CSS escapes work, of course. (In XHTML, the processing of the content of style elements has
been defined differently, so that HTML escapes are recognized.)

11.1.2.5. Identifiers in CSS

The HTML specifications do not prescribe the syntax of class names. It is left to stylesheet languages,
and CSS is rather permissive. You don't often see non-ASCII characters in class names, though,
because people are afraid of using them, partly for a reason.

In practice, it is safest to use only ASCII letters, digits, and hyphen-minus characters in class names
in HTML and CSS. However, a much wider range of characters is permitted in principle. In CSS, class
names are identifiers, and CSS identifiers may include:

Letters "A" to "Z" and "a" to "z"

Digits "0" to "9"

ASCII hyphen (hyphen-minus) "-"

Underscore (low line) "_"

Any Unicode character from U+00A1 up

Any Unicode character in an escaped form, such as "\0000A0"

There are limitations on the first character of an identifier in CSS: it must not be a digit, and
identifiers starting with the ASCII hyphen are allowed in some contexts only.

The rules for CSS identifiers are important when you use CSS in conjunction with XML, where non-
ASCII characters may appear in element and attribute names. Even some ASCII characters may
cause problems. For example, using the colon, :, in an attribute name is common in XML (e.g., in the
attribute name xml:lang), but the colon is not permitted as such in a CSS identifier. The reason is
that it has a special meaning in CSS syntax. It thus needs to be escaped, if the name is used in CSS
(e.g., xml\:lang).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.2. Character and String Data

Processing of character data in computers operates on characters represented by code numbers. This
is often expressed by saying that characters are treated as small integers, though especially when
using Unicode, they need not be that small. A string is usually represented as a sequence of
characters in consecutive storage locations. Otherwise, the representation and handling of characters
varies greatly by programming language and by software modules.

11.2.1. Constructs and Principles of Processing Characters

For the processing of character data, programming language design needs to solve several problems,
and the solutions greatly affect the suitability of the language to string-oriented tasks. You are
probably not designing a new programming language, but you may need to select between some
existing languages for a project, or to learn or teach a language. In the latter area, the phenomenon
that psychologists call negative transfer is often problematic: when you have learned one way of
doing things in a language (say, the difference between single and double quotes around a literal),
you will implicitly assume that another language uses the same way. Even after you have learned the
difference, you keep forgetting it. Therefore, it is useful to make some explicit comparisons.

The key features in the processing of character data in a programming language are:

Repertoire: which characters can appear in data as processed inside a program?

Typing: is there a particular data type for a character, or a string, and what are its basic
properties?

Characters versus strings: do you treat a character as a special case of a string (a string of
length 1), or do you treat a string as a data structure (e.g., array) with characters as its
components, or are they two distinct concepts?

Internal implementation of a character: is it typically (and perhaps by language specification)
one octet, two octets, or something different?

Internal implementation of a string, especially information on its length (e.g., separate
character count, or a terminator character, or fixed length).

Storage allocation for strings: do you need to specify the length, or the maximum length, when
declaring a string variable, or do strings automatically expand?

Literals: how do you write a constant that denotes a single character, or a given string, perhaps
an empty one?

Operators and standard functions, such as extracting the nth character of a string,

concatenating two strings, or performing a replacement operation on a string.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Modern programming languages normally have a character data type and a string data type, or both,
but their relationship to each other may vary. In some languages, the character type is one of the
basic types and strings are represented as arrays of characters, often with some special features that
other arrays do not have. In other languages, which might be called string-oriented, the string type is
one of the basic data types (or, at the extreme, the only data type). Variables with values that are
individual characters might be treated just as special cases: strings of length 1.

11.2.2. The FORTRAN Model: Hollerith Data

FORTRAN programming was developed in the 1950s for engineering and scientific tasks. Originally, it
had just two data types: integer (whole numbers) and real (floating-point numbers). Character data
was just string constants added to output as headings to make it more legible. The ways of handling
character data in old FORTRAN are mostly a historical curiosity only, but they are briefly described
here for comparison.

Originally, FORTRAN allowed you to add explanatory text to output by using Hollerith constants in
FORMAT statements, which specified the way in which numeric data was formatted when executing
PRINT statements. A Hollerith constant like 5Hhello was taken as indicating a string of five characters
following the letter H. That way, it was easy for a compiler to know where the string ends. To a
programmer, it was not that convenient: he needed to count the characters, and count them right.

Later, a convenience was added: a quoted string like 'Hello', leaving it to a compiler to recognize
the end of the string from the ending quoteactually, the ASCII apostrophe.

However, the programmer still needed to count characters if he wanted to store character (string)
data to a variable. The reason is that such data was stored to a numeric variable, since there were no
other variables. An integer or real variable was able to contain a fixed number of characters, but the
number depended on the machine architecture. For example, if an integer value consisted of 36 bits
and a 7-bit character code was used, an integer variable was able to contain five characters.
Therefore you could write an assignment like MSG = 5Hhello or MSG = 'Hello'. However, the program
was not portable to, say, a computer where an integer value is 32 bits and an 8-bit character code is
used, allowing an integer variable to hold just four characters. You would, for example, declare MSG as
an array and write MSG(1) = 'Hell' and MSG(2) = 'o'.

There wasn't much you could do with character data at that time. It was possible to read, store,
copy, and print it, as well as compare for equality. Text processing would have been awkward, since
extracting a single character from a string required extra tricks, like shifts and masks. When porting
a program from one computer to another, it was often necessary to recode all processing of
character data.

Later, a data type called CHARACTER was added to FORTRAN. Despite the name, it is really a string
type. When declaring a string variable, you specify the length of the strings it can contain. For
example, CHARACTER*20 NAME declares NAME as string of length 20. Its values will effectively be
padded with spaces on the right, if you assign a shorter value to it. A substring construct was also
added; for example, NAME(2:6) is a substring of NAME from the 2nd character to the 6th.

11.2.3. The C model

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C was designed in an environment where an 8-bit byte was the basic unit of storage and any
character was assumed to fit into such a byte. More or less implicitly, the character code was
assumed to be ASCII, or very similar to it. Later, C has been used to process text in genuinely 8-bit
encodings, too. The standard C library locale may be used to find out or to set the specific encoding
used, as described in the section "Using Locales" later in this chapter.

Although C++ is very different from C in many ways, it is based on C. In character processing, C++
has copied its constructs from C. However, the I/O system is different.

11.2.3.1. The character data type

The C language has a data type called char, but in typical implementations, it really corresponds to
the concept of an 8-bit byte. It has been used to store a character among other things, but that was
just a technicality. C functions often operate on sequences of bytes often with no regard to their
content.

In effect, the char type in C is the shortest of integer types. As an aside, it might also be used to
store integers that represent characters by their code numbers. There is no type checking involved
here. You can declare and assign char ch = 0; and this initializes the variable to NULi.e., to the
character with code number 0.

However, the definition of C does not fix the range of values of char. It might be 0 to 127,
corresponding to ASCII, or 0 to 255. It might even be 0..65,535, corresponding to UTF-16 code units,
so that a value of type char occupies two octets. Thus, you might be able to use Unicode simply with
the help of the character data type in C, but such software is not portable from one computer system
to another.

11.2.3.2. Strings as arrays

In C, a string is a sequence of values of type char in consecutive storage locations. You can declare a
variable that is an array of characters (e.g., char message[20]) and store characters to it using
indexed variables (e.g., message[0]), as with other arrays. The index of the first component of an
array is zero in C, as in many other languages.

Using the basic operators of C, text processing is awkward, since you basically need to work with
individual characters by their indexes. However, there is a standard C library, string, that contains a
collection of useful functions for working with arrays of characters. Operations on strings are still
somewhat primitive, since you need to keep track of the lengths of strings. An array has a fixed size
in C, though you can create the equivalent of an array dynamically so that its length has been
computed during execution, rather than fixed when writing the program. The assignment p =
malloc(n) would create a memory block sufficient for n characters and assign its address to p, which
must be a pointer variable. Then you can use an indexed variable like p[i] just as if you had declared
p as an array.

Many descriptions say that in C, strings are "NUL terminated," where NUL means a character with
code number zero (U+0000 in Unicode). This is true in the following sense: the functions in the
string library, as well as functions for string processing in C programs in general, expect the input
strings to be NUL terminatedi.e., to end with NUL, which is not regarded as part of the string.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Moreover, when the functions generate strings, they make them NUL terminated. String constants
are implemented as NUL terminated strings; thus, the constant "foo" denotes a string of length 3,
but its internal representation occupies four octets. As a C programmer, you normally follow suit by
treating NUL as a string terminator and by making sure that every string you generate is NUL
terminated. However, when you read characters from a file, it is better to accept possible NUL
characters and perhaps just skip them on reading. Text files created with other than C programs may
contain NUL, and it is possible to output NUL in C, too.

11.2.3.3. 8-bit characters and sign extension

Since ASCII was usually implied, it did not matter whether values of the type were treated as
unsigned or signed, since the character values always had zero as the first bit (sign bit). This created
problems when C was used with a genuinely 8-bit character code, such as ISO-8859-1. Suppose that
you declare and assign char ch = 'ä' and then use the character variable in an assignment with an
integer on the left side: int i = ch. Since the value has the first bit set (the code of ä is E4 in
hexadecimal, 11100100 in binary), the value is sign-extended in the assignment.

Technically, an integer normally occupies two or four octets, and the value is copied to the lowest-
order octet, whereas the sign bit is copied to all bit positions in the other octets. In practice, this
makes the value a negative number, corresponding to the interpretation of the octet E4 as a signed
integer. In the commonly used two's complement method for implementing negative integers, this
results in the value -28 (decimal).

Later, a difference was made between unsigned char and the old char type, which may or may not
be signed. Declaring a variable unsigned char, you would guarantee that no sign extension is
performed when the variables value is treated as an integer due to type conversions. Compilers have
compile-time switches that can be used to make the char type implemented as unsigned, but for
portability, it is safer to use the explicit type name unsigned char.

Even if you declare your variables and functions as unsigned char, non-ASCII character constants
may cause problems. In C, a character constant like 'ä' is in fact of type int (the default integer
type), and, for example, a comparison like ch == 'ä' may fail to work properly. The right side could
be a negative value when interpreted as an integer and a very large number when interpreted as an
unsigned integer. Compile-time switches (like -funsigned-chars in the gcc compiler) might be
available for forcing character constants to correct positive values. A more portable alternative is to
avoid manifest character constants in statements, using macro definitions. Example:

#define AE ((unsigned char) 'ä')
int ch = getchar();
if(ch == AE) { /* 'ä' was received */

The example is somewhat confusing, since the variable is declared as int, which means a signed
integer type. The reason for this is that the function getchar may return an end of file indicator,
which is a negative number. The comparison works, however, since now the right side, being
unsigned, is not sign-extended.

11.2.3.4. The EOF indicator

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Since character data was expected to fit into 7 bits, values with the first bit set were used for various
purposes such as error indicators. In particular, standard C definitions define the end of file indicator,
EOF, as a macro (named constant) that expands to (-1)i.e., minus one. For example, a function for
reading a character normally returns the character but returns EOF, when there is no data left.

Therefore, functions like getchar for reading a single character are declared as being of type int and
not char. Normally, the return value of such a function should first be tested against the end of file
indicator (ch == EOF), typically exiting from a loop when there was no more data. After that, the
value can be assumed to be the code number of a character, in the character code being used. If we
work with 8-bit characters only, we could next assign the value to a variable of type unsigned char,
for clarity and to protect against undesired type conversions.

11.2.3.5. The zero byte (NUL byte) convention

One of the specialties of C is that a zero bytei.e., NUL when interpreted as an ASCII characteris used
as a string terminator. Standard C functions that operate on strings effectively operate on arrays
(sequences) of characters terminated by NUL. Thus, if you construct a string in C code, you need to
write a NUL (conventionally written as '\0' in C, though it really means the same as plain 0) at its
end. Using NUL was technically efficient on old byte-oriented computers, since at machine instruction
level, testing a byte against zero value was faster than a general test for equality with a given value.

The special rule of NUL in C causes problems, for example, when you have UTF-16 encoded data. If
you have, for example, ASCII or ISO-8859 and you encode it in UTF-16, every second octet will be
zero. Thus, although C string functions might otherwise be used to process strings with no regard to
their internal structure and encoding, this will fail for UTF-16, and for many other encodings.

In any data that might be processed with a C program, a zero octet in data is
risky.

11.2.3.6. The null pointer

Thus, C has no genuine character data type but uses char as a mixed type for characters as well as
for small integers and other octets. Moreover, C uses the integer 0, either as such or as explicitly cast
to a pointer type, as a null pointer. The null pointer is a special pointer value indicating "not a pointer
to anything." Pointer values correspond to addresses of storage units, and they are at least two
octets long, often longer. Their implementation depends on the addressing architecture of the
computer. In a simple implementation, pointers could be simply numbers of storage locations, with
the address 0 unused so that it can be used for the null pointer. However, implementations vary, and
the null pointer need not be internally represented the same way as the integer 0.

There is also a predefined name (macro) for denoting the null pointer: NULL, which expands to 0. It is
often recommended for use instead of the literal 0, to indicate that a pointer is involved and not an
integer. The C compiler is supposed to treat the integer 0 in a pointer context as a null pointer, no
matter how the value 0 has been written in the source code and no matter what the internal
representation of pointers is.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

An implementation of C may also define NULL as (void *) 0. This means the
value zero converted to the generic pointer type void *, which is compatible
with any pointer type.

11.2.3.7. Confusion around NUL, NULL, and relatives

The main reason for discussing the null pointer in this book is its name and its predefined symbol,
which are often confused with NUL, the character with code number 0 (U+0000 in Unicode). The
expression NUL is not part of the C language but just a name for a control character. If desired, you
could define NUL as a name in C (using, for example, the directive #define NUL '\0'), but it might
easily be misread as NULL.

Such things create many possibilities for confusion, as illustrated in Table 11-4. Similar problems
exist in other languages as well, though usually to a lesser degree. In the table, the assumed
character code is ASCII or some extension of ASCII. The integer zero is implemented as zero octets,
typically as two or four of them. The internal format of a floating-point zero is system-dependent in
principle, but in practice, it is usually four zero octets. The internal representation of the null pointer
is not shown, since it varies by machine architecture.

Table 11-4. Ways of being "nul" in C

Octet(s) in binary Notation in C source Meaning

00000000 ... 0 The integer zero

00000000 ... 0. The floating-point number zero

(Null pointer) (void *) 0 The null pointer

(Null pointer) NULL Macro for the null pointer

11111111 EOF End of file indicator, same as (-1)

00000000 '\0' The NUL character, U+0000

00100000 ' ' The space character, U+0020

00110000 '0' The digit zero, U+0030

00000000 "" An empty string

00100000 00000000 " " A string consisting of a space

Further confusion is caused by the fact that both (void *) 0 and '\0' can be written simply as 0. In
a pointer context, as in a comparison p==0 or an assignment p = 0, with p declared as a pointer, the
integer zero is automatically converted to the null pointer. In a character context, as in comparing a
variable against NUL, say ch=='\0', there is a different type conversion. The char type is internally
treated as an integer type, and a character constant like '\0' is technically an integer constant
written in a special way. The habit of writing ch=='\0' instead of ch==0 is meant to emphasize that
we are dealing with character data and with the NUL character, not, for example, the digit zero.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.2.3.8. C and Unicode

You might consider using C to process Unicode data in UTF-8 format, where each character consists
of one to four octets, or in UTF-16 format, where each BMP character is represented as exactly two
octets. We will discuss both approaches in the sequel.

It is however important to note that you should not reinvent the wheel, if you decide to use either of
these approaches. There is a lot of existing reusable code, as C function libraries or as C++ class
libraries, for operation on UTF-8 or UTF-16 in C. Thus, unless you have a very simple task or a
programming assignment on a course, start from looking at existing software, such as the libutf-8
code available from several sites and the ICU code for UTF-16 at http://icu.sourceforge.net/.

11.2.4. Unicode with 8-bit Quantities?

Can you process text in Unicode, if the data type for a character is an 8-bit byte, as in classical C?
The answer is yes but requires that you distinguish between "string" as a sequence of Unicode
characters and "string" as a programming language concept such as a NUL-terminated array of char.
You would not store a Unicode character into a variable of type char but as an array or other
collection of such variablese.g., one to four such variables, when using UTF-8.

This means, using the terminology defined in "Unicode and UTF-8" in Chapter 3, that all processing of
characters actually takes place at the level of the Character Encoding Scheme. There, the
representation of a character is serialized into a sequence of octets. In order to perform even a
simple operationsay, scanning through a string to check whether it contains a particular characteryou
need to interpret the sequence of octets according to the encoding scheme (unserialize it to code
numbers).

If you only read Unicode data and copy it as such, preserving the encoding, you can treat the data as
if it were binary data, uninterpreted octets. Such situations are rare. However, consider the example
of analyzing a logfile that is known to be encoded in some known Unicode encoding. We might be
interested in summing things up, without any internal processing of character data.

The approach is used in the following rather naïve program, which expects its input to be UTF-16
encoded, more specifically in low-endian form (UTF-16LE). The program simply reads the code units
and checks whether the more significant octet is zero. If not, it prints the code unit in hexadecimal
and in decimal. Such processing might be useful if some data is expected to be UTF-16 encoded but
mostly contain just Basic Latin and Latin 1 Supplement characters (i.e., characters
U+0000..U+00FF), and you wish to list any other code points that appear:

#include <stdio.h>
int main() {
 unsigned int first, second;
 unsigned long code;
 while((first=getchar()) != EOF) {
 if((second = getchar()) == EOF) {
 fprintf(stderr, "\nError at end of data, first octet: %2X\n",
 first);
 return 1; }

http://icu.sourceforge.net/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if(second != 0) {
 code = first * 0x100 + second;
 printf("%4X %6d\n", code, code); } }
 return 0; }

Similarly, you could process UTF-8 encoded data using the char type, pointers to char, and arrays of
char, as long as you keep track of the situation. Although the string functions of C treat a zero octet
(NUL) as a string terminator, this isn't a problem with UTF-8, since UTF-8 uses a zero octet only to
encode U+0000. Processing UTF-16 encoded data in a similar way would generally fail, of course.

A value that represents a Unicode code number should be defined as unsigned long (or, more
verbosely, unsigned long int) to avoid any surprises. This type is guaranteed to be at least 32 bits.
Then you can perform conversions between different encoding forms at input and output only,
performing all operations on the characters (code numbers) themselves directly.

You might encounter existing code that uses other integer types, such as the basic integer data type
int, for processing Unicode numbers. Implementations of C in most modern computers have int
implemented as a 32-bit integer or larger. However, the C standard allows the implementation of int
as a 16-bit integer.

Using a specific integer data type such as unsigned int is in principle a clumsy and unnecessarily
system-dependent approach. It also makes source code somewhat harder to understand. A more
systematic method can be used. You can define a macro like the following:

#define UINT32 unsigned long

You would then systematically use UINT32 when declaring variables and functions with Unicode
character values (e.g., UINT32 ch;).

11.2.5. Wide Characters

In modern versions of C, as well as in C++, you can use "wide characters, " which correspond to a
character type specified by the current locale. Wideness refers to the storage needed for such a
character, not the visual appearance. The storage need not be larger than for normal characters, and
it often isn't.

Wide characters need not correspond to Unicode characters. However, they may correspond to
Unicode characters. Their meaning depends on the underlying system and possibly locale settings. On
modern Windows systems, the internal representation is UTF-16, and wide characters are usually
implemented as 16-bit quantities. On Unix and Linux systems, the default locale often uses some 8-
bit character code, but this can usually be changed to a Unicode encoding. The repertoire of available
locales depends on the implementation. Thus, if your program needs to be portable to different
computers, you cannot rely on wide characters.

It is often possible to process Unicode data using wide characters, but not
portably.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The type for wide characters is wchar_t, which corresponds to some machine-level "type" (storage
unit size) in an implementation-dependent manner. To work on wide character strings, you use
standard functions with names beginning with wcs instead of the str prefix in traditional C string
functions. For example, you get the length of a traditional string by calling the strlen standard
function, and similarly, you use the wcslen function for wide character strings. To create a wide
character string constant, you use the normal C string constant syntax but prefix it with the letter
"L"; for example, L"Hello". As you may guess, "L" stands for "long," again referring to the storage
requirements. It means that the string consists of wide characters.

The standard functions mentioned above, and other features related to wide characters, are included
in the wchar and wctype libraries that were added to the C language standard in 1995. Consult
suitable textbooks and references for the definitions. The following example illustrates the use of wide
characters for a simple problem: reading a UTF-8 encoded file to check for characters beyond the
range U+0000..U+00FF. This is similar to the previous example, except that here, UTF-8 encoding is
assumed and the techniques are different. In this approach, different encodings can be used simply
by changing the attribute of setlocale, if the encoding is supported by the environment:

#include <stdio.h>
#include <wchar.h>
#include <locale.h>
int main() {
 wchar_t ch;
 if(!setlocale(LC_CTYPE, "en_US.UTF-8")) {
 fprintf(stderr, "Cannot work in UTF-8 mode!\n");
 return 1; }
 while((ch=fgetwc(stdin)) != WEOF) {
 if(ch > 0xFF)
 fwprintf(stdout, L"%4x %c\n", ch, ch); }
 return 0; }

In order to work with Unicode characters in a reasonably portable way, you could use a type name
like UNICHAR and define it with a macro or with a type definition such as the following on a system
where wide characters are Unicode characters:

typedef wchar_t UNICHAR;

You would then consistently use the type name so defined for all character variables and functions.
When porting the program to a different system, you would replace wchar_t in this definition with, for
example, unsigned int, selecting a type that can contain a Unicode code number. Although this
approach, suggested in the Unicode standard, makes software more portable, it has substantial
limitations. Many constructs in a program, including the standard functions you use, depend on the
specific data type. For portability, you would need to modularize the program so that (ideally) only
one module depends on the specific definition of the type used for Unicode characters.

11.2.6. Win32 APIs

An Application Programming Interface (API) is a coordinated set of definitions on how computer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

programs or parts of programs communicate with each other. Usually this involves software at two
different levels, such as application programs and system programs. More concretely, an API is a
collection of functions and other building blocks that a programmer can use according to their
external descriptions, without knowing their internal implementation. The term API is most commonly
used to refer to Windows APIs, specifically on relatively modern Windows systems such as Windows
NT, Windows 2000, Windows XP, etc., collectively called Win32 APIs. Such APIs are usually described
in terms of their manifestation in C or C++.

Win32 APIs support a 16-bit character type, called WCHAR, which ultimately corresponds to a UTF-16
code unit. Internally, Win32 works with such representation of characters and performs code
conversions between it and codes used in application programs. As we have seen, UTF-16 code units
directly correspond to Unicode characters only on the BMP, but that is sufficient for most practical
purposes. Technically, WCHAR is defined as a macro that expands to unsigned shorti.e., the 16-bit
unsigned integer type, corresponding to the wchar_t type of standard C.

Using the Win32 API, you can write programs so that they can be compiled to work with some 8-bit
encoding (the system's "code page") or with wide characters. In C or C++ programming, you can
define the constant (macro) _UNICODE to be 1 (TRue) or 0 (false) depending on whether you want
wide characters or not. You would then declare your character variables for being of type TCHAR,
which expands to wchar_t or (8-bit) char, depending on the setting of UNICODE. Similarly, you would
declare a pointer to a character (or to a string) as being of type LPTSTR. It expands to wchar_t * or
char *, again depending on _UNICODE. You can also use the name LPWSTR, which unambiguously
means a pointer to a string of wide charactersi.e., wchar_t *. Win32 APIs that operate on text
(strings) exist in two versions:

"A" versions (code page versions)

These versions operate on 8-bit characters, according to the code page currently in use, such
as windows-1252 (Windows Latin 1). The letter "A" reminds us of the misnomer "ANSI."

"W" versions (Unicode versions)

These versions operate on widei.e., 16-bitcharacters, or UTF-16 code units, to be exact.

For ease of programming, you can use generic names that will be resolved to "A" or "W" versions
during compilation, depending on the setting of _UNICODE. For example, if you call a function with the
name SetWindowText, it will be resolved to the name SetWindowTextW when _UNICODE is set and to
SetWindowTextA otherwise.

11.2.7. Multibyte Character Sets (MBCS) Versus Unicode

For comparison, we will briefly describe the use of sequences of octets to represent characters in a
manner that differs from Unicode, namely multibyte character sets (MBCS), which are in practice
usually double-byte character sets (DBCS). You may encounter such techniques in existing software,
especially on Windows, where they have been a serious competitor of Unicode techniques. They have
been used especially for Chinese and Japanese text.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In DBCS, each character is represented as 1 or 2 bytes (octets). Some bytes, called lead bytes, have
been reserved for use as the first pair of a double-byte representation and are to be interpreted
together with the next byte. Other bytes represent characters as such. The technique implies some
underlying character code, often called "code page" in this context. The set of lead bytes depends on
the code page, but it could be, for example, the range 81 to 9F (which corresponds to a subset of C1
Controls).

In C programming using a library that supports multibyte characters, function names starting with
_mbs are used to handle multibyte character strings, corresponding to standard C string functions
with names that begin with str. Thus, for example, _mbslen returns the length of a multibyte
character string, as a counterpart to strlen for normal C strings (char strings) and wcslen for wide
character strings.

Thus, multibyte characters are not the same as wide characters. Conversions between them are
possible, of course, and libraries that support multibyte characters typically contain routines for
conversions, such as mbtowc (multibyte to wide character).

It may be desirable in program development to create software that can be set, at compile time, to
use 8-bit characters, multibyte characters, or wide character implementation of Unicode. For this
purpose, macros that begin with _tcs can be used. They will be resolved at compile time, according
to the values of the macros _UNICODE and _MBCS. For example, the name _tcslen resolves to wcslen
when _UNICODE is set, to _mbslen when _MBCS is set, and to strlen when neither is set. (Setting both
of them makes no sense and causes unpredictable results.)

11.2.8. The Perl Model

The Perl language was primarily designed for processing large amounts of text, though typically text
in some fixed format, as one of the expansions of the name suggests: Practical Extraction and Report
Language. Yet, Unicode support has been added to Perl only gradually and rather slowly. This book
assumes that you are using Perl 5.8 or newer.

We will discuss some basic practical points in using Unicode in Perl. For more information, please
refer to the relevant manpages in your Perl environment, in particular, perluniintro and perlunicode.
These manpages are also available on the Web, at http://perldoc.perl.org/perluniintro.html and
http://perldoc.perl.org/perlunicode.html.

Perl uses UTF-8 encoding (or, in some implementations, UTF-EBCDIC) internally. However, if your
Perl source is UTF-8 encoded, you should use the pragma use utf8 for compatibility reasons.
Handling the encoding of input data is a completely different matter and will be discussed in the
section "Character Input and Output" later in this chapter.

11.2.8.1. Strings and characters in Perl

In Perl, a scalar variable may have either a string or a number as its value, and Perl usually converts
automatically between the types as needed. There is no separate character type: to handle an
individual character, you use a string of length one.

Perl has powerful tools for working with strings. Dealing with individual characters in a string is
somewhat clumsier. To extract the fourth character from the value of $foo, you would use the

http://perldoc.perl.org/perluniintro.html
http://perldoc.perl.org/perlunicode.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

expression substr($foo,3,1). This means using a substring extraction function, where the second
argument is the starting position, counting positions from 0, and the third argument is the length of
the substring.

To get the Unicode code number of a character (i.e., of a single-character string), use the ord
functione.g., ord('é'). The inverse function is chr. For example, chr(9786) or equivalently
chr(0x263A), using the Perl notation for integers in hexadecimal notation, means the character
U+263Ai.e., .

There is a pitfall for values smaller than 256 decimal. For them, the chr function returns an 8-bit
character, in an encoding that might differ from ISO-8859-1. To avoid the potential problems, use
the pack function instead of chr for such values: pack("U", n) gives the Unicode number with code
number n. For example, chr(0xE4) usually means ä (U+00E4), but it could mean something

different; pack("U",0xE4) certainly yields ä.

11.2.8.2. The catenation operator "."

Many programming languages use the plus sign, +, both for addition of numbers and catenation of
strings. There is a risk of confusion here, since adding up 2 and 5 to get 7 is completely different
from catenating the strings to get 25. Languages often deal with this issue by using the types of
variables and expressions to determine how + should be interpreted. Perl is not a typed language (in
a manner that would be useful here), so it uses + for the arithmetic operation and another symbol,
the period ".", for string catenation. It is best to leave spaces around the period for readability.

In output statements, you can often use the comma to separate elements, since a function accepts a
list of arguments, as in print $foo, $bar;. You could alternatively use the catenation operator:
print $foo . $bar;. In that case, there would be only one argument, consisting of an expression.
Such an approach is necessary when calling a normal functione.g., somefun($foo . $bar).

11.2.8.3. In Perl, double quotes mean evaluation

The use of double quotation marks versus single quotation marks makes a difference, but completely
different than in C. In Perl, 'foo' and "foo" mean the same thing, namely, a particular constant
string of length 3, so in such simple cases, the difference between the quotes is a matter of style, or
coding guidelines. When constructs that could be Perl variables are involved, there is an essential
difference:

'$foo' denotes literally a four-character string that begins with a dollar sign.

"$foo" denotes a string that consists of the value of the scalar variable $foo at the moment of
evaluating this quoted construct.

Thus, single quotes are suitable for normal string constants that need not and should not be
processed in any way as expressions. Using double quotes, you can create an expression that will be
evaluated by inserting values of variables into it; e.g.:

print "The product of $a and $b is $c.\n";

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The principle that no evaluation takes place between single quotes extends even to "character
escapes" like \n (as listed in Table 11-1, earlier in this chapter). They are interpreted inside double
quotes, but not inside single quotes. Thus, in the example, \n is interpreted as a line break, but if
single quotes were used, even \n would be printed literally.

11.2.8.4. Notations for Unicode characters

In strings enclosed in double quotation marks, you can use the notation \x{ number } to refer to a

character by its Unicode number in hexadecimale.g., \x{2300}. The braces are needed; without
them, the reference has a different meaning. For arguments smaller than 256 decimal, 100
hexadecimal, the results are based on an 8-bit encoding (as in the case of the chr function); thus,
use pack instead.

You can also refer to characters by their Unicode names using a notation of the form \n{ name }, if

you first use the pragma use charnames ':full';. Then you can write, for example, \N{DIAMETER
SIGN} inside a string constant.

11.2.8.5. Using properties of characters

Collections of characters can be referred to by Unicode properties. For example, in a regular
expression used for matching, p{Lu} denotes any character with General Category value of Lu
(Letter, uppercase). You can also use script names in a similar manner. Block names can be used
when prefixed by Ine.g., \p{InNumberForms}. The following simple example shows how to replace all
Cyrillic characters with question marks: s / \ p { C y r i l l i c } / ? / g.

11.2.9. ECMAScript (JavaScript)

The JavaScript language, developed by Netscape for use in client-side scripting on web pages, has
been rather widely implemented in web browsers, though with version differences. Different names,
such as JScript, are used for trademark reasons.

11.2.9.1. String oriented

JavaScript is string-oriented, to the extent that it lacks a character type among its basic scalar types.
Even numbers are commonly handled as strings. This often causes trouble for beginners, especially
since the + operator is overloaded: it means both numeric addition and string catenation, depending
on context. If the variable foo contains data obtained, for example, from a form field and the user
has typed 42 as the data and you assign foo = foo + 1, you do not get 43 but 421. One way to deal
with this is to subtract zero from the value to force it into numeric type: foo = (foo 0) + 1.

JavaScript has an object concept, and it lets you declare string objects, which have many useful
properties. For any advanced string processing, you will find string objects appropriate. The following

http://lib.ommolketab.ir
http://lib.ommolketab.ir

simple code illustrates some basics. It is a form in an HTML document with one text input field and
one button, which invokes a JavaScript function when clicked on. The function takes the input field
content, converts it to uppercase, and makes it the new content of the field. Here the field is prefilled
with the string "eω" ("e" with acute, small omega), and clicking on the button turns it to "EΩ." The
function (method) toUpperCase is part of the JavaScript language and defined to work by Unicode
rules. It should even perform full case mapping, but in practice, it may perform just simple case
mapping.

<script type="text/javascript">
function upper(field) {
 var s = new String(field.value);
 field.value = s.toUpperCase(); }
</script>
<form action="...">
<input name="foo" id="fld" value="éω">
<input type="button" value="Upper" onclick=
 "upper(document.getElementById('fld'))">
</form>

11.2.9.2. The ECMAScript standard

The standardized form of JavaScript is called ECMAScript, and it was defined by Ecma (as ECMA 262).
The standard is available via http://www.ecma-international.org/. Note, however, that the standard
mainly specifies the general features of ECMAScript as a programming language, as opposed to
specific constructs defined for use on the Web. Those constructs relate to the Document Object Model
(DOM) that specifies the mapping between HTML or XML elements and attributes and expressions in
scripting languages.

11.2.9.3. UTF-16 implied

Since Version 1.3, JavaScript uses Unicode for string data. This has been standardized in ECMAScript.
More exactly, string data means "Unicode string,"i.e., a sequence of code units in UTF-16 format. The
routines for string processing assume that their input is in Normalization Form C.

Although JavaScript uses UTF-16 (or, in practice, UCS-2), we can safely use UTF-8 on a web page
that contains JavaScript code. The web browser is supposed to perform the transcoding internally.

Originally, the basic constructs in JavaScript, including variable names, used ASCII characters only.
Other characters were permitted only in strings and comments. Later, the syntax was extended to
allow Unicode identifiers, with some added features that allow even more than the default Unicode
rules. However, programming practice has largely used ASCII only in identifiers.

11.2.9.4. The \u escape notation

As many other languages, JavaScript lets you write characters in string constants (in a source
program) using a notation that consists of \u immediately followed by a character's Unicode number

http://www.ecma-international.org/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

in hexadecimal. The following trivial program illustrates this. It has been written inside a script
element so that it could be immediately embedded into an HTML document.

<script type="text/javascript">
var message = "I \u2665 Unicode! \u263A";
alert(message);
document.write(message);
</script>

If you view an HTML document containing such a script element, you should see the text "I
Unicode! " appear in your HTML document, provided of course that you use a JavaScript-enabled
browser. Whether you see the characters properly depends on the font in use. You should also see
the same text appear in a small pop-up window, since that's what the alert function does. However,
the font that a browser uses in such windows is often different from the default font it uses for web
pages. This may mean that the special characters are not visible, but small boxes might appear
instead. The font used in pop-up windows is under the control of the browser and the operating
system and cannot be affected by the document author in any normal way. Thus, avoid special
characters in pop-ups.

11.2.10. PHP: Mostly Just 8 Bits

The PHP language, commonly used in web authoring, operates on 8-bit characters only. This applies
to PHP 5, too. To get some Unicode support, you need to use the string functions utf8_encode and
utf8_decode, which convert from ISO-8859-1 to UTF-8 and vice versa. See
http://www.php.net/utf8_encode for their usage. Character and string constants in PHP closely follow
the Perl model.

An HTML document created by PHP can, however, contain any Unicode characters, since you can
express them as character references like ♥.

11.2.11. Java: Rich Support to Unicode

Java has extensive support to Unicode. In addition to basic constructs needed for processing Unicode
characters and strings, Java libraries intrinsically work by Unicode models. This means, among other
things, that case conversion routines use the definitions in the Unicode character database. Java also
allows non-ASCII characters in Java identifiers, though practical considerations still often make
programmers avoid them.

Standard Java libraries contain a large number of classes for Unicode support such as input methods
for Unicode characters, sorting according to the principles of the Unicode Collation Algorithm, and
detection of text boundaries. In modern Java implementations, the output routines support the
Unicode bidirectional algorithm as well as contextual shaping of characters as needed for correct
rendering of many languagese.g., Arabic. There are also classes for more technical tasks such as
conversions between character encodings, so that you can make a Java program accept data in
different encodings. In addition to standard libraries included in Java implementations, there are open
source libraries available for Unicode-related operations, such as transliteration.

http://www.php.net/utf8_encode
http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.2.11.1. Characters, strings, objects, and methods

In Java, 'a' is a character constant, whereas "a" denotes an object of type String. The difference is
even more fundamental than in C, since in Java, objects can be used in many ways that cannot be
applied to simple scalar values. In an object-oriented language like Java, functions are properties of
objects and often called methods of objects.

A character constant is of type char, which is a simple scalar type, not an object. You can however
use the Character class, which wraps a simple character value in an object. You can declare, for
example, Character ch = new Character('a') to create a new Character object with a specific initial
value.

A function invocation in Java generally consists of the name of a class or object, a dot (period, full
stop), the name of the method, and a parenthesized list of arguments. (The class or object may be
implied in some situations, in which case the dot is omitted, too.) For example, "Hello
world".length() is a function invocation, using a method of a String object. No arguments are
passed to the function, since the function operates on the object. As you guessed, this is a standard
function that returns the length of a string.

11.2.11.2. Encodings and escape notations

A Java implementation may read Java source code in different encodings, but internally, it converts it
to Unicode. A programmer may create a source file in some Unicode encoding and use characters
directly. However, your system might use some other encoding by default. For example, if you work
with Java on Unix or Linux, the odds are that the native encoding is ISO-8859-1 and the Java
compiler assumes that, too. You can probably specify the encoding of your Java source in a command
option when you invoke the Java compiler (note the spelling UTF8 and note that you might not get
any error message if you spell it incorrectly!):

javac encoding UTF8 mytest.java

Alternatively, you can use some other encoding, such as ASCII, and use the \u notation (\u followed
by four hexadecimal digits; e.g., \u00df) to write characters that cannot be typed directly. Unlike
ECMAScript, which allows such notations in character and string constants only, Java allows them
anywhere in the source. Thus, you could use rôle as a variable name in Java, and you could also
write it as r\uF4le. However, it is still common to use only ASCII characters in names, to avoid any
potential problems with defective implementations and old software that might be needed in
conjunction with Java program.

The following Java program is a little more than a "Hello world" program. First, it includes a special
character in its output. Second, it writes the output both in the console and in a message window.
The reason is that if you test this program, you may well see the console output without the special
character, because the default console font is rather limited:

import javax.swing.*;
public class HelloWorld {
 public static void show(String text) {
 JOptionPane.showMessageDialog(null,text);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 public static void main(String[] args) {
 String msg = "Hello world! \u263A";
 System.out.println(msg);
 show(msg);
 System.exit(0);
 }
}

11.2.11.3. 16-bit characters

In Java, the values of type char are 16 bits long. For example, a character constant such as 'x' is
automatically implemented that way. Technically, the values are UTF-16 code units, not characters,
though these concepts coincide for characters in the Basic Multilingual Plane (BMP). This means that
you can directly use any characters in the BMP, but anything outside it needs to be handled
differently. Thus, Java is Unicode-oriented, but in an old-fashioned way.

The character concept in Java corresponds to a BMP character, or a code unit in
UTF-16. Other Unicode characters are represented as integers and called "code
points" in Java.

Internally, a value of type char is represented by its code number. Logically, characters are distinct
from numbers (integers), though. To obtain the Unicode code number of a character variable ch, you
can assign it to a numeric variable: int code = ch.

The Java String class (for immutable strings), as well as the StringBuffer class (for strings that may
vary in length and content), is based on the char type. Thus, a Java string is really a "Unicode
string"i.e., a sequence of UTF-16 code units, not characters.

If you need characters outside BMP, you can use the integer type int for characters. Java 5.0 has
added methods to the Character, String, and related classes for working with text in such
representation. As an alternative to this, you could use surrogatesi.e., represent a non-BMP character
as a pair of two char values that represent a surrogate pair. You cannot use the \u notation for
characters outside the BMP, but you can represent them as integers using a notation like 0x2f81a,
(for U+2F81A)i.e., digit zero and letter "x" followed by the number in hexadecimal.

11.2.11.4. Java identifiers

Java allows a rich repertoire of characters in identifiers according to the Unicode identifier concept,
with the extension that the dollar sign $ and the underscore (low line) _ are allowed anywhere in an
identifier. It is however still common to stick to using ASCII in Java identifiers, since programmers do
not know about the possibilities or do not dare to use them.

Java identifiers are case-sensitive; isDigit and isdigit are distinct identifiers. It is recommended
and common practice to use lowercase and uppercase in identifiers in a particular style. Names of
variables and functions (methods) normally start with a lowercase letter, and uppercase letters

http://lib.ommolketab.ir
http://lib.ommolketab.ir

correspond to starting a new word in the corresponding natural-language expression (e.g., "is digit"
makes isDigit).

11.2.11.5. Library routines

A modern installation of Java contains a collection of very useful functions and defined symbols for
working with characters, in the java.lang.Character class. You need to use the Character. prefix for
identifiers defined in the class when you use them in your program. For example,
Character.getType(ch) returns the General Category value of the character stored in the variable ch.

For details, consult the documentation at http://java.sun.com, such as the description of the class at
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Character.html.

The functions (methods) have some naming rules:

is... methods

These are Boolean (yes/no) functions for testing whether a property has the value true for a
character, passed as the argument. For example, isDigit. They correspond to yes/no
properties formally defined in the Unicode standard, such as the Digit property. (See Chapter
5.)

get... methods

These functions return the value of a property for a character, for a property with something
other than a yes/no value. For example, getType gives the value of the General Category
property for its argument. The values of this function are defined as symbolic names, formed
from the long names of Unicode properties but in all uppercase, with the comma omitted and
parts around the comma swapped, and with underscores instead of spaces. Thus, Letter,
uppercase is UPPERCASE_LETTER. (There are some deviations from this mapping of names, as
indicated in a sample program later.) The getNumericValue function returns the value of the
Numeric Value property as an integer, with the convention that it returns -1 if no numeric value
exists and -2 if the value is not expressible as an integer.

to... methods

These are various conversion functions. The functions toUpperCase, toLowerCase, and
toTitleCase return the uppercase, lowercase, and titlecase form of the argument, respectively.
They apply full case mappings, and so do the string functions with the same names. The
function toCodePoint takes two Java char values representing a high surrogate and a low
surrogate and returns the corresponding Unicode character (codepoint). The toChar function
can be used to perform the reverse operationi.e., to convert a non-BMP character to surrogate
form.

Not all Unicode properties have direct Java counterparts, but the available methods cover much of
the common needs. The web site http://www.fileformat.info/info/unicode/char/ contains searchable
information about Unicode characters in a format that contains a table of Java method values for a

http://java.sun.com
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Character.html
http://www.fileformat.info/info/unicode/char/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

character, but you could easily write a Java program that prints similar information.

To illustrate the use of the functions, here is Java code that traverses through a string and prints all
characters that are neither letters nor whitespace characters. Each character is printed on a new line
and followed by an indication of the Unicode block it belongs to. The symbol ! denotes negation in
Java, && means "and," and the operator + means string catenation when applied to strings:

import javax.swing.*;
public class Hello {
 public static void main(String[] args) {
 String msg = "Hello world! \u263a";
 for(int i = 0; i < msg.length(); i++) {
 char ch = msg.charAt(i);
 if(!Character.isLetter(ch) &&
 !Character.isWhitespace(ch)) {
 System.out.println(ch + " in " +
 Character.UnicodeBlock.of(ch)); }}
 System.exit(0);
 }
}

The program prints the following (except that the smiling face might appear as something
differente.g., ?'due to limitations of a font):

! in BASIC_LATIN
? in MISCELLANEOUS_SYMBOLS

Unicode property names are case-insensitive, but their Java counterparts are
case-sensitive, as are all identifiers in Java. The same applies to values like
BASIC_LATIN.

The Java functions corresponding to Unicode properties are listed in Table 11-5 (without the
Character. prefix in the function names). The order is by the short name of the Unicode property, as
in the description of the properties in Chapter 5. Only a subset of the Unicode properties is directly
covered by Java functions.

Table 11-5. Mapping of Unicode properties to Java constructs

Short Long name of property Java function

Alpha Alphabetic (See note after the table)

bc Bidi Class geTDirectionality

Bidi M Bidi Mirrored isMirrored

blk Block UnicodeBlock.of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Short Long name of property Java function

gc General Category getType

IDC ID Continue isUnicodeIdentifierPart

IDS ID Start isUnicodeIdentifierStart

lc Lowercase Mapping toLowerCase

Lower Lowercase isLowerCase

nv Numeric Value getNumericValue

tc Titlecase Mapping toTitleCase

uc Uppercase Mapping toUpperCase

Upper Uppercase isUpperCase

WSpace White Space isWhitespace

The Java function isLetter doesn't quite correspond to the Alphabetic property, since the latter is
true also for characters with General Category value of Nl (Number, letter) and for characters with
the OAlpha (Other, Alphabetic) property. For most practical purposes, isLetter is adequate for
testing whether a character is alphabetic. In some cases, isUnicodeIdentifierStart is better, since it
includes Nl.

In addition to functions like isUnicodeIdentifierStart, there are functions like
isJavaIdentifierStart, which are quite similar but allow $ and _, too.

In Java 5.0 and later, most of the functions that correspond to Unicode properties are defined both
for character (char) and integer (int) arguments. In the latter case, the argument is treated as a
code point, which may refer outside the BMP. Thus, you can relatively conveniently work with non-
BMP characters, too.

The return values of functions that correspond to Unicode properties with enumerated values are
technically of type byte or int. The values, encoded as integers, have symbolic names, though. For
example, the value L (Left-to-Right) of the Bidi Class property corresponds to
DIRECTIONALITY_LEFT_TO_RIGHT.

There are some predefined functions in Java that are not directly related to Unicode properties. They
are summarized in Table 11-6. The type is indicated in a simple manner, without a static qualifier.
In the "Invocation" column, the arguments of functions are specified by the names of their types. The
CodePointAt function and relatives (e.g., CodePointBefore) are not listed in the table; they can be
used to pick up a code point from a character array or sequence.

Table 11-6. Additional methods in java.lang.Character

Type Invocation Meaning

int charCount(int) Number of char values (1 or 2) needed to represent the code point

char charValue() Value of the Character object as a char

gc General Category getType

IDC ID Continue isUnicodeIdentifierPart

IDS ID Start isUnicodeIdentifierStart

lc Lowercase Mapping toLowerCase

Lower Lowercase isLowerCase

nv Numeric Value getNumericValue

tc Titlecase Mapping toTitleCase

uc Uppercase Mapping toUpperCase

Upper Uppercase isUpperCase

WSpace White Space isWhitespace

The Java function isLetter doesn't quite correspond to the Alphabetic property, since the latter is
true also for characters with General Category value of Nl (Number, letter) and for characters with
the OAlpha (Other, Alphabetic) property. For most practical purposes, isLetter is adequate for
testing whether a character is alphabetic. In some cases, isUnicodeIdentifierStart is better, since it
includes Nl.

In addition to functions like isUnicodeIdentifierStart, there are functions like
isJavaIdentifierStart, which are quite similar but allow $ and _, too.

In Java 5.0 and later, most of the functions that correspond to Unicode properties are defined both
for character (char) and integer (int) arguments. In the latter case, the argument is treated as a
code point, which may refer outside the BMP. Thus, you can relatively conveniently work with non-
BMP characters, too.

The return values of functions that correspond to Unicode properties with enumerated values are
technically of type byte or int. The values, encoded as integers, have symbolic names, though. For
example, the value L (Left-to-Right) of the Bidi Class property corresponds to
DIRECTIONALITY_LEFT_TO_RIGHT.

There are some predefined functions in Java that are not directly related to Unicode properties. They
are summarized in Table 11-6. The type is indicated in a simple manner, without a static qualifier.
In the "Invocation" column, the arguments of functions are specified by the names of their types. The
CodePointAt function and relatives (e.g., CodePointBefore) are not listed in the table; they can be
used to pick up a code point from a character array or sequence.

Table 11-6. Additional methods in java.lang.Character

Type Invocation Meaning

int charCount(int) Number of char values (1 or 2) needed to represent the code point

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Type Invocation Meaning

char charValue() Value of the Character object as a char

int compareTo(Character) Comparison using code numbers

int digit(char,int)
Numeric value of the character, using the radix specified by the
second argument

boolean equals(Object) Tests for equality by char value

boolean isDefined(char) Tests whether the code point is assigned

boolean isDigit(char) Tests for being a decimal digiti.e., gc = Nd

boolean isHighSurrogate(char) Tests for being a high surrogate code unit

boolean isISOControl(char) Tests for being a C0 or C1 Control character

boolean isLetter(char) Tests whether gc is Lu, Ll, Lt, Lm, or Lo

boolean isLetterOrDigit(char) Either isLetter or isDigit returns true

boolean isLowSurrogate(char) Tests for being a high surrogate code unit

boolean isSpace(char) Tests for space character: gc is Zs, Zl, or Zp

boolean isTitleCase(char) Tests whether gc = Lt

char charValue() Value of the Character object as a char

int compareTo(Character) Comparison using code numbers

int digit(char,int)
Numeric value of the character, using the radix specified by the
second argument

boolean equals(Object) Tests for equality by char value

boolean isDefined(char) Tests whether the code point is assigned

boolean isDigit(char) Tests for being a decimal digiti.e., gc = Nd

boolean isHighSurrogate(char) Tests for being a high surrogate code unit

boolean isISOControl(char) Tests for being a C0 or C1 Control character

boolean isLetter(char) Tests whether gc is Lu, Ll, Lt, Lm, or Lo

boolean isLetterOrDigit(char) Either isLetter or isDigit returns true

boolean isLowSurrogate(char) Tests for being a high surrogate code unit

boolean isSpace(char) Tests for space character: gc is Zs, Zl, or Zp

boolean isTitleCase(char) Tests whether gc = Lt

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.3. The Preparedness Principle

Well-written program code is prepared for handling any input data, even data that should not occur.
Handling may of course consist of simply detecting an error and, for example, skipping erroneous
data silently, skipping it with a warning message, or reporting an error and terminating. In writing a
subroutine that will not be called from outside our program, we might consider relying on the caller to
pass correct data only, to save both programming and execution time. When writing library routines,
especially if they perform complex tasks, the programmer should normally check all input data and
expect that, for example, a parameter of string type may contain just anything and of any length.

Processing of character data needs to be efficient, too, if the amount of data is large or processing
takes place very often. In most applications, the expected character data is from a small repertoire.
When processing data that represents people's answers to questions like "How many...?", we should
quickly process an answer that consists of common digits. Whether anything else is treated as an
error is a different matter. You might decide to accept other digits too, or even some verbal
expressions.

11.3.1. Being Prepared for Amount of Data

In particular, in program code to be invoked by other programs or directly by users in an open
environment (e.g., CGI scripts on the Web), checking all data is crucial. The software should expect
literally anything, such as a gigabyte of junk sent by a confused or malevolent user. Many attempts
at breaking into systems or at making them execute code written by a cracker are based on assumed
unpreparedness. Typically, a cracker sends special data that is expected to cause buffer overflowi.e.,
to make a program store a string larger than the buffer area allocated for it. The overflow may cause
the attacker's data to overwrite the program's code so that next it will be executed.

In a form on a web page, even if you use an attribute that is expected to limit the amount of data, it
can be overruled. Your form might contain <input name="foo" maxlength="80" size="50">, setting
the visible width of a text input field to (about) 50 characters and the maximum amount of data to 80
characters. However, anyone could copy the page, edit the form, and modify or remove the
restriction, just to do some experimentation or customization or to break your form handler. This
could mean sending data where the field is millions of characters long.

Thus, the classical advice on handling strings in Henry Spencer's Ten Commandments for C
Programmers is particularly important in the modern world:

Thou shalt check the array bounds of all strings (indeed, all arrays), for surely where thou
typest "foo" someone someday shall type "supercalifragilisticexpialidocious."

Of course, you might not use arrays to implement strings in the programming language you use, but
the principle is the same: check the lengths of strings.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.3.2. Being Prepared for Content of Data

In the modern world, we also need to be prepared for any content in strings. Someone someday will

type %46\ef β2/3 or something weirder. There are two basic aspects:

A string may contain characters that have special effects in the program. For example, a
program might contain a search operation controlled by a string supplied as data. This may
involve security threats by allowing intruders to execute their own code or make the program
crash. For examples of what this might mean in the Perl language, and for measures against it,
see the Perlmeme.org HOWTO entry "How do I use taint mode,"
http://perlmeme.org/howtos/secure_code/taint.html.

Some characters may confuse the data processing in a program because there is not
programmed handling for them. Of course, most programs are meant to handle only a small
repertoire of characters in a useful way. A program should however at least skip characters that
it does not know.

11.3.2.1. Methods of handling unexpected characters

When a program encounters a character (or a code point) that it is not prepared to handle normally,
it can perform one or several of the following actions. The choice depends, among other things, on
the application, its interactivity, and the type of the character.

Pass it through

The character could be treated as an unknown character, which is just passing by. Even though
the program does not "know" the character, it would store it as part of a string and save it or
pass it forward to any other program.

Skip (ignore) it

This means behaving as if the character were not present in the input. The character is
removed when storing input data into a program variable or data structure. This can be
adequate for characters that are expected to result from conversions, other technical
transformations, and software tools used to create a file. For example, data often contains NUL
(U+0000) characters for such reasons, and normally NUL has no meaning in input data.
Skipping any Unicode character that a program is not designed to handle is a feasible strategy
in some situations.

Warn about it

A program might issue a warning about a character that it cannot handle meaningfully,
especially if the character is not expected to appear. The warning might be formulated as an
error message, too. The warning should normally identify the character by its Unicode
numbere.g., "Unrecognized character (U+1234) detected at line 42 ignored." The number is
probably useless to an end user, but it helps a professional who has been asked to help with

http://perlmeme.org/howtos/secure_code/taint.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

the problem. It might be more user-friendly to issue a message that indicates the type of the
character (such as "Unrecognized letter (U+1234) ...")e.g., by its General Category property
value, using a suitable library function.

Map it to something else

A program could treat a character as corresponding to another character, which it can handle
properly. This is often user-friendly, but it is also risky. For example, a program that does not
handle accented letters could treat them as equivalent to the corresponding unaccented letter.
If your database stores strings in ASCII format, you could still allow accents in user input, so
that searching for "Rhône" would find an entry about "Rhone." When character data is to be
stored, you should probably warn the user about the mapping.

11.3.2.2. Displaying unrecognized or undisplayable code points

A program may need to handle unrecognized characters on display. Any software that renders
character data should be somehow prepared for the unexpected. Even if you have some planned
processing for any defined Unicode character, the data might contain an unassigned code point, a
private use code point, or a noncharacter. Unassigned code points might be assigned later, so
handling them means being aware of new versions of Unicode.

When an output routine receives a character that it does not understand, it is usually too late to
report an error. Errors should be handled at a higher level in the program logic, and the output
routine should expect that this has been done. The Unicode standard mentions, descriptively, the
following methods of rendering unassigned code points and private use code points (assuming, of
course, that the application does not assign a meaning to such code points):

Display the code number in four to six hexadecimal digits

Display a black or white box

Display a generic, character-like symbol, possibly using different symbols to denote unassigned
code points and private use code points

Display nothing; this is recommended for a collection of code points known as default ignorable
code points.

In practice, programs often use the question mark ?, too. This, as well as displaying the code number
as such, is problem because it cannot always be distinguished from the display of actual data. If
possible, use some special formatting (say, a different color) to indicate that something special has
happened. Displaying the code number can be informative to people who know character codes but
confusing to others. In any case, it might be a good idea to use some delimiters, such as <E000> or
{E000} instead of just E000. If possible, use delimiters that do not normally appear as data
characters.

Similar considerations apply to characters that a program recognizes but cannot display, typically due
to font restrictions. The standard suggests that the program could display a glyph that reflects the
type of the character, as derived from its known properties.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.3.2.3. Default ignorable code points

The Unicode standard defines some characters as ignorable in display by defaulti.e., to be ignored on
output if they are not supported in a constructive manner. These characters have no visible glyph or
advance width, but when adequately implemented, they may affect the display, positioning, or
adornment of adjacent or surrounding characters. The idea is that if a program does not know how to
do so, it should not display anything for the character, not even a symbol for a missing character.

Default ignorable code points are described by the Default Ignorable Code Point (DI) property,
defined in the DerivedCoreProperties.txt file of the Unicode database. It is a derived property and
covers the following:

Code points with a General Category value of Cf (Other, format), Cs (Other, surrogate, or Cc
(Other, control), except whitespace characters (e.g., TAB) and interlinear annotation characters
U+FFF9..U+FFFB

Noncharacter code points

A set of other characters, defined by the Other Default Ignorable Code Point (ODI) property (in
the file PropList.txt); currently, the set contains the combining grapheme joiner U+034F, some
Hangul filler characters, and some reserved code points

Default ignorable code points include the soft hyphen U+00A0, the word joiner U+2060, and the left-
to-right mark U+200E and the right-to-left mark U+200F (which all have General Category = Cf).
Thus, if a program does not support the functionality expressed with some of these characters, it
should completely ignore the character on display.

It is permissible for a program to present default ignorable code points in special circumstances, even
when it does not implement them as defined. In particular, word processors and layout design
programs often have a display mode where invisible formatting characters are shown in some special
way.

11.3.3. Table-Driven Versus Property-Driven Processing

In old-style programs that are meant to read ASCII data only, there are only 128 possible input
values. In practice, the program actually reads 8 bits, so it should check that the first bit is zero and
do something special if it is not. The processing of any normal data, however, can start with a simple
branching that uses, for example, a case or switch statement or something similar (depending on
language). It is feasible to handle all the possible 128 cases. Alternatively, you could use a table-
driven approach that uses a 128-element table to map an input character to something manageable,
such as an indicator of its class, according to an application-dependent classification.

In the simplest cases, a program can just test for an input character being "interesting" in the
context of the application and skip all other characters. For example, when reading numeric data, a
program could recognize just digits and a few other characters like "." and "-" and ignore the rest.
However, it is usually much better to report unexpected characters as errors or at least warnings.

When 8-bit character codes are used, similar simple approaches can still be used. A 256-element
decision table (or branching construct) is usually not excessively large. When a program reads

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Unicode data, the situation changes. Even if we consider only BMP characters, there would be tens of
thousands of entries to consider. Although modern computers can store and use large tables, the
programming work would be excessive.

The Unicode properties of character are, in part, meant to be used to make program logic simpler
and programs smaller. You could, for example, first use the General Category property value for the
initial branching. You could even group these values by their initial letter: letter (L), mark (M),
number (N), separator (Z), punctuation (P), symbol (S), and other (C).

The following rather simple program illustrates several principles described in this chapter. It is
meant to work in an environment in which character display is limited to ASCII. It processes a
Unicode string and presents it so that ASCII characters are displayed as such whereas other
characters are shown using special notations like "[L:f4]," where "L" indicates the character as a
letter and "f4" is its code number in hexadecimal. Such presentation might be useful to a
knowledgeable person who needs to inspect the content of a Unicode file that mostly consists of
ASCII characters. The program branches according to the General Category (gc) value of the
character, as obtained using the getType function; the gc values as defined in the Unicode standard
are given in comments:

public class show {
 public static void printc(String symbol, int data) {
 System.out.print("[" + symbol +
 Integer.toHexString(data) + "]"); }
 public static void main(String[] args) {
 String msg = "Rhône, 42\u00a0§, price £50";
 for(int i = 0; i < msg.length(); i++) {
 char ch = msg.charAt(i);
 int code = ch;
 if(code < 0x7F) { /* ASCII */
 System.out.print(ch); }
 else switch(Character.getType(ch)) {
 case Character.UPPERCASE_LETTER: /* Lu */
 case Character.LOWERCASE_LETTER: /* Ll */
 case Character.TITLECASE_LETTER: /* Lt */
 case Character.MODIFIER_LETTER: /* Lm */
 case Character.OTHER_LETTER: /* Lo */
 printc("L:", code);
 break;
 case Character.DECIMAL_DIGIT_NUMBER: /* Nd */
 case Character.LETTER_NUMBER: /* Nl */
 case Character.OTHER_NUMBER: /* No */
 printc("N:", code);
 break;
 case Character.NON_SPACING_MARK: /* Mn */
 case Character.COMBINING_SPACING_MARK: /* Mc */
 case Character.ENCLOSING_MARK: /* Me */
 printc("~:", code);
 break;
 case Character.SPACE_SEPARATOR: /* Zs */
 printc(" :", code);
 break;
 case Character.LINE_SEPARATOR: /* Zl */

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 System.out.println();
 break;
 case Character.PARAGRAPH_SEPARATOR: /* Zp */
 System.out.println();
 System.out.println();
 break;
 case Character.CONTROL: /* Cc */
 case Character.FORMAT: /* Cf */
 case Character.SURROGATE: /* Cs */
 case Character.UNASSIGNED: /* Cn */
 if(Character.isWhitespace(ch)) {
 System.out.print(ch); }
 else if(code >= 0xFFF9 && code <= 0xFFFB) {
 printc("A:", code); }
 /* Otherwise: default ignorable, no display */
 break;
 case Character.PRIVATE_USE: /* Co */
 printc("P:", code);
 break;
 case Character.CONNECTOR_PUNCTUATION: /* Pc */
 printc("_:", code);
 break;
 case Character.DASH_PUNCTUATION: /* Pd */
 printc("-:", code);
 case Character.START_PUNCTUATION: /* Ps */
 printc("(:", code);
 break;
 case Character.END_PUNCTUATION: /* Pe */
 printc("):", code);
 break;
 case Character.INITIAL_QUOTE_PUNCTUATION: /* Pi */
 System.out.print("[quote]}");
 break;
 case Character.FINAL_QUOTE_PUNCTUATION: /* Pf */
 System.out.print("[unquote]");
 break;
 case Character.OTHER_PUNCTUATION: /* Po */
 printc("!:", code);
 break;
 case Character.MATH_SYMBOL: /* Sm */
 printc("+:", code);
 break;
 case Character.CURRENCY_SYMBOL: /* Sc */
 printc("$:", code);
 break;
 case Character.MODIFIER_SYMBOL: /* Sk */
 printc("^:", code);
 break;
 case Character.OTHER_SYMBOL: /* So */
 printc("S:", code);
 break;
 default:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 printc("??:", code);
 break; } }
 System.out.println();
 System.exit(0);
 }
}

The program outputs:

Rh[L:f4]ne, 42 [S:a7], price [$:a3]50

Some old Java implementations classify characters with gc values Pi or Pf as if
the values were Ps or Pe, respectively. Therefore, they are unable to recognize
the predefined names INITIAL_QUOTE_PUNCTUATION and
FINAL_QUOTE_PUNCTUATION.

11.3.4. Naïve Processing

In old programs, character data is often processed in a naïve manner that assumes a particular
character code, typically ASCII. You might even see code like ch == 32, which tests for a character
being a space, using the ASCII code, instead of the more natural and more portable ch == ' '.

Suppose that the variable ch contains a single character and we wish to test whether the value is a
letter. The following style (exemplified here using the C language notation) is often used in old
software:

if(((ch >= 'A') && (ch <= 'Z')) || ((ch >= 'a') && (ch <= 'z'))) ...

Here, && means "and" and || means "or," and the expression operates on comparisons that test
whether the character's code number is between the code numbers of "A" and "Z" or between the
code numbers of "a" and "z." Generally, in programming languages, comparisons of character values
operate on the code numbers of characters.

If the data contains only basic Latin letters, the naïve approach works in most cases. The reason is
that in most character codes, those letters are in alphabetic order and consecutivei.e., there is
nothing but letters between "A" and "Z" or between "a" and "z" in the code. However, the assumption
is not correct for the EBCDIC code, as described in Chapter 3.

A more serious problem is that the approach fails for letters with diacritic marks, or for other than
basic Latin letters in general. It would be awkward to write code that compares a character value
against all the possible letters that might appear in Unicode data. A modern approach, which has
been good style for a long time, is to use subprogram (function) calls that test such things. For
example, in C, using the standard function library that you may refer to by using #include
<string.h> in your program, you can write as follows:

if(isletter(ch)) ...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is both simpler and more robust. However, it makes the program depend on the definition of the
isletter function, which can be locale-dependent. This can be a problem or an asset (see the section
"Using Locales" later in this chapter).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.4. Character Input and Output

In this section, we will discuss some special topics of character I/O. The most general question here
is whether we should read and write characters one at a time or by lines. This reflects an old division:
in the early days of computing, I/O was line oriented, typically with punched cards (corresponding to
lines of exactly 80 characters) as input devices and a line printer (typically with line length of 80 or
132) as an output device. After describing these modes, we consider Java file I/O and some character
input problems in web forms.

11.4.1. Character-Oriented and Line-Oriented Processing

In character-oriented input, a program reads a character at a time, typically using a subprogram like
getchar() in C. This means that line breaks will appear as characters returned by the subprogram.
Normally they are canonicalized, by the programming language's basic I/O routines, to some unified
representation. For example, in C, the getchar() function returns the character denoted by the
character literal '\n'. The identity of line break varies between C implementationsin practice, it is
either CR or LF. In any case, you can test for end of line by using code like if(ch == '\n')....

In line-oriented input, a complete line is read at a time. The data is typically stored to a memory area
specified by a parameter of the invocation of the input routine. It is usually the caller's responsibility
to allocate sufficient storage for the data. FORTRAN uses primarily line-oriented I/O: one read
operation reads at least one line, or (physical) record, to use the FORTRAN terminology.

It is easy to build line-oriented input upon character-oriented input; the opposite is not possible in
any direct way. The C language, for example, has line-oriented I/O functions as well, such as gets()
for getting an entire line, though it may read just part of a line in some cases. However, many people
think that such functions are unsafe, since it is difficult to control the input process and too easy to
fail to allocate sufficient storage. Thus, the argument goes, you might just as well write code of your
own for reading a line using a function for reading one character.

In Perl, input is essentially line-oriented. It is also implicit in the sense that you do not write a
subprogram call but enclose a file handle in the <> operator. The evaluation of a file handle implies
the input of a line. Thus, if you write $foo = <STDIN> in Perl, you ask the Perl interpreter to read a
line of input from the STDIN file and assign the data (including the trailing end of line character) to the
variable $foo. Things can be even more implicit in Perl. If you write while(<STDIN>) { zap(); }, then
you have written a loop that reads the entire STDIN file (standard input) one line at a time and
executes the subprogram call zap (). Within the subprogram, the current input line can be accessed
as the value of the built-in variable $_.

In order to process input character by character in Perl, you would read a line and then use string
processing operators to extract individual characters. Moreover, to refer to a single character in a
string, you would use substr, the substring operator, and specify a substring of length 1. This may
sound clumsy, but Perl programmers are used to it. On the other hand, they try to avoid dealing with
characters on such an individual basis and use matching and replacement operators instead.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Perl has the interesting feature that although you read a line at a time, you can make an entire file a
single line as far as Perl I/O is considered. The tool to use is the special variable $/, which specifies
the character to be recognized as line break. By explicitly setting it to an undefined value, you tell
Perl to treat no character as line break. This means that CR or LF will be read and treated as normal
data characters. Thus, assuming you have opened a file and assigned the handle DATA to it, the
following Perl code would read the entire content of the file into the variable $stuff as one string:

$/ = undef;
my $stuff = <DATA>;

This is very handy in many situations, where the program can be simplified by treating the input file
as one long string stored into a scalar variable. A typical example is a simple replacement operation
that should be performed throughout the data. The following program copies a file to another,
replacing each occurrence of the euro sign € (U+20AC) with the word "euros":

open(IN, "<:utf8", "orig.txt") or die "can't do input";
open(OUT, ">:utf8", "new.txt") or die "can't do output";
$/ = undef;
$all = <IN>;
print $all;
$all =~ s/\x{20AC}/euros/g;
print OUT $all;

11.4.2. Perl I/O

Although Perl uses internally UTF-8, it does not interpret input data as UTF-8 encoded by default.
Instead, it uses the encoding that is normal in its environment or that has been specified in the locale
settings. One reason for this is compatibility: it keeps old programs working. To make programs use
UTF-8 on input, you need to specify the encoding.

In Perl, a scalar value is internally accompanied with a utf8 flag, which indicates whether the value is
to be interpreted as UTF-8 encoded. String constants, for example, have this flag set. When reading
from a file, you normally get data that does not have the flag set. To specify that an input file be read
as UTF-8, you can do as follows in order to open a file and to read its first line into a variable:

open(IN, "<:utf8", "data.utx") or die "Missing data file";
$dataline = <IN>;

In the extra argument "<:utf8", the less-than sign specifies that the file is opened for input only, and
the rest specifies the encoding to be used. The filename is given in another argument. As you might
guess, you can open an output file for writing in UTF-8 encoding in a similar mannere.g., open(OUT,
">:utf8", "results.txt").

Alternatively, you can open an input file without the extra argument and convert the data after
reading it. For this, you would use the Encode package. The following example shows just the basic
approach. It does not contain error processing for the encoding operation, which may fail, since the
data might not be valid UTF-8 data:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

require Encode;
open(IN, "<data.utx") or die "Missing data file";
$dataline = Encode::decode_utf8(<IN>);

In the output of Unicode characters in Perl, a common problem is the warning "Wide character in
print." Technically, the reason is that you write UTF-8 characters to a stream that has not been
opened for such writing. This can be prevented by opening an output stream in UTF-8 mode, as
described above. For the standard output stream STDOUT, you use a statement that changes its mode,
as in the following example:

binmode STDOUT, ":utf8";
print "Hello world \x{263A}!\n";

The following demonstration program combines some of the techniques discussed here. It copies a
UTF-8 encoded file but replaces Greek letters with inverted question marks, ¿:

use charnames ':full';
open(IN, "<:utf8", "data.utx") or die "Missing data file";
open(OUT, ">:utf8", "data2.utx") or die "Cannot open output file";
$line = 0;
while(<IN>) {
 $line++;
 if($count = s/\p{Greek}/\N{INVERTED QUESTION MARK}/g) {
 print "$count replacement(s) on line $line.\n"; }
 print OUT $_; }

You can specify other encodings, too, when you open a file. Instead of utf8, you would use a
construct of the form encoding(name) in the second argument of open. The following program

performs a code conversion from windows-1252 to UTF-8:

open(IN, "<:encoding(windows-1252)", "dat.txt") or die "No data file";
open(OUT, ">:utf8", "dat2.txt") or die "Cannot write output";
while(<IN>) {
 print OUT; }

11.4.3. Java File I/O

In Java, you can perform file output in several ways, such as the following:

Functions like print and println in the PrintWriter class, for textual output. The format is in
the system's native encoding, which may well be a non-Unicode encoding. These functions are
polymorphic (generic)i.e., they accept arguments of different types.

The write function in the OutputStreamWriter class, which acts as a bridge between streams of
characters and streams of octets, encoding character data as needed. The function is
polymorphic: the argument can be a character, an array of characters, or a string. The default

http://lib.ommolketab.ir
http://lib.ommolketab.ir

encoding is the system's native encoding, but the encoding (such as UTF-8) can be specified as
a second argument when creating an OutputStreamWriter object.

The write... functions in the DataOutputStream class. They mean "binary" output, and for
character and string data, this means UTF-16 format. You need to select the function name
according to the argument typee.g., writeChars for a string.

The writeUTF function in the DataOutputStream class. It takes a string argument, so to write
anything else, you need to convert it to a string first. The function writes data in the Modified
UTF-8 encoding (see Chapter 6). This means that the NUL character and all non-BMP characters
are represented differently from UTF-8. Moreover, the function first writes two octets that
indicate (when interpreted as a 16-bit integer) the number of octets that constitute the data. Of
course, such data is meant to be read by the corresponding input routine, readUTF, or other
code that recognizes or at least skips the octets that express the count.

The following program illustrates writing a string into a file in each of the ways described above. The
test string is the three-character string written in Java source as Aé\u263a. The first character is an
ASCII character, the second one is a Latin 1 character that occupies two octets in UTF-8, and the
third one is U+263A, the smiling face:

import java.io.*;
public class output {
 public static void main(String[] args) {
 String msg = "Aé\u263a";
 String filename = "test.txt";
 try {
 OutputStream testf = new FileOutputStream(filename);
 PrintWriter testfile = new PrintWriter(testf);
 testfile.print(msg);
 testfile.close();
 System.out.println("Wrote " + filename);
 } catch(Exception error) {
 System.out.println("Failed to write " + filename); }
 filename = "testu.txt";
 try {
 OutputStream testf = new FileOutputStream(filename);
 OutputStreamWriter testfile =
 new OutputStreamWriter(testf,"UTF-8");
 testfile.write(msg);
 testfile.close();
 System.out.println("Wrote " + filename);
 } catch(Exception error) {
 System.out.println("Failed to write " + filename); }
 filename = "test16.txt";
 try {
 OutputStream testf = new FileOutputStream(filename);
 DataOutputStream testfile = new DataOutputStream(testf);
 testfile.writeChars(msg);
 testfile.close();
 System.out.println("Wrote " + filename);
 } catch(Exception error) {
 System.out.println("Failed to write " + filename); }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 filename = "test8.txt";
 try {
 OutputStream testf = new FileOutputStream(filename);
 DataOutputStream testfile = new DataOutputStream(testf);
 testfile.writeUTF(msg);
 testfile.close();
 System.out.println("Wrote " + filename);
 } catch(Exception error) {
 System.out.println("Failed to write " + filename); }
 System.exit(0);
 }}

If the sample program is executed on a system that uses ISO-8859-1 as its native encoding, the first
write effectively fails, though no exception is raised and no error message is issued. The character
U+263A cannot be represented in ISO-8859-1, so the output routine might write a question mark, ?,
instead. (This is questionable, but such things happen.) The other ways work well, though you cannot
directly view the file contents on programs that support ISO-8859-1 only. The results are
summarized in Table 11-7, which shows the contents of the files by octets (in a big-endian
computer).

Table 11-7. File output in Java: encoding of sample text "Aé "

Method Filename Content (as octets in hex) Comment

print test.txt 41 E9 3F ISO-8859-1, as ?

write testu.txt 41 C3 A9 E2 98 BA UTF-8

writeChars test16.txt 00 41 00 E9 26 3A UTF-16, no BOM

writeUTF test8.txt 00 06 41 C3 A9 E2 98 BA UTF-8 with octet count (00 06)

The methods for file input are analogous to output methods. We will here give just a rather trivial
example: a program that reads a UTF-8 encoded file and prints the (decimal) Unicode code numbers
of the characters. The program uses the read function in the InputStreamReader class, which is
analogous to the OutputStreamWriter class. Using these

Figure 11-1. A form with extra buttons for character input

classes, you can create a portable program and handle any character encoding supported by the Java

http://lib.ommolketab.ir
http://lib.ommolketab.ir

implementation. The read function returns the code number of the input character or -1, which
indicates the end of file:

import java.io.*;
public class IO {
 public static void main(String[] args) {
 try {
 FileInputStream datafile =
 new FileInputStream(new File("test.txt"));
 InputStreamReader input =
 new InputStreamReader(datafile,"UTF-8");
 int ch;
 while((ch = input.read()) != -1) {
 System.out.println(ch); }
 } catch(Exception error) {
 System.out.println("I/O error"); }
 System.exit(0);
 }
}

11.4.4. Buttons for Character Input

In "Virtual Keyboards" in Chapter 2, we discussed the idea of buttons for entering characters in a
data entry form. To implement it in an HTML form, you would use an input element of type button
and associate an onclick event with it. The event handler would append a character to the content of
an input box and focus on that box, so that the user can continue typing with the normal keyboard.
The interface is illustrated in Figure 11-1.

The idea can be implemented in JavaScript as follows. For simplicity, the example has just two
buttons, for entering ä and ö:

<form action="http://www.tracetech.net:8081/">
<div><label for="word">Finnish or English word:</label></div>
<div>
 <input type="text" id="word" name="word" size="25" maxlength="80">
 <input type="submit" value="Search">
</div>
<div>
 <input type="button" value="ä" onclick="append('ä')">
 <input type="button" value="ö" onclick="append('ö')">
</div>
</form>
<script type="text/javascript">
var word = document.getElementById('word');
function append(char) {
 word.value += char;
 word.focus(); }
</script>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.5. Processing Form Data

The form concept in HTML is rather simple, even simplistic. This has been obscured by the superficial
complexity of elements used to construct a form as well as by the variation in technologies for
processing form data . The basic idea is the following:

A form element in HTML defines a data structure for a fill-out form and indicates (in an action
attribute) the address of the software that processes the form data when submitted, the form
handler.

A form element containsinput fields, called controls in HTML specifications. An input field allows
a user to select between alternatives, type in data, insert a file, or submit the form data.

When a form is submitted, typically by clicking on a submit button (defined by an input field),
the web browser takes the contents of all input fields, encodes them in a particular way, and
submits this data to the form handler.

The data may pass through someinterface (such as Common Gateway Interface) that converts
the data to a format that is more easily processed by the form handler.

The form handler usually decodes the form data to a suitable format, often splitting it into
different variables corresponding to the fields of the form.

The rest is up to the form handler. It may, and normally should, send the browser some
response, such as search results, a notification or an error message, or the next part of a logical
form divided into parts.

Originally, form handling was designed for ASCII data. When the GET method is used (the form
element has the attribute method="GET", which is the default), the form data is encoded into a URL
using URL encoding as described in Chapter 6. Thereby the character repertoire is restricted to
ASCII. Form data processing is undefined in other cases, though in practice, other encodings have
been used, relying on extended URL encoding. Using method="POST" is in principle safer, since that
way, the form data is passed as a separate block of data, not as part of any URL.

A web author who sets up a form should consider the potential problems caused by non-ASCII input,
even if he has no intentions of processing such data. We will here present some basic problems and
solutions. More details are available on the page "FORM submission and i18n,"
http://ppewww.ph.gla.ac.uk/~flavell/charset/form-i18n.html.

You cannot prevent people from writing strange characters in form fields. You
can only be prepared to handle them somehow.

11.5.1. Decoding Form Data

http://ppewww.ph.gla.ac.uk/~flavell/charset/form-i18n.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The usual tools for decoding form data in programming languages extract the values of form fields
and decode the URL encoding. This is typically automatic in advanced programming tools. For
example, using Perl and the CGI.pm library for CGI scripting, you would use code like the following to
retrieve the value of a field foo to a variable $zap, as URL decoded:

use CGI qw(:standard);
$zap = param('foo');

Thus, a character that was typed as @ and URL encoded as %40, is again @ after this operation. In
PHP, for example, you would do the same thing as follows:

$zap = $_GET['foo'];

In some cases, you might wish to use functions that specifically URL decode data, such as urldecode
in PHP. It is, however, important to avoid URL decoding twice, since decoding already decoded data
can result in completely wrong results.

If you wish to use the decoded data on an HTML page, typically in the content of the result page that
the form handler sends, you need to escape the markup-significant characters < and & and possibly
quotation marks, as usual in HTML. Programming languages often have built-in functions like
HTMLescape for the purpose. However, there are problems with this, due to the way browsers may
represent special characters, as explained in "Avoid Oddities by Using UTF-8" later in the chapter.

11.5.2. Recognizing the Encoding

Extraction of fields from the form data and URL decoding them is not sufficient. You need to find out
the encoding in which the data should be interpreted. The encoding should be the same as on the
page where the form appears. Although HTML specifications define an accept-charset attribute for
specifying the encoding of form data, it has not been implemented. Instead, browsers use the page's
encoding if they can. We cannot always know for sure that a browser has got this right, though.

It is possible that a browser receives a document that is, say, ISO-8859-15 encoded and announced
as such, but the browser actually treats it as ISO-8859-1 or windows-1252 encoded. The user would
usually observe nothing wrong, especially if all characters used on the page have the same code
numbers in all the encodings. However, if she fills out and submits a form, her data might get
distorted. If she enters a character that has a different code in ISO-8859-15 than in the code actually
used, the form handler interprets it incorrectly.

A simple heuristic check is to include a hidden field in the form and check its value in the form
handler. The field should contain some characters that have different codes in encodings that might
actually be used by browsers. The euro sign U+20AC, representable in HTML as €, is a useful
diagnostic character, since it has different codes in Unicode and windows-1252, and it does not
belong to ISO-8859-1 at all. You could also include some other character, one that does not appear
in windows-1252. For example:

<input type="hidden" name="euro" value="€">
<input type="hidden" name="Omega" value="Ω">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In the form handler, you can check that the value of this field is what it should be. For example, if
your document was sent as ISO-8859-15 encoded, the value should be octet A0 in hexadecimal. If
your document was sent as UTF-8, the value should be the UTF-8 encoded form of U+20AC, which is
E2 82 AC.

If the test fails, you can know that something went wrong. Normal form processing should be
prevented. The form handler could, for example, just send back an error message like the following:
"Form data cannot be processed. Unfortunately, your browser is not able to handle the character
encoding UTF-8. Therefore, we cannot ensure that your data would be processed correctly."

11.5.3. Avoid Oddities by Using UTF-8

There is a particular reason to use UTF-8 on pages that contain a form. If the user enters a character
that cannot be represented in the encoding of the page, there is no rule that says what a browser
should do. It would be natural to expect that it issues an error message, or perhaps omits such a
character or replaces it with a suitable control character. However, what browsers normally do is
convert the character to a character reference (in decimal) and then include this value as URL
encoded into the form data.

For example, assume that your page is ISO-8859-1 encoded and contains a form with a text input
field. If the user enters, for example, the Greek capital letter omega Ω, browsers will typically convert
it to the character reference Ω and then URL encode this to the following: %26%23937%3B.
Although this is quite illogical (character references belong to HTML source, not to encoded data) and
does not conform to any specification, you need to take it into account. A user may fill out your form
using characters he finds natural or necessary, without realizing the limitations of the encoding.

Sometimes you may find it useful to keep special characters as character references. You need to be
careful, however. If you use normal tools or algorithms to HTML escape the data retrieved from form
fields, you would escape & as & and break the idea. On the other hand, plain & in the data needs
to be escaped. In principle, we cannot distinguish the string "Ω" generated by a browser from
Ω from the same string typed by the user. Effectively, you need to treat them as equivalent, as a
matter of form handler functionality, and you need to use an HTML escape method that leaves
character references intact. On the other hand, you could avoid the problem altogether.

By using UTF-8, you avoid the problem, since all Unicode characters are representable in it. On the
other hand, you need to handle the encoding, and this would be nontrivial, if your server-side
programming language does not support Unicode. However, even when you need to process the data
as an octet sequence to be interpreted by your code, you can process ASCII data easily: all octets in
the range 0..7F are ASCII characters.

11.5.4. Using UTF-8

The following demonstration code is a Perl script, intended to be used as a CGI script, and it uses the
CGI.pm library (see http://search.cpan.org/dist/CGI.pm/CGI.pm) for the creation of an HTML form
and for processing the form data. The script creates a UTF-8 encoded HTML document containing a
form and decodes the form data into UTF-8 format, and then writes the data to a file in UTF-8
encoding, in append mode. (In real life, you would want to include some checks against excessive
amounts of data and other abuse.)

http://search.cpan.org/dist/CGI.pm/CGI.pm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

#!/usr/local/gnu/bin/perl
use CGI qw(:standard);
use Encode;
binmode STDOUT, ":utf8";
print header(-charset => 'utf-8');
print start_html(-title => 'Collecting words', -encoding => 'utf-8'),
 h1('Collecting words');
if (param()) {
 if(open(OUT, ">>:utf8", "words.txt")) {
 $word = Encode::decode_utf8(param('word'));
 print OUT "$word\n";
 print p("Thank you for \x{201c}$word\x{201d}!"); }
 else {
 print p("Internal error, sorry!"); exit(0); }}
else {
 print start_form,
 "Some word(s): ",textfield('word'),
 submit(-name => 'Submit'),
 end_form; }
print end_html;

11.5.5. Submitting a File

When you use a form with a file input field (<input type="file">), the browser creates a special
input widget where the user can pick up a file from his system. The contents of the file will be
included into the form data as one of the parts of a multipart message. The part has headers of its
own, where the encoding could be specified. However, in practice, the browser will just copy the
contents of the file octet by octet, and it will insert a header that specifies the media type of the data
according to the file system properties. For example, if the filename suffix is .txt, the browser
includes a header that specifies the media type as text/plain without charset indication.

The conclusion is that the encoding and even media types of submitted files remain unknown. Human
intervention or application-related heuristics is needed to deduce such information. In some cases,
you might include a field where the user can specify the encoding of a file, but this would probably be
too challenging for most users.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.6. Identifiers, Patterns, and Regular Expressions

In the section "Classification of Characters" in Chapter 5, we preliminarily mentioned the use of
defined Unicode properties for the purposes of defining identifiers (names) and patterns of strings.
Here we will discuss the issue more technically.

Identifier syntax and pattern syntax had previously been treated as different issues. Unicode
combines the two intrinsically to some extent, and the Unicode standard presents them together in
Unicode Technical Report #31, "Identifier and Pattern Syntax,"
http://www.unicode.org/reports/tr31/. One reason for this is that patterns, as used in, for example,
search clauses, may need to contain identifiers.

11.6.1. Identifiers

An identifier is a defined name for something. Identifiers are extensively used in many computer
languagese.g., as names of constants, variables, and functions in programming languages or for
aggregates and components of data, such as table rows. An identifier is a formal name in the sense
that it is formed according to specific rules and it is kept the same, unless explicitly changed. An
identifier is often shorter than names used in natural languages. For example, the ISO 3166 standard
defines two-letter identifiers for countries, to be used as language-independent immutable code
names. (In practice, it does not quite work that way. Sometimes the codes are changed for political
reasons.)

11.6.1.1. Identifiers: internal or external?

In most contexts, identifiers are internal symbols that are not visible to end users of applications.
However, usually identifiers are meant to be more or less mnemonic and descriptive of their
meaning, to make computer code more readable and easier to maintain. Certainly, totalPopulation
is easier to understand than x78. In practice, programmers often use short identifiers such as n and x
especially for variables used very locally. In such style, c or ch often denotes a character variable and
s a string variable.

When the native language of a programmer or a group of programmers is not English, it may be
desirable to be able to use a wider character repertoire. Especially if the documentation and
comments are written in some other language, it would be natural to use that language in identifiers,
too. Besides, identifiers might stand for things that have natural names in some language. For
example, if you assign identifiers to municipalities of France, it would be natural to use accented
letters in them, even if you do not use the French names as such.

Identifiers may become visible to end users, perhaps even as something that they need to type. An
example is the naming of Internet domains (such as www.oreilly.com), where the components can be
regarded as identifiers. (This particular issue was discussed in Chapter 10.) End users often seen
identifiers in error messages and user interfaces, even if the programmers may have regarded the

http://www.unicode.org/reports/tr31/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

identifiers as purely internal and technical. On the Web, pages that use frames need to use identifiers
for them. Authors have typically used short and often cryptic names like frame1 or left for them.
Problems arise when people use browsers that implement frames in ways that authors did not
anticipatee.g., browsers that read the names of frames aloud, asking the user to choose between
them.

11.6.1.2. Traditional format of identifiers

Each computer language and data format that uses identifiers needs to define its identifier syntax,
and there is a lot of variation in it. However, conventionally, the definitions have been relatively
simply, allowing just a subset of ASCII. More exactly, the definitions typically allow ASCII letters,
digits, and a small collection of special characters.

Usually the first character of an identifier has to be a letter, or in some cases, a character treated as
equivalent to a letter, such as _ or $. The reason is that when parsing, for example, a computer
source program, you need to be able to distinguish identifiers from other atoms of text, such as
numbers and punctuation symbols. For example, when a programming language compiler or
interpreter reads "a+b" in program source, it needs to know whether + is allowed in identifiers or
not. If + were allowed, special rules would be needed to make it possible to distinguish such use of +
from its use as an operator.

For similar reasons, a space is usually not allowed in identifiers. A hyphen is typically not allowed
either. Since identifiers are often formed from two or more words of a natural language, this poses a
problem. The usual solutions are: just writing words together (e.g., openwindow), using case variation
(openWindow), and using the low line (underscore), if the identifier syntax permits that (open_window).

If identifiers occur in a limited context onlyi.e., in particular fields of a data structure, there is much
less need to use a restricted syntax for them. The typical identifier syntax is designed for use in
contexts where identifiers appear in the midst of program code or other data and need to be
recognized easily. However, even when identifiers occur in specific contexts only and need not be
parsed from text, safety considerations often lead to some restricted syntax.

When using traditional formats of identifiers, a specific syntax for them needs to decide on the
following matters:

Are both lowercase and uppercase letters allowed?

Which characters are allowed beyond letters and digits? They might include underline (_), dollar
sign ($), full stop (.), colon (:), and hyphen-minus (-).

Is the first character required to be a letter? If it is, are some special characters treated as
letters for this purpose?

Is there a maximum length?

The Unicode names of characters do not conform to this traditional syntax, since the names may
contain spaces. When the Unicode names are used as identifierse.g., in programming languagesthe
specific syntax might specify that spaces are replaced by underline characters. However, in some
contexts, spaces are permitted.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.6.1.3. Case sensitivity

Case sensitivityi.e., whether lowercase and uppercase letters are equivalentis an important feature
but external to identifier syntax. The syntax only defines the allowed format of identifiers. At the
dawn of the computer era, there were no lowercase letters available. Later, they were typically
treated as equivalent to uppercase letters, and this is still common in many contexts. A more modern
style, such as the one applied in Java and in XML, is to treat lowercase and uppercase as distinct,
making a and A two identifiers that are no more connected to each other than a and b are.

11.6.1.4. The Unicode approach to identifiers

The identifier concept described in the Unicode standard is a generalization of the traditional identifier
syntax. It is a basis upon which you can build different syntax definitions for identifiers, rather than a
standard identifier syntax per se. As UTR #31 itself puts it, it provides "a recommended default for
the definition of identifier syntax." For example, the syntax of programming language identifiers could
be defined by saying that it is the Unicode identifier syntax with the addition that the £ character is
treated as an Identifier Start character.

The syntax is very similar to the traditional syntax of identifiers, just with a possibility of using much
wider repertoires of characters in a convenient way.

11.6.2. Patterns

Patterns are used to describe the format of strings, for the purposes of searching and recognizing
components of a string. For example, for reading numeric data, some pattern is needed for
recognizing strings that constitute numbers. The specific pattern used determines, among other
things, whether ".0" or "0." is a number or whether a digit is needed on either side of the decimal
point. Similarly, the pattern specifies whether a period or a comma is used as the decimal separator
(or whether either of them is allowed).

The structure of identifiers is a pattern, too. Patterns can be very simple or very complex. For
example, a pattern might specify the format of lines in a logfile as just a sequence of characters from
a particular set. It could alternatively describe the structure of a line as containing particular fixed
strings, intermixed with other strings with some internal structure, such as sequences of digits or
letters, perhaps of a particular length.

The word "pattern" as used in the context of string processing has two meanings:

An abstract pattern, which specifies a general format of strings. Strings that are particular
realizations of the pattern are said to match it. For example, we could describe a pattern that
consists of nonempty sequences of normal digits. Unsigned integers such as 0, 42, and
38389212 match that pattern.

A pattern as described in some formalized notation. For example, the above-mentioned pattern
can be described in Perl as [0-9]+ or equivalently as \d+. Here, the plus sign indicates that the
preceding construct may be repeated indefinitely, and [0-9]+ and \d+ are two ways of
expressing the concept of normal decimal digit ("0" through "9"). Different notations may use

http://lib.ommolketab.ir
http://lib.ommolketab.ir

completely different syntax for patterns, though in practice, they tend to be rather similar. Quite
often, a pattern is expressed as a construct called a regular expression.

We are here interested in patterns in the latter, technical sense. Such a pattern itself is a string of
characters. It may contain characters of three kinds:

Syntax characters

These are characters that have a special meaning by the definition of the formal notation used
for patterns. In the pattern [0-9]+, the brackets and the plus sign as well as the hyphen-minus
are syntax characters .

Whitespace characters

A pattern may allow the use of whitespace for readability, with no effect on the meaning of the
pattern. For example, the pattern [0-9]+ could be written as [0 - 9]+, if desired.

Literal characters

All other characters are "literal"i.e., they denote themselves. Formally, a character that is
neither syntactic nor whitespace is a pattern that matches this particular character only.

If a character is defined as a syntax character or as a whitespace character in some formalism, it
cannot be directly used as a literal character. The reason is obvious: if you tried to do so, the
program that processes the pattern would treat the character by its defined meaning in the syntax or
as whitespace. Formalisms typically contain methods for escaping characters so that they can be
used in the role of a literal character. Several escape mechanisms were mentioned in Chapter 2. A
rather common method is to prefix a character with the backslash (reverse solidus) \ (e.g., \\ to
escape the backslash itself).

11.6.3. Identifier and Pattern Characters

The Unicode approach distinguishes the following disjoint sets of characters for use in identifiers and
patterns. The names in parentheses are the long and short name of the property that indicates, for
each character, whether it belongs to the set (see Chapter 5):

Identifier Characters (ID Continue, IDC)

This set is contains Identifier Start (ID Start, IDS) characters, which may appear anywhere in
an identifier, and characters that are allowed later in an identifier only. Identifier Start
characters consist of letters in a broad sense and of ideographs. The latter group, sometimes
called Identifier Continue-Only characters, contains decimal digits and a mixture of other
characters. These sets, described in more detail below, may be extended in future versions of
Unicode.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Pattern Syntax Characters (Pattern Syntax, Pat Syn)

This set contains characters that are used as operators or separators or in other special roles in
patterns. This set is fixedi.e., it will not be extended. There are 2,760 characters in it, as
defined in the PropList.txt file of the Unicode database. The ASCII characters in the set are:
!"#$%&'()*+,-./:;<>?@[\]^'{|}~.

Pattern Whitespace Characters (Pattern White Space, Pat WS)

This set contains characters treated as whitespace in patterns. Whitespace may be needed to
separate symbols from each other, but it is otherwise insignificant. This set too is fixed. There
are only 11 characters in it: horizontal tab (U+0009), line feed (U+000A), vertical tab
(U+000B), form feed (U+000C), carriage return (U+000D), space (U+0032), next line
(U+0085), left-to-right mark (U+200E), right-to-left mark (U+200F), line separator (U+2028),
and paragraph separator (U+2029).

The policy that Pattern Syntax Characters and Pattern Whitespace Characters are fixed (closed) sets
does not mean that actual identifier syntax needs to use exactly those sets. On the contrary, fixing
the sets makes it easier to define identifier syntax on a Unicode basis: it can be defined using the
Unicode syntax as an immutable base and adding or removing characters as desired. Of course, if a
specific identifier syntax definition makes a character such as $ allowed in an identifier, it is removed
from the Pattern Syntax Characters set in that syntax; the three sets must be disjoint.

The Identifier Characters and the Identifier Start characters are listed in the
DerivedCoreProperties.txt file of the Unicode database. As the name of the file suggests, the
definitions have been derived from other Unicode properties, in this case, mainly from the gc
(General Category) property.

Identifier Start characters include the following:

Characters with gc value Lu, Lt, Ll, Lm, or Lo (uppercase, titlecase, lowercase, modifier, or
other letter); this includes ideographs

Characters with gc value Nl (Number, letter)

A small collection of other characters, defined by the Other_ID_Start property; currently this

means script capital "p" (U+2118), estimated symbol e (U+212E), and U+309B and
U+309C, which are Japanese (kana) sound marks

Other Identifier characters include:

Characters with gc value Nd (Number, decimal digit)

Characters with gc value Mn (Mark, nonspacing) or Mc (Mark, spacing combining)

Sharacters with gc value Pc (Punctuation, connector)

A small collection of other characters, defined by the Other_ID_Continue property; currently
this means the nine Ethiopic digits U+1369..U+1371

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.6.4. Identifier Syntax

Identifier syntax is defined simply so that an identifier consists of one Identifier Start character
followed by zero or more Identifier characters (i.e., Identifier Continue characters). Thus, program
code that scans an identifier can be quite simple, if you can use functions that check for a character
being an Identifier Start or Identifier Continue character.

The syntax thus generally allows, among other things, words and abbreviations written in languages

that use an alphabetic writing system or an ideographic writing system. Examples: años, Ψυχ 8,

xyz42.

11.6.4.1. Normalization

The identifier syntax allows nonspacing marks like accents. You can use an identifier like résumé,
because é is defined to be a letter, but you could also use an identifier that contains é as decomposed
into "e" and a combining acute accent, U+0301. This means that you can also use a combination of a
letter and one or more diacritic marks that does not exist in Unicode as a precomposed character.

Nonspacing marks create the question of whether identifiers are regarded as equal if the only
difference is that one of them contains a precomposed character like é and the other contains the
corresponding decomposed character. The definition of identifier syntax may specify that such
identifiers be treated as the same, by specifying that Normalization Form C (as described in Chapter
5) is to be used.

Normalization is an optional feature in identifier syntax. If used, the particular normalization form has
to be specified. The definition may list characters that are to be excluded from normalization. There
are special rules to be applied if Normalization Form KC is used.

The standard does not define a general method for ignoring diacritic marks in identifiers. If you wish
to allow diacritic marks in identifiers, you are more or less supposed to treat them as significant.
Outside Unicode identifier syntax you could, however, normalize to Normalization Form D (canonical
decomposition only), and then perform a comparison that ignores nonspacing marks.

11.6.4.2. Case folding

Similarly to normalization, case folding is an optional feature. The definition of identifier syntax may
specify either simple or full case folding (as described in Chapter 5). If case folding is specified,
identifiers are internally mapped to lowercase. This of course applies to accented letters too, so
résumé and RÉSumé would be treated as the same.

Somewhat surprisingly, the standard says: "Generally if the programming language has case-
sensitive identifiers, then Normalization Form C is appropriate, while if the programming language
has case-insensitive identifiers, then Normalization Form KC is more appropriate." Logically, however,
case sensitivity is quite independent of the difference of these normalization forms: Form KC includes
compatibility decomposition.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.6.4.3. Identifiers (names) in XML

XML1.0 has an identifier syntax that is similar to the general Unicode identifier syntax but is defined
in a different way. The definition is fixed: addition of new characters, even letters, to Unicode does
not extend the character repertoire in XML identifiers. We will first consider XML 1.0 identifiers, and
then the broader XML 1.1 identifier syntax.

XML identifiers are important due to the widespread use of XML for various purposes, often in
contexts where identifiers might be shown to or written by end users. Identifiers are used to name
elements, attributes, enumerated values of attributes, entities, etc. Of course, XML-based markup
systems usually define a finite set of identifiers, and it is still common to use ASCII characters only in
them. In designing markup systems and in processing generic XML, it is important to know the exact
syntax.

XML identifier syntax, or name syntax as the XML specification calls it, is based on fixed rules derived
from "Properties of characters in Unicode version 2.0." These definitions are presented as explicit lists
in the XML specification, at http://www.w3.org/TR/REC-xml/#CharClasses. It is however much easier
to understand the definitions, when you consider the design principles:

Like the Unicode identifier syntax, the XML name syntax distinguishes between name start
characters and name characters in general.

Name start characters are "XML letters" and the underscore "_" and the colon ":". "XML letters"
are: characters with gc value Lu, Lt, Ll, or Lo (uppercase, titlecase, lowercase, or other letters)
or Nl (Number, letter), as defined in Unicode 2.0. Moreover, the following characters with gc =
Lm are included: U+02BB..U+02C1, U+0559, U+06E5, and U+06E6. Note: the colon ":" has a
special meaning in XML, and it should be used only for namespacing purposes.

Other name characters are: characters with gc value Nd (Number, decimal digit), Mc, Mn, or Me
(i.e., spacing combining, noncombining, or enclosing mark), or Lm (Letter, mark), as defined in
Unicode 2.0, and some other characters, namely the period ".", the hyphen-minus "-", and the
middle dot · (U+00B7) and the Greek ano teleia ‡ (U+0387). However, the enclosing marks
U+20DD..U+20E0 are excluded.

However, characters with compatibility decompositions are excluded. This excludes, for
example, Planck constant (U+210E) and superscript two 2.

Moreover, all characters in the range U+F900..U+FFDC (compatibility characters such as CJK
Compatibility ideographs) are excluded.

Thus, the XML name syntax has been defined rigorously and in a stable manner, but the definition is
far from intuitively clear and easy to remember. Table 11-8 summarizes the main points, though it
does not express all prohibitions.

Table 11-8. Allowed characters in XML names (identifiers) according to
General Category (gc) values as per Unicode 2.0

http://www.w3.org/TR/REC-xml/#CharClasses
http://lib.ommolketab.ir
http://lib.ommolketab.ir

gc Description Sample Role in XML names

Lu Letter, uppercase A Allowed

Ll Letter, lowercase a Allowed

Lt Letter, titlecase Allowed

Lm Letter, modifier (U+02B0)
Allowed; U+02BB..U+02C1, U+0559, U+06E5, U+06E6
not as first character

Lo Letter, other א Allowed

Mn Mark, nonspacing ̀(U+0300) Allowed, but not as first character

Mc Mark, spacing combining Allowed, but not as first character

Me Mark, enclosing ق
Allowed, but not as first character, and excluding
U+20DD..U+20E0

Nd Number, decimal digit 1 Allowed, but not as first character

Nl Number, letter Allowed

No Number, other ½

Zs Separator, space (space)

Zl Separator, line (U+2028)

Zp Separator, paragraph (PS)

Cc Other, control (CR)

Cf Other, format (SHY)

Cs Other, surrogate surrogates

Co Other, private use (U+E000)

Cn Other, not assigned (U+FFFF)

Pc Punctuation, connector _ Underscore "_" allowed

Pd Punctuation, dash - "-" (U+002D) allowed but not at start

Ps Punctuation, open (

Pe Punctuation, close)

Pi Punctuation, initial quote "

Pf Punctuation, final quote "

Po Punctuation, other !
Colon ":" allowed. Period "." and middle dot "·" allowed,
but not as first character

Sm Symbol, math +

Sc Symbol, currency $

Sk Symbol, modifier ^

So Symbol, other ©

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In XML 1.1, the approach is different: the identifier syntax is more permissive, based on allowing
everything that need not be excluded for specific reasons. However, there are few implementations of
XML 1.1. Usually, it is impractical to try to use XML 1.1, unless you need the extended identifier
syntax or similar features of XML 1.1 and you can use an XML 1.1 implementation.

The XML 1.1 name (identifier) syntax is simpler than XML 1.0 name syntax. Almost all characters are
permitted in names, excluding mostly just characters that need to be treated as punctuation, or
generally as delimiters in a context where names are used. Thus, the syntax is best described
negatively. Table 11-9 lists characters that are disallowed in XML 1.1 names either completely or as
the first character. In the "Status" column, "no" means that the character is disallowed, "cont."
means that it is allowed as a continuation character only (not at the start), and "special" means that
it has special meaning. The XML 1.1 specification contains a non-normative appendix "Suggestions
for XML names," which recommends additional restrictions.

Table 11-9. Characters disallowed or with restricted use in XML 1.1
names

Code point(s) Status Description

U+0000..U+002C no C0 Controls, space, and !"#$%&'()*+,

U+002D..U+002E cont. Hyphen-minus "-" and full stop "."

U+002F no Solidus /

U+0030..U+0039 cont. Digits 0 to 9

U+003A special Colon :

U+003B..U+0040 no ;<=>?@

U+005B..U+005E no [\]^

U+0060 no Grave accent '

U+007B..U+00B6 no {|}~, C1 Controls, NBSP, ¡¢£¤¥ §¨©ª«¬®¯°±23´µ¶

U+00B7 cont. Middle dot ·

U+00B8..U+00BF no ¸1º»¼½¾¿

U+00D7 no Multiplication sign x

U+00F7 no Division sign ÷

U+0300..U+036F cont. Combining marks

U+037E no Greek question mark ;

U+2000..U+200B no Fixed-width spaces

U+200E..U+203E no Various punctuation marks like "'" and

U+203F..U+2040 cont. Undertie and character tie

U+2041..U+206F no Various punctuation marks

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Code point(s) Status Description

U+2190..U+2BFF no Arrows

U+2FF0..U+3000 no Ideographic description characters and ideographic space

U+D800..U+F8FF no Surrogates and Private Use

U+FDD0..U+FDEF no Noncharacters

U+FFFE..U+FFFF no Noncharacters

U+F0000..U+10FFFF no Planes F and 10 (Private Use planes)

Although the definition of XML 1.1 names is more concise than the definition of XML 1.0 names and
includes large ranges, implying extensibility (new Unicode characters will be automatically allowed), it
is still somewhat difficult to use. Some characters (such as U+037E) have been excluded in a matter
that looks random, though there are reasons behind the exclusions (e.g., U+037E is canonical
equivalent to semicolon).

11.6.5. Alternative Identifier Syntax

The Unicode standard also specifies an alternate, more permissive syntax for identifiers. It is based
on the idea of excluding some characters from use in identifiers and allowing the rest. The characters
excluded are those that are reserved for syntactic use, so that identifiers can be distinguished from
text.

Syntax analysis based on this approach can be implemented more efficiently, since the exclusion set
is fixed and small. Thus, as new characters are added to Unicode, they automatically become
available for use in identifiers. In fact, they already are: the approach means that even unassigned
code points are allowed in identifiers. If a future version of Unicode assigns a character to a currently
unassigned position, nothing happens in the alternative identifier syntax. At another level, though, a
document that uses such a code point gains a better status with respect to the Unicode standard.

Thus, a scanner (parser) for identifiers using the alternative identifier syntax need not be changed, if
the Unicode standard is changed. On the other hand, the approach has drawbacks, too. The
permissive syntax is too permissive for many purposes. It has been described as allowing nonsensical
identifiers that lack any human legibility. However, even using the normal syntax, it is easy to write
identifiers that have no mnemonic value and intuitive understandability.

The definition of alternative identifier syntax is simple: an identifier is a sequence of characters not
containing any Pattern Syntax characters or any Pattern Whitespace characters. This definition can
be used as such or as modified in some documented way by adding or removing disallowed
characters.

An identifier that is formed according to the alternative syntax is sometimes called an extended
identifier or XID. The DerivedCoreProperties.txt file in the Unicode character database defines the
properties XIDS (XID Start), indicating whether a character may start an XID, XIDC (XID Continue),
which indicates whether a character may appear in an XID in general. These properties are seldom
needed, since the XID approach is based on excluding characters rather than using positive lists.

U+2190..U+2BFF no Arrows

U+2FF0..U+3000 no Ideographic description characters and ideographic space

U+D800..U+F8FF no Surrogates and Private Use

U+FDD0..U+FDEF no Noncharacters

U+FFFE..U+FFFF no Noncharacters

U+F0000..U+10FFFF no Planes F and 10 (Private Use planes)

Although the definition of XML 1.1 names is more concise than the definition of XML 1.0 names and
includes large ranges, implying extensibility (new Unicode characters will be automatically allowed), it
is still somewhat difficult to use. Some characters (such as U+037E) have been excluded in a matter
that looks random, though there are reasons behind the exclusions (e.g., U+037E is canonical
equivalent to semicolon).

11.6.5. Alternative Identifier Syntax

The Unicode standard also specifies an alternate, more permissive syntax for identifiers. It is based
on the idea of excluding some characters from use in identifiers and allowing the rest. The characters
excluded are those that are reserved for syntactic use, so that identifiers can be distinguished from
text.

Syntax analysis based on this approach can be implemented more efficiently, since the exclusion set
is fixed and small. Thus, as new characters are added to Unicode, they automatically become
available for use in identifiers. In fact, they already are: the approach means that even unassigned
code points are allowed in identifiers. If a future version of Unicode assigns a character to a currently
unassigned position, nothing happens in the alternative identifier syntax. At another level, though, a
document that uses such a code point gains a better status with respect to the Unicode standard.

Thus, a scanner (parser) for identifiers using the alternative identifier syntax need not be changed, if
the Unicode standard is changed. On the other hand, the approach has drawbacks, too. The
permissive syntax is too permissive for many purposes. It has been described as allowing nonsensical
identifiers that lack any human legibility. However, even using the normal syntax, it is easy to write
identifiers that have no mnemonic value and intuitive understandability.

The definition of alternative identifier syntax is simple: an identifier is a sequence of characters not
containing any Pattern Syntax characters or any Pattern Whitespace characters. This definition can
be used as such or as modified in some documented way by adding or removing disallowed
characters.

An identifier that is formed according to the alternative syntax is sometimes called an extended
identifier or XID. The DerivedCoreProperties.txt file in the Unicode character database defines the
properties XIDS (XID Start), indicating whether a character may start an XID, XIDC (XID Continue),
which indicates whether a character may appear in an XID in general. These properties are seldom
needed, since the XID approach is based on excluding characters rather than using positive lists.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.6.6. Pattern Syntax

The pattern syntax recommended in the Unicode standard uses fixed sets of Pattern Syntax
characters and Pattern Whitespace characters as described above. Of course, this does not mean
that in a particular formalism, every Pattern Syntax character needs to have a defined meaning.
Rather, Pattern Syntax characters are what you may define for use in the syntax.

The approach allows, and encourages, a design where the formalism requires that Pattern Syntax
characters must not be used as literal characters, even if the formalism does not assign a syntactic
meaning to them. This means that if such characters would be needed as literals, they must be
"escaped" using some suitable mechanism. In such a design, the formalism can later be extended by
assigning meanings to Pattern Syntax characters that are now unused.

For example, suppose that you have defined a formalism of regular expressions that does not use the
character #. Since it is a Pattern Syntax character, you would still require that it not be used as a
literal character but escaped somehowe.g., as \#. Now suppose that you later extend the formalism
by taking the character # into some use. This would mean that the regular expression foo\#bar would
still be correct and would have the same meaning (denoting the literal string "foo#bar"). The regular
expression foo#bar would become correct, with some meaning. If it were given as input to a program
that processes data by the old definition of your formalism, it would generate an error message, due
to the attempt to use # as a literal character. This is better than treating it as a literal, since this
would not be the intended meaning.

11.6.7. Regular Expressions

A regular expression, or regexp (or regex) for short, is a string of characters that presents a pattern
of strings, for purposes of searching and matching. Strings that correspond to the pattern are said to
match the regular expression. We can also say that a regular expression defines a set of strings. For
example, [a-z][0-9]* is a regular expression that represents the set of strings that start with a
lowercase letter "a" to "z" and continue with zero or more common digits 0 to 9.

Different syntaxes are used for regular expressions, but the syntax used in the example is rather
common. In simple cases, it is relatively intuitive if you just know one special rule: the asterisk *
indicates that characters matching the immediately preceding part of the expression may appear any
number of times, including zero. Thus, [0-9]* matches any sequence of digits, including the empty
string.

Another common convention is that the period . means "any character." For example, st.p is a
regexp that matches "stop" and "step" but also "st8p," "st!p," etc. An alternative convention is that
the question mark ? means "any character." This has caused some confusion, since formal
descriptions of programming languages typically use a syntax in which the question mark indicates
optionality of the preceding construct, so that, for example, c? matches the one-letter string "c" and
the empty string.

According to Unicode principles, the characters used in special meanings in regular expression syntax
should be selected among Pattern Syntax characters.

11.6.7.1. Regexp use in programming

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Regular expressions are widely used in programming, and many programming languages contain a
regexp syntax and matching, searching, or replacement statements where they may be used. They
often make it easy to specify the pattern matching to be performed, without needing to write the
code that implements the matching.

The following Perl program reads the standard input stream and prints only those lines to the
standard output stream that contain the characters "U+" followed by an alphanumeric character
(e.g., "U+A" or "U+9"). Note that the character + has been escaped with the backslash \, since
otherwise + would have a special meaning. The notation \w denotes an alphabetic character, also
called a "word" character:

while(<>) {
 if(m/U\+\w/) {
 print; }}

11.6.7.2. Regexp use by end users

Regular expressions have become relevant to end users, too, since search and replace operations in
programs often allow their use, at least in some limited form and maybe in a program-specific
syntax. In database searches, for example, regexp syntax, if available, is a powerful tool.
Unfortunately, the general search engines on the Web do not support regexp syntax, but site-specific
search tools may well do so.

Thus, regular expressions can be important to end users of applications, not just to programmers.
The concept is not widely known, though. Moreover, finding the tools and the specific syntax in a
program may require some experimentation or manuals.

For example, in MS Word, if you start a search (Edit Find or Ctrl-F), click on the "More" button,
and check the "Use wildcards" checkbox, you can use regular expressions in the search string. By
clicking on the "Special" button, you get a menu of characters and notations that have special
meanings in Word regexps. The menu also lets you enter special characters (with no special regexp
meaning) that might be difficult or impossible to type normally. The dialog is shown in Figure 11-2. In
fact, you can use regular expressions even without checking "Use wildcards," but then you need to
precede regexp syntax characters with a circumflexe.g., ^? instead of just ?.

In Unix and Linux environments, it is common to use programs like grep that accept regular
expressions as input. The following command would list all lines in file data.txt that contain the string
"U+" followed by an alphanumeric character (cf. to the preceding example of a Perl program):

grep "U\+[A-Za-z0-9]" data.txt

Some special characters used in regular expressions are often called wildcards (or wildcard
characters). The word comes from card games such as poker and canasta where some cards, such as
jokers or deuces, may be used in place of any other card.

On the other hand, the word "wildcard" often refers to a more limited syntax that gives some of the
capabilities of regexp syntax. For example, in many search operations, you can use a special
character, often * or #, to denote an arbitrary string (including the empty string). Thus, a database

http://lib.ommolketab.ir
http://lib.ommolketab.ir

search interface might let you type synta* or synta# to refer to all words that begin with "synta"
(e.g., "syntax," "syntactic," etc.). The exact meaning of such notations depends on the program, but
it would typically correspond to what we could express in regexp syntax as synta[a-z]*.

When using regular expressions, we often wish to use constructs that refer to "words" in a meaning
that roughly corresponds to words in a natural language. For this, we may need

Figure 11-2. Using regular expressions in MS Word

http://lib.ommolketab.ir
http://lib.ommolketab.ir

an expression for "letter." An expression like [A-Za-z] that covers only the basic Latin alphabet "A" to
"Z" is too limited for most languages written in Latin letters.

11.6.7.3. Unicode regular expressions

The use of regular expressions in conjunction with Unicode is defined in the Unicode Technical
Standard UTS #18, "Unicode Regular Expressions," which is available online at
http://www.unicode.org/reports/tr18/. It is not part of the Unicode standard but a separate
specification issued by the Unicode Consortium.

The specification defines three levels of Unicode support that a program may offer if it recognizes and
interprets regular expressions:

Basic Unicode Support

This means that Unicode characters can be used in regular expressions.

Extended Unicode Support

This level additionally includes recognition of grapheme clusters, detection of word boundaries,
and canonical equivalence.

Tailored Support

This adds the possibility of tailoring the processing of characters, including language-dependent
rules.

The specification UTS #18 does not fix the specific syntax to be used for regular expressions, but it
uses a sample syntax, which is based on the syntax used in Perl. The description of the Perl syntax is
available via http://www.perl.com/pub/q/documentation.

11.6.7.4. Basic Unicode support

There is no guarantee that a programming language (or an application) that recognizes regular
expressions has even basic Unicode support as defined in UTS #18. However, such support is
becoming common, and in learning how to use a language, it is useful to know the basic ideas as a
background. Basic Unicode support requires:

A general mechanism for specifying a character by its Unicode code number

This could be \u n as in many languages or \x{n} as in Perl, where n is the code number in

hexadecimal. Such notations can be combined with other constructsfor example, [\u3040-
\u309F] might denote the set of characters from U+3040 to U+309F.

http://www.unicode.org/reports/tr18/
http://www.perl.com/pub/q/documentation
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Specifying sets of characters by properties

Some notation is needed for denoting sets of characters by properties. At least the following
properties must be supported: General Category, Script, Alphabetic, Uppercase, Lowercase,
Whitespace, Noncharacter Code Point, and Default Ignorable Code Point. The specific syntax
may vary, but the recommendation is that both abbreviated names and longer, more
descriptive names of properties and their values be recognized. Moreover, implementations
should apply loose matching of property names, ignoring the case distinctions, whitespace,
hyphens, and underlines. Thus, assuming that the specific syntax is of the form \p{name=value}
(to denote characters for which a particular property has the specified value), then
\p{General_Category=L e t t e r} and \{gc=L} should both be accepted. The properties Script
and General Category may have the property name omitted. Thus, simple \p{letter} or p{L}
should work, too.

Set subtraction and intersection

A notation is required for specifying the set difference and set intersection of two sets of
characters. The operator could be "-" for difference, & for intersection. Thus, [\p{Letter} -
Qq] could mean any letter but "Q" or "q," and [\p{Latin} & [\u41 - \u2AF]] could mean Latin
letters in the range U+0041 to U+02AF.

Word analysis

An implementation is required to provide at least a simple mechanism for recognizing word
boundaries, using a reasonable definition for "word." Minimally, this means that all alphabetic
characters as well as zero width non-joiner U+200C and zero width joiner U+200D are treated
as word characters. Moreover, a nonspacing mark must be treated as belonging to the same
word as their base character. In Perl, the concrete notations that can be used include \w, which
matches any word character, and \b, which matches a word boundary.

Case insensitive matching

If an implementation supports case insensitive matching for regular expressions, it must
correspond at least to the simple case matching algorithm of Unicode (see Chapter 5). For

example, the small sigma σ (U+03C3), the small final sigma , and the capital sigma Σ must
all match.

Line boundaries

If an implementation provides for line-boundary testing, it shall recognize not only CRLF, LF,
and CR, but also NEL (U+0085), PS (U+2029), and LS (U+2028) as terminating a line.

Full code point range

An implementation should handle the full Unicode code point range (U+0000 to U+10FFFF),
including planes outside the BMP.

The sample syntax follows the Perl approach even in the rather odd convention that the use of \P

http://lib.ommolketab.ir
http://lib.ommolketab.ir

instead of \p indicates negation. For example, the regular expression \P{Letter} matches all
characters that are not letters.

11.6.7.5. Examples

Utilities like the grep program (command) exist in different versions, and modern versions generally
support Unicode regular expressions. A Unicode-capable version can be downloaded from
http://www.gnu.org/software/grep/. The following command illustrates simple use of such a version.
The command lists those lines in a file that contain a word that begins with "B" and ends with "n."
The special construct [[:alpha:]] matches any alphabetic Unicode character, including accented
letters of course (so that the full expression matches, for example, "Bohusvägen" and "Blixén").
However, this functionality may depend on locale settings:

grep 'B[[:alpha:]]*n' data.txt

The following Perl program reads UTF-8 encoded input and prints all lines that contain a word
beginning with é or É. The construct \b matches the start of a word, and the specifier i after the
second slash means case-insensitive matching. The letter é is written using the special construct \N{
name } to avoid problems that might arise from writing it directly into Perl source:

use charnames ':full';
binmode STDIN, ":utf8";
while (<>) {
 if(m/\b\N{LATIN SMALL LETTER E WITH ACUTE}/i) {
 print; }

In Java, using modern implementations like JDK 1.4, the same operation could be coded as follows.
Note that in the string defining the regular expression, "\\b\u00E9", the first occurrence of the
backslash needs to be doubled, since the backslash is a special character in Java strings. Thus, in
order to include it in the actual string data passed as argument, it must be escaped. A Java compiler
interprets the notation \u00E9 as denoting U+00E9i.e., é'so the backslash must not be escaped.
Another specialty is that when using the compile function to define a regular expression, a second
argument may be used to specify flags for the matching, and a simple Pattern.CASE_INSENSITIVE
would limit case folding to ASCII characters. Using Pattern.UNICODE_CASE, you request Unicode case
matching rules. The input routines used here perform input in the system's native encoding:

import java.util.regex.*;
import java.io.*;
public class RegexpExample{
 public static void main(String[] args) throws IOException {
 Pattern regexp = Pattern.compile("\\b\u00E9",
 Pattern.CASE_INSENSITIVE + Pattern.UNICODE_CASE);
 BufferedReader infile =
 new BufferedReader(new FileReader(args[0]));
 String line;
 while ((line = infile.readLine()) != null) {
 Matcher m = regexp.matcher(line);
 if (m.find()) {
 System.out.println(line);

http://www.gnu.org/software/grep/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 }
}
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.7. International Components for Unicode (ICU)

The International Components for Unicode (ICU) activity is driven by major software companies, but
it involves voluntary work too and is based on the open source principle. The ICU software consists of
components (subroutines, modules) that are available as source code and portable to different
operating systems. ICU is often characterized as a "project," but by its nature, it has to be a
continuous activity, to keep up with the development of the Unicode standard and related
specifications.

Originally released (in 1999) as "IBM Classes for Unicode" and still substantially supported by IBM
and other vendors, ICU has become the first choice for building software that works with Unicode
data, when possible. ICU was originally written in Java, and later support to C and C++ has been
added. The Java version is called ICU4J, and the C and C++ version is ICU4C .

The official ICU site is hosted at http://www.ibm.com/software/globalization/icu/. It contains a handy
"Getting started with ICU" section. The other key site is found at http://icu.sourceforge.net/ and is by
SourceForge, the development and download repository of open source code and applications. The
sites are linked together in many ways, so you can start in either of them. ICU contains software
components for several purposes:

Basic text

Unicode text handling, character properties, and character code conversions

Text analysis

Unicode regular expressions and characters, operations on collections (sets) of characters, and
detection of word and line boundaries

Sorting and searching

Language-sensitive collation and searching

Transformations

Normalization forms, case mappings, transliterations

Locales

General locale data and resource bundle architecture

http://www.ibm.com/software/globalization/icu/
http://icu.sourceforge.net/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Complex text layout

For example, Arabic, Hebrew, Indic, and Thai

Time and date

Representation of and operations on dates and times in multiple calendars and time zones

Formatting and parsing

Reading and writing dates, times, numbers, currencies, messages, and rule-based patterns

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.8. Using Locales

Computer technology has mostly been developed in English-speaking environments, and much of the
way in which it handles characters and notations reflects the conventions of English. However, the
majority of people speak languages other than English as their native language. As computers
become a popular commodity, it is increasingly important to let people use them in their own
language and according to their cultural conventions. To big software companies, this is essential,
since they aim at a worldwide market. It is also important to small companies, due to the competitive
advantage.

There are many aspects in making computing technology useable to people with different
backgrounds, and part of this is the translation of user interfaces to software. This includes traditional
translation work but also new challenges. Increasingly, programs generate texts dynamically, as
immediate responses to user queries and responses. Of course, such texts cannot be translated on
the fly by human translators.

Suppose that you are designing a program that accepts a search string as input from a user,
searches for data in a bibliographic database (i.e., a database containing information about books,
serials, etc.), and displays some results to the user. Naturally, the explanations (like "Found 42 hits")
should appear in a language of the user's choice, if possible. This is typically straightforward, since it
is mostly a matter of translating fixed texts. The book titles may be in any language, and this is a
character-level challenge. But the information also contains data such as date of issue and language
of the book.

In a well-designed database, data like date and document language is expressed in an unambiguous,
easily machine-processable format. For example, the date might be in a format that conforms to the
ISO 8601 standard, in year-month-day notation like "1985-11-06," and the language might be
expressed using a two- or three-letter code as defined in the ISO 693 family of standardse.g., with
"de" indicating German. When the data is to be presented to a user, however, it should be expressed
in a format that the user finds understandable and natural. To some people, this might mean
"November 6, 1985" and "German." To some other people, it might mean "6. marraskuuta 1985" and

"saksa," or perhaps "6 1985 ." and " ." The goal is to achieve this
without forcing software designers to know about the language-dependent conventions and strings.

11.8.1. The Locale Concept

The data presentation conventions of a language constitute a locale. More technically, a locale is an
exact, usually formalized specification of some data presentation conventions. Typically, a locale is
about a language, so the name "locale" is somewhat misleading, and so is the rather common way of
presenting locale settings to a user under a name that primarily refers to country or regional settings.
The word "locale" is of course related to the word "local," though there is a difference in meaning as
well as in pronunciation. (In "locale," the stress is on the second syllable.)

There is sometimes some locality in a locale, though, since some conventions depend on the country

http://lib.ommolketab.ir
http://lib.ommolketab.ir

or other area, too. For example, the British English locale differs from the U.S. English locale
somewhate.g., in the conventions for quotation marks. Even then, language is the primary choice,
and the country selection is secondary and optional.

Technically, locales are identified by structured strings with components for language, script (writing
system), country or other territory, and variant. The underscore "_" is used as a separator between
the components. Only the first component is obligatory, and it is a two- or three-letter language
identifier (see Chapter 7). Naming conventions take care of unambiguity when components are
omitted. For example, in the identifiers "en_GB" (British English) and "fr_CA" (Canadian French), the
second component is a country identifier, since it consists of two letters. A four-letter component is a
script identifier; for example, "zh_Hans" means Chinese written in the Traditional script.

In practice, locales are mostly identified by a language code only or by a language code and a
country code. This means that they are very similar to language codes with an optional country
specifier, though with different punctuation. In principle, the locale "en_US" indicates the notational
conventions used by English-speaking people in the United States, whereas "en-US" is a language
code for English as spoken in the U.S. In practice, the line between locales and languages is fuzzy.

A locale can be very specific, even relating to the conventions applied by some specific ethnic or
cultural group. Ultimately, a locale can even be a personal locale: as a user, you could select a locale
according to your native language, then perhaps a specific variant of the language, and add some
cultural preferences (e.g., the use of "AD" or "CE" in year denotations), and finally some purely
personal preferences, if you like. For practical reasons, though, most of the work revolves around
language locales for now, though they may allow some variation.

Previously, different companies (and even different groups within one company), associations, groups
of volunteers, and even individuals have decided on locale settings independently of each otherand
without asking language authorities or representative groups of people using a language.
Consequently, if you look at the different language versions of different programs, you can see
incompatibilities and even errors. For example, language-dependent names for countries may vary
within a language. For usability, it would be better if a U.K. citizen could see his country under the
same name (and hence in the same place in alphabetic order) in country selection menus in different
programs and services. Whether it is "United Kingdom" or "Great Britain" is less important from the
practical point of view.

Some localization decisions in programs have been outright wrong, giving localization a somewhat
bad reputation in some circles. Many people who do not speak English as their native language prefer
an English version of a program to a poorly localized version. All too often, a "localized" version is
actually a mixed-language version, perhaps even so that the program asks a question in the user's
language but presents the options for an answer in English, or some commands in a menu in one
language, others in another.

11.8.2. CLDR

The Common Locale Data Repository (CLDR) is about making user-oriented presentation of data
easier, so that system designers and programmers can implement it easily. Ease of implementation is
essential, since software vendors, still less individual people, cannot be expected to find out and
implement all the possible conventions used in the hundreds of written languages of the world.
Moreover, such conventions are sometimes debatable or subject to interpretation. Suppose you are
designing programs that might be used throughout the world, with user interfaces in different

http://lib.ommolketab.ir
http://lib.ommolketab.ir

languages. Would you like to take position on some heated question about the orthography or date
format or names of countries in Swahili or Thai? You would probably prefer applying the rules decided
by authorities and experts on the languages.

The general idea is to collect reliable data based on consensus about language-dependent
conventions, present it in a rigorously defined (XML-based) format, and make it available worldwide.
Ideally, the data is used when building general purpose subroutine libraries. Thus, a programmer
need not know anything specific about the conventions, or even see them. She would just call, for
example, a library routine to print a date, passed as a parameter in some standard format, according
to the conventions of a language. The language would be specified by using a standardized language
code, and it could be passed as a parameter to the output routine. Preferably, however, the routine
would get the language code from user settings in the computer where the program runs. Of course,
more primitive tools could be used, too. The mere availability of reliable data on cultural conventions
on data presentation will help a lot, even if the information is implemented in programming "by
hand"i.e., by coding it separately for the supported languages.

At the cultural and social level, the CLDR approach makes it possible to support small languages and
ethnic groups, even very small ones, at an acceptable cost. Once the data about the conventions of a
language has been produced and stored in CLDR, there is no extra cost in supporting that language
along with others, as regards the scope of CLDR. Of course, there would still be the cost of
translating application-specific texts, such as command menus, instructions, and error message
texts.

Dynamic adaptability to the user's locale is particularly important in modern online services, such as
those based on the web services concept. When a request may come from any source, it is essential
to try to recognize the user's preferred language and present the answer in the conventions of that
language. This of course applies to situations where you communicate with a human user, rather
than just a program. The localization is often best left to the user interfacee.g., so that in a
server/client architecture, the server sends the response in internationalized format and the client
presents it to the user according to the user's locale.

The CLDR activity was launched in 2004 by the Unicode Consortium, continuing the work of a joint
effort by IBM, Sun, and OpenOffice.org. The activity has produced an extensive and growing
database. The CLDR database is independent of the Unicode standard but related to it in many ways.
Naturally, it uses Unicode as the character code, but many of the definitions in CLDR relate directly to
the use of Unicode characterse.g., the rules of using quotation marks in different languages and the
language-specific collation rules that are to be superimposed on general Unicode rules. The main
page of the CLDR activity is http://www.unicode.org/cldr/.

For discussion on CLDR, the public Unicode discussion list (email list), described at
http://www.unicode.org/consortium/distlist.html, can be used. The list exists for all discussions
related to the activities of the Unicode Consortium.

ICU is the best-known implementation of CLDR definitions, but a clear distinction should be made
between them. CLDR specifies types of data that can be localized and specific values for such data in
different locales. It does not prescribe any particular implementation. ICU, on the other hand, is a
collection of software that implements the CLDR definitions, or part of it, among other things. It is
quite possible to implement CLDR in other wayse.g., using your own code that directly reads the
CLDR data and converts it to suitable tables and algorithms. If you need or decide to implement just
a small part of CLDR, you might even do it "by hand." As support to CLDR becomes more mature in
software libraries, you will probably want to use their built-in CLDR support even for trivial tasks, just
because it's easier.

http://www.unicode.org/cldr/
http://www.unicode.org/consortium/distlist.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.8.2.1. CLDR versus Unix/Linux/POSIX locale concept

There have been some predecessors of CLDR, but their scope of application remained rather limited.
In particular, although especially Unix and Linux systems have a "locale" concept, defined in the
POSIX specifications and allowing user-selected presentation format for some data, it covers only a
few features of presentation. CLDR is much wider, and growing even wider. Moreover, it is supported
by major software companies, which have technological and economic motives for promoting and
implementing the ideas. As an indication of this, they have permitted the creation of comparison
tables, which compare CLDR definitions with the actual settings in software from different vendors.

Although CLDR owes much to the previous work, there will also be conflicts between old and new
concepts and techniques. In particular, the POSIX-style locale concept involves character code and
encoding in addition to language and country.

The POSIX specification has been merged into the Single Unix Specification, Version 3, by The Open
Group, and it is available via http://www.unix.org/version3/. A POSIX locale contains the following
categories, each identified with an environment variable:

LC_CTYPE

Character classification and case conversion

LC_COLLATE

Collation order

LC_MONETARY

Monetary formatting

LC_NUMERIC

Numeric formatting (other than monetary)

LC_TIME

Date and time formats

LC_MESSAGES

Formats of informative and diagnostic messages and interactive responses; in practice, strings
that are to be interpreted as affirmative (yes) or negative (no) answers

Typically, the overall (POSIX) default values correspond to the locale "C" alias "POSIX," which is a
programming-oriented locale, which in practice implies the English language. Setting the environment

http://www.unix.org/version3/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

variable LC_ALL (e.g., with the shell command export LC_ALL=fr or setenv LC_ALL fr) is supposed to
set all the above-mentioned variables to suitable values. In practice, the system-wide default for
LC_CTYPE often carries the name of a character encoding (e.g., export LC_CTYPE=iso8859 -1,
documented as "country setting"), as if encoding implied classification and conversion rules. Similarly,
the available full locale names may carry the encoding, for example, en_GB.iso8859-1, en_US.UTF-8,
etc.

Consider the following C program, which is very trivial: it simply prints the value "42.01" as
formatted text. However, it has been localized in the POSIX sense. It calls the standard library
routine setlocale in a manner that makes the program use the locale settings as defined by the
environment variables. If the value of LC_ALL does not correspond to any locale known to the system,
setlocale returns a null pointer, and our program recognizes this and issues an error message:

#include <stdio.h>
#include <locale.h>
int main() {
 if(!setlocale(LC_ALL, "")) {
 fprintf(stderr, "Unknown locale\n"); }
 printf("%6.2lf\n", 42.01);
 return 0; }

The following demonstration shows how the program (stored in print.c) is compiled with the gcc
compiler and executed, then executed again after setting the locale (to French). Recompilation is not
needed, since the locale selection takes place at runtime:

% gcc print.c
% ./a.out
 42.01
% setenv LC_ALL fr
% ./a.out
 42,01
%

Although this may look nice, localization has been rather problematic. The repertoire of available
locales is usually rather limited, there can be errors in their values, and locale settings via
environment variables might be used when they shouldn't. In testing the simple program, I made the
mistake of having LC_ALL set to the value en (English) when trying to compile the program, and I got
the error message "couldn't set locale correctly" from the compiler. Apparently, the compiler checked
the locale settings, theoretically to adapt its own behavior to them, but did not recognize the locale
name.

You can view the list of available locales with the locale -a command. The list may contain a mixture
of primary language codes like "fr," language codes with country specifier like "fr_FR," and locale
names that additionally contain the name of an encoding, such as "fr_FR.ISO8859-1." For some
languages, there might be no simple, general locale like "fr" or "en."

The repertoire of available locales in a system varies greatly. It may cause
surprises. Even "en" for English might be missing.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Moreover, most users are probably unaware of the possibilities of setting the locale. Those who have
tried to set the locale have often been disappointed with the effects. For example, you might expect
that by doing the above in C, you would also make the standard isalpha function to work according
to a localized definition of what is an alphabetic character, but this probably won't happen.

11.8.3. Using CLDR

Using software modules that output data in localized formats according to CLDR, a programmer can
create programs that adapt to users' preferences in data presentation. Ideally, the programmer need
not know the different conventions, though she needs to be aware of the fact that output formats
vary. In particular, assumptions about any fixed or maximum length or character repertoire in, for
example, date and time denotations should be avoided.

Do not localize everything. In the past, many mistakes have been made, for example, by writing
numeric data to temporary files as formatted text. Suppose a number is written using an English-
language locale as the string "1.234" (meaning a number somewhat larger than one). When the data
is read by the same program in another environment, or just with a different locale setting, serious
problems may arise. If the program uses a locale where the decimal separator is comma ",", it will
fail to read "1.234" properly. An error might be reported or, worse still, just occur. The data might be
read as "1234" for example, treating the period "." as a thousands separator.

Localize output presented to users, but not in the internal format inside a
program or in interchange formats between programs.

Since CLDR is a relatively new invention, it will take time before you can use sufficiently high-level
routines. The programming environment that can be expected to keep up with the development well
is Java, since much of CLDR work adopts notations and definitions from the Java environment.

In the absence of library routines that print, say, a monetary amount according to each user's locale,
you may need to write such routines yourself. You will probably want to deal with a few locales only,
according to expected user base. Even in such somewhat boring work, CLDR can help you by
specifying the exact format of output for the locales. If someone criticizes you for wrong output
format for some locale, you can always say that you have been using the most up-to-date publicly
collected information on it.

The CLDR data is primarily meant to be used in automatic data processing when a program
generates menus, diagnostic messages, reports, tabulated data, date stamps, etc. It could also be
used for data to be inserted into running text (paragraphs of normal text), though this involves many
complications that are currently not addressed in CLDR, such as word inflection. As a large collection
of information, CLDR can also be useful to translators, editors, and writers in "manual" worke.g., in
translating rarely used names of languages and in estimating what characters will probably be
needed in texts in some language.

11.8.4. Internationalization and Localization

Before you can localize software reasonably well, it must be internationalized. The software must

http://lib.ommolketab.ir
http://lib.ommolketab.ir

internally use data formats that can easily be mapped to various presentations. This typically means
adherence to some published international standard or specification. Moreover, the software must
perform input and output operations by using subroutines that know how to find the current locale
settings.

This mostly applies to output, since localization of input has not been addressed much yet. However,
localization is important in menu-based input. For example, if the user is prompted to select a
currency, typically from a short list, the currencies should usually be specified by names in the user's
preferred language.

For example, localizable software would process monetary data in a standardized internal format,
normally with the sum and the currency in separate fields, and always carrying the currency
information, with no implied currency. Only on output (and input) should the monetary data be
converted, via a general purpose routine, into a language-dependent format, such as "$42.50" or
"42,50 $" or "42:50 dollar."

This approach avoids many character-level problems, since the internal data formats typically use a
limited repertoire of characters only, often just ASCII. For example, monetary data would be
represented as a combination of a number (represented as a binary integer or floating-point number,
or perhaps as an ASCII string) and currency identifier (represented as a string of ASCII letters or as
an integer). Only the output routine would need to deal with special currency symbols, digits of
different scripts, etc.

Localizable software uses universal, exact, and easily processable data formats
internally. It converts to language-dependent format on output only.

Existing software that stores monetary data as strings like "$42.50" (to take a somewhat artificial
example) might need considerable changes to become localizable. However, using a language-
dependent format for the internal storage and processing of data does not as such prevent
localization. You would just need to make sure that the format is well-defined and consistently used
so that it can be converted to some international format that can be passed to a localized output
routine. It would however be a real obstacle to localization, if the software has been coded to perform
output at different places and directly using the internal format as the output format. In that case, it
would need substantial modularization of output.

11.8.5. CLDR Description and Data

Currently CLDR contains definitions for data formats like the following:

Names of languages (e.g., for use in language menus or bibliographic information)

Names of scripts (such as "Latin," "Cyrillic," etc.)

Names of countries and some other territories, such as continents

Names of calendar systems (e.g. "Gregorian calendar")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Names of time zones (e.g., "East European normal time")

Different (short, medium, long) formats for dates (in different calendars)

Formats for time of the day (e.g., "2 PM" versus "14.00")

Format of decimal numbers (e.g., 2,50 versus 2.50) and percentages (e.g., 7% versus 7 %)

Format of monetary data (e.g., €1.23 versus 1,23 €)

Names of currencies (e.g., for use in explanations and menus)

Currently there is no data for localized names of characters, although there would surely be need for
them, for example, in character maps, in some error messages, and in user interface components for
asking "which character is this?" There have been some discussions on such data, but it would be a
major effort to compose a consensus-based list of names for characters in some language, even if we
limit ourselves to a small subset of Unicode.

The CLDR database uses an XML-based format called Locale Data Markup Language (LDML), which
has been defined as Unicode Technical Standard #35 at http://www.unicode.org/reports/tr35/.

For quick access to files containing data for particular locales, use the index page
http://unicode.org/cldr/data/common/. It is divided into directories:

collation

Locale-specific exceptions and additions to Unicode collating order (which was described in
Chapter 5)

main

This contains most of the locale dataeverything that has no specific directory

posix

Locale settings for POSIX compatibility

supplemental

Information that is needed for some formatting of data but is not itself localizablee.g.,
information about the use of historical currencies

test

Generated test data for checking implementations against CLDR (described in
http://unicode.org/cldr/data/common/test/readme.html)

For example, most of the data for the French language locale (code: fr) is available at

http://www.unicode.org/reports/tr35/
http://unicode.org/cldr/data/common/
http://unicode.org/cldr/data/common/test/readme.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://unicode.org/cldr/data/common/main/fr.xml. An extract of that data is shown in Figure 11-3,
containing information about decimal and group (thousands) separator, currency format, and the
start of data that contains French names for currencies. There is some additional data for country-
specific French locales, for example, for Canadian (country code: CA) French at
http://unicode.org/cldr/data/common/main/fr_CA.xml.

The data just mentioned is in LDML format, and if you access it with a web browser, you will see it as
text with XML markup. Although it is readable to some extent, at least to people who have a basic
knowledge of XML and who can guess the meanings of element

Figure 11-3. Extract of CLDR data for French, in XML format

and attribute names, it's really not for a common user. The data is also available in a more formatted
and more readable form, though partly as very large documents, at
http://www.unicode.org/cldr/comparison_charts.html, and specifically in the by-type chart index at
http://www.unicode.org/cldr/data/diff/by_type/index.html illustrated in Figure 11-4. It shows
different patterns for presentation of percentages (producing, for example, "42%", "%42", 42%,
42 %, etc.) and the codes of the languages for which they apply.

11.8.6. Problems with Aspects of Localization

As mentioned earlier in this chapter, locales are mostly about languages, not locality. However, the

http://unicode.org/cldr/data/common/main/fr.xml
http://unicode.org/cldr/data/common/main/fr_CA.xml
http://www.unicode.org/cldr/comparison_charts.html
http://www.unicode.org/cldr/data/diff/by_type/index.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

selection of a locale is very often presented to the user as a matter of choosing a country or area. Yet
it is currently impossible to specify locale settings as applying to a country or other geographic area
independently of language. Territory codes can only be used as a subcode after a language code.

This will hopefully be fixed somehow, making language and territory orthogonal aspects of
"localeness." Few localization-relevant things can be reasonably described as belonging to a form of a
language as spoken in a particular country, as opposed to the language in general. Such features
include the different rules for quotation marks in U.S. English and British English. On the other hand,
there are things that should depend on the geographic position alone. The default time zone might be
one of them. For some large countries, the

Figure 11-4. CLDR Sideways Data for percent formats

country code alone would not imply a meaningful default. The point is that the time zone is not
derivable from language, even when a specific variant of language is specified.

Language selection menus often contain country-specific variants of languages for no good reason:
the choice between them usually has no effect. The language forms could be different, but not in a
manner that affects the behavior of programs. Spellchecks are probably the most common
(potential) area where the country may matter. For example, Brazilian Portuguese has somewhat
different spelling than Portuguese in Portugal.

Ideally, language codes such as en_GB and en_US should be kept separate from the territory setting.
After all, an American living in the U.K. might prefer to see quotation marks used in the U.S. English
style, yet see times displayed in the time zone used in Britain, even if the display format is in U.S.
English style (assuming it differs from British English).

Some people prefer dates and times as 2005-09-15 and 23:54 (i.e., in ISO 8601 format), especially if
they read texts in different languages. There is no locale that matches such preferences. It would be
possible to define such a locale, of course, and distribute it for use by people who prefer such
presentation. They would not need to understand how a locale definition is written in LDML. Naturally,
this would work only in programs that allow the use of locale definitions outside a predefined set like
CLDR. Even then, users would have the problem of combining their language preferences with the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

specific preferences they have selected. This will probably imply that good-quality implementations of
CLDR-based localization will offer a way to superimpose locales: set a locale, and then set one or
more other locales, which override some of the settings.

The conclusion is that whenever possible, language and country selection should be kept logically
separate. Both of them should be derived from user-supplied data. They should affect different
settings, such as date and number formats, in a manner that is overridable by the user.

Globalization is more than making things global. Adequately globalized software adapts to varying
conditions of use, including the user's language, country, cultural habits, and personal preferences.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix. Tables for Writing Characters
This appendix consists of compact information on writing characters. The first three tables present
some key sequences for writing some common characters in a few environments. The last table is
different: it maps the Symbol font to Unicode.

In the first three tables, characters are classified logically, by meaning and usage, rather than by
Unicode structure. Table A-1 contains Latin letters and their ligatures; Table A-2 is for Greek letters
and punctuation; and Table A-3 has other commonly used characters. The columns in these tables
are:

A glyph of the character (in Times or Times New Roman font, if possible).

A name of the character. Usually the Unicode name is used, but for brevity, some attributes
have been omitted, when they can be inferred. Moreover, the name "guillemet" is used instead
of "double angle quotation mark."

The sequence of typing the character. This contains the Unicode number in hexadecimal. You
can use the number to construct the character reference &#xn; that can be used in HTML and

XML.

The Alt-n sequence. This contains the Unicode number in decimal, except for numbers in the

range 128159, which are Windows Latin 1 codes. For numbers in the range 160255, the
sequences work in all Windows environments.

A special way that may work in MS Word. This depends on Word version and settings as well as
the keyboard. The information given mainly applies to English (U.S.) keyboards. For Greek
letters, this column shows the key to be used on a qwerty keyboard when set in Greek mode.

The entity reference in HTML, if available. Otherwise the (decimal) character reference, which
can be used in HTML and in XML. Note that you can alternatively use a hexadecimal reference
based on the number in column "Alt-X" (e.g., ¹).

Notes, which refer to annotations after the tables. They may mention additional alternatives to
produce the character, or comment on the usage of a character, or explain notations. Some
notes just mention a language in which the character is used. This is meant to help in
identifying the character, not to exclude use in other languages.

Table A-1. Latin letters and ligatures

 Name of character Alt-X Alt-n Word HTML Notes

Á A with acute c1 0193 Ctrl-' A Á Note 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Name of character Alt-X Alt-n Word HTML Notes

A with breve 102 258 Ă

Â A with circumflex c2 0194 Ctrl-Shift-6 A Â Note 1

Ä A with dieresis c4 0196 Ctrl-Shift-; A Ä Note 1

À A with grave c0 0192 Ctrl-' A À Note 1

A with macron 100 256 Ā

A with ogonek 104 260 Ą

Å A with ring c5 0197 Ctrl-Shift-2 A Å Note 1

ú
A with ring

and acute
1fa 506 Ǻ

Ã A with tilde c3 0195 Ctrl-~ A Ã Note 1

Æ AE c6 0198 Ctrl-Shift-7 A Æ Note 1

ü AE with acute 1fc 508 Ǽ

C with acute 106 262 Ć

C with caron 10c 268 Č

Ç C with cedilla c7 0199 Ctrl-, C Ç

C with circumflex 108 264 Ĉ

C with dot above 10a 266 Ċ

D with caron 10e 270 Ď

D with stroke 110 272 Đ Croatian

Eth d0 0208 Ctrl-' D Ð Icelandic

É E with acute c9 0201 Ctrl-' E É Note 1

E E with breve 114 276 Ĕ

E with caron 11a 282 Ě

Ê E with circumflex ca 0202 Ctrl-Shift-6 E Ê Note 1

Ë E with dieresis cb 0203 Ctrl-Shift-; E Ë Note 1

E with dot above 116 278 Ė

È E with grave c8 0200 Ctrl-' E È Note 1

E with macron 112 274 Ē

E with ogenek 118 280 Ę

G with breve 11e 286 Ğ

G with cedilla 122 290 Ģ

A with breve 102 258 Ă

Â A with circumflex c2 0194 Ctrl-Shift-6 A Â Note 1

Ä A with dieresis c4 0196 Ctrl-Shift-; A Ä Note 1

À A with grave c0 0192 Ctrl-' A À Note 1

A with macron 100 256 Ā

A with ogonek 104 260 Ą

Å A with ring c5 0197 Ctrl-Shift-2 A Å Note 1

ú
A with ring

and acute
1fa 506 Ǻ

Ã A with tilde c3 0195 Ctrl-~ A Ã Note 1

Æ AE c6 0198 Ctrl-Shift-7 A Æ Note 1

ü AE with acute 1fc 508 Ǽ

C with acute 106 262 Ć

C with caron 10c 268 Č

Ç C with cedilla c7 0199 Ctrl-, C Ç

C with circumflex 108 264 Ĉ

C with dot above 10a 266 Ċ

D with caron 10e 270 Ď

D with stroke 110 272 Đ Croatian

Eth d0 0208 Ctrl-' D Ð Icelandic

É E with acute c9 0201 Ctrl-' E É Note 1

E E with breve 114 276 Ĕ

E with caron 11a 282 Ě

Ê E with circumflex ca 0202 Ctrl-Shift-6 E Ê Note 1

Ë E with dieresis cb 0203 Ctrl-Shift-; E Ë Note 1

E with dot above 116 278 Ė

È E with grave c8 0200 Ctrl-' E È Note 1

E with macron 112 274 Ē

E with ogenek 118 280 Ę

G with breve 11e 286 Ğ

G with cedilla 122 290 Ģ

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Name of character Alt-X Alt-n Word HTML Notes

G with circumflex 11c 284 Ĝ

G with dot above 120 288 Ġ

H with circumflex 124 292 Ĥ

H with stroke 126 294 Ħ Maltese

Í I with acute cd 0205 Ctrl-' I Í Note 1

I I with breve 12c 300 Ĭ

Î I with circumflex ce 0206 Ctrl-Shift-6 I Î Note 1

Ï I with dieresis cf 0207 Ctrl-Shift-; I Ï Note 1

I with dot above 130 304 İ

Ì I with grave cc 0204 Ctrl-' I Ì Note 1

I with macron 12a 298 Ī

I with ogonek 12e 302 Į

I with tilde 128 296 Ĩ

ligature IJ 132 306 Ĳ Dutch

J with circumflex 134 308 Ĵ

K with cedilla 136 310 Ķ

L with acute 139 313 Ĺ

L with caron 13d 317 Ľ

L with cedilla 13b 315 Ļ

L with middle dot 13f 319 Ŀ

L with stroke 141 321 Ł Polish

N with acute 143 323 Ń

N with caron 147 327 Ň

N with cedilla 145 325 Ņ

Ñ N with tilde d1 0209 Ctrl-Shift-' N Ñ Note 1

Eng 14a 330 Ŋ Sámi

Ó O with acute d3 0211 Ctrl-' O Ó Note 1

O O with breve 14e 334 Ŏ

Ô O with circumflex d4 0212 Ctrl-Shift-6 O Ô Note 1

Ö O with dieresis d6 0214 Ctrl-Shift-; O Ö Note 1

O with double acute 150 336 Ő Hungarian

G with circumflex 11c 284 Ĝ

G with dot above 120 288 Ġ

H with circumflex 124 292 Ĥ

H with stroke 126 294 Ħ Maltese

Í I with acute cd 0205 Ctrl-' I Í Note 1

I I with breve 12c 300 Ĭ

Î I with circumflex ce 0206 Ctrl-Shift-6 I Î Note 1

Ï I with dieresis cf 0207 Ctrl-Shift-; I Ï Note 1

I with dot above 130 304 İ

Ì I with grave cc 0204 Ctrl-' I Ì Note 1

I with macron 12a 298 Ī

I with ogonek 12e 302 Į

I with tilde 128 296 Ĩ

ligature IJ 132 306 Ĳ Dutch

J with circumflex 134 308 Ĵ

K with cedilla 136 310 Ķ

L with acute 139 313 Ĺ

L with caron 13d 317 Ľ

L with cedilla 13b 315 Ļ

L with middle dot 13f 319 Ŀ

L with stroke 141 321 Ł Polish

N with acute 143 323 Ń

N with caron 147 327 Ň

N with cedilla 145 325 Ņ

Ñ N with tilde d1 0209 Ctrl-Shift-' N Ñ Note 1

Eng 14a 330 Ŋ Sámi

Ó O with acute d3 0211 Ctrl-' O Ó Note 1

O O with breve 14e 334 Ŏ

Ô O with circumflex d4 0212 Ctrl-Shift-6 O Ô Note 1

Ö O with dieresis d6 0214 Ctrl-Shift-; O Ö Note 1

O with double acute 150 336 Ő Hungarian

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Name of character Alt-X Alt-n Word HTML Notes

Ò O with grave d2 0210 Ctrl-' O Ò Note 1

O with macron 14c 332 Ō

Ø
O with oblique

stroke
d8 0216 Ctrl-/ O Ø Danish

þ
O with stroke and

acute
1fe 510 Ǿ

Õ O with tilde d5 0213 Ctrl-Shift-' O Õ Note 1

Œ ligature OE 152 0140 Ctrl-Shift-7 O Œ Note 1

R with acute 154 340 Ŕ

R with caron 158 344 Ř

R with cedilla 156 342 Ŗ

S with acute 15a 346 Ś

S with caron 160 0160 Š

S with cedilla 15e 350 Ş

S with circumflex 15c 348 Ŝ

T with caron 164 356 Ť

T with cedilla 162 354 Ţ

T with stroke 166 358 Ŧ Sámi

Thorn de 0222 Þ Icelandic

Ú U with acute da 0218 Ctrl-' U Ú Note 1

U with breve 16c 364 Ŭ

Û U with circumflex db 0219 Ctrl-Shift-6 U Û Note 1

Ü U with dieresis dc 0220 Ctrl-Shift-; U Ü Note 1

U with double acute 170 368 Ű Hungarian

Ù U with grave d9 0217 Ctrl-' U Ù Note 1

U with macron 16a 362 Ū

U with ogonek 172 370 Ų

U with ring above 16e 366 Ů

U with tilde 168 360 Ũ

W with circumflex 174 372 Ŵ

Ý Y with acute dd 0221 Ctrl-' Y Ý Note 1

Ò O with grave d2 0210 Ctrl-' O Ò Note 1

O with macron 14c 332 Ō

Ø
O with oblique

stroke
d8 0216 Ctrl-/ O Ø Danish

þ
O with stroke and

acute
1fe 510 Ǿ

Õ O with tilde d5 0213 Ctrl-Shift-' O Õ Note 1

Œ ligature OE 152 0140 Ctrl-Shift-7 O Œ Note 1

R with acute 154 340 Ŕ

R with caron 158 344 Ř

R with cedilla 156 342 Ŗ

S with acute 15a 346 Ś

S with caron 160 0160 Š

S with cedilla 15e 350 Ş

S with circumflex 15c 348 Ŝ

T with caron 164 356 Ť

T with cedilla 162 354 Ţ

T with stroke 166 358 Ŧ Sámi

Thorn de 0222 Þ Icelandic

Ú U with acute da 0218 Ctrl-' U Ú Note 1

U with breve 16c 364 Ŭ

Û U with circumflex db 0219 Ctrl-Shift-6 U Û Note 1

Ü U with dieresis dc 0220 Ctrl-Shift-; U Ü Note 1

U with double acute 170 368 Ű Hungarian

Ù U with grave d9 0217 Ctrl-' U Ù Note 1

U with macron 16a 362 Ū

U with ogonek 172 370 Ų

U with ring above 16e 366 Ů

U with tilde 168 360 Ũ

W with circumflex 174 372 Ŵ

Ý Y with acute dd 0221 Ctrl-' Y Ý Note 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Name of character Alt-X Alt-n Word HTML Notes

Y with circumflex 176 374 Ŷ

Y with dieresis 178 376 Ctrl-Shift-; Y Ÿ Note 1

Z with acute 179 377 Ź

Z with caron 17d 381 Ž

Z with dot above 17b 379 Ż

á a with acute e1 0225 Ctrl-' a á Note 1

a with breve 103 259 ă

â a with circumflex e2 0226 Ctrl-Shift-6 a â Note 1

ä a with dieresis e4 0228 Ctrl-Shift-; a ä Note 1

à a with grave e0 0224 Ctrl-' a à Note 1

a with macron 101 257 ā

a with ogonek 105 261 ą

å a with ring e5 0229 Ctrl-Shift-2 a å Note 1

û
a with ring

and acute
1fb 507 ǻ

ã a with tilde e3 0227 Ctrl-Shift-' a ã Note 1

æ ae e6 0230 Ctrl-Shift-6 a æ Note 1

ý ae with acute 1fd 509 ǽ

c with acute 107 263 ć

c with caron 10d 269 č

ç c with cedilla e7 0231 Ctrl-, c ç

c with circumflex 109 265 ĉ

c with dot above 10b 267 ċ

d with caron 10f 271 ď

d with stroke 111 273 đ Croatian

eth f0 0240 Ctrl-' d ð Icelandic

é e with acute e9 0233 Ctrl-' e é Note 1

e with breve 115 277 ĕ

e with caron 11b 283 ě

ê e with circumflex ea 0234 Ctrl-Shift-6 e ê Note 1

ë e with dieresis eb 0235 Ctrl-Shift-; e ë Note 1

Y with circumflex 176 374 Ŷ

Y with dieresis 178 376 Ctrl-Shift-; Y Ÿ Note 1

Z with acute 179 377 Ź

Z with caron 17d 381 Ž

Z with dot above 17b 379 Ż

á a with acute e1 0225 Ctrl-' a á Note 1

a with breve 103 259 ă

â a with circumflex e2 0226 Ctrl-Shift-6 a â Note 1

ä a with dieresis e4 0228 Ctrl-Shift-; a ä Note 1

à a with grave e0 0224 Ctrl-' a à Note 1

a with macron 101 257 ā

a with ogonek 105 261 ą

å a with ring e5 0229 Ctrl-Shift-2 a å Note 1

û
a with ring

and acute
1fb 507 ǻ

ã a with tilde e3 0227 Ctrl-Shift-' a ã Note 1

æ ae e6 0230 Ctrl-Shift-6 a æ Note 1

ý ae with acute 1fd 509 ǽ

c with acute 107 263 ć

c with caron 10d 269 č

ç c with cedilla e7 0231 Ctrl-, c ç

c with circumflex 109 265 ĉ

c with dot above 10b 267 ċ

d with caron 10f 271 ď

d with stroke 111 273 đ Croatian

eth f0 0240 Ctrl-' d ð Icelandic

é e with acute e9 0233 Ctrl-' e é Note 1

e with breve 115 277 ĕ

e with caron 11b 283 ě

ê e with circumflex ea 0234 Ctrl-Shift-6 e ê Note 1

ë e with dieresis eb 0235 Ctrl-Shift-; e ë Note 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Name of character Alt-X Alt-n Word HTML Notes

e with dot above 117 279 ė

è e with grave e8 0232 Ctrl-' e è Note 1

e with macron 113 275 ē

e with ogenek 119 281 ę

f with hook 192 0131 ƒ Florin

� ligature fi fb01 64257 ﬁ

� ligature fl fb02 64257 ﬁ

g with breve 11f 287 ğ

g g with cedilla 123 291 ģ

g with circumflex 11d 285 ĝ

g with dot above 121 289 ġ

h with circumflex 125 293 ĥ

h with stroke 127 295 ħ Maltese

í i with acute ed 237 Ctrl-' i í Note 1

i with breve 12d 301 ĭ

î i with circumflex ee 0238 Ctrl-Shift-6 i î Note 1

ï i with dieresis ef 0239 Ctrl-Shift-; i ï Note 1

ì i with grave ec 0236 Ctrl-' i ì Note 1

i with macron 12b 299 ī

i with ogonek 12f 303 į

i with tilde 129 297 ĩ

dotless i 131 305 ı

ligature ij 133 307 ĳ Dutch

j with circumflex 135 309 ĵ

k with cedilla 137 311 ķ

kra 138 312 ĸ Greenl.

l with acute 13a 314 ĺ

l with caron 13e 318 ľ

l with cedilla 13c 316 ļ

l with middle dot 140 320 ŀ

l with stroke 142 322 ł Polish

e with dot above 117 279 ė

è e with grave e8 0232 Ctrl-' e è Note 1

e with macron 113 275 ē

e with ogenek 119 281 ę

f with hook 192 0131 ƒ Florin

� ligature fi fb01 64257 ﬁ

� ligature fl fb02 64257 ﬁ

g with breve 11f 287 ğ

g g with cedilla 123 291 ģ

g with circumflex 11d 285 ĝ

g with dot above 121 289 ġ

h with circumflex 125 293 ĥ

h with stroke 127 295 ħ Maltese

í i with acute ed 237 Ctrl-' i í Note 1

i with breve 12d 301 ĭ

î i with circumflex ee 0238 Ctrl-Shift-6 i î Note 1

ï i with dieresis ef 0239 Ctrl-Shift-; i ï Note 1

ì i with grave ec 0236 Ctrl-' i ì Note 1

i with macron 12b 299 ī

i with ogonek 12f 303 į

i with tilde 129 297 ĩ

dotless i 131 305 ı

ligature ij 133 307 ĳ Dutch

j with circumflex 135 309 ĵ

k with cedilla 137 311 ķ

kra 138 312 ĸ Greenl.

l with acute 13a 314 ĺ

l with caron 13e 318 ľ

l with cedilla 13c 316 ļ

l with middle dot 140 320 ŀ

l with stroke 142 322 ł Polish

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Name of character Alt-X Alt-n Word HTML Notes

n preceded by

apostrophe
149 329 ŉ Afrikaans

n with acute 144 324 ń

n with caron 148 328 ň

n with cedilla 146 326 ņ

ñ n with tilde f1 0241 Ctrl-Shift-' n ñ Note 1

eng 14b 331 ŋ Sámi

ó o with acute f3 0243 Ctrl-' o ó Note 1

o with breve 14f 335 ŏ

ô o with circumflex f4 0244 Ctrl-Shift-6 o ô Note 1

ö o with dieresis f6 0246 Ctrl-Shift-; o ö Note 1

o with double acute 151 337 ő Hungarian

ò o with grave f2 0242 Ctrl-' o ò Note 1

o with macron 14d 333 ō

ø o with stroke f8 0248 Ctrl-/ o ø Danish

ÿ
o with stroke

and acute
1ff 511 ǿ

õ o with tilde f5 0245 Ctrl-Shift-' o õ Note 1

œ ligature oe 153 0156 Ctrl-Shift-6 o œ French

r with acute 155 341 ŕ

r with caron 159 345 ř

r with cedilla 157 343 ŗ

s with acute 15b 347 ś

s with caron 161 0154 š

s with cedilla 15f 351 ş

s with circumflex 15d 349 ŝ

• long s 17f 383 ſ Historical

ß sharp s df 0223 Ctrl-Shift-6 s ß Note 1

t with caron 165 357 ť

t with cedilla 163 355 ţ

t with stroke 167 359 ŧ Sámi

n preceded by

apostrophe
149 329 ŉ Afrikaans

n with acute 144 324 ń

n with caron 148 328 ň

n with cedilla 146 326 ņ

ñ n with tilde f1 0241 Ctrl-Shift-' n ñ Note 1

eng 14b 331 ŋ Sámi

ó o with acute f3 0243 Ctrl-' o ó Note 1

o with breve 14f 335 ŏ

ô o with circumflex f4 0244 Ctrl-Shift-6 o ô Note 1

ö o with dieresis f6 0246 Ctrl-Shift-; o ö Note 1

o with double acute 151 337 ő Hungarian

ò o with grave f2 0242 Ctrl-' o ò Note 1

o with macron 14d 333 ō

ø o with stroke f8 0248 Ctrl-/ o ø Danish

ÿ
o with stroke

and acute
1ff 511 ǿ

õ o with tilde f5 0245 Ctrl-Shift-' o õ Note 1

œ ligature oe 153 0156 Ctrl-Shift-6 o œ French

r with acute 155 341 ŕ

r with caron 159 345 ř

r with cedilla 157 343 ŗ

s with acute 15b 347 ś

s with caron 161 0154 š

s with cedilla 15f 351 ş

s with circumflex 15d 349 ŝ

• long s 17f 383 ſ Historical

ß sharp s df 0223 Ctrl-Shift-6 s ß Note 1

t with caron 165 357 ť

t with cedilla 163 355 ţ

t with stroke 167 359 ŧ Sámi

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Name of character Alt-X Alt-n Word HTML Notes

thorn fe 0254 þ Icelandic

ú u with acute fa 0250 Ctrl-' u ú Note 1

u with breve 16d 365 ŭ

û u with circumflex fb 0251 Ctrl-Shift-6 u û Note 1

ü u with dieresis fc 0252 Ctrl-Shift-; u ü Note 1

u with double acute 171 369 ű Hungarian

ù u with grave f9 0249 Ctrl-' u ù Note 1

u with macron 16b 363 ū

u with ogonek 173 371 ų

u with ring above 16f 367 ů

u with tilde 169 361 ũ

w with circumflex 175 373 ŵ

y with acute fd 0253 Ctrl-' y ý Note 1

y with circumflex 177 375 ŷ

ÿ y with dieresis ff 0255 Ctrl-Shift-; y ÿ Note 1

z with acute 17a 378 ź

z with caron 17e 382 ž

z with dot above 17c 380 ż

Table A-2. Greek letters and tone marks

 Name of character Alt-X Alt-n Word HTML Notes

„ Greek tonos 384 900 ; ΄ Note 1

… Greek dialytika tonos 385 901 W ΅ Note 1

Α Alpha 391 913 A Α

Alpha with tonos 386 902 ;A Ά

Β Beta 392 914 B Β

Γ Gamma 393 915 G Γ

∆ Delta 394 916 D Δ

Ε Epsilon 395 917 E Ε

Epsilon with tonos 388 904 ;E Έ

thorn fe 0254 þ Icelandic

ú u with acute fa 0250 Ctrl-' u ú Note 1

u with breve 16d 365 ŭ

û u with circumflex fb 0251 Ctrl-Shift-6 u û Note 1

ü u with dieresis fc 0252 Ctrl-Shift-; u ü Note 1

u with double acute 171 369 ű Hungarian

ù u with grave f9 0249 Ctrl-' u ù Note 1

u with macron 16b 363 ū

u with ogonek 173 371 ų

u with ring above 16f 367 ů

u with tilde 169 361 ũ

w with circumflex 175 373 ŵ

y with acute fd 0253 Ctrl-' y ý Note 1

y with circumflex 177 375 ŷ

ÿ y with dieresis ff 0255 Ctrl-Shift-; y ÿ Note 1

z with acute 17a 378 ź

z with caron 17e 382 ž

z with dot above 17c 380 ż

Table A-2. Greek letters and tone marks

 Name of character Alt-X Alt-n Word HTML Notes

„ Greek tonos 384 900 ; ΄ Note 1

… Greek dialytika tonos 385 901 W ΅ Note 1

Α Alpha 391 913 A Α

Alpha with tonos 386 902 ;A Ά

Β Beta 392 914 B Β

Γ Gamma 393 915 G Γ

∆ Delta 394 916 D Δ

Ε Epsilon 395 917 E Ε

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Name of character Alt-X Alt-n Word HTML Notes

Epsilon with tonos 388 904 ;E Έ

Ζ Zeta 396 918 Z Ζ

Η Eta 397 919 H Η

Eta with tonos 389 905 ;H Ή

Θ Theta 398 920 U Θ

Ι Iota 399 921 I Ι

Iota with dialytika 3aa 938 :I Ϊ

Iota with tonos 38a 906 ;I Ί

Κ Kappa 39a 922 K Κ

Λ Lamda 39b 923 L Λ

Μ Mu 39c 924 M Μ

Ν Nu 39d 925 N Ν

Ξ Xi 39e 926 J Ξ

Ο Omicron 39f 927 O Ο

Omicron with tonos 38c 908 ;O Ό

I Pi 3a0 928 P Π product

Ρ Rho 3a1 929 R Ρ

Σ Sigma 3a3 931 S Σ sum

Τ Tau 3a4 932 T Τ

Υ Upsilon 3a5 933 Y Υ

Upsilon with dialytika 3ab 939 :Y Ϋ

Upsilon with tonos 38e 910 ;Y Ύ

Upsilon with hook symbol 3d2 978 ϒ WGL4

Φ Phi 3a6 934 F Φ

Χ Chi 3a7 935 X Χ

Ψ Psi 3a8 936 C Ψ

Ω Omega 3a9 937 V Ω ohm

Omega with tonos 38f 911 ;V Ώ

α alpha 3b1 945 a α

alpha with tonos 3ac 940 ;a ά

Epsilon with tonos 388 904 ;E Έ

Ζ Zeta 396 918 Z Ζ

Η Eta 397 919 H Η

Eta with tonos 389 905 ;H Ή

Θ Theta 398 920 U Θ

Ι Iota 399 921 I Ι

Iota with dialytika 3aa 938 :I Ϊ

Iota with tonos 38a 906 ;I Ί

Κ Kappa 39a 922 K Κ

Λ Lamda 39b 923 L Λ

Μ Mu 39c 924 M Μ

Ν Nu 39d 925 N Ν

Ξ Xi 39e 926 J Ξ

Ο Omicron 39f 927 O Ο

Omicron with tonos 38c 908 ;O Ό

I Pi 3a0 928 P Π product

Ρ Rho 3a1 929 R Ρ

Σ Sigma 3a3 931 S Σ sum

Τ Tau 3a4 932 T Τ

Υ Upsilon 3a5 933 Y Υ

Upsilon with dialytika 3ab 939 :Y Ϋ

Upsilon with tonos 38e 910 ;Y Ύ

Upsilon with hook symbol 3d2 978 ϒ WGL4

Φ Phi 3a6 934 F Φ

Χ Chi 3a7 935 X Χ

Ψ Psi 3a8 936 C Ψ

Ω Omega 3a9 937 V Ω ohm

Omega with tonos 38f 911 ;V Ώ

α alpha 3b1 945 a α

alpha with tonos 3ac 940 ;a ά

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Name of character Alt-X Alt-n Word HTML Notes

β beta 3b2 946 b β

γ gamma 3b3 947 g γ

δ delta 3b4 948 d δ

ε epsilon 3b5 949 e ε

epsilon with tonos 3ad 941 ;e έ

ζ zeta 3b6 950 z ζ

η eta 3b7 951 h η

eta with tonos 3ae 942 ;h ή

θ theta 3b8 952 u θ

 theta symbol 3d1 977 ϑ WGL4

ι iota 3b9 953 i ι

iota with dialytika 3ca 970 :i ϊ

iota with dialytika and tonos 390 912 Wi ΐ

iota with tonos 3af 943 ;i ί

κ kappa 3ba 954 k κ

λ lamda 3bb 955 l λ

µ mu 3bc 956 m μ micro

ν nu 3bd 957 n ν

ξ xi 3be 958 j ξ

ο omicron 3bf 959 o ο

omicron with tonos 3cc 972 ;o ό

π pi 3c0 960 p π

 pi symbol 3d6 982 ϖ WGL4

ρ rho 3c1 961 r ρ

σ sigma 3c3 963 s σ

final sigma 3c2 962 w ς

τ tau 3c4 964 t τ

υ upsilon 3c5 965 y υ

upsilon with dialytika 3cb 971 :y ϋ

upsilon with dialytika and tonos 3b0 944 Wy ΰ

β beta 3b2 946 b β

γ gamma 3b3 947 g γ

δ delta 3b4 948 d δ

ε epsilon 3b5 949 e ε

epsilon with tonos 3ad 941 ;e έ

ζ zeta 3b6 950 z ζ

η eta 3b7 951 h η

eta with tonos 3ae 942 ;h ή

θ theta 3b8 952 u θ

 theta symbol 3d1 977 ϑ WGL4

ι iota 3b9 953 i ι

iota with dialytika 3ca 970 :i ϊ

iota with dialytika and tonos 390 912 Wi ΐ

iota with tonos 3af 943 ;i ί

κ kappa 3ba 954 k κ

λ lamda 3bb 955 l λ

µ mu 3bc 956 m μ micro

ν nu 3bd 957 n ν

ξ xi 3be 958 j ξ

ο omicron 3bf 959 o ο

omicron with tonos 3cc 972 ;o ό

π pi 3c0 960 p π

 pi symbol 3d6 982 ϖ WGL4

ρ rho 3c1 961 r ρ

σ sigma 3c3 963 s σ

final sigma 3c2 962 w ς

τ tau 3c4 964 t τ

υ upsilon 3c5 965 y υ

upsilon with dialytika 3cb 971 :y ϋ

upsilon with dialytika and tonos 3b0 944 Wy ΰ

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Name of character Alt-X Alt-n Word HTML Notes

upsilon with tonos 3cd 973 ;y ύ

φ phi 3c6 966 f φ

χ chi 3c7 967 x χ

ψ psi 3c8 968 c ψ

ω omega 3c9 969 v ω

omega with tonos 3ce 974 ;v ώ

Table A-3. Other commonly needed characters

 Name of character
Alt-
X

Alt-n Word HTML Notes

Superscripts

1 Superscript one b9 0185 ¹

2 Superscript two b2 0178 ²:
3 Superscript three b3 0179 ³

Fractions

½ One half bd 0189 1/2 ½

¼ One quarter bc 0188 1/4 ¼

¾ Three quarters be 0190 3/4 ¾

1/8 One eighth 215b 8539 ⅛

3/8 Three eighths 215c 8540 ⅜

5/8 Five eighths 215d 8541 ⅝

7/8 Seven eighths 215e 8542 ⅞

/ Fraction slash 2044 8260 ⁄

Presentational forms of Latin letters

ª
Feminine ordinal

indicator
aa 0170 ª Spanish

º
Masculine ordinal

indicator
ba 0186 º Spanish

n Superscript n 207f 8319 ⁿ

Letter-like symbols

upsilon with tonos 3cd 973 ;y ύ

φ phi 3c6 966 f φ

χ chi 3c7 967 x χ

ψ psi 3c8 968 c ψ

ω omega 3c9 969 v ω

omega with tonos 3ce 974 ;v ώ

Table A-3. Other commonly needed characters

 Name of character
Alt-
X

Alt-n Word HTML Notes

Superscripts

1 Superscript one b9 0185 ¹

2 Superscript two b2 0178 ²:
3 Superscript three b3 0179 ³

Fractions

½ One half bd 0189 1/2 ½

¼ One quarter bc 0188 1/4 ¼

¾ Three quarters be 0190 3/4 ¾

1/8 One eighth 215b 8539 ⅛

3/8 Three eighths 215c 8540 ⅜

5/8 Five eighths 215d 8541 ⅝

7/8 Seven eighths 215e 8542 ⅞

/ Fraction slash 2044 8260 ⁄

Presentational forms of Latin letters

ª
Feminine ordinal

indicator
aa 0170 ª Spanish

º
Masculine ordinal

indicator
ba 0186 º Spanish

n Superscript n 207f 8319 ⁿ

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Name of character
Alt-
X

Alt-n Word HTML Notes

Letter-like symbols

Care of 2105 8453 ℅

© Copyright sign a9 0169 (c) © AltGr-c

e Estimated symbol 212e 8494 ℮

µ Micro sign b5 0181 AltGr-m µ mu

Ohm sign 2126 8486 Ω Omega

® Registered sign ae 0174 (r) ® AltGr-r

Script small l 2113 8467 ℓ

™ Trademark sign 2122 0153 (tm) ™ AltGr-t

Script capital p 2118 8472 ℘ WGL4

Black-letter capital I 2111 8465 ℑ WGL4

Black-letter capital R 211c 8476 ℜ WGL4

Alef symbol 2135 8501 ℵ WGL4

Currency symbols

¢ Cent sign a2 0162 Ctrl-/ c ¢

¤ Currency sign a4 0164 ¤ Generic

$ Dollar sign 24 036 $ $

€ Euro sign 20ac 0128 AltGr-e € Note 2

£ French franc sign 20a3 8355 ₣ Historical

£ Lira sign 20a4 8356 ₤ Rare

P Peseta sign 20a7 8359 ₧ Historical

£ Pound sign a3 0163 £

¥ Yen sign a5 0165 ¥ Also yuan

Quotation marks

" Quotation mark 22 " Ctrl-z " ASCII

' Apostrophe 27 ' Ctrl-z ' ASCII

"
Left double

quotation mark
201c 0147 Ctrl-' " “ Note 3

"
Right double

quotation mark
201d 0148 Ctrl-' " ” Note 3

Letter-like symbols

Care of 2105 8453 ℅

© Copyright sign a9 0169 (c) © AltGr-c

e Estimated symbol 212e 8494 ℮

µ Micro sign b5 0181 AltGr-m µ mu

Ohm sign 2126 8486 Ω Omega

® Registered sign ae 0174 (r) ® AltGr-r

Script small l 2113 8467 ℓ

™ Trademark sign 2122 0153 (tm) ™ AltGr-t

Script capital p 2118 8472 ℘ WGL4

Black-letter capital I 2111 8465 ℑ WGL4

Black-letter capital R 211c 8476 ℜ WGL4

Alef symbol 2135 8501 ℵ WGL4

Currency symbols

¢ Cent sign a2 0162 Ctrl-/ c ¢

¤ Currency sign a4 0164 ¤ Generic

$ Dollar sign 24 036 $ $

€ Euro sign 20ac 0128 AltGr-e € Note 2

£ French franc sign 20a3 8355 ₣ Historical

£ Lira sign 20a4 8356 ₤ Rare

P Peseta sign 20a7 8359 ₧ Historical

£ Pound sign a3 0163 £

¥ Yen sign a5 0165 ¥ Also yuan

Quotation marks

" Quotation mark 22 " Ctrl-z " ASCII

' Apostrophe 27 ' Ctrl-z ' ASCII

"
Left double

quotation mark
201c 0147 Ctrl-' " “ Note 3

"
Right double

quotation mark
201d 0148 Ctrl-' " ” Note 3

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Name of character
Alt-
X

Alt-n Word HTML Notes

'
Left single

quotation mark
2018 0145 Ctrl-' ' ‘ Note 3

'
Right single

quotation mark
2019 0146 Ctrl-' ' ’ Note 3

« Left-pointing guillemet ab 0171 Ctrl-' < « Note 3

» Right-pointing guillemet bb 0187 Ctrl-' > » Note 3

‹
Left-pointing single angle quotation
mark

2039 0139 ‹

›
Right-pointing single

angle quotation mark
203a 0155 ›

" Double low-9 quotation mark 201e 0132 „ Note 3

' Single low-9 quotation mark 201a 0130 ‚ Note 3

�
Single high-reversed-9 quotation
mark

201b 8219 ‛

Hyphens

- Hyphen-minus 2d 045 - - ASCII

- Hyphen 2010 8208 ‐ WGL4

 Soft hyphen ad 0173 ­ Note 4

- Nonbreaking hyphen 2011 8209 ‑ WGL4

Other punctuation marks

En dash 2013 0150
Ctrl-
minus

– Note 5

' Em dash 2014 0151
AltGr-
minus

— Note 5

Horizontal bar 2015 8213 ―

... Horizontal ellipsis 2026 0133 AltGr-. …

¿ Inverted question mark bf 0191 AltGr-? ¿ Note 6

¡
Inverted exclama-

tion mark
a1 0161 AltGr-! ¡ Note 6

<
Double exclama-

tion mark
203c 8252 ‼

· Middle dot b7 0183 ·:

'
Left single

quotation mark
2018 0145 Ctrl-' ' ‘ Note 3

'
Right single

quotation mark
2019 0146 Ctrl-' ' ’ Note 3

« Left-pointing guillemet ab 0171 Ctrl-' < « Note 3

» Right-pointing guillemet bb 0187 Ctrl-' > » Note 3

‹
Left-pointing single angle quotation
mark

2039 0139 ‹

›
Right-pointing single

angle quotation mark
203a 0155 ›

" Double low-9 quotation mark 201e 0132 „ Note 3

' Single low-9 quotation mark 201a 0130 ‚ Note 3

�
Single high-reversed-9 quotation
mark

201b 8219 ‛

Hyphens

- Hyphen-minus 2d 045 - - ASCII

- Hyphen 2010 8208 ‐ WGL4

 Soft hyphen ad 0173 ­ Note 4

- Nonbreaking hyphen 2011 8209 ‑ WGL4

Other punctuation marks

En dash 2013 0150
Ctrl-
minus

– Note 5

' Em dash 2014 0151
AltGr-
minus

— Note 5

Horizontal bar 2015 8213 ―

... Horizontal ellipsis 2026 0133 AltGr-. …

¿ Inverted question mark bf 0191 AltGr-? ¿ Note 6

¡
Inverted exclama-

tion mark
a1 0161 AltGr-! ¡ Note 6

<
Double exclama-

tion mark
203c 8252 ‼

· Middle dot b7 0183 ·:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Name of character
Alt-
X

Alt-n Word HTML Notes

‡ Greek ano teleia 387 903 · Upper dot

• Bullet 2022 0149 •

Left-pointing

angle bracket
2329 9001 ⟨ WGL4

Right-pointing

angle bracket
2330 9002 ⟩ WGL4

Punctuation-like marks

& Ampersand 26 038 & &

< Less-than sign 3c 060 < <

> Greater-than sign 3e 062 > >

_ Low line 5f 095 _ _

= Double low line 2017 8215 ‗

> Overline 203e 8254 ‾ macron

| Vertical line 7c 0124 | |

Broken bar a6 0166 ¦

¶ Pilcrow sign b6 0182 Insert ¶

§ Section sign a7 0167 Insert §

Dagger 2020 0134 †

Double dagger 2021 0135 ‡

@ Commercial at 40 064 @ @

\ Reverse solidus 5c 092 \ \

Number sign 23 035 # #

Per mille sign 2030 0137 ‰

° Degree sign b0 0176 °

' Prime 2032 8242 ′ '

" Double prime 2033 8243 ″ "

Spacing diacritic marks and similar
charcters

´ Acute accent b4 0180 ´ ´ Note 7

‡ Greek ano teleia 387 903 · Upper dot

• Bullet 2022 0149 •

Left-pointing

angle bracket
2329 9001 ⟨ WGL4

Right-pointing

angle bracket
2330 9002 ⟩ WGL4

Punctuation-like marks

& Ampersand 26 038 & &

< Less-than sign 3c 060 < <

> Greater-than sign 3e 062 > >

_ Low line 5f 095 _ _

= Double low line 2017 8215 ‗

> Overline 203e 8254 ‾ macron

| Vertical line 7c 0124 | |

Broken bar a6 0166 ¦

¶ Pilcrow sign b6 0182 Insert ¶

§ Section sign a7 0167 Insert §

Dagger 2020 0134 †

Double dagger 2021 0135 ‡

@ Commercial at 40 064 @ @

\ Reverse solidus 5c 092 \ \

Number sign 23 035 # #

Per mille sign 2030 0137 ‰

° Degree sign b0 0176 °

' Prime 2032 8242 ′ '

" Double prime 2033 8243 ″ "

Spacing diacritic marks and similar
charcters

´ Acute accent b4 0180 ´ ´ Note 7

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Name of character
Alt-
X

Alt-n Word HTML Notes

Breve 2d8 728 ˘

Caron 2c7 711 ˇ

¸ Cedilla b8 0184 Ctrl-, ¸

^ Circumflex accent 5e 094 ^ ^ or: ^

¨ Dieresis a8 0168 ¨ ¨

Dot above 2d9 729 ˙

Double acute accent 2dd 733 ˝

' Grave accent 60 096 ' ` or: '

¯ Macron af 0175 ¯ overline

ˆ
Modifier letter

circumflex
2c6 710 ˆ

¯ Modifier letter macron 2c9 713 ˉ

Ogonek 2db 731 ˛

Ring above 2da 730 ˚

Small tilde 2dc 0152 ˜

~ Tilde 7e 0126 ~ ~ or: ~

Arrows

Leftward arrow 2190 8592 ←

Upward arrow 2191 8593 ↑

Rightward arrow 2192 8594 →

Downward arrow 2193 8595 ↓

Left right arrow 2194 8596 ↔

Up down arrow 2195 8597

Up down arrow

with base
21a8 8616

 Down and left arrow 21b5 8629 ↵ WGL4

Leftward double arrow 21d0 8656 ⇐ WGL4

Upward double arrow 21d1 8657 ⇑ WGL4

Rightward double

arrow
21d2 8658 ⇒ WGL4

Breve 2d8 728 ˘

Caron 2c7 711 ˇ

¸ Cedilla b8 0184 Ctrl-, ¸

^ Circumflex accent 5e 094 ^ ^ or: ^

¨ Dieresis a8 0168 ¨ ¨

Dot above 2d9 729 ˙

Double acute accent 2dd 733 ˝

' Grave accent 60 096 ' ` or: '

¯ Macron af 0175 ¯ overline

ˆ
Modifier letter

circumflex
2c6 710 ˆ

¯ Modifier letter macron 2c9 713 ˉ

Ogonek 2db 731 ˛

Ring above 2da 730 ˚

Small tilde 2dc 0152 ˜

~ Tilde 7e 0126 ~ ~ or: ~

Arrows

Leftward arrow 2190 8592 ←

Upward arrow 2191 8593 ↑

Rightward arrow 2192 8594 →

Downward arrow 2193 8595 ↓

Left right arrow 2194 8596 ↔

Up down arrow 2195 8597

Up down arrow

with base
21a8 8616

 Down and left arrow 21b5 8629 ↵ WGL4

Leftward double arrow 21d0 8656 ⇐ WGL4

Upward double arrow 21d1 8657 ⇑ WGL4

Rightward double

arrow
21d2 8658 ⇒ WGL4

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Name of character
Alt-
X

Alt-n Word HTML Notes

Downward double

arrow
21d3 8659 ⇓ WGL4

' Left right double arrow 21d4 8660 ⇔

Mathematical symbols

Almost equal to 2248 8776 ≈

Angle 2220 8736 ∠ WGL4

Approximately equal to 2245 8773 ≅ WGL4

* Asterisk operator 2217 8727 ∗ WGL4

· Bullet operator 2219 8729 ∙

Circled plus 2295 8853 ⊕ WGL4

Circled times 2297 8855 ⊗ WGL4

÷ Division sign f7 0247 ÷

/ Division slash 2215 8725 ∕

Dot operator 22c5 8901 ⋅ WGL4

Greater-than or

equal to
2265 8805 ≥

Identical to 2261 8801 ≡

� Increment 2206 8710 ∆

Infinity 221e 8734 ∞

Integral 222b 8747 ∫

Left ceiling 2308 8968 ⌈ WGL4

Left floor 230a 8970 ⌊ WGL4

Less-than or equal to 2264 8804 ≤

Logical and 2227 8743 ∧ WGL4

Logical or 2228 8744 ∨ WGL4

- Minus sign 2212 8722 −

x Multiplication sign d7 0215 ×

Nabla 2207 8711 ∇ WGL4

N-ary product 220f 8719 ∏

Downward double

arrow
21d3 8659 ⇓ WGL4

' Left right double arrow 21d4 8660 ⇔

Mathematical symbols

Almost equal to 2248 8776 ≈

Angle 2220 8736 ∠ WGL4

Approximately equal to 2245 8773 ≅ WGL4

* Asterisk operator 2217 8727 ∗ WGL4

· Bullet operator 2219 8729 ∙

Circled plus 2295 8853 ⊕ WGL4

Circled times 2297 8855 ⊗ WGL4

÷ Division sign f7 0247 ÷

/ Division slash 2215 8725 ∕

Dot operator 22c5 8901 ⋅ WGL4

Greater-than or

equal to
2265 8805 ≥

Identical to 2261 8801 ≡

� Increment 2206 8710 ∆

Infinity 221e 8734 ∞

Integral 222b 8747 ∫

Left ceiling 2308 8968 ⌈ WGL4

Left floor 230a 8970 ⌊ WGL4

Less-than or equal to 2264 8804 ≤

Logical and 2227 8743 ∧ WGL4

Logical or 2228 8744 ∨ WGL4

- Minus sign 2212 8722 −

x Multiplication sign d7 0215 ×

Nabla 2207 8711 ∇ WGL4

N-ary product 220f 8719 ∏

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Name of character
Alt-
X

Alt-n Word HTML Notes

N-ary summation 2211 8721 ∑

Not equal to 2260 8800 ≠

¬ Not sign ac 0172 ¬

Partial differential 2202 8706 ∂

± Plus-minus sign b1 0177 ±

Proportional to 221d 8733 ∝ WGL4

Right angle 221f 8735 ∟

Right ceiling 2309 8969 ⌉ WGL4

Right floor 230b 8971 ⌋ WGL4

Square root 221a 8730 √

Therefore 2234 8756 ∴ WGL4

~ Tilde operator 223c 8764 ∼ WGL4

Up tack 22a5 8869 ⊥ WGL4

Set theory symbols

 Contains as member 220b 8715 ∋ WGL4

 Element of 2208 8712 ∈ WGL4

Empty set 2205 8709 ∅ WGL4

For all 2200 8704 ∀ WGL4

Intersection 2229 8745 ∩

Not an element of 2209 8713 ∉ WGL4

Not a subset of 2284 8836 ⊄ WGL4

Subset of 2282 8834 ⊂ WGL4

Subset of or equal to 2286 8838 ⊆ WGL4

Superset of 2283 8835 ⊃ WGL4

Superset of or equal to 2287 8839 ⊇ WGL4

There exists 2203 8707 ∃ WGL4

Union 222a 8746 ∪ WGL4

Miscellaneous technical symbols

 House 2302 8962 ⌂

N-ary summation 2211 8721 ∑

Not equal to 2260 8800 ≠

¬ Not sign ac 0172 ¬

Partial differential 2202 8706 ∂

± Plus-minus sign b1 0177 ±

Proportional to 221d 8733 ∝ WGL4

Right angle 221f 8735 ∟

Right ceiling 2309 8969 ⌉ WGL4

Right floor 230b 8971 ⌋ WGL4

Square root 221a 8730 √

Therefore 2234 8756 ∴ WGL4

~ Tilde operator 223c 8764 ∼ WGL4

Up tack 22a5 8869 ⊥ WGL4

Set theory symbols

 Contains as member 220b 8715 ∋ WGL4

 Element of 2208 8712 ∈ WGL4

Empty set 2205 8709 ∅ WGL4

For all 2200 8704 ∀ WGL4

Intersection 2229 8745 ∩

Not an element of 2209 8713 ∉ WGL4

Not a subset of 2284 8836 ⊄ WGL4

Subset of 2282 8834 ⊂ WGL4

Subset of or equal to 2286 8838 ⊆ WGL4

Superset of 2283 8835 ⊃ WGL4

Superset of or equal to 2287 8839 ⊇ WGL4

There exists 2203 8707 ∃ WGL4

Union 222a 8746 ∪ WGL4

Miscellaneous technical symbols

 House 2302 8962 ⌂

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Name of character
Alt-
X

Alt-n Word HTML Notes

 Reversed not sign 2310 8976 ⌐

 Top half integral 2320 8992 ⌠

 Bottom half integral 2321 8993 ⌡

Miscellaneous symbols

 White smiling face 263a 9786 ☺

 Black smiling face 263b 9787 ☻

 White sun with rays 263c 9788 ☼

Female sign 2640 9792 ♀

Male sign 2642 9794 ♂

Black spade suit 2660 9824 ♠

Black club suit 2663 9827 ♣

Black heart suit 2665 9829 ♥

Black diamond suit 2666 9830 ♦

 Eighth note 266a 9834 ♪

 Beamed eighth notes 266b 9835 ♫

Geometric shapes

 Black square 25a0 9632 ■

White square 25a1 9633 □

Black small square 25aa 9642 ▪

« White small square 25ab 9643 ▫

 Black rectangle 25ac 9644 ▬

Black up-pointing

triangle
25b2 9650 ▲

Black right-pointing

triangle
25b2 9658 ►

Black down-point.

triangle
25bc 9660 ▼

Black left-pointing

triangle
25c4 9668 ◄

Lozenge 25ca 9674 ◊

 Reversed not sign 2310 8976 ⌐

 Top half integral 2320 8992 ⌠

 Bottom half integral 2321 8993 ⌡

Miscellaneous symbols

 White smiling face 263a 9786 ☺

 Black smiling face 263b 9787 ☻

 White sun with rays 263c 9788 ☼

Female sign 2640 9792 ♀

Male sign 2642 9794 ♂

Black spade suit 2660 9824 ♠

Black club suit 2663 9827 ♣

Black heart suit 2665 9829 ♥

Black diamond suit 2666 9830 ♦

 Eighth note 266a 9834 ♪

 Beamed eighth notes 266b 9835 ♫

Geometric shapes

 Black square 25a0 9632 ■

White square 25a1 9633 □

Black small square 25aa 9642 ▪

« White small square 25ab 9643 ▫

 Black rectangle 25ac 9644 ▬

Black up-pointing

triangle
25b2 9650 ▲

Black right-pointing

triangle
25b2 9658 ►

Black down-point.

triangle
25bc 9660 ▼

Black left-pointing

triangle
25c4 9668 ◄

Lozenge 25ca 9674 ◊

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Name of character
Alt-
X

Alt-n Word HTML Notes

White circle 25cb 9675 ○

Ï Black circle 25cf 9679 ●

 Inverse bullet 25d8 9688 ◘

 Inverse white circle 25d9 9689 ◙

æ White bullet 25e6 9702 ◦

Spaces

 Space 20 032 space bar

 No-break space a0 0160
Ctrl-Shift-

 Em space 2003 8195 Insert   WGL4

 En space 2002 8194 Insert
  WGL4

 Four-per-em space 2005 8197 Insert
  WGL4

 Thin space 2009 8201   WGL4

Invisible controls

 Zero width non-joiner 200c 8204 ‌ WGL4

 Zero width joiner 200d 8205 ‍ WGL4

 Left-to-right mark 200e 8206 ‎ WGL4

 Right-to-left mark 200f 8207 ‏ WGL4

White circle 25cb 9675 ○

Ï Black circle 25cf 9679 ●

 Inverse bullet 25d8 9688 ◘

 Inverse white circle 25d9 9689 ◙

æ White bullet 25e6 9702 ◦

Spaces

 Space 20 032 space bar

 No-break space a0 0160
Ctrl-Shift-

 Em space 2003 8195 Insert   WGL4

 En space 2002 8194 Insert
  WGL4

 Four-per-em space 2005 8197 Insert
  WGL4

 Thin space 2009 8201   WGL4

Invisible controls

 Zero width non-joiner 200c 8204 ‌ WGL4

 Zero width joiner 200d 8205 ‍ WGL4

 Left-to-right mark 200e 8206 ‎ WGL4

 Right-to-left mark 200f 8207 ‏ WGL4

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.1. Additional Notes

The information on typing characters in Windows and in MS Word is not universal but depends on the
keyboard, program settings, and language mode. When using Word, you can first try the method in
column 5 ("Word") and if it does not work, resort to the more general methods, which are more
difficult to remember.

The notation "Ctrl-Shift-6" means that you press down both the Ctrl key and the Shift key and,
keeping them down, press the "6" key. On many European keyboards, Shift-6 is the ampersand &, so
for them, the combination can be described as Ctrl-&. This is more mnemonic if you think about
"Ctrl-& A" as "A & something." Similar notes apply to Ctrl-Shift-7 (often Ctrl-/) and Ctrl-Shift-; (often
Ctrl-:).

The notation "Insert " means that the character can be inserted via the command Insert
Symbol, selecting the Special Characters pane and clicking on the name.

628 A.1.1. Coverage

The table contains all WGL4 characters, except

Most ASCII characters, which should not cause difficulties in typing

Box drawing and block elements, which are rarely used nowadays

Cyrillic letters, to save space

Note that WGL4 is the collection that you can more or less safely expect to be available in common
fonts on Windows. The table contains some additional characters, too, but they have been annotated

with " WGL4." In particular, all characters for which there are entities in HTML have been included.

A.1.2. Ordering

It is difficult to put a large character repertoire like this into an order that is convenient in practical
use. The ordering used here is meant to be as intuitive as possible. In particular, the mutual of order
of letters with diacritic marks (e.g., À, Á, Â etc.) is alphabetic by the Unicode name of the diacritic.
This order is not the same as the collating order.

A.1.3. Specific Notes

Specific notes referred to in the tables are listed here:

1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The shortcuts that can be used to write letters with diacritic marks vary greatly between
keyboards. On English (U.S.) keyboards, you use special characters together with the Ctrl key,
as indicated in the table. For example, to write ü, you would write Ctrl-Shift-6 u. The notation
Ctrl-Shift-; can be read as Ctrl-: too, on a keyboard where Shift-; produces the colon. Many
European keyboards (as well the U.S. International keyboard settings) have a dead key for the
same purpose, labeled with the dieresis symbol, ¨. On such a keyboard, you would simply type
¨u to produce ü. On the other hand, you might be able to use a method like Ctrl-: u on
European keyboards, too, but the colon might be placed in the period "." key, so that technically
you would need to use Ctrl-Shift-; u. Similarly, Ctrl-Shift-' corresponds to Ctrl-~, Ctrl-Shift-6
corresponds to Ctrl-^, Ctrl-Shift-7 corresponds to Ctrl-&, and Ctrl-Shift-2 corresponds to Ctrl-
@.

1.

The euro sign can usually be typed using the AltGr key (or the Alt and Ctrl keys), but there are
differences between keyboard settings. Usually AltGr-E, AltGr-5, AltGr-U, or AltGr-ε works.

2.

Quotation marks can usually be typed in MS Word just by pressing the " key, if Word has
recognized or has been told the language of the text, so that it can convert ASCII quotation
marks to language-specific characters. In that mode, to type the ASCII quotation mark or the
ASCII apostrophe, first use the " or ' key, and then immediately press Ctrl-Z to undo the
replacement that Word makes.

3.

Soft hyphen is not widely supported. In particular, MS Word does not recognize it. You can
insert a discretionary hyphen in MS Word by pressing Ctrl-hyphen, but this inserts a control
character, not the Unicode soft hyphen.

4.

In the notations for typing en dash and em dash, the word "minus" denotes the minus sign on
the numeric keypad.

5.

When the language has been set to Spanish, MS Word converts a leading question mark ? or
exclamation mark ! into an inverted one (¿ or ¡).

6.

A.1.4. Mapping from Symbol Font to Unicode

Table A-4 is different from the previous tables: it specifies how the use of Symbol font can be
replaced by the use of Unicode characters. The characters can of course be entered in any suitable
way, such as those given in the other tables. The Symbol font was discussed in Chapters 3 and 4.
The font contains symbols that have no counterpart in Unicode, such as the Apple logo (on Mac), but
most of the characters that you can fake using the Symbol font can be written as normal Unicode
characters. Trivial mappings that map a character to itself have not been included in the table,
causing some apparent holes.

The first column contains the internal code number (in hexadecimal) within the Symbol font, and the
second column shows what happens if that number is interpreted as a Unicode (or as an ISO-8859-1)

code number. Thus, if you are accustomed to writing the character (for all, U+2200) by setting
the font to Symbol and typing ", then the row with " in the second column tells the Unicode identity of
the character.

Table A-4. Mapping from Symbol font to Unicode

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Symbol Unicode number Name

22 " U+2200 For all

24 $ U+2203 There exists

27 ' U+220D Small contains as member

2A * * U+2217 Asterisk operator

2D - - U+2212 Minus sign

40 @ U+2245 Approximately equal to

41 A Α U+0391 Greek capital letter alpha

42 B Β U+0392 Greek capital letter beta

43 C Χ U+03A7 Greek capital letter chi

44 D ∆ U+0394 Greek capital letter delta

45 E Ε U+0395 Greek capital letter epsilon

46 F Φ U+03A6 Greek capital letter phi

47 G Γ U+0393 Greek capital letter gamma

48 H Η U+0397 Greek capital letter eta

49 I Ι U+0399 Greek capital letter iota

4A J U+03D1 Greek theta symbol

4B K Κ U+039A Greek capital letter kappa

4C L Λ U+039B Greek capital letter lamda

4D M Μ U+039C Greek capital letter mu

4E N Ν U+039D Greek capital letter nu

4F O Ο U+039F Greek capital letter omicron

50 P Π U+03A0 Greek capital letter pi

51 Q Θ U+0398 Greek capital letter theta

52 R Ρ U+03A1 Greek capital letter rho

53 S Σ U+03A3 Greek capital letter sigma

54 T Τ U+03A4 Greek capital letter tau

55 U Υ U+03A5 Greek capital letter upsilon

56 V U+03C2 Greek small letter final sigma

57 W Ω U+03A9 Greek capital letter omega

58 X Ξ U+039E Greek capital letter xi

59 Y Ψ U+03A8 Greek capital letter psi

5A Z Ζ U+0396 Greek capital letter zeta

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Symbol Unicode number Name

5C \ U+2234 Therefore

5E ^ U+22A5 Up tack

61 a α U+03B1 Greek small letter alpha

62 b β U+03B2 Greek small letter beta

63 c χ U+03C7 Greek small letter chi

64 d δ U+03B4 Greek small letter delta

65 e ε U+03B5 Greek small letter epsilon

66 f φ U+03C6 Greek small letter phi

67 g γ U+03B3 Greek small letter gamma

68 h η U+03B7 Greek small letter eta

69 i ι U+03B9 Greek small letter iota

6A j U+03D5 Greek phi symbol

6B k κ U+03BA Greek small letter kappa

6C l λ U+03BB Greek small letter lamda

6D m µ U+03BC Greek small letter mu

6E n ν U+03BD Greek small letter nu

6F o ο U+03BF Greek small letter omicron

70 p π U+03C0 Greek small letter pi

71 q θ U+03B8 Greek small letter theta

72 r ρ U+03C1 Greek small letter rho

73 s σ U+03C3 Greek small letter sigma

74 t τ U+03C4 Greek small letter tau

75 u υ U+03C5 Greek small letter upsilon

76 v U+03D6 Greek pi symbol

77 w ω U+03C9 Greek small letter omega

78 x ξ U+03BE Greek small letter xi

79 y ψ U+03C8 Greek small letter psi

7A z ζ U+03B6 Greek small letter zeta

7E ~ ~ U+223C Tilde operator

A0 € U+20AC Euro sign

A1 ¡ U+03D2 Greek upsilon with hook symbol

A2 ¢ ' U+2032 Prime

A3 £ U+2264 Less-than or equal to

5C \ U+2234 Therefore

5E ^ U+22A5 Up tack

61 a α U+03B1 Greek small letter alpha

62 b β U+03B2 Greek small letter beta

63 c χ U+03C7 Greek small letter chi

64 d δ U+03B4 Greek small letter delta

65 e ε U+03B5 Greek small letter epsilon

66 f φ U+03C6 Greek small letter phi

67 g γ U+03B3 Greek small letter gamma

68 h η U+03B7 Greek small letter eta

69 i ι U+03B9 Greek small letter iota

6A j U+03D5 Greek phi symbol

6B k κ U+03BA Greek small letter kappa

6C l λ U+03BB Greek small letter lamda

6D m µ U+03BC Greek small letter mu

6E n ν U+03BD Greek small letter nu

6F o ο U+03BF Greek small letter omicron

70 p π U+03C0 Greek small letter pi

71 q θ U+03B8 Greek small letter theta

72 r ρ U+03C1 Greek small letter rho

73 s σ U+03C3 Greek small letter sigma

74 t τ U+03C4 Greek small letter tau

75 u υ U+03C5 Greek small letter upsilon

76 v U+03D6 Greek pi symbol

77 w ω U+03C9 Greek small letter omega

78 x ξ U+03BE Greek small letter xi

79 y ψ U+03C8 Greek small letter psi

7A z ζ U+03B6 Greek small letter zeta

7E ~ ~ U+223C Tilde operator

A0 € U+20AC Euro sign

A1 ¡ U+03D2 Greek upsilon with hook symbol

A2 ¢ ' U+2032 Prime

A3 £ U+2264 Less-than or equal to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Symbol Unicode number Name

A4 ¤ / U+2044 Fraction slash

A5 ¥ U+221E Infinity

A6 U+0192 Latin small letter f with hook

A7 § U+2663 Black club suit

A8 ¨ U+2666 Black diamond suit

A9 © U+2665 Black heart suit

AA ª U+2660 Black spade suit

AB « U+2194 Left right arrow

AC ¬ U+2190 Leftward arrow

AD U+2191 Upward arrow

AE ® U+2192 Rightward arrow

AF ¯ U+2193 Downward arrow

B2 2 " U+2033 Double prime

B3 3 U+2265 Greater-than or equal to

B4 ´ x U+00D7 Multiplication sign

B5 µ U+221D Proportional to

B6 ¶ U+2202 Partial differential

B7 · • U+2022 Bullet

B8 ¸ ÷ U+00F7 Division sign

B9 1 U+2260 Not equal to

BA º U+2261 Identical to

BB » U+2248 Almost equal to

BC ¼ ... U+2026 Horizontal ellipsis

BD ½ ½ U+23D0 Vertical line extension

BE ¾ ¾ U+23AF Horizontal line extension

BF ¿ U+21B5 Downward arrow with corner leftward

C0 À U+2135 Alef symbol

C1 Á U+2111 Black-letter capital i

C2 Â U+211C Black-letter capital r

C3 Ã U+2118 Script capital p

C4 Ä U+2297 Circled times

C5 Å U+2295 Circled plus

C6 Æ U+2205 Empty set

A4 ¤ / U+2044 Fraction slash

A5 ¥ U+221E Infinity

A6 U+0192 Latin small letter f with hook

A7 § U+2663 Black club suit

A8 ¨ U+2666 Black diamond suit

A9 © U+2665 Black heart suit

AA ª U+2660 Black spade suit

AB « U+2194 Left right arrow

AC ¬ U+2190 Leftward arrow

AD U+2191 Upward arrow

AE ® U+2192 Rightward arrow

AF ¯ U+2193 Downward arrow

B2 2 " U+2033 Double prime

B3 3 U+2265 Greater-than or equal to

B4 ´ x U+00D7 Multiplication sign

B5 µ U+221D Proportional to

B6 ¶ U+2202 Partial differential

B7 · • U+2022 Bullet

B8 ¸ ÷ U+00F7 Division sign

B9 1 U+2260 Not equal to

BA º U+2261 Identical to

BB » U+2248 Almost equal to

BC ¼ ... U+2026 Horizontal ellipsis

BD ½ ½ U+23D0 Vertical line extension

BE ¾ ¾ U+23AF Horizontal line extension

BF ¿ U+21B5 Downward arrow with corner leftward

C0 À U+2135 Alef symbol

C1 Á U+2111 Black-letter capital i

C2 Â U+211C Black-letter capital r

C3 Ã U+2118 Script capital p

C4 Ä U+2297 Circled times

C5 Å U+2295 Circled plus

C6 Æ U+2205 Empty set

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Symbol Unicode number Name

C7 Ç U+2229 Intersection

C8 È U+222A Union

C9 É U+2283 Superset of

CA Ê U+2287 Superset of or equal to

CB Ë U+2284 Not a subset of

CC Ì U+2282 Subset of

CD Í U+2286 Subset of or equal to

CE Î U+2208 Element of

CF Ï U+2209 Not an element of

D0 U+2220 Angle

D1 Ñ U+2207 Nabla

D2 Ò ® U+00AE Registered sign in serif font

D3 Ó © U+00A9 Copyright sign in serif font

D4 Ô ™ U+2122 Trademark sign in serif font

D5 Õ U+220F N-ary product

D6 Ö U+221A Square root

D7 x U+22C5 Dot operator

D8 Ø ¬ U+00AC Not sign

D9 Ù U+2227 Logical and

DA Ú U+2228 Logical or

DB Û ' U+21D4 Left right double arrow

DC Ü U+21D0 Leftward double arrow

DD Ý U+21D1 Upward double arrow

DE U+21D2 Rightward double arrow

DF ß U+21D3 Downward double arrow

E0 à U+22C4 Diamond operator

E1 á á U+3008 Left angle bracket

E2 â ® U+00AE Registered sign in sans serif font

E3 ã © U+00A9 Copyright sign in sans serif font

E4 ä ™ U+2122 Trademark sign in sans serif font

E5 å U+2211 N-ary summation

E6 æ æ U+239B Left parenthesis upper hook

E7 ç ç U+239C Left parenthesis extension

C7 Ç U+2229 Intersection

C8 È U+222A Union

C9 É U+2283 Superset of

CA Ê U+2287 Superset of or equal to

CB Ë U+2284 Not a subset of

CC Ì U+2282 Subset of

CD Í U+2286 Subset of or equal to

CE Î U+2208 Element of

CF Ï U+2209 Not an element of

D0 U+2220 Angle

D1 Ñ U+2207 Nabla

D2 Ò ® U+00AE Registered sign in serif font

D3 Ó © U+00A9 Copyright sign in serif font

D4 Ô ™ U+2122 Trademark sign in serif font

D5 Õ U+220F N-ary product

D6 Ö U+221A Square root

D7 x U+22C5 Dot operator

D8 Ø ¬ U+00AC Not sign

D9 Ù U+2227 Logical and

DA Ú U+2228 Logical or

DB Û ' U+21D4 Left right double arrow

DC Ü U+21D0 Leftward double arrow

DD Ý U+21D1 Upward double arrow

DE U+21D2 Rightward double arrow

DF ß U+21D3 Downward double arrow

E0 à U+22C4 Diamond operator

E1 á á U+3008 Left angle bracket

E2 â ® U+00AE Registered sign in sans serif font

E3 ã © U+00A9 Copyright sign in sans serif font

E4 ä ™ U+2122 Trademark sign in sans serif font

E5 å U+2211 N-ary summation

E6 æ æ U+239B Left parenthesis upper hook

E7 ç ç U+239C Left parenthesis extension

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Symbol Unicode number Name

E8 è è U+239D Left parenthesis lower hook

E9 é é U+23A1 Left square bracket upper corner

EA ê ê U+23A2 Left square bracket extension

EB ë ë U+23A3 Left square bracket lower corner

EC ì ì U+23A7 Left curly bracket upper hook

ED í í U+23A8 Left curly bracket middle piece

EE î î U+23A9 Left curly bracket lower hook

EF ï ï U+23AA Curly bracket extension

F1 ñ ñ U+3009 Right angle bracket

F2 ò U+222B Integral

F3 ó U+2320 Top half integral

F4 ô ô U+23AE Integral extension

F5 õ U+2321 Bottom half integral

F6 ö ö U+239E Right parenthesis upper hook

F7 ÷ ÷ U+239F Right parenthesis extension

F8 ø ø U+23A0 Right parenthesis lower hook

F9 ù ù U+23A4 Right square bracket upper corner

FA ú ú U+23A5 Right square bracket extension

FB û û U+23A6 Right square bracket lower corner

FC ü ü U+23AB Right curly bracket upper hook

FD U+23AC Right curly bracket middle piece

FE U+23AD Right curly bracket lower hook

E8 è è U+239D Left parenthesis lower hook

E9 é é U+23A1 Left square bracket upper corner

EA ê ê U+23A2 Left square bracket extension

EB ë ë U+23A3 Left square bracket lower corner

EC ì ì U+23A7 Left curly bracket upper hook

ED í í U+23A8 Left curly bracket middle piece

EE î î U+23A9 Left curly bracket lower hook

EF ï ï U+23AA Curly bracket extension

F1 ñ ñ U+3009 Right angle bracket

F2 ò U+222B Integral

F3 ó U+2320 Top half integral

F4 ô ô U+23AE Integral extension

F5 õ U+2321 Bottom half integral

F6 ö ö U+239E Right parenthesis upper hook

F7 ÷ ÷ U+239F Right parenthesis extension

F8 ø ø U+23A0 Right parenthesis lower hook

F9 ù ù U+23A4 Right square bracket upper corner

FA ú ú U+23A5 Right square bracket extension

FB û û U+23A6 Right square bracket lower corner

FC ü ü U+23AB Right curly bracket upper hook

FD U+23AC Right curly bracket middle piece

FE U+23AD Right curly bracket lower hook

http://lib.ommolketab.ir
http://lib.ommolketab.ir

About the Author

Jukka K. Korpela is a consultant who specializes in character codes, localization, orthography,
usability, and accessibility. After graduating from Helsinki University of Technology, he taught in the
university's computer science department and worked on localization and accessibility issues at TIEKE
before becoming a full-time author and consultant. His previous books on CSS and XHTML were
published in Finland by Docendo Press.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Colophon

The animal on the cover of Unicode Explained is a long-tailed glossy starling…

The cover image is from the Dover Pictorial Archive. The cover font is Adobe ITC Garamond. The text
font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's
TheSans Mono Condensed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

\a (alert) escape notation

& (ampersand)

' (apostrophe) 2nd

 vs. single quotation mark

\' (apostrophe) escape notation

. ., (arrows)

± (asterisk)

\\ (backslash) escape notation

\b (backspace) escape notation

{ } (braces)

 (broken bar)

. (catenation operator)

¢ (cent sign) 2nd

<<>> (chevrons/guillemets)

: (colon)

, (comma)

(comments) in Unicode database files

@ (commercial at) 2nd

¤ (currency sign)

÷ (division sign) 2nd

/ (division slash)

$ (dollar sign) 2nd 3rd

... (ellipsis points) 2nd

(em dash) 2nd 3rd 4th

(en dash) 2nd 3rd 4th

 spacing between characters and

= (equals sign)

(euro sign)

. (euro-currency sign)

! (exclamation mark) 2nd

ª (feminine ordinal indicator)

\f (form feed) escape notation

¶ (formatting marks)

. (franc sign)

. (full stop) 2nd

` (grave accent) 2nd 3rd

> (greater-than sign)

! (inverted exclamation mark)

¡ (inverted exclamation mark)

¿ (inverted question mark) 2nd

< (less-than sign)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

_ (low line, underscore)

 in Unicode database files

º (masculine ordinal indicator)

µ (micro sign)

· (middle dot) 2nd

x (multiplication sign) 2nd 3rd

\n (newline) escape notation

¬ (not sign)

(number sign) 2nd

 (numero sign)

(parentheses)

 (per mile sign)

% (percent sign)

¶ (pilcrow sign)

| (pipe, vertical line) 2nd

+ (plus sign)

 catenation operator

± (plus-minus sign)

£ (pound sign) 2nd

? (question mark)

" (quotation mark) 2nd 3rd

\" (quotation mark) escape notation

® (registered sign)

 ° (degree sign) 2nd

\r (return)) escape notation

\ (reverse solidus) 2nd

§ (section sign)

; (semicolon)

 in Unicode database files

ß (sharp s)

"" (smart quotes) 2nd 3rd

/ (solidus) 2nd

 division mark and

[] (square brackets)

\t (tab) escape notation

~ (tilde)

" (trademark sign)

Æ (U+00C6)

Ø (U+00D8)

 (U+00DE)

æ (U+00E6) 2nd

 (U+00F0)

 (U+00FE)

\v (vertical tab) escape notation

¥ (yen sign) 2nd

16-bit 2nd

 Java and

7bit Content-Transfer-Encoding value

8-bit 2nd

 ad hoc, defined by fonts

 codes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Content-Transfer-Encoding value

 headers, using characters in

 Vietnamese codes

^ (circumflex) 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

abbreviations (codes)

abjads

abstract character repertoire

abstract characters 2nd

abstractions (character)

abugida 2nd

accented characters 2nd

Accept-Charset header

Accept-Encoding header

Accept-Language header

accessibility

ACK (acknowledge) character

AddType instructions

Afrikaans ISO 639-1 code

age property

AHex

AI (Ambiguous) LineBreak property value

AL (Arabic letter) Bidi Class value

Albanian language

allocation areas

Alpha

alphabetic order, collating

alphabetic scripts

 European

alphanumeric characters

alphasyllabary

alt attribute (HTML) 2nd

Alt key

 Windows, using on

Alt-+n method

Alt-0n method

Alt-n method

Alt-X method

alternative names

AltGr key 2nd

Alvestrand, Harald

ambiguity among characters

ampersand (&)

AMSTeX

AN (Arabic number) Bidi Class value

angular brackets

http://lib.ommolketab.ir
http://lib.ommolketab.ir

annexes (Unicode standard)

annotations

ANSI character set

 Windows Latin 1

Apache servers

 language negotiation and

API (Application Programming Interface)

apostrophe (') 2nd

 vs. single quotation mark

appearance of characters

application dependent, using virtual keys

application media type

Application Programming Interface (API)

application type

ar (Arabic) ISO 639-1 code

Arab (Arabic) script code

Arabic digits (09)

 Arabic language encodings

 ISO 639-1 code

 long and short codes for

Arabic presentation forms

ArabicShaping.txt file

Armenian encodings

Armenian scripts

Armn (Armenian) script code

arrows (iúiú)

ASCII (American Standard Code for Information Interchange) 2nd 3rd 4th

ASCII apostrophe

ASCII Hex Digit

ASCII quotation mark (")

assigned code points

asterisk (±)

atomic (units of text) 2nd

attributes (HTML/XML)

audio media type

authoring software

auto-synchronization

AutoCorrect (MS Word)

auxiliary characters data fields

auxiliary keys

azerty keyboard

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

B (paragraph separator) Bidi Class value

B encoding

B2 LineBreak property value

BA LineBreak property value

BabelPad

backslash (\) 2nd

 CSS, uses for

 escape notations and

backspace (BS) character

Bali script code

Baltic encodings

bar (|)

base characters

Base64 2nd 3rd

basic characters (exemplarCharacters) data fields

Basic Latin 2nd 3rd 4th

 illogical division into blocks and

 invariance of

 rows and blocks

 structure of database files and

 vs. ISO-8859-1

Basic Multilingual Plane (BMP) 2nd 3rd 4th 5th

 CESU-8 encoding

 noncharacter code points

 storage requirements and

Basque language

Batk script code

BB LineBreak property value

bc (Bidi Class)

BCP (Best Current Practice)

BE (big-endian)

BEL (bell)

Beng (Bengali) script code

Best Current Practice (BCP)

Bidi C property

Bidi Class

BiDi class, directionality property values

Bidi M property

Bidi Mirrored

Bidi Mirroring Glyph

BidiMirroring.txt

http://lib.ommolketab.ir
http://lib.ommolketab.ir

bidirectionality 2nd

Bido Class, mirroring

big-endian (BE)

Big5 encoding for Chinese

Big5-HKSCS encoding for Chinese

binary collations

binary Content-Transfer-Encoding value

Binary Ordered Compression for Unicode (BOCU-1)

BIPM (Bureau International des Poids et Mesures)

bit

bit (CESU-8) 2nd

bitmap fonts

BK ± LineBreak property value

blanked (ignorable) settings for collation elements

Blis script code

blk (Block)

blocked character

blocks 2nd 3rd

 illogical division into

 internal structure of

Blocks.txt file

bmg (Bidi Mirroring Glyph)

BMP (Basic Multilingual Plane) 2nd 3rd 4th 5th

 CESU-8 encoding and

 noncharacter code points

 storage requirements and

BN (boundary neutral) Bidi Class value

BOCU-1 (Binary Ordered Compression for Unicode)

bold type face 2nd

BOM (byte order mark) 2nd

Bopo (Bopomofo) script code

braces ({ })

Brah script code

Brai (Braille) script code

Breton language

British (U.K.) keyboards

broken bar ()

browsers

 directionality and

 encodings, viewing

 entity references and

 font support for

 HTTP headers and

 language negotiation and

 languages, setting preferences for

 settings

BS (backspace) character

Bugi script code

Buhd script code

Bureau International des Poids et Measures (BIPM)

button-like symbols

buttons for character input

http://lib.ommolketab.ir
http://lib.ommolketab.ir

byte order

byte order mark (BOM)

bytes 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

C (Common) rule

C programming language 2nd 3rd

 escape notations and

 Unicode

 wide characters and

C0/C1 controls

 HTML characters

 XML characters

calendar subtype

CAN (cancel) character

Canadian Multilingual keyboards

Canonical Combining Class (ccc) 2nd 3rd

canonical decomposable

canonical decompositions

canonical equivalence 2nd 3rd

canonical mappings 2nd

Cans script code

capital letters

carriage return (CR) 2nd 3rd

Case Charts

case folding 2nd 3rd

 case mappings and

 vs. normalization

case mappings

case ordering, collating

case properties

case sensitivity

CaseFolding.txt 2nd

Catalan language

catalog

catenation operator (.)

CB ± (Contingent Break Opportunity) LineBreak property value

Cc General Category value

ccc (Canonical Combining Class) 2nd 3rd

CE (Composition Exclusion) 2nd

cent sign (¢) 2nd

Central European encodings

CESU-8 (Compatibility Encoding Scheme for UTF-16: 8-bit) 2nd

cf (Case Folding)

Cf General Category value

CGI (Common Gateway Interface)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CGI scripts

CGPM (General Conference on Weight and Measures)

Cham script code

char data type (C)

character codes 2nd 3rd

 directionality

 using

 Windows (Microsoft)

character data types

character encodings 2nd

 charset information

 forms 2nd

 on the Web

 schemes 2nd

character level, expressing information

character map BabelPad

character maps 2nd 3rd

 case

 vs. visual mappings

 viewing

Character Reference Open (CRO)

character references 2nd 3rd

character repertoire 2nd 3rd

character sequences, writing special characters

character sets 2nd

character-oriented processing

characters 2nd 3rd

 accessibility and

 adding to Unicode

 ambiguity among

 avoiding

 choosing, effects on

 classification

 definitions of

 deprecated/obsolete

 directionality

 displaying

 finding information about

 identity 2nd

 input and output (I/O)

 inserting symbols in MS Word

 Internet message headers and

 languages and

 level

 misleading names of

 names of

 numbering

 octet sequences

 Perl and

 processing of

 properties of

 repertoires

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 spacing between

 strictness of

 typing

 URLs and

 usage

 vs. font variation

 vs. images

 writing

charCount(int) method

charset

charValue() method

Cher (Cherokee) script code

chevrons (<<>>)

Chinese language

 encodings 2nd

 ISO 639-1 code

Chinese National Standard GB 180303

circled mapping

circumflex accent (^) 2nd

Cirt script code

CJK (Chinese/Japanese/Korean) 2nd 3rd

 16-bits and

 cultural biases and

 encodings for

 properties and

CJKV (Chinese/Japanese/Korean/Vietnamese)

CL LineBreak property value

classification of characters

CLDR (Common Locale Data Repository) 2nd 3rd 4th 5th 6th

 programming and

 technical definitions of character requirements and

CLDR database

clipboard 2nd

cliptext

closed collection

CM ± LineBreak property value

Cn General Category value

Co General Category value

code charts 2nd

code number 2nd 3rd

code points 2nd 3rd

 order vs. collating order

 unassigned

code position 2nd

code set value

code units 2nd 3rd

code value

coded character representation

coded character set

coded combinations of diacritic marks

coding space

collating order 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

collation charts

Collation Element Table

collation elements

collection of characters

colon (:)

color of text

Combining Class

combining diacritical marks

comma (,)

Comma Separated Values (CSV) 2nd

command menus 2nd

 writing special characters

comments in Unicode database files

commercial at (@) 2nd

Common (Zyyy) script code

common character classes

Common Gateway Interface (CGI)

common parentheses (())

Comp Ex

compareTo(Character) method

compat mapping

compatibility characters

 avoiding

 ligatures

compatibility decomposable characters 2nd

 definition of

compatibility decompositions 2nd 3rd

compatibility equivalence

compatibility formatting tags

compatibility mappings 2nd

complexity of Unicode

composite characters

Composition Exclusion (CE) 2nd

compositions

computer languages

computer professionals

conformance requirements 2nd

Connolly, Dan

consonant scripts

content negotiation

Content-Encoding header

Content-Language header

Content-Transfer-Encoding header

Content-Type header 2nd 3rd

 MIME headers and

Content-type header

 HTTP headers and

contextual forms

continuation line convention

continuity of design principles

control characters 2nd

 HTML characters

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 XML characters

control code points

conversions

converters 2nd

Copt script code

copying (Ctrl-C)

copying text formatting

copyright sign (©)

core character classes

Cornish language

correct writing (orthography)

CP 437 code pages

CP 850 code pages

Cprt (Cypriot) script code

CR (carriage return) 2nd 3rd

CR LineBreak property value

criticism of Unicode

CRO (Character Reference Open)

Croatian language

cross-mapping tables

CS (common number separator) Bidi Class value

Cs General Category value

CSS (Cascading Style Sheets) 2nd 3rd 4th 5th 6th

 character/visual mappings and

 directionality in

 escape notations in

 Internet protocols and

CSV (Comma Separated Values) 2nd

Ctrl key

Ctrl-C (copying)

Ctrl-Q (Emacs)

Ctrl-V (paste)

cultural background

cultural biases

currency sign (¤)

currency symbols 2nd

cursive

Cyrillic blocks

Cyrillic encodings 2nd

Cyrillic KOI8 encodings

Cyrillic script

Cyrl (Cyrillic) script code

Cyrs script code

Czech language

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

D (U+00D0)

Daniels and Bright (The World's Writing Systems)

Danish language

dashes 2nd

data

data link escape (DLE) character

data transfer

database files

DC (Dublin Core)

DC1 (device control one) character

DC2 (device control two) character

DC3 (device control three) character

DC4 (device control four) character

de (German) ISO 639-1 code

dead keys

decoding UTF-8

decomposable characters

decomposed characters

decomposition mappings

Decomposition Type (dt)

decompositions

default boundary rules

default casing operations

Default Ignorable Code Point (DI)

Default Unicode Collation Element Table (DUCET)

degree Celsius (°C)

degree sign (°)

degree sign and

DEL (delete) character

Dep (Deprecated)

deprecated characters

derived properties

DerivedAge.txt file

DerivedCoreProperties.txt file

design principles

Deva (Devanagari) script code

device controls

DI (Default Ignorable Code Point)

Dia (Diacritic)

diacritic marks 2nd

 combining 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 cultural biases and

 French characters and

 impact of

 Latin 1 Supplement block and

 transcription and

 unified

 variation of

diacritic order, collating

dictionary order

digit(char,int) method

digraphs 2nd

dingbats 2nd

dir attribute (HTML)

direction property (CSS)

directionality 2nd

directory subtype of text

division sign (÷) 2nd

division slash (/)

DLE (data link escape) character

dm (Decomposition Mapping)

dns (Domain Name System) data

.doc format

document character set 2nd

dollar sign ($) 2nd 3rd

DOM (Document Object Model)

domain names

DOS systems

 code pages

dotted numbers

double diacritics

Dsrt (Deseret) script code

dt (Decomposition Type)

Dublin Core (DC)

DUCET (Default Unicode Collation Element Table)

Dutch language

 ISO 639-1 code

dynamic compositions 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

e (estimated symbol)

ea (East Asian Width) 2nd

East Asian Width (ea) 2nd

EBCDIC 2nd 3rd

ECMA

ECMA (European Computer Manufacturers' Association)

 ECMAScript (JavaScript) and

ecmascript subtype

editors 2nd

efficiency

Egyd script code

Egyh script code

Egyp script code

el (Greek) ISO 639-1 code

ellipsis points (...) 2nd

EM (end of medium) character

em dash () 2nd 3rd 4th

Emacs Ctrl-Q method

email 2nd

 defaults and

 headers 2nd 3rd

 Internet and

 protocol headers and

 sending Unicode

embedded fonts

embedded information

emergency breaks

en (English) ISO 639-1 code

EN (European number) Bidi Class values

en dash () 2nd 3rd 4th

 spacing between characters and

encoding negotiation

encodings 2nd 3rd 4th 5th

 algorithms for UTF-8

 ASCII

 auto-detecting

 B

 choosing

 common choices of

 conversions between

 information about

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Internet

 Q

 schemes

English language

 ISO 639-1 code

ENQ (enquiry) character

enriched text

entity references 2nd

enumeration

eo (Esperanto) ISO 639-1 code

EOF indicator (C)

EOT (end of transmission) character

equals sign (=)

equals(Object) method

equivalent sequences

ES (European number separator) Bidi Class value

es (Spanish) ISO 639-1 code

ESC (escape) 2nd

escape (ESC)

escape mechanisms/notations/sequences 2nd 3rd 4th

\u escape notation

Esperanto language

 ISO 639-1 code

estimated symbol (e)

Estonian language

ET (European number terminator) Bidi Class value

ETB (end of transmission block) character

Ethi (Ethiopic) script code

ETX (end of text) character

EU (European Union)

EUC-JP encoding for Japanese

EUC-TW encoding for Chinese

euro sign () 2nd

euro-currency sign (.)

eurocents

European alphabetic scripts

European Computer Manufacturers' Association (ECMA)

 ECMAScript (JavaScript) and

European Union (EU)

EX (Exclamation/Interrogation) LineBreak property value

exceptNamesList.txt

exclamation mark (!) 2nd

exemplarCharacters data fields

Ext (Extender)

Extensible HyperText Markup Language (XHTML) 2nd

 attributes for

external identifiers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

F (Full) rule

failures, displaying characters

fantasy (font)

Faroese language

Farsi (Persian) encodings

FC NFKC

feminine ordinal indicator (ª)

FF (form feed) 2nd

figure space (U+2007)

file separator (FS) character

File Transfer Protocol (FTP)

file, submitting with input fields

Finnish language

fixed width

fixed-width space characters 2nd

Font properties extension

font variation

font-family value

fonts 2nd 3rd 4th

 8-bit codes, defined by

 choosing

 embedding

 finding

 implementation of

 IPA on computers and

 languages and

 printers

 substitutions

 Unicode vs. tricks

 usage

 web authoring and

 working with

foreign names

form feed (FF) 2nd

formal names

formally defined properties

format code points

formatting controls

formatting marks (¶)

forms 2nd 3rd

 processing data

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FORTRAN

Fortress programming language

four-letter codes

fr (French) ISO 639-1 code

fractions 2nd

franc sign (.)

Free Recode converter

French language 2nd

 ISO 639-1 code

Frisian language

FS (file separator) character

FTP (File Transfer Protocol)

Full Composition Exclusion

full stop (.) 2nd

fullwidth ASCII characters

fundamentally similar characters

furigana

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Galician language

GB 18030 (Chinese Unicode) 2nd

GB 18030, encoding for Chinese

GB2312 encoding for Chinese

GBK encoding for Chinese

gc (General Category) 2nd 3rd

GCB (Grapheme Cluster Break)

General Category (gc) 2nd

General Conference on Weight and Measures (CGPM)

general punctuation

generalized URL encodings

generic currency symbol

generic font names

Geok script code

Geor (Georgian) script code

Georgian encodings

Georgian scripts

German language

 ISO 639-1 code

GET method

getDirectionality Java function

getNumericValue Java function

getType Java function

GL ± LineBreak property value

Glag script code

globalization

glyphs 2nd 3rd 4th 5th

 allowed variation of

 images

 mapping

 operations on

 unification across variation

Google searches

Goth (Gothic) script code

Gr Base (Grapheme Base)

Gr Ext (Grapheme Extend)

Gr Link

grammar checks 2nd

Grapheme Cluster Break (GCB)

grapheme cluster text element

Grapheme Extend/Link

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GraphemeBreakProperty.txt file

graphic code points

graphic symbols 2nd

grave accent (`) 2nd 3rd

greater-than sign (>)

Greek language

 encodings

 ISO 639-1 code

 keyboards

Greek script

Greenlandic language

Grek (Greek) script code

grep program, using regular expressions

GS (group separator) character

guillemets (<<>>)

Gujr (Gugarati) script code

Guru (Gurmukhi) script code

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

H2 LineBreak property value

H3 LineBreak property value

half-width (narrow) characters

half-width ASCII characters

Han unification 2nd 3rd

Hang (Hangul) script code

Hangul Syllable Type (hst)

HangulSyllabletype.txt file

Hani (Han) script code

Hano (Hanunoo) script code

Hans script code

Hant script code

hash sign (#) 2nd

he (Hebrew) ISO 639-1 code

headers 2nd 3rd

 HTTP 2nd 3rd

 MIME 2nd

 non-ASCII characters in

 protocol

Hebr (Hebrew) script code

Hebrew language encodings

 ISO 639-1 code

Hebrew script code

heuristic recognition 2nd

Hex

hexadecimal notation

hi (Hindi) ISO 639-1 code

higher-level protocol

Hindi language, ISO 639-1 code

Hira (Hiragana) script code

hiragana characters

Hmng script code

horizontal tabulation HT (TAB) character 2nd

horizontal writing direction

HP Roman-8

Hrkt (Katakana_Or_Hiragana) script code

hst (Hangul Syllable Type)

HT (horizontal tabulation) TAB character 2nd

HTML (HyperText Markup Language) 2nd

 attributes for

 character/visual mappings and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 characters in

 CSS, using with

 directionality in

 entity references

 escape notations in

 HTTP and

 JavaScript and

 notations for characters and

 processing form data

 registered subtypes of text and

 translations and

 XHTML and

HTTP headers 2nd 3rd

 servers, configuring

HTTP_ACCEPT_LANGUAGE environment variable

Hung script code

Hungarian language

HY (Hyphen) LineBreak property value

hybrid formulas, using

hypertext links

Hyphen property

hyphen-minus (-) 2nd

 computer languages and

 IDNs and

hyphens 2nd

HZ encoding for Chinese

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

I/O (Input and Output)

i18n (internationalization)

IAB (Internet Architecture Board)

"IBM Classes for Unicode"

iCalendar format

Icelandic language

iconv converter

ICU (International Components for Unicode) 2nd

ICU4C

ICU4J

ID (Ideographic) LineBreak property value

IDC (ID Continue) 2nd

identifiers 2nd 3rd

 alternative syntax

 CSS

 Java

 pattern characters and

 syntax

identities (recognized)

Ideo (Ideographic)

ideographic scripts

ideographic telegraph symbols for months

IDN (Internationalized Domain Names) 2nd

IDNA (Internationalizing Domain Names in Applications)

IDS (ID Start)

IDSB (IDS Binary Operator)

IDST (IDS Trinary Operator)

IEC (International Electrotechnical Commission)

IETF (Internet Engineering Task Force)

IETF Policy on Character Sets and Languages (RFC 2277, BCP 18)

ignorable (blanked) settings for collation elements

image media type

images vs. characters 2nd

IME (Input Method Editors)

implementations of fonts

IN (Inseparable) LineBreak property value

indexes

 using numbers as

Inds script code

inefficiency of Unicode

information technology (IT)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

informative properties 2nd 3rd

inherently multilingual

Inherited (Qaai) script code

Input and Output (I/O)

input fields (HTML)

Input Method Editors (IME)

input methods

Insert menu (MS Word)

interface (CGI)

Interlinear annotation characters

internal identifiers

internal markers (MS Word)

internal structure of blocks

International Components for Unicode (ICU) 2nd

International Electrotechnical Commission (IEC)

international group discussion

International Organization for Standardization (ISO)

International Reference Version (IRV)

internationalization (i18n)

Internationalized Domain Names (IDN) 2nd

Internationalizing Domain Names in Applications (IDNA)

Internet 2nd

 character encodings and

 UTF-8 and 2nd

Internet and

Internet Architecture Board (IAB)

Internet Engineering Task Force (IETF)

Internet Explorer, viewing different encodings

Internet message format

Internet message headers

Internet protocols 2nd

interpretation of coded characters

interpreting UTF-8

inverted exclamation mark (!)

inverted exclamation mark (¡)

inverted question mark (¿) 2nd

invisible overflow line breaks

IPA (International Phonetic Alphabet) 2nd 3rd

 phonetic transcription in

Irish language

IRV (International Reference Version)

IS (Infix Separator) LineBreak property value

isc (ISO Comment)

isDefined(char) method

isDigit(char) method

isHighSurrogate(char) method

isISOControl(char) method

isLetter(char) method

isLetterOrDigit(char) method

isLowerCase Java function

isLowSurrogate(char) method

isMirrored Java function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ISO (International Organization for Standardization)

ISO 10646 2nd

ISO 3166

ISO 639

ISO 646

ISO 8859 codes

ISO Comment

ISO Latin 1 2nd 3rd 4th 5th 6th

 French characters and

 Internet and

 language coverage of

 Spanish characters and

 vs. UTF-8

ISO-2022 encoding for Chinese

ISO-2022-JP encoding for Japanese

isSpace(char) method

isTitleCase(char)

isUnicodeIdentifierPart Java function

isUnicodeIdentifierStart Java function

isUpperCase Java function

isWhitespace Java function

it (Italian) ISO 639-1 code

Ital (Old_Italic) script code

Italian language

 ISO 639-1 code

italic type face 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

ja (Japanese) ISO 639-1 code

Japanese language encodings 2nd

 ISO 639-1 code

Java programming language 2nd

 I/O

Java script code

JavaScript 2nd

javascript subtype

jg (Joining Group)

JL (Hangul L Jamo) LineBreak property value

Join C (Join Control)

Joining Group (jg)

Joining Type (jt)

Joint Technical Committee (JTC)

JT (Hangul T Jamo) LineBreak property value

jt (Joining Type)

JTC (Joint Technical Committee)

JV (Hangul V Jamo) LineBreak property value

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Kali script code

Kana (Katakana) script code

kanji characters

Kannada (Knda) script code

katakana characters

key combinations, writing special characters

keyboards variations/settings

 virtual

Khar script code

Khmr (Khmer) script code

Knda (Kannnada) script code

ko (Korean) ISO 639-1 code

KOI8-R

Korean language encodings 2nd

 ISO 639-1 code

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

L (left-to-right) Bidi Class value

l10n (localization)

la (Latin) ISO 639-1 code

language codes

language dependency

language links

language markup 2nd 3rd 4th

 characters not suitable for use with

 formatting characters for

 styling and

 Unicode and

language negotiation 2nd

language tags

language-specific versions of web sites

languages

 characters and

 encodings for

 multilingual web sites and

 vs. encoding

Laoo (Lao) script code

LaTeX 2nd

Latf script code

Latg script code

Latin 1

Latin 1 Supplement block

Latin Extended Additional block

Latin Extended-A block

Latin Extended-B block

Latin language

 ISO 639-1 code

Latin scripts 2nd

latinization

Latn (Latin) script code

Latvian language

lb (Line Break) 2nd

lc (Lowercase Mapping)

LDML (Locale Data Markup Language)

LE (little-endian) 2nd

LED displays

left bracket ([)

left curly bracket ({)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

left-to-right writing

legacy data/software 2nd

Lepc script code

less-than sign (<)

letterlike symbols

levels of text

lexicographic order

LF (linefeed) 2nd 3rd

LF ± (Line Feed) LineBreak property value

libiconv library

library routines (Java)

ligatures 2nd

Limb script code

limitations due to convertibility

æ, limitations of

Lina script code

Linb script code

Line Break (lb)

line breaks 2nd 3rd

 coding line structure and

 disallowing and allowing

 preventing

 principles of

 properties

 rules 2nd

 tailoring

line separator (LS) 2nd

line structure control

line-breaking algorithm

line-oriented processing

linear text

LineBreak property

LineBreak.txt file

linefeed (LF) 2nd

lining digits

link texts

literal characters

Lithuanian language

little-endian (LE) 2nd

Ll General Category value

Lm General Category value

Lo General Category value

Locale Data Markup Language (LDML)

locales

localization (l10n)

LOE (Logical Order Exception)

logical AND operator (&)

logical order

Logical Order Exception (LOE)

logical symbols

low line (_)

Lower (Lowercase) property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lowercase letters

 case folding and

 vs. uppercase

Lowercase Mapping (lc)

LRE (left-to-right embedding) Bidi Class value

LRE (left-to-right embedding) control character

LRO (left-to-right) Bidi Class value

LS (line separator) 2nd

Lt General Category value

Lu General Category value

Luxemburgish language

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Mac Roman 2nd

Macintosh (Mac) computers

macro invocations

macron below (U+0331)

major version number

majuscules

Maltese language

Mand script code

Manx Gaelic language

mapping tables

markup languages 2nd 3rd 4th 5th 6th

markup-significant characters

masculine ordinal indicator (º)

 degree sign and

Math property 2nd

mathematical notations

mathematical operators

mathematical symbols 2nd

MathWorld

Maya script code

MBCS (Multibyte Charater Sets)

Mc General Category value

Me General Category value

media type negotiation

media types 2nd

menu (commands)

Mero script code

message media type

metadata

methods (Java)

methods, writing characters

micro sign (µ)

Microsoft Windows

 Alt key, using on

 character maps

Microsoft Word

 character maps in

 character/visual mappings and

 default replacements in

 fonts, working with

 Format Font command, adjusting spacing and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 formatting marks (¶)

 French, writing with

 languages and

 line breaks and

 not sign (¬), displaying

 quotation marks and

 regular expressions and

 Save As option and

 shortcuts, defining

 Spanish, writing with

 special characters and

 symbols, inserting 2nd

 virtual keyboards and

middle dot (·) 2nd

MIME (Multipurpose Internet Mail Extensions) 2nd

MIME-Version header

minor version number

mirroring characters

Mlym (Malayalam) script code

Mn General Category value

mnemonic identifier 2nd

model media type

modern style digits

Modified UTF-8 2nd

modifier keys

Mong (Mongolian) script code

monospace (font)

most significant bit (MSB)

Mozilla Firefox 2nd

 Chinese characters and

Mozilla Thunderbird 2nd 3rd 4th

 insertion menu in

 Unicode, sending

MS Office 2nd

MSB (most significant bit)

multi-octet encoding

Multibyte Character Sets (MBCS)

multilingual applications

multilingual web sites

multipart media type

multiple uses (semantics) of characters

multiplication sign (x) 2nd 3rd

multiviews method (Apache)

Mymr script code

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

na (Name) property

na1 (Unicode 1 Name)

NAK (negative acknowledge) character

Nameprep algorithm

names (Unicode characters)

narrow no-break space (U+202F) 2nd

national variants of ASCII

NChar (Noncharacter Code Point)

Nd General Category value

negative acknowledge (NAK) character

negative kerning

negative transfer

NEL (next line)

Netscape

neutral directionality

next line (NEL)

NFC (Normalization Form C)

 W3C normalization and

NFC QC (NFC Quick Check)

NFD (Normalization Form D) 2nd

NFD QC (NFD Quick Check)

NFDK (Normalization Form KD)

NFKC (Normalization Form KC) 2nd 3rd

NFKC QC (NFKC Quick Check)

NFKD (Normalization Form KD)

NFKD QC (NFKD Quick Check)

Nkoo script code

nl (Dutch) ISO 639-1 code

NL (Next Line) LineBreak property value

Nl General Category value

No (General Category value)

no-break space (U+00A0) 2nd 3rd 4th 5th

non-ASCII characters

 programming languages and

non-breaking characters

non-breaking hyphen (U+2011) character 2nd 3rd 4th

non-collapsing (space characters)

non-ignorable setting for collation elements

non-overridable properties (normative)

non-starter decomposition characters

Noncharacter Code Point (NChar)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

noncharacter code points

normal (non-compatibility) characters

normal (regular) type face

normal form

Normal.dot file

normalization 2nd

normalization forms

NormalizationCorrections.txt

normative properties 2nd 3rd

normative references

Norwegian language

not sign (¬)

notations 2nd

Notepad (Windows) 2nd 3rd

NS (Non Starter) LineBreak property value

NSM (non-spacing mark) Bidi Class value

nt (Numeric Type)

NU (Numeric) LineBreak property value

NUL byte (zero byte) convention

NUL character 2nd

'\0' null character (C)

null pointer

number forms block

number sign (#) 2nd

numbering characters

numbers 2nd

 as indexes

numeric character references

Numeric Type (nt)

Numeric Value (nv)

numero sign ()

nv (Numeric Value)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

o (U+00F8)

O with a stroke (O, o)

OAlpha (Other Alphabetic)

objects (Java)

obsolete characters

octet 2nd

 UTF-8 ranges

octet sequences

ODI (Other Default Ignorable Code Point)

OE (Outlook Express) 2nd

 non-ASCII characters and

OEM (original equipment manufacturer) code pages 2nd

offline data

Ogam script code

OGr Ext (Other Grapheme Extend)

OIDC (Other ID Continue)

OIDS (Other ID Start)

OLower (Other Lowercase)

OMath (Other Math)

ON (other neutrals) Bidi Class value

OP (Opening Punctuation) LineBreak property value

open collections

OpenType 2nd

Opera browser

Optional Hyphen

original equipment manufacturer (OEM) code pages 2nd

Orkh script code

orthography

Orya (Orlya) script code

Osma (Osmanya) script code

Other Alphabetic (OAlpha)

Other Default Ignorable Code Point (ODI)

Other Grapheme Extend (OGr Ext)

Other ID Continue (OIDC)

Other ID Start (OIDS)

Other Lowercase (OLower)

Other Math (OMath)

Other Uppercase (OUpper)

OUpper (Other Uppercase)

Outlook Express (OE) 2nd

 non-ASCII characters and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

overlined text

override characters

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

pair table for line breaking

PanEuropean character set

paragraph breaks (¶)

paragraph separator (B) Bidi Class value

paragraph separator (PS) 2nd

parentheses (())

parenthesized letters

parenthesized numbers

parenthesized symbols

parityfec subtype

paste (Ctrl-V)

Pat Syn (Pattern Syntax)

Pat WS (Pattern White Space)

pattern characters

pattern syntax

Pattern Syntax Characters

Pattern Whitespace Characters

patterns

Pc General Category value

Pd General Category value

PDF (pop directional format) Bidi Class value

PDF (Portable Document Format)

Pe General Category value

per mille sign ()

percent sign (%)

Perl 2nd

 I/O

 regular expressions and

Perm (Old Permic) script code

Pf General Category value

Phag script code

Phnx script code

phonemes

phonetic characters

phonetic transcription

PHP

physical records (lines)

physical symbols

Pi General Category value

pilcrow sign (¶)

pipe (|) 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Pird script code

pl (Polish) ISO 639-1 code

plain text 2nd 3rd 4th

 database files and

 design principles and

 email, sending

 line breaks and

 plain subtype for

planes

plus sign (+)

 catenation operator and

plus-minus sign (±)

PO (Postfix) LineBreak property value

Po General Category value

pointers (C)

Polish language

 ISO 639-1 code

Portable Document Format (PDF)

Portuguese language

 ISO 639-1 code

POSIX specifications

post composition version precomposed characters

POST method

Postel, Jon

PostScript

PostScript Type 1

pound sign (£) 2nd

PR (Prefix) LineBreak property value

precomposed characters 2nd

preparedness principle

primary composite character

primary language codes

printer fonts

private use code points 2nd

program commands

programming 2nd

 hyphen-minus and

 line structuring

 markup, generating

 quotation marks and

 regular expressions and

 tilde and

properties 2nd 3rd

 case

 overview of

 summary of

property-driven processing

PropertyAliases.txt file

PropertyNames.txt file

PropList.txt file

proportional attribute

provisional properties

http://lib.ommolketab.ir
http://lib.ommolketab.ir

prs.fallenstein.rst subtype

prs.lines.tags subtype

PS (paragraph separator) 2nd

Ps General Category value

pt (Portuguese) ISO 639-1 code

punctuation 2nd

 General Punctuation block

Punycode 2nd

PuTTY

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Q encoding

Qaai (Inherited) script code

Qabx script code

QMark (Quotation Mark)

QP (Quoted Printable) 2nd

 quoted-printable Content-Transfer-Encoding value

QU LineBreak property value

quasi-markup

question mark (?)

quotation mark (")

Quotation Mark (QMark)

quotation marks ("") 2nd

quotations

Quoted Printable (QP) 2nd

 quoted-printable Content-Transfer-Encoding value

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

R (right-to-left) Bidi Class value

Radical

raster fonts

raw format (email)

README.TXT files

Real-time Transport Protocol (RTP)

recoding, converting character data

recognized identities

record separator (RS) character

records (lines)

red subtype

REFC (Reference Close)

Reference Close (REFC)

Regional and Language Options control panel

registered sign (®)

regular (normal) type face

regular expressions (regexp)

relcom.± groups

rendering/recognizing all Unicode characters

repertoires 2nd

 ASCII

 character

 characters outside

 requirements on

replacement characters

replacements on the fly

Request for Comments (RFC)

reserved code points

reStructuredText markup syntax

reverse solidus (\) 2nd

RFC (Request for Comments)

RFC 1766

RFC 2046

RFC 2822

RFC 3023

RFC 3066

rfc822-headers subtype

Rhaeto-Romanic language

richtext subtype

right bracket (])

right curly bracket (})

http://lib.ommolketab.ir
http://lib.ommolketab.ir

right-to-left writing

RLE (right-to-left embedding) Bidi Class value

RLE (right-to-left embedding) control character

RLM (right-to-left mark) control character

RLO code (Bidi Class value)

Roman numerals 2nd

Romanian keyboards

Romanian language

romanization

Roro script code

rows

RS (record separator) character

RTF (Rich Text Format) 2nd 3rd

 escape notations in

 rtf subtype for

RTP (Real-time Transport Protocol)

ruby

Runr (Runic) script code

Russian (ru) ISO 639-1 code

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

S (segment separator) Bidi Class value

S (Simple) rule

SA LineBreak property value

Sami language

sans serif

Sara script code

Save As option

 converting plain text with

 Microsoft Word and

 Notepad and

Save function, selecting encodings

saving as Unicode

SB (Sentence Break)

sc (Script)

Sc General Category value

scalar values

scc (Special Case Condition)

Scottish Gaelic language

screen

screen fonts

script-specific precomposed characters

scripts 2nd 3rd

 unification of

SCSU (Standard Compression Scheme for Unicode)

SD (Soft Dotted)

search engines

secondary code (second subtag)

section sign (§)

security threats, using IDNs

selection table

self-synchronizing

semantic disambiguation

semantic values

semantics

semicolon (;)

 in Unicode database files

Sentence Break (SB)

sentence text element

SentenceBreakProperty.txt file

sequences of characters

serialization

http://lib.ommolketab.ir
http://lib.ommolketab.ir

serif

servers

 language negotiation and

sfc (Simple Case Folding)

SG ± (Surrogates) LineBreak property value

SGML (Standard Generalized Markup Language) 2nd

 characters and

 sgml subtype for

sharp s (ß)

sharp sign (#) 2nd

Shaw (Shavian) script code

Shift key 2nd

shift out (SO) character

shift-trimmed setting for collation elements

Shift_JIS encoding for Japanese

shifted setting for collation elements

shortcuts, defining 2nd

"Show Formatting" mode (MS Word)

SI (International System of Units) 2nd

 symbols and

SI (shift in) character

SI notations

(euro sign)

signatures (sig)

Simonsen, K.

Simple Case Folding (sfc)

Simple Lowercase Mapping (slc)

Simple Titlecase Mapping (stc)

Simple Uppercase Mapping (suc)

simplified writing system (Chinese)

single quotation mark

single-octet encoding

singleton decomposition characters

Sinh (Sinhala) script code

size of characters

Sk General Category value

slash (/)

slc (Simple Lowercase Mapping)

Slovak language

Slovenian language

Sm General Category value

smart quotes ("") 2nd

SO (shift out) character

So General Category value

Soft Dotted (SD)

soft hyphen 2nd 3rd 4th

SOH (startof heading) character

solidus (/) 2nd

 division mark and

Sorbian language

sorting

sound values of letters

http://lib.ommolketab.ir
http://lib.ommolketab.ir

sounds in writing systems

source (email)

SP ± (Space) LineBreak property value

space between characters

space character (U+0020) 2nd

spacebar

spacing between characters

spacing modifier letters

Spanish (es) ISO 639-1 code

Spanish keyboards

Spanish language

Special block

Special Case Condition (scc)

special characters 2nd

Special Characters menu

SpecialCasing.txt file 2nd

speech synthesis

spelling checks 2nd

spoofing

square brackets ([])

stability of design principles

Standard Compression Scheme for Unicode (SCSU)

Standard Generalized Markup Language (SGML) 2nd

 characters and

 sgml subtype for

standards

standards of characters

starter characters

stc (Simple Titlecase Mapping)

stdin (standard stream input)

stdout (standard stream output)

STerm

storage requirements and

storage requirements for encodings

straight quotes (") 2nd

strictness of characters

String class (Java)

string data

string data type

string matching

strings 2nd

 C programming language and

 Java and

 JavaScript

 Perl and

 sorting

structure

STX (start of text) character

style attribute (HTML)

style elements (HTML)

styled text in RTF

SUB (substitute) character

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Subject header

subscripts 2nd

subtypes of text

suc (Simple Uppercase Mapping)

Sun Microsystems

superscripts 2nd 3rd

surrogate code points 2nd

surrogate pairs

Swedish language

SY (Symbols Allowing Breaks) LineBreak property value

syllabic scripts

Sylo script code

symbols

 character

 currency

 graphic

 letterlike

 logical, mathematical, and physical

Symbols and Punctuation (code charts)

SYN (synchronous idle) character

syntax characters

Syrc (Syriac) script code

Syre script code

Syrj script code

Syrn script code

system fonts

systematic methods, writing characters

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

T (Turkic) rule

t140 subtype

 Tab Separated Values (TSV) 2nd

tab-separated-values subtype for

table-driven processing

tabulated data

<compat> tag

<wide> tag

<vertical> tag

<super> tag

<sub> tag

<square> tag

<small> tag

<noBreak> tag

<narrow> tag

<medial> tag

<isolated> tag

<initial> tag

<fraction> tag

 tag

<final> tag

<compat> tag

<circle> tag

<wide> tag

<vertical> tag

<super> tag

<square> tag

<small> tag

<noBreak> tag

<narrow> tag

<meta> tag

 tag (HTML)

<wbr> tag (HTML)

<h2> tag (HTML)

 tag (HTML)

<p> tag (HTML)

 tag (HTML)

<sub> tag (HTML)

 tag (HTML)

<td> tag (HTML)

Tagb (Tagbanwa) script code

http://lib.ommolketab.ir
http://lib.ommolketab.ir

tags (language)

tailoring line breaks

Tale (Tai_Le) script code

Talu script code

Tami (Tamil) script code

tc (Titlecase Mapping)

TCVN 8-bit codes

technical symbols

Telnet

Telu (Telugu) script code

Teng script code

Term (Terminal Punctuation)

terms (Unicode)

TeX 2nd

 escape notations in

text boundaries

text elements

text media type

text type 2nd

Tfng script code

Tglg (Tagalog) script code

Thaa (Thaana) script code

Thai encodings

Thai script code

The 10 Unicode Design Principles

The Alphabets of Europe (Everson, Michael)

The Chicago Manual of Style

The Unicode standard, Version 4.0

The World's Writing Systems (Daniels and Bright)

thin space

thorn

Tibetan mark delimiter tsheg bstar (U+0F0C)

Tibt (Tibetan) script code

tilde (~)

titlecase

Titlecase Mapping (tc)

toLowerCase Java function

tone marks

Tools menu (MS Word)

toTitleCase Java function

toUpperCase Java function

trademark (")

traditional writing system (Chinese)

transcoding

 tools

transcriptions

transfer encoding negotiation

Transfer Encoding Syntax (TES) 2nd

 heading for

Transfer-Encoding header

translations, producing for the web

transliterations

http://lib.ommolketab.ir
http://lib.ommolketab.ir

troff subtype

TrueType

truncation

TSV (Tab Separated Values) 2nd

Turkish encodings

Turkish language

two-letter code for General Category values

Type 1

type faces

type text

type-map method (Apache)

typeface

typographic discrepancies

typography 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

U+0007 (\a) escape notation

U+0008 (\b) escape notation

U+0009 (\t) escape notation

U+000B (\v) escape notation

U+000C (\f) escape notation

U+000D (\r) escape notation

U+0020 space character 2nd

U+0021 exclamation mark (!)

U+0022 (\") escape notation

U+0022 quotation mark (")

U+0023 number sign (#)

U+0024 dollar sign ($) 2nd 3rd

U+0025 percent sign (%)

U+0026 ampersand (&)

U+0027 (\') escape notation

U+0027 apostrophe (')

U+002A asterisk (±)

U+002C comma (,)

U+002E full stop (.)

U+002F solidus (/)

U+003A colon (:)

U+003B semicolon (;)

U+003C less-than sign (<)

U+003D equals sign (=)

U+003E greater-than sign (>)

U+0040 commercial at (@)

U+005C (\\) escape notation

U+005C reverse solidus (\)

U+005E circumflex accent (^)

U+007E tilde (~)

U+0085 next line (NEL)

U+00A0 (no-break space) 2nd 3rd 4th 5th

U+00A2 cent sign (¢) 2nd

U+00A3 pound sign (£) 2nd

U+00A4 currency sign (¤)

U+00A5 yen sign (¥) 2nd

U+00A6 broken bar ()

U+00A7 section sign (§)

U+00A9 copyright sign (©)

U+00AA feminine ordinal indicator (ª)

U+00AC not sign (¬)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

U+00AE registered sign (®)

U+00B0 degree sign (°)

U+00B1 plus-minus sign (±)

U+00B5 micro sign (µ)

U+00B6 pilcrow sign (¶)

U+00B7 middle dot (·) 2nd

U+00BA masculine ordinal indicator (º)

U+00C6 (Æ) 2nd

U+00D0 (D)

U+00D7 multiplication sign (x) 2nd

U+00D8 (Ø)

U+00DE ()

U+00DF (ß)

U+00E6 (æ)

U+00F0 ()

U+00F8 (o)

U+00FE ()

U+0F0C (Tibetan mark delimiter tsheg bstar)

U+2007 (figure space)

U+2028 line separator (LS) 2nd

U+2029 paragraph separator (PS) 2nd

U+202F (narrow no-break space) 2nd

U+2030 per mille sign ()

U+20A0 euro-currency (.)

U+20A3 franc sign (.

U+20AC euro sign ()

U+2103 degree Celsius (°C)

U+2116 numero sign ()

U+2122 trademark sign (")

U+212E estimated symbol (.)

U+2215 division slash (/)

U+FEFF (zero-width no-break space)

U+nnnn convention

U+nnnn convention database files and

 hexadecimal notation and

U.S. International keyboards

UAX (Unicode Standard Annex)

 line break rules

uc (Uppercase Mapping)

UCA (Unicode Collation Algorithm)

UCD (Unicode Character Database)

UCS (Universal Character Set) 2nd 3rd

UCS Sequence Identifiers (USI)

UCS-2 2nd

UCS-4 2nd

Ugar (Ugaritic) script code

Uldeo (Unified Ideograph)

unambiguity

unassigned code points 2nd 3rd

underlined text

underscore (_)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

underscore (_) in Unicode database files

Unibook

Unicode 1 Name (na1)

Unicode 2.0 repertoire

Unicode 4.0.1

Unicode 4.1.0

Unicode algorithms

Unicode Case Charts

Unicode Collation Algorithm (UCA)

Unicode Consortium

 collation charts and

Unicode Encoded logo

Unicode fonts

Unicode Radical Stroke Count (URS)

Unicode scalar values

Unicode Sequence Identifier (USI)

Unicode Standard Annex (UAX)

 line break rules

Unicode standard annexes

Unicode Technical Note (UTN)

Unicode Technical Report (UTR)

 normalization vs. folding

Unicode Transformation Format (UTF)

Unicode versions 2nd

UnicodeBlock.of Java function

Unicodedata.txt file 2nd

UnicodeData.txt file canonical mapping and

 database files and

unification 2nd 3rd

unified diacritics

Unified Ideograph (Uldeo)

uniformity

Unihan.txt file

UniPad

Uniscribe (Microsoft)

unit symbols

units of text (characters)

Universal Character Set (UCS) 2nd 3rd

universality

Uniview

update version number

Upper property

uppercase letters

 case folding and

 vs. lowercase

Uppercase Mapping (uc)

uri-list subtype

URL (Uniform Resource Locators) 2nd 3rd 4th

URS (Unicode Radical Stroke Count)

US (unit separator) character

US-ASCII

user characters

http://lib.ommolketab.ir
http://lib.ommolketab.ir

user interfaces

USI

USI (Unicode Sequence Identifier)

UTF (Unicode Transformation Format)

UTF-1 2nd

UTF-16 2nd 3rd 4th

 properties of

UTF-16BE

UTF-16LE

UTF-32 2nd 3rd 4th

UTF-32BE

UTF-32LE

UTF-7 2nd 3rd

UTF-8 2nd 3rd 4th 5th 6th

 cultural biases and

 database files and

 encoding algorithm

UTF-EBCDIC 2nd

UTN (Unicode Technical Note)

UTR (Unicode Technical Report)

 normalization vs. folding

Uuencode 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Vaii script code

value

values (semantic)

variable (collation element)

variable weighting tag

variables

Variation Selector (VS) 2nd

variations in shapes of characters

varying-width digits

"A" versions (code page versions)

"W" versions (Unicode versions)

versions of Unicode 2nd

vertical forms

vertical line (|)

vertical tabulation (VT) 2nd

vertical writing

video media type

Vietnamese (vi) language ISO 639-1 code

Vietnamese language encodings 2nd

virtual keyboards 2nd

 UniPad

Virtual Reality Modeling Language (VRML)

VISCII 8-bit codes

visible overflow breaks

Visp script code

visual mappings

vowels

VPN 8-bit codes

VRML (Virtual Reality Modeling Language)

VS (Variation Selector)

vs. ISO-8859-1

VT (vertical tabulation) 2nd

vulgar fractions 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

W3C (World Wide Web Consortium)

 normalization

WAI (Web Accessibility Initiative)

WB (Word Break) 2nd

weak directionality

Web Accessibility Initiative (WAI)

web authoring entity references and

 fonts

Web Embedding Fonts Tool (WEFT)

web pages, viewing in different encodings

Welsh language

West European (ISO)

Western European encodings

Western European languages

WGL4 (Windows Glyph List 4) 2nd 3rd

whitespace characters 2nd

wide characters

wildcards (regular expressions)

Win32 APIs

Windows (Microsoft)

 character codes

 Latin 1

Windows character code

Windows Cyrillic

Windows Latin 1

 French characters and

 Spanish characters and

Windows Latin 1 repertoire

Windows XP

 installing fonts on

windows-1252 encoding

windows-1258 (Windows Vietnamese) 8-bit codes

Wingdings symbols

WinLatin1

WJ (word joiner) character 2nd 3rd 4th

 line breaking and

Word Break (WB) 2nd

word processors

 formatting with

 languages and

word text element

http://lib.ommolketab.ir
http://lib.ommolketab.ir

WordBreakProperty.txt file

WordPad (Windows) 2nd

World Wide Web Consortium (W3C)

 normalization

writing systems 2nd 3rd 4th

WS (whitespace) Bidi Class value

WSpace (White Space)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

XHTML (Extensible HyperText Markup Language) 2nd

 attributes for

XIDC (XID Continue)

XIDS (XID Start)

XML (Extensible Markup Language)

 attributes for

 character entities

 character/visual mappings and

 characters and

 characters in

 escape notations in

 identifiers

 notations for characters

 XHTML and

 xml subtypes for

xml-external parsed entity subtype

XO NFC

XO NFD

XO NFKC

XO NFKD

Xpeo script code

Xsux script code

XX LineBreak property value

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

yen sign (¥) 2nd

Yiii (Yi) script code

yuan

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

zero byte (NUL byte) convention

zero width joiner/non-joiner

zero-width no-break space (ZWNBSP)

zero-width space (ZWSP) 2nd

zh (Chinese) ISO 639-1 code

Zl General Category value

Zp General Category value

Zs General Category value

Zvon database

ZW ± LineBreak property value

ZWNBSP (zero-width no-break space)

ZWSP (zero-width space)

ZWSP (zero-width space) character

Zxxx script code

Zyyy (Common) script code

Zzzz script code

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	Unicode Explained
	Table of Contents
	Unicode Explained
	Preface

	Part I: Working with Characters
	Characters as Data
	Section 1.1. Introduction to Characters and Unicode
	Section 1.2. What's in a Character?
	Section 1.3. Variation of Writing Systems
	Section 1.4. Glyphs and Fonts
	Section 1.5. Definitions of Character Repertoires
	Section 1.6. Numbering Characters
	Section 1.7. Encoding Characters as Octet Sequences
	Section 1.8. Working with Encodings
	Section 1.9. Working with Fonts
	Section 1.10. Summaries

	Writing Characters
	Section 2.1. Method Varieties
	Section 2.2. Keyboard Variation and Settings
	Section 2.3. Virtual Keyboards
	Section 2.4. Program Commands
	Section 2.5. Character Maps
	Section 2.6. Replacements on the Fly
	Section 2.7. Special Techniques
	Section 2.8. Escape Sequences
	Section 2.9. Specialized Editors
	Section 2.10. Exercise

	Character Sets and Encodings
	Section 3.1. Good Old ASCII
	Section 3.2. ISO 8859 Codes
	Section 3.3. Windows Latin 1 and Other Windows Codes
	Section 3.4. Other 8-bit Codes
	Section 3.5. Unicode and UTF-8
	Section 3.6. Encodings for East Asian Language
	Section 3.7. Converters and Transcoding
	Section 3.8. Using Character Codes

	Part II: A Systematic Look at Unicode
	The Structure of Unicode
	Section 4.1. Design Principles
	Section 4.2. Versions of Unicode
	Section 4.3. Coding Space
	Section 4.4. Unicode Terms
	Section 4.5. Guide to the Unicode Standard
	Section 4.6. Unicode and Fonts
	Section 4.7. Criticism of Unicode
	Section 4.8. Questions and Answers

	Properties of Characters
	Section 5.1. Character Classification
	Section 5.2. An Overview of Properties
	Section 5.3. Compositions and Decompositions
	Section 5.4. Normalization
	Section 5.5. Case Properties
	Section 5.6. Collation and Sorting
	Section 5.7. Text Boundaries
	Section 5.8. Directionality
	Section 5.9. Line-Breaking Properties
	Section 5.10. Unicode Conformance Requirements
	Section 5.11. Effects on Choosing Characters

	Unicode Encodings
	Section 6.1. Unicode Encodings in General
	Section 6.2. UTF-32 and UCS-4
	Section 6.3. UTF-16 and UCS-2
	Section 6.4. UTF-8
	Section 6.5. Byte Order
	Section 6.6. Conversions Between Unicode Encodings
	Section 6.7. Other Encodings
	Section 6.8. Auto-Detecting the Encoding
	Section 6.9. Choosing an Encoding

	Part III: Advanced Unicode Topics
	Characters and Languages
	Section 7.1. Writing Systems and IT
	Section 7.2. Character Requirements of Languages
	Section 7.3. Transliteration and Transcription
	Section 7.4. Language Metadata
	Section 7.5. Languages and Fonts

	Character Usage
	Section 8.1. Basics of Character Usage
	Section 8.2. ASCII (Basic Latin)
	Section 8.3. Latin-1 Supplement (ISO 8859-1)
	Section 8.4. Other Latin Letters
	Section 8.5. Other European Alphabetic Scripts
	Section 8.6. Diacritic Marks
	Section 8.7. Letterlike Symbols
	Section 8.8. General Punctuation
	Section 8.9. Line Structure Control
	Section 8.10. Mathematical and Technical Symbols
	Section 8.11. Other Blocks

	The Character Level and Above
	Section 9.1. Levels of Text Representation and Processing
	Section 9.2. Characters and Markup
	Section 9.3. Media Types for Text

	Characters in Internet Protocols
	Section 10.1. Information About Encoding
	Section 10.2. Characters in MIME
	Section 10.3. Content Negotiation and Multilingual Sites
	Section 10.4. Characters in Protocol Headers
	Section 10.5. Characters in Domain Names and URLs

	Characters in Programming
	Section 11.1. Characters in Computer Languages
	Section 11.2. Character and String Data
	Section 11.3. The Preparedness Principle
	Section 11.4. Character Input and Output
	Section 11.5. Processing Form Data
	Section 11.6. Identifiers, Patterns, and Regular Expressions
	Section 11.7. International Components for Unicode (ICU)
	Section 11.8. Using Locales

	Tables for Writing Characters
	Section A.1. Additional Notes

	About the Author
	Colophon
	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

