downloaded from: lib.ommolkefab.ir

Practical Perforce

Practical By Laura Wingerd
Perforce

EUESSESl
?":""—'I' Publisher: O'Reilly

e Pub Date: November 2005
. . Print ISBN-10: 0-596-10185-6

Print ISBN-13: 978-0-59-610185-5
Pages: 358

Table of Contents | Index

Overview

When devel opers build software, they're able to keep track of all the different versions and all
the components they use with software configuration management (SCM) systems. One of the
more popular SCM productsis Perforce.

Authored by Perforce's own VP of product technology, Practical Perforceisthe ided
complement to the existing product manual, focusing less on the 'how" and more on the "why"
and "when." The book is not only a helpful introduction to Perforce,

it's an enlightening resource for those already familiar with this versatile SCM product. Whether
you're a programmer, product manager, or build engineer, you stand to benefit from the many
insider tips and ideas presented in this convenient guide.

Practical Perforceisdivided into two main parts. Part | offers awhirlwind technical tour,
complete with careful descriptions of basic and advanced Perforce commands designed to give
you a baseline knowledge. Part |1 describes the big picture-using Perforce in a collaborative
software development. It outlines recommended best practices and quickly shows how to
implement them with the Perforce operationsintroduced in Part |. Throughout the book, you'll
learn how to maximize Perforce so it completes tasks like these in the most efficient manner
possible:

o Keep track of changes as you conduct concurrent parallel work on files

o Logactivity

o Generate reports on who did what when

o Compare, merge and branch files

« Storefilesand file configurations

o Restore lost bug fixes

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Recognizing the pitfalls and practices of an SCM system like Perforce is absolutely essential to
producing good software. Now, with Practical Perforce, you have the edge you need to ensure

Success.
= D DV UDS

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

< Day Day Up >

Practical Perforce
By Laura Wingerd

Publisher: O'Reilly

Pub Date: November 2005

Print ISBN-10: 0-596-10185-6
Print ISBN-13: 978-0-59-610185-5
Pages: 358

Table of Contents | Index

Preface

What Is Perforce?

The Perforce System in a Nutshell

Why Perforce?

About This Book

What's Not In This Book

Additional Reading
Conventions Used in This Book
Using Code Examples
Safari® Enabled
How to Contact Us

Acknowledgements

Chapter 1. Files in the Depot
Section 1.1. The Perforce Filespec Syntax
Section 1.2. Browsing Depot Files
Section 1.3. File Types at a Glance

Chapter 2. Working with Files
Section 2.1. An Overview
Section 2.2. Creating A Workspace
Section 2.3. Synchronizing a Workspace
Section 2.4. Local Syntax, Wildcard Expansion, and Special Characters
Section 2.5. Working with Local Files
Section 2.6. Working with Pending Changelists and Submitting Files
Section 2.7. Removing and Restoring Files
Section 2.8. Useful Recipes

Chapter 3. Resolving and Merging Files
Section 3.1. Resolving: When, What, and How
Section 3.2. How Perforce Merges Text Files
Section 3.3. Reconciling Structural Changes
Section 3.4. Tips for Smoother Collaboration

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Section 3.5.

The Arcana of Merging

Chapter 4. Branching and Integration

Section 4.1.
Section 4.2.
Section 4.3.
Section 4.4.
Section 4.5.

The Classic Case for A Branch

Creating Branches

Integrating Changes from Branch to Branch
Reconciling Structural Changes

The Arcana of Integration

Chapter 5. Labels and Jobs

Section 5.1.
Section 5.2.
Section 5.3.
Section 5.4.

Saving Important Configurations
Using Labels

Using Jobs

Jobs as Changelist Markers

Chapter 6. Controlling and Automating Activity

Section 6.1.
Section 6.2.
Section 6.3.
Section 6.4.
Section 6.5.
Section 6.6.

Depot and File Access

Accessing Files in Other Domains

Saving and Restoring Specs

Change Notification and Change Monitoring
Scripting Tips

Behind-the-Scenes Version Control

Chapter 7. How Software Evolves

Section 7.1.
Section 7.2.
Section 7.3.
Section 7.4.

The Story of Ace Engineering
The Mainline Model

Ace Engineering Revisited
Containerizing

Chapter 8. Basic Codeline Management

Section 8.1.
Section 8.2.
Section 8.3.
Section 8.4.

Organizing Your Depot

General Care and Feeding of Codelines
Nightly Builds

Is Bug X Fixed in Codeline Y?

Chapter 9. Release Codelines

Section 9.1.
Section 9.2.
Section 9.3.
Section 9.4.
Section 9.5.
Section 9.6.
Section 9.7.
Section 9.8.

Creating a Release Codeline

Working in a Release Codeline
Integrating Changes into the Mainline
Making a Release

Distributing Releases

Breaking the Rules

Retiring a Release Codeline

Task Branches and Patch Branches

Chapter 10. Development Codelines

Section 10.1.
Section 10.2.
Section 10.3.
Section 10.4.
Section 10.5.
Section 10.6.

Creating A Development Codeline

Working in a Development Codeline

Keeping a Development Codeline Up to Date
Working with Third-Party Software
Delivering Completed Development Work
The Soft Codelines

Chapter 11. Staging Streams and Web Content

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Section 11.1. Staging Web Content
Section 11.2. Visual Content Development
Section 11.3. Bug Fixes and Staging Streams
Section 11.4. Major Web Development
Appendix A. Setting Up a Perforce Test Environment
Section A.1. Setup
Section A.2. Connecting to Other Servers
Section A.3. Getting Help
Appendix B. Perforce Terminology and P4 Commands
Bibliography
Glossary
About the Author
Colophon
Index

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

< Day Day Up >

Preface

Wheat |s Perforce?

The Perforce System in a Nutshell
Why Perforce?

About This Book

What's Not In This Book
Additional Reading

Conventions Used in This Book
Using Code Examples

Safari® Enabled

How to Contact Us

Acknowledgements

AR AN 2

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

What Is Perforce?

If you've picked up this book simply because of itsriveting title, you may be wondering what Perforce
is. Perforce is a software configuration management (SCM) system. SCM systems are used by software
developersto keep track of al the software they build and all the components that go into it.

A good SCM system can explain the mysteries of software development and head off its
disasters-mysteries like lost bug fixes, and disasters like botched file merges. In large-scale and
commercia environments, good SCM is absolutely essential to producing good software.

It's All Software and We're All
Software Developers

SCM was once concerned with files that computer programmers produced. Now it is
concerned with files of all typesthat a business produces. Software, when viewed from the
perspective of SCM, isany endeavor that calls a computer home. Documention, web
content, spreadsheets, schematics, graphics, sound-it's all software. If it's stored in
computer files and gets built, embedded, or packaged into a deliverable result, it's
software. The term software developer may not sound like it appliesto web content
authors, graphic artists, test engineers, and technical writers, but for the purpose of this
book, anyone whose work involves creating computer files from intellectual thought isa
software devel oper.

Perforce, like all SCM systems, keeps track of changes as people do concurrent, parallel work on files.
It logs activity, reports who did what; compares, merges, and branchesfiles; and storesfiles and file
configurations. Some of Perforce's most salient features are:

The depot

Perforce stores files in a protected repository known as the depot. The depot isacentraly
located, permanent archive of al file content submitted by users.["]

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[l The data format of the Perforce depot is not proprietary; it is, in fact, consistent with the RCS archive format.
Because of this, there is acommon misperception that Perforce is an RCS wrapper. It's not.

Workspaces

Perforce users work on filesin workspaces, private disk areas of their own that contain copies of
depot files. In this book we'll describe effective ways devel opers can use workspaces, and welll
also discuss how workspaces can be used to automate nightly builds, rel ease packaging, web
staging, and other software production tasks.

Changelists

Perforce changeliststie files changed together into single units of work. Every change to the
depot can be traced to a changelist, and every changelist marks a known, reproducible state of the
depot; the depot evolves as changelists are submitted. In the Perforce view of SCM, it isthe
changelist-not the file revision, nor the delta-that is the atomic transaction of software
development. This book will discuss avariety of ways changelists can be used, including treating
them as snapshots and using them to identify file dependencies.

Filespecs and views

Jobs

The Perforce filespec syntax, and the views that use it, allow selection of files for Perforce
operations. Filespecs can define not only the common file collections, like directories, but
arbitrary collections of filesthat constitute codelines, modules, delivery streams, and other
containers. They are the key to treating collections of files as versioned objects that can be
inspected, rolled back, branched, labeled, compared, and merged at any version.

In Perforce you can record externally defined tasks and states-bug reports, feature requests, and
project milestones, for example-in objects it calls jobs. Jobs can be linked to changelists to
provide arecord of software changes related to tasks. Jobs are also the linchpin of any integration
between Perforce and external systems, aswelll seein later chapters.

Branching

Perforce uses Inter-File Branching to model file variants. In the traditional version tree
branching model used by most SCM systems, afile can be be branched and merged only into
revisions of itself. In Perforce, any two files can have a branching relationship; branched files are
peers, not offshoots, of their originals. A number of chaptersin this book are dedicated to

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

describing Perforce branching and its unexpectedly useful applications.

Integration history

In Perforce, branching and merging are referred to as integration. Perforce records a history of
integration events and uses it to direct merges and prevent unnecessary remerging. In this book
you'll see how Perforce does that and learn how to anticipate the effect of merges you perform.

Change tracking

Perforce combines filespecs, changelists, jobs, and integration history to track changes as they
are merged from branch to branch. In this book you'll learn how these objects can be used to
determine whether a change-a bug fix, for example-made in one branch has been merged to
another, no matter how distantly related.

In addition to these features, which could be considered the interesting capabilities of Perforce, there
are also the standard housekeeping and productivity features you're likely to find in any SCM system,
including labels, triggers, change notification, graphical merge tools, file histories, and so forth.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The Perforce System in a Nutshell

Perforceisaclient/server system (see Figure P-1). The domain of a Perforce system encompasses a
master file repository (the depot), a database, and a constellation of users running client programs. One
Perforce Server typically serves an entire Perforce domain. Itsjob isto communicate with Perforce
client programs, analyze and execute user commands, archive and serve up file content, run event
triggers, and record system activity in the Perforce database. It also performs avariety of database
housekeeping tasks, some on demand and some automatically.

The client component of Perforce, shown in Figure P-2, manages workspace files and communicates
with the server. It'simplemented in avariety of tools designed for users at amost every technical level.

Perforce client tools can be divided roughly into three categories:

Graphical user interfaces

The Perforce GUI s are the point-and-click client applications. This category includes P4V,
PAWin, and PAWeb. (The latter is actually more of a plug-in, but because it turns your browser
into a Perforce GUI it is marketed as a GUI itself.) Although they don't support every possible
Perforce command, the GUIs do support the day-to-day operations of the typical software
developer, and they are easy on the eyes. They also provide avariety of data-mining features,
including some very nice visualizations of branching and file evolution. For these reasons, even
die-hard command-line adherents find them useful. P4V, PAWin, and P4Web can be used
interchangeably, although there are some variations in the range of operations they support. All
three come with embedded help files that provide rudimentary coaching in how to use Perforce.

Figure P-1. The Perforce client/server system

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=
o

codf
COO0E
o]
Cood

Depot Client program

4
J Client program
P

Perforce Server <= (lient program

N

e ttessesssssssssessenens _ _ vevent \ Cliont
Server machine 9 lent program

Client program

Figure P-2. The Perforce client component

Preforce Server)
User’s machine
% Workspace
Perforce Client Program

(P4, P4V, P4Web ..)

L]
w;
Local files |
Workspace |

.

L
L)

Local files

CJCICIE]

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Plug-ins

The Perforce plug-ins category consists of client programs that run behind the scenes, usually on
the user's machine, to enable other applications to work with Perforce. The most widely used is
the Perforce SCC Plug-in, which integrates Perforce with Visual Studio .NET. (That's SCC asin
Microsoft Source Code Control API; any Windows application that supports the Microsoft SCC
APl islikely to work just fine with the Perforce SCC Plug-in.)

As Perforce's popul arity grows, plug-ins are emerging that wed less technical applicationsto
Perforce. PAFTP, for example, makes Perforce transparent to people using applications that rely
on FTP, and P4Report turns the Perforce database into an ODBC data source for Windows
spreadsheet and database tools.

Programmable clients

The programmabl e interfaces to Perforce are P4 and P4API. P4, the Perforce Command-Line
Client, can be used in interactive shells and in scripts. It's the canonical client program-if you
can't do it with P4, it can't be done. P4API, the Perforce C/C++ AP, is available to embed the
client component in applications, scripting languages, and other software. P4 and P4API run on
all the operating system platforms Perforce supports-and there are a lot of them-and they
support al Perforce operations, including administrative and privileged operations.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Why Perforce?

The features and capabilities of an SCM system are important, but equally so isits ability to meet
expectations and thrive in its habitat. Perforce runs as a self-reliant, self-contained system, and you
don't need other software or hardware components installed to use it. Unlike many other SCM systems,
Perforce fitsinto amost any computing environment, thanks to the following features:

Speed

Perforceisfast. It doesn't make devel opers wait to check out, check in, compare, or update files,
and it doesn't add a processing burden to developers machines.

Centralized repository

In the Perforce system, thereis one centralized repository per domain for filesand SCM data.
Very large companies may have several Perforce domains, but that's typically an organizational
choice, not alimitation of domain size. (Perforce domains at some large companies are known to
encompass over 1,000 users each.) While it may be argued that a centralized repository puts your
SCM system at risk of asingle point of failure, that risk is vastly outweighed by severa
advantages. First, you have only one machine per domain to take care of to protect your assets.
Second, you don't have to worry about where your assets are. Office moves and machine
upgrades don't perturb your central SCM repository. And third, as long as your central SCM
server isrunning, all your users have access to it. The failure of one machine doesn't impede
SCM access for users elsewhere else in your system.

No external database required

Some SCM systems require you to configure and administer an external database system like
SQL Server or MySQL. Perforce providesits own database. When you install Perforce, you're
installing areliable, self-contained database, customized for Perforce SCM.

Because the Perforce database can't be accessed by any other means than the Perforce Server,
there's not much that can go wrong. It does require that the system administrator schedule regular
checkpoints and backups, but other than that, very little hands-on administration is required.
Database recovery performed after adisk failure or other misfortune can be done manually by the

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

system administrator or through automated tools. Perforce provides tools for checkpointing,
recovery, and for automatically upgrading the database when a new release isinstalled.

No reliance on networked file sharing

Some SCM tools rely on networked file sharing (NFS) of one kind or another. NFSis not an
ideal solution for SCM; network file sharing can be slow, and makes it difficult for the SCM tool
to handle file format differences. (Have you ever opened up afilein Notebook only to see dl its
lines running together? Or opened up afilein vi and seen ~Mcharacters at the end of every line?)
NFSis also very machine-dependent; clock synchronization and other interoperability issues
make version control difficult.

Perforce does not use NFS. Instead, it does its own file transport using TCP/IP. This givesit
control over thefilesit cares about and, because TCP/IPis so universally supported, makes it
capabl e of running on more operating system platforms.

No HTTP server required

Some SCM systems require you to configure an HTTP server, like Apache or 11S, to perform the
duties of an SCM server. Perforce providesits own server and runs independently of your web
servers.

Traditionally, software development organizations were formed of developers working together at the
same company, at the same location. Most SCM systems, including Perforce, are suited for that kind of
organization. But Perforce has built-in features that make it suitable for nontraditional teams, including
teams formed of developers who work outside of the office, devel opers who work in separate divisions,
and even developers who work for completely different companies:

Process impartiality

Perforce imposes almost no built-in workflow or process rules. It's designed with certain
software development activitiesin mind (all of which will be discussed in later chapters), but it
can accommodate almost any procedure or methodology. Any workflow or process you have
established (or that you would like to establish) can be automated with Perforce.

File types

While some SCM systems have restrictions on handling certain file types, Perforce can store and
manage text files, binary files, Unicode files, native Apple files on the Macintosh, Mac resource
forks, and Unix symlinksin its repository.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Product distribution and vendor drops

The Perforce Server can access file repositoriesin other Perforce domains. This makes a
seamless, Perfore-to-Perforce distribution of software products possible. In other words, you can
distribute your product directly from your Perforce repository to other organizations, aslong as
they have Perforce, too. And you can receive vendor drops from other organizations directly
from their Perforce repositories. In fact, you can even branch or merge files from their
repositories directly into yours. All the while, a history of what you've released and received is
being collected and recorded in your SCM database.

Firewalls and tunnels

As mentioned, Perforce uses TCP/IP to communicate between its components. The firewall that
prevents external access to machinesinside your network also prevents access to your Perforce
repository. However, that doesn't mean that all your developers have to be inside your firewall.
Perforce can be used in aVirtual Private Network (VPN), when one has been created, and
authorized users can use Secure Shell (SSH) to tunnel through afirewall with Perforce
commands. The advantage here is that you can extend your SCM-and hence your software
development projects-to participants all over the world without having to give them direct
access to your machines or intranet.

For acommercial product, Perforce is unusually accessible. Many new users are lured to Perforce
simply because it's so much easier to get started with it than it iswith any other SCM system:

Easy to install

Unlike open source software, which generally has to be configured and built, Perforce tools are
executable out of the box. By comparison, CV'S and Subversion may be free, but they aren't free
of the problems of building open source software. If you've ever been down the rabbit hole of
trying to find, configure, compile, and install all the components in the dependency chain of an
open sourcetool, you'll appreciate the simplicity of getting Perforce up and running. It's literally
a 10-minute job: you download a couple of binary files, run one to start up a server, and run the
other asyour client-side interfaceto it.

Runseverywhere

Perforce runs on a huge variety of operating system platforms. Y our laptop, the fully loaded
machine at your office, the discount PC in your child's room, the old VAX you found on the

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

sidewalk on trash collection day, even the ground-breaking new operating system you're
developing-chances are very good that there's a version of Perforce that runs on it.L"] Sinceits
inception, Perforce Software has made a point of porting its tools to as many platforms as
possible. That's been relatively easy to do, because the core components of Perforce are small,
standal one programs. And to this day, every version of Perforce ever released can be downloaded
for free-in prebuilt, executable form, no less-from the Perforce FTP site.

[l The Perforce web site used to boast that "If the client program doesn't run on your platform, well port it
there." Paradoxically, while compatibility with exatic, leading-edge platforms gave Perforce afoot up in the
SCM market, the market itself has become more homogeneous. Today, established Windows and Linux
operating systems seem to be the preferred platforms for even the newest software technology projects.

Costs nothing to try

Y ou can download all Perforce software and documentation for free, without having to talk to a
salesrep or even fill out aform on the Web. The software you download is fully functional; it's
the vendor's intent that you try Perforce and really seeif it meets your needs before you commit
to buying it. If you want to test-drive Perforce in an environment with more that two users,
Perforce Software will give you alimited-term license for as many users as you need. So instead
of spending time in meetings arguing with everyone el se about whether Perforce will meet your
needs, you and your colleagues can spend time actually trying it out.

Easy budget planning

It's easy to plan a budget for Perforce. How many developers will you have? That's what you'll be
paying for. Perforceis priced per user, regardless of what they're doing and the environmentsin
which they're working.

All-inclusivepricing

Once you've paid or Perforce, you can download and run as many server programs as you need,
on as many operating systems as you have, aslong as you don't exceed the number of users
you've paid for. You can run your servers anywhere in the world, and any of your users can use
any of your servers. (If you allow them to.) The price you pay includes all of the Perforce client
programs, plug-ins, and tools.

Free to students, hermits, and saints

In fact, if you're going to use Perforce for educational purposes-you're teaching a programming
class, or developing software for a school project, for example-the vendor will provide you
with afreelicense to cover as many users as are involved. Just contact Perforce Software and let

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

them know about your project. Y ou need alicense, by the way, only if you have more than two
users accessing your Perforce repository. That meansthat if you're working on a software
development project all on your own, or with just one other person, you can use Perforce for free,
forever. And if you are one of the saints developing open source software for no remuneration,
you can get afree Perforce license to cover you and everyone el se working on your project.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

About This Book

This book iswritten with a particular reader in mind. The reader isfamiliar with SCM in general, and i<
most likely a programmer, a project manager, or a build engineer involved with software development.
This book iswritten especially for the reader who wears more than one of those hats on thejob and is
responsible for some or al of the interconnection between the roles they represent. If you're pursuing
better ways to keep it all connected, and are interested in seeing how Perforce fitsin, this book isfor
youl.

One purpose of thisbook is to present Perforce's potential as a software configuration management
tool. Thisis a strictly academic purpose-you need not be a Perforce user to gain insight from it.
Anyone interested in comparative SCM will find worthwhile material in this book.

The second purpose of this book isto help Perforce users understand why Perforce works the way it
does. Most users cometo thislevel of understanding on their own eventually; it isthe level of
understanding that prompts them to post "Ahal" messages to online Perforce discussions. It is aso the
level of understanding also makes the difference between simply using Perforce to do what any SCM
system can do and exploiting Perforce to accomplish what other systems can't. This book will get you
to that level sooner.

There are two parts to this book:

e Part | (Chapters 1-5) describes Perforce commands and concepts. It's not atutorial, nor isit a
reference-it's more of a whirlwind technical tour. It will provide you with a baseline knowledge
about fundamental Perforce operations.

e Part Il (Chapters 6-11) describes the big picture, using Perforce in a collaborative software
development environment. It outlines recommended best practices and shows how to implement
them with the Perforce operations you were introducted to in Part I.

et The examplesin this book are based on perforce 2005.1, although some features
ity new to Release 2005.2 are covered as well.

B

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

What's Not In This Book

This book contains no tutorials, no hands-on exercises, and no getting-started guides. Although it does
contain numerous examples of basic and advanced commands, this book is not meant to be a primary
source of instruction for new Perforce users. The role of this book isto complement the existing
product manuals with tips and ideas for using Perforce to its full advantage.

This book doesn't document actual case studies. It's almost impossible to describe actual case studies
without detail-laden examples that put a reader right to sleep. So we've foresaken realism on the
principle that simple, readable examples can be extrapolated to complicated, real-world solutions more
easily than simple solutions can be inferred from painstakingly realistic examples.

This book won't address industry standards, benchmarks, or certification models, although it will surely
be of use to practioners of such standards. Perforce's strength isin its versatility and accessibility. It
makes a robust foundation for a compliance process, but it does not itself enforce compliance.

This book israther light on system administration issues. Perforce is atool you can useto great effect
without knowing anything about installation, security, backups, upgrades, migration, and performance.
When you do need to know about these things, you'll find the Perforce manuals and other materials that
arereadily available at the Perforce Software web site to be arich resource.

This book doesn't start with a chapter explaining SCM. There was atime when SCM was arcane and
indistinct, but those days are gone, and the world now abounds with books and web sites designed to
bring novices up to speed.

= Day bay Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Additional Reading

Software configuration management, as atopic, isfinally conquering measurable shelf spacein the
computer section of bookstores. A number of SCM issues and challenges have been fully explored by
other writers, and this book won't retread that ground. If you're acomplete SCM novice you might want
to take alook at some of the introductory or complementary titles available, including:

Rea World Software Configuration Management by Sean K enefick(APress)

If software configuration management isin your job description, this book isfor you. It's a no-
nonsense explanation of SCM best practices with down-to-earth advice about getting going and
sticking with them.

Software Configuration Management Patterns: Effective Teamwork, Practical Integration, by Steve
Berczuk with Brad Appleton(AddsionWesley)

Thisis aconcept book that manages to be quite practical nevertheless. Its detailed analyses of
SCM problems and solutions are for the most part independent of any particular SCM system. It
also offers a comprehensive comparison of the terminology used by contemporary SCM systems.

Configuration Management: The Missing Link in Web Engineering, by Susan Dart(Artech)

Thiswide-ranging survey of risk management and return on investment includes brief case
studies of avariety of SCM systemsin use.

Open Source Development with CV'S, by Karl Fogel and Moshe Bar(Paraglyph)

This very readable book combines a detailed guide to using CV S with an interesting discussion
of its history and its application in open source projects. It's agood source of insight into how
today's SCM terminology and usage conventions have evolved from their earliest progenitors.

Software Configuration Management Strategies and Rational ClearCase, by Brian A. White(Addison
Wedley)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

With its in-depth coverage of the ClearCase view of problems and solutions, this book presents
an interesting contrast to SCM with Perforce.

The Pragmatic Programmer, by Andrew Hunt and David Thomas(Addison Wesley)

Not about SCM per se, this book touches on many software devel opment practices that
harmonize with good SCM.

Finally, while this book will teach you about Perforce, it won't teach you about all the Perforce
commands, command forms, and command options available to you. For that level of detail, go to the
Perforce web site and ook for the following product manuals:

The Perforce Command Reference

An A-to-Z reference to P4 commands. Y ou may wish to bookmark this manual and refer to it to
find out more about-or alternatives to-the command forms and options shown in Practical
Perforce.

The P4 User's Guide

A detailed guide to using Perforce for working with files. This manual is geared toward end-
users and uses P4 commands in its examples. Consult this manual for in-depth information about
the Perforce user environment and avariety of typical developer tasks.

The Perforce System Administrator's Guide

A detailed guide to setting up a Perforce Server and managing a Perforce system. Consult this
manual for in-depth information on backups, security, triggers, scripting, job customization,
review daemons, performance, and OS-specific issues.

The online versions of these and other Perforce product manuals are available free at
http://www.perforce.com/perforce/technical.ntml. Y ou can aso buy bound, hard copy versions of the
same manuals; check the web site for details.

& Frev Ay AL e

downloaded from: lib.ommolkefab.ir

http://www.perforce.com/perforce/technical.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Conventions Used in This Book

This book uses the following typographic conventions:

Constant wi dt h isused for names of commands, command fragments, and command options.
Italic is used for filenames and for characters used in the context of file identifiers.

Button labels in graphical application windows are shown in regular text, and are often
intercapped.

Menu —* Item — Item represents sequential selectionsin graphical application menus.

Examples that show commands as they are typed, but that do not show command output, look like
this:

type this conmand

Examples that show commands as they are typed, and that show command output as well, look
likethis:

type this conmand

and you will see

out put that |ooks like this

Examples that show the contents of files and scripts look like this:

these are |lines
t hat appear in

afile

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

o Examples of Perforce spec formslook like this:

Fi el d1 val uel

Fi el d2 val ue2

In addition, the following formats are used to grab your attention and relieve the tedium of what could
otherwise be monotonous reading:

Indicates atip, suggestion, or general advice.

45
A%

-
-'".‘i_:
= by
&

é Indicates awarning or caition.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Using Code Examples

Thisbook is here to help you get your job done. In general, you may use the code in this book in your
programs and documentation. Y ou do not need to contact us for permission unless you're reproducing a
significant portion of the code. For example, writing a program that uses several chunks of code from
this book does not require permission. Selling or distributing a CD-ROM of examples from O'Reilly
books does require permission. Answering a question by citing this book and quoting example code
does not require permission. Incorporating a significant amount of example code from this book into
your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "Practical Perforce, by LauraWingerd. Copyright © 2006 O'Reilly
Media, Inc., 0-596-10185-6."

If you feel that your use of code examples falls outside fair use or the permission given here, fedl freeto
contact us at permissions@oreilly.com.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Safari® Enabled

When you see a Safari® Enabled icon on the cover of your favorite technology book, that means the
book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It'savirtual library that |ets you easily search
thousands of top tech books, cut and paste code samples, download chapters, and find quick answers
when you need the most accurate, current information. Try it for free at http://safari.oreilly.com.

AR AN 2

downloaded from: lib.ommolkefab.ir

http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

How to Contact Us

We have tested and verified the information in this book to the best of our ability, but you may find that
features have changed or that we have made mistakes. If so, please notify us by writing to:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)

(707) 829-0104 (FAX)

Y ou can also send messages electronically. To be put on the mailing list or request a catal og, send
email to:

info@oreilly.com
To ask technical questions or comment on the book, send email to:
bookquestions@oreilly.com

We have aweb site for this book, where you can find examples and errata (previously reported errors
and corrections are available for public view there). Y ou can access this page at:

http://www.oreilly.com/catal og/practical perforce

downloaded from: lib.ommolkefab.ir

http://www.oreilly.com/catalog/practicalperforce
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Acknowledgements

Practical Perforce couldn't have been written without the participation and encouragement of many
people. | thank Christopher Seiwald, creator of Perforce the product and Perforce the company, for
seeing the value in this project from its outset. | thank Kathy Baldanza for coaxing early drafts out of
me and asking painful questions like "How's that book coming?' | thank everyone who reviewed the
drafts (especially Jason Kao!) for catching so many of my dumb mistakes. | thank Jonathan Gennick at
O'Rellly for making the endgame painless. And | thank Chris Comparini for making many hours spent
sitting with alaptop a pleasant and companionable experience.

Above al, | thank the many people-users, customers, consultants, colleagues, and friends-who have
indulged my compulsion to talk-at trade shows, at conferences, at the office, and at parties-about
how SCM works in general and how Perforce pays off in particular. Their stories, their diagrams, and
their sharp insights have shaped my ideas. They are the "we" in this book, the voice that narrates the
knowledge I've tried to impart.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 1. Files in the Depot

This chapter describes how Perforce storesfiles and directoriesin its repository, the depot. It starts by
introducing the syntax that allows you to work with depot files and follows with examples of how to
browse the depot and get information. Finally, it touches on file properties and their effect on how
Perforce handlesfile content internally.

Y ou may be happiest using a GUI (graphical user interface) for your day-to-day
work. This book, however, bases most of its examples on P4, the Perforce
Command-Line Client. One reason we stick with P4 issimply that it's easier to
create and write about text examples than it isto create and write about
screenshots. So don't take our bias toward P4 as a snub of the Perforce GUI
programs. In fact, we'll point out some P4V features that show you at aglance
what P4 would take thousands of lines of output to tell you. On the other hand,
the GUIs are somewhat limited-only P4 offers the complete lexicon of Perforce
commands. So, while you are encouraged to use a GUI, expect to use the
command line from time to time to do the things the GUIs don't do.

-

‘-.I
o
[

e

= Day bay Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.1. The Perforce Filespec Syntax

Perforce iswidely used partly because it is so portable, and part of that portability comes from the
platform-independent file syntax it provides. While native platform syntax can be used to refer to
workspace files, Perforce providesits own uniform syntax for referring to workspace and depot
contents. This syntax is known as afile specifier, or "filespec.” A filespec can refer to asinglefileor a
collection of files, to a specific revision or arange of revisions, and to depot files or workspace files.
More importantly, the filespec syntax appliesto all operating systems; Perforce converts filespecs to
native file references for local operations.

1.1.1. The depot hierarchy

Depots, where Perforce keeps master file content, and workspaces, where users work on files, are
hierarchical structures of directories and files. A filespec uses"//" to indicate the root of the hierarchy,
and"/" asadirectory path and file name separator. For example:

/ | depot / proj ect A/ doc/ i ndex. ht m

Although we often refer to an entire repository as "the depot”, there can be multiple depotsin a
Perforce repository. The filespec root identifies the name of the depot. The filespec
//depot/projectA/doc/index.html refers to a depot named "depot” (Figure 1-1.)

Figure 1-1. Filespecs and the depot hierarchy

=
= depot
= projects,
= Cldoc

0 indes html

A filespec can express arelative path as well as an absolute path. An unrooted filespec isarelative
reference to the current directory (if you're using acommand shell) or the current folder (if you're using

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

a GUI). Depending on the context, doc/index.html or even just index.html could indicate the samefile.
In the chapter 2 section "Local Syntax, Wildcard Expansion, and Special Characters" you'll find out
how to use relative referencesto files and directories.

1.1.2. Wildcards and file collections

When filespecs contain wildcards , they define entire collections of files instead of single files. For
example, the "*" wildcard matches characters in filenames at a directory level. Depending on what files
are actually present, afilespec like projectA/d*/*.html, for example, can define a collection of fileslike:

proj ect A/ dev/i ndex. ht m

proj ect A/ doc/ di agnosti cs. htm

proj ect A/ doc/ i ndex. ht m

The"..." wildcard (pronounced "dot-dot-dot") matches filename characters at or below a directory
level. A filespec that endsin/..., in other words, is a succinct reference to the compl ete collection of

filesin adirectory hierarchy. For example, projectA/... refersto the filesin the projectA directory.
Depending on what's in the directory, the filespec projectA/... might represent the following files:

proj ect A/ bi n/ W n32/ app. exe

proj ect A/ bi n/wi n32/ app. dl |

proj ect A/ dev/i ndex. ht m

proj ect A/ dev/ mai n. cpp

proj ect A/ doc/ app/ i ndex. ht m

proj ect A/ doc/ app/ ref erence. ht m
proj ect A/ doc/ di agnosti cs. htm

proj ect A/ doc/i ndex. htm

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.1.3. Views and mappings

A filespec is a special case of the Perforce construct called aview. The Perforce database stores views
for avariety of uses, including access permissions, labels, branching, triggers, and change reviews. The
scope of every Perforce operation is constrained by the views that affect it.

Some of the views involved-filespec views, or workspace views, for example-are evident to users.
Some views, however, like those that define access permissions, are not. For example, consider the P4
command that shows the history of changesto HTML filesin the //depot path:

p4 changes //depot/.../*.htm

Change 1386 on 2005/06/10 ... 'New page for prono...'
Change 1375 on 2005/06/05 ... "Fix links on sign-up..."'
Change 1369 on 2005/05/29 ... 'Add press rel eases...'

This command is affected by two views. Thefirst isthe filespec you see on the command line. The
second isaview you don't see: the set of depot files you have permission to access. If, for instance, the
access permission view is:

/ | depot/ projectAl ...

/ | depot / projectB/...

the net effect isthat you will see the history of the filesin the intersection of the two views. In other
words, you will seethe history of the set of files defined by this view:

/| depot/projectA/.../*. htm

/| depot/projectB/.../*. htm

Views are also used to map files to each other. Client workspace views, for example, map depot filesto
workspace files, asyou'll seein Chapter 2. In Chapter 4 you'll see how view mapping comes into play
to relate branches to one another.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.1.4. File and directory revisions

Perforce stores file versionsin a sequence of numbered revisions. Figure 1-2 illustrates the revisions of
//depot/projectA/doc/index.html. A filespec can refer to an absolute, numbered file revision, prefixed
with #. For example, index.html#10 is the 10th revision of index.html.

Figure 1-2. Revisions of a single file

= 5% A/depot/projects/docdindes. himl

Filespecs can aso refer to dates and labels, prefixed with @. For example, index.html@2004/11/21 is
the revision of index.html as of November 21, 2004.

Y ou can refer to directories by date aswell. The filespec //depot/projectA/...@2004/11/21 refers to the
collection of files that made up the //depot/projectA directory as of November 21, 2004.

Two kinds of revision specifiers can be used in Perforce. One kind is the absolute revision. For
instance, in this filespec:

doc/i ndex. ht m #14

the #14 is a an absolute revision. It refers to the fourteenth revision of the file named doc/index.html.

Absolute revisions can't be used with directories. (A filespec like doc/...#14 refers to the fourteenth
revision of each and every file in the doc directory, not to the fourteenth revision of the directory.)
However, you can use any of the symbolic revisions with both files and directories. For example, #head
isasymbolic revision that refers to the newest, most up-to-date revision of afile or directory. For

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir
example:

doc/ ... #head

Perforce's reserved-word symbolic revisions are delimited by the character "#". Other symbolic
revisions are delimited by "@". Dates, as you saw previously, are an example of the | atter:

doc/ ... @004/ 01/ 04

Labels can also be used as symboalic revisions. (You'll see how to create labelsin Chapter 5.) A label
can be used to refer to file revisions to which it has been applied:

doc/ ... @ood2CGo

There are also symbolic revisions you can use to refer to filesin aworkspace, asyou'll seein Chapter 2.

Dates, Times, and Perforce

In afilespec, the date 2004/11/21 is actually shorthand for 2004/11/21:00:00:00. Saying
index.html @2004/11/21 refers to the revision of index.html as of November 21 is dlightly
misleading. It refersto the latest revision of the file as of thecommencement of November
21, 2004.

Dates and timesin Perforce are always relative to the Perforce Server. Therevision
2004/11/21:12:00:00, for example, specifies 12 noon on 21 November 2004 in the server's
timezone. (See Appendix A.)

1.1.5. Changes and changelists

Perforce uses changelists to track changes submitted to the depot. Changelists are numbered; when a
changelist number is used as a symbolic revision, it refersto revisions that were newest at the moment

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

the change occured. For example,

doc/ ... @405

refers to the head revisions of the doc directory files at the moment changelist 3405 was submitted.

You'll notice in the preceding examples that the rightmost element of the filespec-exclusive of the
revision specifier-is afilename, or a wildcard that matches a set of file names. Perforce's filespecs
alwaysrefer to files, not directories. In fact there are no Perforce commands that operate on directories.
Thisisnot to say you can't organize your filesinto directories, or restore older versions of directories,
or get the history of adirectory. After all, when a Perforce command operates on the collection of files
inadirectory, itisin fact updating a directory. But in Perforce you don't explicitly create or version
directories; it just happens automatically.["]

[l Yes, thisis abit of achallenge to the Perforce plug-ins. They bend over backward to support applications that think
repository directories have to be created before new files can be added.

In Perforce, adirectory'srevision (and its very existence, in fact) is construed from the file revisions it
contains. Y ou saw how file revisions can be identified by dates and changelists aswell as by absolute
revision numbers. Actually, you can refer to any file in the depot with any changelist number.
Changelists represent pointsin time at which users submitted files. If you plot file changes over time,
left to right, you'll see that changelist numbers slice file collections vertically-every changelist number
is associated with a unique state of the collection.

Consider the collection of files shown in Figure 1-3, for example. Here we see that in changelist @100,
foo.c was added, creating foo.c#1. In changelist @114, foo.c was updated, creating @foo.c#2, and
bar.c was deleted, creating bar.c#2 (adeleted revision). ola.c, which was created in changelist @105,
was unaffected by changelist @114. Therefore, revision @114 refers to this collection of files:

f 00. c#2
bar. c#2

ol a. c#1

Figure 1-3. A collection of files changing over time

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

b AT b A \"
§$ ﬁﬁéﬁj a@} aﬁﬁ éﬁ §§;x$} “®
RO N (RS I IS
it i#2 #3 #
foo.c () " O—0O O >
#2
bar.c O—® """""""""""""""""" >
#1 #) # #4 #5
ola. O OO O0O—0O—r
SRR T e ko . W "
@@ §O S NI S GO

Note that labeling the time axisin a diagram like this with both dates and changelist numbersis
redundant. Because changelists can't overlap-each marks a unique point in time-the sequence of
Perforce changelistsis arepresentation of time. It often makes just as much sense (and less clutter) to
simply chart file evolution along the changelist axis, aswe seein Figure 1-4.

The sequence of changelists associated with file revisionsin acollection is, in fact, a history of the
collection. And when a collection is a directory, the sequence of changelists associated with it isthe
history of the directory. If the projectA directory contains only the files shown in Figure 1-3, for
example, collapsing the diagram into a single timeline would show the history of projectA. We see this
in Figure 1-5.

In the next section you'll see how to list and compare directory revisions. Later chapters will show how
directory revisions can be used for populating workspaces and in branching and merging operations.

Figure 1-4. The changelist axis

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

@,@ @@ @'{*@ R @“gj @"‘3‘9 @"‘:ﬁ @ﬂ" @\Q
#1 L 0 8 5 o u |
foo.c O — O O : : O f >
o # .
bar.c : O—® —————— SR Lo P
T2 £
ola.c O / O_O O >
Figure 1-5. The history of a directory
@@ $ @ @;\“ o @.Ql‘.?‘ 3 @Q';"' g

@'\

@"\

projectA/...

< Day Day Up >

downloaded from: lib.ommolkefab.ir

@"\

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

CE=S

1.2. Browsing Depot Files

Y ou can do extensive browsing in a Perforce depot without having to set up aworkspace of your own. In f:
very little reason to reproduce depot fileslocally just to see their contents. Y ou can explore the depot hieral
file history, read change descriptions, examine file content, and compare depot files, all without going to th
setting up a workspace.

Many of the examples that follow are from the Perforce Public Depot. Y ou, too, can brow:

% 4. thePublic Depot by connecting to public.perforce.com:1666 . (See Appendix A). Howevt
some of the outputs shown here have been somewhat abridged to shorten line lengths and
reduce clutter. If you connect to the Public Depot and try these commands for yourself, yo
get more verbose results.

=
L.

1.2.1. Navigating the file tree

The depot isafile tree, and the easiest way to navigate it iswith aGUI. With P4V, for example, all you ha
point and click to step down the tree and expand its subdirectories (or folders, asthey're called in P4V). A |
treeisshownin Figure 1-6 .

Figure 1-6. Navigating the depot tree in P4V

E Depot Tree JE' ?
@ [hio work space selected) j
==
ﬁ quest
&3 public

- jam

ﬁ pefforce

ﬁ reseml

b I indes himl #0747 <ktests

fe I8 tutorial himl #0715 <test+ko>

1 | 2
E Depot E Work zpace

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

However, you can aso navigate from the command line, using P4. To list the topmost levels of the treg, foi
use this dirs command:

p4 dirs "//*"
/ I guest

/'l public

Notice that the dirs argument is quoted-that's so the command shell won't expand the asterisk before pass
p4 command.

Another way to show the top level of the depot hierarchy iswith the depots command:

p4 depots
Depot guest 'Depot for guest users.

Depot public 'Perforce's open source depot.

1.2.2. Listing directories

The dirs command can be used at any level of the depot tree to list the subdirectories at that level. For exan

p4 dirs "//public/*"
/[public/jam
/ | public/perforce

/' public/revm

1.2.3. Listing directory history

The changes command shows the history of a directory, listing the most recent changes first:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 changes -nb //public/revm /...
Change 4971 on 2005/05/21 ... '-
Change 4970 2005/05/21 ... '-
Change 4969 2005/05/21 ... '-
Change 4968 2005/05/21 ... '-

Change 4967 2005/05/21 ... '-

Added test to nmake sure big_r'
Al low sdbmfiles to handle | a'

Added a special command line '

Use nodul e nane instead of |o

Renoved "-d", leaving only

(The -mb5 flag restricts the output to the five most recent changes. Each change is identified with a changeli
and the first 30-odd characters of a description. If you want to see entire descriptions, use changes - .)

In P4V you can use Folder History to seethe history of adirectory, as Figure 1-7 shows.

Figure 1-7. Using P4V to browse the history of a directory

| pblchevl!

T R

@) Folder History

[~

Rewvizion Date Submitted =
#4571 2005/05/21 11:5218
(@ 4570 2005/05/21 11:45:00
(4439 2005/05/21 11:44:42
(#4568 2005/05/21 08:37:37
(@ 4367 2005/05/21 05:56:25

1.2.4. What's in a changelist?

Submitted By
barne_slaymaker
bariie_slapmaker
barme_slapmaker
baene_slaymaker
barrie_slapmaker

Desciipion Al
-Added test to make swe big_reconds db fle will handle lange keys,

- Al sellsm fles 1o hardls laige keys,

- &idded a special command line macio “default_fikers:" added to alow ..
-Use module name instead of location in memery to create urique db files. |
- Remaved "-d", leaving only "-debug" so that "d" iz propesdly passed t..

In addition to marking pointsin time, changelists also record the files that were changed and the user who «
them. Y ou can show the details of a changelist with the describe command:

p4 describe -s 4417

Change 4417 by barrie on 2004/08/19 20:11:50

- Adapt to "estimated val ues" nessages

- Adapt to nore accurate test suite

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Affected files ...
/I public/revm /bin/gentrevm #56 edit
[lpublic/revm /1ib/VCP/ Test Uil s. pm#65 edit
[l public/revm /t/91cvs2revm .t #16 edit
/lpublic/revm /t/91vss2revm .t #7 edit

[public/revm /t/95cvs2p4.t#30 edit

(The -s flag suppresses diff output. If you use describe without it, you'll get a diff of every filein the chang

1.2.5. Listing files and file information

You can list thefilesin adirectory with the files command:

p4 files "//public/revm /*"

/I public/revm / CHANGES#81 - edit change 3640 (text)
[/ public/revm / MANI FEST#45 - edit change 4234 (text)
/lpublic/revm /ui.png#l - add change 3671 (binary)
[/public/revm /ui.ps#1 - add change 3671 (text)

Each line of output gives a bit of information about the file revision shown. For example,
/Ipublic/revml/CHANGESH8L is atext file, last edited in change 3640.

You can list filesin subdirectories recursively, using ... with the files command:

p4 files //public/revm /...
/I public/revm / CHANGES#81 - edit change 3640 (text)
[/ public/revm / MANI FEST#45 - edit change 4234 (text)

/I public/revm /bin/analyze profile#2 - edit change 2679 (xtext)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

/I public/revm /bin/conpile _dtd#1l - add change 2454 (xtext)
/I public/revm /dist/vcp. exe#10 - edit change 4233 (xbinary)

/I public/revm /dist/vcp.pl#4 - add change 4235 (xtext)

(Note that the dirs command, by contrast, has no recursive form.)

1.2.6. Finding files

Asyou can see, the files command has the potential to yield thousands of lines of output. If you're looking 1
particular file, you can use wildcards to pare down the results. For example, here we're looking for files nar
index.html :

p4 files "//public/revm/.../index.htm"
/1 public/revm /docs/htm /index. htm #2 - edit change 2307 (text)
[public/revm /product/rel ease/0.90/ htm /i ndex. htm #1 - add change 4344

/I public/revm /product/rel ease/1.0.0/htm /index. htm #1 - add change 431

1.2.7. Perusing file history and file origins

Y ou can use either changes or filelog to see afile's history. The output of changes isthe samefor afileasf
directory:

p4 changes //public/revm /dist/vcp. pl

Change 4235 on 2004/03/18 by barrie '- experinental dist/vcp.pl'
Change 4023 on 2003/12/11 by barrie '- Renobve outdated "fat"'
Change 1859 on 2002/05/24 by barrie 'fat script version'

Change 1738 on 2002/04/30 by barrie 'Add "fat" script

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The filelog output, by comparison, shows file revision numbers and the action (add, delete, etc.) that took [
each revision:

p4 filelog //public/revm /dist/vcp.npl

/I public/revm /dist/vcp. pl
#4 change 4235 add "experinental dist/vcp.pl'
#3 change 4023 del ete ' Renove outdated "fat™
#2 change 1859 edit "fat script version '

#1 change 1738 add "Add "fat" script

(You'll also see date, user, and file type information in filelog output. They've been removed here to make |
the page.)

Normally changes and filelog limit their scope to the file you specify. However, files that have been renam:
or branched from other filesinherit the history of their ancestors. Y ou can use -i flag with changes and filel
inherited"] history:

[T 1t's only coincidence that -i is the flag that makes changes and filelog show inherited history. Thei really stands for integr
see why later in the book.

p4 filelog -i //public/revm /|ib/VCP/ Dest/texttable.pm

[1public/revm /Iib/VCP/ Dest/texttable.pm

#5 change 4506 edit '- testtabl e handl ed undef field
#4 change 4496 edit "- mnor POD cl eanups to prevent'’
#3 change 4488 edit '- BFD and Text:: Table no | onger'’
#2 change 4037 edit "- VCP::Dest::texttable function'

branch into //guest/tinothee besset/|ib/VCP/ Dest/texttable. pn#l

#1 change 4036 branch '- VCP::Dest::texttable created.’

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

branch from//public/revm /1ib/VCP/ Dest/csv. pn#l, #4
/' public/revm /1|ib/VCP/ Dest/csv. pm
#4 change 4021 edit '- Renove all phashes and all ba’
branch into //guest/tinothee besset/|ib/VCP/ Dest/csv. pm#l

branch into //public/revm /1ib/VCP/ Dest/texttabl e. pm#l

#3 change 4012 edit ' - Renobve dependance on pseudoha’
#2 change 3946 edit "- VCP:: Source::vss now parses h'
#1 change 3828 add "- VCP::Dest::csv dunps rev neta'

P4V's Revision Graph gives you abird's-eye view of afile'sinherited history, asyou can seein Figure 1-8 .

Figure 1-8. A bird's-eye view of inherited file history

1
Aauesttimothee_bezset/libAYCP/Destdcav. pm

GEEN i

/fpublic/revmlibAMCP/Desticaw.pm

evmllibACP/D ezt testtable. pm

HMouestitimathee_bezsetibAYCP /Dest/texttable. pm

1.2.8. Perusing file content

P4V offers anice content browsing tool for files. If you select atext filein P4V and click Time-lapseView
thefil€'s current content, along with a dliding control that changes the display to its content at any previous
time. Other controls can be used to highlight the age of linesin the file, users who changed the lines, and tF
each revision. The black-and-white screenshot you seein Figure 1-9 doesn't begin to do justice to the usefL
thistool.

Figure 1-9. P4V's Time-lapse View

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

B] Time-lapse ¥iew - //public/revml,/revml.dtd {public.perforce.com:166

JJM::u:Ie:l Single revision x| [Cantent range: [5/14/2004 3] to |3/14/2004 3 [:

Leazt Recent kozt Recent

12/3/2000 bamie_zlaymaker | < | ELEMENT rew
!

namne,
201342003 john_fetkovich SOUTCE _hanes,

zource_ filebranch id,
202842003 john_fetkavich =ource repo_id.
91242004 barrie_zlaymalker action.
32742003 barrie_slaymaker type?.
124322000 barmrie_slapmaker icwvs info|pd _infol:

N N | IR}

PAV's Time-lapse View is generated from the output of the annotate command, among others. Y ou can get
file content in text form as well. For example, to see each line of afile annotated with a changelist number:
use:

p4 annotate -c //public/revm /revm .dtd | nore

/lpublic/revm /revm .dtd#19 - edit change 4514 (text)

467: <! ELEVENT rev

467: (

467: namne,

2743: sour ce_nane,

2743: source_filebranch_id,
2802: source_repo_id,

To see plain, unadulterated file content, use the print command:

p4 print //public/revm/revm .dtd | nore

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

/I public/revm /revm .dtd#19 - edit change 4514 (text)

<! ELEMENT rev

(

nane,
sour ce_narne,
source_fil ebranch_id,

source_repo_id,

1.2.9. Saving informal copies of files

The print command is aso useful for saving informal copies of files. Simply redirect its output to alocal fi

p4 print -q //public/revm /revm .dtd > revni.dtd

(The -q option suppresses the one-line header that print normally outputs.)

1.2.10. Comparing depot files

To compare any two depot files, use the diff2 command. For example:

p4 diff2 //public/jam READVE // guest/di ck_dunbar/j am READVE
= == = /[/public/janl READVE#2 (text) -

/ I guest/ di ck_dunbar/jami READVE#1 (text) = == = identical

(This output has been edited to fit on the page.)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The same command can be used to compare any two revisions of a depot file:

p4 diff2 //public/revm / READVE#2 [/ public/revm /| READVE#3

= == = //public/revn / READVE#2 (text) -

[public/revm /| README#3 (text) = == = content
45, 47¢c45, 46
< make
< make test
< make i nstall

> $ perl -MCPAN -eshell

> cpan> install VCP

In P4V the Tools = Diff files command can be used to diff any two files or revisions. Figure 1-10 shows
example of agraphical diff in PAV:

Figure 1-10. Graphical diff in P4V

3 diffs (Recogrize line ending and white space differences) | Tab spacing: 8 | Encoding: System
Alpublic/ievml/README #2 A/public/ievml/README B3 :l

THETALLATION INSTALLATION

Uncompress and untar the source
the standard Perl module ﬂistrih_ ::;n;h: INSTALL file for uetans,J

$ perl -MCPAH -eshell
cpan> install UCP

make
make test
make install

This convinces CPAN to do all

You should then have a UCP tree a .
required modules For you.

fusrflocal/lib/perl5/site_perl/UU
in a bin directory somewhere (exa

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.2.11. Comparing depot directories

Y ou can also compare any two directories in the depot. For example, to compare //public/revml to
//guest/timothee_besset :

p4 diff2 -q //public/revm /... //guest/tinothee besset/...

= == = bi n/gentrevm #56 - ... bin/gentrevm #1 = == = content
= == = l'ib/VCP. pn#19 - ... |ib/VCP.pm#l = == = content
= == = <none> - |ib/VCP/Dest/ab.pm#l = == =

This shows us that there's arevision of bin/gentrevml in both directories, but their contents do not match. £
lib/VCP.pm . And the lib/V CP/Dest/ab.pm file appears in the //guest/timothee_besset directory but not the
//public/revml directory. (The -q flag is used on the diff2 command to suppress line-by-line text diffs. Note
output shown here has been drastically edited to fit the page.)

The same command can be used to compare any two revisions of adirectory. For example:

p4 diff2 -q //public/revm /... @660 //public/revm /... @498

...l dist/packages. nmbal | #1 - <none> = == =

= == = <none> - .../dist/vcp-rh8#4 = == =
= == = <none> - .../dist/vcp.exe#l1l0 = == =
= == = .../ldist/vcp.pl#2 - .../dist/vcp.pl#4 = == = content

This shows us that between revisions @3660 and @4498 of the //public/revml directory, the dist/packages
has been deleted, dist/vcp-rh8 and dist/vep.exe have been added, and dist/vep.pl has been modified.

P4V gives you the same directory comparisonsin a much nicer display, asyou can seein Figure 1-11. You
Tools = Diff filesto launch it, or just select Folder History on afolder and drag one folder revision to ar

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

LS

downloaded from: lib.ommolkefab.ir

Figure 1-11. Comparing directory revisions in P4V

R] Folder Diff - //public/revmi/.

|| pitocizes G |3

3660 @4498 (public.perforce.com:1666, guest)

[Uricue fies: 143 [] File diferences: 106 ||

Faolder: /fpublic/revmls . Unique fles: 13

Date: 172003 8:41:20 AM = Changelist:

b [analyze_profies2
- |4 buld_vcp_ewecutable plit]
- [compile_drd#1
- [dump_filestil
[dump_head revs#7
- [l dump_main_branch_id#2
- |of] dump_rev_map#?
- [gentrevmitids
o o) hedump.plit2
- (o) vepHS?
-2 dist
-2 docs

\BE0

Folder:
Diate:

Apublic/revmld . Urique files: 130

2004 11:18:18 &AM Changelist:

| analyze_profile#2

- | build_wep_executable plit1
- &) compile_dd#1

- [dump_filesti3

b [dump_head_revsH7

b | dump_main_branch_id#2
& dump_rev_map#?

E genhelpti4

i i genktmit]

- | gentrevmilse
- | hexdump.pl#2
- | test_vep_ewecutable.plHd

-

d
4

aery

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.3. File Types at a Glance

Perforce does most of the hard work for you when it comes to storing and managing file content.
However, there are some aspects of file storage and behavior that you can control. These aspects are a
factor of afile'stype; in this section we'll take a brief look at the common file types and their
properties. In the next chapter we'll see examples of how to set and change file types.

Perforce supports severa types of file content, text and binary being the most common. A file's content
type dictates how Perforce will handleit in future operations:

Textfiles

Text files are stored in the depot asdeltas. That is, arevision of afileisnot stored in its entirety;
only the lines that have changed are stored. Consequently, umpteen revisions of avery large text
file don't take much depot spaceif only asmall part of the file changes at each revision. Delta
storage is completely transparent to the user, of course-the server takes care of constructing a
specific file revision from deltas when you synchronize your workspace.

Asit transfers text files to and from workspaces, Perforce translates them so that their line-end
delimeters match the local filesystem's format. If your workspace is on Unix, for example,
Perforce makes sure linesin text files end with the LF character. If you workspaceison
Windows, Perforce makes sure lines end with the CR/LF character pair.

Binary files

Binary files are stored in the depot their entirety. Each revision is stored as a compressed copy of
thefile. The Perforce client program gets the file revision you need and uncompresses it when
you synchronize your workspace. Other than compression, no modification is made to binary
fileswhen they are transferred between workspace and server.

Perforce can compare and merge text files. It can't do that with binary files,
a beyond simply pointing out that the files are different and letting you
choose one or the other. (If you have programs that can compare and merge
binary files, however, Perforce can invoke them for you. In Chapter 3 welll
take a closer look at this.)

-
kg

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Unicodefiles

Perforce assumes your text files are ASCII. However, there's another text file type Perforce
supports, called "unicode." If your Perforce Server is configured as an internationalized server
unicode fileswill be translated to your local character set when they're copied to your workspace.
And when you submit unicode files, they'll be translated from your local character set to UTF8.
To find out about internationalizing your server, see Tech Note 66, Internationalization Support
in Perforce, on the Perforce Software web site.

Although you can use the unicode file type to store files as UTF8 even with a non-
internationalized Perforce Server, your local editor and other tools are more likely to corrupt
these files than not. Moreover, unicode files can't be mixed with text files in Perforce commands
that compare and mergefiles.

Perforce also supports OS-specific file types, including Unix symbolic links and Macintosh files and
resource forks. To find out more about these file types, run:

p4 help fil etypes

1.3.1. Type modifiers

The content type of a file-text or binary, for example-is considered its base type. In addition to a
base type, filesin Perforce can have type modifiers that specify how they will behave in workspaces
and in the depot. When you list files with Perforce, you may seefile typeslike text+k and
binary+lw-these are the modified file types. Some of the most commonly used file type modifiers are:
Modifier Behavior
+X The workspace file is executable. (On Unix, the file's execute bit is set.)

Thefileiswritable as soon asit's copied to the workspace. (Normally you have to open

w files to make them writable.)
+k RCS-like keywords in the file are expanded when the file is copied to the workspace.
4 Thefileisexclusively locked when opened so that only one person can haveit open at a

time.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

M odifier Behavior

The file's modification timeis propagated with the file so that it shows up in the

m timestamp of synchronized copies.

Only onerevision (the head revision) of thefile is stored in the depot. (Thisis useful for

*S files generated and submitted by nightly builds, for example.)

To see the complete inventory of file type modifiers, run the helpfiletypes command.

1.3.2. What kind of file is this?

In P4, you can list afile's content type with a number of commands, including files, opened, and filelog.

For example:

p4 files *

/ | depot / proj ect A ww/ i ndex. htm ... (text)
/ | depot / proj ect Aww/ | ogo.gif ... (binary+l)

P4V showsfile content typesin its navigation trees; you saw an example of thisin Figure 1-6.

= Day bay Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 2. Working with Files

In this chapter, we'll survey the Perforce commands you're most likely to use for basic software
development. We'll discuss creating and managing a workspace, working on files, and finding out who
did what when. If you're already using Perforce, this chapter will be areview. Y ou can skim through
it-maybe you'll find something here you didn't know about-or skip it now and come back to it later
if you careto.

If you're new to Perforce, this chapter will introduce you to avariety of useful commands. What's more,
this chapter will serve as aquick reference to many common tasks. There's more to each of the
commands introduced here, of course. Y ou'll find the complete inventory of commands and command
optionsin the P4 Command Reference.

Y ou may wish to experiment with these commands as you read along. See Appendix A if you don't
already have Perforce installed.

Whether you're a Perforce user or not, you'll need at least a glancing familiarity with the basic
commands described in this chapter so that you can make sense of them as they appear throughout the
book.

= Day bay Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.1. An Overview

In Perforce, working on files involves setting up and synchronizing a workspace, adding and working
on files, resolving parallel changes (if necessary), and submitting changes to the depot:

Setting up a workspace

The first thing you do before you can work on filesis define a client workspace for yourself. A
client workspace specification, or client spec, tells Perforce where in your local filesystem you
want your workspace to be rooted. It has aview that defines the areas of the depot you want
access to, and maps them to directories beneath the workspace root. Once you've set up your
workspace, you can work on files.

Addingnewfiles

If you have files in your workspace already-files that you created or moved there yourself-you
can add them to the depot. In Perforce, any change you make-adding files, for
example-involves two Perforce operations. First you open your workspace files, indicating
whether you want to add, change, or delete them. Then, after making changes locally, you submit
filesto the depot.

- Don't confuse Perforce's idea of open with the idea of opening filesin

applications. In Perforce, an open fileisafile you intend to change.
Opening afile with Perforce does not launch an application. And an
application-Word or Vim, for example-can open a workspace file
whether or not Perforce considersit open.

Synchronizing your workspace

To work on filesthat are already in the depot, you must first synchronize your workspace (see
Figure 2-1). This step gets local copies of the latest depot files. Y our workspace is considered to
be "in sync" when all thefilesin it match their depot counterparts.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Figure 2-1. Synchronizing a workspace

Depot

i
L]

User's machine

pote
Qo
CELE

Workspace

aaae

Workingonfiles

By default, Perforce creates nonwritable filesin your workspace. Thisis meant as agentle
reminder to you that these files are under its control. Although you're free to do what you want in
your workspace, including changing file permissions, the preferred method isto let Perforce
know what you're up to by opening filesfirst. Y ou open files with commands that indicate what
you plan to do-add, edit, or delete, for example. Perforce updates the workspace per your
intent: files you open for editing are made writable, for example, and files you open for deletion
are removed from the workspace.

Filesin the depot are not affected when you open workspace files. Perforce doesn't automatically
lock depot files, but you have the option of locking them explicitly. Also, while opening files
first isthe preferred method, you can modify files first and open them after the fact. Thus you
don't have to be on the network, connected to Perforce, to modify your workspace files.

Asyou work, you always have the option of reverting opened filesto their unmodified state.
Perforce reverts workspaces files by replacing them with fresh copies from the depot, effectively
discarding any changes you made.

Resolving parallel changes

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Y ou can, and should, resynchronize your workspace every now and then to update your local
files. Synchronizing replaces stale files with the newest depot versions. It does not, however,
affect the files you're working on, except to mark them unresolved. When you're ready, you can
resolve them to reconcile parallel changes.

Resolving filesis a Perforce operation in which you choose whether you want to merge, copy, or
ignore the newer depot versions. If you choose to resolve files by merging them, Perforce will do
as much automatic merging asit can. It can't automatically merge files with conflicting changes,
however-those you'll have to do individually. Y ou can use one Perforce's merge tools, or a
merge tool of your own choosing, to mergefilesindividually.

Submitting changes to the depot

Asyou open files, Perforce builds up what's called apending changelist. Thisisthe set of files
you plan to submit as a single unit of work. Although we speak of submitting files, you really
submit the pending changelist. At your option, you can have more than one pending changelist in
your workspace. By juggling opened files between them you can control which fileswill be
submitted together.

Y ou can't submit files if there are newer versions of them in the depot. In other words, Perforce
won't let you inadvertently overwrite other peoples changes. Instead, you'll have to resolve them
and try submitting them again.

Files successfully submitted are sent from your workspace to the depot and stored as new
revisions (see Figure 2-2). Y our submitted changelist becomes an event in the evolution of the
depot, recorded for eternity.

Figure 2-2. Submitting a changelist

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Depot

LI
L

User's machine

e
e

Work space

_J__
J_

aaae

5 A changelist is an object in the Perforce database that records file revisions

involved in a specific change to the depot. Asfar as the Perforce Server is
concerned, there is no difference between a"change" and a"changelist.” In fact,
P4 command outputs and error messages use the more succinct "change" instead
of "changelist." (See Appendix B, "Perforce Terminology and P4
Commands.")In this book we'll use either "change" or "changelist” depending on
the context.

= Day bay Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

CE=S

2.2. Creating A Workspace

A Perforce workspace has a physical part and a conceptual part. The physical part isthe area on your local «
will read and write files. The conceptual part of your workspace is the client object that representsit in the
database.["] The client object has to exist before you can do any work on files. Y ou create it by editing acli

["] Although we-this book, much of the Perforce documentation, and some of the Perforce client programs-talk about wor
Server doesn't. It refers to workspaces as clients . If you find yourself confused by warnings or error messages that contain tt
mentally substituting "workspace.”

2.2.1. Specs and spec forms

The Perforce database models many non-file objects, including workspaces, users, user groups, depots, anc
interface to these non-file objectsis what Perforce calls a spec form . Perforce gives you a spec form to edif
commands like:

p4 client

To command line users, the spec form will be simply atext file that |ooks something like this:

Cient: testws

Omer: bill

Root : c:\wor kspace\t est

Vi ew.
[/ depot/proj/... [ltestws/proj/...
[l depot/utils/... [/testws/utils/...

Fieldsin the form start in the left-hand column. (In this example, the fields are Client, Owner, Root, and V|
each field follows the field name. Single-line values can be placed on the same line as the field name. Mult
on the line following the field name; each linein the value is indented by tabs or spaces.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The Perforce GUI programs (P4V and the rest) give you an actual form to fill out, so you don't have to wor
and indentation.

There will be plenty of references to spec formsin this book. We'll use aformat for them that looks like thi

Cient testws

Owner ron

Root c:\wor kspace\t est

Vi ew / | depot/proj/... /ltestws/proj/...
[/ depot/utils/... [/testws/utils/...

Thisformat isnot what you'll see either in the GUI programs or in your editor. It's the same information, h
formatted for easy reading.

In this book, we'll often preface the spec form by the P4 command that launchesit in your editor. If you're
for the equivalent command in the application menus. (In P4V, for example, acommand that |ets you edit :
spec is Connection = Edit Current Workspace.)

2.2.2. Editing a client spec

The client command brings up aclient spec form in an editor. In the form, you specify-among other thir
view identifies the areas of the depot you want access to and maps them to directories on your local filesyst

For example, say you want to configure a workspace named Bill-WS. First, you open up aclient forminth

p4 client Bill-W5

In the editor, you modify the template that appears there and save the file. That, in effect, configures the wc
example, say you saved aform that looks like this:

Client Bill-Ws

Root c:\ws

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Vi ew /[depot / dev/ ww/ . . . [1Bill-W5/ dev/ww . ..

[depot/ main/ww/ ... //Bill-W5 nmain/ww ...

By saving this client spec, you have just configured a workspace as follows:

o The name of thisworkspaceis Bill-WS.

« Thisworkspace isrooted in the directory c:\ws on your local disk. (Y ou must create this directory yot

create its subdirectories for you, but it won't create the root directory.)

e Thisworkspace has aview of two depot directories, //depot/deviwww and //depot/main/www . They &
local filesystem's c:\ws\dev\www and c:\ws\main\www directories, respectively. For example, the
c:\ws\deviwww\index.html file will be mapped to //depot/deviwww/index.html .

(Do you recogni ze the filespec syntax? Workspace views are defined by pairs of filespecs. On the | eft
depot filespec, and on the right is a filespec that shows a workspace location relative to the root. Whe
on the right, mentally substitute the workspace root, c:\ws , to understand where fileswill be located.)

o Thefilesyou'll be working on are either in c:\ws\dev\www or in c:\ws\main\www . Files outside of the
of the workspace view (even if they happen to be beneath the workspace root directory).

2.2.3. Customizing a Workspace View

If asimple workspace view won't suffice, there are a number of ways you can customize it:

e You can use as many mapping lines as you need in order to limit your view to specific areas of the de

Vi ew / | depot / dev/ www/ products/. ..
/ | depot / dev/ www/ trai ni ng/. ..

/ | depot / dev/ ww/ manual s/ . . .

/ | depot / mai n/ ww/ products/. ..

/I depot / mai n/ww/ training/...

/ | depot / mai n/ ww/ nmanual s/ . ..

e You can use wildcards. For example:

downloaded from: lib.ommolkefab.ir

[1Bill-W5/ dev/ www/
[1Bill-W5/ dev/ wwww/
[1Bill-W5/ dev/ www/
[1Bi |l -W5/ mai n/ ww
/1 Bi |l -W5/ mai n/ www

[/ Bill-W5 mai n/ ww

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Root c:\ws

Vi ew /| depot / dev/ www*/ . . . [1Bill-W5 dev/www/. ..

This extends the view to include subdirectories of //depot/dev whose names begin with www. For exe
//depot/deviwww-galindex.html and //depot/dev/www/eguide/schedule.ntml would fall within this vies

« You can refer to file names or path names that have spaces in them, aslong as you put quotes around
contain them. For example:

Vi ew / | depot / dev/ ww/ . . . [1Bill-W5/ dev/ ww/ .

"//depot/Qur Wb Site/..." “I1Bill-Ws Qur Wb

e You can prefix mapping lines with a hyphen (-) to exclude specific subdirectories or files. For examp

Vi ew / | depot / dev/ ww/ . . . [1Bill-W5 dev/ww . ..

-/ / depot / dev/ www/ prices/. .. [1Bill-W5/ dev/ww pri c

This view encompasses all the files in the //depot/deviwww path except for the onesin its prices subd

e You can prefix mapping lineswith a plus (+) to overlay more than one depot areato a single workspa

example:
Root c:\ws
Vi ew [depot/ mai n/www/ ... [//Bill-Ws/ www ...

+/ / depot / dev/ ww/ . . . [1Bi] -Ws www . ..

This view maps the //depot/main/www files to the local c:\ws\www directory. It also maps the //depot/
the same local directory. When the same local filename matches afilein both depot areas, precedence
//depot/deviwww path.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Y ou can combine mappings like the ones shown in the preceding examples to configure the workspace vie
However, just because you can create very complicated workspace views doesn't mean it's agood idea. Co
complicated to work with-your mappings can confuse you, and the more complicated your client spec get:
change it without making a mistake.

On the other hand, don't make your workspace view so ssmple that it encompasses avery large depot inits
all-encompassing view might be easier for you to maintain, it may require hard work on the Perforce Serve
run commands. For best server performance, limit your workspace view to the areas of the depot you'll actt

In Part I of thisbook we'll ook at using filespecs to define codelines and modules, the two essential file ci
parallel software development. Once you've defined codelines and modules, you can base your workspace
rather than on ad hoc filespecs.

2.2.4. ldentifying the current workspace

When you run Perforce commands, there is a current client workspace in effect, whether you know about it
info command that tells you which server you're connected to tells you the name of the current workspace.

p4 info
Cient nane: spirit
Client unknown.

This shows that the current client workspace is named "spirit", and that it has not been configured yet. (The
entry for it in the Perforce database.)

If the current client workspace isn't the one you want to use, you'll have to choose the one you want and me
client workspace.

2.2.5. Listing Workspaces

Y ou can use the clients command to list client workspaces that have already been configured:

p4 clients
Client AndyB Home root Sources: Hone: Perforce ' Created by andyb'

Client RMBuild4 root c:\Perforce "Bui | d4/ ni ghtly’

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Cient jh_Wsl root /Users/jh/perforce "Created by jh

Cient |wplay root /usr/teanilaural/play 'Created by Laura'
Cient wwn root c:\clients\lwwn "Laura's exanple '
Cient pete root c:\DevTools "Created by pete'

Each line represents a named, configured client workspace. From the clients output you can make a guess ¢
workspaces are yours and which is appropriate for your current environment. If the succinct clients output (
enough information, you can use the client command to display the details of a workspace:

p4 client -o lwwn

Client: I w-wi n

Onner : Laur a

Access: 2004/ 09/ 01 10: 09: 06
Host : spirit

Root : c:\clients\lwwn

Descri ption:

Laura' s exanpl e workspace on W ndows.

(The-oflag on the client command is used to dump the details to output rather than open up an editor.) Frc
command, we can see that the client workspace called "lw-win" is owned by Laura, and was last accessed ¢
associated with a host machine called "spirit" and itsroot directory is c:\clients\lw-win .

2.2.6. Setting the current workspace

The P4 program uses the P4CLI ENT environment variable to determine the current client workspace name.
set, the name of your host machine will be used as the current workspace name. Setting the current worksp.
Setting P4CLI ENT . Aswith PAPORT , you can Set PACLI ENT in your environment. On Unix, for example:

export PACLI ENT=I w pl ay

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Or on Windows:

p4 set PACLI ENT=l w-w n

P4V offersyou alist of workspaces to choose from when you launch it. The P4CLI ENT setting in your envil
affect P4V.

2.2.7. Switching between workspaces

It's not unusual for adeveloper involved with several tasks to have two or three workspaces. One way to sv
workspaces is by opening a command window for each, setting each window's P4CLI ENT variable to a diffe
name, and switching between windows.

e If you have more than one workspace on one machine, make sure each hasits own distinc
*> 4. directory. That's the easiest way to keep yourself from inadvertently mixing up filesin wo

Y ou can also use what are known as PACONFI G files to switch between workspaces. First, set the P4CONFI
environment to afilename like p4.config . On Windows, for example:

p4 set P4CONFI G=p4.config

Next, create files named p4.config in each of your workspace root directories. In each file, set the value of
example, the p4.config filein the root directory of the Bill-WS workspace will contain:

PACLI ENT=Bi | | - W5

Now, when you run a P4 command, Perforce will ook in your current directory and all its parent directorie
named p4.config . It will usethe P4CLI ENT setting it findsin that file.

Note that PACONFIG files are of very little use with P4V. Y ou can switch current workspaces in P4V with
= Open Connection command.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e P4V limits you to one open workspace window per Perforce Server connection. So, while

DR switch between workspaces , there's no way to have two workspace windows open at the

%+ You can get around this limitation by starting up a second instance of the P4V application
connecting it to your second workspace.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.3. Synchronizing a Workspace

The next step after configuring aworkspace and making it the current workspace is to synchronize it.
When you synchronize your workspace. Perforce does two things. First, it copies files from the depot to
your local disk. Second, it makes an internal record of the file revisions you have on disk.

2.3.1. Listing unsynchronized files

If you want a preview of the files you need to synchronize, or if you're ssmply interested in seeing
which depot files have been updated since the last time you synchronized, use the sync command with
the -n option:

p4 sync -n

2.3.2. Synchronizing the entire workspace

Use the sync command to synchronize [*1 your workspace:
[l Because the P4 command to synchronize files is sync, the Perforce product documentation uses sync as averb. In this

book, we use synchronize instead, because sync just doesn't conjugate very well. But outside of this book, be prepared ta
seewording like "the file was synced" and as you are syncing.

p4 sync

Without arguments, the sync command synchronizes your entire workspace. It copiesthe latest versions
of depot filesto their corresponding locations on your local disk. (Assuming there are filesin the depot,
of course. If you're using avirgin Perforce installation there won't be anything to synchronize with yet.)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e If you're synchronizing for the first time, be sure to preview the operation first! In
¥s J. other words, run the following command first:

p4 sync -n

A common mistake is to start synchronizing before realizing that your workspace
view istoo large. Thisisnot an irreparable situation, of course, but you can save
yourself some grief by making sure you know what's going to be synchronized
before Perforce startsfilling up your disk.

Y ou can run sync as often as you like-it refreshes only the files that have changed. Perforce is smart
enough not to recopy filesthat are already present in your workspace.

2.3.3. Synchronizing in bits and pieces

Normally, commands like sync operate on your entire workspace. But you can also synchronize your
workspace in bits and pieces. Just supply afilespec to the sync command. For example, this command
effectively synchronizesthe //depot/dev/iwww directory:

p4 sync //depot/dev/ww ...

Another useful way to limit the scope of synchronization iswith wildcards that match to only certain
files:

p4 sync "//.../*.png

This command synchronizes only the *.png files, rather than the entire workspace. (The//... prefix roots
the filespec in the root of the workspace and matches *.png filesin al subdirectories. Without aroot,
the *.png would apply to the current directory. The filespec argument is quoted so that the asterisk
doesn't get expanded by the command shell before p4 seesit.)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.3.4. When did | last synchronize?

Perforce can't actually tell you when you last ran the sync command, but it can give you a clue. For
example:

p4 changes
-ml " #have"

Change 4462 on 2004/09/03 ...

Thistells you that your workspace was probably last synchronized with depot revision @4462 on
September 3, 2004. (The -m1 flag on the changes command limits output to the single most recent
change. The #have filespec is a shorthand for all the filesin the workspace; it'sin quotes so that the
shell doesn't interpret it as acomment.) We say probably last synchronized because al changesisreally
telling usisthat September 3 isthe date of the latest revision of the filesin your workspace. If you've
been in the habit of keeping your entire workspace synchronized, that is most likely the date you last
ran sync.

2.3.5. What's new in the depot?

Y ou can also uses changes to get an idea of the changes that have occured in the depot since you last
synchronized:

p4 changes " @4462"

(The @>4462 is undocumented syntax that means revisions after @4462. Y ou have to quote the string
inwhich it appears to keep the command shell from tripping on the > character.) Again, thisyields an
approximately correct result. The more fastidious you are about keeping your entire workspace
synchronized to the same point in the depot, the more correct the output is.

Y ou can also apply this changes command to a particular path to see alist of changes that have occured
init sinceyou last synchronized:

p4 changes "//depot/dev/ww ... @4462"

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

—_ Perforce, curiously enough, offers a handful of nominally undocumented
*+ | features. The @> revision syntax, for example, is one them. To find out more
~ about it, run:

p4 hel p undoc

Perforce's undocumented features are not so much undocumented as
unsupported. Some are backwardly compatible artifacts of previous releases and
some are harbingers of upcoming new functionality. Y ou can use the
undocumented features, but you can't count on them to behave the same in future
releases.

2.3.6. Synchronizing with older revisions

Normally Perforce copies the head revisions of files to your workspace. To synchronize with older
revisions, supply arevision identifier. Here, for example, the Aug 10, 2004 revision of the
//depot/deviwww directory tree will be copied to the workspace:

p4 sync //depot/dev/ww ... @004/ 08/ 10

(When you do this, of course, you can no longer assume that p4 changes -m1 "#have" showsyou when
you last synchronized.)

2.3.7. Listing files in your workspace

Y ou can list the files Perforce thinks you have with the have command:

p4 have //.../index.htm

2.3.8. Detecting missing workspace files

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

In the Perforce vernacular, the list of files you have in your workspace is called the have list. The have
list isreally the inventory of files that have been synchronized. It's not the inventory of filesactually in
your workspace because it may include files that have since gone missing, and it doesn't include files
that didn't come from the depot.

To list synchronized files that are now missing, use diff with the -sd flag:

p4 diff -sd

2.3.9. Replacing missing files

Y our workspace files are under your control and there's nothing to stop you or the programs you run
from erasing files Perforce put there. But because Perforce thinks you have them already, you won't be
able to replace them with asimple sync. To force Perforce to recopy filesit thinks you already have,
use sync-f. For example:

p4 sync -f //depot/dev/ww i ndex. htni

A nicetrick of P4 isthat you can pipe the output of diff -sd to sync-f to resynchronize files missing
from your workspace:

p4 diff -sd | p4 -x- sync -f

(The -x- flag says to operate on fileslisted in the standard input stream as opposed to filespec
arguments on the command. The -f flag saysto copy files to your workspace even though Perforce
thinks you already have them.)

2.3.10. Detecting files that didn't come from the depot

Y ou can't use Perforce commands to list files Perforce doesn't know about. Thus, it'salittle trickier to
detect the files in your workspace that didn't come from the depot. Y ou have to use your OSto list the
files under your workspace root, pipe that list to the have command, and ook for error messages. If the
root of your Windows workspaceis c:\ws, for example, you could run:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

dir /s/b/a-d c:\ws | p4 -x- have >have.txt 2>havenot.t xt

Here, dir is a Windows command whose output is piped to have. The have output, in turn, is split into
standard output and standard error streams, each of which is redirected to afile. The havenot.txt file
will now contain error messages about files that didn't come from the depot:

nmor e havenot . t xt

CA\ws\wwh\ . i ndex. htm .swp - file(s) not on client
CA\ws\ww\ junk.txt - file(s) not on client
C\ws\wwhing\iconl.gif - file(s) not on client

(Files not on client is Perforce's way of saying that the database object-the client-associated with
your workspace contains no reference to the filesin question.)

= Day bay Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.4. Local Syntax, Wildcard Expansion, and Special
Characters

Once you havefilesin your workspace, refering to them with Perforce filespec syntax may be a bit
confusing. However, you can also use the syntax native to your local machine to refer to workspace
files. If your workspace is on Windows, for example, you can refer to afile with local syntax like:

c:\ws\ proj ect A\ ww\ i ndex. ht ni

For itsinterna operations, Perforce translates that to a depot filespec like:

/ | depot / proj ect A/ ww/ i ndex. ht m
(The actual location of thefile in the depot is determined by the workspace view.)
If your current directory is beneath your workspace root, you can also use relative filenames. For

example, if you're in the workspace directory mapped to the depot's //depot/projectA/www directory,
you can use acommand like:

p4 have index. htm

to refer to the //depot/projectA/www/index.html file.

Y ou can mix and match local syntax with filespec syntax. Usually you do this when you want to use
Perforce revisions or wildcards with local file names. For example:

p4 sync c:\ws\projectA...@el 2.4

This hybrid of local syntax and filespec is acceptible. In this example, it identifies the collection of

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

depot files that are mapped to the c:\ws\projectA path. The sync command shown here will copy the
depot file revisions labeled @Rel 2.4 to the workspace.

Asyou saw earlier, spacesin filenames and pathnames have to be quoted when they are referenced in
views. The same goes for commands. Anywhere you enter a filespec-on a command line, or in a spec
form-a space in afile or pathname is likely to be misunderstood. To prevent this, put quotes around
the filespec. For example:

p4 have "My Dog.j pg"

With quotes as shown, P4 assumes there is one file argument, as you intended. Without quotes, P4
assumes you mean two files, My and Dog.jpg.

When you use P4 commands in acommand shell, by the way, you should be aware that the shell is
likely to expand special charactersit recognizes before passing your file arguments to the P4 program.
When you type:

p4 sync *.htn

for example, the command shell may actually be invoking:

p4 sync index.htm contacts. htm

Thus, Perforce never sees your wildcard character and never gets a chance to expand it to the depot
filesit matches. To dlip Perforce wildcard characters past the command shell, use quotes. For example:

p4 sync "*.htm"

Regardless of whether you use quotes, local syntax, or filespec syntax, Perforce aways treats wildcard
and revision delimiter characters as meaningful. Consequently, you can't use local syntax to refer to file
or pathnames that contain these special characters. Instead, you must use URL-style encodings for
them. (That is, two-digit hexadecimal ASCII codes prefixed with %.) A file whose local nameis
Me@A ge6.JPG, for example, must be refered to as Me%40A ge6.JPG in Perforce commands:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 have Me%l0Age6. JPG

Thisisthe only way to refer to the file without confusing Perforce. It's also the name Perforce uses to
refer to thefileinternally.

There's one exception to the rule about encoding special characters. The P4 add command (which will
be given more attention in the next section) has an option, -f, that forcesit to treat special characters as
names, not revision syntax. For example:

p4 add -f Me@\ge6. JPG

e The nuances of local syntax, wildcard expansion, and special charactersare a

% 4. Sgnificant factor only if you're typing P4 commands in a command shell or
invoking them from a script. If you're using Perforce through a GUI or aplug-in,
the client program will generally construct file arguments appropriate to the
command you are executing.

-
B

= Day bay Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.5. Working with Local Files

When you synchronize your workspace with depot files, Perforce normally puts read-only files on your
local disk. To make files writable, you have to open them. Y ou also have to open files you plan to add
to or delete from the depot.

5 Remember, in Perforce, an "open file" isafile you plan to submit to the depot.
Don't confuse Perforce's meaning of "open" with the idea of opening filesin an
application.

The basic flow of work in Perforce isthat you open files as you work, then submit all your opened files
at once when you have completed a unit of work. In this section we'll concentrate on ways to open files.
In the next section we'll ook at various ways to submit them.

2.5.1. Opening files for editing

Use the edit command to open files for editing. For example:

p4 edit index.htm |ocations. htnl

Opening files for editing makes them writable so you you can edit them or otherwise modify them
locally. None of your local changes are visible to other users, of course, until you submit your filesto
the depot:

p4 subm t

2.5.2. Which files am | working on?

Files you haven't submitted yet can be listed with the opened command:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 opened
/ | depot / dev/ ww/ i ndex. ht M #1 - add default change (text)

/ | depot / dev/ ww/ prices. htm #1 - add default change (text)

Each line of opened output shows afile revision, the reason it was opened (add), the pending changelist
it belongsto (default change), and the file's type (text).

2.5.3. Who's working on these files?

Y ou can check to see who's working on any files at any time with opened -a:

p4 opened -a contacts. htmn

/ | depot / dev/ ww/ cont acts. ht M #3 - edit by tina

Also, you'll notice that as you open files, Perforce informs you if anyone else is working on them as
well:

p4 edit contacts. htm
/ I depot / dev/ ww/ cont acts. ht M #3 - opened for edit

- al so opened by tina@i na-web-prep

2.5.4. Which files did | change?

Just because you've opened files for editing doesn't mean you've gotten around to changing them. To
list the opened files you've really changed, use:

p4 diff -sa

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

If you want to see the actual text diffs, use diff with no flags:

p4 diff

Because the diff command can produce alot of output, you may prefer using it with specific file
arguments. For example:

p4 di ff ww index. htn

2.5.5. Adding new files to the depot

Y ou also have to open files you plan to add to the depot. Use the add command to do that. Here, for
example, three local files are added to the depot:

p4 add ing/hatl.gif ing/hat2.gif ing/bag4.gif

p4 subm t

e Y ou can open filesonly if they're in your workspace view. If the files you want to
%3 4. add are outside your workspace view, move them to alocation within the
" workspace first, then run the add command.

Note that when you're opening new filesto be added, Perforce won't expand wildcard characters, even
if you do slip them past the command shell. Why not? Because the files you're referring to are not in
the depot yet-Perforce has nothing to match wildcards to. So with the add command, you do want to
use syntax that will be expanded by the shell. For example:

p4 add wwww/ *. htm

2.5.6. Adding an entire directory tree of files

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Typicaly you'll want to add an entire directory tree full of filesat once. If you're using P4V, opening a
tree of filesfor adding is simply a matter of navigating to the directory and right-clicking Mark for
Add.

It'salittle trickier with P4 because no command shell can expand Perforce's handy ... wildcard. That's
why this command will not work:

p4 add inmg/... Won't work!

Do not despair. Y ou've aready seen how the -x- flag can be used with the p4 command to make it read
alist of file arguments from standard input. Y ou can let your OSfind the filesin the directory you are
adding and pipe the result to p4 -x- add. On Unix, for example, you'd use:

find ing -type f -print | p4 -x- add -f

The Windows equivalent is:

dir

/s/b/la-d img | p4 -x- add -f

The Unix find and the Windows dir commands output file namesin local syntax. The -f flag is used on
the add command to force it to accept file names with special characters, should there happen to be
any. It'snot aproblem if the list of files piped to add contains files already opened or already in the
depot-add will simply emit warnings about them.

e Y ou don't have to do anything special to create directoriesin the depot. Perforce
%+ 4. createsdirectories automatically to accommodate the files you're adding.

TSN

2.5.7. Deleting depot files

Even files you want to delete have to be opened first:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 del ete products/betatest. htm

p4 subm t

The delete command opens files to be deleted; it also removes them from your workspace. They're
deleted from the depot when you run submit.

Deleting is only one of severa ways of removing files, asyou'll seelater in the chapter in "Removing

and Restoring Files"

2.5.8. Cloning depot files and directories

Y ou can create depot files that are copies of other depot files. (Well call this"cloning " files for now,
to distinguish it from local file copying.) To clonefiles, use the integrate command. For example:

p4 integrate products/logo.gif training/logo.gif

This creates anew file, training/logo.gif, in your workspace that is an exact copy of the depot file
products/logo.gif. It also opensthe file (for branching). Y ou still have to submit the new file, of course:

p4 submt

When you submit it, the training/logo.gif file will be created in the depot.

Y ou can use the usual Perforce wildcards with integrate to clone entire directory trees. For example:

p4 integrate projectA/... projectB/...

p4 submt

clones al thefilesin the projectA directory into the projectB directory, in the same way the previous
single file was cloned.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

When you clone files, bear in mind that:

e Thefilesyou create by cloning must fall within your workspace view. Surprisingly, the originals
they are cloned from do not have to bein your view! (That's because you're not modifying the
originals.)

o Evenif the originals are synchronized in your workspace, they will not be used by integrate. The
integrate command always clones from depot originals.

e A less effective way to clonefilesisto synchronize them in your workspace,

®+ 4. copy them to another location in your workspace, then use add to open them for
" adding, asif they were new files. The trouble with this is that the new files won't
have any history. By contrast, files created with the integrate command will
inherit the history of their originals!’]

['1'If you think cloning looks like branching, you're right. Thisis merely thetip of the
integrateiceberg. You'll get the whole story in Chapter 4.

2.5.9. Modifying files as you clone them
Asyou just read, cloned files are copied into your workspace first. In your workspace, they'll appear as
read-only files. To modify the clones before submitting them, reopen them with the add command.

This makes them writable-at least until you submit them-and tells Perforce to clone from your
workspace files instead of from the depot originals. For example:

p4 integrate
product s/l ogo. gi f products/Iogosmall.gif

p4 add products/logosmall.gif

At this point, products/logosmall.gif is writable and can be modified. To send your modified file to the
depot, submit it:

p4 subm t

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.5.10. Renaming files and directories

Renaming filesisjust like cloning files except that you delete the originating files. For example, to
rename afile from hatl.gif to hatO01.gif:

p4 integrate hatl.gif hat001.gif
p4 delete hatl.gif

p4 subm t

Here, the integrate command cloned hat1.gif into hatOO1.gif, leaving the latter in your workspace,
opened for branching. Then hat1.gif was opened for deleting. When these opened files are submitted,
hat001.gif replaces hat1.gif in the depot.

Aswith cloning, integrate can be used with wildcards to rename entire directories. For example, this
pair of commands renames the prod subdirectory to products:

p4 integrate ww/ prod/... ww products/...
p4 del ete www prod/. ..

p4 subm t

Moving files and directories works exactly the same way. For example, to move the www/onsale.html
file into the www/products directory:

p4 integrate ww onsal e. ht M www product s/ onsal e. ht m

p4 del ete www onsal e. ht m

Note that both the originating and the destination files have to be in your workspace for renames and
MOVES.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e Remember that files created by the integrate command inherit the history of their
% 4. ancestors. See Chapter 1 for waysto display inherited history.

2.5.11. Replacing and swapping file content

Replacing file content is similar to renaming files, but because the target file exists, alittle extra work
isrequired. For example, to replace the contents of misc.txt with content from readme.txt:

p4 integrate -i readne.txt msc.txt
p4 resol ve -at

p4 submt

(The combination of integrate -i and resolve -at effectively doesthe content replacement. Don't worry
just yet about how it does it-you'll find out in Chapter 4.)

In the same vein, you can swap the contents of a pair of files. Here we swap the contents of misc.txt and

readme.txt:
p4 integrate -i readne.txt msc.txt
p4 integrate -i msc.txt readne.txt

p4 resol ve -at

p4 submt

2.5.12. Locking files

Opening files before you submit them isaway of politely earmarking them for your upcoming changes.
Once you've opened files, Perforce will warn other usersif they open the samefilesin their
workspaces. It won't prevent people from opening them, however, and it won't stop them from
submitting their changes before you submit yours. (In Chapter 3 you'll read all about what happens if

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

they do submit their changesfirst.)

To prevent other users from submitting changes first, you can use lock on your opened files:

p4 | ock

No one can submit changes to files you have locked. If you lock files you've opened for adding, no one
can add files with the same names. A lock persists until you've submitted or reverted your files. (Well
get to reverting in amoment.)

2.5.13. Designating file types

When you open afile to be added, the Perforce client program can determine its type to some extent. It
peeks at the file'sfirst 1,024 bytes to make the determination. It can tell whether afileistext or binary,
for example, and on Unix, it can tell if you're adding a symlink.

If the base file type chosen by Perforceis suitable to you, you don't have to do anything. Asyou read in
chapter 1, however, specia file type modifiers-+| for exclusive locking , for example, and +w for
always writable-can be used to control file behavior. Modified file types have to be designated
explicitly.

Y ou can designate afile€'stype as you add it to the depot. Y ou can also change its type once you've
already added it. File type changes, like all other changes to depot files, can be made only to open files,
and like all other changesto open files, they don't affect depot files until they are submitted.

—_ Remember, you can get a complete inventory of base types and type modifiers
-y from:
[T

p4 help filetypes

For example, say you're adding new PDF files. Normally, Perforce would designate binary as the type
for PDF files, and this may suit your needs asis. But you may decide to designate these files as
binary+l (binary files with exclusive locking). Y ou can do this with the add command:

p4 add -t +l *. pdf

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

(The -t flag designates the type. In this case, only the +I type modifier was designated; the base type
was | eft to be determined by Perforce.)

Y ou can use opened to see which types were assigned to your opened files:

p4 opened
/ | depot / dev/ ww/ br ochur e. pdf - add (bi nary+l)

/ I depot / dev/ ww/ di agram pdf - add (binary+l)

Before you submit files, you can change their type as often as you want with the reopen command. For
example, to make the new PDF files always writable as well:

p4 reopen -t +w *, pdf

The one-size-fits-all reopen command can be used for files opened for editing as well.

2.5.14. Changing the type of existing files

When afileis submitted, Perforce recordsits type accordingly. That's the file type that stays with it
from revision to revision, and it's the type inherited by files branched fromit. Y ou can use the filelog
command to see afile's type history:

p4 filelog readme. txt
|/ depot / dev/ www/ readnme. t xt #2 - edit (text+kw)

/ | depot / dev/ ww/ r eadne. t xt#1 - add (text)

Once afile exists in the depot, the only way to change its type isto open it for editing and submit it
again. For example, to change the readme.txt file from text+kw to text+w:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 edit -t text+w readne.txt

p4 submt readne.txt

(Unfortunately there's no syntax to deduct a modifier from abase file type.)

This change now shows up in the file's history aswell:

p4 filelog readmne. txt
/ | depot / dev/ ww/ r eadne. t xt #3 - edit (text+w)
/ | depot / dev/ ww/ readne. t xt#2 - edit (text+kw)

/ depot / dev/ ww/ r eadne. t xt #1 - add (text)

- There are parameters you can set in your client spec that don't affect depot file
%> 4. types, but that do affect the way Perforce handlesfilesin your workspace. Try

p4 help client

for asummary of optionsthat control:

Whether workspace files are made writable as they are synchronized

Whether unopened but writable workspace files can be clobbered

What timestamp is set on workspace files as they are synchronized

Whether line endingsin text files follow local convention

2.5.15. Opening files after the fact

Although opening files before you change them is the polite thing to do, you don't have to work that
way. You are free to change your local file permissions and make changes as you seefit. Y ou do have

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

to open files at some point-otherwise you won't be able to submit them to the depot-but you can
always open them after the fact.

Opening files after the fact reconciles Perforce's record of what's open in your workspace with what's
actually changed. Y ou simply open the files you've created, modified, or removed by running add, edit,
or delete, respectively. In"Adding an entire directory tree of files," earlier in the chapter, you saw how
to open new files for adding by piping alist of filesto the add command. Opening modified and
deleted files after the fact works the same way:

Opening modified files after the fact
To open files that have been modified locally since you synchronized them, run:
pd diff -se | p4 -x- edit

(The diff -se command lists unopened files that don't match their depot counterparts. Y ou've seen the -
x- flag before-it makes edit operate on the list of filesin the standard input stream instead of a
command argument.) Opening files for editing after the fact doesn't change the content of your
workspace files. However, it will make fileswritableif they aren't aready.

Opening deleted files after the fact

Earlier in this chapter you saw how to list missing files so that they could be resynchronized. But
if files are missing because you removed them as part of an intentional change, you have to open
them for deleting before you can submit that change to the depot. To open missing files for
deleting, use:

p4 diff -sd | p4 -x- delete

Normally the delete command removes files from the workspace, but in this case it will have no effect
on the workspace at all.

2.5.16. Reverting files

Reverting filesis how you discard changes you've made to local files, rather than submitting them. For

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

example, to revert the index.html file in the current directory:

p4 revert index.htm

(The revert command doesn't have a default argument-it won't revert all the files in your workspace,
for example, unless you give it an argument whose view isthat large.) Reverting takes files off your
pending changelist and replaces workspace files with copies from the depot. Files you have opened for
editing are restored to their original, read-only versions.

5 The revert command doesn't save backup copies of your changed workspace
files. It ssimply overwrites them with fresh copies from the depot. In other words,
you will lose your local changes when you revert files.

When you revert files opened for deleting, the depot copies are restored to your workspace. Reverting
files opened for adding has no effect on files at all, other than to take them off your pending changelist.

48 PREV) < Day Day Up > m

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

CE=S

2.6. Working with Pending Changelists and Submitting Files
Asyou open files, they are associated with a pending changelist . Y our local changes don't affect the depot
you submit your files. What you submit to the depot is not individual files, realy, but the entire pending
changelist.

2.6.1. Submitting a pending changelist

Use the submit command to submit a changelist:

p4 submt

By default, submit operates on the default pending changelist. (Y ou can have more than one changelist, asy
seein amoment.) Like the client command, submit launches an editor so that you can fill out aform. Thef
comes prefilled with the list of filesin the changelist. All you really have to fill out for submit is the Descri
field. For example:

p4 submt
Descri ption Added feature and price |list pages for the new web si
Files / | depot / dev/ ww/ i ndex. ht M #1 - add

/ | depot / dev/ ww/ price. htm #1 - add

Once you save and exit the editor, Perforce begins sending your new and changed files to the depot. Submi
files goes very quickly-about as quickly as the files can be transfered over the network to the server. Whe
content has reached the server, and assuming you ran into no problems with permissions or triggers, new fi
revisions are created in the depot and your changelist description is recorded permanently.

2.6.2. Preventing unchanged files from being submitted

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

It often comes as a surprise to new usersthat all the filesin their changelists are submitted, even the onestl
haven't been changed. New revisions whose contents are the same as their unchanged predecessors are cree
in the depot. If this behavior strikes you as unacceptible, you can revert your unchanged files before submit
them with:

p4 revert -a

Note that even though afile's content is unchanged, revert -awon't revert afileif you've resolved it or done
anything to change its type.

2.6.3. Creating additional changelists

Changelists are meant, among other things, to document files changed together as a single unit of work.
However, it's easy to end up with unrelated files in your default pending changelist. If that happens, consid
splitting your filesinto changelists that can be submitted separately.

Y ou can create additional changelists with the change command. This command brings up a spec form, jus
submit . The form will list al the files opened in your default changelist. Simply fill in a description and sa
the form to move files to the new changelist.

p4 change

Change new

Descri ption Ti ghten up page | ayout

Fil es / | depot / dev/ ww/ t enpl ate. xml #4 - edit

/ | depot / dev/ ww/ gl obal s. xm #7 - edit

Saving the form doesn't submit the files. Instead, it creates another pending changelist, this one identified v
number:

p4 change

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Change 1453 created with 2 open file(s).

2.6.4. Do | have more than One pending changelist?
The changes -s pending command lists pending changelists. Normally it lists all the pending changelistsin

system, which israrely what you want to see. To list the pending changelists for your workspace, run chang
pending -c with your workspace name. For example:

p4 changes -s pending -c Bill-W5
Change 1453 by bill @ill-W5 *pendi ng* ' Tighten up page | ayout'

Change 1406 by bill @ill-Ws *pendi ng* ' Test offsite |inks'

This shows us that there are two pending changelists in the Bill-WS workspace in addition to the default. (I
workspace has a default pending changelist.)

2.6.5. Moving files from one changelist to another

Once you have more than one pending changelist, you can use the reopen command to juggle open files be
them. For example, to move al your opened XML filesto the default changelist:

p4 reopen -c default //.../*. xm
/ | depot / dev/ ww/ t enpl ate. xm #4 - reopened; default change

/ | depot / dev/ ww gl obal s. xm #7 - reopened; default change

To move the current directory's template.xml file to pending changelist 1453:

p4 reopen -c 1453 tenpl ate. xnl

/ | depot / dev/ ww/ t enpl at e. xm #4 - reopened; change 1453

In P4V, moving files between changelistsis simply a matter of dragging and dropping. Figure 2-3 shows

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

pending changelists displayed by P4V.

Figure 2-3. Pending changelists displayed by P4V

= _& default bill 2Bill-WS =enter description here:
//depot/dev. www./globals 2aml
S/depats/devwwwindesc html
S/depot/devwww . price html

A 1406 Bill @Bill-WS Test offsite links
= ﬂ, 1453 bill@Bill-\WS Tighten up page layout
//depot/dev/www . template xml

2.6.6. What's in this changelist?

Use opened -c to list the filesin a cparticular changelist. For example:

p4 opened -c default

/ | depot / dev/ ww/ gl obal s. xm #7 - edit default change (text)

p4 opened -c 1406

File(s) not opened on this client.

2.6.7. Submitting a numbered pending changelist

Y ou can submit a numbered pending changelist by giving a changelist number to the submit command:

p4 submt -c 1453

2.6.8. Getting rid of empty changelists

Empty pending changelists can be deleted with change -d . For example:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 change -d 1406

Change 1406 del et ed.

2.6.9. Submitting a Subset of opened files

Y ou can also submit files separately by supplying afilespec to the submit command. For example, to subm
the files in the www/img path:

p4 submt wwing/...

This effectively splits your default changelist in two. The first new changelist, containing the files that mat
filespec, is submitted. The rest of your opened files remain open, in what is now your new default changeli:

Note that you can only do this only with the default pending changelist. Numbered pending changelists can
submitted only in their entirety.

2.6.10. When submit fails

The submit command fails with the message cut of date files nust be resolved or reverted if it
detectsthat files you're trying to submit have not been synchronized with the latest revisions. Thisfailure i
perfectly normal in Perforce, although it can be a bit disconcerting the first time you see it happen:

p4 submt
Change 6412 created with 2 open file(s).
Subm tting change 6412.

/ | depot / dev/ ww/ i ndex. html - nust resol ve before submtting

/ I depot / dev/ ww/ i ndex. ht M - nust resol ve #3

Qut of date files nust be resol ved or reverted.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Submt failed-fix problens above then use 'p4 submt -c 6412'.

What's happened here is that you synchronized and opened revision 2 of the index.html file. Before you cot
submit it, someone else submitted revision 3. Now you can't submit yours without resolving the file.

Because Perforce detected a problem with one of the filesin your pending changelist, it didn't submit any o
them. Instead, it assigned a number to your pending changelist. Asthe error message tells you, you'll have
resolve the out-of-date file and then submit the changelist with:

p4 submt -c 6412

If you lose track of the pending changelist's number, remember that you can list pending changelists with
changes -s pending -c :

p4 changes -s pending -c Bill-W5

Change 6412 by bill @ill-Ws *pendi ng* ' Fi x typos'

The opened command shows pending changelist numbers as well:
p4 opened

/ depot / dev/ ww/ contact. htm #9 - edit change 6412

/ | depot / dev/ ww/ i ndex. ht M #3 - edit change 6412

2.6.11. Resolving files

When someone el se has submitted changes to the same files you're working on, you will have to resolve ya
open files. There'salot more to be said about resolving files and it will be said in Chapter 3 . For now, how
welll just point out that you resolve files using the resolve command:

p4 resol ve

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The resolve command cycles through the files in your workspace that need resolving. It lets you choose wh
do about each one's updated depot file. Y ou can merge the depot file's changesinto your file, copy the depc
to your file, or ignore the depot file.

Only when you've resolved all your unresolved files can you submit your changelist successfully.

- Rather than letting a submit command fail, consider synchronizing your workspace
%> 4. regularly before you submit. Synchronizing doesn't affect your opened files-it simply

lets you know that they need to be resolved. But it aso updates the unopened filesin
your workspace so that it's easier for you to verify that you've resolving your opened files
correctly. (It'susually easier to test for correctness when you've got a synchronized set of
files.)

2.6.12. Listing unresolved files

At any time, you can list the files that need resolving with:

p4 resolve -n

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.7. Removing and Restoring Files

Removing files can mean a number of things in Perforce. Let's look at removing files-and restoring
them, when possible-in three different contexts.

2.7.1. Removing workspace files

In the first context, you're removing Perforce-managed files from your workspace. In this case, you
don't want to affect the depot files in any way-you simply want your workspace to be rid of them. Y ou
could remove them yourself, of course, since you have control over them. But it you did that, Perforce
would be unaware that they're no longer there. Y our have list would be out of kilter. Y ou can prevent
that by using Perforce commands to remove files from your workspace.

InaGUI like P4V thisis simply a matter of selecting files or folders and clicking File =—* Remove
from Workspace. With P4, however, removing files from your workspace is alittle less intuitive. Y ou
do it by synchronizing to the symbolic revision #none. For example:

p4 sync c:\ws\devl\wwh...#none

This command removes files previously synchronized, but only if they are not open. The open files
produce a warning-to remove them you must revert first, then synchronize to #none.

To restore previously removed filesto your workspace, simply resynchronize:

p4 sync c:\ws\dev\wwh. ..

2.7.2. Deleting depot files
The next meaning of removing filesis to delete them from the depot while keeping a history of their

prior revisionsintact. This operation does affect depot files, of course, and because it's a depot change,
it requires you to synchronize the files, open them to be deleted, then submit a changelist. For example:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 sync c:\ws\dev\www . ..
p4 del ete c:\ws\deviwwh. ..

p4 submt

Change 4933 submitted

Perforce creates new head revisions of deleted files when you submit them-deleted revisions. Deleted
filerevisions have specia properties. When people synchronize deleted revisions, Perforce removes the
files from their workspaces. Deleted revisions also behave differently in resolve and integration
operations, as we'll see in subsequent chapters.

Y ou can restore deleted files by synchronizing with nondel eted revisions and adding them again. For
example, we just saw a set of files deleted in changelist 4933. To restore this set of files, use:

p4 sync c:\ws\dev\www ... @932
p4 add c:\ws\dev\wwh. ..

p4 subm t

The deleted revisions remain in the depot, superceded by the newly added revisions. You'll see
evidence of thisin file histories:

p4 filelog c:\ws\deviwwh. ..

/ | depot / dev/ ww/ cat al og/ it enB004. ht m
#4 add by corey 'Restore deleted files'
#3 delete by bill 'Renove obsolete itens'

#2 edit by corey ' Conpl ete descriptions'

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

#1 add by corey 'New catal og itens'

2.7.3. Obliterating files

The third meaning of removing filesisto obliterate them and their history from Perforce's database.
Thisis something you'd resort to only if files had been added or branched by mistake, for example.
Although deleted files can be restored from prior revisions, obliterated files are gone forever and
completely. All revisions are removed from the depot and all references to them in changelists, labels,
workspaces, and so forth are removed from the database.

5 Thereis no easy way to restore obliterated files.

There is no guaranteed way to restore obliterated files. (If you find yourself in the
unfortunate position of having to restore obliterated files, contact Perforce
Software. Their technical support team may be able to help you restore
obliterated files from your system backups.)

Only privileged Perforce users can obliterate files. For more information, see the online help for the
obliterate command:

p4 help obliterate

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.8. Useful Recipes

There are a couple of Perforce command recipes you may find yourself using often. One is the recipe
for reconciling your workspace after working offline. The other isthe recipe for backing out changes.

2.8.1. Reconciling offline changes

Once you've synchronized your workspace, you can do your development work completely offline. Y ou
could, for example, synchronize aworkspace on your laptop before leaving the office, then work
offline whileriding the train home.

But your offline changes can't be submitted unless the files they involve are opened in a pending
changelist. Once your laptop is back online you'll have to reconcile your offline changes-the state of
your local files, in other words-with your pending changelist.l"]

[Another need for reconciling offline changes arises when you run programs that modify files unbeknownst to you.
Some artist tools and authoring tools are prone to doing this by modifying several related files when you save asingle
file or project.

Reconciling offline changes is simply a matter of opening files after the fact. The formulais:

1. Find thefilesthat were changed and open them for editing:

p4 diff -se | p4 -x- edit

2. Find thefiles that were removed and open them for deleting:

p4 diff -sd | p4 -x- delete

3. Findthefilesthat are new and open them for adding. Assuming that you're in the top-level
directory of your workspace, the Windows command to find files and add them is:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

dir /s/b/la-d | p4 -x- add -f

On Unix that's;

find . -type f | p4 -x- add -f

(Thesedir and find commands list all the filesin your local workspace tree and pipe them to P4's
add command. Thefilesthat are truly new are opened for adding; the rest generate warnings but
areignored by add.)

Having done this, you can either submit your pending changelist or continue working on your opened
files.

2.8.2. Backing out arecent change

A change that has been submitted to the depot can be backed out by submitting another change that
reversesit. There'sasimple recipe for backing out a change. Assuming C is the change number, the
recipeis:

1. Synchronize with the pre-@C files.

2. Open C's deleted files for adding.

3. Open C's edited or integrated files for editing.
4. Synchronize with the latest files.

5. Open C's added or branched files for deleting.
6. Resolvefiles.

7. Submit changelist.

This sequence of steps assures that the new change restores added, deleted, and edited files to their pre-
C content and type.

For example, say you want to back out change 1245. Let'stake alook at the filesinvolved:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 files @1245

/ I depot / dev/ ww// cont acts. htm #2 - edit change 1245 (text)
/I depot / dev/ ww/ i ndex. ht M #12 - edit change 1245 (text)

/ | depot / dev/ ww/ proj ects. ht ml #5 - del ete change 1245 (text)

/ I depot / dev/ ww/ dept s/ eng. ht M #1 - add change 1245 (text)

(The @=1245 filespec identifies file revisions submitted in change 1245. It's an undocumented
syntax-you can read about it in the output of help undoc.) Asyou can see, two files were edited, one
was deleted, and one was added in this change. No files were branched or integrated. To back out
change 1245, you'd run:

p4 sync @?z244

p4 add //depot/dev/ ww projects. htn

p4 edit //depot/dev/ww contacts. htm //depot/dev/ww i ndex. ht n
p4 sync

p4 del ete //depot/dev/ ww/ dept s/ eng. ht m

p4 resol ve -ay

p4 subm t

(Theresolve -ay command preserves the content of files-you'll see how and why it works in Chapter
3)

When achange involves alot of files, you can filter the output of the files command to produce lists of
filesto open. Unfortunately, files can't be piped directly to other P4 commands because its format isn't
acceptible to them. For example, aline of files output that looks like this:

/ | depot / dev/ ww/ i ndex. ht M #12 - edit change 1245 (text)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

has to look like this when piped to the edit command:

/ | depot / dev/ ww/ i ndex. ht m

This can be fixed easily in afilter, however. If you're on Unix, for example, you can use sed. Here'sthe

recipe again, thistime using sed filters instead of specific file names:

p4 sync @244

p4 files @1245 | sed -n -e "s/#.* - delete .*//p" | p4 -x-

p4 files @1245 | sed -n -e "s/# * - edit .*//p" | p4 -x- edit

p4 sync

p4 files @1245 | sed -n -e "s/#.* - add .*//p" | p4 -x- delete

p4 resol ve -ay

p4 submt

On Windows, the for command can be used to filter file lists. Ruby or Perl scripts would do just as

well, of course.

In any case, this basic recipe works when the change you're backing out is the most recent change to the
filesinvolved. In Chapter 3 we'll ook at backing out non-recent changes-that is, changes that have to
be unmerged. And in Chapter 11, we'll see an example of using the recipe to back out changes
involving branching and integration as well.

= Day bay Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 3. Resolving and Merging Files

The previous chapter blithely mentions that you may have to resolve and merge files before submitting
them. Resolving instructs Perforce to take care of files that been changed in parallel; merging is one
way to resolvefiles. Resolving filesis usually easy, and the result is usually exactly want you want,
whether you understand how it came about or not. However, there are times when you do need to know
exactly how files are resolved and merged. That iswhat this chapter is about.

This chapter starts out with areview of the Perforce resolve operation:what it's for, when you do it, and
what you do with it. It nails down the meanings of "yours" and "theirs,”" the often-puzzling names
Perforce givesto files being resolved. Next, it describes how Perforce actually mergestext files. It
shows how amerged fileis constructed, and explains where and why conflicts are detected. (Merge
results that seemed random to you before you read this chapter will seem completely predictable to you
once you have read it.) This chapter also explains how to reconcile files that can't be resolved because
they've been added, deleted, renamed, or moved. It offerstips for devel opersto resolve, merge, and
reconcilefiles. Finally, it closes with a bit of arcana, including information about configuring alternate
merge tools.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

3.1. Resolving: When, What, and How

Y ou must resolve files when:

e You havefiles opened for editing, and you synchronize them with newer revisions.

« You havefiles opened for editing, and your attempt to submit them fails because you aren't
synchronized with the head revisions.

e You areintegrating changes between branched files.

Thefirst two cases will be the focus of this chapter. However, most of what you will read here applies
to the third case aswell, so consider it prerequisite reading for the next chapter, Chapter 4.

The Ambiguities of SCM Terminology

Merge, conflict, resolve, and integrate are words that exacerbate the ambiguities of SCM
terminology. Before we go any further, let's get clear about what these words mean-at
least, in the context of this chapter:

» By merge, we mean merging the contents of one file into another. Much of this
chapter dwells on how Perforce merges files. Don't confuse this with the concept of
merging changes from one branch into another. Perforce can do this kind of merging,
too, only Perforce callsit integrating. We'll cover integration in Chapter 4.

« If you and | both change index.html, that's aparallel change. Some SCM systems use
the word conflict when they mean parallel change. But in this chapter, conflict means
acondition that can be detected when parallel changes are merged. For example, you
changed <i ng src=l ogo. gi f>t0<ing src=i g/l ogo. gi f >, and | changed it to
<i ng src=new ogo. gi f >-that's a conflict.

e You haveto tell Perforce what to do with parallel changes. That's called resolving
files, and you use Perforce's resolve command to do it. Merging is one of the options
you have when you resolve files; resolve can merge filesfor you. And, after merging,

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

you may haveto resolve conflicts.. But the resolve command doesn't resolve
conflicts. It alerts you to the presence of conflicts and launches an editor so that you
can resolve conflicts by editing the merged file.

3.1.1. Are You in Sync?

To lay the groundwork for resolving and merging, let's take another look at what it meansto bein sync
with the depot. When you synchronize, Perforce fetches files from the depot. For example:

p4 sync

/ | depot / proj ect A/ doc/ detai | . ht m #9
/ | depot / proj ect A/ doc/ i ndex. ht M #16
/ | depot / proj ect A/ doc/ sched. ht m #5
/ | depot / proj ect Ali ng/ di ag0l. gi f #3
/ | depot / proj ect A/i ng/ di ag02. gi f #2

(Note: thisisthe abridged output of sync. Here, asin most of the P4 examplesin this book, we've
massaged the output to fit the page and to make the point at hand.)

Unless you specify otherwise, Perforce copies the head-that is, the newest-revisions to your
workspace. We see thisin Figure 3-1. The three most recent changes to the files we're working with are
@1000, @1005, and @1009. We're synchronized with the head revisions (shown in bold outlines).

Figure 3-1. A workspace synchronized with head revisions

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

s @?@ N

:
detail html ® E -
indexhtml -16) : >
sched html — "’?‘: >
diag01.gif - 2 —®—E—P
diag02.gif) : >

S}rlnc

But the revisions you have in your workspace won't remain the head revisions forever. As soon as other
people submit changes, your workspace gets out of sync.[*] Figure 3-2 shows that since we last
synchronized, more changes (@1014, @1015, @1026, @1027, and @1032) have been submitted to
the fileswe're working on. We're no longer in sync with the head revisions of some of our files.
[l None of this appliesto you if you are the only person using your Perforce system, of course. Nor isit relevant if you
are the only person working in a particular branch. However, if you're working in a branch, you'll probably have to

integrate your changes into another branch eventually, and that involves resolving and merging files. So do read this
chapter before going on to the next.

Figure 3-2. Files out of sync

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

&I O P D
@"*@ OO RO RO
1
1
1
1
detail html (9) + 10 1
' &) ; >
indexchtml -(16) : 7—18——FPp
1
sched.html OF >
1
diag01.gif - 3 —(3 : >
—O——
diag02.qgif () ! 3 >
1
() .
SyNC

An out-of-sync workspace is no big deal-simply run sync again and your workspace fileswill be
refreshed with newer depot versions.

p4 sync

/ | depot / proj ect A/ doc/detail.htnm #11 - updat ed

/ | depot / proj ect A/ doc/ i ndex. ht ml #18 - updat ed

/ | depot / proj ect A/i ng/ di ag02. gi f#3 - updat ed

Things are slightly more complicated when you've got opened files. In this case, resynchronizing only

refreshes the files you don't have opened. For example, say you have index.html and diag02.gif opened
when you resynchronize:

p4 sync
/ | depot / proj ect A/ doc/ detail.htm #11 - updat ed
/ | depot / proj ect A/ doc/ i ndex. ht ml #18 - i s opened

nmust resol ve #17,#18 before submtting

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

/ | depot / proj ect Aling/ di ag02.gi f#3 - is opened

must resol ve #3 before submtting
Thefiles you do have opened go into a state where they're considered synchronized but unresolved. (In
the Perforce vernacular, they're scheduled for resolve.) In Figure 3-3 we see that we're now in sync with

the head revisions again. However, the files we have opened for editing (shown in outlined in red) need
to be resolved.

Figure 3-3. Files scheduled for resolve

£) S . \g ‘o 3
F & & & & &S &

= @)
()
?-) - - J:J

detail.htm! 9 10 :
index html {16] 17 —® >
sched.htm (5) E >
diago1.gif - 2 —Q) : >
diag02.gif 7] O—»
'
sync

Now, your workspace is slightly out of kilter. Y our unopened files have been refreshed with the | atest
changes, but your opened files won't contain corresponding changes until you resolve them. So, until
you resolve, you'll have problems compiling or using your files, because you don't really have all the
changes you need.

3.1.2. Which files need resolving?

Note that you have to synchronize before you can resolve files. In the GUI programsit's easy to see
which of your files are opened, which need synchronizing, and which need resolving because they'll be

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

marked with corresponding icons.

Asyou read in the previous chapter, you can use P4's sync -n command to see which of your files need
synchronizing. After synchronizing, you can use use resolve -n to see which files are as yet unresolved:

p4 resolve -n
c:\ws\doc\index. htm -

nmer gi ng // depot/ project Al doc/i ndex. ht m #17, #18
c:\ws\doc\ing\di ag02.gi f -

vs // depot/ project Aing/diag02. gi f#3

Here we see that two workspace files are unresolved, c:\ws\doc\index.html and
c:\ws\doc\img\diag02.gif. (You'll see what the rest of this output means shortly.)

Each time you resynchronize opened files, another resolve is scheduled. A file scheduled for more than
oneresolveis an indication that you've resynchronized more than once:

p4 resolve -n
c:\ws\doc\sitemap. html -
nmer gi ng // depot/ proj ect A/ doc/ si t emap. ht m #9
c:\ws\doc\sitemap. html -
nmer gi ng // depot/ proj ect A/ doc/ sit emap. ht m #10
c:\ws\doc\sitemap. html -
nmer gi ng // depot/ project Al doc/ sitemap. ht m #11
Resynchronizing more than once is not a problem-the file can still be resolved. However, as well

show in "Tips for Smoother Collaboration," there are good reasons to resolve after each
synchronization.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

3.1.3. Resolving files automatically

After resynchronizing your workspace, you can resolve filesinteractively (that is, one by one) or
automatically (all at once). Not all files can be resolved automatically, as you'll see. But nobody wants
to spend al day resolving filesinteractively. So the practical thing to do isto first try to resolve as
many files as you can automatically, then resolve the stragglersinteractively.

The safest way to resolve files automatically (or to auto-resolve files, aswe call it) iswith resolve -as:

resol ve -as

C:

\ ws\ proj ect A\ doc\ ads. htm
nmer gi ng // depot/ proj ect Al doc/ ads. ht m #3, #5
Diff chunks: O yours + 1 theirs + 0 both + 0 conflicting

copy from//depot/projectAldoc/ads. htm

:\ws\ proj ect Al doc\i ndex. ht n

nmer gi ng // depot/ proj ect A/ doc/index. ht m #17, #18
Diff chunks: 2 yours + 4 theirs + 0 both + 0 conflicting

resol ve ski pped

:\ws\ proj ect Aling\di ag02. gi f

vs //depot/ project AVdoc/ing/di ag02. gi f #3
Nontext diff: O yours + O theirs + 0 both + 1 conflicting

resol ve ski pped

The -as flag directs resolve to handle only the files that can be resolved safely-that is, without
compromising locally edited files. Files that would be compromised are skipped. The output shows
which files were resolved and how. Before you attempt to interpret the output, however, let'slook at
what Perforce means by calling files yours and theirs.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

3.1.4. "Yours," "theirs," and "base"

Every unresolved file has three relevant variants . Perforce calls them "yours,” "theirs," and "base":

Yours

"Yours' isthefilein your workspace. It isthe file you will submit to the depot after you've
finished whatever it is you're working on.

Theirs

"Theirs' isthe revision in the depot. It contains changes made in parallel with yours, and it'sthe
one you would be synchronized with if the file weren't open in your workspace.

Base

The "base" isthe revision you were synchronized with when you opened thefile. It's the one that
was copied to your workspace, the starting point of the changes you've made locally.

Take the scenario shown in Figure 3-4, for example. index.html#16 was synchronized in your
workspace when you opened it for editing yesterday. In the meantime, other people have submitted
changes to the depot and the newest revision is now index.html#18. Today you've resynchronized your
workspace. If you were to resolve file now, yours would be the file in your workspace, theirs would be
index.html#18, and the base would be index.html#16.

And, inits own way, the resolve -n -0 command shows us exactly which files these are:

p4 resolve -n -0 index. htm

c: \ws\ doc\i ndex. ht m

- merging //depot/project Adoc/index. htm #17, #18
usi ng base //depot/ project Al doc/index. htm #16

(We use -0 with resolve to make it display the base.) Here, yoursis c:\ws\doc\index.html and theirsis
//depot/projectA/doc/index.html#18. (The message shows the range of

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Figure 3-4. The three variants of an unresolved file

Depot
“base” “theirs”
indexch
index.htm| @ @ @ >
sync
edit
—»QO
“yours”
Workspace

revisions, #17 through #18, that resolve will take care of for you.) The baseis
//depot/projectA/doc/index.html#16.

During integration, as you'll read in the next chapter, the revisions meant by yours, theirs, and base are
subtly different than what we've just described here. However, whether your workspace file is opened
for editing or integrating, the mechanics of the resolve operation are the same. For each yours-theirs-
base triplet of files, one of three things happens during the resolve operation: theirsis copied into
yours, theirsisignored, or theirsis merged into yours.

Safe auto-resolving only does the first two of these things, copying theirsinto yours or ignoring theirs.
Files that can't be resolved thisway are skipped. Let'sfirst look at what resolving by copying or
ignoring does, then at how to auto-resolve files by merging. Finaly, we'll ook at resolving files
interactively.

3.1.5. Resolving files by copying theirs into yours

During auto-resolving, when Perforce encounters triplets where theirs has changed but yours has not,

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

theirsis copied into yours. In other words, when there are filesin your workspace that you've opened
but have not gotten around to changing, auto-resolving them simply refreshes them with copies from
the depot. (See Figure 3-5.) They're still open for editing, so you can make changes to them and

eventually submit them.

Figure 3-5. Copying theirs into yours

Depot

“theirs”
index.html e
18 19 —p
A
resolve ;r
' “yours”
" Workspace

There are cases where you might want to replace your files with theirs even if yours have changed. For

instance, you may have made local changes that you don't care about, or that are no longer relevant.
Y ou can use resolve -at for this. It auto-resolves files without |ooking, always copying theirs into yours

resol ve -at

c:\ws\ doc\i ndex. ht m
- vs //depot/project Adoc/index. htm #17, #18

copy from//depot/projectAldoc/index. htm

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

c:\ws\doc\ing\di ag02. gi f
- vs //depot/project Adoc/ing/diag02. gi f#3

- copy from//depot/projectAldoc/ing/diag02.gif

(Think of -at for "aways accept theirs' asamnemonic.)

= Asyou can imagine, resolve -at is destructive-it overwrites your workspace
files. Any local changes you've made will be lost.

Remember that you can use filespecs with the resolve command. Y ou can use a command like this, for
example, to replace all your opened, unresolved *.gif files with theirs:

p4 resolve -at ...*.qgif
c:\ws\doc\i ng\ di ag02. gi f

- copy from//depot/project Aldoc/ing/diag02. gi f#3

3.1.6. Resolving files by ignoring theirs

The flip-side of copying theirsinto yoursisto ignore theirs. (See Figure 3-6.) When you auto-resolve
files, theirsisignored in triplets whereit is identical to the base. (In other words, there are no changes
that need to be merged from theirsto yours.) Running resolve doesn't change your files, in these cases.
It ssmply records the fact that they've been resolved. Y ou can continue editing them, and submit them
whenyou'reready.

Figure 3-6. Resolving by ignoring theirs

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Depot

“hase” “theirs”
index.html
(6) an 18 L

resolve

"yﬂuﬁﬂ

Workspace

It may seem odd that there can be newer versions of filesin the depot that are exactly the same as
previous versions. There are anumber of reasons this could happen. One is that someone has submitted
versions that back out previous changes. Another isthat files types have changed, but their content has
not. Usually, resolving by ignoring theirsis the right thing to do; you can assume that the file you
eventually check in will have the right characteristics. Read "Reconciling file type changes' later in this
chapter to find out when you can't make this assumption and what to do about it.

There are also cases where you might want to resolve by ignoring theirs, even if theirs have changed
and yours haven't. (In fact, you saw a use for thisin Chapter 2.) To auto-resolve files by ignoring theirs,
useresolve-ay:

resol ve -ay

c:\ws\ doc\i ndex. ht n

- ignoring //depot/project Adoc/index. htnl #18
c:\ws\doc\ing\di ag02. gi f

- ignoring //depot/project Adoc/ing/diag02. gif#3

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

(For -ay, think of "always accept yours.")

3.1.7. Resolving files by merging theirs into yours

Finally, there isresolving files by merging theirsinto yours. In this case, al three variants of the
unresolved file are combined to produce a single result.

Note that, during a safe auto-resolve, files are never merged. Instead, safe auto-resolving skips files that
need merging:

p4 resol ve -as

c: \ws\ doc\ i ndex. ht n

- merging //depot/project Adoc/index. htm #17, #18

- resol ve ski pped

c:\ws\doc\ing\di ag02. gi f

- vs //depot/project Adoc/ing/diag02. gi f#3

- resol ve ski pped

Here, the index.html and diag02.gif files were skipped because there is no safe way to resolve them. In

other words, resolving them requires merging, and merging requires updating your local files, so it's not
considered safe.

Now, you could interactively resolve each file that can't be auto-resolved safely. Asyou'll seeina
moment, interactive resolving gives you a chance to review the result of each merge before saving it to
your workspace file. But interactive resolving is time-consuming. If you're comfortable with simply
letting Perforce merge changes into your workspace files, you can save time by auto-resolving with
merging:

p4 resolve -am

c:\ws\doc\i ndex. htm

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

- nmerging //depot/project Adoc/index. htm #17, #18

Diff chunks: 1 yours + 2 theirs + 0 both + 0 conflicting
- nmerge from//depot/project Adoc/index. htm
(Think of -am as meaning "accept merged, when possible.") When you auto-resolve with merging, your
workspace files are resolved only if they can be either resolved safely or merged without conflicts. In
the latter case, Perforce reads files from your workspace and from the depot, merges them, and writes

the merged result into your workspace files. (See Figure 3-7.) After files are merged, you can continue
working on them.

When you auto-resolve files with merging, Perforce skips the files that have conflicting parallel

changes. Thisleavesthem for you to resolve interactively.

3.1.8. Resolving files interactively

Files that need to be resolved on a case-by-case basis can be resolved interactively. From the command
line, use resolve with no flags to get the interactive resolve

Figure 3-7. Resolving by merging

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Depot

“hase” “theirs”
index.html
@) @—® >

resolve

"yﬂuﬁﬂ

Workspace

prompt. (The GUI programs have interactive resolve commands, too-look in the File menus for

them.)
. In this chapter you'll see afew of the commands you can supply to the interactive
%3 4. resolveprompts. At any point, you can enter "?" to get the full menu of
%% commands. Y ou can aso display the full menu of interactive resolve commands

without actually entering the dialog itself, with this command:

p4 hel p resol ve

The interactive resolve prompt cycles through your unresolved files, showing information about the
triplet of filesinvolved with each one. Here, for example, the first unresolved file is ads.html:

p4 resol ve

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

c:\ws\ doc\ ads. ht ni
- nmerging //depot/project Adoc/ ads. ht m #3, #5

Diff chunks: O yours + 1 theirs + 0 both + 0 conflicting

Accept(a) Edit(e) Diff(d) Merge(m Skip(s) Help(?) at:

You're now in resolve'sinteractive dialog. The dialog tellsyou which fileit'son, and, if it'satext file, it
summarizes the diffs it found when attempting to merge thefile. (You'll find out what diff chunks are
in"How Perforce Merges Text Files.")

The dialog aways prompts you with a suggested command. In the previous example, it suggests you
enter at, the terse abbrevation for "accept theirs." Once you've done that, your file will be replaced by a
copy of theirs, and the resolve program will go on to the next unresolved file.

Whilein the dialog, you can enter the following commands:

at (accept theirs)

Resolve the file by copying theirsinto yours.

ay (accept yours)

Resolve the file by ignoring theirs and leaving yours untouched.

am (accept merged)

Resolve the file by merging. Y our file will be replaced with the merged resullt.

S (skip)
Skip thisfile. (It will be left unresolved for now. Y ou'll have to resolveit eventually.)

The resolve dialog also offers a poor man's substitute for a graphical merge tool. Y ou can use the
following commands to show diffs and to view and modify files while resolving:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

dt (diff theirs)

In other words, diff their file with the base. This shows the changes they have made.

dy (diff yours)

Diff yours with the base to show the changes you have made.

d (diff)

Diff the merged file with your file. This shows how your file will changeif you resolveit by
merging (that is, if you accept merged or accept edited).

e (edit)

Edit the merged file. In other words, bring up the merged file in your text editor so you can edit
the conflicts.

ae (accept edited)

Resolve by replacing your file with the merged, edited result. (Thisishow you resolve afile after
you've edited the conflicts.)

The Perforce GUI programs, P4V and P4AWin, provide you with graphical tools to merge text files. It
probably doesn't need saying that it's far easier to merge files using agraphical tool thanitisusing a
command-line tool. So, while we show many command-line resolve examples here, we expect you'll be
using P4V or PAWin to resolve files that need merging.

3.1.9. Perforce doesn't merge binary files

Files can be roughly classified into two types, text and binary . Text files contain bytes encoded in one
of the many standardized character sets representing letters, numbers, and symbols. Perforce treats files
astext if their filetype istext or uni code. (For more on this, see Chapter 1.) Asfar as Perforceis
concerned, all other files are binary files. Thisisan important distinction that comes up when you
resolve files because Perforce merges text files only-it doesn't merge binary files. (Moreover, it
mergestext filesonly if al threefilesin the yours-theirs-base triplet have the same filetype, either text
or uni code.)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e Thisisnot to say that binary files can't be merged at all. They can, if you have a
% 4. tool that resolve can use to merge them. See " Configuring an alternative merge
* tool" later in the chapter.

When resolving binary files, you must choose between copying and ignoring. Thus, resolve with binary
fileshasitsidiosyncracies.

o A safe auto-resolve will work with binary files:

p4 resolve -as

With this command, binary files are treated the same as text files. In triplets where both yours and
theirs have changed, the file isleft unresolved.

« Auto-resolving by merging treats binary files exactly the same as does safe auto-resolving. Here,
binary files are left unresolved in triplets where both yours and theirs has changed,

p4 resol ve -am

« Binary filesthat can't be auto-resolved by merging can be auto-resolved either by copying theirs
into yours:

p4 resol ve -at

or by ignoring theirs and leaving yours intact:

p4 resol ve -ay

e Resolving binary filesinteractively lets you choose how each file individually should be resolved.
Even so, your choiceislimited to copying or ignoring.

3.1.10. What's been resolved, and how?

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The resolved command shows which of your opened files have already been resolved. It also shows
how each file was resolved and which depot files were involved. For example:

p4 resol ved -0

c:\ws\ doc\ ads. htn

- copy from//depot/project Adoc/ads. ht m #3, #5
base //depot/ project Al doc/ ads. ht m #2

c:\ws\ doc\i ndex. ht n

- merge from//depot/project Adoc/index. htm #17, #18
base //depot/ project Aldoc/index. ht m #16

c:\ws\doc\ing\di ag02. gi f

copy from//depot/projectAldoc/ing/diag02. gif#3

(The -o flag makes the resolved command show which file was used as a base for each merge.)

= Day bay Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

3.2. How Perforce Merges Text Files

Any two files can be compared to reveal diffs. Three files are necessary to merge content, a starting
version and two modified versions.

Three-way file merging is an operation you'll find in many content-management
, tools. Perforce itself implements athree-way merge that operates on lines of text
, hot on characters, words, or other context-specific syntax. Some three-way
merge tools can operate on characters, words, paragraphs, XML structures,
HTML markup, programming language syntax, and so forth. If line-by-line
merging isn't suitable for the kinds of files you're working with, you can
configure Perforce to use another merge tool when resolving files. See
"Configuring an alternate merge tool."

-
e

3.2.1. Chunks and conflicts

In Perforce's three-way merge, the "base” isthe starting version and "yours" and "theirs’ are the two
modified versions of the file. Y ours and theirs are each compared to the base so that linesin the three
files can be grouped into "chunks." Each chunk in the base is determined to be changed or unchanged
with respect to yours and theirs.*] Chunks that are added or deleted are considered changed. Perforce
constructs a merged file from the chunks using these rules:

['] Prior to Release 2004.2, Perforce's merge algorithm treated contiguous lines with changes as single chunks.
Consequently, parallel changesin lines adjacent to each other always produced a conflict. If you're seeing alot of
conflictsin your merged files, check to seeif you're using a pre-2004.2 version of Perforce. Upgrading to the latest
release may make your merges easier.

o When achunk isthe samein all threefiles, it goesinto the merged file.

« When achunk has been changed in either yours or theirs, but not in both, the changed chunk goes
into the merged file.

« When achunk has been changed in both yours and theirs, and the change isidentical, the changed
chunk goes into the merged file.

o When achunk isdifferent in all threefiles, a conflict marker is placed at that location in the

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

merged file. It will be up to you to decide what goes there.

3.2.2. A simple file merge

Figure 3-8 shows a simple file merge. When the base file is compared to yours and theirs, six chunks

are detected. The merged file consists of .

e Chunks 1, 3, and 5 from the base. These are chunks of text neither you nor they changed.

e Chunk 2 from yours. (Or theirs-both of you made the identical change.)

e Chunk 4 from theirs. Y ou made no change in that spot, but they did, so their chunk goesinto the

merged file.

e Chunk 6 can't be merged. Because they got rid of "aunts" and you changed "aunts' to "ants’, the
chunk is different in all three files. The spot where chunk 6 belongs is marked as a conflict in the

merged file.

Theirs

cats
dogs
pigs
horses
sheep
COWs

Figure 3-8. Chunks of a merged file

If you happened to be using the P4 resolve command, here's what you'd see when you edited the

merged file:

cats

dogs

downloaded from: lib.ommolkefab.ir

Base Yours Merged
cats cats @ | cats
pigs dogs @ | dogs
horses pigs pigs
COWS horses ® horses
aunts COWS @ | sheep

ants ® | cows
©|m

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

pi gs
hor ses
sheep
cows

>>>> ORI G NAL

aunt s
= == = THEIRS
= == = YOURS
ants
<KL

It's up to you to remove the conflict markers and choose the text that should remain. As Figure 3-9
shows, P4V's merge tool presents the same merged file without visible conflict markers, but it's still be
up to you to choose the text that replaces the conflict.

Figure 3-9. Merging in P4V

caca Cats CATS
doga B piga T e
plgs horses plgs
noraes g cows noraes
sheap auncE sous
(=] ancs
i Meged Resut
| cats
i s TS
Pigs
norsss
: -G
caws
aunca A
it
ance -
4 I *

3.2.3. Merging moved lines

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The Perforce file merge algorithm does not differentiate between lines that have changed and lines that
have been moved. Moved lines ook like chunks that have been removed in one location and added in
another. In Figure 3-10, for example, they moved "cats' from the top of the file to the middle, whereas
you moved it to the end.

Figure 3-10. Moved lines

Theirs Base Yours ® Merged
pigs cats pigs pigs
horses pigs horses @ horses
cats horses COWS ® | ats
cows Cows cats ® cows

® (ats

To Perforce, however, it looks like:

e Inchunk 1, you and they both removed "cats," so "cats" is removed from the result.

e Inchunk 3, they added "cats." Y ou made no change to chunk 3, so their change goesinto the
result.

e Chunks 2 and 4 were changed by neither you nor them, and are therefore unchanged in the result.

e Inchunk 5, you added "cats." They made no change to chunk 5, so your change goes into the
result. Now there are two "cats.”

As mentioned earlier, Perforce doesn't take syntax or context into account when merging files. And
without more context, it'simpossible to say whether thisresult is right or wrong. Suffice to say that
conflicting line-moves can have unexpected consequences. But the consequences can often be avoided
altogether by resolving files one changelist at atime, asyou'll see later in the chapter.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

A Notation for Discussing File
Merging
Entirely independent of Perforce, there's anotation you can use to discuss the effects of

files merges. Consider the example shown in Figure 3-8. In the figure we see it redrawn,
thistime using arbitrary letters of the alphabet to represent the chunks.

Theirs Base Yours Merged

= T o B
m =9 ™ =
= M T =
= =M ™ B

Each file can be represented by a bracketed set of chunks:

e Thebaseis[A,C,D,E]

e Theirsis[A,B,C,F,D]

e Yoursis[A,B,C,D,E]]

e Themergedresultis[A,B,C,F,D,E7].

This notation is easy to draw on awhiteboard and it's easy to usein writing.

3.2.4. Comparing whitespace

Whitespace characters-spaces and tabs, that is-are normally significant when Perforce diffs and
merges files. Y ou can control this, to some extent. Commands that compare files (diff, diff2, and

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

resolve) have flags that change Perforce's diff algorithm.

For example, consider this diff case:

p4 diff myscript.rb

= == = /[/depot/nyscript.rb#l - c:\ws\nyscript.rb = == =
3c3

< puts a(b)

> puts a(b)

6C6

<c(d, e)

> c(d,e)

In thefirst pair of unequal lines, some whitespace was changed. In the second, some whitespace
appears only in one of the two lines.

To make Perforce ignore changes in whitespace, use the -db flag:

p4 diff -db nyscript.rb
= == = //depot/nyscript.rb#l - c:\ws\nyscript.rb = == =

6¢c6

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

To make Perforce ignore the existence of whitespace, use the -dw flag:

p4 diff -dw nyscript.rb

= == = /[/depot/nyscript.rb#l - c:\ws\nyscript.rb = == =

The -db and -dw flags can reduce the number of diffs detected during file comparisons. Which of the
two flags you use depends on what's in the files you're working with. Y ou may have to experiment to
get agood result.

If you use -db or -dw with the resolve command, Perforce will pick yours when choosing between
chunks. In other words, in lines that differ by whitespace only, the merged result will match your
workspacefile.

Note that line-ends are always significant. Y ou can't make Perforce ignore them for diffing and
merging purposes.[’]
[l Although you can't make Perforce ignore line-ends, you can use resolve -dl to make it ignore the difference between
Unix-style CR line-ends and Windows-style CR/LF line-ends. Thisis not something you'd need to do unless your

workspaceis on adisk shared by both Unix and Windows machines or you're using local tools that write files with non-
native line-end characters.

= Day bay Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

3.3. Reconciling Structural Changes

Parallel changes that affect depot structure can't be resolved in the same way as can parallel changesto
file content alone. Among the changes that can't be resolved are changes where files have been added,
deleted, renamed, moved, or combined. Perforce won't schedule files for resolving when:

o You havefiles opened for editing and you synchronize with newer depot revisionsthat are
deleted. (In other words, someone el se has deleted files you are working on.)

e You havefiles opened for deleting and you synchronize with newer, edited depot revisions. (In
other words, someone el se has edited the files you are about to delete.)

« You havefiles opened for adding or branching, and you synchronize with non-del eted depot
revisions of files with the same names. (In other words, someone else has already added or
branched files before you.)

Perforce does warn people who are opening filesif other users have the same files opened. And people
should heed these warnings, especialy if they're opening files for refactoring or other structural
changes. But sometimes they just don't realize that structural changes can't be resolved, and sometimes
they have reasons to submit their changes anyway. All is not lost-there are ways to reconcile
structural changes.

= The advice that follows works best if you make a habit of synchronizing,
resolving, and reconciling changes incrementally, as described in " Tips for
Smoother Collaboration" later in the chapter.

3.3.1. Someone adds the files you were going to add

Let's start with asimple case: Y ou opened some files for adding, and in the meantime, someone else
has added files with the same names to the depot. Y ou have resynchronized, but that doesn't affect
these filesin your workspace. Y ou still have them opened for adding, and you won't be able to submit
them.

To detect filesin this state, look for files that are both opened for adding and already in the depot:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 opened di ag04. gif

/ | depot / dev/ ww/ i ng/ di ag04. gi f#1 - add default change

p4 files diag04.qif

/ I depot / dev/ www/ i ng/ di ag04. gi f#1 - add change 4761

Here, for example, you were going to add diag04.gif, but someone has aready added afile with the
same name. Y our next move depends on the nature of your work:

Y ou can abandon your changes

Y ou can simply abandon your plan to add the file, of course, by reverting it.

p4 revert diag04.gif

/ | depot / dev/ ww/ i ng/ di ag04. gi f #none - was add, abandoned

Note that reverting files you opened to add doesn't remove them from your workspace. Be sure to
remove the file yourself to keep it from affecting your local tests.

Y ou can use different namesfor your new files
To add your new file with a different name, rename your local file, open it to add it with its new
name, and revert it with its old name. On Unix, for example:

nv di ag04. gi f di ag05. gi f

p4 add di ag05.gi f

/ | depot / dev/ ww/ i ng/ di ag05. gi f#1 - opened for add

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 revert diag04.gif

/ | depot / dev/ ww/ i ng/ di ag04. gi f #none - was add, abandoned

Y ou can submit new revisions of existing files

Y ou may choose to submit the file you were going to add as a new revision of the file someone
else added. To do that, first revert the file you planned to add. (Remember, reverting files opened
for adding leaves them intact in your workspace.) Then use the sync-k command to make
Perforce think you've aready synchronized with the depot revision, and open thefile to edit it.
For example:

p4 revert diag04.gif

/ | depot / dev/ www/ i ng/ di ag04. gi f #none - was add, abandoned

p4 sync -k diag04.qgif

/ | depot / dev/ ww/ i ng/ di ag04. gi f#1 - added as c:\ws\wwh i ng\ di ag04. gi f

p4 edit diag04.gif

/ | depot / dev/ ww/ i ng/ di ag04. gi f - opened for edit

Now you'll be able to submit your file asarevision of the file already added.

3.3.2. Someone deletes the files you were going to delete

In this situation, you opened files for deleting and Perforce removed them from your workspace. While
you had them open, someone el se deleted them in the depot. Resynchronizing these files has no effect
on your workspace. Thefiles are still on your changelist, however, and you won't be able to submit
them.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

To detect filesin this state, use revert -n and look for files that would be "cleared":

p4 revert -n //...

/ | depot / dev/ ww/ bl ank. ht Ml #none - was del ete, cleared

—= Be sure to use the -n flag with the revert command. Otherwise it will revert your
files-including the files you've edited-and your local changes will be lost.

It'strivia to reconcilefilesthat are opened for deleting in your workspace with files that were deleted
in the depot-all you have to do is revert them:

p4 revert //depot/dev/ww bl ank. htm

/ | depot / dev/ ww/ bl ank. ht Ml #none - was del ete, cleared

3.3.3. Someone renames the files you were editing
In this situation, you opened filesto edit them, and in the meantime, someone has renamed them.
Resynchronizing, in this case, adds the newly named filesto your workspace, but doesn't do anything

with the files you were editing. To reconcile these files you'll have to do two things. First, you'll have
merge your local changesinto the newly named files. Second, you'll haveto revert the original files.

To detect files that were renamed while you were editing them, look for files that would be deleted if
you were to revert them:

p4 revert -n ...

/ | depot / dev/ ww/ ads. ht Ml #none - was edit, del eted

Then check the recent history of any such files:

p4 filelog -n2 ads. htm

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

/ | depot / dev/ ww/ ads. ht m
#6 change 6341 delete by bill "C ean up prono”
#5 change 6340 edit by jim"Correct |inks"

branch into //depot/dev/ww/ prono. ht m #1

(The-m2 flag limits filelog output to the two most recent revisions of each file.)

In the history of ads.html, we see that its highest revision is adelete, and that its last-known content
was branched into promo.html. In other words, ads.html was renamed promo.html. And because you
have resynchronized, you now have both ads.html and promo.html in your workspace. Thisis
convenient, because the first step in reconciling this change is to open the newly named file for editing:

p4 edit prono. htm

/ | depot / dev/ ww/ prono. ht M #1 - opened for edit

Now, you could simply copy the your original file into the new file, then revert the original file. But
this doesn't account for the fact that the new file may have been modified as it was renamed. If you're

working with text files, a better way to reconcile old with new isto merge your changes into the new
file. Start by making alocal copy of the original file asit was in the depot before it was del eted:

p4 print -q ads.htm #5 > orig

Usethisfile asthe base for athree-way merge with your edited file and the renamed file. Move the
merged result into the newly named file and discard the copy of the original. On Windows, for
example:

p4 nerge3d -r orig ads. htm prono. htm > nerged
nove nerged prono. htm

del orig

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

(Here we use merge3-another undocumented P4 command-but you could just as well have used a
graphical tool like PAMerge or PAWinMerge for this. The -r flag was used to keep merge3 from
annotating every chunk in the file-only the conflicting chunks will be annotated.)

The newly named file now contains the merged result. If you used merge3 to create it, you'll have to
use atext editor to straighten out any conflicts. (Look for stringslike "CONFLICT" in the file.) When
you're satisfied with the result-and only when you're satisfied with the result-revert the original file:

p4 revert ads. htm

/ | depot / dev/ ww/ ads. ht ml #none - was edit, del eted

Reverting the original file removesit from your workspace.

3.3.4. Someone moves the files you were editing

This situation is exactly like the one in which someone renames the files you were editing, and can be
reconciled in exactly the sameway. The only differenceis that the files may have been moved to a
depot location outside of your workspace's client view. If so, you will have to modify your view in
order to reconcile the change. (Y ou saw how to do thisin Chapter 2.)

3.3.5. Someone combines the files you were editing with other files

In this situation, you had files opened to edit them. Meanwhile, someone has merged their content into
other files and deleted them. Resynchronizing doesn't affect your workspace files, but because their
depot counterparts were deleted, you won't be able to submit them. Moreover, you probably don't want
to submit them. Y ou want to edit and submit the files that now contain their content.

Thissituation is also just like the one where someone renames the files you were editing, and it can be
reconciled in the same way. The only difference is that the files you merge your changes into may be
considerably different than the ones you started out with. Merging your changes into them might be

messy.

3.3.6. Someone deletes the files you were editing

In this situation, you had files opened for editing and someone el se deleted them in the depot. After you
resynchronize, your files are still opened for editing but you won't be able to submit them.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

To detect filesin this state, look for files that would be deleted from your workspace if you were to
revert them:

p4 revert -n ...

/ | depot / dev/ ww/ bet a. ht m #none - was edit, del eted

Here we see that beta.html was deleted while you were editing it. Check its history to make sure it
wasn't renamed:

p4 filelog -n2 beta. htm
/ | depot / dev/ ww\/ bet a. ht m
#4 change 6341 delete by bill "C ean up pronp”
#3 change 6340 edit by jim"New beta | ook"
Because there is no evidence that it was branched or merged to another file, we can assume beta.html

was just plain deleted. How you reconcile this change depends on the nature of thisfile and the work
you'redoing:

Y ou can abandon your changes

To choose to abandon your changes to the now-deleted file, just revert it:

p4 revert beta.htm

/ | depot / dev/ ww/ bet a. ht m #none - was edit, del eted

(Don't do this unless you really mean to abandon your changes. Reverting thisfile removesit from your
workspace!)

Y ou can reinstate deleted files

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

If you choose to reinstate the deleted file, you'll have to reopen it for adding and submit your
version of it. However, you can't reopen thefile for adding until you've reverted it and
resynchronized with the last non deleted version. There's atrick to doing this without losing your
local edits:

p4 revert -k beta.htm

/ | depot / dev/ ww/ bet a. ht m #none - was edit, del eted

p4 sync -k beta.htm #3

/ | depot / dev/ ww/ bet a. ht Ml #3 - updating c:\ws\ ww\ beta. ht m

= Be sureto userevert -k and sync-k, as shown. If you don't, you'll lose your local
changes! The -k keepsrevert and sync from modifying your workspace copy of
thefile.

p4 add beta. htm

/ | depot / dev/ ww/ bet a. ht M #3 - opened for add

Now, when you submit your changelist, your workspace version will be copied to the depot and the file
reinstated.

3.3.7. Someone edits the files you were going to delete

This situation, where someone el se submits new revisions of files you are about to delete, isvery
difficult to detect after resynchronizing. For one thing, when you resynchronize, Perforce doesn't
schedule resolves for the files you opened to delete. Nor does it prevent you from submitting those
files. For another, once you've resynchronized, there's no way to tell which revisions you originally
opened. At this point, there are no commands you can run to tell you if you are about to delete files
without taking someone's prior changes into account.

If you follow the guidelines set out in "Tips for Smoother Collaboration,” however, you'll be able detect
this situation before you resynchronize. Then, after you resynchronize, you can choose your course of

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

action:

Y ou can del ete anyway

If you choose to delete the files anyway, you don't need to do anything special. Just submit your
changelist and the files will be deleted.

Y ou can revert

If you decide that, under the circumstances, you shouldn't be deleting these files, simply revert
them before submitting your changelist.

3.3.8. Someone edits the files you planned to rename or move

In this situation, you opened files to branch and delete them in order to rename them. (Asyou read in
Chapter 2, thisis how you rename files.) Meanwhile, someone has edited the files you planned to
rename-that is, the ones you opened for deleting.

This situation is the same as if someone had edited files you planned to delete, and it's just as difficult
to detect. However, once you've detected it, you can reconcile it by merging their changesinto thefiles
you are branching.

For example, assume you planned to change afile's name from misc.html to topics.html. Y ou have
misc.html opened for deleting, and topics.html opened for branching:

p4 opened
/| depot / dev/ww/ m sc. ht ml #2 - del ete

/ | depot / dev/ ww/ t opi cs. ht Ml #1 - branch

By the way, you can use the resolved command to confirm that these files are related:

p4 resol ved

c:\ws\ww\ topics. htm - branch from//depot/dev/ww m sc. ht m #1, #2

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Meanwhile, Jim has submitted a new revision of misc.html:

p4 filelog -mL msc. htm
/ | depot / dev/ www/ mi sc. ht m

#3 change 6320 edit by jim"Fix javascript popup"

To merge Jim's changes into your newly named file, you'll need alocal copy of the original file
(misc.html#2) and alocal copy of the one Jim submitted (misc.html#3):

p4 print -q //depot/dev/ww m sc. htm #2 > orig

p4 print -q //depot/dev/ww msc.htm #3 > jins

Now, merge Jim'sfile into the new file, using the original as the base:

p4 nmerge3d -r orig jins topics.htm > merged

Next, you'll need to reopen the new file for adding. This step makes it writable in your workspace (and
tells Perforce that the file you'll be submitting is not identical to the one from which it was branched):

p4 add topics. htm

/ | depot / dev/ ww/ t opi cs. html #1 - reopened for add

Finally, move the merged file into the new file and remove the local copies. On Windows, for example:

nove nerged topics. htnl

del orig jins

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Now you can test Jim's changes in place and submit the files when you're ready.

3.3.9. Reconciling file type changes

Every filerevision has atype associated with it. Asyou learned in Chapter 1, changing afil€'stypeisa
matter of opening afile, assigning a new type to the opened file, and submitting it. Y ou can see how a
file'stype has evolved by looking at its filelog output. Here we see afile whose context type has
changed from text to text+k:

p4 filelog msc. htn

/ | depot / proj ect A/ ww/ doc/ m sc. ht ni
#4 change 1756 edit 2004/ 11/01 (text+k)
#3 change 1613 edit 2004/10/19 (text)
#2 change 1602 edit 2004/10/18 (text)

#1 change 1183 edit 2004/10/11 (text)

Changesto file type can be a bit of awrench in the works when it comes to collaborative devel opment.
Like structural changes, type changes can't be resolved. Here's how afile'stype behavesin your
workspace:

« When you open afile, your opened workspace file takes on the type of the depot file's head
revision rather than that of the revision you synchronized.

» Neither synchronizing nor resolving afile after you've opened it changesits type in your
workspace.

o When you submit afile, the new head revision of the depot file takes on the type your opened
workspacefile had.

What this meansisthat even if you're in the habit of regularly synchronizing and resolving your files,
you can still inadvertently back out someone else's change to afile'stype.

For example, consider the misc.html file in the preceding example. Y ou opened the file when its head

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

revision was#2. Y our opened filestypeistext. After other changes, the latest revision is misc.html#4.
The depot file'stypeis now text+k. You resynchronize and resolve, and your opened file'stypeis still
text. Y ou submit the file. Whether you meant to or not, you've just changed it back to atext file.

Before you submit afile, you can detect a pending file type change by looking at the file's fstat details:

p4 fstat m sc. htm
depotFil e //depot/ project A ww doc/ m sc. ht m #4
headType text +k
type text
If fstat showsthat type and headType are different, you'll be changing the file's type when you submit

It.

To correct the type of afile you have opened, use reopen:

p4 reopen -t text+k m sc. htm

If you didn't get a chance to correct the file's type before submitting it, you can submit another version.
Use the edit command to open the file and correct its type, and submit the file again. For example:

p4 edit -t text+k m sc. htm

p4 submt msc. htm

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

3.4. Tips for Smoother Collaboration

An SCM tool can do only so much to make collaborative development possible. Therest isup to
developers. Here are some things devel opers can do to keep collaboration going smoothly.

3.4.1. Keep your workspace synchronized

When you're working on filesin parallel with other developers, resynchronize your workspace
regularly. The longer you put off resynchronizing, the harder it isto get caught up. And if you're not
caught up, you can't submit files.

Also, instead of resynchronizing individual files, resynchronize all the files in the scope of your work.
(The scope could be adirectory, several directories, or even your entire workspace.) This keeps your
filesin sync with each other and assures that when you try to compile or test, you'll have a set of files
known to work together.

When you're working in a heavily concurrent environment, it's easier to resolve or otherwise reconcile
changes before you attempt to submit files than it is after a submit command fails. So, before you
submit, check to make sure you're synchronized:

p4 sync -n

If you're not, synchronize and resolve one changelist at atime, as described in the next section, then
submit your files.

If resynchronizing regularly is going to make it difficult for you to do your work, consider workingin a
private branch. See Chapter 10.

3.4.2. Synchronize and resolve one changelist at a time

We tend to speak of synchronizing as away to get caught up with the current state of the depot. But in
fast-moving, parallel development projects, many changes can occur in a short time. Simply
synchronizing to the latest revisions puts you in aposition of having to resolve many peoples changes
at once. This can be confusing, if not downright hellish.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

If smooth collaboration isyour goal, synchronize, resolve, and reconcile one changelist at a time.
Here's arecipe for changelist-by-changelist synchronization. Run these commands from the root of the
file tree that encompasses the scope of your work:

1. First, determine the changelist you're currently synchronized with:

p4 changes -nml ... #have

Change 9284 on 2004/03/01 by jim' Swap project nanes'

2. Find out what's happened in the depot since you last synchronized:

p4 changes "...@9284"

Change 9306 on 2004/03/05 by ann 'Fi x nenus on interactive'
Change 9301 on 2004/ 03/05 by ron 'Update training schedul e
Change 9299 on 2004/03/05 by ann ' New nenu bar for interac'

(The @>9284 syntax means changelist numbers greater than 9284. Y ou can read about it in help
undoc. It'sin quotes to keep the command shell from treated it asfile redirection syntax.)

The lowest changelist on the 1ist-9299 in this case-is the one you want to synchronize with
next.

3. Get acquainted with the change you are about to synchronize. Read the changelist description,
note the files that were updated, look for parallel changes to files you're working on. (Pay
particular attention to changesto files you plan to delete!) These commands are useful for this:

p4 describe -s 9299

p4 sync -n ... @299

4. Synchronize with the change:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 sync ... @299

5. Werefilesadded, deleted, or branched in this change? Are any of those the files you're working
on? If so, refer to "Reconciling Structural Changes' and reconcil e those files now.

6. Auto-resolvethefilesthat don't have conflicts, then resolve the rest of the filesinteractively:

p4 resolve -am

p4 resol ve

(Useresolve -asinstead of resolve -am if you want to defer the merges to the interactive step.)

7. Test the state of your workspace. Were files merged correctly? Can you compile? If not, fix the
problem before doing anything else.

Now, repeat the whole thing for the next changelist. Seemslike alot of work, but it'salot easier than
trying to merge everybody's changes at once.

3.4.3. Be on the lookout for changes that can't be resolved

There are two kinds of changesthat Perforce doesn't handle by resolving : structural changes, and
changesto afile€'stype. There's no reason these changes can't be donein parallel, but if done unawares,
collaboration can become exasperating.

A little advanced planning could save hours or days of trying to reconcile work in progress later:

« If you're making a structural change-that is, you're making a change that involves renaming,
moving, deleting, splitting, or combining files-get in touch with users who have the same files
opened. Remember that you can see who has files opened with opened -a. For example:

p4 opened -a *. htm
/ | depot / ww/ proj ect A/i ndex. ht mM #13 - al so opened by bill

/I depot / ww/ proj ect A m sc. htm #2 - al so opened by ann

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

o Check thefile type of your opened files before you submit them. Make sure you're not undoing
someone else's file type change.

3.4.4. Submit logical changelists

Changelists let you organize your work into logical changes. Use them to help other developers
reconcile their work in progress with your contributions. Here are some waysto be helpful:

o Don't combine several tasksinto one changelist.

o Don't submit filesone at atimeif they depend on changesto other files.

» When you're renaming or moving files, in particular, be sure to submit the corresponding deleted
and branched files in the same changelist.

e Usethe changelist description to warn other developers of anything in your change that might be
tricky to reconcile.

« If you're making structural changes, say so in the changelist description.

o Don't mix refactoring with functional changes. All the reasons that make this a good idea for
development make it agood idea for SCM, too.

« Don't mix gratuitous whitespace changes with other changes. If you have acompulsion to line up
al the marginsin asourcefile, for example, don't do it asyou are fixing abug. Instead, submit the
bug fix first, then submit your redecorating in a separate changelist.

3.4.5. Check your merged files

Merging iswhere many mistakes are introduced in collaborative projects. The mechanics of merging
are not so difficult, but verifying that the result is correct can

Conflicts, Context, and Text

Merging can introduce errors whether conflicts are detected or not. Consider afile that
contains these lines of text:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

You nust bring your
birth certificate

when you register.

Let 's say you open the file for editing and add afew lines at the end:

You must bring your
birth certificate
when you register.
(You may bring a
phot ocopy i nst ead

of the original.)

M eanwhile, someone el se has submitted a new version of thefile that looks like this:

You nust bring your
parent or guardi an
when you register.

Asfar as Perforce can tell, there is no conlict between your changes and theirs. When you
resolve the file and mergein their changes, you'll end up with:

You nust bring your
parent or guardian

when you register.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

(You may bring a

phot ocopy i nst ead

of

the original.)

Thislooks like a perfectly formed English paragraph, but it makes no sense, of course.
After merging files, and before submitting them, you should always verify that they were
merged correctly by testing them in their intended contexts.

be. Here are afew things you can do to prevent bad merges from dlipping by undetected:

Don't assume that non-conflicting merges are correct merges. Asyou saw in "Merging moved
lines," earlier in the chapter, the correctness of a mergeis amatter of context.

If you have a not-too-large number of files to merge, use P4V or PAWin to resolve your files
interactively. The graphical merge tools in these GUIs show diffsin context, making mis-merged
results far easier to detect with the naked eye. (Y ou can aso configure the P4 interactive resolve
command to use P4V's graphical merge tool, PAMerge. See "Configuring P4 to use PAMerge" for
details.)

Beforemerging , make local backup copies of your opened files. If subsequent testing shows a
problem, backup copies give you the option of restoring your files to their premerged states and
merging them again.

Compare your diffs before and after resolving. (Your diffs being the diffs that show your local
changesto files.) You can do this by capturing before and after diffsin temporary files and then
comparing thefiles.

For example, say you've just synchronized with changelist @2104. Previously, you were
synchronized with @2103. Before you resolve, capture your diffs:

p4 diff @103 > before.diffs

Resolve your files as you seefit. For example, you might choose to auto-resolve your files by
merging, then resolve the stragglers interactively:

p4 resolve -am

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 resol ve

Capture your diffs again:

p4 diff > after.diffs

Now compare these two files, before.diffs and after.diffs. Except for the line numbers, they should
be identical, except where they reflect conflicts you had to edit. In other words, your diffs should
be essentially the same before and after you've merged in someone else's change. If after.diffs
contains something that's not in before.diffs, and you don't recognize that something as a change
you made while editing conflicts, you may have inadvertently backed out someone else's change.
And, if vice versa, you may have inadvertently backed out alocal change of your own.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

3.5. The Arcana of Merging

What you've read so far may be all you need to know about resolving and merging files for your day-to-
day work. In this section we'll take alook at afew advanced and arcane topics that may prove useful in
specia situations.

3.5.1. Forced merging

Earlier you read that when you auto-resolve files with merging, Peforce skipsfilesif it finds parallel
changes that conflict. Thereisaway to force Perforce to auto-resolve al files with merging even when
there are conflicts. Use:

p4 resol ve -af

The -af flag makes resolve work the same way as-am, but instead of skipping files with conflicts, it
goes ahead and merges changes, leaving conflict markers in the resulting files. Forcing a merge of the
filesin"A simplefilemerge,”" earlier in this chapter, for example, writes this result to your workspace
file, as.

cats
dogs
pi gs
hor ses
sheep
cows

>>>> ORI G NAL

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

THEI RS

YOURS

The advantage of forcing merges isthat you can resolve everything at once and edit the conflicts later.
But this small advantage may be outweighed by several disadvantages:

« Forced merging overwrites your workspace files with files that are never syntactically correct.
Until you edit them, they won't compile or behave properly in any way.

e Onceyou'veresolved afile by forcing amerge, thefileisready to submit, asfar as Perforceis
concerned. There's nothing in Peforce that warns you that you've left conflict markersin files you
are submitting.

« If you forget to edit the conflict markersin afile before resynchronizing and merging newer
changesto it, the conflict markers will themselves be treated as file content. And if these lines
conflict with the newer changes, the result will be very, very confusing.

3.5.2. Can you undo or redo a resolve?

Y ou can't undo aresolve. Once you've resolved afile, it's resolved:

p4 resol ve -am i ndex. htm
c:\ws\ doc\i ndex. ht m
- merging //depot/project Adoc/index. htm #17, #18

mer gi ng from//depot/ project Adoc/index. htnl

p4 resol ve -am i ndex. htm

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

No file(s) to resolve.

Even if you synchronize aresolved file to a newer revision, it stays resolved with respect to previously
resolved revisions.

Thereisaresolve flag, -f, that purportsto re-resolve resolved files. But remember, resolving modifies
your workspace files. Once your workspace files are modified, there's no way for Perforce to recover
their previous versions. So resolve-f doesn't actually redo thefirst resolve. Instead, it resolves files
again, thistime using your modified workspace files as inpui.

Y ou may find resolve-f useful if you've resolved files by ignoring and now want to re-resolve them by
some other method. Y ou might also get some use out of it if you've previously resolved by any method
and now want to re-resolve by copying.

Here, for example, index.html isfirst resolved by ignoring and then the same file is re-resolved by
copying:

p4 resol ve -ay index.htm
c:\ws\ doc\i ndex. ht m
- vs //depot/project Adoc/index. htm #17, #18

i gnoring //depot/projectAldoc/index. htm

p4 resolve -f -at index.htn
c:\ws\ doc\index. ht n
- vs //depot/project Adoc/index. htm #17, #18

copyi ng // depot/ project A/ doc/i ndex. htm

The only reason this works, of course, isthat resolving by copying doesn't need reference to pre-
resolved versions of your workspace files.

3.5.3. Can you undo a merge?

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

A merge that happens during a resolve can be undone, but with difficulty. Aslong asyou didn't haveto
edit conflicts when you resolved by merging , you should be able to undo the merge cleanly.

For example, say you've resolved index.html by merging. First, find out which revisions were involved
in the merge:

p4 resolved -0 index. htm
c:\ws\ doc\index. ht n
- merge from//depot/project Aww doc/index.htm #17, #18

base // depot/ project A ww doc/i ndex. ht M #16

This shows us that index.html#18 was merged with your index.html file using index.html#16 as the
base. Y ou can effectively undo this merge by merging your current index.html with index.html#16
using index.html#18 as the base. Y ou'll need temporary copies of index.html#18 and index.html#16 for
this:

p4 print -q //depot/project ANww doc/index.htm #16 > ol d. base

p4 print -q //depot/project Aww doc/index.htm #18 > old.theirs

Now, merge to undo the previous merge:

p4 nmerge3 -r old.theirs ol d.base index. htm > new nerged

If all went well, the new.merged file will look like your workspace index.html did before you did the
first merge. At this point you can copy it into index.html and remove the temporary files.

If the resulting new.merged file doesn't ook right, try the same merge with PAMerge. Thiswon't
change the merge result, but the graphical display may help you see how it came about. It al'so makesit
easier to edit the result in context. On Windows you can launch P4AMerge for this example with:

p4nmerge ol d.theirs ol d. base i ndex. htm new. nerged

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

On Unix, that's;

p4v -nerge old.theirs ol d. base i ndex. html new. nerged

3.5.4. What happens when you revert files?

When you revert workspace files, Perforce replaces them with the revisions you last synchronized, not
the revisions you last resolved. This behavior can be alittle confusing if you're not expecting it.

For example, let's say you opened index.html#16 for editing, and index.html#18 is now the head
revision. Resynchronizing schedules your file for resolve, without changing its contents. Y our local
copy still looks like index.html#16 (with any local changes you have made). But if you revert thefile, it
will be replaced with index.html#18 instead of index.html#16, whether you resolved the file or not.
Why? Because it was the revision you last synchronized.

Another way to schedule aresolve, however, isto attempt to submit unsynchronized files. The submit
command will fail, and the files involved will be scheduled for resolve with their corresponding head
revisions. Y ou will be able to resolve just asif you'd synchronized. But in this case, since you've never
actually resynchronized the files, reverting them at this point would restore them to their original
revisions rather than to the revisions scheduled for resolve.

For example, assume you have index.html#16 opened for editing. Y ou attempt to submit it even though
index.html#18 is now the head revision. The submit command schedulesit for resolve with
index.html#18, without synchronizing it. Whether you resolve the file or not, reverting it now will
replace it with index.html#16, not index.html#18. Why? Because index.html#16 it was the revision you
last synchronized.

3.5.5. Backing out changes, revisited

In Chapter 2, you saw the recipe for backing out a change. That was the basic recipe; it works when the
affected files have not been modified by changes subsequent to the one you're backing out.

Now that you are familiar with resolving and merging, you'll see that the basic recipe can be extended
to work even when subsequent changes are involved. To back out change C, therecipeis:

1. Synchronize with the pre-@C files

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

©o o A~ W

8.
0.

Open C's deleted files for adding

Open C's edited or integrated files for editing
Synchronize with @C

Open C's added or branched files for deleting
Resolvefilesby ignoring

Synchronize with the latest files

Resolve files by merging

Submit changelist

Let'srevisit the example, backing out change 1245. And in this scenario, let's say thefiles edited in
change 1245 were also edited in subsequent changes. Here's how the extended recipeis applied to this
case:

p4
p4
p4
p4
p4
p4
p4
p4

p4

sync @244

files @1245 | sed -n -e "s/#. * - delete .*//p" | p4 -x- add
files @1245 | sed -n -e "s/#. * - edit .*//p" | pd4 -x- edit
sync @245

files @1245 | sed -n -e "s/#.* - add .*//p" | p4 -x- delete
resol ve -ay

sync

resol ve

subm t

The first resolve uses the -ay option to ignore theirs-that is, to prevent the @1245 versions of the files
from being merged in. The second resolve is interactive, giving you a chance to make sure the changes
that occured after change 1245 are merge in correctly.

(And yes, we're using the Unix sed command to filter the output of the P4 files command. Why afilter?

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

See"Backing out arecent change' in Chapter 2. Why sed? Because it's compact. If you're on Windows,
and you have no sed, you can use Ruby, Perl, Python, or the recondite for command.)

e

e Remember to use this recipe in aworkspace that doesn't already have these files
*3 4. open. Asyou are backing out achangelist, be aware that if any of the changelist's

% edited files were later deleted, you'll have to adjust the recipe per the instructions
in " Someone deletes the files you were editing,” earlier in the chapter, And if any
of thefiles types were changed later, you'll have to adjust the recipe per the
instructions in "Reconciling file type changes,” earlier in this chapter.

3.5.6. Configuring P4 to use P4Merge

Perforce lets you configure an aternate merge tool to be used when resolving filesinteractively. If
you're a P4 user, thisis great-it means you don't have to look at inscrutable text diffs or edit files
marked up with ugly, text-delineated conflicts. Instead, you can configure P4 to use PAMerge, the same
graphical mergetool that P4V provides.

Unix users can set the PAMERGE environment variable to tell P4 to invoke p4v -merge. For example:

export P4AMERGE=' p4v - nerge'
(The exact command you use depends on your shell, of course.)

If you're on Windows, use P4's set command to set PAMERGE in the registry. The command to invoke
is pdmerge:

p4 set PAMERGE=p4nerge

Now, when you run resolve interactively, use m to invoke PAMerge instead of using eto edit the
merged file manually. For example:

p4 resol ve

c:\ws\doc\m sc. htnl

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

- merging //depot/projectAldoc/ ads. ht m #3, #5

Diff chunks: 1 yours + 1 theirs + 0 both + 2 conflicting

Accept(a) Edit(e) Diff(d) Merge(n) Skip(s) Help(?) e:

m

I ssuing this command launches PAM erge, where you can point and click to view (and modify) the
merged file. Once you save the merged file and close PAMerge, resolve will prompt you to accept the
result:

Accept(a) Edit(e) Diff(d) Merge(m Skip(s) Hel p(?) ae:

Choose the prompt's default (ae, in this example) to copy the file PAMerge saved for you into your
workspacefile.

P4 can also be configured to use PAMerge for the diff command. Just set the PADIFF in the
environment or registry the same way you did PAMERGE.

o Perforce invokes alternative merge tools only during interactive resolving and
% 4. diffing. Regardiess of how you've configured your environment, Perforce will

% useits own merge tool, not yours, when you auto-resolve files,

In the "more than you needed to know" category, here's the reason: The auto-
resolve merges are done by the Perforce Server. The resolve -am command sends
your workspace files to the server program, the server does the merge and sends
files back to the client program, and the client puts them in your workspace files.
There's no way to configure the server to run a different merge program than its
own.

3.5.7. Configuring an alternate merge tool

There are reasons beyond the pleasure of a graphical experience for which you might want to use an
alternate merge tool. For example, if you're working with XML, you might want to use atool that can
recognize XML syntax and merge XML filesintelligently. Likewise, if you're working with Java or

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

C++ source, you might want to use atool that can merge programming constructs defined in those
languages. Whatever your reason, you can use Perforce client programs with the merge tool of your
choice.

Many commercial merge tools provide away to configure themselves for use with Perforce. Those that
don't can be configured by you-all Perforce requiresis that your merge tool can be launched from a
command shell, and that when it exits, it has saved or output a merged file.

Perforce will invoke a merge tool with four positional arguments, each naming afile:

filel: the basefile
file2: their file

file3: your file

filed: the merged file

(Other than your file, the files passed to the merge tool are temporary copies generated by Perforce for
the current operation.) Y our merge tool will need to be able to merge file2 and file3, using filel as the
base, and save theresult in filed. Y ou may have to wrap your merge program in a script that rearranges
the order of the arguments Perforce passesto it or that provides additional command flags.

For example, let's look at what it takes to configure KDiff3"] as your merge tool on Windows. The
kdiff3 program expects to be invoked with these arguments:

["] See kdiff3.sourceforge.net. KDiff3 doesn't have any syntax- or context-specific merging features. We're using it here
simply because it's areadily available example of an alternative merge tool that works with Perforce.

kdiff3 filel file2 file3 -o file4

To use KDiff3 as P4's merge tool, you'll need to create awrapper script that invokes it correctly. On
Windows, the wrapper script would look something like this:

set path=%path%c:\program files\kdiff3

kdiff3.exe %4 %2 %3 -0 %

Call this script kdiff3p4merge.bat and put it in the C:\Program Files\Perforce directory. Now use P4's
set command to set PAMERGE in the registry:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 set P4AMERGE=kdi ff 3p4ner ge. bat

To configure P4V to use KDiff3 asits merge toal, fill in P4V's Tools =2 Preferences —* Merge
dialog, asshown in Figure 3-11.

If all goeswell, you should now be able to launch KDiff3 when interactively resolving files with P4 or
P4V

Figure 3-11. P4V's merge preferences dialog

X

2] preferences

) Usze P4Y's merge tacl

(®) Use external application;

|I::.I’F'ru:ugram Filez/Perforceskdiff3pdmerge. bat |

3.5.8. Merging nontext files

Asyou know, Perforce can't merge nontext files. But if you have atool that can merge nontext files,
you can coerce the resolve command into handling them as text and passing them to your merge tool.

For example, say the*.dat files you work with contain binary data peculiar to the software you
develop. Y ou have aprogram called datamrg that can do three-way merging of filesin thisformat, and
you've configured Perforce to use this program as your alternate merge tool. While you were editing
spin.dat#3, someone submitted a new revision. To resolve your file with the changes in spin.dat#4, you
can use this command:

p4 resolve -t spin. dat
c: \ws\ dat a\ spi n. dat

- binary nerge //depot/ project Al datal/ spin.dat #4

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Accept(a) Edit(e) Diff(d) Merge(n) Skip(s) Help(?) e:
m

Accept(a) Edit(e) Diff(d) Merge(m Skip(s) Hel p(?) ae:

Normally, Perforce doesn't offer to let you merge binary files. But in this case, because you used the -t
flag, resolveis handling spin.dat asif it were text. When you answer m to its prompt, it invokes your
datamrg program to do the merge. And after datamrg is done, resolve prompts you to save thefileit
produced. (Or, in resolve's words, to accept the edited file.)

3.5.9. Setting PAMERGE

The resolve command, as you've seen, uses PAMERGE to determine which merge tool to run. If you're
using a specialized merge tool, like the datamrg program in the preceding example, you might want to
wrap the resolve command in a script that setsits own PAMERGE. A Windows script, for example,
might look like this:

@et | ocal
set P4MERGE=c: \speci al \ datanrg
p4 resolve %4 R 98 % % %6 % WB 9O

@ndl ocal

And what is the difference between the Windows set command and the P4 set command? It is this:
e The P4 set command sets a Windows registry variable. Using it to set PAMERGE makes the
setting global to all of your Command Prompt windows.

e The Windows set command, on the other hand, sets an environment variable. Setting PAMERGE
with the Windows set command affects only the current window or batch script. To P4, Windows
environment variables trump Registry settings.

On Unix, thereis no registry and the P4 set command doesn't set anything. PAMERGE can be setina
Unix shell session or script just like any other environment variable.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

< Day Day Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

— = Day Day Up - =y

Chapter 4. Branching and Integration

In the course of software development, we branch filesto do concurrent, parallel work on them, and we
integrate files to combine the results of such work. In this chapter, we'll ook at how to do branching
and integration with Perforce.

This chapter won't dwell on reasons to branch, what to branch, or how to work with different kinds of
branches, Not that those things aren't important-they are, and they'll be given due consideration in
Part 1. But for now, well limit our discussion to the mechanics of branching and integrating.

More Terminology

In this book we use the term branch to mean a set of filesthat is a variant of another, each
set evolving independently. (Codeline and stream are other words for this set.)

Don't confuse the term branch with the P4 branch command. The command creates
Perforce database objects called "branches" but these objects are not branches at all.
They'rereadlly branch views . We'll discuss branch views later in this chapter.

It's common to hear people in the software devel opment world say they merge changes
from one branch into another. In Perforce, we say we integrate changes from one branch
into another. Thisis not a capricious choice of words. It's based on the notion that, even
when two branches are closely related, not all changesin one branch can be merged into
the other. Even so, every change has to be accounted for when you're trying to figure out
what needs merging. (Why was this change never merged? Is it not applicable? Or did
someone simply forget to mergeit?)

The business of accounting for every change is what Perforce callsintegrating. A change
can beintegrated from branch to branch by merging, when appropriate, or by ssimply
deciding that it should be ignored. In either case, the change is considered integrated when
you've decided what to do about it and Perforce has recorded your decision.

— ~Day Day Uy > =y

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

4.1. The Classic Case for A Branch

Of all the usesfor branching , the one best understood is that of branching recently developed software
for aproduct release. For example, assume that we are Ace Engineering and that we've been working
on a software product called Ace. We're gearing up to make the first release of Ace available. Our plan
istorelease Ace Version 1.0 while simultaneously devel oping new features for a future release. For
this, we're going to have to make a branch.

So far, there's one tree of files that constitutes the Ace product. It'sin the //AceMAIN directory path of
our depot. Until now, we've all worked together on the filesin the //Ace/MAIN tree, shown in Figure 4-
1

Figure 4-1. One tree of files

=N W
=3 Acs
=3 MAIN
&3 db
ﬁ doc
"ﬁ qui
ﬁ utils

With Perforce, we can simply clone the //AceMAIN file tree into anew //Ace/V1 filetree. Thisallows
us to continue working on new featuresin the //Ace/MAIN tree. Meanwhile, those of us testing and
stabilizing the 1.0 release can work in the //Ace/V1 tree. The two file trees are shown in Figure 4-2.

Figure 4-2. Cloning //Ace/V1 from //Ace/MAIN

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

= Ace

=3 MAIN
@Edb
O doc
& oui
3 utils

=@
@ db
3 doc
& gui
3 wtils

At the outset, every file in the //Ace/MAIN tree has an identical counterpart in the //Ace/V1 tree. Over
time, content diverges between the two trees as new development proceeds. The //Ace/V1 tree holds the
stable, 1.0 version of the product, and the //AceMAIN tree holds the bleeding-edge, unreleased version.

This notion of cloning atree of files from another is the essence of branching in Perforce. We clone a
tree of files so that we can make changes to either tree-or branch-without affecting the other. The
two file trees are peers in the depot hierarchy. Moreover, every fileisafull-fledged filein its own right.
Filesin either branch can be edited, added, deleted, renamed, or moved. And changes madein one
branch can be merged or otherwise integrated to the other.

Behind the scenes, Perforce keeps track of branching. Although every branched fileisafileinitsown
right, itslineage is stored in the Perforce database. Perforce keeps track of afile's integration history as
well. Aswe successively integrate changes between a pair of branches, Perforce usesfile history to
keep us from having to re-merge changes we've already merged.

Even more important is that Perforce can tell us the integration history of a branch. Given apair of
branches, Perforce can tell us which changes have already been integrated from oneinto the other, and
which have yet to be integrated.

If all thiswere as simpleit sounds, you wouldn't need this book. Many branch and integration
operations in Perforce are quite simple, of course, but some of the simplest ones are a bit unintuitive
and one or two of the essential onesjust aren't that simple. The goal of this chapter isto front-load you
with knowledge to keep you from making the common mistakes the first time out. And if it'stoo late
for that, this chapter will at least help you understand your prior missteps.

WEe'll use the classic branch-for-rel ease use case throughout this chapter to demonstrate Perforce
commands and their consequences. However, the classic caseis certainly not the only use to which
Perforce branching can be applied. Later in this book, you'll see how Perforce branching can be used to
configure products, distribute software, trace object origins, and shepherd web content, among other
things.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Ll AR AN 2 aery

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

4.2. Creating Branches

Aswith all operations that affect depot files, creating a branch is atwo-step process in Perforce. First you L
integrate to open files for branching , then you use submit to make them appear in the depot.[*]

["I"Open ," asyou recall, is Perforce's term describing files you plan to submit.
4.2.1. Opening files for branching

So, back to our Ace example. We can think of the evolution of //AceMAIN as asingle timeline, punctuatec
submitted changelists. (see Figure 4-3)

Now it'stime to branch //AceMAIN into //Ace/V1 . (Well call these branches MAIN and V1, for short. See
Figure4-4)

Figure 4-3. The evolution of //Ace/MAIN

& ¥

& N S5 A
& N @{"

@'\

I/Ace/MAIN

Figure 4-4. Branching V1 from MAIN

‘“ >
>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Making the branch is simply a matter of using integrate to clone one directory from another:

p4 integ //Ace/MAIN ... //Ace/V1/...
/1 Ace/ V1/ db/ Janfil e#1 - branch/sync from//Ace/ MAI N db/ Janfi | e#l, #32
/' Ace/ V1/ db/ dbAcc. cpp#1 - branch/sync from// Ace/ MAI N db/ dbAcc. cpp#1, #3

/' Ace/ V1/ db/ dbDef N. cpp#1 - branch/sync from// Ace/ MAI N db/ dbDef N. cpp#1, :

(What'sinteg ? An alias of integrate .) Theintegrate command takes two filespecs as arguments.*] The fir:
identifies the donor files and the second identifies like-named target files-the files that will be created, in
case.

[To refresh your understanding of filespecs, see Chapter 1.

- Whether it's used to branch, rename, or integrate files, the higher calling of integrateis
*+ 4. topropagate change. Change comes from "donor files' and flowsto "target files." Thus
— thei ntegrate command always involves a pair of filespecs, one being the donor and the
other the target.

Asyou can see, every filein MAIN is branched to a corresponding filein V1. For example, donor file
I/Ace/MAIN/db/Jamfile#32 is branched to target //Ace/V 1/db/Jamfile#l . From integrate 's output, we can il
that #32 is the head revision of the donor. The message branch/sync ... Jamfile#1,#32 lets us know that
revisions #1 through #32 of the donor are going on record as having been integrated into revision #1 of the
target.

Perforce bootstraps the new branch by copying donor files from the depot into target filesin your workspac
(That's what the branch/sync messages in the output of integrate mean.)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Thetarget files, even though they don't exist yet in your workspace or in the depot, must
* 4. bemappedinyour workspace client view . The donor files need not be. Thisis
commonly misunderstood.[*]

=
Ty

[The root of this misunderstanding may be that the integrate command always cites donor files
rather than target filesin error messages about views. For example, say you're integrating a/foo.c into
b/foo.c. You'll get the message a/foo.c - no target file(s) in both client and branch view if theb/...
path is not in your view.

For example, to run:

p4 integ //Ace/MAIN ... //Ace/V1/...

you must have aclient view that encompasses the //Ace/\VV1 files. But it doesn't matter
whether your view encompasses the //AceMAIN files.

Chapter 2 showed how to configure client views. We'll see many more examplesin this
chapter and in the chapters that follow.

4.2.2. Branching from a point in time

The integrate command normally branches each donor file from its head revision. In other words, it branch
from the current point in time. (Figure 4-5)

Figure 4-5. Branching from the current point in time

V1

u
MAIN '

most
recent
change

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Y ou can make integrate branch from a previous point in time by providing arevision in the donor filespec.
example, to branch MAIN from its 12 October 2004 state, you could use:

p4 integ //Ace/ MAIN ... @004/10/12 // Ace/ V1/. ..

Asfar as depot evolution is concerned, changelist numbers are pointsin time. So you could just aswell us
changelist number as a branch point. For example:

p4 integ //Ace/ MAIN ... @109 //Ace/ V1/. ..

Figure 4-6 illustrates the result in either case.

Figure 4-6. Branching from a previous point in time

@

AN

] |
12 October 2004

4.2.3. Am | branching the right files?

Perforce isusually quite happy to let you run any integrate command you want. Before running an actual
integrate , you can run it with -n to see apreview of what it will do. For example:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 integ -n //Ace/ MAIN ... //Ace/V1/...

The preview output, which is almost identical to the actual output, will help you assure that:

Y ou aren't branching more or fewer files than you expected.

Y ou're branching files into the correct paths. (And that you've spelled the new pathname correctly!)

All of thetarget filesarein your client view.

Y ou have permission for the operation.

4.2.4. Oops, | branched the wrong files!

Even if you've already run the integrate command, you aways have the option of reverting files instead of
submitting them. For example:

p4 revert //Acel/V1/...

removes the newly branched //Ace/\VV1 files from your workspace and takes them off your pending changeli

4.2.5. It's not a branch until the files are submitted

Like other Perforce commands that work on files, integrate doesn't actually affect the depot. Instead, it ssim
opens files to be branched. The new branch doesn't appear in the depot until you've submitted the files:

p4 submt //Acel/V1/. ..

Change 3372 submitted.

In the timeline of the new branch, the changelist you submitted isthe first event, as shown in Figure 4-7 .

Figure 4-7. The first event in the timeline of a branch

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

>
2

Ul

121 I::jE:::I I:I | >
MAIN

Lazy Copying

Once you submit branched files, other users will be able to see them in the depot, browse them,
synchronize with them, and so forth. But Perforce doesn't actually store new file content in its
repository when you submit branched files. Instead, it usesinternal logic to fetch their content
from the storage of the files they were branched from. Only when someone changes the content
of abranched file does new content get stored in the repository. (You will seethisreferred to as
"lazy copying" in the Perforce product documentation.) Why do you care? Because it means you
can branch very large file trees without worrying about consuming unnecessary repository space.

4.2.6. Can you undo and redo a branch?

Once you've submitted branched files, they're a permanent part of depot history. In other words, you can't u
abranch. However, you can effectively redo abranch, in away that satisfies most of the reasons you'd wan

Wrong files branched

For example, you branched files from //Ace/MAIN/... into //Ace/V 1-R1.0/... when you meant to branc
from//Ace/V/... . Tofix the problem, delete the branched files, then branch the correct files:

p4 delete //Ace/V1-R1.0/...
p4 submt

p4 integ -d //Ace/V1/ ... //Ace/V1-RL.0/...

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 submit

(The -d option tells Perforce to go ahead and branch new files on top of deleted ones.)

Files branched to wrong place

If you've branched filesinto the wrong place, delete the branched files and rebranch the filesto theri
place.

Branch not needed

If it turns out the branch wasn't need, after all, delete the branched files.

4.2.7. Creating really huge branches

Y ou may think it heavy-handed that Perforce copiesfilesinto your workspace when all you'retryingto do |
create anew branch in the depot. Perforce does this as a convenience to you. It assumes that if you are crea
anew branch, you're going to want to work on the newly branched files.

However, if you're branching areally huge tree of files, a copy of the whole thing in your workspace may b
the last thing you want. Y ou can, at your optionally skip the workspace copying. The-v flag on integ doest

p4 integ -v //Ace/ MAIN ... //Acel/V1/...

I/ Ace/ V1/ db/ Janfil e#1 - branch from//Ace/ MAI N db/ Janfi | e#l, #32

/I Ace/ V1/ db/ dbAcc. cpp#1 - branch from// Ace/ MAI N db/ dbAcc. cpp#1, #3

/1 Ace/ V1/ db/ dbDef N. cpp#1 - branch from // Ace/ MAI N db/ dbDef N. cpp#1, #7
etc.

(The-visfor virtual as opposed to rea filesin your workspace.) When you use integ -v , you'll still need th
target path in your client view, you'll still have files open for branching, and you'll still have to submit a

changelist. But the branched files themselves won't appear in your workspace. If you do want them in your
workspace, you'll have to synchronize with them after submitting them.

4.2.8. Working in a New Branch

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

People can begin working in a new branch as soon as you submit the branched files. Working in anew bra
is the same as working with filesin any depot path. All that's needed is a workspace with a client view that
includes the new branch.

For example, if Bill wants to configure his Bill-V1 workspace for working in the new V1 branch, he can se
this client view:

p4 client Bill-V1

Client Bill-V1
Root c:\ws-vl
Vi ew [/ Acel/ V1/ . .. [/Bill-Vv1/...

The P4V screenshot in Figure 4-8 shows the scope of the Bill-V 1 workspace.

Figure 4-8. A view of the V1 branch

I=EXE
=3 Ace
=-@w
@& db
2 doc
& qui
3 utils

Y ou don't have to have the whole branch in your client view, of course. In fact, you can even mix and matc
branch subdirectoriesin your workspace. Ann, for example, is doing some analysis that requires her to hav
the db subdirectories from both branches, MAIN and V1 , in her workspace. She has her client view set up |
this:

p4 client Ann-DBwork

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Cient Ann- DBwor k

Root {usr/team ann/ dbt ests
Vi ew /1 Ace/ MAI N db/ . . . /1 Ann- DBwor k/ MAI N/ db/ . . .
/] Ace/ V1/ db/ . .. [| Ann- DBwor k/ V1/ db/ . ..

The Ann-DBwork workspace's client view is shown in Figure 4-9 .

Figure 4-9. A view of files in two branches

| &) Ann-DBwork
=8 w=
=3 Ace
=3 MAIN
- B
=@V
&3 db

4.2.9. Browsing branch history

Y ou can use the changes command to display the history of a branch. For example:

p4 changes //Ace/ V1/. ..
Change 3459 on 2004/10/05 by pete "Fix titles of..."'
Change 3456 on 2004/10/04 by rob "Delete junk files..."'

Change 3372 on 2004/10/04 by bill 'Branch Vi...'

P4V can show you the history of abranch with its Folder History command.

4.2.10. Comparing branches

Y ou can use diff2 to compare branches. It lists and diffs the files that are no longer identical:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

pd diff2 -q //Ace/ MAIN . ..

[/ Ace/ MAI N doc/ Janfil el #7 -

[/ Ace/ MAI N doc/ i ndex. ht m #1 -

[/ Acel/ MAI NN util s/ readne#8 -

(The -q option suppresses the actual diffs.)

/1 Acel V1/ . ..

[/ Acel/ V1/ doc/ Janfil e#t4d = =

<none> = == =

<none> = == =

= = (conte

In P4V you can use Tools = Diff filesto bring up an expanding, side-by-side comparison of the two
branches. Figure 4-10 shows an example.

downloaded from: lib.ommolkefab.ir

Figure 4-10. Using P4V to compare branches

Bl Folder Diff
£ Dif0of3 G @ |3

Folder: /ldce/Mall/ Unigue files: 2

B bce/MAINS.

& O bin

=) doc

LR damiilet?

~ [index bt

F[3 s

F) tests

-) wils

: (4] readmets

Folder: /fbce™/

B(=]/ed

D Unigue files: 4 D File differences: 1

Unique fles: 2

& bin
El S dac
L B Jamiilentd
ol B
E-) tests
- uiils

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

CE=S

4.3. Integrating Changes from Branch to Branch

So, Ace Engineering now has two branches, V1 and MAIN . New development continuesin MAIN as bugs
fixed and last-minute changes are submitted in V1 . When and why to integrate are topics we'll discuss later
book. For now, we'll focus on how it's done. In this case, let's assume we're interested in integrating V1 'scl
into MAIN.

4.3.1. Which Changes Need Integrating?

The changes command tells us how the V1 branch has evolved:

p4 changes //Ace/ V1/. ..

Change 3470 on 2004/10/05 by rob 'New threshold for...'
Change 3459 on 2004/ 10/05 by pete '"Fix titles of..."
Change 3456 on 2004/10/04 by rob "Delete junk files...'
Change 3372 on 2004/10/04 by bill 'Branch Vi...'

Not all of these changes need integrating to MAIN . Changelist 3372, as you recall, was the change that cre
the branch. To find out which changes do need integrating, we can useinterchanges :[*]

[l interchangesis a new Perforce command:; it's still nominally undocumented. (It's actually documented in p4 help undoc , |
not guaranteed to behave the same way, or even be available, in future releases.)

p4 interchanges //Ace/V1/... [/Ace/ MAIN ...
Change 3456 on 2004/10/04 by rob "Delete junk files..."'
Change 3459 on 2004/10/05 by pete "Fix titles of..."'

Change 3470 on 2004/10/05 by rob 'New threshold for..."'

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Whereas changes shows all changes to a branch, interchanges shows only the changes that are not account:
in atarget branch. (See "What interchanges really tellsus™ later in the chapter.) In this example we see tha
three changes made to V1 since it was created, none have been integrated to MAIN . Figure 4-11 shows the
changes.

Figure 4-11. V1 changes not yet accounted for in MAIN

)

e,
()%
\ 4

— —

| | | | 1 |

- L N L
MAIN

4.3.2. Integrating Changes incrementally

A very practical way to integrate changes between branches is incrementally-changelist by changelist, in
This method preserves logical changes as they're propagated from branch to branch. It also keeps the probil«
reconciling, resolving, and merging files to aminimum. It's a good technique to start off with, if you're not
how to go about integating changes between branches.

Incremental integration is similar to branching from a point in time, using a changelist number instead of a
Each time we integrate, we use interchanges to find out which changelist number to use.

Returning to the scenario in the previous example, here are the V1 changes as yet unaccounted for in MAIN

p4 interchanges //Ace/V1l/... [/Ace/ MAIN ...
Change 3456 on 2004/10/04 by rob '"Delete junk files...'
Change 3459 on 2004/10/05 by pete '"Fix titles of..."

Change 3470 on 2004/ 10/05 by rob 'New threshold for...'

From this we see that changelist 3456 marks the next increment to integrate, as shown in Figure 4-12 .

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Figure 4-12. Integrating one changelist at a time

5 2 &
@P';b @"3&) @"1@

W
P N ™ P N
Vi 40— T 1
S e o —
Y
P

Y
| | | 1
o

MAIN

Before doing the actual integration, let'srun integ -n to get a preview of what's involved:

p4 integ -n //Ace/V1/ ... @456 //Ace/ MAIN . ..

I/ Ace/ MAI N doc/ i ssues#7 - delete from//Ace/Vl/ doc/i ssues#2

/| Ace/ MAI N doc/ readne#10 - integrate from//Acel/ V1/ doc/ readne#2

/I Ace/ MAI Nl doc/ setup. gi f#1 - branch/sync from// Ace/ V1/ doc/ setup. gi f#1
/1 Ace/ MAI Nl ga/t 102. pl #4 - integrate from// Ace/ V1/ qa/t 102. pl #2

/'l Ace/ MAI NV src/Janfil e#32 - integrate from//Ace/V1l/src/Janfil e#2

Here we see that integrating change 3456 from V1 to MAIN will involve merging three files, branching one
deleting another. (Remember that integrate 's target files must be in your client view. In other words, you'll
I/Ace/MAINY/... in your view for this integ command to work.)

Note that Perforce isn't actually operating on a changelist. It's operating on file revisions. However, wheny
a changelist number on the donor filespec, Perforce considers only the file revisions that existed as of the
changelist's point in time. What we're really doing here is asking Perforce to treat the donor branch asif it |
yet evolved past the point in time represented by @3456 .

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Perforce assumesthat if you added filesin the donor branch, you'll want to add them in the
. target branch when you integrate. Trying to be helpful, it branches new target files from
%% new donors. Ditto for deleted files-if you deleted files in the donor, Perforce assumes
you'll want to delete them in the target as well. If Perforce has assumed correctly, you're al
set. But if you don't want these changes propagated to the target branch, you'll have a bit
of reconciling to do before you submit your changelist. See "Reconciling Structural
Changes ." later in this chapter.

Once you've familiarized yourself with what integrate 's going to do, run it for real (that is, without -n):

p4 integ //Ace/ V1l ... @456 //Ace/ MAIN ...

We're not listing integrate 's output here because it's nearly identical to that of the preview wejust saw. It s
us that Perforce has:

e Found filesin V1 that have been modified since they were branched, and opened corresponding MAIN
for integrating.

« Found filesthat are new in V1 and branched them into corresponding MAIN files. (Strictly speaking, i
opened new MAIN filesfor branching.)

» Found filesin V1 that have been deleted and opened corresponding MAIN filesfor deleting.

To complete the integration, you'll now have to resolve the files that are open for integrating and submit yo
pending changelist:

p4 resol ve

p4 submt

(In upcoming sections we'll take alook at the finer points of resolving files opened for integrating.)

4.3.3. Integrations won't be repeated

So now you'veintegrated change @3456 from V1 into MAIN . Look what happens when you try to integrat
same change again:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 integ //Ace/V1l/ ... @456 //Ace/ MAIN ...
- all revision(s) already integrated.
Y ou'll get this message from the integrate command when Perforce detects that relevant revisionsin the dc

branch have already been accounted for in the target branch. This behavior is dictated by integration history
"The mechanics of integration " later in the chapter for the gory details.)

And notice that interchanges no longer reports that change 3456 needs integrating:

p4 interchanges //Ace/V1/... [/Ace/ NAIN ...
Change 3459 on 2004/ 10/05 by pete 'Fix titles of..."

Change 3470 on 2004/10/05 by rob "New threshold for...'

If you proceed to integrate each of the remaining V1 changelistsinto MAIN , you'll eventually reach a point
all V1 changes are accounted for, as shown in Figure 4-13 .

Figure 4-13. V1 changes all accounted for in MAIN

Y
@ﬁ%’ R

MAIN

Now here's something even more interesting. What if we now try integrating in the other direction? Which
changelists does Perforce think need integrating? Not the ones created by integrating V1 to MAIN, it turns
When we flip the V1 and MAIN arguments, interchanges omits the integration changes. It lists only the M.
changesthat didn't come from V1.

p4 interchanges //Ace/ MAIN ... //Ace/V1l/...

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Change 3381 on 2004/11/05 by sue 'New attributes...’
Change 3461 on 2004/11/05 by jan "Optional flag for...'

Change 3465 on 2004/11/05 by jan 'Fi x precedence. ..’

The output of interchangesisillustrated in Figure 4-14 .

When Perforce detects that a change was integrated from atarget, it keeps you from integrating it back into
target. Again, for the gory details, see " The mechanics of integration ."

4.3.4. Which files need resolving ? (And why?)

The integrate command can open target files for branching , deleting, or integrating!*! Files opened for
integrating have to be resolved before you can submit them. Why?

[l In fact, integrate can even open files for importing from another Perforce domain, if the donor path isin a remote depot. <
Chapter 6.

Figure 4-14. Changes in MAIN not that didn't come from V1

oo Nl Ol
& P &

i £ 1 I—T 1 [I ’

~
MAIN @.;;,‘b

Because, for each target file opened for integrating , Perforce needs to know whether you want to:

e Mergethe donor fileinto the target file
« Copy the donor file to the target file
« Ignore changes that were made in the donor file

Y ou can use resolve to see which files need resolving. For example:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 resolve -n -0
C.\ws\ MAI \\readne - nerging //Ace/V1l/ doc/readne#2
usi ng base // Ace/ V1/ doc/readnme#l
C\ws\MAINga\t102. pl - nerging //Ace/V1l/ qalt102. pl #2
usi ng base //Ace/ V1l/ qa/t102. pl #1
C\ws\MAIN\src\Janfile - nerging //Ace/V1l/src/Janfil e#2

usi ng base //Acel/ V1/src/Janfil e#l

(The -n flag makes resolve give you apreview. -0 makes it display the base files.)

4.3.5."Yours", "theirs", and "base", revisited

Resolving, as you know, is how you tell Perforce what you want done with parallel changesto files. In Che
you read about how the files you have opened for editing can be resolved with newer revisions submitted b
people.

Resolving files during integration is almost exactly the same, only in this casefilesin atarget branch are re
with newer revisionsin adonor branch. And, as with files you're editing, Perforce uses the same "yours', "1
and "base" terminology to identify three variants of each file. Thisterminology can be alittle confusing wh
you'reintegrating, however:

e "Yours' isthetarget file, thefile being integrated into . Thisisthe file integrate opensin your worksy
and it isthe file you will submit.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Auto-Resolve or Resolve Interactively?

Files opened for integrating can be resolved automatically or interactively, just as can files
opened for editing. If you're unclear on the difference between automatic resolving (*auto-
resolving") and interactive resolving, take another look at Chapter 3 .

Aswith files opened for editing, your best bet is to auto-resolve first, then resolve the stragglers
interactively. (The stragglers are the files that Perforce can't resolve for you.) There are two
ways to auto-resolve first:

« If you're comfortable with letting Perforce merge files automatically, auto-resolve by
merging first, then resolve interactively:

p4 resolve -am
p4 resol ve

o If you'd prefer to merge files individually-which lets you inspect each merged result
before accepting it-do a "safe” auto-resolve first, then resolve interactively:

p4 resol ve -as

p4 resol ve
Note that merging isinherently less risky when you're integrating than it is when you've
resynchronized files you're editing. That's because files you're integrating aren't already opened

and modified by you. Everything in the target files can be restored from depot copies if you
notice a bad merged result after resolving.

e "Theirs' isthe donor file, thefile you are integrating from . (Even when the donor file contains chang
you've made, Perforce still callsit theirs!)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e The"base" isafilethat will be used to compute the merged result, if you choose to merge the donor i
target.

Although the integrate command allows you to operate on entire branches, Perforce is actually processing
individually. Each file opened for integration has its own yours-theirs-base triplet of filesto resolve.

For example, readme is afile open for integration from V1 into MAIN. V1'sreadme#1 was originally bran
from MAIN. Itsrevision as of changelist 3456 is#2 . In MAIN, readme#10 is the head revision. Resolving
involve a triplet of filesMAIN's #10 asyours, V1's#2 astheirs, and V1's #1 asthe base. (Figure 4-15 .)

When you resolve readme, you'll choose whether you want to ignore theirs, copy theirsinto yours, or merg

theirsinto yours. All this happensin your workspace, of course. Once your workspace fileis resolved you
submit it. That creates readme#11 in the MAIN branch.

Perforce normally selects the head revision of the target file as"yours" so that you'll be merging changesin
most up-to-datefile. If your workspace copy is not

Figure 4-15. Yours, theirs, and base when integrating

“base” “theirs”
V1/readme O >
TN B
“yours"
Mmufreadme@QLQ—O % e
#10 . #17

(=)

“yours” “yours”
(unresolved) (resolved)

Workspace

already synchronized with the head revision, the integrate command resynchronizes for you. The revisions

Perforce selects as theirs and the base depend on revisions you supply to theintegrate command and on rec
integration history, asyou'll seein"The mechanics of integration ." later in this chapter.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

4.3.6. Merging the donor file into the target

Text files can be resolved by merging . In fact, resolve 's default behavior isto merge text files when neces
For example, let's say the readme file has been edited in both branches since it was branched from MAIN i
asillustrated in Figure 4-15 . Integrating from V1 into MAIN opens the MAIN/readmefile:

p4 integ -o //Ace/V1l/ ... @456 //Ace/ MAIN . ..

/I Ace/ MAI N readne#10 - integrate from//Ace/ V1l/readne#2

usi ng base // Acel/ V1/readne#l

(The-oflag on integrate causes the base revision to be listed.) Asin the previous example, MAIN/readmet
yours, V l/readme#2 is theirs, and V L/readmet#l is the base. L et's assume auto-resolving merges the file wit
conflict:

p4 resolve -am

C.\ws\MAI \\readne - nerging //Acel/ V1l/readnme#2
Diff chunks: 2 yours + 3 theirs + 0 both + 0 conflicting

- merge from//Ace/ V1l/ readne

(Recall that the -am flag tells resolve to accept merges.) Y our workspace file now contains the merged res.
When you submit your changelist, the file is sent to the depot and MAIN/readme#11 is created:

p4 submt

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

/I Ace/ NAI N readne#11 - integrate

P4V's Revision Graph illustrates this, as Figure 4-16 shows.

Figure 4-16. Merging the donor file into the target

AtceN ieadme

@ 20)) (5 e) B o |

SAca/MAIN readme

The filelog command shows the integration history:

p4 filelog -ml //Ace/ MAI N r eadne
/1 Ace/ MAI N r eadne
#11 change 5420 integrate 2004/10/15 rob "Pull in V1...'

merge from// Ace/ V1/ r eadnme#2

Had there been conflicts, you would have had to resolve the file interactively and edit it. And, because you'
edited it, the submitted file would have had a dightly different integration history:

p4 filelog -ml //Ace/ MAI N r eadne
/1 Ace/ MNAI N/ r eadne
#11 change 5420 integrate 2004/10/15 rob "Pull in Vi1...'

edit from// Acel/ V1/readnme#2

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

4.3.7. Copying the donor file into the target

Y ou can resolve files by copying donors to targets. Auto-resolving will do thisfor you, in cases where the (
file has changed and the target file has not. When Perforce encounters these conditions during interactive
resolving, you'll be prompted you to resolve by copying.

For example, assume MAIN/readme#8 was branched into V 1/readme#l . Since then, someone has submitte
V1/readme#2 . MAIN/readme hasn't changed.

Browsing a File's Integration History

Asyou submit files, Perforce records a history of file revisions that were integrated and how they
were resolved. You'll seeintegration history as you examinefile history. For example, the
I/Ace/MAIN/readme file was branched to //Ace/DEV/readme . Here'sits history:

p4 filelog //Ace/ MAI N readne
I/ Ace/ MAI N r eadne
#8 change 3712 integrate ..
copy from// Ace/ DEV/ r eadnme#3
#7 change 3710 edit
#6 change 3709 integrate ..
i gnored // Acel/ DEVI r eadnme#2
#5 change 3708 edit
#4 change 3707 edit
#3 change 3703 edit
branch into //Ace/ DEV/ r eadne#l

#2 change 3702 edit

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

#1 change 3701 add ...

The reciprocal details show up in the history of //Ace/DEV/readme :

p4 filelog //Ace/ DEV/readne
/| Ace/ DEV/ r eadne
#3 change 3711 edit
copy into //Acel/ MAl N r eadne#8
#2 change 3705 edit
i gnored by //Ace/ MAI N r eadne#6
#1 change 3704 branch ..

branch from// Ace/ MAI N r eadne#l, #3

Another way to dig up integration history iswith theintegrated command. For example:

p4 integrated //Ace/ DEV/ readne

/| Ace/ DEV/ readnme#1 - branch from//Ace/ MAI N r eadnme#1, #3

/I Acel/ DEVI/ r eadnme#2 - ignored by //Ace/ MAI N r eadne#6

/| Acel/ DEV/ r eadme#3 - copy into //Ace/ MAI N r eadne#8

P4V's Revision Graph produces a great bird's-eye view of afile'sintegration history, with succinct

symbols that show how file revisions were created and integrated. Figure 4-17 shows the legend of
Revision Graph symbols.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Add Edit Delete Merge
Branch kerge w Edit
\ \‘.
Copy | gnore

Here are the commands that integrate from V1 into MAIN:

p4 integ //Ace/ MAIN ... @456 // Ace/ V1/. ..

/1 Ace/ MAI N readne#8 - integrate from//Acel/ V1/readne#2

p4 resolve -am

C.\ws\ MAI \\readnme - nerging //Ace/V1l/readnme#2

Diff chunks: O yours + 1 theirs + 0 both + 0 conflicting

- copy from// Acel/ V1/readne

p4 subm t

i ntegrate //Ace/ MAI N r eadnme#9

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Integrating from V1 into MAIN opens MAIN/readme#8 in your workspace, resolving copies V 1/readme#2
MAIN/readme file in your workspace, and submitting creates a MAIN/readme#9 in the depot whose conten
same as V 1/readmet2 .[*]

[When you submit files that have been resolved by copying, Perforce doesn't actually send your workspace files to the dep
simply makes |lazy copies, as described in Chapter 4 .

The Revision Graph for the preceding example is shown in Figure 4-17 . Compare this figure with Figure £
see the subtle difference in the symbol for MAIN/readme#11 .

Figure 4-17. Copying the donor file into the target

Hbee N feadng

3 Jlalls [[e [[z |ls 18 Jfo [Nt

]z |

HJEce/MAalN e adme

The history of MAIN/readme shows how V l/readme was integrated:

p4 filelog -ml //Ace/ MAI N r eadne
/| Acel/ MAI N r eadne
#9 change 5420 integrate 2004/11/17 rob "Pulling in V1... '

copy from// Acel V1/ readne#2

Y ou can aso make resolve copy the donor file to the target regardless of whether the target file has been ch
(Thisis called copy-integrating.) Use the -at flag for this. For example:

p4 resol ve -at

C\ws\ MAI N\\readnme - vs // Ace/ V1/readne#2

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Diff chunks: 1 yours + 1 theirs + 0 both + 0 conflicting

- copy from//Acel/ V1l/ readne

4.3.8. Ignoring the donor file's changes

Perforce normally resolves by ignoring when it detects that nothing has changed in the donor file-that is,
the base and theirs have the same content.

If the donor still has the same content that it had when it was branched, isn't the donor
accounted for in the target? Not necessarily. For example, the donor file may have been
edited smply to change its file type. Or it may have been changed twice-the second time
to back out the first change.

i
-.

L3
wh o
15N

Y ou have the option of resolving by ignoring even when the donor file has changed. Y ou'd do this when
integrating a change that, for one reason or another, isn't applicable to the target branch.

For example, assume V1's change 3456 is not accounted for in MAIN:

p4 interchanges //Ace/V1/ ... [/Ace/ MAIN ...

Change 3456 on 2004/ 10/05 by pete 'Prono for rel ease...'

And let's say you plan to ignore change 3456 because it's not applicable to the MAIN branch. Still, you inte
it, so that you have arecord of the fact that it's not applicable. One of the files opened for integrating isrea

p4 integ //Ace/V1l/ ... @456 //Ace/ MAIN ...

/I Ace/ MNAI N readne#10 - integrate from//Ace/ V1l/readne#2

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Now you auto-resolve, using the "accept yours" option:

p4 resol ve -ay
c:\ws\ MAI N\ readne - vs //Ace/ V1l/readnme#2

- ignored //Acel/ V1/readne

("Accept yours' isthe same as "ignore theirs.") When you resolve this way, your workspace file isleft unct
Even so, you must submit it in order to record the integration:

p4 subm t

integrate //Ace/ MAI N readne#ll

The Revision Graph is shown in Figure 4-18 .

Figure 4-18. Integrating and ignoring the donor file's changes

fiBceA fieadms = = - o |

L] e T

fidce/MAIN frsadme

History now shows that V 1/readme#?2 's change has is been ignored, yet accounted for, in MAIN/readme :

p4 filelog //Acel/ MAI N readne

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

#11 change 5420 integrate 2004/11/17 rob 'lgnoring prono...'

i gnored //Acel/ V1/readnme#2

Asyou would expect, there's no content difference between MAIN's readme#10 and readme#11 :

p4 diff2 //Acel/ MAI N readnme#10 // Ace/ MAI N r eadne#11

= == = [/ Ace/ MAI N readne#10 - // Ace/ MAI N readne#l1ll = == = identical

4.3.9. Editing files as you're integrating them

Asyou know, you can edit filesin the course of resolving them. But what if you need to edit files after you
resolve them? Y ou can do this; you ssmply need to reopen the files for editing first, to make them writable.

For example, src/Jamfileis one of the filesin changelist 3456. Integrating changelist 3456 will open MAIN
src/Jamfile . There's nothing to keep you from reopening it for editing before you submit it:

p4 integ //Ace/ V1l ... @456 //Ace/ MAIN ...
p4 resol ve

p4 edit //Ace/ MAI N src/Janfile

Infact, you can run edit and integrate in any order. A file that is already opened for editing can be opened 1
integrating, and afilethat is already opened for integrating can be opened for editing.

4.3.10. Integrating by subdirectory

When feasible, you can limit the scope of the integrate command to a particular subdirectory. For example
say we're interested in integrating changes to the db subdirectory. To find out which db changesin V1 neec
integrated to MAIN, we use:

p4 interchanges //Ace/V1/db/... //Ace/ MAIN db/...

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Change 3470 on 2004/10/05 by rob "New threshold for...'

Thislistsall the changesin V1 that involved as-yet unintegrated file revisionsin the db subdirectory. It shc
that the next change to integrate is 3470. Now we double-check to make sure change 3470 affects no files ¢
of the db subdirectory:

p4 describe -s 3470
Change 3470 by rob on 2004/ 10/ 05

New t hreshol d for db page allocation ...

/| Ace/ V1/ db/ dbLng. cpp#2 edit

[/ Ace/ V1/ db/ Janfil e#2 edit

Thisis good; we see that changelist 3470 references db files only. (To find out why thisis so important, ses
upcoming section "Don't break up changelists.") To integrate the change, we use:

p4 integ //Ace/V1/db/... @470 //Ace/ MAI N db/. ..
p4 resolve

p4 submt

4.3.11. Cherry-picking changes to integrate
"Cherry-picking" integration is where you integrate a single change, or sequence of changes, out of order, f

one branch into another. For example, assume these are the changes that currently need integration from V'
MAIN:

p4 interchanges //Ace/V1/... [/ Ace/ MAIN ...

Change 3456 on 2004/10/04 by rob "Delete junk files...'

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Change 3459 on 2004/10/05 by pete '"Fix titles of..."

Change 3470 on 2004/ 10/05 by rob 'New threshold for..."'

Let's say you want to integrate Pete's change before integrating the other two changes. (Figure 4-19 .)
Figure 4-19. Cherry-picking a change to integrate

lo by &
S o

@ & ¢
AN @ () () ’
p— \-.'_./ i
PN PN *
[] i @) == :’
s el M
MAIN

Y ou can cherry-pick a change to integrate by using its changelist number in arevision range, like this:

p4 integ //Acel/ V1/... @459, @459 //Ace/ MAIN ...
/1 Ace/ MAI N/ gui / opRLi st. cpp#12 - integrate from//Ace/ V1l/ gui/ opRLi st. cpp:

/'l Ace/ MAI N gui / opRLi st. h#9 - integrate from//Ace/ V1/ gui/ opRLi st. h#3, #3

The @n,@n revision syntax!*] restricts the operation to the files that were involved in changelist 3459. Twi
were involved; their MAIN counterparts are now open for integrating. All you have to do now is resolve th
submit them, and voila, change 3459 is integrated into MAIN.

[l @3459, @3459 is syntactically equivalent to @=3459. However, because the former syntax can be used to select a sequer
revisions, it's often more useful than the latter for cherry-picking.

That's the good news. The bad news is that interchanges is not always able to detect cherry-picked changes
even after you've submitted integrated change 3459 from V1 to MAIN, the change may still show up as
unintegrated because it's nested between two changes that really do need integrating:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 interchanges //Ace/V1l/ ... [/ Ace/ MAIN ...

Change 3456 on 2004/ 10/04 by rob '"Delete junk files...'
Change 3459 on 2004/10/05 by pete 'Fix titles of..."
Change 3470 on 2004/ 10/05 by rob 'New threshold for..."'

Thisisan idiosyncracy of the interchanges command, not of integration history. (See "What interchangesr
tellsus.") If you wereto try to cherry-pick the same change again, you would see that it is already accountt

p4 integ //Acel/ V1/... @459, @459 //Ace/ MAIN ...

- all revision(s) already integrated.

. There are often good reasons to integrate a single change out of sequence. But unless the
% 4. changeissmall and self-contained, cherry-picking may create more problems than it
solves. What if the change builds on a previous change? If you're not careful, you could
end up integrating half of the previous change along with al of the current one. What if
the change involves arenamed file? If you've skipped past the change in which the rename
occured, should you propagate the new name or not?

It's hard enough to keep collaboration going smoothly when changes are integrated in
order. Integrating changes out of order adds complexity. Complexity, in turn, makesit
more likely that something will go wrong.

4.3.12. Integrating all changes at once

Y ou have the option of integrating all changes, all at once, from one branch into another. (Figure 4-20 .)

Figure 4-20. Integrating changes all at once

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

@ { 1 @ 1\:zC,r * ’
MAIN

Be aware, though, that integrating everything at once can be a challenge. For one thing, it putsyou in a pos
having to merge several changes at the same time. The more you're merging at once, the bigger your diffs, .
bigger your diffs, the morelikely it is that merge errorswill slip in unnoticed. For another, structural chang
are easy to reconcile piecemeal can be impossible to reconcile when combined with other changes. Y ou'll
understand why after reading "Reconciling Structural Changes " later in this chapter.

For all-at-once integration you don't need to specify adonor revision. To integrate all of V1's changesinto |
for example, you'd use:

p4 integ //Ace/V1/... [/ Ace/l MAIN ...
p4 resol ve

p4 subm t

Because you didn't give arevision on the integ command's donor argument, Perforce assumes you want che
up to and including the most recent V1 change to be considered for integration. (Of course, asit considers
changes, Perforce opens only the files that need integrating. So if you run this sequence of commands frequ
it's pretty much the same as integrating incrementally.) The single change submitted to the target will effect
account for all the corresponding changes in the donor.

4.3.13. Which Changes Were Integrated?

If you have comm and sort programs availablel*] you can use them with changes to show changes that have
integrated to a branch. For example, to list the V1 changes that have been integrated into MAIN:

[l commis a program that compares lists. It comes with Unix; several Windows toolkits offer it as well. The comm comman

requires alphabetically sorted input; hence the need for sort . Both Windows and Unix have sort commands that can be used
the output of P4 commands.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 changes //Ace/V1l/... | sort > tenpfilel

p4 changes -i //Ace/ MAIN ... | sort > tenpfile2
comm-1 -2 tenpfilel tenpfile2

Change 3456 on 2004/ 10/04 by rob '"Delete junk files...'

Change 3459 on 2004/10/05 by pete 'Fix titles of..."

(The changes command reports changelists that refer to filesin a given filespec. tempfilel , therefore, isal
every change submitted to V1. The -i option makes changes include the changelists that have been integrat
the filesin question. tempfile2 is therefore alist of changes that were either submitted or integrated into M,
The comm command compares tempfilel and tempfile2 and shows only the lines common to both.)

4.3.14. Don't break up changelists

Y ou may recognize that if al of the filesin changelist 3471 are within the src subdirectory, these two comt
are the same:

p4 integ //Ace/ V1l ... @471 //Ace/ MAIN ...

p4 integ //Ace/V1l/src/... @471 // Ace/ MAIN src/...

But if changelist 3471 involvesfiles outside of src, the commands are not the same. The first of the two
integrates the entire change; the second breaks up the changelist.

There's nothing to stop you from breaking up a changelist-you can resolve and submit the src files whethi
not other fileswere involved in changelist 3471. But you will have integrated only part of the change, not t
entire change. The same thing can happen if you're using a workspace with a client view limited to the src
subdirectory. The scope of your integrate commands is limited accordingly and you won't be able to integr:
entire change.

The unintegrated part of a change can always be integrated later, of course. But there are two problems wit|
partialy integrated changes. The first isthe obvious one: you're breaking up alogical change. Whatever it r
the reason files were changed together in the V1 branch argues for integrating the entire change to the MAI
branch.

The second problem is that partially integrated changes can lead to false positives from some Perforce com
If achangeisonly partially integrated, changes -i will report that it's been integrated, for example. Likewis
interchanges reports partially integrated changes as unintegrated. Thejobs and fixes commands, which you

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

about in later chapters, can also yield false positives on partially integrated changes.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

4.4, Reconciling Structural Changes

Earlier we said that files can evolve independently in their own branches. Thisis completely true. Files
can be added, deleted, moved, renamed, split, or combined in one branch without affecting any other
branch. However, structural changes like these can't be resolved during integration. In fact, when you
use the integrate command, Perforce simply matches donor and target files by name. The state of each
donor file, whatever it is, isimposed upon the like-named target file. If the donor file was del eted,
integrate deletes the target file. If the target file doesn't exist, it branches the donor fileinto it.

Matching donor and target files by name is normally quite effective for propagating structural changes.
For example, say MAIN/readme#8 was branched into V 1/readme#1 when you created the V1 branch .
Since then, the V1/readme file has been renamed to V Ureadme.txt and edited a couple of times.

Now, asyou integrate from V1 to MAIN, here'swhat happens:

p4 integ //Ace/V1/ ... //Ace/l MAIN ...
/1 Ace/ MAI N readne. t xt#1 - branch/sync from// Ace/ V1l/readne. t xt #3

/1 Acel/ MAI N r eadne#11 - delete from// Ace/ V1/ readme#3

So far, so good. Although Perforce gave you no choice in the matter, and nothing is left for you to
resolve, the outcome is exactly what you wanted. When you submit your changelist, Perforce will
delete MAIN/readme and branch V Lreadme.txt into MAIN, effectively propagating both the content
change and the structural change from V1 to MAIN.

But what if you wanted to merge the content change and ignore the structural change? What if the
structural change had occured in MAIN instead of V1? Neither integrate nor resolve offers away for
you to handle these cases. However, as with files you're editing, there are several waysto reconcile
structural changes. One way is to provide Perforce with some guidance as to how branches correspond
structurally. Thisiswhere branch views comein.

4.4.1. Using branch views

To save you from having to jot down your frequently used donor and target filespecs on a cocktall

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

napkin, Perforce lets you save them in named, reusable branch views. Branch views are similar to
client views in that they map one set of filesto another. In branch views, depot files are mapped to
other depot files instead of to workspace files. A branch view named V1toMAIN, that stores a mapping
between V1 and MAIN, for example, looks like this:

Branch

V1t oVAI N

View

[/ Ace/V1/ ... |/ Acel MAIN ...

To create or change a branch view, use the branch command. This is the command that created the
branch view called V1toMAIN:

p4 branch V1t oMAI N

Note that the branch command doesn't branch files-in fact, it has no effect at all on files.

A branch view is a spec, like client specs. When you run the branch command, you're given aform to
fill out. Once you save the form, you can use your new branch view with the integrate command.
Given the branch view definition shown earlier, these two commands will now do exactly the same
thing:

p4 integ -b V1toMAI N

p4 integ //Ace/V1/... [//Ace/ NVAIN ...

Branch views change the way you use revisions with integrate. For example, these commands are
equivalent:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 integ -b VitoMAIN @456

p4 integ //Ace/ V1l ... @456 //Ace/ MAIN ...

as are these commands:

p4 integ -b VitoMAIN @459, 3459

p4 integ //Acel/ V1/... @459, 3459 //Ace/ MNAIN . ..

What's happening hereis that when you're using a branch view, the integrate command already knows
which donor and target path to use. The revision you supply is applied to the donor path. (Y ou can't put
revisions in the branch view specs themselves, by the way.)

Y ou can also use branch views with interchanges and diff2. The following commands are equivalent,
for example:

p4 interchanges -b V1t oMAI N

p4 interchanges //Ace/V1/... [/Ace/ MAIN ...

as are these:

p4 diff2 -q -b Vit oMAI N

pd diff2 -q //Ace/V1/ ... |//Ace/l NVAIN . ..

In amoment we'll show how to augment branch views to reconcile structural differences between
branches.

4.4.2. Looking for a branch view

To list the branch views that have already been defined, use:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 branches

Branch V1t oMAI N 2004/ 10/15 'Created by | aura'

Y ou can inspect a branch view's definition with branch -o. For example:

p4 branch -o V1t oMAI N
Branch: Vit oMAI N
Vi ew

[/ Ace/V1/ ... [/ Ace/ MAIN . ..

4.4.3. Branch views are reversible
Y ou can use the same branch view to integrate changes in either direction. To apply abranch view in

reverse, useintegrate -r. For example, when the V1toMAIN branch view is defined as previously, these
commands are equivalent:

p4 integ -r -b Vit oMAI N

p4 integ //Ace/ MAIN ... //Ace/V1/...

4.4.4. Mapping one directory structure to another

So, why all the fuss about branch views? They give us away to coerce integrate into mapping the old
directory structure in one branch to the new directory structure in another. For example, say that in
changelist 3461, V1's readme was renamed to readme.txt. Asyou just saw, simply integrating from V1
to MAIN will replicate the structural change:

p4 integ -n //Ace/V1/ ... @461 //Ace/ MAIN . ..

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

/1 Ace/ MAI N readne. t xt#1 - branch/sync from// Ace/ V1l/readne. t xt #1

[/ Acel/ MAI N readne#1l - delete from// Acel/ V1/ readne#d

But what if you don't want to replicate the structural change? What if, from here on, changesto V1's
readme.txt are to be integrated into MAIN's readme? Y ou can effect this behavior through a branch
view. Well use the V1toMAIN branch view in this example. We update the view to map V1's new
structure to MAIN's old structure:

p4 branch V1t oMAI N

Branch

V1t oVAI N

View

/1 Ace/ V1/ . .. /1 Acel/ MAI N/ . ..

/] Ace/ V1/ r eadne. t xt /1 Ace/ MAI N/ r eadne

Now, when we use the V1toMAIN branch view with integrate, look what happens:

p4 integ -b V1toMAIN @461

- all revision(s) already integrated
Perforce makes no attempt to integrate V1's readme change to MAIN. Why not? Because it's now
matching V1's readme.txt to MAIN'sreadme. V1's readme.txt@3461 has integration history that shows

that it has not been edited since it was branched from its ancestor, readme#10 in MAIN. Therefore,
there is nothing to integrate.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Once V1'sreadme.txt is edited, however, Perforce will find reason to open MAIN's readme for
integration. For example, say V1's readme.txt was edited in change 3466.

Now, let'sintegrate V1 to MAIN, again using the branch view:

p4 integ -o -b Vit oMAIN @466

/1 Acel/ V1/ readnme#10 - integrate from//Ace/ V1l/ readne. t xt #2

- using base //Ace/ V1l/readnme#3

Asyou can see, Perforce is matching V l/readme.txt to MAIN/readme. And, having found arevision of
the former that is not accounted for in the latter, it opens the latter for integrating. Y ou can resolve and
submit the opened file as you would any other file opened for integrating.

4.4.5. Keeping added files from being propagated

Y ou can also use branch views to prevent replication of added files. Normally, when integrate finds a
new filein the donor branch, it branches it into the target branch. But you may have a situation where a
file added in one branch is not appropriate for another.

For example, say the vlpromo.html file that was added in V1 is not appropriate for MAIN. Unless you
do something about it, vlpromo.html is going to be branched when you integrate from V1 into MAIN.
Y ou can prevent this from happening by adding aline to the V1toMAIN branch view that excludes
v1promo.html. For example:

p4 branch V1t oMAI N

Branch

V1t oVAI N

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

View

[/ Acel V1/ . .. /1 Acel/ MAI N/ . ..
[/ Acel/ V1/ r eadne. t xt [/ Ace/ MAI N/ r eadne

-/ 1 Ace/ V1/ v1prono. ht m /1 Ace/ NAI N/ v1pr ono. ht m

(A line that beginswith "-" excludes files from the view.) Now the V1toMAIN branch view will
effectively hide vlpromo.html from commands that useit. That is, commands like interchanges and
integrate will pay no attention to the file when you use them with the V1toMAIN branch view. If
you'reworking in V1, of course, you'll still be able to see and work on v1promo.html.

4.4.6. Keeping target files from being deleted

Normally, when integrate sees that files in the donor branch were deleted, it assumes you want the
corresponding targeted files deleted as well. Y ou can use branch views to keep integrate from deleting
target files.

Y ou can do the same thing for files that have been deleted. Normally, when integrate sees that filesin
the donor branch were deleted, it assumes that you want the corresponding targeted files deleted as
well.

For example, say V 1's doc/issues file has been deleted. When you integrate from V1 to MAIN, Perforce
either tellsyou that MAIN's doc/issues will be deleted:

p4 integ -b V1toMAI N @456

[/ Ace/ MAI N doc/i ssues#7 - delete from// Acel/ V1/ doc/i ssues#2

or it tellsyou that it wantsto delete it:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 integ -b V1toMAI N @456

[/ Ace/ MAI N doc/i ssues#8 - can't delete from

/I Ace/ V1/ doc/i ssues#2 with -d or -Dt flag

(The second behavior iswhat you'd seeif MAIN's doc/issues file had been changed recently.) In any
case, let's assume you don't want the MAIN file deleted. To keep Perforce from attempting to delete it,
you can exclude it from the branch view:

p4 branch Vit oMAI N

Branch
V1t oMAI N
View
[/ Acel V1/ . .. [/ Acel/ MAI N/ . ..
[/ Acel/ V1/ r eadne. t xt [/ Ace/ MAI N r eadne

-/ 1 Ace/ V1/ v1prono. htm /1 Ace/ MNAI N v1pr ono. ht n

-/ / Ace/ V1/ doc/ i ssues [/ Ace/ MAI N doc/ i ssues

Now when you run integrate using the branch view, Perforce will skip over the doc/issues file.

4.4.7. Preventing warnings about deleted target files

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Deleted target files are usually of no concern to Perforce when you run integrate. Perforce cares only
about propagating change from donor to target; the change that deleted the filesis already accounted
for in the target. But if the corresponding donor files have as-yet unintegrated changes, Perforce warns
you that something is amiss.

For example, say new development in MAIN hasinvolved deleting the entire db directory. (Granted,
thisis an extreme example.) And say arecent bug fix in V1 involved a changeto filesin db. Now,
every time you integrate from V1 to MAIN, Perforce will give you warnings about the deleted target
files:

p4 integ -b VitoMAIN @467

/I Acel/ MAI N db/ dbPgLoad. cpp-can't branch from

/1 Ace/ V1/ db/ dbPgLoad. cpp#2 without -d or -Dt flag

What Perforce istelling you isthat it found achangeto V1's db files that isn't accounted for in MAIN.
But when it looked for db filesin MAIN, all it found was deleted files. It tellsyou that if you really
want to propagate the change, it can oblige you by branching V1'sdb filesinto MAIN. But you'll have
to run integrate using the -d flag to get it to do that.

Chances are good, however, that new development in MAIN has made changesto V1'sdb files
irrelevant. Perforce emits warnings because it has no way of knowing that thisisthe case. If the
warnings annoy you, you can exclude the db files from the branch view:

p4 branch V1t oMAI N

Branch

V1t oVAI N

View

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

I/ Acel V1/ . .. I/ Acel MAI N . ..

/I Ace/ V1/ r eadne. t xt /1 Ace/ MAI N/ r eadne
-/ 1 Ace/ V1/ v1prono. htm /1 Ace/ MNAI N v1pr ono. ht ni
-/ 1/ Ace/ V1/ doc/ i ssues /1 Ace/ MAI N doc/ i ssues
-/ 1 Ace/ V1/db/ . .. /1 Ace/ MAI N db/ . ..

Henceforth your integrate commands will ignore the db files, aslong as you use them with the
V1toMAIN branch view.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

4.5. The Arcana of Integration
(Heavens, it's all rather arcane, isn't it?)

4.5.1. Reconciling Split and Combined Files

It's worth noting that there are ways to reconcile branches so that changes can be integrated between
them even when files have been split or combined in one of them. Reconciling split and combined files
isabit of aparlor trick, but that it can be done at al is a distinguishing feature of Perforce.

Consider this case: after V1 was branched from MAIN, MAIN's parse.cpp was split into two files,
parse.cpp and eval.cpp. Meanwhile, change 3472 has been submitted in V1 which affects parse.cpp.

Asisyour custom, you integrate change 3472 from V1 to MAIN thus:

p4 integ -b VitoMAIN @472

/I Acel MAI N/ par se. cpp#5 - integrate from//Acel/ V1l/ parse. cpp#2

MAIN's parse.cpp is opened for integrating, which is good. Maybe the changein V1's parse.cpp should
be merged into it. But what if the change should be merged into MAIN's eval.cpp? What if part of the
V1 change should be merged into MAIN's parse.cpp and part of it should be merged into eval.cpp?

Unfortunately, since nothing maps V 1's parse.cpp to MAIN's eval.cpp, integrate has no way of
knowing it should open the latter. Even if there were such amapping in the V1toMAIN branch view, it
would eclipse the mapping between the two parse.cpp files, because there can be only one mapping per
filein abranch view. (When there is more than one, the last takes precedence.)

However, there's nothing to keep you from running more than one integrate command. If you know
that part of MAIN's parse.cpp has been spun off into eval.cpp, you can integrate change 3472 using a
pair of integrate commands:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 integ -o -b VitoMAIN @472

/1 Acel MAI N/ par se. cpp#6 - integrate from//Acel/ V1l/ parse. cpp#2

usi ng base // Ace/ V1/ par se. cpp#l

p4 integ -o //Ace/ Vl/ parse. cpp@472 // Ace/ MAI N eval . cpp
/1 Ace/ MAI N/ eval . cpp#1 - integrate from//Acel/ V1l/ parse. cpp#2

usi ng base // Ace/ MAI N par se. cpp#5

This sequence of commands opens two target files for integrating from the same donor file. When you
resolve them-which you should do interactively-you'll have a chance to pick the correct merged
result for each. Whether it's easy or hard to pick a merged result, and whether conflicts are involved,
will depend on how the MAIN file was split and how the V1 file was changed.

Integration involving split and combined filesis definitely in the category of things not to make a habit
of. Nevertheless, software development being what it is, refactoring happens, and branches diverge. In
Chapter 7 we'll look at ways to organize and use branches so that most change flows between fairly
similar branches and changes that increase divergence don't have to traverse too many branches.

4.5.2. Integration history can't be undone

Integration history is permanent. Once integrated, changes won't come up for integration again. So what
can you do if you've botched an integration?

For example, say you've been incrementally integrating changes from V1 into MAIN. You've just
integrated 3461 from V1 to MAIN, creating change 3484 in MAIN. Now you find out that change 3461
wasn't applicable to MAIN.

Y ou aways have the option of undoing an integration by simply backing out the change. (Y ou read
about how to do thisin Chapter 2) For example, you can back out change 3484. Thiswill restore the
MAIN branch to what it was before you submitted the bad integration.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Backing out a change doesn't change integration history. When you next look for changes to integrate,
3461 won't show up. Asfar as Perforce knows, V1's 3461 is accounted for in MAIN. Hopefully thisis
what you wanted, because there's nothing you can do to changeit.

4.5.3. Forcing Perforce to Redo an Integration

But what if you do want to redo an integration? For example, let's say change 3461 was meant for
MAIN. Onefile, db/Jamfile, was merged during the integration. Now you discover that in editing
conflictsin the merged result, you managed to delete entire chunks of the file. And, in your haste, you
submitted your integration before realizing what you'd done.

There are two ways to fix this. One way, of course, isto simply open MAIN/Jamfile for editing and put
the missing chunks back in by cutting and pasting.

The other way to fix abad merge isto coerce Perforce into redoing the integration. This gives you
another chance at merging the orginal files.

Here'swhat you'll need to do:

1. Synchronize with the last good revision of the target file:

p4 sync // Ace/ MAI N db/ Janfi | e@3483

2. Usethisform of integrate to open thefile for integrating:

p4 integ -h -f //Ace/ MAI N db/Janfil| e@484, 3484

(-h makes Perforce use the revision you have as the target. -f forces Perforce to ignore previous
integration history. The revision range, @3484,3484, makes Perforce use @3483 asthe merge
base.)

3. Take another crack at resolving thefile:

p4 resol ve

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

4. Resynchronize the file and resolve it by ignoring the depot version:

p4 sync //Ace/ MAI N db/ Janfil e

p4 resol ve -ay

(The depot version, asyou recall, is currently the mangled one.)

5. If you're happy with the result, submit the file:

p4 submt

Note that you can redo only the parts of an integration that involve resolving files. With the procedure
shown here, for example, you can redo a merge. But for integrations that involve branching or deleting
files, you'll have to resort to backing out changes.

4.5.4. The mechanics of integration

Thanks to filespecs and changelist numbers, you can useintegrate to operate on entire branches,
complete changes, pointsin time, and various combinations thereof. But underneath it al, Perforce
operates on individual file revisions. In this section we take alook at what happens to the files involved
in integration operations.

When you run integrate, you provide filespecs that describe sets of donor and target files. Y ou provide
them as command arguments, in a branch view, or through a combination of both. Once integrate has
analyzed donor and target files, it opens a subset of the target files. In other words, integrate operates
on target files, not donor files.

Y our workspace's client view limits the scope of theintegrate command. No matter how you invoke it,
integrate won't operate on files that aren't in your client view. The target files don't necessarily have to
be synchronized in your workspace, but they do have to be in your client view. The donor files,
although they will be analyzed, will not be opened by integrate. So it doesn't matter whether the donor
filesarein your client view.

Y ou can always use integrate -n to find out exactly which target files will be opened. For example:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 integ -n //Ace/ MAIN ... @456 //Acel/ V1/. ..

The Perforce Server does quite a bit of analysisto figure out which filesto open. It beginsthe analysis
by:

e Making alist of the donor filesthat currently exist. (Note that afile exists even if its current
revisionis marked deleted.)

o Computing atarget filename for each donor filename. Thisis done strictly by pattern-matching,
using filespecs you provide in a branch view or as command arguments. File history has no
bearing on matching target filenames to donor filenames.

Now Perforce has alist of donor-target file pairs to analyze. From here on, it analyzes each donor-target
pair individually. So when we say donor and target in the explanation that follows, we mean the
individual files, not the entire sets.

Perforce's next step is to assess the history of the donor-at least, as much of its history asis relevant to

the current integrate command. The relevant history istempered by:

o Whether the donor was ever deleted and re-added. For integration, Perforce usually treats the
donor asif it had begun life when it was was most recently re-added. (Rebranched revisions have
the same effect as re-added revisions.)

o Whether you supplied arevision on the integrate command. When you integrate one changelist at
atime, or cherry-pick changesto integrate, you're narrowing the relevant history of the donor.

In the context of itsrelevant history, the donor fileis either a deleted file or not. Perforce can tell
whether it needs to do anything, in some cases, without any further analysis:
o If the donor is deleted and the target does not exist, nothing happens. Thereis nothing to
integrate.
« If the donor and target file are both deleted, nothing happens. There is nothing to integrate.

o If the donor is not deleted, and the target does not exist, the donor needs to be branched to the
target. (Thisisthe familiar "cloning" afile case.) The target file will be opened for branching.

These are the simple cases; even more analysis is needed for the rest. Perforce now takes stock of all
the revisionsin the donor's relevant history and inspects them to see which are already accounted for in
the target.

A donor revision is accounted for if it was branched or integrated into the target, or if it was branched

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

or integrated from the target without editing. (See "Why does editing matter?* a bit latex in the chapter)
A donor revision may also be considered accounted for if it'srelated to the target indirectly by atrail of
integration history. If al revisions of the donor have been accounted for in the target, nothing happens
to the target-there is nothing to integrate.

If there are donor revisions not yet accounted for in the target, Perforce tests a number of factorsto
decide what to do with the target:

« If the donor is deleted and the target is not, Perforce assumes that you want to delete the target.
But before doing anything, it asksitself, "Isthe target evolving, too?" If the answer isyes, it
warns you that if you really want it to delete afile that's been modified, you'll have to run
integrate -d. If the answer is no, it opens the target for deleting.

o If thetarget isdeleted but the donor is not, Perforce gives you awarning. It tellsyou that it can re-
branch the donor file on top of the target, but you'll have to run integrate -d to forceit to do so.

o And, finally, in the case where both donor and target exist, and neither is deleted, Perforce
synchronizes the target in the workspace, opensit for integrating, and leaves it for you to resolve.

Asyou know, resolving afileinvolvesthreefiles, "yours', "theirs’, and the "base". The donor's highest,
unnaccounted-for revision will be used as "theirs’. The target file in your workspace will be used as
"yours'.

Perforce picks the base using aformula that takes into account previous integration history."] Asyou
can imagine, it's acomplicated formula; explaining it doesn't make anything clearer. Let's just say that:

[l Thereis abig difference between Release 2004.2 and previous releases of Perforce when it comes to picking the
revision to use as the base for merging. As of Release 2004.2, the Perforce Server uses the common ancestor as the
merge base. In previous releases, it used either the closest revision of the donor that had already been integrated or-if
nothing had ever been integrated from it-the first revision of the donor.

o Usually the base isthe revision of the donor you last integrated. Thisis excellent for three-way
merging, because it keeps changes you've already merged from showing up as diffs.

» When you cherry-pick, the base is the the donor revision that precedes the lowest revision in the
range you specified. For three-way merging, this has the effect of making changes within a
revision range look like "their" diffs.

o Sometimesthe base isarevision of the donor that islower than the revision you last integrated.
This happens when you're integrating changes that were skipped by previous cherry-picking.

o Sometimesthe base isarevision of the file the donor was branched from. This makes it possible
to merge changes to and from renamed files.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

» Sometimesthe base isafile only indirectly related to both donor and target. Perforce picks a base
like this when the donor has never been integrated into the target. This makesit possible to merge
changes that have occured since a distant branch point.

o When Perforce can't find anything better, it uses the donor's revision #1 as the base.

Finally, new integration history is recorded when you submit the target file. The lowest and highest of
the donor revisions as yet unnaccounted for are associated with the new revision of the target. The next
time you integrate between donor and target, these revisions will be taken into account.

4.5.5. What interchanges really tells us

Asyou read in "Cherry-picking changesto integrate,” earlier in this chapter, interchanges canimply
that a change needsintegrating when in fact the change has already been cherry-picked. Once you've
fathomed the mechanics of integration, you'll see why the interchanges command behaves this way.

Perforce isn't keeping track of changelists as they are integrated from donor to target files. Instead, it's
keeping track of individual file revisions. When you run the integ command, it operates on the
individual revisions that haven't been integrated. (As you've seen in this chapter, you can run integ -n to
get alist of theserevisions.)

The problem with integ -nisthat it yields too much information. When you're trying to figure out what
to integrate next, an itemized list of file revisionsisn't that helpful. What is helpful isalist of
changelists-logical units of work submitted by developers-that need integrating.

The interchanges command meets this need by analyzing the donor-target integration history that
would be recorded if its operands were used by integ. Asyou just read in " The mechanics of
integration,” each donor file has alowest and highest revision that will be associated by integration
with the new revision of itstarget. Each low-to-high range involves one or more files revisions, and
each file revision has one changelist associated with it. The interchanges command aggregates all of
therevisionsin al of the low-to-high ranges and reports the sorted list of unique changelists associated
with them. If alow-to-high range includes revisions previously integrated by cherry-picking, previously
integrated changelists can show up in the output of interchanges.

However, aslong as you're careful about integrating changelistsin order and in their entirety,
interchanges will give you useful output. And as it turns out, there are other good reasons to integrate
changelistsin order and in their entirety. We'll get to that in Chapter 8.

4.5.6. Decoding integration history

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

In the output of various Perforce commands, you may have noticed integration history described in
termslike add from and edit into. Thislooks like English, but what it really isis avery terse vocabulary
of integration events. The actual output depends on the commands emitting them, but once you
recognize the keywords, it's easy to interpret. Table 4-1 explains the keywords.

Table 4-1. Integration history keywords and their meanings

Keywords Explanation

branch Y ou branched afile. Content-wise, thefileisidentical to its donor.

Y ou branched a file and modified it before submitting it. The branched file may or
branch+add . . :

may not be identical to its donor.
. Y ou integrated afile and resolved it by merging. Y ou submitted the file Perforce
integratetmerge

constructed; you didn't edit the merged result.

Y ou integrated afile and modified it before submitting it. Y ou may have edited it to
integratet+edit resolve merge conflicts, or you may have reopened it for editing before or after
resolving it.

integrate+copy Yqu integrated afile and resolved it by copying the donor to it. Thefileisidentical
to its donor.

integratetignore Y ou integrated afile and resolved it by ignoring the donor.

delete from/into Y ou integrated a deleted file. (That is, you used integrate to delete afile.)

branch+import Y ou branched afile from aremote depot. Thefileisidentical to its donor.

4.5.7. Why does editing matter?

During integration, content can be merged into afile with or without your intervention. Likewise,
content can be copied to afile during branching with or without your intervention. In either case, you
have the option of editing the file before submitting it. (And you may not have a choice, aswhen
editing afile to resolve merge conflicts.)

When you edit afile-that is, if you change any of its actua content-you're doing something to it that
can't be derived by copying or merging another file."] So, as Perforce records integration history, it
notes whether you've edited files. It usesthis distinction later, to determine which donor revisions can
be considered accounted for in targets.

["] Editing afile simply to remove conflict markers is not considered a change to the content of a merged file.

For example, look at thisintegration history:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 integrated apples

appl es#9 - nmerge fromfruit#4

appl es#1 - branch from fruit#l, #3

Here, apples#1 was branched from fruit#3. Nothing in its content was introduced by the user. And
apples#9 was created by integrating from fruit into apples and resolving by merging. Because no
editing was involved in creating either apples#1 or apples#9, both revisions of apples are considered
accounted for in the history of fruit.

Now look at this history:

p4 integrated oranges

oranges#9 - edit fromfruit#4

oranges#1 - add from fruit#l, #3

Here, oranges#1 was branched from fruit#3. Add from tells us it was edited before it was submitted.
And, although oranges#9 was created by integrating from fruit, edit from tells us it was edited before it
was submitted. In any case, neither oranges#1 nor oranges#9 is considered accounted for in the history
of fruit, because both contain content edited by a user.

4.5.8. The curious syntax of the integrate command

Finally, the last bit of arcanaisfor command-line users. It's about using branch views, filespecs, and
revisions together on the integrate command.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

When you use a branch view with integrate, the branch view dictates the donor files. Y ou can pass
filespecs as command arguments, and when you do, the filespecs are assumed to be target files.

For example, let's say that you want to integrate the src directory's changes from V1 into MAIN. You
can use the V1toMAIN branch view and supply MAIN's src directory as a command argument:

p4 integ -b VitoMAIN //Ace/ MAI N src/. ..

The donor files, in this case, are thefilesin //Ace/V1/src, as dictated by the V1toMAIN branch view.

Now, what if you wanted to cherry-pick and integrate VV1's change 3488 while limiting the scope to the
src directory? Surprisingly, the syntax is.

p4 integ -b VitoMAIN //Ace/ MAI N src/... @488, 3488

Thisis asurprise because the filespec //Ace/MAIN/src/...@3488,3488 is an empty set. Therevision
range @3488,3488 refersto filesin V1, not MAIN. No filesin MAIN were involved in changelist 3488.

The integrate command is special in that when you use a branch view, target filepecs, and donor
revisions together, you must combine the donor revision with the target filespec. This quirky syntax
overloading applies only when you use a branch view. Without a branch view, you must supply both a
donor and atarget filespec; the donor revision is attached to the donor filespec, as you would expect:

p4 integ //Acel/Vl/src/...@488,3488 //Ace/ MAIN src/...

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 5. Labels and Jobs

Software configuration management is not complete without a way to save snapshots of file
configurations so we can restore them later. Nor is it complete without away to link external issues like
bug reports, change requests, and to-do lists to the work we do on files. In this chapter, we'll ook at
how to do these things in Perforce, including using labels and jobs.

AN AN

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

CE=S

5.1. Saving Important Configurations

There are a number of ways to mark and restore file configurations in Perforce:

e You can use changelist numbers. Every changelist number is a snapshot of the depot.
e You can use dates and timestamps. Perforce knows the state of the depot at any point in time.

e You can use labels. Labels can be applied to depot snapshots and to workspace-synchronized revisior
arbitrary collections of files at mix-and-match revisions. And because |abels can have descriptive nan
easier to recognize than changelist numbers.

e You can use jobs. Jobs can be linked to changelist numbers, giving you away to mark the depot snap:
important to you. Like labels, jobs can have descriptive names.

Each of these methods hasits pros and cons, as you'll learn from reading this chapter.

5.1.1. Changelists and dates: the automatic snapshots

Every time a user submitsfilesto Perforce, a snapshot of the depot is created automatically. The changelist
at submit timeis effectively a global revision number. It can be use to reference any file or set of filesin th

For instance, Ann submits a changelist:

p4 subm t

Locking 2 files ...

edit //depot/ww i ndex. ht m #9
add // depot/ww// products. ht m #2
Change 5624 submtt ed.

Asyou can see, Ann's changelist contained only two files. However, by submitting it, she has created the re
@5624 .

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Thisidentifier can be used with any filespec to refer to the depot snapshot created when Ann submitted her
later, for example, Roy might want to use it to synchronize his workspace with a snapshot of //depot/appse
moment:

p4 sync //depot/appserver/... @624

Dates or dates with atimestamp can also be used as snapshot revisions. Perforce supports two date formats

e YYYY/MM/DD
e YYYY/MM/DD:HH:MM:SS

For example, to synchronize your workspace with a snapshot of the //depot/ourproject files as of October 1
use:

p4 sync //depot/ourproject/...@004/10/ 12

- If you don't specify atime, Perforce assumes you mean the beginning of the 24-hour day.
%> 4. Yourealy want isasnapshot that includes work done by the end of the day, use the next d

%% Also, the Perforce Server also assumes you're referring to its time zone, not yours. (The P:
command can tell you what time zone your Perforce Server isin.)

The depot does not change continuously over time. Rather, it changesin discrete events, each event markex
number. When you use a date to refer to a snapshot of the depot, what you get is a version of the depot mar
submitted changelist as of that date. For example, if changelist 1200 was submitted on February 13, 2004,
1201 wasn't submitted until February 16, these three snapshots would be identical:

/ | depot/ ourproject/...@z200
/ | depot / our project/... @004/ 02/ 14

/ I depot/ our project/... @004/ 02/ 15

5.1.2. Comparing snapshots

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

There are severa waysto compare snapshots. Oneisto use diff2 to list the files that have changed. For exa
the files that changed in the //depot/www path between 6:00 am. on March 15, 2004 and 6:00 p.m. of the s

p4 diff2 -q //depot/ww/ ... @004/ 03/ 15:06:00:00 //depot/ww/ ... @004/ 03,
= == = /[/depot/ww/ cgi-bin/login.rb#4 - //depot/ww/ cgi-bin/login.rb:
= == = //depot/ww/ doc/index. htm #8 - //depot/ww/ doc/i ndex. ht ml #9 =
= == = <none> - //depot/ww doc/contest/index. htm#1 = == =

Or, you can use the changes command to list the changes that were made to afile collection in the interval
snapshots. For example:

p4 changes //depot/ww/ ... @004/ 03/ 15: 06: 00: 00, @004/ 03/ 15: 18: 00: 00
Change 3407 on 2004/03/15 by roy "Fix the login script...'

Change 3398 on 2004/03/15 by roy 'Publish web contest...’

Y ou can also use P4V's Folder Diff tool to compare snapshots. Right-click on aforlder and select Folder H
folder and you'll see the changes that were made to the folder. Drag any folder revision to another and you'l
Diff view (see Figure 5-1), where you can expand highlighted subfolders and drill down to individual file:

Figure 5-1. P4V's Folder Diff view

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

| 4@ PREV

downloaded from: lib.ommolkefab.ir

[Rfoe-0204
- orojects
B [Enby
i [doml &6
[ot bz
[w2
[potiof e
i [2) sample
= semback
| EEan
-3 gersre
-3 parforcadapresa
-3 propasals
| Janfilased
[l README baz3

(@ README =z
| articistemi al2
[msssts b1l

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

CE=S

5.2. Using Labels

In Perforce, asin many SCM systems, you can tag fileswith alabel. A label |ets you use memorable names
Best JPEGs for_t-shirtsto refer to specific configurations of file revisions.

5.2.1. Applying alabel to files

Usetag to appy alabel to files. For example, to tag all the filesin the //Ace/Products/R2.0/ path with the la
you would use:

p4 tag -1 Rel2.0.1 Betal //Ace/Products/R2.0/...
In P4V thisissimply amatter of selecting afolder or afile, then picking the Label command from its conte
Normally, tag applies a label to the head revisions-that is, the newest revisions-of files. You can tag ol de

supplying arevision to the file argument. For example, this tags the revisions that were newest as of 6:00 a
2004:

p4 tag -1 Rel2.0.1 Betal //Acel/ Products/R2.0/...@004/02/01: 06: 00: 00

A label can't have an al-numeric name, and it can't be the same as an existing workspace name. To list the
existence, use:

p4 | abel s

5.2.2. Referring to labels

Once alabel has been applied, it can be used as shorthand to refer to an entire collection of files. For examj
workspace with the files labeled Rel2.0.1_Betal you would use:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 sync @el 2.0.1 Betal
Note the @ character-that's not part of the label name; it's the syntax that tells Perforce you're using the la
revision.

Y ou read about symbolic revisonsin Chapter 1 . A label isa symbolic revision identifier just like a date or
and it can be used with filespecsin the same way. For example, let's assume the Rel2.0.1_Betal label has t
files:

/' Ace/ Product s/ R2. O/ app/ db/ fil eA. cpp#3
/| Acel Product s/ R2. 0/ app/ db/fi |l eB. cpp#4

/' Ace/ Product s/ R2. O/ app/ ui /fil eC. cpp#2

Any of these files can now be referred to with the symbolic revision @Rel2.0.1_Betal . For example:

/' Acel Product s/ R2. 0/ app/ db/fil eA cpp@rel 2. 0.1 Betal

refersto:

/' Acel Product s/ R2. 0/ app/ db/fi |l eA. cpp#3

Wildcards can be combined with labels. For example:

/I Ace/ Product s/ R2. 0/ app/ db/*@Rel 2. 0. 1 Betal

refersto:

/' Ace/ Product s/ R2. O/ app/ db/ fil eA. cpp#3

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

/' Ace/ Product s/ R2. 0/ app/ db/ fi | eB. cpp#4

5.2.3. Which files did | label?

You can usefilesto see alist of labeled files. For example, to see which files are labeled Rel2.0.1 Betal, L

p4 files @Rel 2. 0.1 Betal
/1 Ace/ Product s/ R2. 0/ app/ db/fil eA cpp#3 - edit change 1931 (text)
/' Acel Product s/ R2. O/ app/ db/fil eB. cpp#4 - edit change 1904 (text)

/I Ace/ Product s/ R2. 0/ app/ui/fil eC. cpp#2 - del ete change 1980 (text)

5.2.4. Locking a label

When you tag fileswith alabel, you're creating alabel spec. (A spec, asyou recall, describes an object in tf
database.) Normally the spec ssimply exists behind the scenes and you can pay no attention to it. A situatior
important, however, is when you want to lock alabel. Y ou can do this only by updating the label spec and
unl ocked option to | ocked . For example:

p4 | abel Rel 2.0.1 Betal

Label Rel 2. 0.1 Betal
Owner dave
Opti ons | ocked

Any user can apply or remove an unlocked label. Once alabel islocked, it can't be applied or removed by ¢
owner! (That's meant to keep us from inadvertently reapplying alabel.) Asthe owner of alabel, you can un
editing its spec and changing | ocked tounl ocked .

5.2.5. Do you really need a label?

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Labels aren't aways the most efficient way to save file configurations. Say you label a depot snapshot thus:

p4 tag -1 Rev2.3.1-Beta-Mar06 //depot/project/... @245

This snapshot can now be referenced with either of these filespecs:

/ | depot/ project/... @245

@Rev?2. 3. 1- Bet a- Mar 06

The labeled reference is obviously more meaningful (to the people involved with the project, at |east). How
to store the association between the label and the file revisionsit tags. Labeling files consumes database sp.
make new labels frequently to tag a huge collection of files can consume noticeabl e database space.

To keep track of huge configurations, consider using changelist snapshots instead of labels. Changelists nu
descriptive as label names, of course, so you lose that convenience when you rely on them. (However, jobs
track of the changelist numbers that are important to you; see "Jobs as Changelist Markers ™, later in this ct

The case where changelist snapshots won't work, however, is when you need to record a configuration of fi
are not contemporaneous. For example, say you are trying to compile a program from the files in //depot/pt
synchronized a build workspace with the latest revisions, but a recent change to one of the files has made it
compile the program. Y ou've found that you can compile only if you synchronize the errant file with an ear

Once you do that, however, the files in the workspace aren't uniformly synchronized with the head revisic
previous revision. Thus you'll not be able to use a changelist number or a date as a snapshot to restore this'
You'll haveto label the current workspace configuration to be able to refer back to this mix-and-match coll

5.2.6. Labeling the current workspace configuration

L abeling the current workspace configuration is easy, although it takes two steps:

1. Usethelabel command to create alabel spec:

p4 | abel BobsWr kspaceMar 06

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

(Just save the label spec as is-there's no need to modify it.)

2. Usethelabelsync command to apply the label to files:

p4 | abel sync -1 BobsWr kspaceMar 06

The preceding label sync command labels all the files in the workspace, at the revisions synchronized in the
ever need to restore this particular configuration to aworkspace in the future, all you haveto doisrun:

p4 sync @obsWr kspacelMar 06

5.2.7. What's the difference between tag and labelsync?

Now that you've seen both tag and labelsync , you may be wondering what the differenceis.

The tag command is meant to be used to apply alabel to a set of files:

Y ou must give tag afilespec to tell it which filesto label.

If the filespec doesn't have arevision, tag applies the label to the head revisions.

Using tag to apply alabel to a set of files doesn't remove the label from files outside of the set.

It doesn't matter whether a spec for the label exists yet; tag creates the label spec on the fly if needed.

The labelsync command, by contrast, is meant to make one labeled configuration match another. When yot
that:
« If youdon't give labelsync afilespec, it applies the label to the files synchronized in the current works

» Unlessyou specify arevision, labelsync applies the label to the currently synchronized revisions, not
revisions.

« labelsyncisan exclusive operation. Asit applies alabel to a set of files, it removes the label from file
e You can't uselabelsync with alabel that doesn't have a spec yet.

There are subtle differences in the implicit arguments and the default behaviors of these two commands. If
more, see the online help:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 help tag

p4 hel p | abel sync

5.2.8. Finding and comparing labels

Use labelsto see which labels have been applied to a particular set of files. For example, the following con
that have tagged files in //depot/main/project :

p4 | abel s //depot/ main/ project/...

Label GoodBuild

Label Branched-to-Dev-Titan...
Label Branched-to-Rel 2.0...

Label Branched-to-Rel 1.0...

L abeled configurations can be compared. The diff2 command lists the file revisions that differ between twc

p4 diff2 -q //...@ranched-to-Rel 2.0 //...@ranched-to-Dev-Titan

/ | depot / mai n/ proj ect/src/db. c#13 - //depot/ main/project/src/db

/ | depot/ mai n/ proj ect/src/ws.c#9 - //depot/ main/project/src/ws

Earlier, you saw how to list changes that took place between two snapshots. Y ou can't do that with labels b
configurations are not guaranteed to be contemporaneous. In other words, you'd be looking for the changes
between two pointsin time, but labels are not pointsin time. (Perforce does allow you to use labels as end-
range, but the results you get when you do that are rarely what you were looking for.)

5.2.9. Reusable labels (rolling labels)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Labels can be reused. For example, the GoodBuild label can be reapplied every time a new build is success

p4 tag -1 GoodBuild //depot/project/...

Rolling labels like this give devel opers a convenient, consistent revision identifier to use in the course of tt
example, to keep their workspaces synchronized with the latest known good build, they'd simply get in the

p4 sync @soodBuild

Note that Perforce doesn't keep a history of previously labeled configurations. When you reapply alabel to
label isremoved from any other revision of the file it may have previously tagged. (Only onerevision of af
with agiven label.) What this meansis that arolling label can represent only one configuration at atime. T
restore any of the configurations it previously tagged-unless you've archived them somehow.

5.2.10. Archiving rolling labels with unique labels

One way to archiverolling label configurationsis to tag each one with aunique label. For example, you cai
GoodBuild2004/02/01 label that tags the configuration represented by today's GoodBuild label:

p4 tag -1 GoodBuil d2004/ 02/ 01 @so00dBuil d

Y ou can tag the GoodBuild configuration every week to archive it. To restore the current GoodBuild |abel
archived configurations, you'd use:

p4 | abel sync -1 GoodBuil d @zoodBui |l d2004/ 02/ 01

This effectively reapplies the GoodBuild label to the samefilesit labeled back on February 1, 2004. The la
used here in place of the tag command in order to make sure the label is applied exclusively.

5.2.11. Archiving rolling labels in files

If your labeled configurations are large-hundreds of thousands of files, say-you may not want to bloat th
with unique labels that replicate your rolling label's configurations. As an alternative, you can use afileto ¢

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

configurations. In other words, you can save alist of tagged filesin afileitself and submit it every time yot

For example, to tag files with the GoodBuild label and check in thelist of filesyou've just tagged, use a sec
likethis:

p4 tag -1 GoodBuild //depot/project/...
p4 edit GoodBuil d. save
p4 files @oodBuild > GoodBuil d. save

p4 submt GoodBuil d. save

By checking in the GoodBuild.save file every time you roll the GoodBuild label, you have a concise histor
configurations at hand. To compare any two archived configurations, ssmply diff two versions of thefile:

p4 di ff2 GoodBuil d. save@004/ 01/ 01 GoodBui |l d. save@004/ 02/ 01

On the rare occasion that you need to restore arolling label from a configuration saved in afile, you can dc
tolabelsync. You'll have to use afilter, however, because the files output saved in the file isn't acceptible t
command. Whereas files outputs lines like:

/ | depot/ project/src/ main.cpp#l2 - edit change 3432 (text)

the label sync and tag commands expect lines like:

/ | depot / proj ect/src/ main. cpp#l2

If you're on Unix, for example, you can use sed as afilter. To restore the Goodbuild label from a configurai

p4 print -gq GoodBuil d.save@004/02/01 | \

sed -e "s/ - .*/]" | p4 -x- |abelsync -1 GoodBuild

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The print command outputs the contents of the February 1, 2004 version of the Goodbuild.save file. This «
of file revisions-is filtered and piped to the labelsync command to reapply the GoodBuild label. This effe
label; if you use @GoodBuild as arevision identifier now, it will behave asit did on February 1, 2004.

5.2.12. Labels have views , too

Like client specs and branch view specs, label specs have View fields. A label's view restricts the scope o
limits the files that may be tagged with the [abel.

When the tag command creates alabel spec behind the scenes, it assigns a default view of the entire reposi

Label Rel 2. 0.1 Betal

Vi ew /1 Acel . ..

(In this example, the entire repository is asingle depot named "Ace.")

There are times where it's useful to create alabel view first, then tag files. (In fact, we'll see examples of thi
can use the label command to create a new label spec and enter one or more filespecsin the View field. Fo

p4 | abel Rel3.0.1

Label Rel 3.0.1

Vi ew !/ Acel/ Products/ R3.0/. ..

With aview like this, the only files that can be tagged with the Rel3.0.1 label are those in the //Ace/Produc

Note that changing alabel's view doesn't change the files already tagged. Nor doesiit prevent already-tagge
referenced using the label asarevision. All it does is restrict the scope of the label's future tag and |abel syn

5.2.13. Removing a label

Y ou can remove an unlocked label from fileswith tag -d . For example:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 tag -d -| GoodBuild //depot/project/...

This removes the GoodBuild label from the files in the //depot/project path.

Note that alabel can exist as aspec evenif it tags no files. After untagging files you can leave the label spe
you can delete the |abel spec:

p4 | abel -d GoodBuild

This command removes the GoodBuild label from all thefilesit tagged and removes the label spec named

5.2.14. Labels, snapshots, and workspaces

As with label names-and changelist numbers, and dates-workspace names can be used as symbolic revis
arevision, aworkspace name refers to the revisions currently synchronized in the workspace. For example,
the name of aworkspace, //depot/www/index.html @Roy-Mac-Dev refers to the revision of //depot/wwwiinc
the Roy-Mac-Dev workspace is synchronized. (Now you see why Perforce doesn't allow workspaces and l¢
same names.)

Because workspace nhames can be used as symbolic revisionsit's very easy to compare workspaces to |abel
example, to find out how different the //depot/project filesin the Roy-Mac-Dev workspace are from the on
GoodBuild, we could use:

p4 diff2 //depot/project/...@0y-Mac-Dev //depot/project/...@00dBuild

Anyone, using Roy's workspace or not, can do comparisons like this. However, when aworkspace nameis
for comparison purposes, Perforce is not actually getting content from filesin aworkspace. It's getting cont
referring to the revisions synchronized in the workspace. Thus a comparison like the one above doesn't sho
changed in his workspace. It merely shows how the revisions his workspace is synchronized with are differ
revisions tagged by the |abel.

Y ou can use the diff command to compare your actual workspace files to labels and snapshots, aslong as yi
commands from your own workspace . For example, to compare the //depot/project filesin your workspace
GoodBuild, you could use:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 diff -f //depot/project/...@oo0dBuild

Or, to compare your files to a date snapshot:

p4 diff -f //depot/project/...@004/03/15

In thiskind of comparison, you will see how your local workspace files compare to depot file revisions as
label. Perforce is able to do thisfor you because, aslong as you are running commands from your workspas
your workspacefiles.

- If you're using Perforce from the command line, you should be aware that there are two di
% 4. commands, diff and diff2 . The diff command compares actual workspacefilestofilesintl

while diff2 compares two versions of depot files. If you're using a Perforce GUI you may |
ignorant of this distinction, thanks to the menus and dialogs that guide you to the compari
seek.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

5.3. Using Jobs

A jobisan object in the Perforce database that can be used to tie development activity to external
information. Jobs can be used for anything-requirements, project plans, to-do lists, milestones-but
their most common use isfor defect tracking.

Asyou read this section, you may begin to wonder if the commands that operate on jobs are too
cumbersome and inconvenient for developers to use. The real power of jobs comes not from their
convenience to users, but from their ability to provide a smart, persistent, Perforce-side data store for
external defect-tracking systems. A number of open source and commercially available defect-tracking
software systems work with Perforce jobs. (For more on this, go to the Perforce web site and navigate
from Product Info to Defect Tracking.)

In this section welll take alook at the underlying Perforce commands that support external defect
tracking systems. Why? For one thing, you can use these commands to automate your SCM procedures.
For another, they're the key to being able to detect bug fixes as they migrate from codeline to codeline,
asyou'll find out in Chapter 8.

5.3.1. What is a job?

A jobissimply an instance of a data structure that consists of name-value pairs. Job datais stored in
the Perforce database. Jobs may mirror external data, but no external database is actually required to
support Perforce's job storage.

Hereis an example of ajob:

Job j 0b000321
Type bug

St at us open

User mriam

Dat e 2005/ 02/ 10

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Descri ption Login dialog is wong size.
Pr oduct AcePack 3.0.1

Cat egory cul

Thefieldsin ajob are determined by a site-wide template. A Perforce superuser can use the jobspec
command to customize the template:

p4 | obspec

jobspec opens a specification form in which you can define fields and default values. We won't go into
the details of customizing the job template, but here are the salient points:

« Various datatypes (selection lists, multiple lines, and so forth) can be configured in the template,
as can field names, default values, allowable values, and required fields.

o Thereisonejob template in the Perforce database. This meansthat all jobsin your system will
conform to the same structure of fields, data types, defaults, and allowable values.

» Perforce assigns new job names according to its own convention (e.g., "job000021"). But you
don't have to go with Perforce's convention. Y ou can use a different naming convention, or use
the naming convention of an external defect tracking system to name jobs.

o Useof jobs can be controlled by triggers. As superuser, you can set up trigger scriptsto fire when
jobs are created, updated, or deleted. (See Chapter 6.)

Customizing the job template is not difficult. To find out how to do it, see the Perforce Administrator's
Guide.

Y ou can create and use jobs whether or not the job template has been customized. Uncustomized, ajob
contains only a handful of fields:

Job

Theuniquejob ID.

Status

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Either open or closed.

User

The Perforce user who created the job.

Date

The date the job was created.
Description

An arbitrary chunk of text. You'll seethefirst 30-odd characters of the Description field, along
with thejob ID, in the output of many P4 commands that list jobs.

5.3.2. Creating jobs

To create anew job use the job command. This gives you ajob spec form to edit:

p4 | ob

Job new

St at us open

User carl

Descri ption <enter description here>

Unlessyou provide ajob ID, Perforce assigns one for you. If you want to create ajob with a specific
ID, BUG100.10 for example, you'd use:

p4 j ob BUGL00. 10

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

(It'sunusual for Perforce users to have to create or update jobs using the Perforce-provided job spec
forms. What's more typical isthat users enter bug reports into an external defect tracking system; the
defect tracking system passes data to Perforce viathe job command.)

5.3.3. Searching for jobs

Asjobs are stored in the Perforce database, their field values are indexed for fast searching and
reporting. Simple search expressions can be used to find jobs by field values. Y ou can enter
expressionsin the job search dialog of a GUI or in the p4 jobs command:

p4 jobs -e "status=open user=carl"”

Job search expressions can contain keywords, logical operators, and wildcards:

p4 jobs -e "status=open user=carl|usr=ann | ogin w ndow di al og siz*"

The jobs command by itself will list all the jobs in the system. This could be large; you can limit the
number that will be listed with the -m flag:

p4 jobs -nB0

The search expression you supply to the jobs command is known as a jobview in Perforce. To find out
more about job search expressions, consult the online help:

p4 hel p j obvi ew

5.3.4. Linking jobs to changelists
Asyou submit changelists to check in the files you've changed, you have an opportunity to link jobsto

them. There'sa Jobsfield in the changelist form into which you can enter ajob name. (Y ou can enter
severd, actualy.) If you're using a GUI you can point and click to select job names from the results of a

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

search dialog. In atext editor you have to type job namesin manually.

p4 submt

Changel i st new

User pet e

Descri ption Bi gger | ogin dialog.
Jobs j 0b000021

Linking ajob to achangelist does two things. First, it records the fact that a particular set of file
changes fixes abug. (It creates afix record in the Perforce database to store the link between the
changelist and the job.)

Second, linking ajob to a changelist causes the Perforce submit command to automatically update a
job's Status field. When ajob is created, its statusis set to "open,” by default. When your changelist is
submitted, its status will be changed to "closed.”

5.3.5. Preselecting your own jobs

Of course, having to type job namesinto your submit formsis not very practical. Y ou may prefer to
have the jobs that appear in your submit forms preselected so that all you haveto do is pick the ones
that apply before saving the form.

Y ou can do that through your user spec. (Users are objects in the Perforce database just as clients,
labels and jobs are.) Use the P4 user command to update your user spec and enter ajob search
expression in the Jobview field. If you're Pete, for example, you could set your Jobview thus:

p4 user

User pet e

Jobvi ew st at us=open user =pete

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Now, when you submit files, the Jobs field in your submit form will be prefilled with the jobs that
match the search expression "user=pete status=open," along with a short description of each one.

p4 submt

Change new

Descri ption <enter description here>

Jobs j 0b00021 # Fix size of l|ogin dialog.

j ob00028 # Renove 'Are you sure?' popup.

Before saving the submit form you'll have to trim the jobs you didn't fix from the Jobs field. But at least
you've been spared the legwork of looking for your work-in-progress jobs.

5.3.6. Linking jobs to changelists after the fact

Jobs can also be linked to changelists after changelists are submitted, using p4fix command. For
example, to record the fact that changelist 324 fixed job000021, use:

p4 fix -c 324 j ob000021

The fix command also updates a job's status-to "closed," by default, if the changelist has already been
submitted. Y ou can use the -s option to make fix change ajob's status to another value, if you wish:

p4 fix -c 324 -s suspended j 0b000021

If asubmitted changelist isonly apartial fix for the bug described by the job, or if it turns out not to be
afix at all, you can sever the association between the changelist and the job using fix-d:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 fix -d -c 324 j 0b000021

5.3.7. Searching for job fixes

The p4fixes command lists job-changelist associations. For example, to list the jobs that are linked to
changelist 3501, use:

p4 fixes -c 3501

Conversely, to list the changelists that are linked to job000021, use:

p4 fixes -j job000021

The jobs command can be used to list jobs associated with changelists submitted to a depot path. If you
use jobsto report bugs, and if you link jobs with changelists that fix bugs, you can use a job search to
list bugs fixed in arelease branch. For example, to list the jobs linked to changelists that involve files
in the //depot/REL 3.0/ path:

p4 jobs //depot/REL3.0/. ..

j ob000219 on 2005/04/13 by bill *closed* 'RTool m ssing from...'

Better yet, you can use jobs -i to to list bug fixes that have been integrated to arelease. For example,
the following command lists al bug fixes in the //depot/REL 3.0 path, including the ones that were
integrated to it from other paths:

p4 jobs -i //depot/REL3.0/...

j ob000177 on 2005/01/17 by tony *closed* 'Scroll bar not working...'

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

j ob000206 on 2005/03/08 by ann *closed* 'Need thunbnail view ..’

j ob000219 on 2005/04/13 by bill *closed* 'RTool missing from...'

Strictly speaking, this output lists jobs linked with changelists that affect file revisions that are either in
the //depot/REL 3.0 path or that have integration history that connects them to filesin the
//depot/REL 3.0 path. Asyou can imagine, thisis very useful for finding out which bugs are fixed in
which releases. For more on this, see Chapter 8.

5.3.8. Deleting and restoring jobs

Y ou can delete ajob with job -d. For example:

p4 job -d job000123

Deleting ajob removes all datarelated toit, including fixes. (Fixes are the database records that
associate jobs with changelists. The changelists themselves aren't affected when you delete ajob.)

If you have spec depot set up, you can restore deleted jobs from versioned specs, as described in
Chapter 6. Note that restoring ajob doesn't restore its fixes.

5.3.9. Jobs can't be locked

Unlike labels, jobs can't be locked. Normally, any user can change or delete them. With triggers,
however, you can have complete control over who gets to change or delete jobs. Y ou'll read more about
triggers in Chapter 6.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

5.4. Jobs as Changelist Markers

Y ou read earlier in the chapter that changelist numbers are more efficient than labels for accumulating
large configurations. But changelists numbers have a drawback-there's nothing in their identifiers that
makes them easy to recognize. When a thousand new changelists have accrued in the last week, how

can you tell which ones are the nightly build snapshots? Y ou could record important changelist
numbers on a cocktail napkin, but you don't have to. Y ou can mark them with jobs.

5.4.1. Marking changelist numbers
To use ajob to mark changelist numbers, first create the job. Y ou can give ajob any name aslong as
it'sunique (and as long as it doesn't contain spaces or the characters #, %, *, and @). If you don't

supply ajob name, Perforce will come up with one for you. For example, to create ajob called
NightlyBuilds, use:

p4 job Ni ghtlyBuilds

Job Ni ght| yBui | ds

Descri ption Ni ghtly builds of //depot/project/...

Once you've created the job, you can use the fix command to mark a changelist with it. Here we use the
NightlyBuilds job to mark changelist 1245:

p4 fix -cl1245 Ni ghtl yBuil ds

5.4.2. Looking up changelist numbers by job

Y ou can't use ajob nameto refer directly to files because, unlike labels, jobs can't be used as revision
identifiers. However, you can query ajob to find a changelist number, then use the changelist number

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

torefer tofilerevisions:

p4 fixes -j N ghtlyBuilds
job NightlyBuilds fixed by change 1245 on 2004/ 02/ 18

Thistellsusthat if we want to restore the nightly build configuration as of February 18, 2004, we
should use @1245 asthe revision identifier. For example:

p4 sync //depot/project/...@z245

Note that jobs can be associated with more than one changelist number. This means that you can use
the same job to mark snapshots of recurring configurations. For example, the NightlyBuilds job can be
fixed with anew changelist every night. At the end of the week, you'd have alist of snapshot revisions
you can use to refer back to the nightly build configurations:

p4 fixes -j N ghtlyBuilds

job NightlyBuilds fixed by change 1245 on 2004/ 02/ 18

job NightlyBuilds fixed by change 1301 on 2004/ 02/ 19

job NightlyBuilds fixed by change 1384 on 2004/ 02/ 20

job NightlyBuilds fixed by change 1420 on 2004/ 02/ 21

job NightlyBuilds fixed by change 1532 on 2004/ 02/ 22

Of course, after afew weeksthislist would get large. Luckily the fixes command lets you use a date

range to limit its output. For example, if you had a need to find a changelist number to refer to the
nightly build of work done by February 20, you would use:

p4 fixes -j NightlyBuilds @004/02/ 19, @004/02/ 20

job NightlyBuilds fixed by change 1384 on 2004/ 02/ 20

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

5

The dates you provide to the fixes command are shorthand for time 00:00:00 on
those dates. In other words, using @2004/02/20 as an ending range limits output
to changelists submitted before 2004/02/20:00:00:00. The dates output by the
fixes command, on the other hand, are rounded up. A changelist submitted at
2004/02/19:14:20:00, for example, will be output with a date of 2004/02/20.
Thus the example above finds the changelist number that refers to the work done
before February 20, not the work done by the end of February 20.

=~ N .'-_=|h

-"'.‘l_:

= Day bay Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 6. Controlling and Automating
Activity

Now that you've seen the nuts and bolts of how Perforce works, it's time to look at ways to control and
automate what it does. This chapter focuses on aspects of control and automation, starting with alook
at controlling depot and file access , including access to filesin other Perforce domains. It describes
using the depot to store specs as versioned files and restoring specs from saved versions. It describes
setting up automatic change notification, and demonstrates how users can monitor depot activity. It
offerstips on using Perforce in scripts, explains how scripts can mine for data efficiently, and touches
on using triggers to invoke scripts. Lastly, it surveys the behind-the-scenes Perforce client programs
with an eye to bringing even the most reluctant developersinto the SCM fold.

AR R

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

48 PREV '

6.1. Depot and File Access

We don't intend for this book to cover Perforce system administration, but there is one place where

system administration overlaps with what this book is about, and that is where it concerns access to
depots and depot files. Only Perforce superusers can create depots and control file access. We'll assume

that you're a superuser.

=

In abrand-new Perforce installation, every user isasuperuser until one of them
runs protect. The first user to run protect becomes the one and only superuser,
and only he or she can change other users accessto files. Thisis not as limiting
as it sounds; the first superuser can also make other users superusers. For the
complete details of how this works, see the "Protections’ chapter in the Perforce
System Administrator's Guide.

6.1.1. Creating a new depot

Asyou read earlier, the root of afile tree in the Perforce repository isadepot. (And yes, the entire

repository is often called "the depot.") Perforce comes with one depot by default; its nameis "depot”

and its path is//depot/....

There can be more than one depot-that is, more than one file tree root-in a repository. As a Perforce
superuser, you can create new depots with the depot command. For example, to create a depot called

"Ace":

p4 depot Ace

Depot

Type
Addr es

Map

downloaded from: lib.ommolkefab.ir

Ace

| ocal

| ocal

Acel . ..

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Just save the form asisto create a normal depot. Now users will be able to add filesin the //Ace!...
depot path.

To list your depots:

p4 depots

Depot Ace 2004/08/01 local Ace/... 'Created by super’
Depot depot 2004/04/11 | ocal depot/... 'Default depot’
To delete an empty depot:

p4 depot -d depot

(Perforce won't let you delete adepot if files have already been submitted to it. To get rid of it you'll
have to obliterateitsfilesfirst. Alternatively, you could simply use depot protectionsto hideit from
view.)

6.1.2. Depot protections

In Perforce, access to depot filesis controlled by the protect command. Running the protect command
opens up aform that keeps track of users, the files they can access, and the types of commands they can
run. Here's an example:

p4 protect

Protections super user super * /...

read group ace * /'l Acel . ..

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

wite group ace * /1 Ace/l MAI N . ..
wite group ace * /'l Acel REL1/ . ..

There'sonly onefield in the protection spec, called Protections. Linesin the Protections field contain
these tokens:

[level] [type] [nane] [address] [path]

Each token has its own purpose:

leve

A keyword that setsalevel of file access. Ther ead level allows users to run commands that read
files. Thew i t e level alows them to run commands that change files. There are more access
levels that can be set; these are just the most common.

type

A keyword that is either user or gr oup.

name

The name of a Perforce user or group. If thisis"*", the access level appliesto any user or group.

address

An P address. If thisis"*", the access level applies to users connecting from any network
location.

path
A filespec that defines a depot path. The access level appliesto this path.

Thus, each line in the protection spec equates a depot path with a user (or agroup) and alevel of
access. (Optionally, it can limit the scope to the user's IP address as well.) Y ou'll see examples of this

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

|ater in the book.

Unlike many things in Perforce that ook tricky but aren't, protections look simple, but in fact they're a
bit tricky. If you're planning on being a Perforce superuser, take the time to read about protectionsin
the Perforce System Administrator's Guide.

6.1.3. Groups

So, what are these group things? Groups are groups of users. If you're a superuser you can define a
group with the group command. This too gives you a spec form to edit, allowing you to add or remove
usersin the group. For example, to define agroup called "dev":

p4 group dev

G oup dev
Users ann
bi Il
ron
bob

Y ou can use protect to assign file access levels to the dev group. The file access levels of the dev group
will be availableto usersann, bi 1, ron, and bob aswell.

= Day bay Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

6.2. Accessing Files in Other Domains

Asyou know, a Perforce Server manages a repository and a database. These three things together-the
server, its repository, and its database-can be thought of in the abstract as a domain. When you run a
P4 command or launch a Perforce GUI program, you are entering a Perforce domain. Y our usernameis
checked against the list of users authorized for the domain. If you create a client workspace, its
name-which must be unique in the domain-is added to the domain. Likewise, if you cregte files,
their names-which must be unique within the domain-are added to the domain. Labels, jobs, branch
views, and depots are also objects that can defined within the domain. Descriptions of all of the objects
in the scope of adomain are stored in the domain's database, and versions of all the filesin adomain
are archived in the domain's depots.

In large companies, independent business units are likely to install and host their own Perforce domains
. A Perforce feature called remote depots can be used to make one domain's versioned files visible in
another.

6.2.1. Switching domains

Note that you don't need the remote depot feature to switch between Perforce domains. Perforce users
can enter any Perforce domain, as long they have authorization and network accessto it, by changing
their PAPORT settings. (See Appendix A for an example of how P4PORT is used.)

But habitual switching between Perforce domains can be awkward. For example, say Bob normally
worksinthepi | ot : 1666 domain-that is, his P4PORT is set to pi | ot : 1666. (See Figure 6-1.) Every
now and then he sets P4APORT to scout : 1666 t0 get accessto filesin the scout : 1666 domain. The user
bob and its client workspace BobWs are instantiated as objects in the database of each domain.

Figure 6-1. Working in two Perforce domains

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

3
Database

pilot : 1666

Perforce
Server

Bob's
Workspace

Perforce
Server

scout : 1666

Unfortunately, the Perforce Servers at pi | ot : 1666 and scout : 1666 know nothing about the users and
workspaces in one another's domain. Each Perforce Server guides Bob's activities as if the other
domain didn't exist. If Bob synchronizes his workspace while connected to scout : 1666, he could
inadvertently overwrite files that came from pi | ot : 1666. Because he's switching domains, it's up to
him to remember which filesin his workspace came from pi | ot : 1666 and which came from

scout : 1666.

It would be easier for Bob if Perforce could keep track of which of workspace files are from
pi | ot : 1666 and which arefrom scout : 1666. That is, in effect, what remote depots enable the Perforce
Server to do.

6.2.2. How remote depots work

The depots command lists depots in the domain you are connected to:

p4 depots

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Depot depot 2004/04/11 | ocal depot/... 'Default depot’

The preceding output shows one depot, named "depot,” in the current domain. If it contains files-and
if you have permission to access them-this depot also shows up as a top-level directory in the

domain's repository:
p4 dirs "//]*'
/ | depot

Y ou can create aworkspace in thepi | ot : 1666 domain. Y ou can synchronize your workspace to get
copiesfilesinthe// depot path, and you can open and submit the files. (Assuming you have
permission to do these things).

Now, say you wanted to accessfilesin the scout : 1666 domain. Y ou could switch your P4PORT to
scout : 1666, and now see the depotsin that domain:

p4 depots

Depot depot 2003/09/21 | ocal depot/... '"Default depot"’

p4 dirs "//]*'

/ | depot

And, with your P4PORT still set to scout : 1666, you could create aworkspace and synchronize it with
filesinscout : 1666's //depot path. But as we just saw in the case of Bob and his BobWS workspaces,
now you have to keep track of the domain you're in and make sure your workspaces don't overlap.

Enter remote depots. As a Perforce superuser in thepi | ot : 1666 domain, you can make the depot in the
scout : 1666 domain look like just another local depot. To do this, use the depot command to define a
new depot whose type is remote. For example:

p4 depot scout

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Depot scout

Type renot e
Addr es scout : 1666
Map /I depot /. ..

(Note the Address field in the preceding spec form-it points to the remote server, a server outside of
the current domain.) Once you have defined the remote depot, usersin the pi | ot : 1666 domain will see
both depots:

p4 depots
Depot depot |local depot/... "Default depot’

Depot scout renote //depot/... 'Created by super’

p4 dirs "//]*'

/ | depot

/ | scout

The //scout path is now an alias for the //depot path in the scout : 1666 domain. To refer to filesin the
scout : 1666 depot, users will have to use //scout as the path root.[*] Aside from that, however, any

combination of wildcards and revisions-as long as it's a valid filespec-will work with files in the
//scout path. For example:

["] See Chapter 8 for a suggestion about naming depots that are intended to be accessed remotely.

p4 files //scout/dist/...
/I scout/ di st/tool ki t/ READVE#4

[/scout/dist/toolkit/kit2-1.tar#1l

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Y ou can't submit changes to filesin aremote depot path. However, you can copy or branch files from
the remote depot into the local depot. For example:

p4 integ //scout/dist/toolkit/... //depot/inport/toolkit/...

p4 subm t

The nice thing about thisis that each domain's Perforce Server keeps track of where its files came from:

p4 filelog //depot/inport/toolkit/kit2-1.tar
[/ depot/inport/toolkit/kit2-1.tar
#1 change 2533 add on 2004/04/18 by bob "Get toolkit..."'

branch from//scout/dist/toolkit/kit2-1.tar#1l

6.2.3. Distributed software...

Before getting carried away with remote depots, you should know that in addition to being read-only,
remote depots are inherently inefficient. Y our local Perforce Server doesn't cache remote depot files or
metadata. Consequently, user commands involving remote depot files can be satisfied only by
transferring data-usually a large amount of data. While this may be acceptable for special cases, it's
certainly not something you want happening for run-of-the-mill user activity.

Thereal value of remote depots liesin being able to periodically integrate software from another
domain and keep track of what you've integrated. In other words, remote depots are a great way to
import distributed software.

6.2.4. ...versus distributed software development

Perforce's remote depot feature gives you access to filesin other domains depots but it doesn't et you
update them. Nor doesiit give you any information about who is working on the files, who changed
them, or why. In other words, with remote depots, you get the files but not the metadata.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

But it's the metadata-who's working on what, which files are opened, which files are locked, and so
forth-that make development collaboration possible. So, while remote depots are a good solution for
software distribution, they're not a solution for distributed software development.

For distributed development , you want al your developersin the same domain. They don't have to be
in the same geographic location, of course. Developers and their workspaces can be anywhere as long
as they have network access to the machine on which the Perforce Server is running.

= Day bay Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

6.3. Saving and Restoring Specs

Specs, the Perforce database structures that represent workspaces and other nonfile objects, aren't
normally versioned. However, they can be, if you set up a spec depot. A spec depot is managed entirely
by the Perforce Server; it's used solely to store specs .

6.3.1. Setting up a spec depot

To set up a spec depot, use the depot command to create it This gives you aform to edit; enter "spec” in
the Type field of the form. For example, to set up a spec depot named "specs':

p4 depot specs

Depot specs

Type spec

Once you've saved thisform, your spec depot will be created. (Note that you have to be a Perforce
superuser to create depots.)

From now on, every time a spec for alabel, client, user, or any other object is saved, a copy of the spec
form will be saved to afilein the spec depot.

The Perforce Proxy

Y ou can use the Perforce Proxy to extend a single Perforce domain to the far reaches of
your network. The proxy-which behaves just like a Perforce Server, as far as client
programs can tell-builds up its own cache of depot files. It gives its nearby developers
much faster access to files than they'd have if they connected directly to the Perforce
Server.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

At each geographic location, a Perforce Proxy runs on a machine easily accessible to
developersthere. Developers near the domain's hub connect their client programs directly
to the Perforce Server, while developers at distant locations connect to a Perforce Proxy.
The figure shows an example.

London

Perforce Server | I Perforce Client

Denver

Perforce Client

Perforce Proxy |——

Tokyo

Perforce Proxy |

For more information about the Perforce Proxy, see the Perforce Administrator's Guide.

Neither the Perforce Server's remote depot feature nor the Perforce Proxy costs extra, by
the way. Y our company pays for the same number of Perforce users regardless of how your
depots, domains, and proxies are configured.

6.3.2. Restoring a spec

Y ou can restore a deleted or badly edited spec from the last good revision of the corresponding file in

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

the spec depot.

For example, we'll restore ajob named j 0b000123. First we look for the spec's file in our specs depot:

p4 files //specs/...job000123...

/ | specs/job/job000123. p4s#4 ...

Next we check the recent history of thefile:

p4 filelog //specs/job/job000123. p4s"

/| specs/job/job000123. p4s
#4 default change del ete on 2004/ 04/ 28
#3 default change edit on 2004/ 03/ 04
#2 default change edit on 2004/ 02/ 05

#1 default change add on 2004/ 02/ 05

Finally, we recreate the job from the last good revision of the spec file:

p4 print -q //specs/job/job000123. p4s#3 | p4 job -i

(The-i flag on the job command causes p4 to read standard input instead of launching an editor.)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

6.4. Change Notification and Change Monitoring

Perforce has some commands and features that are especially useful for change notification and change
monitoring .

6.4.1. The Perforce change review daemon

A change review daemon is a script that runs continuously to check for recent depot changes and notify
interested users about them. Perforce provides a sample change review daemon, written in Python. To
download it, go the Perforce Software website (http://www.perforce.com) and navigate to Downloads
— Related Software ==* Review Daemons. The script is pdreview.py.

The pdreview.py script contains afew simple instructions for installing and starting it up. Once it's
running, it sends change notification email that looks like:

From sue@ce. com

To don@ce. com

Subj ect PERFORCE change 1254 for review

Message Change 1254 by sue@ue-ws 2005/01/28 13:30: 20

Fix highlighting on active itens so that
even when all are |it you can where the

borders are.

Affected files ...

downloaded from: lib.ommolkefab.ir

http://www.perforce.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

/I Ace/ DEV/ gui / active/ m pen. cpp#9 edit

/1 Acel/ DEV/ gui / activel/ fngr. cpp#3 edit

Note that the mail appears to come from the person who made the change. If Don repliesto this
message, for example, his reply will go to Sue.

6.4.2. Subscribing as a depot path reviewer

To receive email from p4dreview.py you can use the user command to subscribe to the depot paths
you're interested in reviewing. (in other words, the depot paths you want to hear about when changed.)
The user command gives you a spec form to fill out. Inits Email field you can give an address to which
notifications should be sent, and in the Reviews field you can list depot paths you're interested in. Here,
for example, ishow Don's user spec is set up:

p4 user

User don

Ful | name Don Qui xot e

Emai | don@ce. com

Revi ews /'l Acel/ DEV/ gui / . ..

/1 Ace/ NAI N gui /. ..

Don will receive a pdreview.py-generated email message for each change that affectsfilesin the
I/Ace/DEV/gui and //Ace/lMAIN/gui paths. Also, p4review.py will use the Fullname and Email valuesin
Don's user spec to generate email notifications of the changes Don submits.

6.4.3. Review daemon commands

If the Perforce-provided review daemon doesn't suit the needs of your site, you can write one yourself.
A few simple Perforce commands support change review daemons:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

counter

The counter command stores a number as a named value. Y our script can use thisto store the
last changelist number it has already processed. For instance, to store the number 1250 in a
counter named mydaemon:

p4 counter nydaenon 1250

review
The review -t command lists submitted changelists higher than a given counter, along with the
username, email address, and full name of the users who submitted them. For example, to list
changelists higher than the one stored in the mydaemon counter:

p4 review -t nydaenon

1254 sue <sue@ce.conk (Sue Z. Queue)

1255 sue <sue@ace.conr (Sue Z. Queue)

1258 don <don@ce. conk (Don Qui xot e)

(Note that email addresses and full names are valid only if users have entered thisinformation correctly
in their user specs.)

reviews
The reviews command lists users who have subscribed to any of the depot paths affected by a
submitted changelist. For example, to list the users who subscribed to paths affect by changelist
1254:

p4 reviews -c 1254

don <don@ce. con> (Don Qui xote)

penny <penny@ce. con> (Penny W se)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

sue <sue@ce.conr (Sue Z. Queue)

(Asyou saw earlier, users can subscribe to depot paths with the user command.)

describe

The describe command shows information about a changelist. Use it with the -s flag to prevent it
from including file diffsin its outpuit:
p4 describe -s 1254

Change 1254 by sue@ue-ws 2005/01/28 13:30: 20

Fi x highlighting on active itens so that
even when all are lit you can see where the

borders are.

Affected files ...

/I Ace/ DEV/ gui [acti ve/ m pen. cpp#9 edit

/1 Ace/ DEV/ gui / active/ fngr. cpp#3 edit

Thetypical review daemon wakes up every 5 or 10 minutes. It getsalist of unreviewed changelists
and, for each changelist, getsalist of usersto notify, gets the changelist description, and emails the
changelist description to each user. When it's done it saves the last changelist it processed in a counter
and goes back to sleep.

Note that the counter, review, and reviews commands can't be run by ordinary users; r evi ew
permission isrequired to run them. In other words, a review daemon script must be set uptorun asa
user withr evi ew permission. (See "Depot protections,” earlier in this chapter.)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

6.4.4. Using P4Web and browser bookmarks to monitor changes

To those of uswho get enough email asis, the prospect of receiving an email message every time a
change is submitted is not a pretty one. We have many ways to monitor changes, however. We can
simply run the changes command, of course. For example:

p4 changes -ml0 //Ace/ MAIN gui /. ..
Change 1254 on 2005/01/28 by sue 'Fix highlighting on active...'

Change 1253 on 2005/01/27 by no 'Add sanples to installer...'

A more convenient way of keeping abreast of changes to certain areas of the depot iswith PAWeb
bookmarks. Y ou can point your browser to P4AWeb, navigate to a particular depot path, and select
Submitted to get a page showing the latest changes submitted to the path. An exampleis shownin
Figure 6-2. This page can be bookmarked; every time you return to it you'll get an updated report.

Figure 6-2. P4AWeb's Submitted Changelists page

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

K Paweh - Sihanitbed chandgelists -IJ-HFEI
Fasb '|D huep:.lrpml-c.pnfor:e.mmsamr@rnd-md-rmmmmumw-%@ﬂmnvI Go
oA BN Port: 1665 Client: ps4web-browser
; Mfpublicipeforceulils!
[Files & Submitted (JBranches ., Labels S clients 4 Users 2 Jobs ud Settings
Q3 & DHep |
Changelist Date User Client Description
4585 2005/ richard_geiger rmg Long kve 2.5.4.,
0s5/z8 {adds brifsrcdiff)
4939 2005/ robert_cowham cowhamr- Updabted zip file for previows change
05/04 pecstop4
.-In"- 28 2005 robert_cowham cowhame- Updakie hak for P4Parl 5.8
a5/04 prcstops
4937 2005/ robert_cowham cowhamr- Add Scons and correct version of files.
05/04 ysshopd-
laptop
.-I-G 36 2005! robert_cowham cowhamr- Be specific abouk version of P4Perl to use
o0s5/04 ysstops-
laptop
426 2005 richard_geiger rmQ Add corractad .good file!
0426
4925 2005} richard_geiger g Acch,, need the revised fgood file, too)
04/26 -
| | oz

Y ou can have as many PAWeb page bookmarks as you want to monitor activity in the depot paths that
are important to you.

6.4.5. Hyperlinks to Perforce files and objects

PAWeb is a standalone Perforce client program. It has two basic modes of operation. In "standard
mode" it functions as a user-driven workspace manager with aweb browser interface. A standard-mode
PAWeb serves asingle user; it typically runs on the user's machine.

PAWeb's other mode of operation is called "viewer mode." The PAWeb viewer is, in fact, alittle web
server. It can serve multiple users; users point their web browsersto it just as they would to any other
web server. Unlike any other web server, however, P4AWeb can serve up information about what's going
on in the Perforce system.

For example, if P4AWeb is set up to run as aviewer on port 80 of a machine named intranet.ace.com,
documents and email can use URL s that begin with http://intranet.ace.com/ to hyperlink to Perforce
filesand objects.

PAWeb URLsfor files and directories are very simple. For example, the URL that linksto the
I/Ace/DEV/gui/active/mlpen.cpp fileis:

downloaded from: lib.ommolkefab.ir

http://intranet.ace.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

http://intranet.ace.conl/Ace/ DEV/ gui/ activel/ m pen. cpp

There are also PAWeb URL s you can use to display directory structure, change history, file diffs, and so
forth, making it possible to link to them in email and other documents. For example:

From don@ce. com

To ti méace. com

Subj ect Have you seen these changes?
Message Tim- check out these changes:

http://intranet. ace. conl Ace/ DEV/ gui / mapwi n/ ... ?ac=43

Is the test driver going to be able to handl e these?

6.4.6. Undocumented P4Web URL tricks

Although not documented, PAWeb URL syntax is easy to infer from the links within the pages P4AWeb
displaysin your browser. The general form of aP4Web URL is:

http://ourhost: 8080/ @araneters@/depot/path/fil e@ev?ac=n&ar g=val

Y ou can break down the general form to compose a PAWeb URL of your own:

e Theroot of the URL, htt p: // our host : 8080/, indicates the host and port address at which the
PAWeb viewer is available. In this case, the PAWeb viewer is available on port 8080 of a host
named ourhost. (When PAWeb is listening on port 80, you don't need to supply a port number.)

e The string that appears between / @and @ is not needed. You'll seeit in P4AWeb-generated URLS,
but it doesn't have to be present in a P4Web URL you compose.

« The portion of the URL that looks like //depot/path/fileis a Perforce filespec. It can be afile (asit
isinthiscase), or a path alone (that is, with no file). The PAWeb URL syntax for apathis

downloaded from: lib.ommolkefab.ir

http://intranet.ace.com//Ace/DEV/gui/active/mlpen.cpp
http://ourhost:8080/@parameters@//depot/path/file@rev?ac=n&arg=val
http://ourhost:8080/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

//depot/path/ but in most cases the familiar //depot/path/... will work just as well.

e @evisasymbolicrevisionidentifier. Asit turns out, almost any Perforce filespec will
work-wildcards and all-as long as you use a symbolic revision rather than an absolute file
revision. (You can't use absolute file revisions because the # delimiter has special meaning to
browsers.)

e You can specify a PAWeb action code with the syntax ?ac=n. There's an action code for each type
of page PAWeb produces. For example, ?ac=43 specifies the Submitted Changelists page. If you
don't provide an action code, PAWeb displays either an actual file (if you gave afilename) or a
depot tree page (if you did not).

e You can pass arguments for the specified action with the &ar g=val syntax, asyou'll seein the
following examples. You can also use this form to pass absol ute file revisions.

Asyou poke around with PAWeb you'll find other useful URLS. Here are some examples you can try
for yourself with the PAWeb viewer at the Perforce Public Depot:

http://public.perforce.com:8080//public/jam/

Shows what's in the //public/jam path

http://public.perforce.com:8080/public/jam/?ac=43

Shows the change history of the //public/jam path

http://public.perforce.com:8080//25647ac=10

Shows the details of changelist 2564

http://public.perforce.com:8080//public/jam/src/RELNOTES?ac=19& rev1=50& rev2=51,

Shows the diffs between revisions #50 and #51 of //public/jam/RELNOTES

http://public.perforce.com:8080//public/.../index.html
Liststhe index.html filesin the //public path

When documents link to each other with relative URL S, P4AWeb can show entire sites as they appeared
at previous pointsin time. ("Sites' being collections of files stored in the Perforce depot, of course.)

downloaded from: lib.ommolkefab.ir

http://public.perforce.com:8080//public/jam/
http://public.perforce.com:8080/public/jam/?ac=43
http://public.perforce.com:8080//2564?ac=10
http://public.perforce.com:8080//public/jam/src/RELNOTES?ac=19&rev1=50&rev2=51
http://public.perforce.com:8080//public/.../index.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

ThisisaP4Web feature called Back-in-Time Browsing .™

Try Back-in-Time Browsing in the Perforce Public Depot. The follwing URLS, for example, point to
the 2002 and the 2004 versions, respectively, of the RevML project site in the Public Depot:

http://public. perforce.com 8080//public/revm /index. htm @002/ 01/01

http://public. perforce.com 8080//public/revm /index.htn @004/01/01

downloaded from: lib.ommolkefab.ir

http://public.perforce.com:8080//public/revml/index.html@2002/01/01
http://public.perforce.com:8080//public/revml/index.html@2004/01/01
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

6.5. Scripting Tips

Asyou may have gleaned from what you're read so far, and as you'll certainly seein the chapters that follov
there are some very useful things you can do with hard-to-type P4 comands and P4AWeb URLSs. Scripts, of
course, can hide complicated syntax and command sequences. Scripts have an even more important role,
however, and that isin customizing and automating your SCM procedures. In the subsections that follow a
few tipsto get you started using P4 commands in scripts.

6.5.1. The fstat command

Many Perforce commands-files and opened, for example-give you abridged information about files. Th
fstat command gives you everything, and its output format is easier for scriptsto parse. For example:

p4 fstat //public/revm /vcp.pl
depotFile //public/revm /dist/vcp. pl
headActi on add
headType xt ext
headTi me 1079646286
headRev 4
headChange 4235

fstat has a cornucopia of flags that control the scope and detail of its output. See the Perforce Command
Reference for details, or run this command:

p4 hel p fstat

for more information.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

6.5.2. Tagged output

Almost any Perforce command can produce output as verbose as fstat 's if you use the -ztag flag on p4 . Fo
example:

p4 -ztag describe 4417

change 4417

user barrie_sl aymaker

client VCP_barries_w nXPpro_dev

time 1092971510

desc - Adapt to "estimted val ues" nessages
- Adapt to nore accurate test suite

status submtted

depotFil e0 //public/revm /bin/gentrevm

actionO edit

typeO xtext

revo 56

depotFilel //public/revm /1ib/VCP/ TestUtils.pm

actionl edit

typel text

revl 65
(Compare this to the readable but difficult-to-parse output shown in the depot browsing examplesin Chapt

)

For more information on tagged output, run:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 hel p usage

p4 hel p undoc

6.5.3. Marshalled output

Y ou can make p4 marshal its tagged output for Ruby or Python.[*] For example, p4 -R produces marshallec
Ruby output:

[l Many scripting languages have formats for exchanging data structures between scripts; formatting data for script-to-script
exchangeis called "marshalling.”

ruby -e "p Marshal .load("p4 -R describe 4417)"

{"action3"=>"edit", "status"=>"submtted",
"user"=>"barrie_slaynmaker"”, "action4"=>"edit",
“time"=>"1092971510", "code"=>"stat", "typeO"=>"xtext",

"depot Fi |l e0"=>"//public/revm /bin/gentrevm ",
"client"=>"VCP_barries_w nXPpro_dev", "typel"=>"text",

"depot Fil el"=>"//public/revm /1ib/VCP/ Test Uil s. pni,

"change" =>"4417", "type2"=>"text",

"depot Fil e2"=>"//public/revm /t/91lcvs2revm . t",

"rev0"=>"56", "desc"=>"- Adapt to \"estinated val ues\" nessages\n
- Adapt to nore accurate test suite\n”,

"type3"=>"text", "depotFile3"=>"//public/revm /t/91lvss2revm .t",
“revl"=>"65", "typed4"=>"text",

"depot Fi |l e4"=>"//public/revm /t/95cvs2p4.t", "rev2"=>"16",

"action0"=>"edit", "rev3"=>"7", "actionl"=>"edit",

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

"rev4"=>"30", "action2"=>"edit"}

P4's help usage and help undoc commands will tell you what marshalled output is available.

6.5.4. Dates and times

Perforce stores dates and times as epoch values-that is, as the number of seconds since 00:00:00 GMT
January 1, 1970. The p4 program normally converts epoch values to a human-readable form. But for outpur
that is meant for scripts, dates and times are converted to epoch-value strings. (Y ou can see examples of thi

the previous examples.) Thisleavesit up to your scriptsto convert them to appropriate formats when
displaying them.

In Ruby, for example, epoch strings can be handled like this:

str = Marshal .l oad("p4 -R describe 4417)["tinme"]

puts Tine.at(str.to i).to_s

to produce output like this:

Thu Aug 19 20:11:50 Pacific Standard Tine 2004

6.5.5. Specs and spec forms

To keep commands like p4 change and p4 submit from launching an editor, use them with -i and -o . For
example, in acommand shell you'd run this single command to create a pending changelist:

p4 change

This command launches an editor that contains the changelist's spec form. To keep from launching an editc
script would have to run these commands:

p4 change -o

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 change -i

(The -o flag makes change write the unedited changelist description to st dout . The -i flag makes changer
a changelist description-one that is presumed to be edited already-from stdin.)

How a script runs these commands depends on the scripting language and what the script is doing. For
example, here's a Ruby script that creates a pending changelist; the pending changelist's description is takel
from the script's command line:

specform = "p4 change -0
specform gsub! (/<enter description here>/, ARGV.join(" "))

| O popen('p4 change -i', "w'){ |f| f.puts(specform) }

6.5.6. Scripting language extensions

The Perforce C++ API has been embedded in anumber of scripting languages . With PAAPI extensions,
scripts can access Perforce without having to pass p4 commands to the system. This Ruby script, for examj

require ' p4'

p4 = P4.new

p4. t agged

p4. connect

p p4.run_describe(4417)

p4. di sconnect

produces this output:

[{"status"=>"subm tted", "user"=>"barrie_slaymaker",

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

"time"=>"1092971510", "rev"=>["56", "65", "16", "7", "30"],
"type"=>["xtext", "text", "text", "text", "text"],
"action"=>["edit", "edit", "edit", "edit", "edit"],
“client"=>"VCP_barries_w nXPpro_dev", "change"=>"4417",
"desc"=>"- Adapt to \"estimated val ues\" nessages\n

- Adapt to nore accurate test suite\n",

"depot File"=>["//public/revm /bin/gentrevm ",
“//public/revm /|ib/VCP/ TestUils. pnt,

"/l public/revm /t/91lcvs2revm . t",

“//public/revm /t/91vss2revm . t",

"/l public/revm /t/95cvs2p4.t"]}]

The advantages of using a P4API extension are that error handling is easier, command results are packaged
into very nice structures, and you can create persistent connections to the Perforce Server. The disadvantag
are that you may have to build extension modules yourself, and your scripts aren't as portable once they rel
them.

Various P4API extensions are available from various sources. Go to http://www.perforce.com , and naviga
Downloads = Related Software = API Toolsto find links to them.

6.5.7. Don't swamp your server

Y ou can do alot with Perforce in scripts. In fact, you can do too much. A common mistake is to stick Perfc
commands in tight loops. For example, your script might run p4 users and then iterate through the results
running p4 user -o on each file. If you have 500 users, that's 500 p4 user -0 commands.

When your script fires off commands far faster than users can run commands from client programs, the
Perforce Server enthusiastically tries to accommodate you. The effect of thisisthat users have to wait for y
scripts to finish before their commands get any response.

In most cases, however, you don't need to run more Perforce commands as you iterate through results. The
tagged output of Perforce commands contains more data than you think. (Don't base your assumptions on v
you've seen plain p4 commands produce. They display only afraction of the relevant data.) For example,

instead of running p4 users and then p4 user -0 on each result, just run p4 -ztag users once. It will give yoL

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

the data you need.

The same goesfor files. If you want detailed information about files, there's usually acommand you can ru
an entire set of filesthat will give you what you need. For example, to get the integration history of a set of
files, try running p4 -ztag integrated or p4 -ztag filelog on the entire set instead of running each command «
every filein the set.

For more on this topic, see "Preventing Server Swamp” in the Perforce Administrator's Guide.

6.5.8. Triggers

Triggers are custom programs that run when users invoke certain commands. As a Perforce superuser you (
set up triggers to control and automate the things your developers do with Perforce.

In Perforce, triggers are run by the Perforce Server; they don't interact directly with the user. They'retypica
written in scripting languages, but any executable program can be atrigger aslong asit can run on the servi
machine. Because they reside the machine the Perforce Server is running on, they must be installed by
someone with access to that machine.

Perforce triggers fall into two categories-spec triggers and file triggers:

Spec triggers

fire when users run commands that produce or update specs. (Commands like client and job , for
example.) They can intercept spec forms on their way from the server to the user and on their way fre
the user back to the server. Thus you can use spec triggers both to prefill spec fields and to validate ¢
postprocess what the user entered in them. Y ou can also use spec triggers to prevent objects like jobs
labels, and branch views from being created, modified, or deleted.

File triggers

fire when users run submit . They can be used to examine the content of files, to enforce changelist a
job dependencies, and to launch server-side programs that run after changes are committed to the
database. Filetriggers can aso be used to prevent files from being created, modified, or deleted.
However, they can't prevent users from accessing or opening files-for that, you have to use depot
protections.

The triggers command allows you to define when and how the Perforce Server runstriggers. (Y ou must be
Perforce superuser to run triggers .) This book won't go into detail about all the ways you can define trigge
but here's ataste of what it looks like:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 triggers

Triggers Wor kspaceCheck
in client "clientcheck.rb %user% %lient% % ornfil e®
WebRevi ew

submt //depot/www ... "reviewpages.rb %hangeli st %

In this example, two triggers are defined, named WorkspaceCheck and WebReview:

o WorkspaceCheck is a spec trigger that runs after a client command completes. (that is, when a user s
aworkspace client spec.) It runs clientcheck.rb , passing to it the name of the user, the name of the cli
spec, and the name of atemporary file containing the spec form saved by the user.

o WebReview isafiletrigger that runs as a user submitsfilesin the //depot/www path. It runs the
reviewpages.rb script, passing to it a number that can be used to access the user's changelist.

If one of the triggers above wereto fail, the user would see an error message prefixed by the trigger name.
error message itself is generated by the script. For example:

VebRevi ew.

There is no opened job associated with the changelist you are subm ttin
Did you forget to open a job? O to link an opened job to your changeli:
Pl ease fix the problem and submt your changelist again.

The only way atrigger can prevent users from doing what they shouldn't dois by failing. (That is, by exitin

with anonzero return code.) A client spec trigger must fail, for example, to prevent a user from changing a
workspace view. A file trigger must fail in order to keep the user from submitting files.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

é A trigger that failsintentionally isfine; it is preventing users from doing what they
shouldn't do. But a trigger that fails because the script isn't working is dangerous-it

will prevent users from doing the things they should do. Before you install themin a
production environment, be sure to exercise triggers thoroughly in atest environment.

See the "Triggers and Daemons' chapter in the Perforce System Administrator's Guide for detailed informe
about configuring triggersto fire at certain points, passing data to triggers, and consequences of trigger faili

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

6.6. Behind-the-Scenes Version Control

"Don't bore me with ‘client’ and 'sync'-just give methe blinkin' file!"
--Anonymous

While we may agree among ourselves that it's al software and we're all software developers, not
everyone we work with does. We're all software developers until it's time to learn how to use version
control , at which point some of us suddenly become artists, lawyers, or chief executives with no head
at all for technical details.

For these busy L uddites, behind-the-scenes version control can gently encourage SCM participation. It
lets them access and update Perforce files using applications familiar to them-like Microsoft
Word-with commands they understand-like "Save." In this section well take a look at the Perforce
components that can be set up to work behind the scenes.

6.6.1. WebKeeper, a Perforce module for Apache

WebK eeper is a Perforce module that can be compiled and linked into the Apache HTTP Server. With
WebKeeper in place, afile in the depot called //Ace/WEB/index.html can be accessed from aweb
browser with aURL like:

http://intranet. ace. com Ace/ V\EB/ i ndex. ht n

(This example assumes that Apache is configured at port 80 of a machine called intranet.ace.com, of
course.)

When aweb browser sends Apache a URL, Apache checks its configuration parameters to see
wheather the URL refersto Perforce content. If it does, it letsits WebKeeper module convert the URL
to adepot filename and fetch file content from the Perforce depot. Apache then sends the file content
back to the user's browser. The depot files served up by WebKeeper are entirely under the control of
Apache-to Apache, the depot looks like a file system. Y ou can use the same redirects, path aliases,
and authentication for depot files as you would for any other files managed by the Apache server.

downloaded from: lib.ommolkefab.ir

http://intranet.ace.com/Ace/WEB/index.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

6.6.2. PAWeb, Perforce's own web server

Like WebK eeper, the PAWeb viewer lets you access afile in the depot called //Ace/WEB/index.html
with aURL like:

http://intranet.ace. conl Ace/ WEB/ i ndex. ht ni

And, asyou read previoudly, there are PAWeb URL tricks you can useto link to all kinds of Perforce
information. None of these tricks will be of much use to naive or reluctant Perforce users, of course.
However, they can be of great use to Perforce-savvy project leads and configuration
managers-P4Web URL s inserted into web pages and email can give naive users a portal to
information they would otherwise be oblivious to.

6.6.3. How are WebKeeper and P4Web different?

WebK eeper and the PAWeb viewer are dikein that both alow usersto get to Perforce through aweb
browser. And neither WebK eeper nor the PAWeb viewer allows users to update depot files. Each
simply shunts file content from the Perforce depot to users web browsers.

WebK eeper and the PAWeb viewer are not the same, however, when it comes to:

M etadata

The PAWeb viewer lets you browse changelists, jobs, and other Perforce metadata. WebK eeper
does not.

Older revisions

WebK eeper always gives you the most recent document revisions. P4Web can serve up older
revisions.

Accesscontrol

If you're using WebK eeper, Apache controls access to depot files. With a PAWeb viewer,
Perforce controls access to depot files. (Y ou just read a bit about this at the beginning of the
chapter in "Depot and File Access.")

downloaded from: lib.ommolkefab.ir

http://intranet.ace.com/Ace/WEB/index.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Installation and administration

WebK eeper is distributed as C++ source and must be compiled and linked into an Apache
module. However, once that's done, the Apache server does double duty as a Perforce document
server. A PAWeb viewer, on the other hand, is available as a prebuilt binary program for alarge
number of operating systems. It needs no compiling or linking, but it does need to be started up
and managed as a separate server.

6.6.4. Perforce via FTP

Thanksto FTP, users of word processing and multimedia authoring applications need not know about
Perforce even if they do need write access to filesin the depot. PAFTP, the Perforce FTP Plug-in, can
be installed by a system administrator in place of an FTP server.

To FTP clients, PAFTP looks like anormal FTP server. To aPerforce Server, PAFTP looks like a
garden-variety Perforce client. PAFTP intercepts requests from FTP clients and converts them to
Perforce requests. For example, when a Windows Explorer user expands an FTP site folder, PAFTP
requests a directory list from the Perforce Server. When auser saves afileto an FTP site folder, PAFTP
submits the file to the Perforce depot.

PAFTP does quite a bit of Perforce work behind the scenes to support naive users. It creates
workspaces, synchronizes, opens, submits, and reverts files, and generates canned change descriptions.
Users have practically no control over any of the Perforce operations performed by PAFTP on their
behalf.

Nevertheless, PAFTP's transparent access to Perforce makes it easy to draw reluctant contributors into
thefold. It requires no Perforce software installed on user machines, it works with user applications on
any operating system, and, best of al, users don't have to know anything about Perforce to get their
changesinto the depot.

Note that PAFTP gives users no way resolve concurrent changes. Like other FTP servers, PAFTP
simply acceptsfiles sent to it by users and archivesfiles asit receives them. Each version of afile
replaces the previous version. PAFTP, however, archives files by submitting them to Perforce; if one
user inadvertently overwrites another's changes, the original files can always be recovered.

6.6.5. Windows applications and perforce plug-ins

Windows users who want more control over their files can meet Perforce half way. Perforce plug-ins
that integrate with a number of Windows applications can be installed on users machines to offer

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Perforce commands in the context of those applications. The PAOFC plug-in, for example, adds
Perforce menus to Microsoft Word, Excel and Powerpoint. For visual artists and game developers, the
PAGT plug-in integrates Perforce with popular graphical tools like Adobe Photoshop. With Perforce
plug-insinstalled, users can use comfortable commands like "Check Out" and "Check In" to make
applications synchronize workspaces, open files for editing, and submit changelists behind the scenes.

The plug-ins expect users to know how to set up their workspaces. Truly naive or timid users may need
help getting over this hump, but will be able to comfortably navigate on their own henceforth.

6.6.6. Perforce as ODBC data source

Finally, for adifferent breed of non-Perforce user, there's PAReport, the Perforce Reporting System.
PAReport can be installed on a user's Windows machine to make a Perforce Server look like an ODBC
data source. With P4Report installed, reporting and data visualization tools like Crystal Reports and
Microsoft Access can draw on metadata from the Perforce database. Thisis a boon to managers and
administrators who want to keep an eye on Perforce activity but who are not Perforce users themselves.

P4Report is distinct from the other behind-the-scenes solutions mentioned in this section in that it
provides no accessto files. It's meant to provide access to metadata only. And although it takes no
Perforce command expertise to work with PAReport, it does take some understanding of what's stored
in changelists, jobs, and fixes.

& Frev AL

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 7. How Software Evolves

Just as there's more to driving than knowing how to operate a car, there's more to SCM than knowing
how to use an SCM tool. Mastering SCM starts with understanding how software evolves and
recognizing how team collaboration, defect management, parallel releases, and distributed devel opment
affect the software life cycle. For just as road maps and rules of the road are the bigger part of driving,
the software life cycleis the bigger part of SCM.

In this chapter we take a step back from Perforce to look at the roadmap of the software life cycle: the
mainline model. Welll identify the codelines that form the mainline model and describe the rules of the
road for change flowing between them. This chapter sets the stage for the chapters that follow, each of
which demonstrates using Perforce to manage codelines of a particular type.

AR AN 2

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

7.1. The Story of Ace Engineering

Consider the story of Ace Engineering, afictitious software company. After ayear of intensive startup
devel opment, the company introduced a new product, AcePack1.0. Sales were successful: the customer
base grew. Alas, so did the bug report database. Within six months Ace had produced a point
release-essentially the same product but with many bug fixes and small enhancements-as
AcePack1.1. For awhile, the company supported customers on either version, but at the end of the
second year it announced that AcePack 1.0 was being discontinued.

During this time Ace devel opers had started working on two new features, code-named Saturn and
Pluto. The plan had been to include both features in the AcePack 2.0 release. Midway through the third
year Pluto was done, but Saturn turned out to be much more work than anticipated. (In fact, the
company ended up doubling the size of the Saturn development team, with half the team working on an
unforseen adjunct now code-named Saturn Plus.) AcePack 2.0 was ultimately released without the
Saturn feature.

The 2.0 release did well, although it too had its share of problems. It was hard to get customers to
upgrade, and Ace ended up having to fix showstopping bugs in both available releases, 1.1 and 2.0.
However, it was able to produce avery stable release, AcePack 2.1, about six months later. Shortly
after that, support for AcePack 1.1 was discontinued.

Finally the Saturn and Saturn Plus devel opment projects were completed. The Saturn feature will bein
AcePack3.0. Meanwhile, customers have upgraded to AcePack 2.1, AcePack 2.0 has been retired, and
Ace devel opers have started working on yet another new feature, codenamed Rocket. (Figure 7-
1.)shows the development history of Ace's product.

Figure 7-1. Ace Engineering's first five years

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Initial development TN

Satum |

AcePack 1.0 4]
Pluto ————

AcePack 1.1 =]
Satum Plus R
AcePack 2.0 e 1

Rocket —— 1
AcePack 2.1 Lez]
AcePack 3.0 —/

Year 1 Year 2 Year 3 Year 4 Year 5

[feature development [T stabilization and support < product release

The Ace Engineering story illustrates typical problems of the software life cycle:

e Atany point in timethereislikely to be more than one supported product version available to
customers. Ace must be prepared to field customer calls, diagnose problems, and fix critical bugs
in all of their currently supported versions.

o Not all development tasks have the same urgency. Some are expected to yield results immediately
while others are targeted for distantly future releases.

» Softwared development is not entirely predictable; some projects go according to plan, others get
mired in unforeseen difficulties.

What Ace Engineering makesis "shrinkwrapped"l"] software. Other kinds of software-web-hosted,
embedded, open source-evolve differently and have life cycle problems of their own. What all of
them have in common isthat their software life cycle problems can be solved by parallel development.
Ace, for example, solved its problem of having to support customers on two releases by putting some
developersto work on the old release while others devel opers worked in parallel on the new relese.

[l shrinkwrapped software is software that is distributed in periodic releases. The provider decides when to make new

releases available; users decide when to upgrade. As a consequence, there can be several releasesin use at the same time
and the provider may have to support many or al of them concurrently.

Software devel opment is complicated enough; parallel software development can be even more
complicated. But it doesn't have to be. In the next section, we'll ook at how the mainline model can be
used to keep the complexities of parallel development in check.

< Day Day Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

7.2. The Mainline Model

A codelineis, for the most part, the same as a branch. But though the term branch can mean any set of
files created by branching, codeline isimbued with slightly more significance. Codelines have a
purpose, astrategic role in the development of software. Together, codelines form amodel of software
evolution.

In the Perforce view of software configuration management, one model-the mainline model-is most
effective. This chapter discusses codelines and software evolution in the context of the mainline model.
It's not a Perforce-specific discussion, by the way-the mainline model is a general concept, not a
Perforce feature. But it is the concept on which much of the design of Perforce is based.

7.2.1. From ideal world to real world

In theideal world, there are no bugs, no schedule crunches, no personnel changes, no market shifts, and
no technology revolutions. Software in the ideal world is ssmply developed and released-that is, new
features are devel oped, and when they're ready, anew version of the softwareisreleased (see Figure 7-
2.). Each release contains features that work perfectly.

Figure 7-2. The mainline in the ideal world

mainline

development development

If there were such an ideal world, we probably wouldn't need an SCM system. Even so, we'd have a
collection of files evolving together in a codeline. This codeline embodies the evolution of our
software; it is our mainline. In the ideal world it would be the only codeline we'd ever need.

A sad fact of the real world isthat the software we develop isn't perfect. Because of that, we subject

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

software to atesting phase before release, during which bugs are invariably found. We could do all this
in the mainline if development could halt for the testing phase, and if al bugs could be found and fixed
during testing. But all bugs are not found during testing; many are found after software isreleased. And
we can't hold off on new development during the testing phase because we have deadlines and market
pressures to face. So we branch completed software from the main codeline into a release codeline.

Branching release codelines allows usto do two different kinds of software development at once. One
kind is bug fixing-euphemistically known as stabilization -and the other is new feature
development. In the release codeline, we stabilize a version of our software-both before and after
release-while in the mainline we get on with developing new features. As we stabilize the release
version, we can make point releases-that is, we can rerelease the software-without the risk of
releasing untested new devel opment.

Another problem with the real world is that our customers expect usto fix bugsin old versions of our
software even as we are developing and stabilizing new versions. To deal with this, we branch a new
codeline for each release, leaving our old release codelines intact for more bug-fixing. Now the typical
shrinkwrapped software evolution model begins to take shape. A mainline charts the course of the
overall development, while release codelines sprout as new versions are ready (see Figure 7-3). When
releases are no longer supported, the codelines designated for them cease to evolve, but the mainline

persists.
Figure 7-3. Release codelines
D N
N N
S o ~
& = .
Release .. ¥ &F _bLg.n"’
codelines ..~ " A ; &
. stabilization :
stabilization
-
mainline >
development

In the ideal world, all development projects are completed on schedule. No matter how many new
features are dated for the next release, developersin the ideal world get them all done on time. In the
real world, asingle incomplete project can hold up an entire release if it'sin the same codeline as
completed projects. To decouple development projects from one another in the real world, we can
branch the mainline into one or more devel opment codelines. Devel opment projects are delivered to the

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

mainline as they're compl eted, and when enough development is completed to warrant it, anew version
is branched for release stabilization. (see Figure 7-4).

Figure 7-4. Development codelines

" N
53 & ~,
& & <
.)
i : %g'
stabilization '
/ stabilization
mainline >
development

I| e development

Thus our mainline evolves as new development is completed, although development does not
necessarily take place in the mainline.

And there you have it. The mainline model is anecessary deviation from the ideal world. It seeksto
preserve the intent of the ideal world while accommodating the constraints of the real world.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Why We Don't Drive Through Hedges

Why not just branch a development codeline into a release codeline? Or merge a bug fix
straight from arelease codeline into a devel opment codeline? Well, just as thereis no law
of physicsthat keeps you from driving through hedges to get on and off the freeway,
there's nothing in Perforce that keeps you from integrating changes any which way you
please.

One has only to look at traffic on afreeway to see why entrances and exits are controlled.
Clearly, driving would be inefficient and unpredictable if they weren't. Because we can't
see the flow of change, it's not so easy for usto understand that we must control change for
the same reason: parallel development would be inefficient and unpredictable if we didn't.

Think of the mainline model as the freeway system of parallel development. It's afast and
reliable way to get somewhere, but only if we resist the temptation to drive through the
hedges.

7.2.2. The flow of change

The closer we are to the ideal world, the simpler our SCM is. When our ideal-world intent to work
together is thwarted by real-world constraints, we branch one codeline into another and make our
changes there. But we don't lose sight of the fact that our changes in the second codeline are really
meant for the first. We pull changes from the second codeline into the first as soon as we can.

Itisthisflow of change between codelines that brings us closer to the ideal world. Each codeline
type-mainline, release, and development-has a role in the flow of change:

Mainline

The mainlineisthe clearing-house for al changesto the software we develop. Whether we
submit changes directly to the mainline or integrate changes to it from other codelines, all change
eventually reaches the mainline. (see Figure 7-5.)

Figure 7-5. All change flows to the mainline

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

N

I /

Mainline

—_— -—

SN

However, the mainlineisn't afree-for-all. It holds the software that's complete enough to enter
the release stabilization cycle. So the flow of change to the mainline is tempered by the state of
the codelines from which change flows.

Release codelines

Change flows continually from release codelines to the mainline. Every timeabugisfixedina
release codeline, the change that fixed it isintegrated into the mainline, as Figure 7-6 shows.
This doesn't compromise the mainline, because every change coming from arelease codeline has
aready been reviewed and tested. Moreover, release codeline changes are changes that fix
broken things. Thus, merging release codeline changes to the mainline is bound to have a
stabilizing effect. It brings the mainline closer to perfection, asis our idea-world intent. This
flow of change continues until the mainline has evolved so much that the bug fixesin arelease
branch are no longer relevant to it. (In Chapter 9 wel'll take a closer ook at this.)

Figure 7-6. Bug fixes flowing to the mainline

(ot) (e) [s)
vVYy

Mainline

Release codelines are not normally open to changes from the mainline. For one thing, every
change to arelease codeline should be a change that stabilizes and finalizes the release. For

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

another, the mainline is changing constantly-it will never be perfect. We don't want the
increasing perfection of arelease codeline to be sullied by the inherent imperfection of the
mainline.

(Although release codelines are not normally open to mainline changes, the unexpected can
happen. If we're in the unfortunate position of having to support several releases concurrently, a
bug fix in one release may have to be applied to another. That is, we'll have to cherry-pick a
change from either arelease codeline or the mainline and integrate it into another release
codeline. In Chapter 9 we'll cover thisin more detail.)

Devel opment codelines

There's also a constant flow of change from the mainline to the development codelines branched
from it, as shown in Figure 7-7. In other words, a development codeline is continually updated
with changes from its parent codeline. Thus even development codelines benefit from release
stabilization. Aswe fix abug in arelease, we merge the bug fix into the mainline. Asthe
mainline changes, we merge its changes into devel opment codelines.[*]

[l Who is this "we," you ask? See Chapters 8 and 9.

In some cases, bugs can be fixed right in the mainline. Because the mainline is guaranteed to be
stable, development codelines can be continually updated with these bug fixes. This gives project
teams the benefit of working with the latest, improved code. It also forces them to integrate
sooner, rather than later, with devel opment happening outside of their control.

What about the flow of change from devel opment codelines to the mainline? A development
codeline can be a hotbed of untested new development. There may be periods of time when a
development codeline doesn't build, or when it builds nothing but a basket case. The valve is
closed on the flow of change from the development codeline to the mainline during these
periods.

Figure 7-7. Flow of change between the mainline and development codelines

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Mainline

{ Development X] [Development ¥ :l [Development Z J

But when the development codeline is stable-when new development is complete or at a
deliverable state-the valve opens. At these points the development codeline software is
delivered to the mainline. Thus change flows from devel opment codelines to the mainline at
points of completion. And, because development codelines are always open to mainline changes,
other development codelines will receive the completed new development as well.

Development and rel ease codelines can themselves be branched. Quite often they're branched into
short-lived, task-specific sub-branches to accommodate unplanned changes. A release codeline can be
branched to make a patched version of areleased product, for example, and a devel opment codeline
can be branched to isolate work on a specific problem or behavior.

7.2.3. Branching from release codelines

In the ideal world, our customers upgrade to our latest release without complaint. In the real world,
customers have reasons they can't do that, and we have reasons to keep our customers happy. Reality
occasionally puts us the position of having to patch a previously released version. We do this by
branching arelease codeline into a patch branch.

The flow of change between a patch branch and its release codeline parent is exactly the same asthe
flow of change between arelease codeline and its mainline parent. In other words, the release codeline
is continually updated with changes from the patch branch. (Not that there's likely to be much change
in the patch branch.) This gives the release codeline the benefit of the patch branch's bug fix. No
change flows from the release codeline to the patch branch because the whole point of making the
branch was to reproduce and patch an earlier version.

For example, one extremely important customer, still using Release 1.0, finds a critical bug and
demands a patch that doesn't require an upgrade to our latest point release, 1.1. To accommodate this
customer, we take the 1.0 version of the Release 1 codeline and branch it into a patch branch. We fix
the fussy customer's bug in the patch branch and build a new version from a snapshot of the branch.
Thisisthe version we give to the customer. (Figure 7-8 shows the patch branch.)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Figure 7-8. A patch branch

N
Patch branch @@

N
0 %?1@@%
Q}"E’\‘ -+ :
@ :
™
N
&

mainline

The changes we made in patch branch are merged into the Release 1 codeline. This givesthe Release 1
codeline the benefit of the patch. Release 1 changes flow into the mainline, of course, bringing the
patch with them. (see Figure 7-9).

Figure 7-9. Patch branches and the flow of change

(Release 1.0 patch]

Mainline

7.2.4. Branching from development codelines

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Development codelines branched into sub-branches also inherit the flow-of-change roles of their
parents, change flows continually from development codelines to their sub-branches so that work in a
sub-branch is always up to date with the parent codeline. Change flowsin the other direction only at
points of completion. When work in a sub-branch is completed, it's delivered to the development
codeline. Thus, each development codeline acts as a mainline for its sub-branches , and each sub-
branch behaves like a development codeline.

Consider ateam of devel opers working on an application. They're using a codeline they've named
DEV X to develop amajor new feature. Two developers plan to help out by overhauling a part of the
new feature known as the the Z-widget. It's going to be a ground-up rewrite; the Z-widget won't be
working right again for weeks. But a broken Z-widget will make it impossible for other developersto
work inthe DEV X codeline. (They could simply relax and play ping-pong for two weeks, but that
doesn't go over very well in thereal world.)

To satisfy constraints of the real world, the DEV X codeline is branched into a codeline named DEV Z.
(see Figure 7-10.) The two Z-widget developers complete their overhaul in the DEVZ sub-branch. The
rest of the devel opers continue their work in its parent, DEV X, with an old but stable Z-widget. (And
they promise not to touch any of the Z-widget filesin DEV X.)

Figure 7-10. A development sub-branch

mainline —\ >
_ DEVX

DEVZ

As changes are made in DEV X, the Z-widget developers pull them immediately into DEVZ. They don't
put their changes back into DEV X, however, until their overhaul is done and the new Z-widget is
stable. (see Figure 7-11.)

To the Z-widget developers, this satisfies the ideal-world intent to build upon other devel opers
changes, asif they were working right in DEV X. To the developers working in DEV X, this satisfies the
ideal-world expectation that they won't lose project time waiting for broken components to work again.

7.2.5. Soft, medium, and firm: the tofu scale

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Every codeline has a characteristic ranking on the "tofu scale." And what isthistofu scale? It'san
informal assessment of stability and quality that takes into account:

e How close softwareisto being released

e How rigorously changes must be reviewed and tested

Figure 7-11. The flow of change to and from development codelines

Mainline

A

o How much impact a change has on schedules

o How much acodelineis changing

Asshown in (Figure 7-12.), release codelines are highest on the tofu scale; they are "firm." They don't
change much, and even the slightest changes to them can impact rel ease schedul es because of their
rigorous review and testing requirements. The mainline is "medium"”-changes do require testing, but
releaseis further out and schedul es are more accommodating of them. Development codelines are

"soft"-they're changing rapidly, the software in them is farthest from release, and there may not even
be tests yet for their newest devel opment.

Figure 7-12. The tofu scale

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

firm

A
Release

Mainline

[Development)

v

soft

The flow-of-change rules tell uswhen file content should be propagated from one codeline to another.
The tofu scale tells us how:

¢ Inthefirm-to-soft direction, file content can be merged. The target, being softer, is more able than
is the donor to absorb the risk and effort of merging.

« Inthe soft-to-firm direction, file content should be copied. The target is more at risk than the
donor in this case. Files should be merged from the firmer codeline to the softer one first, then
copied from the softer codeline to the firmer one.

The unwritten contract of collaborative development says that we don't impose unstable changes and
we always accept stable changes. The tofu scale gives us away to tell unstable from stable changes
before we impose or accept them.

There'sauniformity to the mainline model that can be described in terms of flow of change and the
tofu scale. Aside from the mainline, which isin a category of its own, there are essentially only two
codelinetypes, release codelines and devel opment codelines. No matter how many codelines you have,
if you know each codeline's type, you know exactly how and when file content should be propagated
between those codelines. Thisis summarized in Table 7-1; you'll see how this plays out in the chapters
that follow.

Table 7-1. How change is propagated

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Release codeline Development codeline

Tofurank Firmer than parent Softer than parent
Change flowsto parent Continually At points of completion
Change flows from parent Never Continually

File content is propagated By merging By copying

7.2.6. A codeline by any other name...

...isstill acodeline. If you're saying to yourself that a mainline and a handful of development and
release codelines are not going to satisfy your SCM needs, you'reright. In fast-paced, large-scale
development environments, the fundamental codeline types are adapted and extended to a variety of
uses:

Activedevel opment streams

Sometimes development projects aren't all that clear-cut. One use of development codelinesis
to support long-lived, ongoing development work on components. This gives component
developers a common, persistent codeline to work in without requiring them to create a new
codeline for each task or feature. In Chapter 10, for example, you'll see how a devel opment
codelineis used as an active development stream for a GUI component.

Task branches

Task branches are very short-lived codelines branched from either development codelines or
release codelines. They can be used to protect rel ease codelines from untested interim changes,
or to protect development codelines from destabilizing re-engineering. (The DEV X development
codeline described earlier in this chapter in "Branching from development codelines’ is atask
branch.) In Chapter 9 you'll see how atask branch is used to permit a bug fix to be reviewed and
tested beforeit'sintroduced into arelease codeline.

Staging streams

Staging streams allow you to make extremely frequent rel eases without having to branch a new
codeline for each release. (They're commonly used to support web development. You'll see an

example of thisin Chapter 11.) A staging stream is essentially areusable release codeline. Each
staging stream is used for a particular stage of release stabilization. Once the stage is completed

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

for aparticular release, the codeline isimmediately redeployed for the next release.

Private branches, ad hoc branches, and sparse branches

Private branches make it possible for each devel oper's changes to be reviewed before they are
submitted to shared codelines. Private branches can also be used to isolate experimental or proof-
of-concept work. Ad hoc branches are created on the fly to give users a place to check in changes
they thought they were going to be able to check in elsewhere but found out they couldn't. Sparse
branches can be used in any of the aforementioned cases to piggy-back afew changed files onto a
full codeline. Examples of all of these will come up in later chapters.

7.2.7. One-way codelines

We al so recognize another fundamental codeline type: the "one-way " codeline. One-way codelines
house software, but not software development. The following are examples of one-way codelines:

Third-party codelines

Third-party codelines provide a place to store vendor drops-software and source code obtained
from external suppliers. Code istypically copied or merged from third-party codelinesinto
development codelines.

Remote depot codelines

In Chapter 6 you read about how you can access depots in other Perforce domains as remote
depots . Codelines in remote depots are always one-way codelines-files can be branched,
copied, or merged from them, but not into them.

Packaging and distribution streams

Packaging streams can be used to assembl e customer-specific configurations of software from
released components. Distribution streams can be used to offer released products to customers.
(They're the vendor's side of the vendor drop.) Software is delivered from rel ease codelines to
packaging and distribution streams; nothing is ever copied or merged in the opposite direction.

WEe'l revisit one-way codelinesin Chapters 9 and 10

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

7.2.8. Codelines that aren't codelines

Finally, while we're cataloging codeline species, it's worth recognizing that some codelines aren't really
codelines at al:

Porting branches

Porting branches contain architecture-specific variants of source code and built objects.

Custom-code branches

Custom-code branches contain source and built objects configured for hardware, customers,
locales, and other deployment targets.

Branches like these aren't codelines in their own right. Although it's often difficult to recognize the fact,
they're really modules that belong in development codelines, release codelines, and the mainline.l’]

[l For areal-world example of how custom-code branches can become errant codelines, see Changing How Y ou
Change (http://www.ravenbrook.com/doc/2003/03/06/changing-how-you-change/), a white paper presented by Peter
Jackson and Richard Brooksby at the 2003 Perforce User Conference.

7.2.9. Musings on codeline diagrams

Codeline and flow diagrams help us visualize software evolution. We have all, at one time or another,
sat in aroom with our colleagues and drawn or pondered diagrams on a whiteboard. Here are some
things to keep in mind when you find yourself doing the diagramming:

e When you're drawing atimeline, put release codelines above their parents and devel opment
codelines below them. This orders codelines on the tofu scale, with the firmest on the top and the
softest on the bottom. (See Figure 7-13.)

The tofu scale shows the impact of achange at aglance. A change made to a codeline at the top of
the diagram, for example, will reach customers soonest, at the greatest risk to quality and
scheduling. A change made to a codeline at the bottom of the diagram, on the other hand, doesn't
pose agreat risk, but it will be awhile before it is available to customers.

o Remember the time axis when you're drawing timelines . Plot codeline beginnings and endingsin
time order. That way, any vertical line you draw will tell you how many active codelinesyou'll
have at that point in time. (See Figure 7-14.)

downloaded from: lib.ommolkefab.ir

http://www.ravenbrook.com/doc/2003/03/06/changing-how-you-change/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

o If thetimelinesin adiagram are getting congested, try using slightly parabolic lines instead of
horizontal ones (see Figure 7-15s). Parabolic lines also imply divergence-the greater the vertical
distance to the mainline, the more the codelineislikely to have diverged from the mainline.

Figure 7-13. Ordering codelines on the tofu scale

firm
Release 2
mainline ’
Development X Development
Development ¥

v

soft

Figure 7-14. Ordering codeline beginnings and endings on the time axis

JAN 03 JuLo3 JAN 04 JUL 04 JAN 05

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

o Remember that historical flow of change isn't the same as intended flow of change. Use flow
diagramsin addition to timelines to help people understand how change is intended to flow
between codelines. Show the tofu scale in flow diagrams as well, as shown in the examplein
Figure 7-16.

« Finally, recognizethat if your codeline diagram is complicated, your SCM processis going to be
complicated. Simplifying the diagram may be a good first step in reducing the complexity of your
SCM plan.

Figure 7-15. Using parabolic lines to reduce congestion in a diagram

Figure 7-16. A flow diagram

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

firm

Release 1.0 patch

Release 1

LA A’

Mainline

il
(Development X] [Development Y] (Development Z] ‘_\/7

soft

Release 3 |

A ALY R

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

7.3. Ace Engineering Revisited

Let'slook at the mainline model as employed by Ace Engineering. Once an initial body of development
was begun, it formed the MAIN codeline. Asyou read, the first AcePack versions released were 1.0
and 1.1. However, Ace engineers did not plan their schedule around two first-generation (1.X) releases.
In fact, they didn't know how many 1.X releases they would make. Their strategy was simply to make
periodic point releases to fix bugs and tidy up loose ends until the next major release was ready. To
support the as-yet undetermined number of 1.X releases, MAIN was branched into REL 1 (see Figure 7-
17)

Figure 7-17. REL1 branched from MAIN

REL1

AcePack 1.0 and AcePack 1.1 were released from the REL 1 codeline. REL 1 was used for ongoing
fixing before and after the releases were made. When AcePack 1.0 customers required patches, the
AcePack 1.0 version of the REL 1 codeline was branched into R1.0. (see Figure 7-18.) The only
changes allowed in R1.0 were fixes for critical, showstopping bugs; these were immediately merged
into REL 1. Thus, when AcePack 1.1 wasreleased, al the R1.0 fixeswere already in it. The same
strategy was used to patch AcePack 1.1-the REL 1 codeline was branched into R1.1. No changes
except for critical fixeswere allowed in R1.1, and all R1.1 changes were merged immediately into
REL 1. Meanwhile, changesin REL 1 were regularly merged to MAIN; thus the mainline aways
reflected the sum of improvements madein the 1.X releases.

Figure 7-18. The 1.X release branches

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

. /Ei

MAIN / D—___ U

R1.0 and R1.1 were fairly inactive codelines. Their entire purpose was to provide a place to fix
showstopper bugs in released versions. As aresult, neither R1.0 nor R1.1 deviated very much from
their parent, REL 1, and merging changes from them into REL 1 was extremely easy.

Y ou may be wondering why Ace used separate R1.0 and R1.1 codelines to patch released products
instead simply building patched releases from REL 1. The reason is that while the releases were
concurrently supported, developers had to be able to deliver critical bug fixes to both rel eases without
requiring customers on either release to upgrade. (Ace Engineering is avery accommodating company.)
And if you're wondering what REL 1 was used for after R1.1 was released, recall that Ace engineers
were not sure how many 1.X releases they would make. If all went well, the new features for the next
major release would be ready soon and the REL 1 codeline could be abandoned. But on the chance that
the new-feature schedule would slip, devel opers continued fixing bugs in REL 1 and merging their fixes
into MAIN. That way they would have yet another 1.X point release ready to go if no 2.0 release were
forthcoming.

To develop the new features slated for the 2.X release, the SATURN and PLUTO codelines were
branched from MAIN, as shown in Figure 7-19. Giving each feature development project its own
codeline ensured that the two could remain independent. Changesin MAIN were routinely merged into
both SATURN and PLUTO, keeping the development codelines up to date with the latest bug fixes
from the rel ease codelines.

Figure 7-19. Branching for two development projects

MAIN

N—am U [l

-

SATURN —

Asyou recall, the Saturn feature turned out to be bigger project than anticipated. The SATURN
devel opment codeline was eventually branched into SATURNPLUS to keep the now two Saturn

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

devel opment teams out of one another's hair. Feature development continued in SATURN while some
much-needed infrastructure work was donein SATURNPLUS. The SATURN changes were
continually merged to SATURNPLUS, as shown in Figure 7-20. Thismade it very easy for
SATURNPLUS work to be delivered to SATURN when the infrastructure work was completed. At that
point, SATURNPLUS was retired.

Figure 7-20. Isolating SATURNPLUS development

N
SATURN kﬂ U W

SATURNPLUS

MAIN

The Pluto team was the first to complete a new feature for the next major release. The PLUTO
codeline'swork was delivered to MAIN and PLUTO wasretired. (see Figure 7-21). At that point, the
decision was made to defer the Saturn feature to a future release, and MAIN was branched to REL 2 for
the second major AcePack release. At about this time, development on another new feature was begun
in acodeline called ROCKET that was branched from MAIN. All the while development continued in
SATURN; MAIN changes were continually merged into SATURN to keep the latter from diverging.

Figure 7-21. Branching REL2 and ROCKET from MAIN

REL2

MAIN /
N PO 1 g o

SATURN

Meanwhile, Ace produced two releases, AcePack 2.0 and AcePack 2.1, out of the REL2 codeline. In
order that each release could be patched independently, REL 2 was branched into R2.0 and R2.1,
respectively, as shown in Figure 7-22. Critical, show-stopping bugs were fixed in the R2.0 and R2.1
patch branches, while REL 2 formed a trunk for ongoing bug fixing and stabilization. Bug fixesin the

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

patch branches were merged back into REL 2, and REL 2 changes were merged into MAIN (see Figure
7-22).

Figure 7-22. Branches for 2.X point releases

R2.1

R2.0
REL2 //D_— KUJ:[
MAIN /”7 U

Once the Saturn development project was completed, work in the SATURN codeline was delivered to
the mainline, and the mainline was in turn branched into REL 3 in order to stabilize and build what will
be AcePack 3.0. (see Figure 7-23.)

Thus, Ace Engineering has produced and supported five releases using atotal of 12 codelines. That
seems rather alot of codelines until you consider that only a handful were ever active at the same point
in time. Moreover, because the mainline embodies all completed work so far, it serves asthe single
point of reference for future development. SCM isreally no more complicated at Ace Engineering now
than it was when the first rel ease was made.

Figure 7-23. Ace's codelines today

RELT REL RELS

MAIN k % ~—

SATURN ROCKET

Nl

SATURNPLUS

R1.0

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

< Day Day Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

7.4. Containerizing

In commerce, manufacturers control complexity by "containerizing ." A truck driver doesn't know he's
delivering 19 sofas, 400 chairs, and 80 tablesto outfit a hotel in New York. All he knowsisthat he's
delivering one shipping container from the factory to the shipyard. And when he arrives at the shipyard,
he doesn't throw open the back of the truck and start counting out sofas. He merely checks that the
container isintact.

It's the same with branching and merging. The software we're working on involves far too many files
for us to have to branch and merge them individually. We need to containerize so we can branch and
merge mere handfuls of containersinstead of hundreds of thousands of files.

Although they seem to have different names everywhere they're used, the file containers essential to
software development are modules, codelines, and-for lack of a better term-bodiesof code.

7.4.1. Modules

The fileswe work on are grouped into modules. At face value, amodule is simply a set files organized
in adirectory tree. (Other systems, and other writings on the topic, use terms like source directory,
component, and subsystem for what we're calling amodule.) What makes modules important is that
they correspond to the file hierarchies needed on disk in order to work on specific parts of the software
being devel oped.

In the development of the AcePack software, for example, the GUI module corresponds to the directory
tree of C++ source files and Jamfiles"] needed to build AcePack's GUI components. In order to work
on the GUIs, adeveloper needs this directory tree on disk. Other modules support other areas of
development. The database module, for example, contains the scripts and stored procedures needed on
disk to work on AcePack’s database component. The documentation module contains Frame files and
generated HTML files for the AcePack manuals. The utilities modul e contains AcePack-specific scripts
and configuration files common to all development tasks. (See Figure 7-24.)

["] Jamfiles are used by Jam, an open-source build tool. Althought Jam is available from Perforce Software, it is
completely separate from Perforce.

Figure 7-24. Top-level modules

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Cdb

ol doc
2 qui
2l utils

Modules can contain other modules as well. For example, the AcePack GUI module is subdivided into
amodule of common code and a module for each of the AcePack GUI tools. The documentation
module is subdivided into modules for each AcePack manual plus a module containing the tools used
to build them. (Figure 7-25.)

Figure 7-25. Submodules

Cldb
= doc
[refman
o tools
o uguide
=23 qui
) common
o tx
o Imgr
ol =pin
ol utils

Modules are the raw materials of workspaces and builds. When a developer sets up aworkspace, she
setsit up in order to work with certain modules. When build engineer builds software, his build tools
process files in some modules and create files in others.

And although her workspace may be populated with many top-level modules, the changes a devel oper
makes typically affect only one module at atime. A GUI programmer makes changes in the GUI
module without affecting the database module or the utilites module, for example. Thus any change
submitted by a developer is likely to affect no more than one module.

7.4.2. Codelines

A codeline contains modules evolving together in the same phase of development. (Another good word
for codelineis stream; it emphasizes the point that not only is a codeline a container, it isavessel that
channelsits contents toward completion.) Modules evolve together in a codeline because they
contribute jointly to a specific version of an end product or suite of products. The 2.1 version of

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

AcePack, for example, is made up of the 2.1 version of the GUI tools, the 2.1 version of the database,
and the 2.1 version of the documentation.

Branching acodeline isreally amatter of branching the modules contained by the codeline. Not all
modules need be branched, as we'll seein upcoming chapters. Depending on how closely software
components are coupl ed, rel ease codelines and development codelines may contain only the bare
minumum of modules needed to support the work at hand.

Codelines also define the scope of build and test tools. A build script, for example, will only be ableto
"see" only thefilesin asingle codeline. Thus, even if amodule won't be changed in the course of a
codeline's evolution, its presence in a codeline may be needed in order for build tools to work.

7.4.3. Bodies of Code

A body of code is the complete collection of codelines related to one another. In other words, a
mainline and all the codelines related to it by branching form a body of code.

At Ace Engineering, for example, thereis only one body of code. It encompasses the codelines that
support development and release of the AcePack product suite. An Ace developer, whether working in
the MAIN codeline, in the R1.0 release codeline, or in the SATURN development codeline, is always
working with the AcePack body of code.

At large companies, it's likely that several bodies of code will coexist. Each body of code hasits own
mainline, its own development goals, its own release schedule, and its own collection of codelines.
Products and packages built from one body of code can be imported into another, but each body of
codeis essentially independent.

& Frev AL

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 8. Basic Codeline Management

This chapter introduces conventions, policies, and techniques for managing codelinesin a Perforce
system. It also describes common pitfalls and missteps of codeline management that can easily be
avoided.

< Day Day Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

CE=S

8.1. Organizing Your Depot

Y ou know by now that the Perforce depot is a hierarchical structure of directories and files, and that you
are at liberty to organize it as you please. The question is, what is the best way to organize it? Thereisno
one right answer, of course, but some factors and recommendations should be taken into consideration as
you decide what goes where.

8.1.1. Filespecs as containers

Interestingly, Perforce doesn't know about containers like bodies of code, codelines, and modules.
However, in Perforce we can containerize, and we do, with filespecs.["] Any set of files that can be
described with asingle filespec can be treated as a container with alife and a history of its own.
Filespec-defined containers can be used in activities like navigating a depot tree, setting up aworkspace,
making a branch, and configuring arelease. This, in turn, lets us treat these containers as true SCM
objects-that is, as objects that can be versioned, compared, branched, merged, labeled, and restored.

[Take alook back at Chapter 1 if you're not sure what afilespec is.

For example, //Ace/RELL... isthe filespec that refersto Ace's Release 1 codeline. Y ou can usethis
filespec to do things like display its recent history:

p4 changes -nB //Ace/ REL1/. ..

Change 9634 ... bob 'Fix installer
Change 9632 ... bob 'Rebuild zip file..."’
Change 9629 ... doug ' New screenshots...'

Y ou can also refer to the REL 1 codeline by revision. For example, to compare two of itsrevisions, use:

p4 diff2 -q //Ace/ REL1/... @634 // Ace/ REL1/... @629

Thisisall fairly easy, and in the next chapter we'll see quite afew more examples. (Our examples are

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

admittedly ssimple-it's easy to remember //Ace/REL1 . Inredl life, the filespec you'll need to useis
likely to be alittle less self-evident.)

Module filespecs work the same way. For example, doc is atop-level module in the REL 1 codeline. It
can be referenced with the //Ace/REL 1/dod/... filespec. To seeits recent history, for example, use:

p4 changes -nB //Ace/ REL1/ doc/. ..

Y ou can also refer to the doc module irrespective of the codeline, aslong asit has afixed location
relative to the root of the codeline. For example, you overheard Doug saying he just checked in some
great new diagrams. Y ou don't know which codeline he checked them into, but you know they'll bein
the doc module, so you run:

p4 changes -u doug -n8 //Ace/ */doc/...

Change 9607 ... by doug 'New screenshots. ..’
Change 9599 ... by doug 'Dynamte diagrans...'
Change 9592 ... by doug 'Fix callouts..."’

(The -u option limits the output of changes to the changes made by a particular user.)

Tidy Views

For filespecs to work as containers you have to have a pretty well organized depot. One
thing that helpsisif every codeline and every module can be described by a"tidy view." A
tidy view is exhaustive, exclusive, and succinct : exhaustive in that the view appliesto all
of the files that belong in the container, exclusivein that it applies only to the files that
belong in the container, and succinct in that it can be expressed on asingle line.

For example, thistidy view defines Ace's REL 1 codeline:

/] Acel/ REL1/ . ..

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

A tidy view makes a container easy to work with. Ace's REL 1 codeline, for example, is easy
to manipulate with tools like P4V or PAW in because it's all in one folder and everything in
the folder isin the codeline. It's also easy to map this codeline to a workspace, to branch or
label it, to peruseits history, and to compare it with other codelines whose views are this

tidly.

8.1.2. The depot hierarchy

In Chapter 7 you read that files make up modules, modules make up codelines, and codelines make up
bodies of code. Not surprisingly, the most useful way to organize your depot is roughly along these lines.
The recommended depot layout, in a nutshell, is a hierarchy of:

Depots

Codeline groupings

Codelines

Modules

8.1.3. The scope of a depot

Asyou read in an earlier chapter, adepot isanamed area of the Perforce repository hierarchy. Perforce
comes with one depot already configured; its nameis "depot.” Y ou can use the default depot asis, or you
can create one or more depots with names of your own choosing.

—e= Once you've submitted filesto a depot, that depot is here to stay. Y ou can branch
its filesinto a depot of another name, but you can't rename it,["] nor can you move
its history of changes to another depot.

[l Actually, a depot can be renamed, but not with Perforce. It's possible to rename a depot
using checkpoint surgery-that is, by dumping a Perforce database to a checkpoint, editing the
checkpoint yourself, and reloading the database. Checkpoint surgery is a do-it-at-your-own-
risk remedy that is beyond the scope of this book to explain.

The depot name is often used to identify an organization. For example, Ace Engineering, a small
software company, uses "Ace" to name its one and only depot:

p4 depots

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Depot Ace ... //Acel/... 'Ace Engineering, Inc.

(Asyou can see, the depots command lists depots.)

L arge companies can designate a depot to each of their business units. At Massively Large Media
Corporation,l 1for example, you'll find these depots:

[IMassively Large Media Corporation and Ace Engineering are fictional names made up for examplesin this book. If
there are real companies with these names, it is purely coincidence.

p4 depots

Depot Acne /'l Acne/ . .. " Acne Syst em Design'
Depot RedRiver //RedRiver/... 'Red R ver G aphics'
Depot Tango /| Tango/ . .. ' Tango Desktop Tool s’

The rationale behind designating depots to independent organizations istwo-fold. First, it provides areas
in which organizations can create or branch codelines without affecting one another. Second, it makesit
possible to mirror depots, thanks to the inherent transparency of remote depots.

Depot Mirroring

It is not uncommon for alarge company to host more than one Perforce domain. (A domain
, inthis context, is a Perforce Server, its repository, and its database.) For example, each of
Massively Large Media Corporation's depots is hosted by a Perforce Server in a separate
domain. However, that doesn't keep MLMC engineers from accessing filesin one another's
depots.

Every product released by MLMC isidentified with afilespec. One of the Tango releases,
for example, isidentified thus:

/I Tango/ Di st/ Rel 05. 1/ ... @005/ 07/19: 13: 20: 00

Perforce usersin any MLMC division can use this filespec to download the release from

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

their own Perforce Server. The same filespec works across divisions, because the Tango
Desktop Toolsdivision's//Tango/Dist depot path is configured as a remote depot named
//Tango/Dist in the other Perforce domains within MLMC. Thiskind of mirroring is a snap
when depot names are unique throughout the network of Perforce domains.

Y ou can find out more about remote depots in Chapter 6 .

Note that the Perforce spec forms for workspaces, labels, and branch views seed View fields with aline
for each depot. If you have only one depot named Ace, for example, you'll get something like this when
you configure a new workspace:

p4 client my-new ws

dient ny- new ws

Vi ew /'l Acel . .. [y ws/...

Whereas at MLMC, where there are three depots, you'd get something like this:

p4 client ny-new ws

dient ny- new ws

Vi ew /'l Acne/ . .. /1y _ws/ Acnel . ..
/I RedRiver/... [/nmy_ws/RedRiver/...
/| Tango/ . .. /I my_ws/ Tango/ . ..

8.1.4. Codeline grouping
Asit turns out, an entire body of code is rarely the target of a single operation. Codelines grouped by

functional type, however, are often such targets. (For example, distribution codelines may be mirrored as
a single remote depot.) If you have-or expect to have-a large number of codelines, consider using the

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

top level of adepot to group them. The Tango depot at MLMC, for example, has the following paths in
itstop level:

/[Tango/Prod

Contains the shared codelines that support Tango's desktop product suite. The suite's mainline, its
release codelines, and its shared devel opment codelines are all contained within this depot path.
Each codeline has a subdirectory of its own:

/ | Tango/ Prod/ MAI N/ . . .
/ | Tango/ Prod/ REL4. O/ . . .
/ | Tango/ Prod/ REL4. OP1/ . ..

/| Tango/ Prod/ REL4. 1/ . ..

[etc.]

/[Tango/Web

Contains the codelines that support the Tango division's web site devel opment.

/[Tango/Task

Contains task branches (the sparse, short-lived branches used to isolate specific tasks). They are
grouped here to reduce the clutter in the product and web paths.

/[Tango/Priv

Contains the private branches used by developers for informal and shelved work.

/[Tango/Dist/

Stores the files Tango makes available through its online product distribution system. When
internal customers download Tango's products, they're getting files from this path. When external
customers get Tango's products, the web distributions they download come from this path.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

/[Tango/lmport

Stores downloads of third-party software used in Tango's products. When Tango engineers need
third-party software, they ook in this path first to see which versions have already been
downloaded. When they download new software from external suppliers, they put it in this path.

[[Tango/Int

Stores internal tools, internal documents, and intranet content at the Tango division.

8.1.5. Lineage versus location

Note that codelines relate to one another in two ways. One way is by their lineage. For example, say
MAIN is branched into REL 1. Later, MAIN is branched into REL2. Now there are three related
codelines: MAIN isthe parent codeline, and REL 1 and REL 2 are sibling codelines (see Figure 8-1).

The second way in which codelines relate to each other is by their location in the depot hierarchy. For
example, the MAIN codeline isin the //Tango/Prod/MAIN path,

Figure 8-1. Branching lineage relationship

REL1 REL2

.S

REL1isin//Tango/Prod/REL1, and REL2 isin//Tango/Prod/REL2 . In the depot hierarchy, all three
codelines are siblings, located in the //Tango/Prod path, as shown in Figure 8-2 .

Figure 8-2. Depot location relationship

= Tango
=- 3 Prod
o MaIN
CIRELT
CIREL2

There's no reason a codeline's location in the depot hierarchy should match its branching lineage.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Nevertheless, the fact that it doesn't can be a source of confusion to new Perforce users.

8.1.6. Depot path naming conventions

Y ou may wish to establish a naming convention to differentiate depot path levels. The following naming
convention is applicable to most development environments. It is by no means required, but depending
on the nature of your development environment, it might be helpful:

Depot name

The depot name needs no special distinction, because it's obvious-it's the root of the path.
However, you may wish to adopt a naming convention for depots for aesthetic reasons. Our
examples use capitalized names. For example:

/'l Tango/ . ..

Codeline grouping

Also, capitalize the names of the depot paths used to group your codelines. For example:

/ | Tango/ Prod/ . ..

/| Tango/ Wb/ . . .

Codelines

Use all-uppercase for the names of depot paths that are codeline root directories. For example:

/ | Tango/ Prod/ MAI N/ . . .
/ | Tango/ Prod/ TI TAN . . .
/ | Tango/ Prod/ GAI A/ . ..

/ | Tango/ Prod/ RO1. 1/ . ..

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

/ | Tango/ Prod/ R02.0/ . ..

/ | Tango/ Prod/ R0O2. OP1/ . ..

With this convention, the codeline name stands out.

Top-level modules

Use al lowercase for the names of top-level modules. (the modules that are not included by any
other modules.) For example:

/ | Tango/ Prod/ Tl TAN app/ . ..
/| Tango/ Prod/ TI TAN website/. ..

/ | Tango/ Prod/ Tl TAN book/ . ..

Other modules

Beneath the top-level modules, the pathnames will depend on the tools you use for devel opment.
Java, for example, requires that paths used for package parts be all lowercase. Many C++
development environments use capitalized and mixed-case names for subdirectories.

Thisisonly one of many possible naming conventions you could adopt. The point is that naming
conventions can be used to make the filespecs that define modules and codelines more predictable. This,
inturn, makes it easier to treat modules and codelines as self-contained objects.

8.1.7. Storing generated files

Although you won't check in all the files generated in the course of building your software you'll check
in some of them. In particular, you'll want to check in:

Software for distribution

If you're releasing software for internal or external distribution, you can use the depot both to store
areference copy of the release and to distribute the software. (Thiswill be explored further in
Chapter 9 .)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Files generated by nightly builds

One of the reasons we do nightly buildsis so that devel opers can have up-to-date versions of
shared libraries and other generated files without having to build everything themselves. See
"Nightly Builds™" latter in this chapter.

Generated files and source files should be segregated. In other words, you should put generated filesin
modules of their own instead of in modules that already contain source files. (Thisis, admittedly, atall
order for some build tools.) Knowing that a module contains either generated files or source files-but
not both-makes the business of branching and merging so much easier.

At Ace Engineering, for example, each codeline contains atop-level module called built . The built
module contains nothing but generated files, organized by target

Uppercase, Lowercase, or Mixed
Case?

Asyou are considering naming conventions for your depot, you should be aware of how the
Perforce Server handles case differencesin file- and pathnames. Perforce applications
(clients and servers) run on many operating systems. When it comesto file naming, there
two kinds of Perforce applications: those that are case-sensitive and those that are not. For
example, consider these filenames:

/ I Acel/ MAI N/ app/ Cal cEngi ne/ Set Level . cpp

/ I ace/ mai n/ app/ cal cengi ne/ set | evel . cpp

A Perforce Server running on Windows is not case-sensitive. It will treat these two names
asidentifiers of the samefile. A case-sensitive Perforce Server running on Unix, however,
will treat these names as two completely different files. (For more on thisissue, see
Technical Note 3, "Case sensitivity problems and multi-platform development,” on the
Perforce Software web site.)

Unless your company's computing environment is uniformly Windows or uniformly Unix,
your Perforce users have the potential to create case-conflicting path- and filenames. One
way to mitigate the problem is to adopt a naming convention that is so simple and so strict

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

that users have no trouble following it. Y ou could, for example, require that all path- and
filenames be lowercase. Unfortunately, thisislimited, not only as a naming convention, but
as apractical solution, because so many of the tools that devel opers use automatically create
files with mixed-case names.

A better solution isto use triggers to prevent users from submitting files that are likely to
have case-sensitivity conflicts with other files. For more on triggers, see Chapter 6 .

platform. There'sabuilt module in the MAIN codeline, for example, that is a peer of the other modules
in the codeline:

p4 dirs "//Ace/ MAI N *"
/1 Ace/ MAI N/ bui I t/. ..
/1 Acel MAI N/ db/ . . .

/1 Ace/ MAI N gui /...

8.1.8. Codeline proliferation

As software evolves, codelines tend to proliferate. A large, active company can accummulate dozens of
codelinesin ayear and hundreds over the life of the software it devel ops. These codelines don't consume
significant space in the Perforce repositoryl*] but they do add to the number of subdirectoriesin the
depot hierarchy. Navigating a mature depot can be cumbersome simply because of the huge number of
codelines. Thisis not a problem that can be solved by depot organization, because by the time the
problem comes up, the depot structure is established and can only be changed by re organization.

[l Most of the filesin branched codelines are merely lazy copies. See Chapter 4 for more about that topic.

It's easier to reduce codeline clutter with protections . (Y ou read about protectionsin Chapter 6 .) With
protections, you can hide old, inactive codelines from normal viewing. Y ou can also restrict codelines so
that they're visible only to certain developers or groups. In the Tango depot, for example, protections
hide the web-related codelines from all users but those in the WebDev group :

p4 protect

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Pr ot ecti ons
list user * * -/ [/ Tango/ Wb/ . ..

wite group WebDev * /| Tango/ Wb/ . . .

Users can be added to or removed from groups with the group command:

p4 group WebDev

Group WebDev
Users
dan
m a
anj a
ki m

8.1.9. How not to organize your depot

Much of the foregoing advice is meant to head off common mistakes of depot organization. Here are
some things to look out for specifically:

Don't organize by ownership

Y ou may be tempted to create codeline or module hierarchies that match the hierarchy of your
devel opment organization. With the exception of allocating depots to business units, organizing by
ownership isabad idea, for several reasons.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

First, it'smorework. If you require that your depot structure reflect your company structure, you'll
have to reorganize your depot every time your company reorganizes. While acompany
reorganization can make the company more efficient, reorganizing a depot is not likely to have
much effect on the efficiency of either the company or the depot. For all that effort, there's very
little payoff.

Second, ownership changes obscure functional changes. The history of amodule or acodelinein
your depot can be a useful roadmap if you're trying to figure out where a bug was introduced and
where and when it was fixed. For example, if a module has been unchanged for two years, you
know not to look there for a bug that was introduced in the last month. Y ou don't have that
advantage when modul es have been reorganized because of ownership changes. Not only do
ownership changes obscure functional changes, but they may themselvesintroduce risk. Every
change to a stable set of files reduces its stability somewhat.

Finally, you can discern useful information about trendsin your software development process
from depot history. For example, you may notice that filesin a particular module have a high rate
of change just after every release, perhaps indicating a problem in your rel ease methodol ogy.
That's something you wouldn't easily notice if, due to ownership changes, those files appeared in
different modules at every release.

Reorganizing a Depot

Reorganizing a depot is a bit like renaming a street. Changing street signsis easy, but
it invalidates street maps and other references to the street. People with old street maps
will be confused and annoyed when they end up lost. It's the same with depot
reorganization. Moving codelines and modules around is fairly easy with the integrate
command. But it can invalidate workspace views and branch views, among other
things. One consequence is that users can be left with opened files they can't submit
because their workspace views refer to files that no longer exist. There are remedies
(see "Someone moves the files you were editing " in Chapter 3) but they won't make
you popular with your users.

That's not to say that a depot can't be reorganized. But if you do plan to reorganize a
depot, et everyone know what you're doing, and give them a chance to check in files
and adjust views.

Don't require modules to be reshaped with workspace views .

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Perforce's workspace views allow you to reshape the way modules appear in your workspace. (The
"shape" of amodule is determined by the relative locations of its subdirectories and files.) For
example, consider this workspace view:

dient BobW5
Root c:\ws
Vi ew /I Acel/ REL1/ app/src/... / | BobW5/ app/ src/. ..

/1 Ace/ REL1/ app/ hel pfiles/... //BobWs/ app/|ib/helpfiles/...

Notice how this view mapping changes the relationship of subdirectories to each other. Y ou may be
tempted to use client view mappings like this when your development tools expect filesto appear in a
directory structure that's different than the depot's.

The problem with using view mapping to reshape modulesisthat it buries an important intellectual
asset-the information about the shape the modules must take in order to be used. What would happen if
anew version of adevelopment tool required a different directory structure? Y ou could certainly tell
everyone to remap their workspace views, but that leaves no record of what was changed, by whom, and
when. (That's no way to guarantee reproducible builds!)

Modules that need to be in a particular shape in workspaces should be stored that way in the depot, so
that their relative location is part of their recorded history. Modules that need reshaping for specific
uses-for example, to create a release-should be reshaped by running a script. The script itself should
be stored in the depot.

Furthermore, just because it's easy to use workspace views to reshape modules doesn't mean it won't get
complicated. Y our development environment is probably complicated asis. Resist the temptation to add
another layer of complexity. Instead, keep views simple, and store modules in the depot exactly as they
should appear in workspaces.

Don't use depots to allocate disk space

Precocious Perforce superusers often discover that they can define depotsin away that distributes
their Perforce repository across multiple filesystems or disk volumes. In the long run, using named
depots to balance disk space is not agood idea. It hard-codes your current hardware resource
allocation scheme into the depot pathnames that will be used to name your versioned files,
codelines, releases, and so forth. Asyou know, hardware resources are likely to change. You
wouldn't want hardware changes to invalidate or be constrained by the path names used by your

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

build tools, your workspace and branch views, your depot protections, and the entire recorded
history of your software's evolution.

There are ways to allocate disk space transparently-on Unix, for example, you can do it with
symlinks. So instead of using named depots, consider using transparent, OS-provided disk
allocation to distribute your Perforce repository.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

8.2. General Care and Feeding of Codelines

In the chapters that follow, you'll see how to create and manage specific types of codelines. But first,
let's begin with some general information about managing codelines with Perforce.

8.2.1. The codeline curator

Every codeline needs a curator. We say "curator” instead of "owner" because often codelines are owned
collectively. But even a collectively-owned codeline should have a single point-person to keep an eye
on housekeeping tasks. This person may delegate tasks to others, but making sure the tasks get doneis
hisor her responsibility.

Some of the codeline curator's tasks require special privileges. In particular, the tasks involving
protections and triggers require superuser access, although these aren't tasks that are done often. Asyou
plan codeline management, be prepared either to grant superuser access to codeline curators or to have
someone with superuser access on hand who can run commands on behalf of codeline curators.

8.2.2. Naming a codeline

Asfar as Perforce is concerned, you're at liberty to use any name you want for a codeline. Bear in mind
that:

e You'll usethe codeline's name for its depot path and various other Perforce objects. The name
should conform to your depot path naming rules.
e You can't easily change a depot pathname once you've created it.

¢ It'snice when a codeline's name can be used in conversation. So instead of using an inscrutable,
data-derived string as a codeline name, consider using a pronounceable, recognizable nickname.

« Codelines can be reused. If you're planning on reusing a codeline, give it a name that describes its

general scope, or that's not tied to any particular use.

8.2.3. Which modules go in a codeline?

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The mainline typically contains many more modules than you'll need to branch into asingle
development or release codeline. In the following chapters you'll read about how a codeline's purpose
dictates (or suggests) the modules to branch into it. In the meantime, bear in mind that:

» Modulesin agiven codeline are either "active" or "static.” The active modules are the ones
developers are working on-they're evolving right there in the codeline. The static ones aren't
evolving in the codeline at hand-they've been branched to support development. (Inactive
modules may be evolving in other codelines , though; the codeline at hand may need to be
updated with their latest versions.)

« Onereason that static modules are branched into a codelineisthat it's so convenient to have
everything you need al in one codeline. All developers have to do is put the codeline in their
workspace views, and-poof!-synchronizing gets them all the source code, build scripts, test
drivers, and tests they need to do their work.

« Alternatively, you can leave the static modules unbranched and require workspace views to map
them from the parent codeline. These "virtual" modules don't actually exist in the codeline path
but-thanks to label and client views-they appear to bethere.

8.2.4. The master workspace
Every codeline should have amaster workspace. The codeline curator creates the master workspace

and uses it for codeline housekeeping tasks. Devel opers use the master workspace as a template for
creating their own workspace views.

For example, the mainline at Ace Engineering has a master workspace called MAIN-master:

Cient MAI N- mast er

View //Ace/ MAINDbuilt/... [//MAINmaster/built/...
/1 Ace/ MAI N db/ . .. [/ MAIN-master/db/. ..
/1 Acel/ MAI N doc/ . . . /I MAI N- mast er/ doc/ . ..
[/ Ace/ MAI NN utils/... [I MAIN-master/utils/...
I/ Ace/ MAI N tests/... /I MAI N-master/tests/...

/'l Ace/ MAI N gui /. .. /I MAI N-master/gui/...

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Each module in the codeline is mapped explicitly in the master workspace's view. This gives
developers away to select the modules they need when they create their own workspaces. Y ou'll see an
example of how thisworksin Chapter 9

8.2.5. The codeline's branch view

Every branched codeline-that is, every codeline but the mainline-should have a branch view. A
branch view makes the integrate, interchanges, and diff2 commands easier to use. It can also be used to
reconcile structural differences between the codeline and its parent. The codeline curator creates the
branch view and uses it to branch the codeline and to integrate changes between the codeline and its
parent.

The branch view can be created or modifed using the branch command. A useful convention to follow
isto use the branch view's name and mapping to point to the parent. For example, the branch view that
maps Ace's PLUTO codelineto its parent, MAIN, iscaled PLUTO-MAIN. And in View field of the
branch view spec, the codeline's paths appear on the left and its parent's paths appear on the right:

p4 branch PLUTO MAI N

Branch PLUTO- MAI N
Descri ption PLUTO proj ect devel opnent
Vi ew /1 Ace/ PLUTO db/ . . . /1 Ace/ NAI N db/ . ..
/' Ace/ PLUTO doc/ . . . /| Acel/ MAI N doc/ . . .
/1 Ace/ PLUTQ utils/... [/ Ace/ MAIN utils/...
I/ Ace/ PLUTO' tests/... //Ace/ MAIN tests/...
/1 Ace/ PLUTQO gui /. .. /'l Ace/ MAI N gui /. ..
As with the master workspace view, the codeline's branch view itemizes modules-in this case, the
modul es branched from the parent. Aslong as the branch view is used consistently in integration

operations, it prevents irrelevant modules from being branched later. It also documents the modules
that are involved in the flow of change between the codeline and its parent.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

8.2.6. Branching a codeline

In Perforce, acodeline doesn't exist until you branch filesinto it. To branch files, as you know, you use
integrate. For example, Tango's PLUTO codeline was branched from MAIN using:

p4 integ -r -b PLUTO MAIN

p4 submt

(Actualy, thisisagross oversimplification. There are afew things you can do to as you're creating a
codeline to make it easier to work with and to make subsequent merges easier. Y ou'll find out about
them in the chapters that follow.)

8.2.7. Working in a codeline

A codelineisjust another path in the depot. Once a codeline is branched, you can work on thefilesin it
and add new filesto it. The codeline's path must be included in your workspace view in order for you to
do this, of course.

Asarule, you should work in one codeline in atime. (We use codelines to create order out of chaos;
working in more than one codeline at once pulls us back toward chaos. It's like driving in two lanes at
once.) This applies to developers and curators both.

For each codeline in which you work, create a separate workspace. Y ou can have more than one
workspace per codeline you work in, but you shouldn't use a single workspace to do work in more than
one codeline.

The client command lets you use an existing workspace as atemplate to create a new workspace. For
example, Bob creates a workspace called MAIN-bob, using the MAIN-master workspace as atemplate:

p4 client -t MAIN-master MAI N bob

The client command gives Bob a spec form to edit, with aView field prefilled to match the MAIN-
master workspace's view. All he hasto do isfill in the workspace root and save the spec form.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

—e= Command-line users, remember that you will also have to set your PACLI ENT
variable to switch between workspaces. For more information, see Chapter 2.

Alternatively, Bob can use P4V, asfollows, to create his new MAIN-bob workspace using MAIN-
master as atemplate:

1. HeusesView — Workspacesto find and select the MAIN-master workspace.

2. He uses Edit = Create Workspace from and enters MAIN-bob as the new workspace name.

About This Codeline

Developers need to know which codelines are available, where they are, who can use
them, who their curators are, and so forth. By putting thisinformation inan HTML
file at the root of each codeline, you can keep developers informed and keep track of
your codelines.

For example, in the Tango depot there's afile called Codeline.ntml at the root of the
mainline file hierarchy. Asacodeline is branched from the mainline or any of its
progeny, the Codeline.html file is branched with it. Codeline curators update the
branched Codeline.html files with current and relevant information. As developers
navigate the depot tree with P4V they can click the Codeline.html files to launch them
intheir browsers.

The Codeline.html files do more than document codeline purpose and status. Asthe
files command shows, they mark codeline locations in the depot:

p4 files //Tango/.../ Codeline. htm
/ | Tango/ Prod/ MAI N/ Codel i ne. ht m #2
/| Tango/ Prod/ REL4/ Codel i ne. ht m #1
/ | Tango/ Prod/ REL4. OP1/ Codel i ne. ht M #1

/| Tango/ Prod/ REL4. 1/ Codel i ne. ht m #1

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Because each Codeline.html file marks a codeline, the list of thesefilesisitself isa
handy summary of the Tango codelines. Even handier, the inherited history of the
Codeline.html files reveals the lineage of Tango's codelines. Thisfilelog output, for
example, shows that the REL 1.0 codeline was branched from MAIN, and REL1.0.1
and REL 1.2.1 were branched from REL 1.0:

p4 filelog -i //Tango/ Prod/ REL1. O/ Codel i ne. ht m

/| Tango/ Prod/ REL1. 0/ Codel i ne. ht m

#2 edit on 2004/03/13 by daria ' New codeline info'
branch into //Tango/ Prod/ REL1. 2. 1/ Codel i ne. ht m #1

#1 branch on 2004/03/13 by daria 'Create REL1. 0O’
branch into //Tango/ Prod/ REL1. 0. 1/ Codel i ne. ht m #1

branch from // Tango/ Prod/ MAI N Codel i ne. ht m #3

Codeline lineage is much easier to see in P4V's Revision Graph, as the figure shows.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

#/Tango/Piod/RELT. 01/ Codebne himl

/1T ango/Prod/REL1.2.1/Codeline. himl

/T ange/Prod/REL1.3.1/Codeline. himi

T ango/Prod/REL1.3.3/Codeline html

J
/Tango/Prod/RELT.0/Codeline. hirnl

4T ango/Prod/REL2. 0/ Codedine. him

£/T ango/Frod/MAIN/Cadelne. html

/Ta /DEVA/Codeline hirml

/T ango/Prod/SHIVA/Codeline. html

poz ibml

£Tango/Prod/MIGHTY-KEND/Codeline. html

41T ango/Prod/GAIA/Codeline. html

7T anged/Prod/TITAN/ Codelne. himl

3. Heentersaroot directory in the workspace form and clicks Save.

4. He uses Connection == Choose Workspace to switch to the MAIN-bob workspace.

8.2.8. Controlling access to a codeline

If you're concerned about who can check filesin to a codeline you can set up a permission group and
use the group to define codeline access permissions. (See Chapter 6.)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

For example, we can set up agroup called REL 1-dev to identify the developers working in Ace's REL 1
codeline:

p4 group REL1-dev

Group REL1- dev
Users ann

doug

sue

This puts Ann, Doug, and Sue in the REL 1 group. We use the protect command to configure depot
protections so that the //Ace/REL 1 path is visible to all, but writable only to members of the REL 1-dev
group:

p4 protect

Pr ot ecti ons
r ead user * * /] Acel/ REL1/ . ..

wite group REL1- dev * /'l Acel REL1/ . ..

There are many ways you can set up groups and group hierarchies, of course. Thisis but asimple
example.

8.2.9. Retiring a codeline

Y ou don't really have to do anything to retire acodeline. It will always be part of your depot history,

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

and that is agood thing. There are a couple of things you can do to keep developers from stumbling
onto it and using it, however, aside from simply declaring that it is has been retired. One isto set depot
protections to prevent check-insto it. The other isto use protectionsto block it from view entirely.
You'll see examples of thisin Chapter 9.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

8.3. Nightly Builds

Thefirmer acodelineis, the morelikely it isthat you'll be setting up a nighty build of the softwareinit.
(Although we call it anightly build , we mean any recurring, automated process that resynchronizes
and rebuilds.) In this section we'll look at how anightly build script can use Perforce to synchronize a
workspace with a codeline, open and submit generated files, and label the codeline.

8.3.1. The nightly build workspace

Nightly build workspaces are used by build engineers and their build scripts. A arule of thumb:

« Each combination of codeline and target platform should have its own nightly build workspace.
o Each nightly build workspace should have a view of one and only one codeline.

At Ace, for example, aworkspace called REL 1-bld-linux is dedicated to the nightly builds of the REL1
codeline on Linux:

p4 client REL1-Dbld-I1inux

Cient REL1- bl d-1i nux
Root /fusr/buil ds/ REL1
Vi ew /] Acel/ REL1/ . .. [/ REL1-bl d-1inux/...

8.3.2. Synchronizing the nightly build

Thefirst thing the nightly build script should do before synchronizing isto revert files that may have
left opened by aprevious, failed build:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 revert //...

(Theonly fileslikely to be opened are generated files that will be submitted by the script. However,
opened files can't be resynchronized and unsynchronized files can't be submitted, so they should be
revertedfirst.)

Next, your build script should identify the snapshot of the depot revisionisit building. Thisisthe build
ID; it'sthe highest changelist number in the depot at the start of the build cycle. Y our build script can
get this number from the output of changes -m1:

p4 changes -mil

Change 7089 on 2005/01/21 by nmei 'Fix size of pop-up for...'

If you trust your build toolsto do incremental builds correctly, synchronizing the nightly build is easy.
All the script has to do is synchronize with the build ID:

p4 sync @089

Each time the workspace is synchronized this way, the only files that are updated are those that have
changed since the last build; populating anightly build areais very efficient if only afew files have
changed and little needs rebuilding.

If, on the other hand, your build tools can't be trusted to rebuild things 100% correctly when files are
updated, your nightly builds will have to be done from scratch. And for scratch builds, the build script
will have to ensure that the workspace is pristine at the start. The simplest way to assure thisisto
remove workspace files by brute force, then force Perforce to resynchronize the entire workspace. For
example, in a Unix workspace whose root is /usr/builds/REL 1, the script would run:

rm-rf /usr/builds/REL1/*

p4 sync -f @089

(The -f option forces sync to recopy files to the workspace regardless of the Perforce Server's record of
what's already there.)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

8.3.3. Opening generated files

Nightly build scripts typically submit generated files . Before anightly build script can submit thefileit
has generated, it will have to open them.

Files not yet in the depot will have to be opened for adding. For example:

p4 add acepack. so

Asthe build script adds files to the depot, it can designate the +w filetype so that generated fileswill be
writable in workspaces. Thiswill simplify the script's work, because it won't have to open the files for
editing first in subsequent builds. (It will also make it easier for developers to work with generated
files; they won't have to anything special to rebuild them incrementally.) To designate acepack.so
workspace-writable asiit is opened for adding, for example, the script uses:

p4 add -t +w acepack. so

Files being updated will have to opened for editing, then submitted. Workspace-writable files can be
regenerated first, then opened for editing. Read-only fileswill have to be opened before the build script
regenerates them. In either case, the familiar edit is used to open files. For example:

p4 edit acepack. so

8.3.4. Submitting generated files

By the end of the build procedure, a number of generated files will be opened in the workspace's
default changelist, ready to be submitted. Aswe saw in Chapter 6, the trick to submitting achangelist is
to get the text of the changelist form from change -0, filter it to insert a changelist description, and pipe
the result to submit -i.

It'sagood ideato record the the build ID in the changelist description. A build script written in Ruby,
with the build ID revision stored in avariable called bui | d_I D, for example, can insert the description
into the changelist form thus:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

spec = "p4 change -0

spec. gsub! (
/ <enter description here>/,
“"Nightly build as of #{build ID}"

)
| O popen('"p4 submt -i', 'w){ [f| f.puts spec }

Y our script can insert amore detailed description, of course. Aslong asthe build ID is mentioned in
the description's lead-in, nightly builds show up nicely in acodeline's history:

p4 changes -nll0 //Ace/ REL1/. ..

Change 7093 on 2005/01/12 ... "Nightly build as of @089
Change 7089 on 2005/01/12 ... '"Fix typo in installer dialog
Change 7086 on 2005/01/12 ... 'Add verbose tool-tips in the
Change 7085 on 2005/01/11 ... 'More efficient find-file alg'
Change 7077 on 2005/01/11 ... "Nightly build as of @068
Change 7068 on 2005/01/11 ... 'Hidden files now included in'

8.3.5. Labeling nightly builds

Among itsfinal tasks, the nightly build script typically tags its workspace configuration with arolling
label. For example:

p4 | abel sync -1 REL1-nightly

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

(The labelsync command is preferred over tag for this use because it also removes the rolling label
from files not in the current workspace configuration.)

Note that labelsync works only with pre-existing, unlocked label specs. To assure these conditions, the
script can reinitialize the label spec beforehand using label -i. In a Ruby script, for example:

| O popen("p4 label -i', "w){ |f]| f.puts <<EOF }
Label : REL1-nightly\n\n

Description: REL1 nightly build\n\n

Options: unl ocked\n\n

View. //Ace/ REL1/...\n\n

EOF

8.3.6. Using the nightly build label

The nightly build label can be used to compare the nightly build configuration with other
configurations. For example, Bill, a developer, finds that he can't complete abuild in his Bill-WS
workspace. He compares the the latest nightly build to his workspace configuration:

p4 diff2 -q //...@ELL-nightly //...@Bill-W8

[/ Ace/ REL1/ db/ m nst/Janfil e#1 - <none> = == =

/1 Ace/ REL1/ db/ m nst/st.cfg#l - <none> = == =

The preceding output shows Bill that his workspace isn't completely in sync with the nightly
build-two files are missing. To synchronize his workspace with the nightly build configuration, he
can use:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 sync @REL1-nightly

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

8.4.1s Bug X Fixed in Codeline Y?

When a codeline is branched, a new variant of the software it containsis born. Aswork proceeds,
changes are submitted independently to each codeline and, depending on how and when changes are
merged between them, the variants diverge. Eventually each variant becomes distinct in its quality and
functionality. Sooner or later the question is bound to come up, "Isbug X fixed in codeline Y ?"

In simple cases, branching diagrams can reveal the answer. It's easy to seethat if abug isfixed in one
codeline at some point in time, the same bug will be fixed in any codeline subsequently branched from
that codeline, asillustrated in Figure 8-3. But what about the case where abug fix is merged from one
codeline to another? What if several bug fixes are merged together? What if the fix was backported to a
distantly related codeline? In a production devel opment environment, where there are many codelines
and many merges, branching diagrams would show so many relationships that the end result would be
impossible to interpret.

Figure 8-3. The ramifications of a bug fix

MAIN

Q___ PLUTO
SATURN

N

SATURNPLUS

Perforce, it turnsout, isinnately capable of answering the question, "Isbug X fixed in codeline Y ?"
Under the right conditions, a merged bug fix can be detected regardless of the codeline it originated in,
how many intermediate codelines it passed through, when it was merged to each codeline, and the

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

sequence in which it was merged before reaching the codeline in question. Using integration records
stored in its database, the Perforce Server can detect trails of merges emanating from file revisions
associated with changelists. A bug fixed in one codeline and merged to a second, third, and fourth
codeline, for example, leaves just such atrail of merges.

In this section wel'll look at how Perforce detects merged bug fixes, and the factors that make detection
more accurate.

8.4.1. Inside the perforce database

Before looking at the logic behind Perforce's bug fix tracking ability, let's take alook at some of the
objects modeled in the Perforce database. We'll start with the changelist. Submitted changelists”! are
recorded in the Perforce database when users submit files. The submitted changelist object associates
file revisions with a changelist. For example:

[l The database also records pending changelists, which are subtly different from submitted changelists in ways that
aren't that relevant here.

p4 descri be 6340
Change 6340 ... on 2004/08/19 21:06: 09
Affected files ...
/'l Ace/ REL1/ uti | s/ regen.rb#l add
I/ Ace/ REL1/ util s/ docfind.rb#6 edit
/1 Ace/ REL1/ uti | s/ orphaned. rb#19 integrate
A filerevision is an object in the Perforce database uniquely identified by the file's name and arevision

number. File revision records hold, among other things, an updating action (add, edit, integrate, etc.), a
changelist number, and file type information:

p4 fstat //Acel/ REL1/ util s/ orphaned. r b#19
depotFile //Ace/ REL1/ util s/ orphaned.rb

headActi on integrate

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

headType text

headRev 19

headChange 6340
Integration records associate a starting and ending revision of a donor file with arevision of atarget
file. They also store a changelist number and information about how the target file was created or

resolved. For example, hereis an integration record that shows that revision 19 of orphaned.rb was
copied from revision 21 of listall.rb:

p4 integrated //Ace/ REL1/ util s/ orphaned.rb

/'l Ace/ REL1/ uti | s/ or phaned. r b#19

- copy from//Ace/ REL1/ utils/listall.rb#l, #21

Every integration in to afile creates two integration records in the database. On records the actual

integration, as shown previously. The other is apseudo record that ensures that the integration will be
accounted for in the opposite direction as well:

p4 integrated //Ace/ REL1/utils/listall.rb
/1 Ace/ REL1/ utils/listall.rb#1, #21

- copy into //Acel/ REL1/ util s/ orphaned. r b#19

The symmetry of integration recordsis easier to see in the tagged output of the integrated command:

p4 -ztag integrated //Ace/ REL1/ util s/orphaned.rb
toFile //Ace/ REL1/ util s/ orphaned.rb
fronFile //Ace/ REL1/ utils/listall.rb

start ToRev #18

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

endToRev #19

start FronRev #none
endFronRev #21
how copy from

change 6340

p4 -ztag integrated //Ace/ REL1/utils/listall.rb
toFile //Ace/ REL1/ utils/listall.rb
fronFile //Ace/ REL1/ util s/ orphaned.rb
start ToRev #none
endToRev #21
start FronRev #18
endFronRev #19
how copy into

change 6340

8.4.2. Commands that detect merged bug fixes

There are three Perforce commands that are capable of reporting whether a particular bug fix isina
particular codeline: changes, jobs and fixes. All three commands have an optiona flag, -i, that cause
them to report the presence of merged bug fixes.

For example, say we know that changelist 1200 fixed abug. To find out whether that bug fix was
merged to the PLUTO codeline-that is, to the files in the //Ace/PLUTO path-we run:

p4 changes -i //Ace/ PLUTQ ...

Change 1234 on 2003/03/20 by bruce

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Change 1220 on 2003/03/18 by ann
Change 1200 on 2003/03/14 by henry
Change 1106 on 2003/02/23 by tracy

Change 1095 on 2003/02/12 by kip

Changelist 1200 appears in the output. But when we examine changelist 1200 we see that it refers only
tofilesin the //Ace/REL 1 path. In other words, this bug was first fixed in the REL 1 codeline:

p4 describe -s 1200
Change 1200 on 2003/03/14 by henry
Affected files:
/| Acel/ REL1/ conf/ db. cf g#4
/1 Ace/ REL1/ db/ f oo. c#3
/| Ace/ REL1/ db/ bar . c#9
Perforce traced the integration records emanating from filesin the //Ace/PLUTO path and found atrail

to the filerevisions created in changelist 1200. Thusiit reports that changelist 1200 has been merged to
IAce/PLUTO. From this we can infer that the bug isindeed fixed in the PLUTO codeline.

Two Perforce database objects, jobs and fixes, make merged bug fixes alittle easier for us humansto
find. (You may remember reading about jobs and fixes in Chapter 5). For example, here'sajob used to
describe a bug report:

p4 job -o Bug90
Job: Bug90

St at us: cl osed

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

User: ron

Dat e: 2003/ 01/ 15

Description: lcons very jaggy.

With jobs and changelists linked by fixes, you can do better than the changes -i command. Y ou can use

fixes-i and jobs -i to narrow the search for bug fixes. Whereas changes -i outputs all the changelist
numbersit finds, fixes-i can limit its output to changelists linked to a specific job:

p4 fixes -i -j Bug90 //Ace/ PLUTO ...

Bug90 fi xed by change 1200 on 2003/01/ 14

Likewise, jobs -i can limit its output to changelists that fix jobs matching a search expression you

supply:
p4 jobs -i -e "icon*" //Acel/ PLUTQ . ..
Bug90 ... *closed* "lcons very jaggy."

The jobs -i and fixes-i commands use the same logic as changes -i to report results. Starting with files
in acodeline path, they follow trails of integration records |ooking for references to revisions submitted
in changelists associated with jobs. In Figure 8-4, for example, REL 1's changelist 1200 holdsfile
revisions that have integration records leading to MAIN's changelist 1231. Changelist 1231 holdsfile
revisions that have integration records leading to file revisionsin PLUTO's changelist 1288.

Figure 8-4. A trail of integration records

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

8.4.3. False positives

But what is Perforce actually telling you? Remember that codelines represent collections of files, each
file having its own revision and integration history. If any of the revisionsin the codeline you're
inspecting are related by integration to the bug fix you're looking for, Perforce will report a positive
result. What Perforce is reporting with fixes-i, jobs -i, and changes -i is the optimistic answer.

For example, looking at Figure 8-5, say a bug was fixed by change 1200 in the REL 1 codeline.
Changelist 1200 holds three file revisions; al three were integrated to MAIN in change 1231. For one
reason or another, only one of the threefile revisionsin changelist 1231 was integrated from MAIN to
PLUTO.

Figure 8-5. False positive due to partially integrated changelist

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=
REL1 ®
C— :
N -
SN &
n
1)
MAIN g
. O LAY o—— =
Q RN > S— <
O - 's! :
‘“Ei)—:x— O >
o
PLUTO @‘QP
r o N d ‘\.
— o8 : N\
—C > - 0—0 0
Y :z'_‘.l_.\ P \-‘-—P\

It would be niceto be able to assume that if Perforce reports that changelist 1200 was integrated to
PLUTO, the complete changelist was integrated. But in fact, Perforce reports that changelist 1200 was
integrated, even though only oneitsthreefiles has atrail of integration history leading all the way to
the PLUTO codeline.

Perforce's optimistic reporting is based on the premise that content diverges between codelines.
Because of that, not all revisionsinvolved in achangelist are necessary relevant when a bug fix is being
merged to other codelines. Perforce assumes that if some of the revisionsin a changelist have been
merged, the unmerged revisions were left behind because they don't apply, not because they were
forgotten.

8.4.4. Making merge detection more accurate

There are a number ways you and your developers can decrease the likelihood of false positives from
the jobs -i and fixes-i commands:

» Codeline scope should be succinct enough to be identified with a one-line Perforce filespec. In the
same vein, codeline scope should be unambiguous. (See "Filespecs as containers,” earlier in the
chapter, for examples.)

o Developers should submit well-organized changelists.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The following output shows, for example, that Ann and Henry have been careful to organize the
filesthey submit into changelists that reflect points of integrity in their work. Each changelist they
submit introduces a known condition into the repository: first some refactoring is completed, next
acrash isfixed, next someicons are improved, and finally some copyright dates are updated.

p4 changes -1

Change 12347 on 2003/01/15 by ann

Fi x outdated copyright tenplates

Change 12330 on 2003/01/ 14 by henry

Fi xed the jaggies on the file icons

Change 12298 on 2003/01/12 by ann

Fi x crash on the fil e-not-found case

Change 12279 on 2003/01/11 by ann

Refactoring for found/ not-found |ogic

The following is an example of poorly organized changelists, taken from a parallel universe. In
thisuniverse, Ann is bad; she has not been careful about organizing her changelists. To use any of
her changeliststo refer to a point of integrity would not be particularly useful, as none of her
changelists refer to a point at which anything she worked on is complete. Even using Henry's
changelist number to identify a point of integrity isimpossible because his changelist was
submitted between two of Ann's half-baked submissions:

p4 changes -|

Change 12345 on 2003/01/15 by ann

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Cops, sone nore .h files to fix crash

Change 12333 on 2003/01/14 by ann

One nore copyright tenpl ate

Change 12321 on 2003/01/13 by henry

Fi xed the jaggies on the file icons

Change 12298 on 2003/01/12 by ann

Wirk on crash and fix sonme copyright tenpl ates

(Thisisnot to say you can't submit incomplete work. Y ou can, in your private branch. See
Chapter 10.)
o Entire changelists should be integrated when merging bug fixes. (See Chapter 4 for more on this.)
« By the same token, it'simportant to integrate changelistsin order. (See Chapter 4.)

« Finally, when associating a job with a changelist, make sureit's the changelist that really fixes the
bug. Say you fix Bug90 with changelist 1100. Then, you realize you missed something, so you
submit changelist 1170, also to fix Bug90. Later, someone else finds a flaw in your work, so you
fix it again with changelist 1200. That finally fixesit for good. As Figure 8-6 illustrates, Perforce
is perfectly happy to create three fix records for you.

Figure 8-6. Too many fixes

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Each fix record associates the job named Bug90 with a different changelist. But at what point in
the life of the REL 1 codelineis Bug90 really fixed? As of changelist 1200, of course. For the
purpose of tracking bug fixes, the fix records that associated Bug90 with changelists 1100 and
1170 arered herrings. If therevisionsin either of these changelists are integrated from REL 1 to
another codeline, Perforce will report Bug90 fixed in that codeline as well-another false
positive. To prevent that from happening, you can use fix -d to remove fixes that aren't fixes. For
example:

p4 fix -d -c 1100 Bug90

p4 fix -d -c 1170 Bug90

Asthe only change linked to Bug90, change 1200 now marks the point at which the bug istruly
fixed, as Figure 8-7 shows.

Figure 8-7. The real fix

%ﬁé&

&
,,E?-

& @ &
P~ P FaN P S »
[] [] [| I:D:C:l | | [] [
e jp— j — g o —

= Day bay Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 9. Release Codelines

It's June, the mainline abounds with completed development, and it's time to branch anew release. In
this chapter we take alook at the care and feeding of release codelines .

Well use Ace Engineering's repository for our examples. In fact, we'll put ourselvesin therole of Ace
Engineering's rel ease manager for the example scenario that runs through the chapter. The filespecs of
interest to us are:

IIAce/MAIN/...

The mainline

IIACe/RELY...

The codeline that supports our 1.X releases

IIACE/RELZ...
The codeline we're going to create and use for our second major release

The top-level modules that make up our release codelines are:

db/ . ..
built/...
doc/ . ..
gui /...
tests/...

utils/...

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

(Remember, these names, paths, and filespecs are shorter than you're likely to need in the real world.
We keep them short here so the examples fit on the page.)

AR R

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

9.1. Creating a Release Codeline

In preparing to branch the new release codeline, we'll create a branch view and alabel view, label the
modules we're going to branch, and set up a master workspace. Before doing any of these things,
however, we have to decide when to branch the codeline, what to call it, who owns it, and what belongs
init.

9.1.1. When should we branch?

Asyou read in Chapter 7, the mainline leaps (or creeps) forward with changes delivered from
development codelines. When our development goals have been reached, we make arelease.

Of course, software must be stabilized before it isreleased. (That is, it hasto be tested, its showstopper
bugs have to be fixed, and its loose ends have to be tied up.) We can't stabilize arelease in the mainline
because the mainline must remain open for new development. The point a which new development
conflicts with release stabilization work, therefore, is the point at which we branch arelease codeline.

9.1.2. Who owns the release codeline?

The curator of the release codelineis typically the release manager, the person in charge of getting the
release out the door. Every change to the release codeline is going to affect the release manager's
schedule; it makes sense that the release manager controls the codeline.

9.1.3. Naming arelease codeline

Every company hasits own system for naming releases. Perforce doesn't impose any kind of release
naming. In fact, visible release numbering systems have very little bearing on how software is managed
in Perforce. We can pick any name we want for arelease codeline without constraining externally
chosen release identifiers.

At Ace Engineering, we take the following into account:

o We may not know the exact ID of the release we're working on. Even if we do, the final release
number may change in the course of stabilization. (For example, we may be planning to release

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

AcePack 2.0.0, but by the time we get there, it could be AcePack 2.0.3. Or UltraPack 2.0.3, for
that matter.) Thisisagood reason not to use the actual, intended release ID as a codeline name.

» A single codeline can be used for a series of incremental releases. (For example, we'll be releasing
AcePack 2.0-Betaand AcePack 2.1 from our new codeline. And we may produce point-
releases-AcePack 2.1 and so forth-from the same codeline.) This is another reason a specific
release ID isn't suitable for a codeline name.

o If any of our source files use keyword expansion, the name of the release codeline may be visible
to users."] In other words, if the AcePack software emits version strings generated from the
expanding keyword $Id: ch09.xml,v 1.2 2005/12/27 17:19:31 ellie Exp $, customers will see the
full name of depot path from whence the source files came. Thisis a good reason not to use
anything tasteless or offensive for a codeline name.

[l Run p4 help filetypes, or see "Perforce File Type" in The Perforce Users Guide for more information about
RCS-style keyword expansion.

Ideally, arelease codeline's name identifies a set of potential releases, not any singlerelease. At Ace
Engineering, for example, we'll name our release codeline REL 2 because it will be used to stabilize the
"2.X" family of releases. The filespec for the REL2 codelineis:

/1 Acel REL2/ . ..

(Asyou can see, Ace Engineering has avery flat depot hierarchy.)

9.1.4. Which modules should we branch?

A release codeline, with its extremely high quality and stability requirements, should include all the
modules that are needed to produce the release-that is, everything developers need to work on, build,
and test their bug fixes. (If developers have to fix bugs in aworkspace composed of modules mixed
and matched from various codelines, the release codeline will never be stable.) This means that even
inactive modules should be branched into arelease codeline. If amoduleis needed to build or test the
release, we'll branch it into the release codeline.

On the other hand, we don't have to branch modules that are created in the course of a build. For
example, each of Ace's codelines contain a built module that stores the files created by nightly builds.
There's no point in branching the built module from MAIN to REL 2; the first nightly build in REL2
will createit.

We branch modules from MAIN, and only from MAIN. In other words, we won't be branching

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

modules from development codelines or other release codelines directly into REL 2. (This process
normalizes the flow of change. It also makesit more likely that dependency problems will be caught
before releases are branched.) These are the MAIN modules we'll branch into REL 2:

ITAce/MAIN/db...

Source files for the database component of the product

lIACEMAIN/QU/...

Source files for the GUI component of the product

IAce/MAIN/dod/...

Files that contribute to the product's user documentation

IIAce/MAIN/tests/...

Tests used to validate built components

I/Ace/MAIN/utild...

Scripts and configuration files used for nightly builds and tests

9.1.5. A branch view for the release codeline

Now that we know which MAIN modules to branch into the REL 2 codeline, let's create a branch view
to keep track of them. In this case, we'll create a branch view named REL2-MAIN. The branch
command creates a branch view:

p4 branch REL2- MAI N

Br anch REL2- MAI N

Descri ption Rel 2.X stabilization.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Vi ew /1 Ace/ REL2/ db/ . ..

/1 Acel/ REL2/ doc/ . ..
/'l Acel REL2/ gui /. ..
/! Acel REL2/tests/. ..

[/ Ace/ REL2/ utils/...

Our REL2-MAIN branch view follows these conventions:

output of the branches command.)

righthand side of the mapping.)

[/ Acel/ MAI N db/ . ..
/1 Ace/ MAI N doc/ . . .
/'l Ace/ NAI N gui /. ..
I/ Ace/ MAI N'tests/...

[/ Ace/ MAl NN utils/...

The name of the branch view is of the form childname-parentname.

A terse description shows the codeline's purpose. (It's terse so that the whole thing isvisible in the

The view is mapped "toward the mainline." (That is, the mainline's modules are listed on the

Each top-level module in the release codeline is represented by aline in the branch view.

Notice that thanks to our convention for naming and describing branch views , the branches command
can tell usat aglance what we need to know about the REL2-MAIN branch view:

p4 branches

Branch REL2- MAI N 2004/ 11/10 'Rel 2.X stabilization.'

9.1.6. The master workspace

The master workspace serves both as a place for the curator to do maintenance tasks and as a template
for creating developer workspaces. We use the client command to set up a master workspace called

REL 2-master:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 client REL2-nmaster

Cient REL2- mast er

Root [usr/rel ngr/ REL2

Opti ons | ocked

Vi ew /| Acel REL2/ db/ . .. /| REL2- master/db/ . ..
[/ Acel REL2/ built/... [/REL2-master/built/...
/' Acel REL2/ doc/ . .. /| REL2- mast er/ doc/. ..
/'l Acel REL2/ gui /. .. /| REL2-master/gui/. ..
I/ Acel REL2/tests/... [/REL2-master/tests/...
I/ Acel REL2/ utils/... [/REL2-master/utils/...

Thisview putsthe REL2 filesin the /usr/relmgr/REL 2 directory. The locked option ensures that only
the workspace's owner can use it and change its parameters. (The owner of aworkspace is the person
who creates the client spec.) By explicitly mapping each of the codeline's modulesin the view, we
make it easier for devel opers to select the modules they'll need in their workspaces.

9.1.7. Are we branching the right files?

With a branch view created, and with REL 2-master as our current workspace, we now check to make
sure we'll be branching the right files. We use the integrate command to preview the branching
operation:

pd integ -n -r -b REL2-MAIN 1> tenpfilel 2> tenpfile2

(-nisthe preview-only option, and -r reverses the branch view mapping.) tempfilel contains the list of
filesthat will be branched. tempfile2 contains error messages. We capture the output of this preview in
temporary files because it can be huge.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

We check the preview output to make sure of the following:

e Target filesare in view. We can confirm this by making sure there are no view errors captured in
tempfile2. (See Chapter 9 if there are.)

o Target filesare in the right depot location. (For this example, the target files are the fileswe're
creating in the REL 2 codeline.) A glance at tempfilel should confirm this-all the files listed in it
should appear under the //Ace/REL 2 path.

« We're branching the modules we need. One way to check thisisto do a quick count of thefilesin
each of the modules we're interested in. On Unix, for example, we can do that with grep and wc:

grep // Ace/ REL2/ db/ tempfilel | wc -|

1483

grep //Acel/ REL2/ doc/ tenpfilel | wc -|
5743

[... And so forth.]

9.1.8. A label view for the branch point

Next we create a REL 2 |abel spec that identifies the MAIN modules that will be branched.

p4 | abel REL2

Label REL2
Descri ption Branch from MAI N
Vi ew /1 Ace/ NAI N db/ . ..

/1 Ace/ MAI N/ doc/ . ..

/1 Ace/ MAI N/ gui /. ..

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[/ Acel MAI Ntests/. ..

[/ Acel/ MAI NN utils/...

By convention, the label name is the same as the codeline name. This label will be used to tag the
branch point in MAIN, asyou'll seein amoment. It aso servesto document the scope of the REL 2
codeline.

Diagnosing View Errors

integrate'sno target files in both client and branch vi ewmessage can be caused
by a number of problems:

e Once possibility isthat //Ace/RELZ... is not within the client view of our current
workspace. (Isthe current workspace set to REL 2-master? Could there be atypoin
the REL 2-master client view?)

o Perhapsintegrate's target is something other than //Ace/REL?2/.... (A typo in the
REL2-MAIN branch view, perhaps? Did we forget the -r on the integrate command?

)

o Maybe depot protections hide //Ace/MAIN/... or [[Ace/REL2/... from our view. (See
Chapter 6.)

Remember that integrate always cites the donor filespec in view errors, even when it's the
target filespec that's the problem.

9.1.9. Labeling the branch point

In the ideal world, all the modules we need would be ready for usto branch asis. In amore realistic
scenario, we'd probably find oursel ves branching some modules from specific pointsin the mainline's
evolution. Thisiswhere the branch point label comesin handy. We check with each of the devel opers
involved, and as we find out what versions of their modules to branch, we tag them with the REL 2
label:

e MAIN'sdoc and utils modules are good to go as of right now. We tag their head revisions with

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

the REL2 labdl:

p4 tag -1 REL2 //Ace/MAIN doc/... //Ace/ MAIN utils/...

o Weareinformed that the db module should be branched at changelist 6590. We tag MAIN'sdb
module accordingly:

p4 tag -1 REL2 //Ace/ MAI N db/... @590

e The gui module should be branched as of @6595:

p4 tag -1 REL2 //Ace/ MAIN gui /... @595

e Thetestsmoduleis, in fact, not quite ready to branch yet. So we don't tag it now. (We've
contrived this situation to demonstrate that everything doesn't have to be tagged and branched at
once. We'll come back to testslater.)

9.1.10. Creating the release codeline-really!

We've set up abranch view, a master workspace, and a branch point label. Finally, we are ready to
actually branch MAIN's files and submit them into our new release codeline. It's quite simple now:

p4 integ -r -b REL2- MAIN @REL2
p4 submt
(The-bflag tells integ to use the branch view to determine donor and target paths. The -r flag tellsit to

use the branch view's mappingsin reverse. @REL2 is the label that tells integ what revision of the
donor filesto branch.)

Once we've done this, the new REL 2 codelineisready to use. Developers can synchronize their

workspaces with it and stabilization of the release can commence.

9.1.11. Branching more files later

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Wait-remember the tests module that wasn't ready to branch? A few days later we hear from the
developer that as of changelist 6608, testsisfinally ready to go. It's easy to branch this straggler into the
new codeline now. First we tag the module in MAIN:

p4 tag -1 REL2 //Ace/ MAIN tests/... @608

Then we branch the module. We can use exactly the same integrate command as before. Since the
@REL?2 versions of the other modules are already branched, this operates only on the as-yet
unbranched tests module:

p4 integ -r -b REL2- MAIN @REL2

p4 subm t

= Day bay Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

CE=S

9.2. Working in a Release Codeline

The release codeline existsin order to perfect already-devel oped software. It istypically used to test thorou
bugs, finalize installers and documentation, and generally to tie up loose ends. Although these things may |
changes to program source files, these are small changes-no refactoring, and no changes to intended funct
What all this adds up to is that development in the release codeline is a matter of close collaboration betwe
tech writers, testers, the build czar, and the release manager.

Now, if you'll take off your codeline curator hat and put on your software developer hat, we'll talk about pc
to working in arelease codeline.

9.2.1. The developer's workspace

The people working on releases are on very tight schedules, and release codelines are held to high levels of
the grand scheme of things, release codelines are at the top of the tofu scale. Y ou, as a developer, don't war
one to throw awrench in the works by checking in mismatched files or untested changes. Y ou can reducet
that happening by dedicating aworkspace to rel ease stabilization work.

To work on stabilizing REL 2, for example, set up a workspace dedicated to working in REL2. Y ou can use
master workspace as atemplate, as we'll seein amoment. This gives your workspace a view that encompa:
REL 2 modules you'll need on disk in order to build and test your changes.

For example, Sueis going to create aworkspace called REL 2-sue for her REL 2 bug fixes. Sueisworking
workspace will be rooted in her /usr/team/sue/REL 2 directory. Of the modulesin the REL2 codeline, Suer
doc and utils modules on disk for her work.

Sue creates a client spec using the REL 2-master workspace as atemplate. The client command gives her a
edit. The form comes prefilled with alist of REL2 modulesin its View field. She edits the form, entering h
root and removing the view lines for the modules she doesn't need:

p4 client -t REL2-nmster REL2-sue

Cient REL2- sue

Root /usr/team sue/ REL2

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Vi ew /! Ace/ REL2/ doc/ . .. /| REL2-sue/ doc/ . ..

[/ Ace/ REL2/utils/... [|/REL2-sue/utils/...

After saving the spec form and setting REL 2-sue as her current workspace, Sue synchronizes the workspac

p4 sync

Sue's /usr/team/sue/REL 2 now contains the files she needs to work on the REL2 codeline.

Asadeveloper, it'simportant to keep your workspace up to date when working in arelease codeline. For o
can be dependencies between your changes and the changes recently submitted by other developers. You'll
out what they are before you submit your changes, not after.

Another reason isthat any testsyou run arereally only valid in acompletely up-to-date workspace. Y ou cal
remain synchronized with an earlier point in time while you're still debugging, but once you've found the bt
resynchronize so you're not testing with stale code.

Y ou may recall reading in Chapter 3 that it's a good idea to synchronize your workspace with new changes
incrementally. If you resynchronize frequently, you are in effect synchronizing incrementally.

9.2.2. What to document in the change descriptions

When you're checking in a change to arelease branch, you should write a change description that helps eve
working on the rel ease understand the impact of your change. For example:

» Did you make a user-visible change? People working on user documentation and rel ease notes will ne
this.
« Did you change any program interfaces? Other programmers will need to know.

» Didyou add atest for your change? How do you know your change isworking as expected? Testersv
information to confirm that your changeisin the build.

« Did you rename, move, or delete any files? (Hopefully not-thisis arelease branch, not a developmel
The REL2 curator will need to know about thisin order to update the REL2-MAIN branch view. (See
branch view up to date ," later in the chapter.)

9.2.3. Fixing a bug? Fix a job!

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

In Chapter 5 you read about using jobs for bug tracking . Most work done in arelease codeline isto fix bug
using jobsto track bugs, make sure you link jobsto your release codeline changes.

For example, Sue's working on the bug described by job016551 :

Job j ob016551
Descri ption Diagram 8.1 i n DBA Gui de has unreadabl e text.

She's made alocal change to fix the bug. Now she submits her change, and as she fills out the changelist fc
job016551 in the Jobs field:["]

["I The job may aready be listing in the changelist form. See Chapter 5 .

p4 submt

Change new

User sue

Descri ption Cl earer flow diagramfor the database re-org section.
Jobs j 0b016551

Change 8847 subm tted.
Now her change is associated with the job. Perforce automatically changes the job's status to closed when t

is submitted.

It'sno big deal to forget to enter ajob in a changelist form. Jobs can be linked to changelists after the fact. |
to link job016551 to changelist 8847:

p4 fix -c 8847 job016551

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

9.2.4. What if i can't check in a change?

Y ou can find yourself in a Catch-22 situation working in arelease codeline: Y ou know that you can check i
only if they're tested and proven correct. But what if testing a change fully means you have to test it on othe
Y ou can't get your change onto other machines unless you've checked it in, and you can't check it in becaus
tested it.

Do not despair-you can check your change into an ad hoc task branch first. Then, once you've validated y:
you can pull it into the release branch. Y ou'll see how to do thislater in the chapter in "Task Branchesand |
Branches .

9.2.5. Keeping the branch view up to date

While devel opers are working in the release codeline, the codeline curator makes sure the branch view stay
Let's step back into our codeline curator role and see what this entails.

The REL2-MAIN branch view, asyou recall, is used to map release codeline files to corresponding mainlit
time, the structure of the mainline may change. We'll have to update the branch view fromtimetotimetor
old file structure in the release codeline with the new file structure in the mainline. In other words, when fil
are renamed, moved, added, or deleted, we'll have to update the REL2-MAIN branch view. Thiswill make
painless for developers working in REL 2 to integrate their changes into MAIN.

To update the branch view:

1. Welook for any changes that have occured in MAIN since the branch point. The easiest way to do thi
descriptions of the MAIN changes that aren't accounted for in REL 2:

p4 interchanges -1 -r -b REL2-MAIN > tenpfile

(The -1 option causes changelist full descriptionsto be output. The -r and -b flags behave the same foi
asthey do for integrate .)

The output is piped to atemporary file because it could be large.

2. We skim through the temporary file looking for evidence of renamed, moved, or deleted files. If deve
been good about documenting them, the structural changes we need to know about will be evident. Fc

Change 8845 on 2004/10/ 11 by bill

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

New test driver for DB procedures.

Slight reorg of test directories so that...

MOVED: db/proc/td/... => tests/db/proc/td/...

Change 8849 on 2004/ 10/19 by bob
Fi xed i con nanme conflict.

RENAVED: gui /i g/ spin.png => gui/ing/sp.png

Change 8850 on 2004/10/19 by sue
Got rid of old setupApp, now that the installer is

wor ki ng.

DELETED: db/setup/...

Change 8859 on 2004/10/20 by tim
Consol i date col or preferences.
Not hi ng renaned, noved, or del eted. Rel ax.
3. Weadd linesto the REL2-MAIN branch view to reconcile these structural changes. (For more details

why to do this, see Chapter 4 .)

For example:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 branch REL2- MAI N

Vi ew /1 Acel REL2/ db/ . . . /1 Acel/ MAI N db/ . . .
/| Acel REL2/ doc/ . . . /1 Ace/ MAI N doc/ . . .
/'l Ace/ REL2/ gui /. .. /1 Ace/ MAI N gui /. ..
/'l Acel REL2/tests/. .. /I Ace/ MAI N tests/. ..
/I Acel REL2/ utils/. .. /1 Ace/ MAI N utils/...
/| Ace/ REL2/ db/ proc/td/. .. /1 Ace/ MAI N t est s/ db/ pr

/I Ace/ REL2/ gui /i mg/ spin.png //Ace/ MAI N gui/ing/sp.

-/ 1 Acel/ REL2/ db/ set up/. .. /1 Ace/ MAI N db/ set up/ . .
The last three lines map the old structure in the REL 2 codeline with the new structure in MAIN.

4. Finally, we add a comment to the branch view description to record the version of MAIN for which w
the mapping:

p4 branch REL2- MAI N

Description Rel 2.X stabilization.

Adj usted for MAIN...@859.

We may haveto repeat this sequence of steps from time to time as the mainline evolves. By entering a char
in the description, we're leaving ourselves a breadcrumb for the next time we update the branch view. We ¢
last-recorded changelist number to make the interchanges command skip past the changes we've already se
time we repeat this procedure, for example, we'll start with:

p4 interchanges -1 -r -b REL2-MAIN "@8859" > tenpfile

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

(The revision @>8859 means the next revision after @8859.I"1) It'sin quotes so the command shell doesn
symbol.)

[The > syntax is undocumented; see p4 help undoc for information about it.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

9.3. Integrating Changes into the Mainline

Developers, you're not off the hook once you've submitted bug fixesto the release codeline. Y our
changes need to be integrated from the release codeline into its parent. In this section we take alook at
what you need to know and do to integrate your changes.

9.3.1. Which changes should be integrated?

All changesin the release codeline should be integrated into the mainline. Thisis almost always safe
because rel ease codelines are inherently more stable than their parents. When it's not not safe is when
the mainline has evolved so much since the release was made that massive architectural differences
make it difficult or impossible to mergefiles. In "How much has the mainline changed?' a bit later in
the chapter we'll ook at how to gauge the feasibility of an impending integration.

Even when a release codeline change has no relevance to the mainline-it updates release-specific
configuration files, for example-it should be integrated to the mainline. It can be resolved by ignoring
the change. Asyou read in Chapter 4, This creates integration history that shows that the change has
been at |least accounted for, if not actually merged, in the mainline.

9.3.2. When should changes be integrated?
Ideally, changes should be integrated to the mainline as they occur. In practice, there's always an

interval of uncertainty between the time a change is submitted to arelease codeline and the point at
which it's proved valid. The redlity isthat each change should be integrated as soon as it's validated.

9.3.3. Who does the integration?

The best person to integrate a change to the mainline is the person who made the change in the release.
Why? Because the person who made the change understands the content of the filesinvolved. If there
are any conflictsto resolve, he or she will know how to resolve them. If there are problems with
compiling or testing, he or she will know how to fix them.

9.3.4. A workspace for integrating into MAIN

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

To integrate your changes to the parent codeline, you'll need aworkspace with aview of the parent
codeline. The procedure shown in "The developer's workspace," earlier in the chapter, worksto set up a
workspace for the parent codeline as well. Sue, for example, sets up her MAIN-sue workspace as
follows:

p4 client -t MAIN-master MAI N sue

Cient MAI N- sue

Root [usr/team sue/ MAI N

Vi ew /1 Acel MAI N doc/ . . . /I MAI N- sue/ doc/ . . .
[/ Ace/ MAIN utils/... [/MAIN-sue/utils/...

With this view the //Ace/MAIN fileswill go in Sue's /usr/team/sue/MAIN directory. (And if you
compare the MAIN-sue view to the MAIN-master view shown in Chapter 8, you'll see that Sue has
again removed mappings for the modules not needed in her workspace.)

9.3.5. Finding unintegrated changes

Asadeveloper, you'll be pulling your own changesinto the parent codeline, by changelist number. I
you're not sure which changes you submitted, you can check the history of the release codeline. For
example, Sue checks REL 2's history with:

p4 changes -u sue //Acel/ REL2/. ..
Change 8847 by sue "Clearer flow diagramfor..."

(The -u sue flag makes changes list only Sue's changes.) Sue recognizes 8847 as the change she needs
to integrate to MAIN.

It's also important to know how many changes are queued for integration and where your change fitsin.
The interchanges command can show queued changes; use it with release codeline's branch view. For
example, to see the changesin REL 2 that are queued for integration to MAIN:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 interchanges -b REL2- MAIN
Change 8843 by jim "Fix installer permssion..."
Change 8847 by sue "Clearer flow diagramfor..."

Change 8862 by ann "Fixed password errors in..."

Ideally, changes should be integrated incrementally, in order. The preceding example shows that The
next REL2 changein linefor integration into MAIN is change 8843, and Jim's the one who should do
the integration. After that, Sue should integrate 8847, then Ann should integrate 8862.

Y ou can aso look for unintegrated changes in individual modules. For example, to find unintegrated
doc changes:

p4 interchanges -b REL2-MAIN //Ace/ VAI N doc/ . ..

Change 8847 by sue "Clearer flow diagramfor..."

9.3.6. When it's okay to integrate changes out of order

One reason that changes should be integrated in order is so that no integration brings along with it any
part of a previous change that has not yet been integrated. Aslong as changes are integrated in order
thiswon't happen.

However, it doesn't hurt to integrate a change out of order if it has no dependencies on any previous
changes. As it happens, Sue's change 8847 corrects some documentation. Sue knows that the
documentation module is completely independent of the other modules. She can go ahead and integrate
her change, even though Jim has not yet integrated his.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Hidden Dependencies Between
Changes

Sometimes change dependencies are obvious: If change 100 affectsfile A and change 101
affectsfile A, change 101 is clearly dependent on change 100. Unless you integrate change
100 first, you'll probably break something having to do with file A.

But change dependencies can also be caused by file dependencies. Say change 100 affects
file A and change 101 affectsfile B: If file B depends on file A, change 101 depends on
change 100. Unless you integrate change 100 first, you'll probably break something having
to dowith files A and B.

Y our best bet isto integrate changesin order unless you're absolutely sure they have no
hidden dependencies .

9.3.7. Integrating a change

Sue's going to go ahead and integrate change 8847 from REL 2 to MAIN. She's using the MAIN-sue
workspace for this. Here's what she does:

1. She makes sure she currently has no files opened in her workspace:

p4 opened

File(s) not opened on this client.

2. She synchronizes her workspace with the current MAIN codeline:

p4 sync

Thisfills her workspace with the latest doc and utils files from MAIN. (The modules doc and
utils are the only modules mapped in her workspace vew.)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

3. She checksto make sure al the doc changes prior to 8847 are already integrated from REL 2 into
MAIN:

p4 integ -n -b REL2-MAIN "//Ace/ MAI N doc/ ... @8847"
/'l Ace/ MAI N doc/ ... @8847 - all revisions already integrated.
(The-nisinteg's preview only flag. The -b flag selects the REL2-MAIN branch view to use for

this command. The @<8847 syntax means all changes up to but not including 8847.)

4. Sheintegrates her change:

p4 integ -b REL2-MAIN //Ace/ MAI N doc/ ... @847

Thisinteg command opens //Ace/MAIN/doc filesin her workspace.

5. Sheresolvesthe opened files:

p4 resol ve
This command either copies or merges REL 2 files into her workspace, depending on how she

answered the resolve prompts.

6. Finally, she submits her change:

p4 submt

Her REL 2 changeis now inthe MAIN codeline.

9.3.8. How much has the mainline changed?

While the release is being stabilized, the mainline continues to evolve. Sue's change was easy to

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

integrate because MAIN had not evolved much since REL 2 was branched from it.

If the mainline has evolved in leaps and bounds-or if it's been along time since the release was
branched-you may want to find out how much the mainline has changed. This can give you some
insight into how hard it's going to be to integrate a change to it from the release codeline. (It can also
tell you whether your release change is even relevant in the evolved mainline.)

There are several things you can do to gauge how much the mainline has changed. Oneisto simply see
how many changes have been submitted to the mainline it since it was branched into REL2. The
interchanges command can tell you this:

p4 interchanges -r -b REL2- MAIN

Because interchanges uses the branch view, it's reporting only the changes that are relevant to the
modulesin the release. (Note the use of -r-that's the flag that tells interchanges to apply the branch
view in reverse.)

Another isto preview the integrate command for the change you're going to integrate. For example, if
you're integrating change 8843 from REL 2 to MAIN, you can get a preview with:

p4 integ -n -b REL2- MAIN @843

/1 Ace/ MAI N db/ dbPg. cpp - branch/sync from
/| Acel/ REL2/ db/ dbPg. cpp#4, #5
/1 Ace/ MAI N db/ dbPgLoad. cpp - can't branch from

/'l Acel/ REL2/ db/ dbPgLoad. cpp#2 without -d or -Dt flag

Warnings like these-branch/sync fromandcan't branch fromtell you that filesin MAIN have
been renamed, moved, or simply deleted since REL 2 was branched. These structural changes should
have been reconciled in the REL2-MAIN branch view, but it's possible the branch view is not being
kept up to date. (Put on your codeline curator hat again and see "Keeping the branch view up to date,"
earlier in the chapter.)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Y ou can a so gauge divergence between codelines with the diff2 command. For example:

p4 diff2 -b REL2-MAIN > tenpfile

It'sagood ideato pipe diff2's output to a temporary file-the further MAIN has diverged from REL 2,
the larger its output will be.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

9.4. Making a Release

Once arelease codeline is stabilized-or stable enough, at any rate-we can make the release. ("We,"
in this context, refer to the rel ease manager and release codeline curator.)

9.4.1. Building the release

The release should be built from a cotemporaneous snapshot of the release codeline. In other words, the
files that contribute to the release should be the head revisions as of a known point in time. Moreover,
they should all come from the release codeline. (Mixing and matching codelines to build arelease just
invites confusion.)

A known point in time in Perforce equates to a changelist number, of course. The changelist number
that identifies the snapshot of our first release out the REL 2 codeline is 8901, as shown in Figure 9-1

Figure 9-1. The release snapshot

RELT
&

)
= M m - ’

Thefilespec //Ace/REL2/...@8901 is the comprehensive, permanent, and unambiguous reference to the
filesthat went into the rel ease.

9.4.2. Labeling the release

It's not entirely necessary to label arelease, but labels do have their advantages. For one thing, they
have recognizable names, whereas changelist numbers don't. A label can be used to associate an
external release identifier with afilespec.

The release we're making happens to be known to the rest of Ace Engineering as AcePack_2.0-Beta.
To label our new release, we run:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 tag -1 AcePack_2.0-Beta //Ace/ REL2/... @901

The revision @A cePack_2.0-Beta can now be used in place of achangelist number to identify filesin
therelease (see Figure 9-2.)

Figure 9-2. The release label

RELY

0=0—=0 0=0=—10
I\-._.-»"' - j — jp —

For our own reference, we can note the release point in the label description. We use the |abel
command to bring up the label spec form, note the release snapshot changelist number in the
Description field, and enter the rel ease codeline's filespec in the View field:

p4 | abel AcePack_2.0-Beta

Label AcePack 2. 0-Beta
Descri ption Built from @901
Vi ew /] Acel REL2/ . ..

Thisisfor documentary purposes only; changing the label spec does not affect the configuration
already tagged with the label.

9.4.3. Making point releases

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Having made arelease is no guarantee that our bug fixing and release stabilization work is done. Au
contraire-we're likely to get more bug reports than ever now. The release codeline will continue to be
the venue for fixing bugs in the release. Eventually, we'll have a point release ready to produce from the
same codeline.

For example, after producing the beta release from REL 2, bugs have been fixed and minor
improvements have been made. We're now ready to make the first production release from the REL 2
codeline. AcePack 2.1, asit will be called, will essentially be a point release.

A Point Release by Any Other Name...

The term point release originates from a style of release numbering that is composed of a
major version, afeature release, and a point release. For instance, V4.1.3 indicates afourth
major version, the first feature set based on it, and the third time the 4.1 release has been
rebuilt after bug fixes.

With Perforce, you don't really have to number your point releases. Y ou can simply use
codeline names and changelist numbersinstead. For example, REL2.8901 identifies
release built out of the @8901 version of the REL 2 changelist.

Making apoint releaseis not really any different than making the initial release. We'll need to build
from a new snapshot, identify the snapshot filespec, and label the snapshot.

In this case, say the new snapshot is//Ace/REL2/...@9615 and that it's labeled AcePack _2.1. Now we
have two release points in the REL 2 codeline, as shown in Figure 9-3.

Figure 9-3. Release labels in REL2
%é:b "

1 %
—,
S

REL1

WV s
;}.f L3
1 1 |

P8 o™
M i

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The labels command, by the way, give us anice resume of our release codeline's accomplishments:

p4 | abels //Acel/ REL2/. ..
Label REL2 2004/ 11/ 10 Branch from MAIN
Label AcePack 2.0-Beta 2004/12/10 Built from @901

Label AcePack 2.1 2005/ 01/09 Built from @615

9.4.4. Generating release note information

In order to write release notes, we'll need to know which changes have gone into arelease. If we're
using jobsto track bugs and enhancement requests, we'll need to know what jobs were fixed in a
release. These things are easy to determine with Perforce and filtering scripts.

Asyou know, changes can list changesin the history of aparticular set of files. The exhaustive list of
changes that have gone into the //Ace/REL 2 files, for example, can be generated with:

p4 changes -i //Acel/ REL2/. ..

(The -i option causes changes to include changes inherited by branching and integration.) Thislist of
changes will be huge, of course-too huge to be of much use for release notes, because it includes
every change made since development began on the product. What we really need to know iswhat has
changed in the interval between two releases.

For example, let's say that the last release notes we wrote were for the AcePack 1.3 release. That
release was built out of the REL1 codeline and labeled AcePack_1.3. Now we are working on release
notes for the upcoming 2.1 release, built out of REL2 and labeled AcePack 2.1.

First, we list the previous release's changes in tempfilel:

p4 changes -i @\cePack 1.3 > tenpfilel

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Next, we list the current release's changes in tempfile2:

p4 changes -i @\cePack 2.1 > tenpfile2

Finally, with the handy comml*! filter, we remove all lines from tempfile2 that are also in tempfilel.
The result, which we save in tempfile3, isthe list of changes that have occured between the two
releases:

[l comm is a program that compares lists. It comes with Unix; several Windows toolkits offer it as well.

comm -3 tenpfilel tenpfile2 > tenpfile3

(Because we've adhered to the mainline model, we can be confident that the tempfilel list is a subset of
tempfile2.)

We can do the same thing with jobs:

p4 jobs -i @\cePack 1.3 > tenpfiled
p4 jobs -i @\cePack 2.1 > tenpfileb

comm -3 tenpfiled tenpfile5 > tenpfile6

tempfile6 contains the list of job fixes that occured between the two releases. (Be sure to read Chapter 8
for more on labeling releases.)

@ erev < Day Day Up > |y

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

9.5. Distributing Releases

At Ace Engineering, software is distributed to customers via FTP-the software is put on an external
FTP site; customers use FTP to download it. The FTP site is simply a Perforce workspace kept
constantly synchronized with the DIST codeline in the Ace's depot.

The DIST codeline is Ace's distribution stream. Its sole purpose isto control the software currently
available to customers. Distributing arelease at Ace Engineering, therefore, isamatter of copying built
components from release codelines to the distribution stream. In the depot, Ace's distribution stream is
in the //Ace/DIST path.

9.5.1. From release codeline to distribution stream

At this point, softwarein our REL 2 codeline has been stabilized, finalized, built, and tagged with the
AcePack 2.1 label. (By "built" we mean that all of the built components have been checked in to the
release codeline itself.) At Ace, built files and install able objects are contained in the built module of
each codeline. Of these, the fileswe'll be delivering to the distribution stream are:

/1 Acel/ REL2/ bui | t/ bin/w n32/ ap. zip

/I Ace/ REL2/ bui | t/bin/linux/ap.tar

These files will be copied from //Ace/REL 2/built to //Ace/DIST/AcePack into files whose names
identify the release. Thisis normally done by a script controlled by the release engineer, but for
illustration, we'll do it manually.

Since we're going to be submitting filesinto the DIST codeline, we'll have to use a client workspace
whose view includes the //Ace/DIST path. We've got that set up here, using aworkspace called DIST-
update :

dient DI ST- updat e

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Vi ew /1 Ace/DIST/... [/DIST-update/...

Now, using the DIST-update workspace , we copy the necessary files, using the AcePack 2.1 label to
make sure we get the right ones:

p4 integ -d \
/1 Ace/ REL2/ bui | t/ bi n/ wi n32/ ap. zi p@\cePack_2.1 \
/1 Ace/ DI ST/ AcePack/ bi n/ w n32/ ap2. 1. zip
p4 integ -d \
/1 Acel/ REL2/ bui It/ bin/linux/ap.tar @cePack 2.1 \
/' Ace/ DI ST/ AcePack/ bi n/linux/ap2.1.tar
p4 resol ve -at
p4 subm t
(We use -d with integrate in case we're replacing files previously deleted from the distribution stream.

The -at flag on resolve is what makes this a copy, not amerge.) Thisisalot of typing, of course, which
iswhy the release manager uses a script to do it.

And that's that-our release is now in the distribution stream.

9.5.2. From distribution stream to FTP site

Ace Engineering's external FTP site resides on a Unix machine named zi ppy, in the /etc/ftp directory.
An FTP server running on zi ppy fields user requests for the filesin the /etc/ftp path.

However, the /etc/ftp directory is not only the FTP site; it's the root of a Perforce client workspace
caled DI ST- zi ppy:

dient DI ST- zi ppy

Host Zi ppy

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Root letc/ftp

Vi ew /1 Ace/ DI ST/... [/DlST-zippy/...

Asyou can see, the DIST-zippy workspace has aview of the DIST codeline. A "sync daemon” program
running on zi ppy synchronizes the workspace every five minutes using this familiar command:

p4 sync

This effectively fills the FTP site with the latest rel eased software. As new releases appear in the DIST
codeline, there's at most a five-minute delay before customers can download them.

9.5.3. Oops, we released the wrong build!

At Ace, releasing the wrong build is never an irreparable problem. If the wrong files are integrated to
the distribution stream, there are a number of ways to recover:

« If there'sanewer, more correct filein the release codeline, it can be copy-integrated to the
distribution stream, replacing the version that was there. (To "copy-integrate” isto integrate, then
resolve files by copying. See Chapter 4.) This causes the sync daemon to refresh the FTP site with
the newer version.

« If apreviousversion in the distribution stream was correct but the current one isn't, the current
one can be backed out. (See Chapter 2.) This causes the sync daemon to refresh the FTP site with
the corrent version.

o If it turnsout thereisno version ready to release, the errant files in the distribution stream can be
deleted. This causes the sync daemon to remove them from the FTP site.

9.5.4. Using PAFTP as a sync daemon

By coincidence, the program that Ace uses as a sync daemon is PAFTP, the Perforce FTP Plug-in. (It'sa
coincidence in that PAFTP is not used for FTP in this case. PAFTP allows only Perforce usersto
connect, and Ace's external customers are not Perforce users-not in Ace's Perforce domain, at any
rate.)

PAFTP can be configured to keeping a specified workspace synchronized at specified intervals. At Ace,

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

PAFTP was configured as zi ppy's sync daemon by starting it up thus:

p4ftpd -O autosync -c DI ST-zi ppy -p ace: 1666 -u aut o-user

(DIST-zippy isthe name of the workspace to synchronize, ace: 1666 is Ace's Perforce Server address,
and aut o- user isthe Perforce user name designated for background processes.[*])

['] By the way, you can get your Perforce license extended to cover abackground user for free. Contact Perforce
Software for more information.

AR AN 2

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

9.6. Breaking the Rules

Despite the most meticulous planning, we occasionally have no choice but to defy the rules of the
codelineroad. In this section we'll look at two waysto break the rule that says change does not flow to
arelease codeline from its parent.

9.6.1. Backporting a bug fix

When you're supporting several releases at once, you may find yourself in a situation where a bug fix
made in one release has to be backported to another. For example, Jody, of Ace Engineering's QA
team, has detected a subtle but severe, data-corrupting bug during stabilization of the REL 2 codeline.
Ann, adeveloper responsible for the module in which the bug was found, fixed the bug in REL 2 with
changelist 8896. She then merged her fix to MAIN, using the procedure described in "Integrating
Changes into the Mainline," earlier in the chapter. Change 8904 is the point at which REL2's change
8896 was incrementally integrated to MAIN. (The fact that the change was integrated incrementally is
what's going to make this bug fix easy to backport.

Jody now tests the currently available release, AcePack 1.3. She findsthat it too is affected by the bug,
although the problem had not been detected before. The bug is serious enough to merit a 1.3.1 point
release. For this, the bug fix is going to have to be backported into the REL 1 codeline. This requires
cherry-picking a change, either 8896 from REL 2 or 8904 from MAIN, and integrating it to REL 1, as
shown in Figure 9-4.

Backporting either change will do the job, but integrating from MAIN to REL1 will be easier than
integrating from REL 2 to REL 1. Why? Because at Ace, every release codeline has a branch view that
reconcilesits structure with its evolving parent codeline. (All the branch views follow the conventions
described earlier in the chapter in "A branch view for the release codeline” and "Keeping the branch
view up to date.") Because REL 1 was branched from MAIN, there'saREL1-MAIN branch view. But
there is no branch view that reconciles REL 1's old structure with REL 2's newer structure.

Figure 9-4. Choosing the change to backport

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

So, Ann chooses to integrate the bug fix from MAIN to REL 1. In aworkspace with aview of the REL 1
codeline, she uses these commands:

p4 integ -b REL1-MAIN -r @904, @904
p4 resol ve

p4 subm t

(The-b flag causes integrate to refer to the REL1-MAIN branch view for the donor and target paths.
By convention, REL1-MAIN maps toward the mainline, so the -r is used to reverseit. Therevision
range @8904,@8904, cherry-picks the bug fix change for integration.

Note that it was Ann, not Jody, who back-ported the change. The comands are simple, but the resolve
step may have required merging files. Ann, having made the original change, was best prepared to do
the merging. Between the resolve step and the submit step, Ann took the opportunity to compile and
test the result of the change in her workspace.

The effect of backporting change 8904 to REL 1 isillustrated in Figure 9-5.

9.6.2. Pulling late-breaking development into a release

Missed deadlines can also put usin a position of having to bend the rules of the codeline road. Say, for
example, that when the REL 2 codeline was branched from the mainline, a certain feature wasn't ready.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Its devel opers missed the deadline and the feature was deferred to alater release. Sometime later, the
feature isfinally finished and the decision is made to include it in the next REL 2 rel ease after all.

Figure 9-5. Backporting a change

Pulling late-breaking features into arelease codelineisn't hard. In fact, it's often quite easy. (The hard
part is accepting the risk that it involves and understanding that it invalidates any testing done so far in
the release codeline. In other words, pulling new development into arelease resets the clock on the

rel ease stabilization schedule.)

At any rate, we've reluctantly agreed to pull the late-breaking feature into the REL 2 codeline. The
feature, which involves the gui module, has just been integrated into MAIN from a development
codeline. Revision @6701 of MAIN's gui module contains the new feature. Now we are being
entreated to pull this module into REL2 so it can be part of the upcoming release.

If developers have been good about merging their REL 2 bug fixesinto MAIN, it should betrivial to
pull MAIN's gui into REL 2. That is, there should be no merging involved because every change in
REL 2 is already accounted for in MAIN. (Whether MAIN's gui is compatible with REL2's other
modulesis adifferent question entirely. Well assumeitis.)

At any rate, we can pull in the new feature by integrating revision @6701 of MAIN's gui module into
REL 2. We do this using the REL 2-master workspace. Before integrating, we sure the workspace has no
opened files and that it is synchronized with the latest REL 2 files:

p4 opened

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

File(s) not opened on this client.

p4 sync //Acel/ REL2/. ..

/|l Ace/ REL2/ ... - file(s) up-to-date.

To integrate the gui module from MAIN to REL2 we run:

p4 integ -r -b REL2-MAIN //Ace/ REL2/gui /... @701

(Note the overloaded syntax. Although it looks like we're refering to revision @6701 of REL2's gui
here, @6701 actually appliesto the gui in MAIN. See"The curious syntax of the integrate command"”
in Chapter 4.)

Now we resolve and submit the opened files:

p4 resol ve

p4 submit

< Day Day Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

CE=S

9.7. Retiring a Release Codeline
Asyou read in Chapter 8, you can retire a codeline by setting protections on its depot path. Before doing

that, however, you should make sure no one's currently working in the codeline, and that all of its
changes have been merged to its parent.

9.7.1. Who's still working in arelease codeline?

Beforeretiring arelease codeline, make sure none of its files are checked out. For example, to seeif any
of REL1'sfilesare still checked out:

p4 opened -a //Ace/ REL1/. ..

(The -aflag extends opened 's scope to files outside the current workspace.) Y ou should contact these
developers and let them know you're retiring the codeline. Once you set protections on REL 1, they won't
be able to check in their changes.

9.7.2. Are all changes integrated?
If you plan to use protections to hide arelease codeline from view, you'll first have to make sure all

changes areintegrated from it to its parent. Once you hide it from view you won't be able to integrate
changes fromit. To see which of REL 1's changes still need integrating to MAIN, use:

p4 interchanges -r -b REL1-MAIN

Any changes listed should be integrated before you set protections that hide REL 1 from view. See
"Integrating Changes into the Mainline ," earlier in the chapter.

9.7.3. Setting protections to prevent changes
To prevent developers from submitting changes to arelease codeline, restrict permission tor ead on the

codeline's depot path. (Recall that you use the protect command to do this. See Chapter 6 .) For example,
to set read permission on REL 1:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 protect

Prot ecti ons

read user * * /! Acel/ REL1/ . ..

This step prevents people from opening filesin the //Ace/REL 1 path. It doesn't prevent them from seeing
the files, synchronizing with them, or branching from them, however.

9.7.4. Setting protections to hide aretired codeline

There are a couple of reasons you might want to hide retired codelines altogether. Oneisthat they'll
show up in GUI file trees-the more retired codelines there are, the clumsier it becomes to navigate a
file tree. The other reason is that the Perforce Server does lesswork if retired codelines are hidden from
commands that scan the database.

Y ou can hide a codeline from view by revoking list permission on it. Better yet, instead of revoking it,
restrict the permission to agroup no oneisin. That way, anyone who does have a sudden need to see the
codeline can be simply added to the group.

For example, to make the REL 1 codeline visible to only the people in the archeol ogy, define accessto it
with thissingle line:

p4 protect

Pr ot ecti ons

read group ar cheol ogy * /1 Acel/ REL1/ . ..

Later, if Doug, say, has a burning need to poke around in the REL 1 codeline, just create or modify the

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

archeology group and make sure Doug's user nameisin the list:

p4 group archeol ogy

G oup ar cheol ogy
Users

doug

9.7.5. Annotating a release codeline's branch and label views

Finally, you can note arelease codeline's retirement in the Description field of its branch and |abel
views. (Thisis just for documentation-it has no effect Perforce behavior.) For example:

p4 branch REL1- MAI N

Branch REL1- MAI N
Descri ption **Retired**

Rel 1.X stabilization.

p4 | abel REL1

Label REL1

Descri ption **Retired**

Branch from MAI N

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Putting the word retired in the beginning of the descriptions assuresthat it will appear in the terse output
of the labels and branches commands:

p4 branches

Branch REL1I-MAIN ... ** Retired ** Rel 1.X ...
Branch REL2-MAIN ... Rel 2. X stabilization ...

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

9.8. Task Branches and Patch Branches

Asyou read in Chapter 7, release codelines can themsel ves be branched. For example, arelease
codeline can be branched into atask branch to isolate arisky bug fix. Or, to patch an aready-released
version, arelease branch can be branched into a patch branch. What task branches and patch branches
have the following in common:

e Only afew filesare actually changed.
o No structural changes are involved.

It often makes sense to implement task branches and patch branches as sparse branches. A sparse
branch contains only a handful of files rather than afull complement of modules. To work in a sparse
branch you use a workspace client view to overlay the branch onto its parent codeline. Y ou branch files
as needed, instead of al at once at the outset. We'll ook at how to do this in the subsections that
follow.

9.8.1. Creating a task branch

A task branch is simply ashort-lived, single-user codeline dedicated to a specific development task.
Task branches are often used for fixing bugs in codelinestoo firm to allow developersto check in
changes directly. As adeveloper, you create atask branch by branching the parent codeline; you make
your changesin the task branch. This gives you a place to check in changes without affecting the parent
directly, while giving reviewers away to see what you have done. After your changes are approved,
you can integrate them to the parent codeline.

For example, say Rob isfixing an AcePack bug known as BUG0422. The bug affects AcePack's
database component. The fix will eventually go in the REL 2 codeline, but Rob's going to submit it to a
task branch first. Dee maintains the AcePack database code in released products. She will review Rob's
fix, and if it passes muster, she'll integrate it into REL 2.

At Ace Engineering, task branches are named after bugs. Rob's task branch will be called BUG0422; it
will be located in //Ace/BUG0422. Figure 9-6 shows the timeline of the BUG0422 branch. It's very
short.

Figure 9-7 shows the intended flow of change between the task branch and its parent, the release

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

codeline.

Figure 9-6. Timeline of a task branch

REL2

BUG0422

MAIN

Figure 9-7. Flow of change between a task branch and its parent

v

Mainline

In both Figure 9-6 and Figure 9-7, you'll notice, the task branch appears below the release codeline.
That's because it's the softer of the two codelines.

The first thing Rob does is create a workspace for his bug fix. He's going to name the workspace
BUG0422-rob; it will be rooted in the c:\bugfix directory on hislocal machine. (Rob'sworking on a
Windows machine.) He creates his workspace client spec using the REL 2-master workspace (shown in
"The master workspace," earlier in the chapter) as atemplate:

p4 client -t REL2-master BUR422-rob

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Cient BURD422-r ob

Root c:\ bugfi x
Vi ew /1 Ace/ REL2/ db/ . .. /1 BUR422-rob/ db/ . ..
/1 Ace/ REL2/ bui lt/... [/BUR422-rob/built/...
/I Ace/ REL2/tests/... [/BUGD422-rob/tests/...
/1 Ace/ REL2/ utils/... [/BUG422-rob/utils/...
+/ | Ace/ BUR422/ . .. /1 BUGD422-rob/ . ..

You'll notice that Rob has edited the view lines to select the REL 2 modules he needs. He has also
added one line to the template's View field. It's an overlay mapping-a mapping line that begins with a
+. The result isthat the REL 2 files and the BUG0422 files are mapped into the same c:\bugfix2
directory on Rob's local disk.

An overlay mapping has no effect on the workspace unless there are depot files that match the
mapping. Right now there aren't any filesin the BUG0422 task branch. When Rob synchronizes his
workspace, it will be filled with filesfrom REL 2. In fact, aslong as there are no filesin BUG0422,
Perforce will treat Rob's workspace as if the overlay mapping weren't there.

Rob also creates a simple branch view that maps his task branch to its parent codeline:

p4 branch BUR)422- REL2

Branch BUGD422- REL2

Vi ew /1 Ace/ BUR422/ ... ||/ Acel/ REL2/. ..

9.8.2. Working on files in a task branch

To get started on his bug fix, Rob synchronizes his workspace:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 sync

This command fills the workspace with REL 2 files. Now Rob can browse, debug, and build with these
files. He doesn't use the edit comand to open files, however. Instead, he branchesfilesin away that
puts them in the BUG0422 branch and |eaves them open for editing in his workspace. For example,
here's how he does this with the db/lock.cpp file:

p4 sync db/ 1 ock. cpp#none
p4 integ -r -b BU®422- REL2 db/ | ock. cpp

p4 add db/ | ock. cpp

Here's what this sequence of commands did:

1. The sync command removed REL 2's db/lock.cpp from Rob's workspace.

2. Theinteg command used the BUG0422-REL 2 branch view to open the file for branching into
BUG0422. Thanks to the overlay mapping in Rob's workspace view, it also restored the file to the
workspace.

3. The add command reopens the file for adding, making it writable in the workspace. (It also tells
Perforce that the submitted file will not be the same as the one that was branched.)

Rob can continue opening files this way as he works on files. When his bug fix is complete, he submits
his opened files:

p4 submt

If it turns out that Rob needs to change the same files again, he can simply use the edit command now.
In other words, aslong as afile has already been branched, Rob isfreeto edit it. He can use the have
command to see whether unopened files have been branched:

p4 have db/. ..

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

/'l Ace/ REL2/ db/ acc. cpp#2 -

(@]

-\ bugfix\db\acc. cpp
/| Ace/ BUR422/ db/ dset . cpp#2 - c:\bugfix\db\dset.cpp

/' Ace/ BUGD422/ db/ | ock. cpp#2

1
(@]

-\ bugfix\db\Il ock. cpp
/| Ace/ BURD422/ db/ rset.cpp#2 - c:\bugfix\db\rset.cpp

/1 Ace/ REL2/ db/writ. cpp#2 -

(@]

:\bugfix\db\wit.cpp

9.8.3. Keeping a task branch and its workspace up to date

While he works, Rob remembers to keep his workspace synchronized. This ensures that he has the
latest REL 2 files to work with. However, synchronizing his workspace doesn't update the filesin his
task branch. For that, he'll have to integrate changes from REL 2 into histask branch.

Unfortunately Rob can't simply integrate the entire REL2 codeline into his task branch-that would
branch all of the REL2 files and his branch would no longer be sparse. Instead, he must restrict the
integration donors to the REL 2 files that have counterparts in the task branch. A further complicationis
that Rob can't integrate to files unless they are already in his task branch. So if he has branched,
unsubmitted files in his workspace, he'll have to submit them first.

It so happens that Rob has already submitted his workspace files. The files command can be used to list
thefilesin histask branch:

p4 files //Acel BUR422/ . ..

/' Acel/ BURD422/ db/ dset . cpp#1 - add change 8997
/| Acel/ BURD422/ db/ | ock. cpp#1 - add change 8997
/' Acel/ BURD422/ db/ rset. cpp#1 - add change 8999

Thislist of files can be piped to interchanges and integrate, but only after filtering. Here Rob uses the
Windows for command!*] as afilter:

["1 'Y ou could write a more elegant filter in any scripting language, of course.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 files //Ace/ BUR422/... > tenpfilel

for /f "delims=#" % in (tenpfilel) do @cho % >> tenpfile2

tempfile2 now contains:

/1 Ace/ BURD422/ db/ dset . cpp
/' Acel/ BUGD422/ db/ | ock. cpp

/1 Ace/ BURD422/ db/ rset. cpp

To seeif there are recent REL 2 changes that need integrating to the task branch files, Rob uses:

p4 -x tenpfile2 interchanges -r -b BUR422- REL2

(Thisform of interchanges treats each file in the tempfile2 list as atarget per the reversed BUG0422-
REL 2 branch view mapping.) If the interchanges output shows that there are changes to integrate, Rob
pulls them into histask branch with the following commands:

p4 -x tenpfile2 integ -r -b BUR422- REL2
p4 resol ve

p4 subm t

(Thisinteg command also treats the files in tempfile2 as targets per the reversed branch view.)

Now, Rob'stask branch is up to date with its parent codeline. Moreover, it's ready to be reviewed and,
if acceptible, integrated into the parent codeline.

9.8.4. Reviewing and integrating task branch changes

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Once Dee hears from Raob that his bug fix is ready, she reviews it. She peruses Rob's changelist
descriptions with this command:

p4 changes -1 //Ace/ BUGD422/ . ..

(The -l flag produces long changelist descriptions.)

Deelooks at the diffs between the task branch and its parent branch using:

p4 diff2 -b BUGD422- REL2

Finding Rob's bug fix acceptible, Dee proceeds to integrate it into the REL 2 codeline. She usesa
workspace she already has set up for working in the REL2 codeling; it currently has no opened files.
She synchronizes her workspace and pulls changes from the BUG0422 branch into it:

p4 sync
p4 integ -b BUGD422- REL2
p4 resol ve -as

p4 submt

The resolve -as command will fail if the filesin Rob's task branch were not up to date with the REL 2
codeline. If this happens, Dee reverts the opened files and has aword with Rob. Otherwise, if resolve -
as suceeds, Dee exercises the same due diligence and caution as she would if she were submitting a bug
fix directly into the REL 2 codeline. In particular, she rebuilds and tests the built result thoroughly afer
resolving and before submitting files.

9.8.5. Creating a patch branch

A patch branch can be created much the same way as atask branch. Filesin a patch branch, however,
are branched from a snapshot (that is, alabel, a date, or a changelist number) instead of from the head
revisions of the parent files.

For example, Dee is going to patch the AcePack 2.1 release. Asyou recall, this release was built out of

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

the REL 2 codeline and labeled @AcePack_2.1. The REL 2 codeline has evolved, of course, since the
release was made. However, a customer using the AcePack 2.1 release has a critical need for the patch
and can't upgrade to the current release.

Deewill branch the @AcePack 2.1 version of REL 2 into a patch branched called REL2.1. The patch
branch will be located in the depot's //Ace/REL 2.1 path. It will be a sparse branch, containing only the
filesthat need to be changed.

Dee sets up the patch branch using the following procedure:

1. She creates aworkspace using the REL 2-master workspace as atemplate. In the client spec form
she adds an overlay mapping for the //Ace/REL2.1 path:

p4 client -t REL2-nmaster REL2.1-dee

Cient REL2. 1- dee
Root [usr/teani dee/ patch2. 1
Vi ew /1 Acel/ REL2/ db/ . .. /I REL2. 1- dee/ db/ . ..
/1 Acel/ REL2/ built/... [/REL2.1-deel/built/...
/' Acel REL2/ doc/ . . . /I REL2. 1- dee/ doc/ . ..
/'l Ace/ REL2/ gui /. .. /I REL2. 1-dee/ gui /. ..
/'l Ace/ REL2/tests/... [//REL2.1-dee/tests/...
/1 Ace/ REL2/ utils/... [/REL2.1-dee/utils/...
+// Ace/ REL2. 1/ . .. /I REL2. 1-dee/ . ..

2. She makes abranch view for the patch branch:

p4 branch REL2. 1- REL2

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Br anch REL2. 1- REL?2

Vi ew [/ Ace/ REL2.1/... [/ Acel/ REL2/. ..

3. After switching to her REL 2.1-dee workspace she synchronizes with the @A cePack_2.1 version
of the REL 2 codeline:

p4 sync @AcePack 2.1

Now Dee can proceed to work on files. As she finds files that need changing, she branches them from
the REL 2 codeline into the REL 2.1 patch branch first. For example, here she branches db/acc.cpp:

p4 sync db/acc. cpp#none

p4 integ -r -b REL2. 1-REL2 db/acc. cpp@\cePack 2.1

p4 add db/acc. cpp

Note that Dee branches the file at the @A cePack_2.1 revision. Otherwise, the preceding commands are

the same as the ones Rob used in "Working on filesin atask branch,” earlier in the chapter. When she
has completed her changes, she submits her opened files:

p4 subm t

Dee's workspace contains all of the REL 2 files, except for the ones she's replaced with REL 2.1 files.
Thus, she can build and test a patch release right in her workspace. And the patch release-executable
files, tar files, etc.-can be submitted to the REL2.1 branch as well.

After Dee has built, tested, and submitted a patch release, she labels her workspace configuration. Asa
formality, she creates alabel spec first and uses the Description field to note the release being patched:

p4 | abel AcePack 2.1 01

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Label AcePack 2.1 01

Descri ption Patch for @A\cePack 2.1

To apply the label to the files synchronized in her workspace, Dee runs:

p4 | abel sync -1 AcePack 2.1 01

The label can now be used to compare the patch release to the release it patches:

p4 diff2 -q //...@\kcePack 2.1 //...@cePack 2.1 01

Dee, mindful of the flow of change and the mainline model, remembers to pull the REL 2.1 changes
into its parent branch, REL2. She does thisin her REL 2 workspace:

p4 sync
p4 integ -b REL2. 1- REL2
p4 resol ve

p4 submt

Because the donor codeline, REL 2.1, was carefully tested in the course of making the patch release,
Deeis confident that the changes sheis pulling in are stable enough for the target codeline, REL 2.
However, she may have to resolve changesin files that have evolved since that point. And because the
REL 2 codeline is arelease codeline, she tests her opened and resolved files carefully before submitting
them. In other words, she again exercises the same due diligence pulling her patch into the REL 2
codeline as she would if she were making a bug fix directly in the REL2 codeline.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 10. Development Codelines

Asyou read in Chapter 7, development codelines provide a place to check in incremental work on
projects without destabilizing the mainline. In this chapter, we look at creating development codelines,
working in development codelines, keeping devel opment codelines up to date, and delivering
completed development work into parent codelines.

e With the exception of the mainline, every codeline has a parent; the parent is the
.~ codelineit was branched from.

X
N

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

10.1. Creating A Development Codeline

Creating a development codeline is a matter of creating a branch view and a master workspace, and
using them as branching files. The curator of the development codeline does these things, after
deciding what to name the codeline and which modules to branch. First we'll look at the factors and
stepsinvolved in creating a development codeline.

10.1.1. Why a Development Codeline?

The purpose of a development codeline isto isolate potentially disruptive coding and to decouple
project schedules. Ideally, we wouldn't need development codelines-all development would take place
in the mainline, and when it was done, we'd make arelease. Realistically, we have to isolate projects
from the mainline and decouple them from one another because:

o Wedon' really know how long it will take to completely code each new feature or behavior. By
decoupling the work on them, we can rel ease new software as soon as any of them are done
instead of having to wait until they're all done.

« Interim changes made in the course of development can break software. By decoupling projects
we can limit the breakage so that it impacts individuals or small coding teams instead of our
entire development staff.

» Decoupling projects lets us test to see what we've broken without having to worry about whether
the breakage is related to features and behaviors introduced by concurrent projects.

« We need the mainline to remain stable so that it can serve as areference point of quality and
compatibility for al new features and behaviors.

10.1.2. What goes on in a development codeline?

What goes on in a development codeline depends on the nature of the project. Unlike release codelines,
devel opment codelines can be veins of significant change. Component rearchitecture, code refactoring,
file restructuring-all of these things are likely to happen in a development codeline.

Development codelines are continually updated from the mainline. The mainline, in turn, receives
completed work from other devel opment codelines, and that work may have been significant. Thus,

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

change flowing into a development codeline can also bring with it rearchitecture, refactoring, and
restructuring. Does this result in total chaos? No, not aslong as:

o The software you're developing is partitioned intelligently enough that the scope of any given
project is limited to a single component. Parallel development works best when agiven
component of the software is the subject of only one major project at atime. (A component isa
part of the software that functions within the whole but that is devel oped and tested on its own.)

» Each development codeline is dedicated to work on one component or subcomponent. A
development codeline can contain many components, but only one should be the subject of active
development. The modules that make up this component are the active modulesin the
development codeline, aswe'll see presently.

« Each development codeline respects the flow of change of the mainline model. In other words, a
development codeline should always be open to changes from its parent, and it should not impose
any changes on its parent that are not up to its parent's standards.

o Developers are good about documenting changes that can cause integration problems. One way
they can do thisisto use changelist descriptions to clearly announce when they've restructured or
reformatted files, or refactored or rearchitected code. (Y ou'll see examplesin a moment.)
Changelist descriptions are the turn-signals of the codeline road-they let us know what is about
to happen.

10.1.3. Who owns the development codeline?

A development codelineis usually under the control of the lead developer on the project. There's
nothing to keep the lead devel oper from delegating codeline curator tasks to someone else, but it's the
lead developer who makes the decisions. He or she decides things like the scope of the project, who can
work init, its quality requirements, and so forth.

For example, Ann isthe lead programmer of ateam of developers working on the GUI component of
the AcePack product. She's going to be the curator of a development codeline dedicated to a GUI
makeover scheduled for the next major release.

10.1.4. Naming the development codeline

When deciding on a name for a development codeling, first take into account the considerations
described in Chapter 8, then consider these points:

e Upcoming product release IDs shouldn't be used to name development codelines . For example,

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

don't use aname like Dev4.1 for a development codeline. If your project misses the deadline for
itsintended release you and the rest of your team will be reminded of it every time the
devel opment codeline's name comes up.

e Project nicknames and codenames-names like PLUTO and SATURN, for example-can make
good development codeline names. They're pronounceable, they aren't tied to release I Ds, and and
they're familiar to everyone involved with the projects they represent.

e You can keep codelines from proliferating by reusing development codelines. If thisiswhat you
plan to do, come up with a name for the codeline that reflectsits general scope rather than the
specific project at hand.

Ann's going to call her development codeline "AGUI." This name conformsto Ace's all-uppercase
requirement for codeline names. Since it's not tied to a particular project name, it will be suitable for
reuse for future AcePack GUI development projects. And it's aname that's easy to say (and short
enough to be used in the examples that follow without running off the page).

10.1.5. Which modules should we branch?

Development codelines are typically branched from the mainline, and the mainline typically contains
many modules. The modulesin Ace Engineering's mainline, for example, are shown in Figure 10-1.

Figure 10-1. Modules in Ace Engineering's MAIN codeline

=3 Ace
=3 MAIN
& db
& doc
(| gui
Ol tests
3 utils

It'srarely the case that you want to branch the entire mainline into a development codeline. Instead
you'll want to branch only the necessary modules. Therest can be virtual , private, or omitted entirely.
For the purposes of branching and working in a development codeline, modules can be categorized as
follows:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Activemodules

Y ou'll branch some mainline modules to work on them. These will be the active modulesinyour
development codeline. They're the ones developers will submit changesto in the course of your
project.

Static modules

Y ou'll branch some mainline modules simply in order to have stable versions of them. These will
be the static modulesin your development codeline. They won't be changed by developers
working on the project, although they will appear in devel oper workspaces.

Virtual modules

Some modules you don't need to branch because the mainline versions will suffice. However,
because they will be needed in developer workspaces, they'll mapped to the parent codeline as
virtual modules . Client views will make them appear to developers asif they werein the
codeline. Developers won't be submitting changes to virtual modules.

Private modules

Some modules you won't branch because they'll be created anew in the development codelines.
These are the private modules in your codeline. Developers may submit changes to these
modules, but there is be no flow of change between private modules and their counterpartsin the
mainline.

Unneeded modules
Some modules you won't need in your codeline at al. They're simply not relevant to your project.
For example, Ann has sorted through the modules in Ace Engineering's mainline and figured out which

ones she needs to branch into the AGUI development codeline:

e gui and testswill be branched for active development. The bulk of AGUI work will take place in
the gui module. Minor development may occur in the tests module. The changes to these modules
will be delivered to the mainline when the makeover is complete.

« The db module will be branched, but it'll be static. In other words, it won't be affected by AGUI
development. It is needed merely to provide a stable base for testing.

e The utils module will be avirtual module. It will appear in developers workspaces asif it werein

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

the AGUI codeline, but it will be synchronized with files that are actually in the mainline.

« The built module won't be branched. It is needed, but it will be recreated as a private module soon
as buildsin the AGUI codeline are set up. Nothing in AGUI's built module will be integrated into
the mainline.

e The doc module won't bein the codeline at al. It's not relevant to the AGUI makeover project.

& &

A module, asyou know, is simply adirectory path in a Perforce depot. And in

%+ 4. Perforce, you don't create directories explicitly-they just appear when you add

% new files. Soif you need a new module for developing anew feature, how do
you create it before adding new filesto it? Y ou don't! The module doesn't exist
until you add itsfiles to the depot.

10.1.6. Why branch static modules ?

Inactive modules, as you read, are modules devel opers don't change but do use to build and test their
work. Developers can use views to make these modules appear in their workspaces even though they
were never branched from the parent codeline. Or you can branch these modulesto create real, static
copies of them in the development codeline. Why branch a module you're not going to change? Two
reasons:

« A static module gives you an airlock between parent codeline changes and your project. For
example, db isused only for regression testing in the AGUI codeline. In the mainline, however,
the db module could change. If db changesin MAIN, Ann can choose when to pull the new
version into AGUI. She may decideto wait afew days until her developers sort out regressions
they've already caused. She doesn't have thiskind of control when her developers are
synchronizing with modules outside of her development codeline.

e The development codeline itself can serve to document the modules-specifically, their
versions-that support the project environment. Branching and integration make a permanent
record of what's needed to reproduce software in the development codeline at any point in time.

That being said, there are also good reasons to not branch static modules:
« Someone will have to update static modules by periodically integrating changes to them from the
parent codeline. That someone is probably you, the codeline curator.

o If the static modules are extremely large, or if your depot holds an extremely large number of
development codelines, repeated instances of static modules could bloat the Perforce database.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The threshold at which this actually becomes noticeable is very high, but it's something to keep in
mind.

The alternative to branching static modules is to use virtual modules-that is, modules mapped from
the parent codeline into workspaces used for the devel opment codeline. Y ou'll see the difference
between static and virtual modules in the examples that follow.

10.1.7. A branch view for the development codeline

A branch view is ahandy tool for keeping track of the parent codeline modules that have counterparts
in the development codeline. Here, for example, Ann creates a branch view called AGUI-MAIN. Init,
she maps each active and static module in the AGUI codeline to its counterpart in MAIN. Following
Ace's branch view convention, the mapping is toward the mainline-that is, MAIN appears on the
righthand side of the view lines:

p4 branch AGU - MAI N

Branch AGUI - MAI N
Descri ption AGUI devel opnent
Vi ew /1 Acel/ AGUI /gui /... /'l Ace/ MAI N gui /. ..

/1 Ace/ AGUI /tests/... [/Ace/ MAIN tests/...

/1 Acel AGUI / db/ . .. /1 Acel/ MAI N db/ . ..
Branch views don't ater files, of course. They are merely a convenience, like stored preferences.
They're used for branching codelines, as we'll see in amoment, and for integrating and comparing
codelines.

10.1.8. Creating a master workspace

As curator of adevelopment codeline you should set up a master client workspace for routine codeline
maintenance tasks. You'll useit at the outset to branch the codeline, and from time to time to keep the
codeline up to date with its parent. Developers will use it as atemplate for the workspaces they crezte.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

For example, Ann creates aworkspace called AGUI-master for this purpose:

p4 client AGU -naster

Cient AGUI - mast er
Root c: \ws\ agui
Vi ew /1 Ace/ AGUI /. .. /1 AGUI - master/. ..
/1 Ace/ MAI N utils/... [/ AGUI -master/utils/...

With this view, AGUI modules will appear in the c:\ws\agui directory on Ann's machine. Notice the
view mapping for the utils modul e-utils isavirtual module, inherited from the MAIN codeline. It will
appear in the utils subdirectory of Ann's c:\ws\agui path, however, as a peer of the other modulesin the
AGUI codeline. And, since the AGUI-master workspace will be used as atemplate by developers
working in the AGUI codeline, the same mapping will apply to the workspaces they create.

Aside from the virtual module, the AGUI-master workspace doesn't map modules explicitly. Instead, it
maps the entire AGUI codeline to the workspace. There are two reasons for this. One isthat Ann has
already chosen the subset of the mainline's modules that will be branched to AGUI; developers will
need all of them in their workspaces. The other isthat it's conceivable that the AGUI project may give
birth to another top-level module. (And in fact it will, asyou'll seein abit later in this chapter in
"Working with Third-Party Software.") New top-level modules can be added only via aworkspace that
has an unrestricted view of the top of the codeline hierarchy.

10.1.9. Branching the development codeline
Once you have a branch view and a master workspace, you're ready to branch mainline modulesinto

the development codeline.

Ann, for example, branches the AGUI modules thus:

p4 integ -v -r -b AGUI - MAI N

p4 submt

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Asyou can see, she uses the AGUI-MAIN branch view with the integ command. Because the branch
view maps modules from the devel opment codeline to the mainline she usesinteg's -r (reverse
mapping) flag. Also, because she doesn't want to fill her workspace with copies of the newly-branched
files, she usesthe -v (virtua) flag.

Thus the //Ace/AGUI directory is created in the depot and populated with files. (Figure 10-2.) Eachfile
in//Ace/AGUI isaclone of its //AceMAIN counterpart. Developers will now be able to browse the
AGUI codeline, synchronize their workspaces with it, and submit changesto it.

; : < Day Day Up > : :

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

10.2. Working in a Development Codeline

Once files have been branched into a development codeline, devel opers can begin to work in the codeline.
at aspects of working in adevelopment codeline that are of interest to devel opers.

10.2.1. The developer's workspace

Developers should set up separate workspaces for each development codeline in which they work. (If you'r
and developer for the codeline, make sure

Figure 10-2. The AGUI codeline in the depot

== W
& 3 Ace
=03 AGUI
H Edb
ﬁ gui
ﬁ tests

you have a separate workspace for your own development work. It's easier to do routine codeline maintenal
don't have to worry about interfering with your own development work in progress.)

Bob, for example, has aworkspace set up for working in AGUI. It's called AGUI-bob and it's rooted in the
directory on hisworkstation. He creates it using the AGUI-master workspace as atemplate:

p4 client -t AGU -master AGU - bob

Client AGUI - bob
Root [usr/teanm bob/ws
Vi ew [/ Acel AGUI /. .. [/ AGUJl - bob/ . ..

/1 Ace/ MAI N utils/... /1 AGUI - bob/ utils/...

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Once hisworkspace is configured, he can fill it with AGUI files by running:

p4 sync

10.2.2. Workspace File Filters

Often there are depot files you don't want copied to your workspace, or workspace files you don't want add
Y ou can use your workspace view to filter these files out of the scope of Perforce commands.

If you'reaVim user, for example, your workspace may be littered with Vim backup and swap files; these fi
that end in ~ and .swp . Y ou can hide them from Perforce with exclusion lines in your workspace view. Bo
adding two exclusion lines to his AGUI-bob workspace view:

p4 client
Client AGUI - bob
Vi ew /1 Acel MAI N . .. [/ AGUJI - bob/ . ..

-1/ Acel ...~ /1 AGUI - bob/ . ..~
-/ 1 Acel....swp /1 AGUI - bob/....swp
(The exclusion lines are the ones that begin with -.) With this exclusionary mapping in effect, Perforce clie

ignore files whose names end with ~ and .swp . When Bob uses the add command, for example, Perforce w
filesto be added to the depot.

The same trick can be used to prevent unwanted files from being copied to your workspace when you synct
workspace is on a FreeBSD 4.X machine, for example, you probably have no use for binaries built for othe
systems. Bob has inserted two more lines in his workspace view to filter out unneeded binaries:

p4 client

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Client AGUI - bob

Vi ew /1 Ace/ MAI N . . . /1 AGUI - bob/ . ..
-/ 1 Ace/ MAIN bui I t/bin/. .. /1 AGUI - bob/ bui | t/bin/.
/1 Ace/ MAI N bui l t/bin/freebsd4/... [//AGU -bob/built/bin/
-1l Acel ...~ /1 AGUI - bob/ ...~
-/ Acel....swp /1 AGUI - bob/....swp

Here, an exclusionary mapping hides files in the //Ace/MAIN/built/bin path. It's followed by a mapping that
the //Ace/MAIN/built/bin/freebsd path. (In Perforce view maps, later lines always take precedence.)

The exact mapping to use depends on the organization and contents of your depot, of course.

10.2.3. Writing helpful changelist descriptions

As adeveloper working in adevelopment codeline, keep in mind that your sweeping changes can cause int
problemsin the future and in distantly related codelines. Y ou can make such problems easier to deal with k
changelist descriptions to make very clear what you've done, especialy whenyou've:

» Changed component interfaces or architecture.

o Moved, renamed, or deleted files.

o Prettied up files by changing things like indentation, line breaks, and bracketing.

- During initial development, it's agreat ideato go through the files you've added and pretty
*3 4. Wwith consistent bracketing, uniform indentation, and other formatting changes. New devel

%% theright time to get source filesinto conformance with a coding style used by your team.

But don't pretty up mature source files! The source files that have been around for awhile
counterpartsin other codelines, including release codelines. Unless you are absolutely cert
your changes won't conflict with parallel changesto the same file in other codelines, don't
gratuitous formatting changes. It's just not worth the complicated merging it causes.

When other devel opers are integrating changes, they'll be skimming changelist descriptions looking for adv
these things. A helpful changelist description, for example, might look like this:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Change 9345 on 2005/03/02 by bill

New test driver for GU applications.

MOVED: gqui/spin/test/... => tests/qgui/...

This description will jump out at people as they're reviewing the changes they're about to integrate. (See Ct
examples.)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

CE=S

10.3. Keeping a Development Codeline Up to Date

Asyou read in Chapter 7, adevelopment codelineis asurrogate for the codeline from which it was branch
serves its purpose best when it's up to date-that is, when all of its parent's changes have been integrated ir

Ann, as curator of the AGUI codeline, isin charge of keeping AGUI up to date with the MAIN codeline.

There is no Perforce mechanism that keeps codelines up to date automatically. Someone has to integrate pe
codeline changes into the development codeline. Typically, that someone is you, the development codeline
Y ou should plan to integrate changes regularly-the more current your development codeline is, the easier

be to integrate into the parent when the project is done.

Remember that the mainlineis, in theory, stable. Because changes go into the mainline only when they'rec
and working, you should have no qualms about pulling them into your development codeline.

10.3.1. When should a development codeline be updated?

Change should flow continually to a development codeline from its parent. That is, as soon as a change occ
the parent, the devel opment codeline should be ready to accept it. This means you should be integrating pa
codeline changes into the development codeline as they occur. (see Figure 10-3.)

And here'swhy: For smoother collaboration, you'll want to make sure that your project work isn't deliverec
parent until you've solved all the integration problems it may have caused. (Integration problems are those |
to do with interfaces, compatilibity, refactoring, rearchitecting, and so on.) Integration problems should be!
out in the development codeline, not in its parent codeline.

Figure 10-3. Updating the AGUI codeline

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Mainline

o)

Asarule of thumb, integration problems between two codelines should be worked out in
" 4. thesofter of the two codelines. (See Chapter 7 .) Working out integration problems always
* causes abit of instability; the softer codeline can accommodate instability better than the
firmer one can.

Asyou can imagine, the sooner you integrate parent changes to the devel opment codeline, the sooner you &
development team will be able to flush out looming integration problems. Deferring the integration until m
changes pile up only makes the problems harder to solve.

Redlistically, alittle bit of alag before a change is merged from parent to development codeline doesn't hui
while it's important to keep a development codeline up to date, you don't have to drop everything when the
changes. In fact, sometimesit's even better to put off integrating for abit. If your development codelineis ¢
broken-for example, parts of it can't be built, or test failures are high-you should probably get it working
before perturbing it by pulling in parent changes.

But whatever you do, don't put off the chore of updating a development codeline for too long. The whole p
using a development codeline isto enable parallel development. Unless your development codelineis up tc
you're not enabling parallel development-you're avoiding it.

10.3.2. Which changes need integrating?

Remember, only some of the MAIN codeline's modul es were branched to the AGUI development codeline
Changes to omitted modules will have no bearing on the development codeline, obviously, and changes to
modules don't need integrating. But you do have to integrate all changes to the modules that were branched
don't, you'll have a miserable time trying to deliver your project work back into the parent | ater.

To see which changes need integrating into a development codeline, use interchanges with the branch view
up. The branch view filters out the irrelevant modules. For example:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 interchanges -r -b AGU - MAIN

Change 9325 by nina 'Fix dialog resize problemin...’
Change 9324 by ron 'DB profiling for distributed...’
Change 9321 by bill "Preferences can now be saved...'

Change 9318 by don 'Test driver's new filter for...'

(The -r option makes interchanges use the branch view's mapping in reverse.

The output shows that since the AGUI codeline was branched or last updated, four new changes have been
submitted into MAIN. These changes will need to be integrated from MAIN into AGUI. Of these changes,
will affect the static modules and some will affect the active modules.

Changes to static modules are a snap to integrate. Because their files are not changing in the devel opment ¢
they won't need merging, and resolving them will betrivial. Nor do you have to worry about structural char
them-you can go ahead and let Perforce move and rename files in the target codeline to match their paren
counterparts.

The tricky changes to integrate are the ones affecting the active modules. The active modules will certainly
changed in the devel opment codeline, and they may have changed alot. Even minor changesin the parent
can be nontrivial to pull inif the development codeline's files have changed significantly. Y ou'll have to be
prepared to resolve conflicts and to reconcile structural changes. (If you're unsure about what this entails, n
would be agood time to review Chapter 4 .)

10.3.3. Adjusting the development codeline's branch view

The branch view you use to branch a devel opment codeline has another use: It can reconcile the file structt
parent codeline with structure of the development codeline.

For example, developers have renamed, moved and deleted filesin AGUI's active modules since the codeli
branched. MAIN's changes can easily be merged into AGUI if the AGUI-MAIN branch view maps the new
structure in AGUI to the old file structurein MAIN. So, before Ann integrates changes from MAIN into A(
adjusts the branch view. In Chapter 9 you read about doing this for release codelines. The procedureis anal
for development codelines.

First, Ann inspects the changes that have occured in the AGUI codeline, looking for evidence that files hav
renamed, moved, or deleted. Perfect for this example, each one of them shows such evidence:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 interchanges -1 -b AGU - MAIN
Change 9366 by ann on 2005/03/09

Get rid of obsolete setup script.

DELETED: gui/fx/1 gen. pl

Change 9362 by bob on 2005/03/06

The Trimobject is now visible in...

RENAMVED: gui/fx/st.cpp -> gui/fx/trimcpp

Change 9349 by ann on 2005/ 03/ 05

Changed the structure of the...

RENAMED: gqui/lnmgr/... -> gui/fx/...

Change 9345 on 2005/03/02 by bill

New test driver for GU applications.

MOVED t 011. pl and t015.pl fromgui/spin/test to tests/gui

(The -l flag makes interchanges show complete change descriptions.)

P4V's Folder Diff can also help you detect structural changes. By comparing old and new versions of a cod

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

you can get avisual overview of the files whose names and locations no longer match. In Figure 10-4 , for
example, the original AGUI (left) is compared to the current AGUI (right).

Figure 10-4. AGUI's structural changes shown in P4V

23 AU =3 AcUl
B & Edo
&8 qui = (8 ui
=2 L =&«
ﬁ Igen plH1 & ﬂ relall cpp il
& retall.cppift i [l xsize cpp#
L ﬂxsize.cppr.'l &3 spin
- B Espin [# spinart.cppth
S CRtest B 5 tests
& 011 plirt EEdb
- b 1015 pli1 =3 qui
& spinart cppitt E [1001 plt1
B B tests - @00z pie
E-Edb = (@l 1011 ple
& (3 qui ‘@ t015p1E1
@ 10010111
B 10020181

Once Ann has gathered information about structural changes, she can update the AGUI-MAIN branch vien
reconcile the new file structure with the old:

p4 branch AGU - MAI N

Br anch

Descri ption

Vi ew

downloaded from: lib.ommolkefab.ir

AGUI - MAI N
AGUl devel opnent
Last reconcil ed @366
/1 Ace/ AGUI /gui /...

I/ Acel AGUI /tests/...
/1 Acel AGUI /db/ . ..

/1 Acel AGUI / gui /fx/...

/1 Ace/ AGUI / gui/fx/trimcpp

/1 Ace/ NAI N gui /. ..

I/ Ace/ MAINtests/...

/1 Acel MAI N db/ . ..

/1 Ace/ MAI N gui /|l mgr /. ..

/1 Ace/ MAI N gui /| ngr/ st. cpp

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

/1 Ace/ AGUI /tests/gui/t011l. pl //Ace/ MAI NN gui/spin/test/tl
/'l Ace/ AGUI /tests/gui/t015.pl //Acel/ MAI N gui/spin/test/tl

-/ 1 Ace/ AGUI / gui / fx/ 1 gen. pl /1 Ace/ MAI N/ gui /| mgr /| gen. pl

The last three view lines are the reconcilers Ann just added. Note that Ann also put a note to herself-"Las
reconciled @9366"-in the spec's description. She'll be adjusting the branch view again, from time to time
each time she does so the branch view's description will tell her which changes she's already reconciled.

Who Adjusts the Branch View?

A branch view can be updated by anyone aslong as its spec is not locked. Y ou can choose to leave a
branch view's spec unlocked so that developers can adjust it themselves as they make structural
changes.

But a spec is not like a file-Perforce doesn't detect conflicts in specs when users make changes to
them. If two people happen to be adjusting a branch view's spec at the same time, the second person
could overwrite adjustments made by the first.

Aslong as your Perforce Server is set up to save spec versions, overwriting adjustments to a branch
view isn't a catastrophe-the overwritten spec version can always be retrieved. (See Chapter 6 .)
However, devel opers may not even notice when they've overwritten one another's adjustments, and
that could complicate the curator's task of keeping the codeline up to date. It may just be smpler to
keep the branch view's spec locked so that only the codeline curator can adjust it.

Y ou can set the branch view's owner, and the "locked" option, by editing the its spec form.

10.3.4. Integrating changes

Parent codeline changes should be integrated to the development codeline incrementally, in order. Thislets
the effects of each one so that there's no question about whether or not it causes problems or perturbs resuli
(Whileit'strue that these are stable changes, coming from afirmer codeline, there's no guarantee that they'r
compatible with changes in the development codeline.)

Before integrating parent changes into the development codeline, make sure:

» The branch view has been adjusted to account for structural changes in the development codeline.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e You are using aworkspace with aview of the development codeline.
» Your workspace is synchronized and no files are currently opened in it.

Ann liststhe MAIN changes that need to be pulled into AGUI:

p4 interchanges -r -b AGU - MAIN

Change 9325 by nina 'Fix dialog resize problemin...
Change 9324 by ron 'DB profiling for distributed...’
Change 9321 by bill '"Preferences can now be saved. ..

Change 9318 by don 'Test driver's new filter for...'

Thefirst change to integrate is the last onein the list, 9318. Ann uses these commands to integrate it:

p4 integ -t -r -b AGU -MVAIN @318
p4 resol ve

p4 subm t

After testing to make sure no problems were introduced, Ann repeats same sequence of commands for chal
9321, 9324, and 9325.

Notice the -t flag on the integ command-this causes file type changes to be propagated from MAIN into A
genera, thisis a good thing-it makes type changes introduced in parallel, completed development project:
to developersin AGUI. However, as you may remember reading in a previous chapter, changesto afile'sty
aren't handled by resolve . Take alook back at Chapter 3 to find out about using fstat to detect imminent fil
conflicts, and reopen to reconcile type changes.

& Frev

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

10.4. Working with Third-Party Software

Third-party software is the software that comes from other suppliers and is used in source or binary
form to build your software. If you're wondering whether you should check in third-party code, ask
yourself, "Are we going to modify it?" If the answer isyes, you should check it in. The vendor's source
will be the common base for changes you'll make; it needsto be in your depot. (You'll see an example
in amoment.)

There are other reasons to put third-party software in your depot:

e Most vendors distribute multiple versions or frequent upgrades of software. If you submit their
distributions into your depot you'll always know which versions of their software goes with which
versions of yours.

e You may want control over the versions your developers use. Rather than leaving it up to
developers to figure out which versions to download and when, use your depot to present the
correct version to codelines and workspaces.

o The Perforce depot is often the easiest place for you to store files. Y ou don't have to get root
access or set up network shares to make third-party software available to your devel opers. Just put
it in the depot.

It may be hard or inconvenient for your devel opers to download from external vendors. If you put
third-party softwarein your depot along with other files they use there's never any question about
how developers are to get it.

There'salot of switching between workspaces in the scenario described in this
w+ J. section. If you're not clear on how to switch between workspaces, take alook at
%Y Chapter 2.

10.4.1. Importing third-Party software

Aswe hinted in Chapter 8, you should designate a depot path for storing imported, third-party code. At
Ace Engineering, for example, software developed externally isimported into the //Ace/IMPORT path
(ak.a the IMPORT stream).

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Y ou can download a supplier's distribution and add it to your depot as you would any new collection of
files. For example, Ann's going to download FWindol*], atoolkit she and her devel opers plan to use for
GUI development. It's the FWindo 4.1 distribution, and it comesin afile called FWindo41l.zip. She has
downloaded this file and unzipped it into her c:\ws\fwindo directory. She will submit the tree of
unzipped filesto the //Ace/IMPORT/fwindo path in the depot.

[No, there is no such thing as FWindo. Or if there s, it's a coincidence.

Ann creates aworkspace with aview of //Ace/lMPORT/fwindo:

p4 client | MPORT-fw ndo-ann

Client | MPORT-fw ndo-ann
Root c:\ws\ fw ndo
Vi ew [/ Acel/ | MPORT/ fwi ndo/... //1MPORT-fw ndo-ann/. ..

With the IMPORT-fwindo-ann workspace as her current workspace, she opens the files for adding:

dir /s/b/a-d c:\ws\fwindo | p4 -x- add -f

(See Chapter 2 if you're not sure what just happened here.)

When Ann submits the change, she uses the changelist's description to identify the origin and version

of thefiles:

p4 submt

Change new

Descri ption FW ndo 4.1 unpacked from FW ndo4l. zi p,

downl oaded from www. npbet t awi ndows. com

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Fil es [/ Acel/ | MPORT/ fwi ndo/ src/incl ude/ fw n. h#1
/' Ace/ | MPORT/ f wi ndo/ src/ sanpl e/ mai n. c#1
/] Ace/ | MPORT/ f Wi ndo/ bi n/wi n32/1i bfw n.dl|#1

/1 Ace/ | MPORT/ fwi ndo/ bin/linux/Ilibfw n.so#l

Lastly, she removes the files from her workspace:

p4 sync #none

10.4.2. Branching imported code to the development codeline

Next, Ann will branch the FWindo files from the IMPORT stream into the AGUI codeline. Thefiles
will make up anew module in AGUI, called fwindo. She switches to the AGUI-master workspace and
opensthefilesfor branching:

p4 integ //Ace/ I MPORT/ fwi ndo/... //Ace/ AGUI/fw ndo/...

(Thisisthe ssimple form of the integ command. It doesn't use a branch view. Instead, it lists the donor
and target filespecs on the command line.)

When Ann submits the opened files, AGUI's new module is created in the depot:

p4 subm t

/1 Ace/ AGUI / fwi ndo/ src/include/fw n. h#l

/1 Ace/ AGUI / fwi ndo/ src/ sanpl e/ mai n. c#1

/'l Ace/ AGUI / f wi ndo/ bi n/ wi n32/1i bf wi n.dl | #1

[/ Acel AGUI / fwi ndo/ bi n/1inux/1ibfw n.so#l

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Once she's submitted the files, devel opers working in AGUI can resynchronize their workspaces to
have these files copied into them.

10.4.3. Updating the development codeline's branch view

The fwindo module is now an active module in the AGUI development codeline. It's going to track
with the rest of the codeline, and when completed AGUI work is delivered into MAIN, fwindo will be
branched into MAIN aswell. In order to make sure this happens, Ann adds a mapping line to the
AGUI-MAIN branch view:

p4 branch AGU - MAI N

Branch AGUI - MAI N

Vi ew /'l Acel AGUI [gui /. .. /'l Acel/ MAI N gui /. ..
/'l Ace/ AGUI /tests/. .. /1 Ace/ MAI N tests/. ..
/1 Acel AGUI [/ db/ . . . /1 Ace/ MAI N db/ . . .
/1 Ace/ AGUI / fwi ndo/ . .. /1 Ace/ NAI N fwi ndo/ . ..

The fwindo mapping line assures that the new module will be visible to integrate commands that use
the AGUI-MAIN branch view.

10.4.4. Importing a new distribution

When FWindo 4.2 is available, Ann imports the new distribution on top of the old one. She switchesto
the IMPORT-fwindo-ann workspace again and uses the following recipe:

1. Asbefore, she unzips the FWindo42.zip file into her c:\ws\fwindo directory.

2. She uses the sync-k command to make Perforce think her workspace is synchronized with the
depot's FWindo files:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 sync -k //Ace/ |l MPORT/ fwi ndo/. ..

3. She uses the technique described in Chapter 2's "Reconciling offline changes' section to open
filesfor adding, editing, or deleting, as needed:

cd c:\ws\fw ndo
p4 diff -se | p4 -x- edit
p4 diff -sd | p4 -x- delete

dir /s/b/la-d | p4 -x- add -f

4. She submitsthe files, again using the changelist description to document their origin:

p4 submit

Change new

Descri ption FW ndo 4.2 unpacked from FW ndo42. zi p,
downl oaded from www. nobet t awi ndows. com

Files /1 Ace/ | MPORT/ f wi ndo/ src/ sanpl e/ mai n. c#2

/1 Ace/ | MPORT/ f wi ndo/ bi n/ wi n32/ i bf wi n. dl | #2

[/ Ace/ | MPORT/ fwi ndo/ bi n/1linux/Ilibfw n.so#2

The net effect of thisrecipe isthat the files in the depot are updated per the new distribution. Files that
are the same in both distributions remain unchanged in the depot.

10.4.5. Merging a new distribution with local changes

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Having just imported a new FWindo distribution, Ann's next task is to merge the distribution with
changes that Ace devel opers have made to the previous version. She does this by switching back to the
AGUI-master workspace and pulling the new distribution into the AGUI codeline:

p4 integ //Ace/ | MPORT/fw ndo/... //Acel/ AGJ /fw ndo/...
p4 resolve -am

/I Ace/ AGUI / fwi ndo/ src/ sanpl e/ mai n. c#4

- merge from//Ace/ |l MPORT/ fwi ndo/ src/ sanpl e/ mai n. c#2

/1 Ace/ AGUI / fwi ndo/ bi n/wi n32/1i bfw n.dll#2

- copy from// Ace/ | MPORT/ f wi ndo/ bi n/wi n32/1i bfw n.dl | #2
/1 Ace/ AGUI / fwi ndo/ bi n/Iinux/1ibfw n.so#2

- copy from// Ace/ | MPORT/ fw ndo/ bi n/|inux/Iibfw n.so#2

p4 subm t

Notice the resolve output: It shows that one of the filesis being merged, not copied. Apparently during
the course of project development someone on the GUI team changed one of FWindo's sourcefiles:

p4 filelog //Ace/ AGUI/fw ndo/src/sanpl e/ main.c
/1 Ace/ AGUI / fwi ndo/ src/ sanpl e/ mai n. c
#3 change 7419 edit by bill "Fix fwi ndo sanpl e’
#2 change 7401 edit by bill 'Beef up sanple code'
#1 change 6990 branch by ann 'New FWndo tool kit (4.1)'
The fact that an Ace developer changed a source file that came from an external source is not a problem

as long as new distributions are submitted to the IMPORT stream first. Thisiswhat makesiit possible
to merge new distributions with parallel changesin the devel opment codeline.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

< Day Day Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

CE=S

10.5. Delivering Completed Development Work

Once work on a project is completed, you'll want to deliver it from the development codeline to its parent.
Likewise, if adevelopment codeline is being used for ongoing development, you'll want to deliver work to
its parent at points of completion. In either case, delivery is done by using integrate , resolve , and submit
to propagate new file content and new file structure to the parent codeline.

Delivering completed work is typically the job of the development codeline curator. Most of the effort is
in the setup, not in the integration; the actual integration islikely to betrivial because no file merging is
involved.

10.5.1. Merge down, copy up

Delivering completed work is a matter of first bringing the devel opment codeline up to date with the
parent codeline, then copying the merged files back to the parent. In the case of the AGUI codeline,
completed work will be delivered by merging MAIN into AGUI first, then copying AGUI to MAIN.
(Figure 10-5)

One advantage of this merge down, copy up approach is that when there are problems with merging,
interfaces, and compatibility, the development codeline bears the brunt. The parent-the firmer
codeline-remains unsullied while you sort out problems in the development codeline. Only after you've
submitted fixes to the devel opment codeline do you copy files from development codeline to parent.

Another advantage of merge down, copy up is that merging down gives you a preview of what the parent
codeline will ook like once you've delivered completed work

Figure 10-5. Delivering completed AGUI work to MAIN

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

MAIN

to the parent. The development codeline is your preview-you can batter it with the same tests its parent
codelineis subject to and you can show it to anyone who wants to know what you're about to deliver to
the parent.

Is Merging Dangerous?

Some people are convinced that merging is so dangerous that parallel development can
succeed only when merging is outlawed entirely. But when merging is outlawed, you're no
longer doing parallel development, you're doing serial development. In parallel development,
merging is unavoidable.

But is merging dangerous? No-it's no more dangerous than writing new code. But neither is
merging any safer than writing new code. So the question is, where do you want developers
writing new code, in soft codelines or in firm codelines? Why, in soft codelines, of course.
WEell, merging isjust like writing new code-it should be done in soft codelines, not in firm
codelines.

10.5.2. When should development be delivered?

Development work should be delivered to its parent codeline only at points of completion. (Whenit's
"code complete,”" asthey say.) Generally speaking, a point of completion is when software in the
development codelineisin good enough shape not to disrupt the parent. It must be functional, by the
standards of the parent codeline. If the parent isthe mainline, it should be essentially ready for release
stabilization.

In particular, work can be delivered when:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

« The development codeline is completely up to date with its parent. That is, there are no changesin
the parent that have not already been integrated to the devel opment codeline. (See "Keeping a
Development Codeline Up to Date ." earlier in this chapter.)

« Integration problems (that is, interface and compatibility problems) have been worked out in the
development codeline.

« The development codeline can pass the same tests that are applied to its parent.
10.5.3. Identifying a Point of Completion

Every point of completion has arevision number, by the way. For example, the AGUI codelineisnow at a
point of completion. We see that it was most recently changed by changelist 9477:

p4 changes
-ml // Acel AGUI /. ..
Change 9477 by ann on 2005/03/09 "Get rid of obsolete setup script'’

@9477 identifies AGUI's point of completion; //Ace/AGUI/...@9477 isthe version that will be delivered
to MAIN. (Figure 10-6 .)

Figure 10-6. AGUI's point of completion

&

AGUI

P! PN P P PN
1 P . 1 1l
e e’ N’ e e

>

If you want a more memorable way to refer to a point of completion you can also use alabel. Ann, for
example, prefersto use the label AGUI-complete (see Figure 10-7) She appliesit to the AGUI codeline:

p4 tag -1 AGUI -conplete //Ace/ AGU /... DA77

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Now shelll be able to refer to the label when she delivers completed work from AGUI to MAIN.

Development codelines that are used for ongoing development can have more than
% 4. Onepoint of completion. Each point of completion marks aversion of the
" development codeline that can be delivered to the parent.

10.5.4. Which changes should be integrated into the parent?

Once a point of completion is determined, all changes should be integrated to the parent, lock, stock and
barrel. In other words, don't cherry-pick. The simplifying

Figure 10-7. Labeling a point of completion

AGUI

Pt Pt Pt Pt Pt
| Pl ! 1 1
N s N L o

effect of working in adevelopment codelineislost if you're not treating the codeline as an absol ute variant
of its parent.

Integrating the entire development codeline to the parent isn't as daunting as it sounds. For one thing, only
the active modules will have files that need integrating. (Files in static modules have changed, yes, but
only to pull in parent codeline changes.) For another, you've been keeping the development codeline
completely up to date; there's nothing in the parent that hasn't already been merged into the devel opment
codeline. Development codeline files can simply be copy-integrated to the parent-they won't need
merging.

10.5.5. Freezing the parent codeline
The merge down, copy up method relies on being able to temporarily freeze the parent codeline for aslong
asit takes to complete the cycle. For example, Ann will need away to assure that no one submits a change

to MAIN until she'sfinished merging from MAIN to AGUI and copy-integrating from AGUI back to
MAIN.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

There is no automatic way to freeze a codeline in Perforce. Depending on the size and nature of your shop,
you may be able to effect afreeze with something as simple as afriendly email to your fellow devel opers.

If you're a Perforce superuser, you're in luck-you can use protections to freeze a codeline. (For more on
protections, see Chapter 6 .) Ann, it so happens, is a superuser. She can freeze the MAIN codeline by
running protect and restricting access to the //AceMAIN path:

p4 protect

Pr ot ecti ons
open user * * [/ Ace/ MAIN . ..
wite wuser ann * [/Ace/ MAIN ...

This downgrades everyone's access to MAIN; open means users can synchronize workspaces and open
files, but they can't submit changes. The only user who can submit changesto MAIN now is Ann.

i Make sure the development codeline is already up to date before freezing the parent
%> 4. codeline. (See"Keeping A Development Codeline Up to Date " earlier in the

4" chapter.) This minimizes the amount of time you'll need to keep the freeze in effect.
After you've frozen the parent codeline, check for updates again. This catches
changes that may have dlipped into the parent codeline between the last update and
thefreeze.

Note that merging late-breaking changes from the parent affects the point of
completion in the devel opment codeline. The new point of completion is the point
at which the development codeline is completely up to date with its parent. If you're
using alabel, be sureto reapply the label to the new point of completion.

10.5.6. Which Workspace?

To update a development codeline you need aworkspace with aview of the development codeline, of
course. Ann's been using the AGUI-master workspace to update the AGUI codeline.

To integrate from a development codeline to a parent codeline, you need a workspace with aview of the
parent codeline. In Ann's case, she'll need aworkspace with aview of MAIN. She uses the MAIN-master
workspace as atemplate to create aworkspace for herself called MAIN-ann:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 client -t MAIN-master MAI N ann

Client MAI N- ann

Root c:\ws\ nmain

Vi ew [/ Ace/ MAI N bui lt/... [/ MAIN-ann/built/...

[/ Acel/ MAI N db/ . ..

/1 Ace/ MAI N/ doc/ . ..
[/ Ace/ MAI NNutils/...
/1 Acel/ MAI Ntests/. ..

/1 Ace/ MAI N gui /...

/1 MAI N- ann/ db/ . ..

/I MAI N- ann/ doc/ . ..

[/ MAI N-ann/utils/...

[/ MAI N-ann/tests/...

/I MAI N-ann/gui /...

Ann will be switching back and forth between her MAIN-ann and AGUI-master workspaces as she
completes the delivery procedure.

10.5.7. Preparing a change description

When you integrate the development codeline into its parent you'll be submitting a changelist. A very nice
thing to do for downstream developersisto use the changelist to document your development codeline's
structural changes. Thiswill be useful to anyone merging bug fixes from an older release into the newly
restructured parent codeline. It informs them of the structural changes they'll need to reconcile.

Y ou can prepare a change description in advance, by creating a new pending changelist. (You'll haveto do
thisin aworkspace with aview of the parent codeline.) The structural changes to document are the ones
currently mapped in the development codeline's branch view. For example, these are the linesin the
AGUI-MAIN branch view that map the new AGUI structure to the old MAIN structure:

/1 Ace/ AGUI [gui /fx/... /1 Ace/ MNAI N gui /Il mgr/...

/1 Acel AGUI /gui/fx/trimcpp //Ace/ MAI N gui /|l ngr/st.cpp

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

-/ 1 Ace/ AGUI / gui /fx/1gen.pl [//Ace/ MAI N gui/|l ngr/I|gen.pl

And here Ann creates a new, empty, pending changelist and enters a description that documents these
structural changes:

p4 changel i st

Change new

Descri ption GU makeover is done-new | ook-and-feel ready to go!
NEW fw ndo/. ..
MOVED: gui /I mgr/... -> gui/fx/...

RENAMED: gui/lmgr/st.cpp -> gui/fx/trimcpp

DELETED: gqui /|l nmgr/1 gen. pl

Saving the changelist spec form creates the pending changelist number:

Change 9489 creat ed.

Ann will use this changelist number, 9489, when she opensfilesin MAIN for integration, aswe'll seeina
moment.

10.5.8. Normalizing the branch view

Having documented the structural changes, you can now normalize the branch view. That is, you can
remove the view mapping lines that reconcile the old and new file structures. Y ou won't need them as you
integrate into the parent codeline, because you want the new file structure copied to the parent asis. And
you won't need them after you've integrated, because at that point the two file structures will be the same

again.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

For example, Ann updates the AGUI-MAIN branch view and removes lines that map AGUI's new
structure to MAIN's old structure. This restores the branch view to asimple list of modules:

p4 branch AGU - MAI N

Branch AGUI - MAI N

Vi ew /1 Acel AGUI /gui /... /1 Ace/l MAI N gui /...
/1 Acel AGUI /tests/. .. I/ Ace/ MAI N'tests/...
/1 Acel AGUI / db/ . . . /1 Ace/ MAI N db/ . . .
[/ Ace/ AGUI /fwindo/... [/Acel MAIN fw ndo/. ..

Note that the new module, fwindo , is mapped in the normalized branch view. This assures that when Ann
delivers AGUI work to MAIN, the new module will be delivered as well.

10.5.9. Integrating into the parent codeline

At this point, you should have:

A completely up-to-date development codeline.

Anidentifiable point of completion in the development codeline.

A frozen parent codeline.

A workspace with aview of the parent codeline.

A prepared change description in an empty pending changelist.

¢ A normalized branch view.

With this groundwork laid, integrating the development codeline into the parent codelineis
straightforward.

Ann demonstrates. First, she checks to make sure MAIN-ann is her current workspace and that no files are
opened in it:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 info

Client nane: MAI N-ann

p4 opened

File(s) not opened on this client.

Now sheintegrates the AGUI codelineinto MAIN:

p4 integ -t -c 9489 -b AGU -MAIN -d -i -v @\GU -conpl ete
p4 resol ve -at

p4 submt -c 9489

Change 9489 renunbered 9496.

Change 9496 submitt ed.

In the preceding commands, notice that:
« Using -c 9489 with the integrate command causes pending changelist 9489 to be used for this
operation. (Asyou recall, Ann had already created this pending changelist.)

o Ann'susing the AGUI-MAIN branch view with integrate . This limits the scope of the integration to
the modules in the branch view.

e The -t flag makesintegrate propagate file types. (Theidea being that if a developer changed afile
typein AGUI, the type change should be delivered to the parent codeline.)

e The-i and -d flags assure that parent codeline files are added or deleted as necessary to match the
development codeline.

e The-v flag suppressesintegrate 'sinclination to copy MAIN'sfilesinto the workspace. (The MAIN

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

copies aren't needed because no merging is done by the subsequent resolve command.)

e Ann uses @AGUI-complete as the donor revision. Asyou recall, she tagged the AGUI codeline's
point of completion with thislabel.

e On theresolve command, Ann uses -at to make sure AGUI'sfiles are copied, not merged, to MAIN.

o Finaly, Ann submits pending changelist 9489. (Note that Perforce renumbers the changelist; the
submitted changelist is 9496.) At this point, the modules that are present in both MAIN and AGUI
areidentical, both in content and in structure.

10.5.10. Integrating neglected files

After you've integrated from the development codeline to its parent, check to make sure the codelines
match. The diff2 command, you'll recall, can be used to compare two codelines. For example:

p4 diff2 -g -b AGU - MAIN
= == = //Ace/ AGJ /gui/screen/cap.cpp#2 -

/1 Acel/ MAI N gui / screen/ cap.cpp#8 = == = (content)

Fileslisted by this diff2 command are those that don't match, but should. They were neglected during the
devel opment-to-parent integration because, as far as Perforce could tell, they had no outstanding changes.

(It'svery unlikely that afile can be neglected thisway. It happens as a consequence of two conditions
combined: First, the file was resolved by ignoring at some point as the development codeline was being
updated. Second, the same file has otherwise been completely untouched in the course of project
development.)

At any rate, this diff2 command lists the files that were neglected. If any of the neglected files happen to
be in the active modules, you probably haven't made a complete delivery of the project work to the parent.
Y ou'll need to integrate neglected files by brute force to make the parent files match their devel opment
codeline counterparts.

For example, here Ann forces the gui/screen/cap.cpp file to be copied from development codeline to
parent:

p4 integ -f -t -b AGU -MAIN // Ace/ MAI N gui / screen/ cap. cpp@\GUl - conpl et e

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 resol ve -at

p4 subm t

(The - flag forces integrate to operate on files whether or not it thinks they need it.)

10.5.11. Thawing the parent codeline

Once you've completed your delivery to the parent codeline, don't forget to "thaw" it-that is, to undo
whatever it was you did to freeze it. If other developers are waiting for email from you, don't forget to
send it. If you used protections to freeze the codeline, don't forget to remove them.

10.5.12. Retiring a development codeline

If adevelopment codeline won't be used after delivering completed development, it can be retired. There's
nothing special about retiring development codelines ; they can be retired in the same way as release
codelines. Y ou can use protections to deny write access or to hide them from view.

Not all development codelines reach retirement. Some, like the AGUI codeline, are used in perpetuity for
ongoing development.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

10.6. The Soft Codelines

In this section we look at the softest codelines of all: the ad hoc and private codelines used by
individual developers.

10.6.1. Shelving Work in Progress

As adeveloper you may find that from time to time you have to put work in progress aside in order to
tend to amore urgent task. In Perforce there are a couple of waysto shelve work in progress so that you
can pick it up again later:

e Asyou learned in Chapter 2, one way isto simply put open filesinto separate pending
changelists. This approach works as long as the work you're shelving doesn't interfere with the
new task you're taking on. In other words, as long as you can do both thingsin the same
workspace, with files opened for two different purposes, you're fine.

» Another way to shelve work in progressisto check your filesinto an ad-hoc sparse branch. You
create the branch expressly for the purpose of shelving your work; the only filesit contains are the
ones you need to shelve. Later, when you're ready to resume your work, you can run integrate to
pull the shelved files back into your workspace and carry on where you left off. If this procedure
sounds vaguely familiar to you it's much like what you read about it in Chapter 9, in the section
called " Task Branches and Patch Branches."

10.6.2. Private branches

Pending changelists and sparse branches are useful short-term solutions for shelving work in progress.
Asadeveloper, you may realize that there situations where it would be nice to be able to isolate your
work in progress for longer intervals. Y ou may want to submit your files before merging other peoples
changes into them, in order to reduce the risk of merging, for example. Or, you may want to submit
incompl ete changesto files in order to have interim versions you can roll back to. Y ou can't do these
things if you're working in a shared development branch, but you can do them in a private branch.

A private branch isafully populated, persona codeline branched from a development codeline. The
relationship of a private branch to its parent is the same as the parent's relationship to the mainline. The
care and feeding of a private branch-creating it, keeping it up to date, working in it, and delivering

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

completed devel opment-are also the same as for a development codeline.

As adeveloper, you have complete control over your private branch. (Or branches; there's nothing that
limits you to having just one.) Y ou can check in changes as often as you please, even when you know
your work isn't done or even completely correct. In fact, the more frequent your check-ins, the safer
your work is, because you can always back out your own changes. (See "Useful Recipes' in Chapter 2.)

For instance, Don is creating a private branch called DONDEV, to be branched from the AGUI
codeline. It has one active module, gui, and three virtual modules, tests, db, and utils.

Don has set up abranch view called DONDEV-AGUI that maps the active module to its parent:

p4 branch DONDEV- AGUI

Br anch DONDEV- AGUI

Vi ew /1 Ace/ DONDEV/ gui /. .. /1 Ace/ AGUI /gui /...

The branch view is not a requirement. It's a formality-it documents the active module-and it's a
shorthand for two depot paths. Notice that the branch view is mapped toward the mainline, AGUI being
closer to the mainline than DONDEV.

The branch doesn't exist until Don runs integrate to branch files. But before he can do that, he needs a
workspace with aview of his private branch. He sets one up:

p4 client DONDEV-naster

Cient DONDEV- nast er

Root c: \ws\ agui

Vi ew /1 Ace/ DONDEV/ gui /. .. / | DONDEV- master/gui/ ...
/1 Ace/ MAI N utils/... / | DONDEV- master/utils/...

[/ Acel AGUI [tests/. .. / / DONDEV- master/tests/. ..

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[/ Acel AGU / db/ . .. [/ / DONDEV- mast er/ db/ . . .

Like the AGUI-master view (see "Creating a master workspace," earlier in the chapter), this view treats
the utils as avirtual module inherited from MAIN. And, you'll notice, it treats tests and db as virtual
modules inherited from AGUI.

Don switches to the DONDEV -master workspace and uses the DONDEV-AGUI branch view to branch
thefiles:

p4 integ -r -b DONDEV- AGU

p4 submt

Now he can edit and submit filesin his own private branch.

10.6.3. Code reviews

Private branches make great foundations for code reviews. With private branches, the work of an
individual can be reviewed before it hits shared codelines. Before Don's work is delivered, for example,
the other AGUI developers can review it.

For instance, to see descriptions of the changes Don's about to deliver, developers can run:

p4 interchanges -1 -b DONDEV- AGU

To see detailed diffs of Don's changes, developers can use P4V's Folder Diff, or they can run:

p4 diff2 -b DONDEV- AGUI

Or, for asuccinct list of the files Don has changed, devel opers can run:

p4 diff2 -gq -b DONDEV- AGUI

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Developers can also inspect Don's branch view to see a summary of the structural differences between
his branch and the AGUI codeline:

p4 branch -o DONDEV- AGUI
Branch: DONDEV- AGUI
Vi ew.
/1 Ace/ DONDEV/ gui /. .. /1 Ace/ AGUI /gui /...
/1 Ace/ DONDEV/ gui / f x/ Nat Cam cpp // Ace/ AGUI / gui / spi n/ Nat Cam cpp

/| Ace/ DONDEV/ gui / f x/ Nat Lock. cpp // Ace/ AGUI / gui / spi n/ Nat Lock. cpp

In fact, devel opers could even make workspaces of their own based on Don's private branch, if they
wanted to, and synchronize and test itsfiles.

10.6.4. Reparenting a private branch

A private branch, asinformal asit may be, has an intended flow of change. For example, Don's
DONDEV branch is updated with changes from AGUI, and eventually, the work he'sdone in it will be
delivered to AGUI. (see Figure 10-8.)

Changing the intended flow of change is called reparenting a branch. In Perforce, you don't really have
to do anything to reparent a branch because, as far as Perforce is concerned, branches are just depot
paths. Perforce lets you integrate changes between any two depot paths. Y ou don't need a branch
view-you can put the paths right on the command line:

p4 integ //Ace/ AGU /gui/... [/ Ace/ DONDEV/ gui/. ..

However, Ace engineers arein the habit of using branch views to document the intended flow of
change. They also find branch views convenient for use with the integrate, interchanges, and diff2
commands. To formalize changes in private branch parentage, Ace engineersretool their branch views.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Figure 10-8. Flow of change to and from a private branch

MAIN

DONDEV

For example, Sue also has a private branch of AGUI, called SUEDEV, as shown in (Figure 10-9.)

Figure 10-9. Two private branches of AGUI

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

| DONDEV SUEDEV

The branch view that describes her private branch looks very much like the one that describes Don's:

p4 branch SUEDEV- AGUI

Br anch SUEDEV- AGUI

Vi ew /| Acel/ SUEDEV/ gui /. .. /1 Acel/ AGUI / gui /...

Sue has decided to make DONDEV the parent of her SUEDEV branch for now. (Don is coding some
features she wants to experiment with in her branch.) She does this by creating a new branch view:

p4 branch SUEDEV- DONDEV

Br anch SUEDEV- DONDEV

Vi ew /| Ace/ SUEDEV/ gui /. .. /1 Ace/ DONDEV/ gui /. . .

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Now she can use the branch view to compare her branch to Don's and to update her private branch by
pulling in Don's work. And, Don permitting, she can even use the SUEDEV-DONDEYV branch view to
deliver her experimentsinto his branch, as shown in (Figure 10-10.)

Figure 10-10. Private branch after reparenting

DONDEV

v
| SUEDI;‘U’ |

All of this can be done without the new branch view, of course-the branch view merely adds
formality to what could otherwise be tacit intent.

A shared devel opment codeline can be reparented as well. However, as you can imagine, reparenting
shared codelines can wreak havoc with the flow of change. Because private branches are used by single
users and positioned very low on the tofu scale, reparenting them isn't asrisky.

10.6.5. Redeploying a private branch

Private branches can be redeployed. That is, a branch branched from one codeline can berecycled asa
branch of another codeline. The only reason to do this, really, isto keep private branch paths from
proliferating in the depot.

For instance, Don was using the DONDEYV branch to do work on AGUI's gui module. He compl eted
the work and delivered from his private branch to the AGUI codeline. He now plans to do some work

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

on MAIN's utils and tests modules. For this, he will redeploy DONDEV as a private branch of MAIN.
(see Figure 10-11.)

Figure 10-11. Redeploying a private branch

MAIN AGU'\] :
_ L2

DONDEV

Before recycling a private branch, you can clear the decks, asit were, by deleting al itsfiles. This
makes a clean break in file histories and makes future integrations easier. Don demonstrates:

1. Using his DONDEV-master workspace, he deletes all the filesin the DONDEYV branch:

p4 sync
p4 del ete // Ace/ DONDEV/ . ..

p4 subm t

2. Hedédetesthe DONDEV-AGUI branch view:

p4 branch -d DONDEV- AGUI

...and creates anew DONDEV-MAIN branch view:

p4 branch DONDEV- MAI N

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Br anch DONDEV- MAI N
Vi ew /] Ace/ DONDEV/ t ests/ . .. /! Acel/ MAI N tests/...

[/ Ace/ DONDEV/ util s/. .. [/ Ace/ MAI NV utils/...

3. Heretools his DONDEV-master workspace spec:

p4 client DONDEV-nast er

cient DONDEV- nast er

Root c:\ws\ agui

Vi ew I/ Ace/ MAI N utils/... / | DONDEV-master/utils/...
I/ Ace/ MAI N tests/... / | DONDEV- master/tests/. ..

4. Hebranchesfilesfrom MAIN into DONDEV:

p4 integ -f -d -i -r -b DONDEV- MAI N
p4 submt
(The-d and -i flags let Perforce know it's okay to go ahead and branch files whose names are the

same as those previously deleted. -f assures that files will be branched regardless of integration
history, and -r, of course, makes the branch view mapping work in reverse.)

This gives Don afully-populated DONDEYV branch again. And although DONDEYV is till aprivate
development branch, its effective parent is now MAIN, as shown in (Figure 10-12.)

Figure 10-12. The flow of change after redeployment

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

DONDEV

Y ou can also recycle aprivate branch for use with the same parent codeline. You'd typicaly do thisif
your private branch has been inactive for along time. By deleting all its files and rebranching them,
you're creating a clean break with previous history. If you're not changing a private branch's parent, you
don't have to change its branch view, of course.

And yes, you can recycle shared development codelines aswell. But, as with reparenting shared
codelines, it's not a good idea-it's disruptive, and it muddies the flow of change.

= Day bay Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 11. Staging Streams and Web
Content

In Chapter 9 you saw how Perforceis used to keep track of software that is released two or three times
a year. Web-hosted software-what we're calling web content -demands that we manage codelines in
an entirely different way. For one thing, we don't have to support multiple versions. The version on our
web sitesis the version our customers use; we don't have to keep old versions around for patches and
point-releases. But unlike shrinkwrapped software, which may be released several times ayear, web
content may have to be released several times aweek. Given the complexity of the software that goes
into aweb site, we certainly don't want to be saddled with creating and managing a release codeline for
each new version.

In this chapter we'll look at using staging streams to manage frequent releases. (Stream is another word
for codeline. See Chapter 7) Using web content as the context, we'll see how change moves from stage
to stage, how devel opment enters the staging pipeline, and how bug fixes are treated.

= Day bay Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

11.1. Staging Web Content

Purveyors of large and rapidly evolving web sites have learned they can reduce complexity by
deploying content in stages. Each stage traps problems before subsequent stages are affected. For
example, thefirst stage might be to test whether everything can be compiled together and started up, if
nothing else. The second stage might be to evaluate appearance, and the third might be to validate
behavior and performance. It's certainly beyond the scope of this book to go into detail about what
happens in each stage, but it's well within the scope of Perforce to manage the staging.

The key to effective staging is to stop worrying about individual files. It's just not feasible to try and
mix and match files to produce a working web site when the site is large and complex. Instead we treat
web content devel opment as a sequence of web site versions. We track each version as it moves
through the staging pipeline and publish live web sites from the versions that make it all the way
through. This processis what we'll focus on in this chapter.

But really, this chapter is not about web content-it's about managing the Perforce codelines in which
web content evolves. In fact, it's about how to manage codelines for any kind of content staging. Y ou'll
find it useful reading even if you aren't devel oping web content.

With Perforce, we can manage deployment stages with staging streams. The strategy, in anutshell, is
this:

o Each staging stream hasits own path in the depot.

» Each stream has its own firmness on the tofu scale. (See Chapter 7)

« Web content versions are shunted from stage to stage in the soft-to-firm direction.

o Jobs or labels are used to mark web content versions that are ready to move to the next stage.

o Content is previewed on web sites built from staging streams.

« Automated scripts do the moving when the conditions are right.

« Integration history provides an audit trail of content in the staging pipeline.

11.1.1. Web Content at Ace Engineering

To demonstrate the use of staging streams we'll ook again at Ace Engineering. Aswith all effective

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

demonstrations, this oneis simplified so that explanations and diagrams don't overpower the concepts
it is intended to illustrate. However, it involves-we hope-enough real-world conditions that you can
easily construe an implementation to match more complex requirements.

Ace Engineering's web site relies primarily on PHP, MySQL, and Apache. The mainlinein which
visual and executable content come together is a staging stream called WEBMAIN, shown in Figure
11-1. It contains two top-level modules, app and www.

Figure 11-1. Ace Engineering's web content mainline

=&
23 Ace
=2 WEBMAIN
& app
ﬁ I

» The app module contains the executable content that is used to build, manage, and validate the
web site. It includes database setup and replication scripts, server configuration files, and various
programs and scripts that test and validate the site. Content in the app module is developed by
Pam'’s team of software engineers and web programmers.

e The wwww module contains the files that appear on the web sitein situ. It contains both visual
content and executabl e content.

The visual content in www includes images, text, XML, CSS, HTML, and PDF. It is devel oped
primarily by the web design group, with input from marketing, technical, and administrative
contributors. The lead web designer and overseer of visual content is Eric.

The executable content in www includes PHP and Javascript developed by web programmers on Pam's
team.

11.1.2. The Release Cycle

Ace Engineering's external web site is updated daily. Each updateis called a"release”, although the
version released is usually only dlightly different from its predecessor. Making arelease normally
involves three stages: completion, testing, and publication.

Developers integrate completed work into the WEBMAIN stream. (We'll be taking a closer look
shortly at how thisworks.) Once aday, aweb site version is copied from WEBMAIN into the WEBQA

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

stream where it is hammered with alarge battery of automated tests.

If no showstopping problems are found during testing, the WEBQA version is published by copying it
into the WEBLIVE stream. The cycle usually completes within aday. Monday's WEBMAIN version,
for example, will be tested and installed on the external web site by Tuesday, asillustrated in Figure
11-2.

Figure 11-2. The web release cycle

3
& @\‘&@ q'bﬁb

J. hj I-J I-J PJ * WEBLIVE

f S S WESQR

WEBMAIN

The WEBMAIN stream is the softest of the three staging streams. Developers can integrate completed
work toit at any time. The WEBQA stream isfirmer; it isnormally changed only by Brian, the lead test
engineer. Other devel opers may submit changesto WEBQA by Brian'sinvitation only. The WEBLIVE
stream is the firmest; the external web siteis built from itsfiles. It isaso under Brian's control and
normally changes only when he copies anew WEBQA release to it. Figure 11-3 shows how the staging
streams stack up on the tofu scale.

Figure 11-3. Staging streams and the tofu scale

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

firm

WEBLIVE

?

WEBQA

f

[WEBMAIN

soft

Brian, asthe curator of the web staging streams, has set up a master workspace for each stream. The
WEBMAIN-master workspace, for example, looks like this:

p4 client VWEBMAI N- nast er

Client

VEBMVAI N- nast er

Root

/ gal/ mast er / WEBVAI N

View

[/ Ace/ VEBVAI N/ . . . [/ WEBMAI N- naster/. ..

11.1.3. How Web Sites Are Updated

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Internal web sites at Ace Engineering allow developersto view content in the staging streams. (See
Table 11-1.)

Table 11-1. Staging streams and preview sites at Ace Engineering

Stage Stream Depot path Web site

Completion WEBMAIN IIAceWEBMAINL... http://webmain.ace.com/
Testing WEBQA IIAce/WEBQAV/... http://webga.ace.com/
Publication WEBLIVE I/ACe/'WEBLIVE... http://www.ace.com/

The WEBLIVE stream , as we just mentioned, contains content visible on the external web site. The
internal web sites mimic the external, production web site. Each has its own Apache server and its own
MySQL database.

On each web site machine, an automated script synchronizes files with changes in the Perforce depot. If
filesin the app module are affected, the script may rebuild the database and restart the web server.
When a new version affects only the www module, the site is updated "hot", without interrupting
database or web server.

For example, the WEBQA stream's preview siteis at http://webga.ace.com; webga isaUnix machine.
The Apache server running on this machine is configured to find files in the /qal/prev/webqga directory.

A script running on the webga machine updates this web site when changes are submitted to the
IIAceWEBQA path. Let'stake alook at the P4 commands run by the update script:

1. The script reinitializes WEBQA-preview, the client workspace it's going to use. It uses the
WEBQA-master workspace as atemplate. The resulting speciis:

Client

VEBQA- pr evi ew

Root

downloaded from: lib.ommolkefab.ir

http://webmain.ace.com/
http://webqa.ace.com/
http://www.ace.com/
http://webqa.ace.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

/ gal/ prev/ webqga

View

/1 Acel \EBQAY . . . [1 \EBQA- previ ew . ..

2. Theupdating script checksto seeif it's going to have to bounce the servers:

p4 -c WEBQA-preview sync -n //Ace/ VEBQA app/ . . .

(Here the script uses -c to set the current workspace to WEBQA-preview for this p4 command
invocation.) If this sync-n command lists files, the script proceeds to shut down the Apache and
MySQL servers.

3. The script resynchronizes the entire workspace:

p4 -c VEBQA- preview sync

The update script restarts the web and database servers, if necessary. It does this by running
initialization scripts located in the /qal/prev/webga/app directory. This directory hasjust been
resynchronized, of course, so any changes to schema or configuration will be reflected in the
restarted servers.

The net effect of any change to the //AceWEBQA path is that the web site is updated according to the
extent of the change. It's the same for all the preview web sites.

11.1.4. Pulling arelease into testing

Changes are delivered to the WEBMAIN stream by developers. Content in the WEBMAIN stream is
assumed to befit for release. (In other words, adeveloper doesn't integrate a change into WEBMAIN
unlessit's ready to go.) Once aday, Brian, the lead test engineer, pulls arelease from WEBMAIN into
WEBQA:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 integ -i -d -t //Ace/ WEBMAIN ... //Ace/ EEBQA . ..
p4 resol ve -at

p4 subm t

This sequence of commands shunts the WEBMAIN version into the WEBQA stream , kicking off an
update of the WEBQA preview site. Note that:

 Brian runs these commands with his current workspace set to WEBQA-master. Before running
them he makes there are no opened filesin the workspace. (Actually, Brian uses a script to run
these commands. And he doesn't actually invoke the script himself; it'sinvoked automatically as a
cron job.["] But these are the commands Brian would run if he were to do this manually.)

[l cron is a Unix utility that runs background programs at scheduled intervals. Scheduled Tasksis its rough
eguivalent on Windows.

o If the WEBQA stream doesn't exist yet, these commands will createit. In other words, these
commands can be used both to create the WEBQA stream for the first release and to pull
subsequent releasesinto it.

» Theintegrate command operates only on the files that have changed. This means that the size of
the operation is no larger than the number of WEBMAIN files updated since the last rel ease.

o The combination of flags on the integrate and resolve commands makes integration behave like a
copy command. Files that have been added, modified, or renamed in WEBMAIN will be copied
to WEBQA; files that have been deleted in WEBMAIN will be deleted in WEBQA; filesin
WEBQA will have the same file types as their donorsin WEBMAIN.

11.1.5. Publishing a tested release

Brian isalso in charge of publishing tested releases. He does this by copy-integrating content from
WEBQA into WEBLIVE:

p4 integ -i -d -t //Ace/ WEBQA/ ... //Acel/ EEBLI VE/ . ..
p4 resol ve -at

p4 subm t

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

These are the same commands used to pull arelease from WEBMAIN into WEBQA. The operation is
essentially the same, with one distinction: it is done using WEBL 1V E-master as the current workspace.

The web site built from the WEBLIVE stream isthe live, external web site, configured to use the
production database.
11.1.6. Release timing is flexible

Brian controls the release testing cycle. He pullsaversion from WEBMAIN to WEBQA only when a
new cycle begins. No changes move from WEBMAIN to WEBQA during atest cycle.

If the WEBQA test cycle gets long, new changes can pile up in WEBMAIN. Thisis not a problem.
Developers can continue delivering their changes to WEBMAIN while WEBMAIN awaits the next test

cycle.

If thetest cycleis short, on the other hand, the WEBMAIN stream may not have received new changes
in time for the next test cycle. Thisis not a problem either. When Brian triesto pull anew release,
Perforce simply reports that there is nothing to integrate:

p4 integ -i -d -t //Ace/ WEBMAIN ... //Ace/ EBQA . ..

/1 Ace/ VEBMAIN/ ... - all revision(s) already integrated.

When there is nothing to integrate from WEBMAIN to WEBQA, there's new nothing new to test.

11.1.7. The web content audit trail

Having adepot path for each deployment stage makes it easy to find out what's going on at a particular
stage. For example, we can see what's hot off the press in web devel opment by looking at the recent
history of WEBMAIN:

p4 changes -nB0 //Ace/ VEBVAI N/ . . .

To see the difference between the current WEBMAN and WEBQA streams we can use:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 diff2 -q //Ace/ WVEBMAI N ... [/ Ace/ VEBQA/ . ..

To see what's completed but not yet tested we can use:

p4 interchanges //Ace/ WVEBVAI N ... // Acel/ \EBQA/ . . .

To find out exactly what was on our web site at noon on May 23, 2005 we can use:

p4 files //Ace/ VEBVAI N www/ . . . @005/ 05/ 23: 12: 00: 00

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

CE=S

11.2. Visual Content Development

In order for web content to enter the staging pipeline, it must be ready to release. Scripts and other executat
for example, have to be working correctly. Visual content has to be contextually appropriate and aesthetica
pleasing. What this means s that devel opers need a place to check in their changes that is softer than WEB
They need a place where they can submit and preview their work in progressin order to know if it's worthy

At Ace Engineering, there are two codelines where developers may submit their work in progress, WEBEN
WEBVIS. (See Figure 11-4 .) Both are branched from WEBMAIN.

Figure 11-4. Web development codelines

WEBLIVE

WEBQA

WEBENG WEBVIS

WEBENG and WEBV IS are both used for ongoing web development, and both are soft enough for develo
make refinements before their work is released. Having two development codelines instead of one separate
executable content devel opment from visual content development. The two content types are separated bec
has its own flow of change:

o Executable web content consists primarily of scripts and programs. The flow of change we explored i
10 works very well for developing executable web content . As a matter of fact, Pam manages the Wi

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

codeline very much the same way Ann manages the AGUI codeline: The WEBENG codeline, in whic
and wwv are active modules, is kept up to date with WEBMAIN. At points of completion, work is de
from WEBENG to WEBMAIN.

» Visua web content Ace'sisadifferent animal entirely. For one thing, devel opers tend to work piecen
independently. For another, the files they work on are difficult or impossible to merge. The merge do\
up protocol simply doesn't apply to this kind of development.

In this section we'll focus on shepherding visual web content from development to release.

11.2.1. The visual content codeline

The WEBV IS codeline is dedicated to visual content development. Eric, the lead web designer, isin charge
the two top-level modulesin WEBMAIN, only ww is branched to WEBVIS. (The app module containsn
needs to be on local disk to work on visual content.)

Eric has set up abranch view called WEBVIS-WEBMAIN that he uses for comparison and integration:

p4 branch VEBVI S- WEBVAI N

Branch

VEEBVI S- WVEBVAI N

View

/1 Ace/ VEBVI S/ ww . .. [/ Ace/ VEBVAI NV wwwv . . .

He has also set up aWEBV IS-master workspace:

p4 client WEBVI S nast er

Client

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

VEEBVI S- mast er

View

[/ Ace/ VEBVI S/ ... [/WEBVI S-naster/...

Web designers, artists, and authors work in the WEBV IS codeline. They work on images (.gif and .png), t¢
templates (.tpl), style sheets (.css), static documents (.pdf and .html), and so forth.

The WEBV IS codeline contains PHP and Javascript as well, but these files aren't touched by visual content
developers. Only Eric touches them, and when he does, it's only to update WEBV IS with the |atest executa
from WEEBMAIN. Thus, as Pam's group delivers completed features and enhancements from WEBENG t
WEBMAIN, the WEBV S codeline stays current with them.

Like the staging streams, WEBV IS has its own preview web site, online at http://webvis.ace.com . As deve
submit changes, they can browse this site and see how PHP renders their files.

Delivering completed work from WEBVIS to WEBMAIN is Eric's responsibility. This means Eric hasto k
working on what, and he needs to know when their work is done.

Asit turns out, Perforce jobs are just the semaphores he needs. If you're going to submit changes to the WE
codeline, Eric requires you to open ajob first to describe the work you plan to do. And when you're done, y
close the job so Eric knows your work isready to release. In "Enforcing the use of jobs " later in this chapt:
how Eric enforces these requirements, but first, let's look at what a developer does to meet them.

11.2.2. Working on visual content

Lindais going to update course descriptionsin Ace Engineering's online training catalog. She launches P4\
creates aworkpace called WEBVIS-linda, using the WEBV |S-master workspace as atemplate. Before she
working on files, however, she creates a new job. She does this with File =—* New =— Job. Inthe job forn
Figure 11-5, she enters a brief description of her task at hand.

Linda now navigates the depot file tree (see Figure 11-6), synchronizes files and folders (that's File = Gi
Revisionsin P4V), and points and clicks her way to

Figure 11-5. Creating a new job

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

& Job: new

d Back ~ [Forward = 5] Tear Off

Jok: InEW

Status: I apen LI

Izer: IIinu:Ia

Descrption: | -p e deszcriptions need updating for Rel 3.1

checking out and editing files. She can use her web browser to see the local files she's editing, but she won'
see how they're rendered by PHP until checksthemin.

Figure 11-6. Navigating the depot file tree

EEE Depot Tree Bl
5 wWEBVIS inda |
=

- Ace
= WEBMIS
- v
B0 docs
=N training
© e B admintpl #343 <texts
advanced tpl #1424 <texts
irtro tpl H#13/13 <best:
----- modeling.tpl #2/2 <test:

When Lindais ready to check filesin, she uses P4V's File=—* Submit command, asyou seein Figure 11-7

In P4V's Submit Changelist dialog, Linda does the following:

1. Sheentersadescription of her change.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2. Shechecks her job inthe"Link job to changelist” list.

3. She picks"open” from the Job status upon submit menu.

4. She clicks Submit.

(And why does she specify open as the job status? Because if she doesn't, Perforce will set it to "closed” wi
submits her change. By leaving it open, she's signaling that her changes should not be rel eased yet.)

As soon as Linda has submitted files, she can point her browser to http://webvis.ace.com to see how her ch
on the preview site. It's no problem if she finds

Figure 11-7. Linking a job to a changelist

B! submit Changelist: defaulk x|

W Write a changelist description:

AcePack training info now refers to new 3.1 features.

W Choose files to submit:
™ Files i’
¢ e WEEYIS Avn/docstrainingdintr. tpl

AAceSAWEBVIS A doczAtraining advanced tpl _ILI
4| | ’

[T Check out selected files after submit

W Link jobs to changelist (optional):

[Job I Status | Drezcription
4553 job001420 apen Course descriptions need updating far Bel 3.1

Add Jaobs... Jaob statuz upon submit; I OpEn vI

Submit Save az Mumbered Ehangelistl Cancel

£

something that needs correcting, or afile that she missed. She can continue to check out, change, and subrr
complete her task. She can ask other people to browse the preview site and review her changes. Aslong as
of thejob linked to her changelists remains open, Eric knows her changes aren't ready to be released.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

When Lindais confident her changes are ready for release, she closes her job. Aswe seein Figure 11-8 she
job by running View = Jobs and entering "user=linda status=open" in the search field.

Figure 11-8. Finding a job

& Jobg

Lzer=linda statuz=open

o s Status Ciescriptian

With her job selected, Linda uses the Edit = Edit job menu to get to the job form. There she sets the job'
field to closed and saves the form, as shown in Figure 11-9 .

11.2.3. What's ready to be released?

Eric maintains the continuous integration of WEBVIS into WEBMAIN with a script. The script keepsan e
changes submitted to WEBVIS and |ooks for completed work. When it finds changes that qualify, it integr.
from WEBVIS

Figure 11-9. Closing a job

Job: job001420
Status: clozed LI
NELTH open

suzpended

Drate:

into WEBMAIN. The script uses afew simple P4 commands to figure out which changes can be released. |
looking at these commands, however, |et's take alook at the logic behind them.

Table 11-2 shows seven unreleased changes, numbered 54 through 60. Changelist 54 containsfile revision
, and d#9 , changelist 55 containsrevision b#6 , and so forth. The are four jobs-A, B, C, and D in associat
these changes. Job A islinked to changes 54, 56, and 59, job B islinked to changes 55 and 57, and so on. J
and D are closed. Only job B is till open.

Table 11-2. Release dependencies

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Job A (B) A (B) C A D
Change 54 55 56 57 58 59 60
Filea #4

Fileb #6

Filec #2 #3 #4

Filed #9 #10 #11
Filee #2 #3

Filef #7

Given that closed jobs mean work is done and open jobs mean it's not, which of these changes can be integ
another codeline without bringing along incomplete work? In other words, which of these changes can we

¢ Clearly we can't release changes 55 and 57 yet. We know this because they're linked to job B, and job
open.

o Change 58 can be released. It's linked to a closed job, and its one file revision, f#7 , has no prior, unre
revisions. Change 58 is a completed change that is independent of all the other changes.

« Can change 59 be released? No. Although it's linked to a closed job, it contains arevision, e#3 , that t
e#2 , and e#2 can't be released. Why not? Because e#2 's change is linked to open job B. We can't rele
59 because it is tainted with the incomplete work of change 57.

e Moreover, since we can't release change 59, we know we can't make a complete delivery of the work
with job A. That means that we can't release changes 54 or 56 either.

« How about change 607 It too is linked to aclosed job. But the one revision in its changelist, d#11 , bt
revisions in changes 54 and 56. And because we can't release 54 or 56, we can't release 60.

11.2.4. Automating continuous integration
Now that you've seen the logic behind choosing changesto release, let's ook at the P4 commands used by |
continuous integration script. It'simportant to note that Eric's script runs with a current workspace that has

theWEBMAIN stream. (Because the filesit's going to change are in WEBMAIN, WEBMAIN must be ma
current workspace view.) The workspace is pristine at the outset-no opened files, no pending changelists.

1. Thescript liststhe changesin WEBV IS that are not yet integrated to WEBMAIN:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 interchanges -b VEBVI S- WVEBVAI N

Change 10029 by linda 'AcePack training...'
Change 10030 by ham d 'Link to downl oad. ..
Change 10033 by linda 'Fix typo..."'

Change 10034 by bruce 'Swell new icons...’
Change 10035 by hamid ' CSS changes for...'

(Recall that the WEBVIS-WEBMAIN branch view defines//Ace WEBVIS\www/... as the source and
I/AcelWEBMAINMwwY/... asthetarget.)

If there are no unintegrated changes, the script exits.

2. The script tags the revisions in each changelist with atemporary label.

p4 tag -1 tenpl0029 @10029
p4 tag -1 tenpl0030 @10030
p4 tag -1 tenpl0033 @10033
p4 tag -1 tenpl0034 @10034

p4 tag -1 tenpl0035 @10035

(You may recall reading in earlier examples that the undocumented but succinct @= revision syntax ¢
identified with a particular changelist. Run help undoc to find out more about undocumented revision

3. The script uses the temporary labelsit just created to list the jobs involved with each changelist:

p4 jobs @enpl0029

j 0b001420 on 2005/04/19 by linda *cl osed* ' Course descriptions...’

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 jobs @enpl0030

j 0b001411 on 2005/04/17 by ham d *cl osed* ' Need downl oad |ink..."’

p4 jobs @enpl0033
] 0b001401 on 2005/04/15 by ham d *cl osed* ' New font schene...’

j 0b001420 on 2005/04/19 by linda *cl osed* ' Course descriptions...’

p4 jobs @enpl0034
j 0b001420 on 2005/04/19 by linda *cl osed* ' Course descriptions...'

j 0b001426 on 2005/ 04/ 22 by bruce *open* "Ron wants icons for...'

p4 jobs @enpl0035
] 0b001378 on 2005/ 04/ 02 by ham d *cl osed* ' Pronbp pages ready...'
The script analyzes output like this to determine which changes qualify for release. In this case, chanc

and 10035 can be released. (10034 can't be released because it's linked to an open job. 10033 and 100
rel ease because they're tainted by 10034.)

4. Having determined which changesto release, the script del etes the temporary labels:

p4 | abel -d tenpl0029
p4 | abel -d tenpl0030
p4 | abel -d tenpl0033
p4 | abel -d tenpl0034

p4 | abel -d tenpl0035

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

5. The script goes through the releasable changes in order and uses them to open files for integration:

p4 integ -b VEBVI S- WEBMAI N @10030

p4 integ -b WEBVI S-WEBMAI N @10035

6. The script attempts to resolve the opened files:

p4 resolve -as

p4 resolve -n

(For more about how this works, take alook back at Chapter 3.)

If resolve -n shows that files couldn't be auto-resolved safely, the script reverts the opened files and se
email. (Thisisarare occurence, usually a symptom of abug fix in WEBMAIN that hasn't been pullec
WEBVIS. Whatever the cause, it's going to need Eric's attention.)

7. If it getsthisfar, the script submits a change:

p4 subm t

(A script can't run aplain old submit command, of course-it has to create a changelist form, insert a
description, and pass the form to submit -i . See Chapter 6)

Using jobs as ready-to-release indicators isn't an iron-clad system. Users can still get sloppy and forget to ¢
and there's nothing to keep them from closing jobs even when their work isn't really ready for prime-time. |
informal mechanism, it works quite well to automate the continuous integration of visual content.

11.2.5. Enforcing the use of jobs

As a Perforce superuser, Eric has afew tricks up his sleeve to make devel opers remember to use jobs.

e Hehasinstalled a pre-submit trigger that fires when changes are submitted to the //Ace WEBVIS path.
trigger issimply a script that runs the change command to check the user's changelist. If it doesn't fin
one opened job listed, it rejects the change and the user gets an error message saying You nmay not st

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

change without linking an open job to it.

Eric has also installed spec triggers to keep users from del eting jobs and from reopening jobs after col

work has been released.

p4 triggers

Triggers

Must HaveJdob submit //Ace/VEBVIS/... "webvis-checkchange.rb %thanc
NoJobReopen in job "webvi s-noj obreopen.rb %user% % ornfil e%

NoJobDel ete delete job "webvi s- noj obdel ete.rb %user% % ornfil e%

» He has configured depot protections to restrict access to the WEBV IS codeline.

p4 protect

Protections

r ead user * * /] Ace/ VIEBVI S/ . . .

wite group VEBVIS-wite * /'l Ace/ \EEBVI S/ . . .

Only members of the WEBV IS-write group can submit changesto filesin the //Ace WEBVIS path. Er
WEBV I S-write membership with the group command:

p4 group VEEBVI S-write

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Group

VEBVI S-write

Users

ham d

| i nda

e AsEric adds usersto the WEBV I S-write group, he also updates their user specs so that their open jok
in the changelists they submit. When he added Lindato the group, for example, he also updated her u

p4 user |inda

User

| i nda

Jobview

user =l i nda st at us=open

The JobView field in Linda's user spec is what makes jobs appear in P4V's Submit Changelist dialog
Lindachecksinfiles.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

11.2.6. Preventing merging

For the most part, Ace's visual web content developers work on files serially. Linda, for example, isn't likel
changing afile someone else is aready working on. And when she checksfilesin, it's not likely she'll find -
merge someone el se's concurrent changes into them first. Again, thisis partly because ownership of visual
filestendsto befairly well partitioned. But it's also because these files can't easily be merged. We don't me
files, for example-or if we do, we do it by hand. Even text files aren't usually merged in visual content de
mainly because the WY SIWY G editing tools we use don't lend themselves very well to automated merges.

With visual content files, it's better to prevent situations that would require merging files. Developers can ¢
individually, by locking files as they open them. If Lindaisworried about the possibility of having to merg
example, she can use P4V's File = Lock command.

But there's another way to prevent inadvertent merging, and that is with the exclusivelocking file type. Exc
locking files can be opened by only one user at atime.

Eric has done this for the WEBV IS codeline. First, using the WEBVIS-master workspace, he changed the 1
al thefilesin the codeline:

p4 sync

pd edit -t + //...

p4 subm t

(Y ou may remember reading in Chapter 1 that the +l file type modifier means exclusive locking, and that y
change afile'stype as you open it for editing.)

The other precaution Eric took was to make exclusive locking the default for new files. He did thiswith aF
typemap . As a superuser, Eric can run the typemap command and set default file types by filespec:

p4 typenmap

Typemap
+ /] Acel VEBVI S/ . ..

With this typemap in effect, new filesin WEBV IS codeline will take on the +l file type by default.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

L FREY

11.3. Bug Fixes and Staging Streams

So, what happensif abug isfound in testing? Or worse, if abug isfound in the published release? The
answer depends on the severity of the bug, what it takesto fix it, and the state of current development.
WEe'll see how these play out in three different scenarios.

11.3.1. Non critical bugs

Many non critical bugs are found during the release cycle and after areleaseis published. They are not
fixed in the staging streams, however. They're fixed in a development codeline, either WEBVIS or
WEBENG. Non-critical bug fixes enter WEBMAIN and migrate through WEBQA to WEBLIVE
according to the normal release cycle.

Thisis quite different, you'll notice, than how we treat release codelines. We branch release codelines
specifically to fix bugs. We have time in the schedul e to rerun tests as we make changes in release
codelines; this assures that our bug fixes haven't broken anything else.

But with extremely frequent rel eases we have to keep content moving through the cycle. If we wereto
make changesin WEBQA, we'd have to retest the codein WEBQA.. And if wereto retest the code in
WEBQA, we'd have to delay testing the next release from WEBMAIN. Since it takes only aday or so to
get WEBMAIN fixesinto WEBLIVE in any case, we're better off keeping releases moving than holding
them up for noncritical bugs.

11.3.2. Show stoppers in WEBQA

Now let's consider what happens when testing uncovers a show stopper bug in the WEBQA stage.
Remember, the WEBQA stream was copied from arecent version of WEBMAIN. Thefirst thingtodois
to check the http://webmain.ace.vis site for evidence of the bug-or lack of it-in WEBMAIN. If we're
lucky, the bug will have already been found, fixed, and released to WEBMAIN. In this case all we have to
do is abort testing in WEBQA and restart it with anew version pulled in from WEBMAIN.

If the bug is not fixed in WEBMAIN we have a choice. We can fix it in WEBQA or wecanfixitina
development codeline-either WEBVIS or WEBENG. Fixing it in a development codeline is easiest
because it's how devel opers normally work. It does mean, however, that the version currently in WEBQA
will have to be abandoned. We'll have to wait until the next WEBMAIN version is ready before we can
start testing again. as shown in(Figure 11-10 .)

Or we can fix the bug in the WEBQA stream. If we do this, we may be able to expedite the release by

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

resuming testing where we left off once the bug is fixed. Whether thisis feasible depends on the nature of
the bug. If the fix was messy, we'd probably want to restart testing from the beginning, in which case we
may aswell have fixed the bug in a devel opment codeline anyway.

Fixing abug in WEBQA a so means that a developer has to set up a workspace mapped to the WEBQA
stream. Thisisn't a huge problem, but it's alittle bit outside of developers normal work habits. Moreover,
well have to integrate the bug fix

Figure 11-10. Abandoning the current test cycle

> WEBLIVE
yam /—/ WEBQA

WEBMAIN

from WEBQA to WEBMAIN, and from WEBMAIN to development codelines. Thisisyet another reason
it might have made more sense to fix the bug in a development codeline.

11.3.3. Rolling back the published web site

The worst-case scenario is that web content makes it al the way to the published web site-into the
WEBLIVE stream, that is-and then we discover a show stopper. Because our live, production web
servers are getting their files from the WEBLIVE stream, either we have to fix WEBLIVE fast or we have
toroll it back to the last good version.

Luckily every version of the published web siteis stored in the WEBLIV E stream. If we know that there
was a good version online at noon on May 24, 2005, for example, we-we being Brian, in particular-can
roll the stream back to that version.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Brain uses the WEBL IV E-master workspace to do this.

p4 client VEBLI VE- naster

Client

VEEBLI| VE- nast er

Root

/ ga2/ mast er / \EBL| VE

View

/| Ace/ VEEBLI VE/ . . . / | VEBLI VE- naster/. ..

(Asyou can see from the Root field, this happens to be a Unix workspace.)

In Chapter 2 you saw the recipe for backing out a change. Brian uses asimilar recipe to roll back aweb
site. He's going to roll the WEBLIVE stream back to a dated snapshot of its content at noon on May 24,
2005. Here's how he applies the recipe:

p4 sync @O005/05/24:12:00:00

p4 sync -n > tenpfile

sed -n -e "s/#.* - deleted as .*//p" tenpfile | p4 -x- add
sed -n -e "s/#.* - updating .*//p" tenpfile | p4 -x- edit

p4 sync

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

sed -n -e "s/#.* - added as .*//p" tenpfile | p4 -x- delete
p4 resol ve -ay
p4 subm t

rmtenpfile

And here's a play-by-play breakdown of how Brian's recipe works:

1. It starts out by synchronizing the workspace to version @2005/05/24:12:00:00 . (Remember, Brian's
using the WEBL 1V E-master workspace to do this. It has aview of the //Ace’'WEBLIVE path.) The
workspace now contains the good version of the web site.

2. It captures the output of sync-n intempfile. The output is a preview of what would happen if the
workspace were to be resynchronized to the current WEBLIVE version now. It isalso the list of files
that need to berolled back. Here's a sample of the sync-n output:

/' Ace/ WEBLI VE/ ww/ docs/ sear ch/ advanced. php#3 - added as ...
/I Ace/ EEBLI VE/ ww/ docs/ aut h/ passwd. php#9 - updating ...

/| Ace/ VEEBLI| VE/ ww docs/ i ncl udes/ auth.inc#4 - deleted as ...

3. It usesthe Unix sed command to filter tempfile for lines containing deleted as and updating , and
passes the filtered output to the P4 add and edit commands, respectively. This opensfilesfor adding
and editing, as necessary, to match the good version.

4. Theworkspace is resynchronized, this time with the current version. This doesn't alter the opened
files, of course.

5. Linesin tempfilethat contain the string added as are filtered and passed to the delete command. This
opens filesfor deleting, as necessary, to match the good version.

6. The opened files are resolved. The -ay flag makes resolve accept the workspace files.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

7. The opened files are submitted and tempfileis removed.

The net effect of this sequence of commandsisto restore the WEBLIVE stream to its contents as of noon
on May 24, 2005. Now it's up to the tools that automatically rebuild and reinstall the web site to do their
thing.

Rolling back WEBLIVE to aprevious version istrivial, asfar as Perforceis concerned. Admittedly, it
might not be trivial as far as regenerating the web site goes-databases have to match applications, and so
forth.

Why Not Use a Label?

Thetoolsthat build Ace'slive web sites get files by synchronizing with the WEBLIVE stream. Why not
have the tools synchronize with labeled revisions rather than with the head revisions? If they did, Brian
could effectively roll back Ace's published web site simply by reapplying the label to an earlier
WEBLIVE version.

But here'sthe deal: applying alabel doesn't create a event in the history of the WEBLIVE stream.
Rolling back the WEBL IV E stream by submitting a change, on the other hand, does create such an
event. It's an event that's recorded permanently in the stream'’s history:

p4 changes // Ace/ VEEBLI VE/ . ..

Change 11283 on 2005/05/25 by brian "Roll back to 2005/05/24:12:00: 00"
Change 11272 on 2005/05/25 by brian "Copy from VWEBQA to VEBLI VE"
Change 11263 on 2005/05/24 by brian "Copy from WEBQA to WEBLI VE"

Change 11200 on 2005/05/23 by brian "Copy from VWEBQA to WEBLI VE"
Brian builds Ace's live web sites from WEBLIVE's head revisions so that he can point to the history of

WEBLIVE astheirrefutable record of what was on the web at any point in time.

11.3.4. Forcing integration after a roll-back

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Once we've rolled back WEBLIVE, we can fix the show stopper bug in a development codeline and let the
usual release cycle propel the fix through testing to the live web site. There is one thing Brian will haveto
do differently, however. The next release he publishesis going to have to be force-integrated from
WEBQA, to WEBLIVE:

p4 integ -f -i -d -t //Ace/ WEBQA/ ... [/ Ace/ VEEBLI VE/ . ..
p4 resol ve -at

p4 subm t

(The f flag makes integ integrate files even when integration history shows all changes are accounted for.)
Thisisabit heavy-handed, in that al fileswill be opened and recopied, even if they haven't changed at all.
But it's the best way to assure that rolled back filesin WEBLIVE don't take precedence over previously
published versionsin WEBQA. It guarantees that what's going live in WEBLIVE is exactly what was
tested in WEBQA.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

11.4. Major Web Development

The staging streams and development codelines described in the previous examples are suitable for
ongoing, iterative web content devel opment. They don't really work for major web development
projects . If we have a new development project afoot-a project that will take several months to
complete, for example-we're going to have to isolate it to keep it from disrupting ongoing
development. On the other hand, we don't want the project living under arock, either-we need a way
to get it into the QA cycle and onto beta test sites well in advance of introducing it into our production
web content pipeline.

Our solution isto set up aparallel pipeline, as shown in the example in Figure 11-11. The Perforce
commands for creating and using a parallel pipeline have already been covered, in this chapter and in
previous chapters. Instead of demonstrating with examples here, let's just take alook at the big picture.

Figure 11-11. Parallel pipeline for major new development

WEBLIVE

BETALIVE

BETAQA

(BETAMAIN) (WEBENG) WEBVIS

To launch our major new development project, we branched WEBMAIN into a development codeline
calledBETAMAIN . BETAMAIN is ashared development codeline; our developerswill useit for the
new project. As bug fixes and minor enhancements flow into WEBMAIN, they are merged into

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

BETAMAIN. However, until the project is complete, no change will flow from BETAMAIN to
WEBMAIN. This assures that content leading to the WEBLIV E steam remains undisturbed by the
groundbreaking changesin BETAMAIN.

Meanwhile, we've branched BETAMAIN into a staging stream called BETAQA. BETAQA servesthe
same purpose as WEBQA-it's used to subject web content to testing. Change flows between
BETAMAIN and BETAQA asthe project evolves. Thetest cyclein BETAQA is necessarily
irregular-even infrequent at first-but as the project matures, tests become more extensive and the
cycle becomes more frequent. All the while changeisflowing from WEBMAIN into BETAMAIN,
keeping BETAMAIN completely up to date with our current web content.

Eventually, when BETAMAIN maturesto a point that it's ready to see the light of day, we branch
BETAQA into BETALIVE. External betaweb sitesare built from BETALIVE, selected customers
come to the betaweb sites, and bugs are reported. Bugs are fixed in BETAMAIN; they flow through
BETAQA to BETALIVE. Theflow of change from BETAMAIN to BETALIVE now matches the flow
of change from WEBMAIN to WEBLIVE. This parallel pipeline allows us to stabilize the devel opment
project without affecting our production web sites.

When the content in the beta pipeline meets quality expectations we deliver our completed
development work from BETAMAIN to WEBMAIN. (See "Delivering Completed Devel opment
Work." in Chapter 10) The fruits of our major development project, now in the production web content
stream, begin flowing through WEBQA to WEBLIVE. Our ongoing development codelines,
WEBENG and the WEBV IS, are updated with the new content in WEBMAIN. And, finally, we
mothball the BETAMAIN, BETAQA, and BETALIVE codelines.

& Frev Ay AL e

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

==l < Day Day Up > [

Appendix A. Setting Up a Perforce Test
Environment

This book is not a tutorial-there are no exercises to follow, no drills to complete, and no working
sample programsto run. But if your interest is piqued as you read along, you may want to try afew
things yourself. Y ou'll be happy to know that it takes about 10 minutes to set up a Perforce test
environment, complete with server.

There are caveats, however:
« Although Y ou don't need a Perforce license to run a Perforce Server, an unlicensed server will
support only two users and five workspaces.

e The quick setup steps described here are no substitute for awell-informed Perforce installation
procedure. If you want to set up a Perforce Server for production use, please follow the
instructions in the The Perforce System Administrator's Guide.

o Perforceinstallation procedures vary dlightly from release to release. The procedures described
here are based on Perforce Release 2005.1.

e erev < Day Day Up > [e

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

A.l. Setup

Y ou should plan to download and install, at a minimum, P4, the Perforce Command-Line Client, and
PAD, the Perforce Server. Y ou should also install P4V, the Perforce Visual Client, and PAWeb, the
Perforce Web Client, as both come up occasionally in examplesin this book.

Y ou can run the Perforce Server on the same machine you'll be using to run your client programs. Or, if
you prefer, you can use the client programs on one machine while running the server on another. In
either case, make sure you download and install the software matches the machines on which you plan
torunit.

Perforce offers two graphical clients for Windows, P4V and PAWin. P4V is

iy newer and is available for non-Windows platforms as well asfor Windows. As
of Release 2005.1, P4V comes bundled in Perforce's core product installer for
Windows. (The core installer also includes P4, P4D, and PAWeb.)

e

PAWin is Peforce's classic Windows client. It can be downloaded separately inits
own installer.

There are also two graphical merge tools available on Windows. The newer one
isP4AMerge; it's avail able both as a stand-al one program and as an embedded
feature of P4V. PAMerge comes with the core installer. The classic merge tool
for Windows, PAWinMerge, comes with the PAWin installer.

A.1.1. Installing Perforce on Windows

Y ou don't have to be a Windows administrator to install Perforce for your own use. However, the steps
that follow match the Perforce installer's behavior when are an administrator. If you're not an
administrator you'll see different dialogs and defaults, and programs that are normally installed as
services will be installed as command executabl es.

1. Go to www.perforce.com and follow the Download links to the Windows page. Download the
coreinstaller for Windows and run it. In the first configuration dialog, select Administrator =
Typical. Now follow the dialogs to the end, accepting the default values.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.

In a Command Prompt window, run these commands to create your Perforce workspace:

nkdi r c:\ pd4wor kspace
pushd c:\ p4wor kspace
p4 set PACLI ENT=t est ws

p4 client -0 | p4 client -i

This sets up a Perforce workspace called " t est ws", rooted in c:\p4workspace.

Y ou can launch P4V from the Windows toolbar with Start = Programs —* Perforce — PAV.
Enter "t est ws" as the workspace name in P4V's Open Connection dialog.

Theinstaller will have started a PAWeb service for you. To use it, point your browser to:

http://1 ocal host: 8080/

A.1.2. Installing Perforce on Linux and other Unix systems

1. Makethreedirectories, onefor the Perforce executables, one for the Perforce Server to use for its

depot and database, and one for you to use as your workspace:

nmkdi r $HOVE/ p4bi n
nkdi r $HOVE/ p4ser ver

nkdi r $HOVE/ p4wor kspace

Put the SHOME/p4bin directory in your executabl e path.

Go to http://www.perforce.com, and follow the Download links to the software for your operating
system. Download the P4, PAD, P4V, and PAWeb components to your $SHOME/p4bin directory.

downloaded from: lib.ommolkefab.ir

http://localhost:8080/
http://www.perforce.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

3. Unpack the P4V archive:

cd $HOVE/ p4bi n
gunzi p p4v.tgz

tar xvf pdv.tar

4. Makethe program files executable:

cd $HOVE/ p4bin

chnod a+x p4 p4d pdv pdweb

5. Start the Perforce Server program, p4d, using the parameters shown here:

p4d -d -p 1666 -r $HOWE/ pdserver &

6. Set environment variables P4APORT and P4CLI ENT t0 1666 and "t est ws", respectively.

For example:

export P4PORT=1666

export PA4CLI ENT=t estws

(The actual commands you use will depend on your shell, of course.) Y ou can add these settings
to your session startup scripts.

7. Run these commands to create your client workspace:

cd $HOVE/ p4wor kspace

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p4 client -o | p4 client -i

Y ou now have a Perforce workspace called t est ws, rooted in $HOM E/p4workspace.

8. You can launch P4V with:

pdv &

9. You can start the daemon for a P4Web daemon viewer with:

pdweb -b -w 8080 &

To use PAWeb, point your browser to:

http://1 ocal host: 8080/

A.1.3. Installing Perforce on Mac OS X

Installing Perforce on Mac OS X is essentially the same as on Linux, with two differences:

1. There'sno P4D for Mac OS X proper. Instead, you'll need to download the PAD built for Darwin.
(The Perforce Software download pages will guideyou toit.)

2. P4V comesasadisk imagefilefor Mac OS X. After downloading the P4V.dmg file, select it in
the Finder and double-click it to start P4V.

A.1.4. Your test environment

Y ou now have at your disposal:

« A running Perforce Server whose addressis| ocal host : 1666.

downloaded from: lib.ommolkefab.ir

http://localhost:8080/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

A client workspace known to your Perforce Server by the namet est ws. On Unix, your
workspace is rooted in $SHOM E/p4workspace. On Windows, it's rooted in c:\p4workspace.

e The P4 client program-that is, the p4 command. Y ou can use P4 from any command shell. (Note
that you have to cd to adirectory within your workspace for P4 to operate on files. You'll be
reading more about thisin Chapter 2.)

o The P4V application. Y ou can quit and restart this application whenever you want.

o A "viewer" mode PAWeb HTTP daemon listening at | ocal host : 8080. (P4Web also hasa
"standard” mode, but it doesn't come up in this book.) Y ou can kill this daemon and restart it
whenever you want. It needs to be up only when you're using your web browser with Perforce.

In thistest environment, the preface server and the client programs are running on the same machine.
The server knows you by the login name you use for your local machine. Y ou don't need a password to
connect to it. It's an unlicensed server, and supports at most two users and five workspaces. It's fully
functional, however, and can do everything alicensed server can do.

Y our test depot is currently empty. In Chapter 2 you'll see how to add filesto it. Until then you'll
probably find P4V and PAWeb to be somewhat unsatisfying to use, as their main thrust isto explore the
contents of a depot.

Eventually you'll want to discard your test environment and set up areal Perforce environment. But
first, play around a bit and get familiar with Perforce.

& Frev AL

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

A.2. Connecting to Other Servers

Y our Perforce environment is set up to connect you to your test server. Once you've downloaded and
installed the Perforce client programs, however, you can use them to access any Perforce Server
available to you.

First, find out the address of the Perforce Server you'd like to connect to. The address will be of the
form hostname:port, where hosthname is the network-visible name (or the I P address) of the machine on
which the server is running, and port is a TCP/IP port number.

e One Perforce Server that is available to everyone is the Perforce Public Depot. Its
- addressis publ i c. perforce. com 1666.

-
[
4+

= Iy

Y ou can configure your Perforce Server address by setting P4PORT:

e On Unix and Mac OS X, you can set P4APORT as an environment variable. For example:

export P4PCORT=public. perforce.com 1666

e On Windows, you can use P4 to set PAPORT in the Windows registry:

p4 set P4PORT=public. perforce.com 1666

Both P4 and PAWeb will respect your environment's P4PORT setting. The PAWeb daemon, however,
will have to be stopped and restarted after PAPORT is changed.

P4V, on the other hand, keepsits own registry of server addresses. It remembers the ones you've
connected to, and other than the first time you start it up, it won't refer to your machine's P4APORT setting
at all. To change to a different server, use P4V's Connection =* Open Connection dialog.

A.2.1. Which server am | connected to?

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The Perforce Server you're connected to tells you alittle about itself when you run P4'sinfo command:

p4 info

Server address: public.perforce.com 1666

Server root: /usr/depot/public

Server date: 2005/07/31 09:58:21 -0700 PDT

Server version: P4D/ FREEBSD4/ 2005. 1/ 80277 (2005/ 05/ 25)

Server license: Perforce Public Depot 1000 users (expires 2007/07/31)

P4V and PAWeb display your Perforce Server address in the top of the main window or page.

AR AN 2

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

< Day Day Up >

A.3. Getting Help

While you're learning about Perforce you can get help from any of these sources:

e The Perforce manuals online at http://www.perforce.com/perforce/technical .html.
e The Help button in any of the Perforce graphical interfaces (P4V, PAWin, and PAWeb).
e The P4 help command:

p4 help

e The Perforce user discussion list and email archive at
http://maillist.perforce.com/mailman/listinfo/perforce-user.

o The Perforce Software technical support staff at support@perforce.com.

AN AN

downloaded from: lib.ommolkefab.ir

http://www.perforce.com/perforce/technical.html
http://maillist.perforce.com/mailman/listinfo/perforce-user
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Appendix B. Perforce Terminology and P4
Commands

Perforce has been a player in the software devel opment world for 10 years now. Itsfirst user interface
was P4 , the Perforce Command-Line Client. To this day, P4 remains the canonical interface to the
Perforce Server. Some P4 command terminology is anchored deep in the server and dates back to the
earliest versions of Perforce. Some has been updated to reflect new environments and tools with which
Perforceisused. Thetotal effect is not always consistent; Perforce terminology and P4 commands are,
admittedly, abit confusing.

This appendix explains the terms that seem to be the most confusing, and within each explanation, lists
the P4 commands that are related to them.

"Submit" and "check in "

In Perforce, submit and check in mean the same thing. We usually say submit because the P4
submit command checksfilesin to the repository.

"Changelist" and "change"

A changelist , in Perforce, isacollection of files submitted together. In the earliest versions of
Perforce, the term changelist didn't exist. The concept did exist, however, and its corresponding
database object was called a change. When that proved difficult to document in clear English, the
term changelist was introduced, although the early terminology persistsin the Perforce Server. In
this book, change and changelist are often used interchangeably.

The P4 change command doesn't changefiles. It allows you to define a changelist.

The submit command submits a changelist.

The changes command shows pending and submitted changelists .

The changelist and changelists commands are aliases for change and changes.

The filelog command shows when files were changed, and by whom.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e The P4 commands that show how files have changed are annotate, diff, and diff2.

"Client" and "workspace"

Perforce workspaces were originally called clients . By popular demand, that terminology is
changing; Perforce tools and documentation now refer to workspaces. Asyou'll seein command
logs and error messages, however, the Perforce Server still thinks of them as clients.

e The P4 client command defines aworkspace.

e The clients command lists workspaces.

o The workspace and workspaces commands are aliases for the client and clients commands.

"View"

In the lexicon of the Perforce Server, aview isthe scope of files that can be affected by an
operation. Some P4 commands have names that 100k like they operate on fileswhen, in fact,
what they really do is allow you to define views. In particular:

e The P4 branch command lets you define aview that can be used for branching or
comparison operations.

e The P4 label command lets you define aview that can limit the filesto which alabel may
be applied.

e The P4 protect command lets you define views that limit access to the Perforce repository.

Note that in most GUI applications, including the Perforce GUIs, View isamenu choice that
controls the application's windows. Thus, in the context of a Perforce GUI, the word view can
mean either awindow control or afile view.

"Open," "check out ," "mark ," "get ," and "synchronize"

In most desktop environments, opening afile means launching an application to display and
modify it. But to the Perforce Server, opening afile means marking it as afile you plan to modify
and submit to the depot. It's no surprise that Perforce GUI menu choices labeled Open are
confusing. Some Perforce GUI s (notably P4V) now use check out or mark instead of open .

But if you're familiar with other SCM systems, you may expect check out to mean getting copies
of filesto work on. Perforce's word for that is synchronize. Unlessyou're using P4V, that is, in

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

which caseit's get.

e The P4 sync command gets local copies of files from the depot and puts them in your
workspace. (It synchronizes your workspace.)

e The P4 get command is an undocumented alias for sync.
e The P4 have command lists synchronized files.

« Synchronized files can be opened-that is, marked as files you're going to submit-with
various P4 commands, including add, edit, and delete.

e The P4 opened command lists opened files.

The Perforce database contains objects that define things like users, workspaces, and so forth. In
Perforce, spec is short for "specification of a database object.” Many database objects can be
created or modified by filling in Perforce-supplied spec forms. Sometimes a spec form is simply
called aspec. Thusyou'll often see expressions like "open up a spec” and "edit the spec” in
Perforce documentation.

"Branch"

In the context of SCM, the word branch usually refersto either a single branched file or a set of
branched files. In Perforce, however, there is a database object called a branch that is neither of
those things. It isinstead a view that may or may not be used in branching operations. Not
surprisingly, thisis extremely confusing to users. In this book, we have tried to be consistent
about using branch as a noun only when referring to a set of branched files. We refer to the
database object as a branch view.

The P4 branch command does not branch files. Instead, it creates or updates a specin
which abranch view is defined.

The P4 command that branches filesisintegrate.

The P4 branches command does not list branched files. Instead, it lists branch views.

The commands that list branched files are filelog and integrated.

"Label"

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Similarly, the P4 label command does not label files. Instead, it creates or updates a Perforce
database object called a label that defines alabel name and a set of files to which the label may
be applied.

If that's not confusing enough, the vestigial labelsync command is. In early versions of Perforce,
there was no command that could simply apply alabel to an arbitrary configuration of file
revisions. The only configuration that could be |abeled was the collection of files synchronized in
aworkspace. Hence the name label sync was used for the command that did the labeling.

Today, the P4 commands that 1abel files are tag and label sync.

The command that synchronizes a workspace with alabeled file configuration is sync.

The command that lists |abeled filesisfiles.

Happily, the P4 labels command does list label names.

"Depot"

The master file repository maintained by the Perforce Server isreferred to as the depot. At the
option of a Perforce administrator the repository can be subdivided into separate, named
locations; these are also known as depots . In contexts where the distinction is important, this
book refersto the latter as named depots.

e The P4 depot command defines anamed depot.

o The depots commands lists hamed depots.

"Integrate”

In Perforce, to integrate is to propagate changes from one collection of files to another. Changes
can beintegrated by copying or merging, or by simply recording the fact that they were
intentionally ignored.

The integrate command opens files in the workspace to prepare them for integrating.

The resolve command merges or copies content into files opened for integrating.

The integrated command lists integrated files that have been submitted.

The integ and integed commands are aliases for integrate and integrated.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Outside of Perforce, the meaning of integrate is oh-so-subtly different, just different enough to be
confusing. To integrate can mean to combine the work of individual development teams, or to absorb a
development project into a production version of software. And integrated is often used to mean that
separate software products can work together. Thus the meaning of a phrase like "integrated with
Perforce” is entirely amatter of context.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Bibliography

"Pragmatic Software Configuration Management,” by Steve Berczuk. In |EEE Software Magazine,
March/April 2003. http://www.berczuk.com/pubs/| EEESW _2003-03.pdf

"Patterns and Software Configuration Management,” by Steve Berczuk, Steve Konieczka, and Brad
Appleton. In Crossroads News, April 2004.
http://www.cmcrossroads.com/newsl etter/arti cles/agil eaprO4.pdf

"Streamed Lines: Branching Patterns for Parallel Software Development,” by Brad Appleton, Stephen
Berczuk, Ralph Cabrera, and Robert Orenstein. | n PLoP '98 Conference Proceedings.
http://www.cmcrossroads.com/bradapp/acme/branching/

"To Use or Be Reused; Techniques for Component Composition and Construction,” by Merijn de
Jonge. http://www.cs.uu.nl/~mdejonge/papers/ ToReuseOr ToBeReused. pdf. Also " Package-based
Software Development,” by the same author.

"Web Content Management; A Collaborative Approach,” by Russell Nakano. Reading, MA: Addison-
Wesley, 2002

"Codeline Merging and Locking: Continuous Updates and Two-Phased Commits,” by Brad Appleton,
Steve Konieczka, and Steve Berczuk. In Crossroads News, November 2003.
http://www.cmcrossroads.com/articles/agilenov03.pdf

"Merging Defect Fixesinto the Development Codeline,” by Michael Sayko. In Crossroads News,
November 2003. http://www.cmcrossroads.com/articles/msnov03.pdf

"Parallel Development Strategies for Software Configuration Management,” by Tom Bret. In Methods
& Tools, summer 2004.

"ABCs of aBranching and Merging Strategy,” Mario Moreira, Crossroads News, November 2003,
Www.cmcrossroads.com/newsl etter/articles'mmnov03. pdf

"Pragmatic Version Control Using CVS," by David Thomas and Andrew Hunt. In The Pragmatic
Bookshelf, 2004.

"The Online Jargon Filev 4.4.7," by RetroLogic Systems, 2005. http://www.retrol ogic.com/jargon-
file.html

"Inter-File Branching: A Practical Method for Representing Variants,” by Christopher Seiwald. Sixth

downloaded from: lib.ommolkefab.ir

http://www.berczuk.com/pubs/IEEESW_2003-03.pdf
http://www.cmcrossroads.com/newsletter/articles/agileapr04.pdf
http://www.cmcrossroads.com/bradapp/acme/branching/
http://www.cs.uu.nl/~mdejonge/papers/ToReuseOrToBeReused.pdf
http://www.cmcrossroads.com/articles/agilenov03.pdf
http://www.cmcrossroads.com/articles/msnov03.pdf
http://www.retrologic.com/jargon-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

International Workshop on Software Configuration Management (1-SCM6), Berlin, Germany, March
1996; in Software Configuration Management: Selected Papers of the ICSE SCM-6 Workshop, edited
by lan Somerville. City: Springer-Verlag, 1996, pp. 67—75.

Software Configuration Management Strategies and Rational ClearCase: A Practical Introduction, by
Brian White. Reading, MA: Addison-Wesley, 2000.

Web Database Applications with PHP and MySQL, by Hugh E. Williams and David Lane. Sebastopol,
CA: O'Rellly Media, 2004.

Programming Ruby - The Pragmatic Programmer's Guide, by David Thomas and Andrew Hunt. First
edition, Addison-Wesley Longman, 2001. http://www.rubycentral.com/book/

"PARuby - Programmers Guide," by Tony Smith. The Perforce Public Depot.
http://public.perforce.com/guest/tony _smith/perforce/API/Ruby/main/doc/index.html

"Real World Software Configuration Management,” by Sean Kenefick.

" Software Configuration Management Patterns: Effective Teamwork, Practical Integration,” by Steve
Berczuk with Brad Appleton.

"Configuration Management: The Missing Link in Web Engineering,” by Susan Dart.
"Open Source Development with CVS," by Karl Fogel and Moshe Bar.
" Software Configuration Management Strategies and Rational ClearCase," by Brian A. White.

"The Pragmatic Programmer,” by Andrew Hunt and David Thomas.

downloaded from: lib.ommolkefab.ir

http://www.rubycentral.com/book/
http://public.perforce.com/guest/tony_smith/perforce/API/Ruby/main/doc/index.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Glossary

Thisglossary lists terms used in this book, and their meanings, as used in this book. Many of these
terms have subtly different meanings el sewhere; that is the nature of the abstract and subjective
language of software configuration management.

auto-resolve

Automatically resolving filesin a batch. (As opposed to resolving them interactively, one by
one.)

body of code

A mainline and all the codelines branched from it.

branch

A set of files evolving as avariant of another set of files. To branchisto clone a set of files so
that it can be modified independently of its original.

branch view

An object in the Perforce database that can be used to store donor and target filespecs used in
branching and other operations.

build

In SCM jargon, the result of building software from sourcefiles.

build tool

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

A program that converts source filesinto usable software.

changelist

In Perforce, acollection of files checked in together.

changelist number

The unique indentifier of achangelist. It isaso arevision number that refers to a snapshot of the
entire depot at the time the changelist was submitted.

cherry-picking

Integrating changes from one codeline into another in away that skips over some of the changes
in the donor codeline.

client spec

Perforce-speak for client workspace specification, the parameters that define your workspace.

client workspace

See workspace.

clone

Occasionally used in this book to mean copying one set of depot files to another.

coddine

A branch, but more particularly, a branch designated for a specific phase of software

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

development or release. E.g., "the Release 1.0 codeline" is a collection of files branched in order
to fix bugs and stabilize code for Release 1.0.

component

A part of a software product that can be built or used independently. A software product typically
consists of one or more components.

configuration

In the context of labeling files, short for a configuration of files.

conflict

In the context of merging files, the case where files can't be combined automatically-someone
has to intervene to edit or choose the usable resuilt.

copy-integrate

To use the Perforce integrate and resolve commands to propagate changes by copying files
instead of merging them.

delta

The part of afile that changed between versions.

depot

Generaly, the Perforce repository where files are stored. However, the depot can be divided into
named locations, each of which is aso called a depot.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

developer

(Or software developer.) Anyone whose work involves creating computer files from intellectual
thought.

diff
Comparison of two text files showing the lines that are different. Todiff filesisto compare files.
(This probably dates back to the first Unix diff tool.)

domain
Used in this book to mean a Perforce database, its associated repository, and the Perforce Servers
configured to access them, collectively.

donor
Can be any collection of files-a codeline, a module within a codeline, a directory, or ssimply a
file. The Perforce integrate command propagates change from the donor (also known as the
source or origin) to a set of files called thetarget.

filespec
A Perforce syntax for referring to collections of directories, files, and revisions.

fix
Generally speaking, achange that corrects adefect. In the Perforce database schema, arecord
that associates ajob with a changelist.

GUI

Graphical user interface.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

havelist

Perforce jargon for the list of file revisions known to have been copied from the depot to a
workspace.

head revision

The most recent revision-that is, the latest, newest, or tip revision.

hub

The machine on which the Perforce Server runs in a Perforce domain.

incremental integration

Integrating changes one changelist at atime, in order, from one codeline to another.

installer

A program that takes files from arelease image and installs it on a machine for use. Usually one
of the components of a software product.

integrate

In the context of Perforce operations, to propagate changes from one set of filesinto another.

integration records

Database records kept by Perforce that show the history of revisionsintegrated between files.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

job

A type of database object in Perforce, used primarily to associate external information (like bug
reports and change requests) with changelists.

label

A symbolic name applied to a set of files at specific revisions.

mainline

The main codeline.

mainline mode

A model of software evolution where all branches can trace their lineage to asingle, main
codeline, and all changes are eventually merged into the main codeline.

mer ge

To merge filesisto combine their content and produce a usable result file. To merge branchesis
to merge each of the filesin one branch with its counterpart in the other. (With respect to
branches, merge and integrate are used somewhat interchangeably in this book.)

metadata

Data describing data. In the context of SCM, data about files, users, workspaces, and other SCM
objects.

module

A collection of directories and files that go together because all are needed on disk in order to do
work on any one of them.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

nightly build

An automated, regularly ocurring build of softwarein aparticular codeline.

open files

In Perforce, the files you are working on and plan to submit to the depot.

overlay

In Perforce, to use a client view to map more than one depot file (or set of files) into asingle
workspace location. For example, a workspace can have aview of acodeline overlaid by a sparse
branch.

parallel changes

Changes made in more than one branch, or one codeline, involving variants of the same set of
files.

parent

The codeline from which a codeline was branched.

pending changelist

A collection of filesyou intend to submit together to the depot.

platform

In this book, synonymous with operating system.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

point release

A re-release intended to fix bugs and add minor improvements to software previously released.

private branch

A codeline owned, used, and controlled by a single devel oper.

product

In the context of this book, a software product-the thing you are striving to develop and release.

protections

In Perforce, the mechanism that controls the files that users can access and the commands that
they can run.

refactoring

Improving the logic of a software system, ideally without (but too often while) changing the
outward behavior of the system.

release

A version of a product available for distribution.

release codeline

A codeline that contains code from which releases are built.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

release image

The form a software product takes when it is released. Consists of directories and files organized
inacertain way.

repository

Where the master copies of versioned files are stored. (See depot.)

resolve

To decide what to do with parallel changesto afile.

revision

Anidentifiable instance of afile or a collection of filesthat is uniquein its evolution. In other
words, each modification to a given file produces a new revision of the file. Each modification to
any of thefilesin acollection of files produces a new revision of thefile collection.

rolling label

A label that isreused (or rolled forward) asfiles change. For example, alabel that is reapplied
every week to tag the latest build configuration isarolling build label.

safe auto-resolve

Automatically resolving files that don't require merging.

SCM

Software configuration management is the business of keeping track of files and procedures you
use to build software so that you can (a) trace the origins of bugsin your software, (b) build
better software faster, (c) build as many software versions as you need, and (d) tell what features

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

and bugs arein each version.

scratch build

Building software from scratch; that is, building in a workspace newly popul ated with source
files and nothing el se.

shared codeline

A codeline to which more than one user may submit changes.

shrink-wrapped software

A software product that is released periodically in identifiable versions, often concurrently with
previous releases of the product.

snapshot

The state of a collection of files at a particular point in time.

sourcefiles

Thefiles created and updated by software developers, as opposed to the files generated and
regenerated by build tools. (The difference can be subtle.)

sparse branch

A codeline that contains a small subset of its parent codeline's files.

Spec

In Perforce, the user interface to many non-file objects in the database; also called a spec form.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

staging codeline

A codelinethat isreused for a specific stage of release testing.

Stream

Another word for codeline.

structural changes

Changes that involve renaming, moving, or deleting files.

submit

Perforce's word for checking filesin to the repository.

super user

A user who can run privileged Perforce commands.

sync daemon

A background program or service that keeps a workspace synchronized.

synchronize

In Perforce, to bring aworkspace up to date with a particular version of files in the depot;
abbreviated as sync.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

tag

To apply alabel to afile.

tar get

The set of files created or updated in branching, renaming, or integration operations. (See also
donor.)

task branch

A codeline used to temporarily isolate work on a single task.

third-party code

Filesyou get from athird party to use in developing your own software.

tofu scale

An informal assessment (soft, medium, or firm) of codeline stability and quality.

unresolved

Opened files that can't be submitted because they haven't been resolved yet. (Seeresolve.)

vendor drop

A version of third-party code placed in your repository.

version

In the context of afile or acollection of files, arevision. In the context of arelease, the identifer

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

of therelease.

virtual modules

A module that appears to exist in a codeline by dint of aworkspace view.

wor kspace

The area on your own computer where you work on Perforce-managed files.

< Day Day Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

About the Author

Laura Wingerd isthe vice president of product technology at Perforce Software. She divides her time
between promoting sound software configuration management to Perforce's technical staff and
promoting Perforce to the software development industry. She joined Perforce in 1997, just asthe
company moved out of the garage of its founder, Christopher Seiwald. She and Seiwald wrote "High-
Level Best Practices in Software Configuration Management,” awhite paper widely referenced in
books and articles. Prior to joining Perforce, Lauraworked at Sybase, first devel oping a software build
system for a skunk-works devel opment project, and then orchestrating a massive conversion of a build
system for core database and networking products.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

CEES ALIALIAS R

Colophon

Our look isthe result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animals on the cover of Practical Perforce are herring, of which there are over 200 species. In
particular, the Atlantic herring (Clupea harengus) lives in the coastal waters off New England and can
be found from Nova Scotiato Cape Cod.

Atlantic herring begin their lives as larvae measuring five to seven millimeters long. They emerge from
an egg bed that can contain as many as seven million eggs. Tiny, scaleless, and transparent, they are
weak swimmers and rely on ayolk sack for nourishment after hatching. Soon after the yolk is used up,
they develop mouth parts that enable them to eat such prey astiny plankton and the eggs and larvae of
clams, shrimp, and barnacles.

Thelarval stage can last from 3 to 11 months (usually 6 months) depending on environmental factors
such as water temperature and scarcity of food. Of the millions of eggs deposited by herring each year,
it is estimated that only one percent will survive to be juvenile herring or "brits."

Usually around spring, the larvae grow into britsthat ook like smaller herring. Silvery blue-green
scales begin to form, and their bodies grow thicker and flatter, measuring about 40 millimetersin
length. At thistime, the brits begin to form schools that migrate shoreward and toward the surface. The
growth rates of brits are determined by the size of the school-a smaller population means the brits will
grow bigger, while a crowded school means the fish will stay smaller. The brits feed on plankton at
night near surface waters. They are also a virtual swimming buffet for such predators as mackerel,
striped bass, puffins, and gulls. Brit schools often hide under docks and piers to escape predators.

At 3to 4 years, brits grow into fully mature herring and measure 23 to 26 centimeters long. Some
distinguishing features are adorsal fin midway aong the body and a saw-toothed keel located along the
belly. Herring can live for 12 years and weigh up to 1.5 pounds. Adults migrate in schools, and in late
summer and early fall they move toward the coastal waters of Maine to spawn. The spawning pattern
moves from north to south, starting in the Bay of Fundy and moving to eastern Maine watersin late
July and early August, or sometimes as late as November or even December.

Herring fertilize their eggs externally, with the female laying as many as 20,000 to 50,000 eggs (larger
females can lay up to 200,000) that are then fertilized by the male with a substance called milt. Herring
do not die after spawning but can continue to spawn for several years. Their sticky eggs sink to the
ocean floor and collect in thick mats that will begin to hatch in 7 to 10 days.

Humans have fished herrings since as early as 240 A.D. and have used them both as afood source and

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

as bait in lobster traps.

Adam Witwer was the production editor for Practical Perforce. Argosy Publishing provided
production services. Sanders Kleinfeld and Claire Cloutier provided quality control.

Karen Montgomery designed the cover of this book, based on a series design by Edie Freedman, and
produced the layout with Adobe InDesign CS using Adobe's ITC Garamond font. The cover imageis
from Cassell's Natural History.

David Futato designed the interior layout. This book was converted by Keith Fahlgren to FrameMaker
5.5.6 with aformat conversion tool created by Erik Ray, Jason Mclntosh, Neil Walls, and Mike Sierra
that uses Perl and XML technologies. The text font is Linotype Birka; the heading font is Adobe
Myriad Condensed; and the code font is LucasFont's TheSans Mono Condensed. The illustrations that
appear in the book were produced by Robert Romano, Jessamyn Read, and Lesley Borash using
Macromedia FreeHand M X and Adobe Photoshop CS. The tip and warning icons were drawn by
Christopher Bing. This colophon was written by Jansen Fernald.

& Frev Ay AL e

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[A] [B] [C] [D] [E] [F1 [G] [H] [17 [91 [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

L@ Prcy < Day Day Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [1] [9] [L] [M] [N] [O] [P] [R] [S] [T] [V] [V] [W]

accept merged (am) command
accept theirs (at)
accept yours (ay) command
access
codelines
depots
files
in other domains
accuracy of merge detection
active development streams
active modules
ad hoc branches 2nd
codelines
custom-code branches
development codelines 2nd 3rd
imported code to
files
comparing
creating
deleting
integrating changes
previewing
redoing
resolving
reverting
submitting
undoing
viewing
viewing histories
patch branches, creating
posting branches
private branches 2nd
redeploying
reparenting
release codelines 2nd 3rd
branching
previewing
sparse branches
static modules
task branches
creating

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

ad hoc codelines
add command
adding files

detecting

preventing propagation

to depots
addresses

servers, configuring
ae (accept edited) command
allocating disk space
alternate merge tools, configuring
am (accept merged) command
annotations, release codelines
Apache
applications

comm

distributed software

sort

triggers

version control

Windows, version control
applying

branch views

jobs

labels

local files

P4FTP as sync daemons

third-party software, development codelines
archiving rolling labels
at (accept theirs) command
auditing web content
auto-resolve
automatically resolving files
automating continuous integration
ay (accept yours) command

L& Prcy < Day Day Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [17 [91 [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

Back-in-Time Browsing
backing out
changes
recent changes
backporting bug fixes
base
integrating
unresolved files
behind-the-scenes version control
BETAMAIN codelines
binary files, merging
bits and pieces, synchronizing in
bodies of code
bookmarks, monitoring changes
branch command 2nd
branch points
label views for
labeling
branch views 2nd 3rd
annotations
branches command
development codelines
updating
release codelines
reversing
searching
updating
branching, x 2nd
breaking up changelists
browsing
Back-in-Time Browsing
bookmarks, monitoring changes
bug fixes
and staging streams
backporting
codelines
task branches
tracking
building release codelines
built modules 2nd
depot files

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

& FrEv] < Day Day Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [17 [91 [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

case sensitivity, naming depots
changelist command
changelists command
changelists, x
additional, creating
breaking up
configurations, saving
content
descriptions, writing
integrating
jobs
linking
marking as
searching numbers by
pending
resolving
submitting 2nd
synchronizing
viewing
changes 2nd
backing out
branch to branch, integrating
checking
dependencies, hidden
descriptions, preparing
development codelines, integrating 2nd
documenting
flow of
task branches
local, merging new distributions
monitoring
notification
out of order, integrating
parent codelines, integrating
preventing
propagation
resolving
review daemons
structural, reconciling
task branches, integrating
to the mainline model

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

tracking, xi
unintegrated, searching
viewing
changes -s pending command
changes command 2nd
characters
comparing
matching
special
check in command
check out command
checking changes
cherry-picking integration
chunks
client command
clients command 2nd
clients, xi
specs, editing
workspaces, defining
cloning directories 2nd
code
bodies of
reviews
Codeline.html files
codelines
access
ad hoc
BETAMAIN
branching
containerizing
curators
development
applying third-party software
branch views
branching 2nd
branching imported code to
creating
delivering
modifying branch views
naming
noncritical bugs
ownership
retiring
soft
updating
updating branch views
updating workspaces
working in
diagrams
flow of change
grouping
mainline model

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

applying
management
bug fixes
maintenance
nightly builds
organizing depots
modules, selecting
naming
one-way
parent
freezing
integrating changes
integrating development codelines into
thawing
private
proliferation
relationships
release
annotations
backporting bug fixes
branch views
branching
branching modules
building
creating 2nd
creating patch branches
creating task branches
distributing
generating note information
integrating into the mainline
labels
naming
ownership
previewing branching
pulling late-breaking developments into
releasing wrong builds
retiring
working in
remote depot
retiring
third-party
tracking
types
WEBENG
WEBVIS 2nd
working in
collaboration, customizing
collections (files)
combining
files
detecting
reconciling

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

mappings
comm program
commands
accept edited (ae)
add
am (accept merged)
annotate
at (accept theirs)
ay (accept yours)
branch 2nd
branches
branching files
bug fixes, detecting merged
changelist
changelists
changes 2nd
changes -s pending
check in
check out
client
clients 2nd
counter
d (diff)
delete
depots 2nd
describe 2nd
diff2 2nd
dir
dirs
dt (diff theirs)
dy (diff yours)
edit (e)
filelog 2nd
files
find
fixes -i
Folder History
fstat
get
group
have
info
integ
integed
integrate 2nd 3rd
integrated
interchanges
job
jobs -i
jobspec
label 2nd
labels

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

labelsync
mark
open
opened 2nd
P4
print
protect
resolve 2nd
resolved
revert
review
reviews
s (skip)
submit 2nd 3rd
troubleshooting
sync
synchronize
tag
triggers
user
comparing
depots
directories
files
files, branching
labels
snapshots
whitespace
configuration
additional changelists
alternate merge tools
branching
depots
development codelines
files
jobs
master workspaces
P4
PAMERGE
patch branches
Perforce Server addresses
point releases
release codelines 2nd
saving
spec depots
task branches
text environments
workspaces 2nd
conflicts 2nd
connecting servers
containerizing
containers, filespecs as

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

content
changelists
files
replacing and swapping
web
auditing
executable
major web development projects
staging
visual content development
continuous integration, automating
controlling
access to codelines 2nd
conventions, depot path naming
depot files
donor files
files
ignoring (theirs)
resolving (theirs into yours)
lazy
workspaces, skipping
counter command
curators (codelines)
current workspaces
configuring
labeling
naming
custom-code branches
customization
collaboration
jobs
merging
P4Web URL syntax
triggers
workspace views

L& Prcy < Day Day Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [1] [9] [L] [M] [N] [O] [P] [R] [S] [T] [V] [V] [W]

d (diff) command
daemons
change review
sync, applying PAFTP as
dates
configurations, saving
filespecs
scripting
db module
decoding integration histories
defining
client workspaces
codelines
depots
modules
delete command
deleting
depot files
empty pending changelists
files
branching
detecting
editing
preventing target files from being
jobs
labels
delivering development codelines
dependencies, hidden
depot command
depots command
depots, x
access
creating
defining
evolution
files
adding 2nd
browsing
cloning
comparing
deleting 2nd

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

detecting that didn't come from
editing
modifying
renaming
submitting changes to
synchronizing
viewing previous changes
filespec syntax
hierarchies 2nd
mirroring
naming
organizing
paths
naming conventions
subscribing as reviewers
remote
reorganizing
scope of
security
specs, restoring and saving
structures, reconciling changes
describe command 2nd
descriptions, writing changelist
designating file types
detection
added files
combined files
deleted files
files
depots, not from
missing
merged bug fixes
moved files
renamed files
developer workspaces
development
active streams
distributed
software
applying mainline model
mainline model
overview of
visual content
development codelines
branch views
modifying
updating
branching 2nd 3rd
imported codes to
creating
delivering
flow of change

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

noncritical bugs
ownership
parent codelines, integrating into
retiring
soft
sub-branches
third-party software, applying
updating
working in
workspaces, updating
diagrams
codelines
flow
diff (d) command
diff theirs (dt) command
diff yours (dy) command
diff2 command 2nd
dir command
directories
cloning 2nd
depots
files
listing 2nd
mapping
moving
renaming
trees, adding
dirs command
disk space, allocating
DIST-update workspace
distributed development
distributed software
distribution
FTP
importing
merging
release codelines
streams
doc module
documentation
changes
domains
depots, mirroring
extending
file access in other
switching
donor files
changes, ignoring
copying
merging
drawing timelines
dt (diff theirs) command

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

dy (diff yours) command

L& Prcy < Day Day Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

< Day Day Up >

Index

[A] [B] [C] [D] [E] [F] [G] [H] [1] [9] [L] [M] [N] [O] [P] [R] [S] [T] [V] [V] [W]

editing
client specs
files
branching
deleting
integrating
moving
opening for
renaming
resolving parallel changes
overview of
synchronization
empty pending changelists, deleting
evolution (of depots)
exclusive locking files
executable web content
existing files, modifying type of
extensions
domains
scripting languages

L@ Prcy < Day Day Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [1] [9] [L] [M] [N] [C©] [P] [R] [S] [T] [V] [V] [W]

false positives (bug fixes)
fields
jobs
Protections, tokens
File menus
File Transfer Protocol (FTP)
distribution streams
filelog command 2nd
filenames, wildcards
files
access
in other domains
adding
detecting
preventing propagation
branching
creating
integrating changes
previewing
changelists, moving
Codeline.html
collections
combining
detecting
reconciling
comparing, branching
configuring
content
replacing and swapping
deleting
branching
detecting
depots
adding
browsing
cloning
comparing
deleting 2nd
detecting that didn't come from
modifying
renaming

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

viewing previous changes
directory trees, adding
donor
copying
ignoring
merging
editing
deleting
integrating
opening for
renaming
submitting changes to depots
exclusive locking
generated
opening
storing
submitting
histories, viewing
hyperlinks
labels, applying to
listing
local, applying
locking
merging
forcing
troubleshooting
undoing
moving
detecting
neglected, integrating
non-text, merging
obliterating
opening
for branching
submitting
parallel changes, resolving
redoing branching
renaming, detecting
resolving 2nd
automating
branching
copying
ignoring
interactively
merging
merging binary
redoing/undoing
synchronizing
variants
viewing
viewing unresolved files
restoring

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

reverting 2nd
branching
rolling labels, archiving
saving
searching
split, reconciling
submitting
branching
targets, preventing deletion
text, merging
trees, navigating
triggers
types, xv
designating
modifying
reconciling changes
undoing branching
unresolved, listing
unsynchronized, listing
versions
viewing
branching
histories (branching)
workspaces
detecting missing
filters
listing
replacing
files command
filespecs, x
as containers
filespecs, x as containers
syntax
filters, workspace files
find command
fixes
jobs, searching
fixes -i command
flow diagrams
flow of change
task branches
Folder History 2nd
forced merging
forcing integration after a rollback
formatting workspaces
forms
client specs, editing
spec
scripting
freezing parent codelines
fstat command
FTP (File Transfer Protocol)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

distribution streams

L& Prcy < Day Day Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [17 [91 [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

generated files
opening
storing
submitting
generating release note information
get command
GoodBuild label
group command
groups
codelines
gui module

< Day Day Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

< Day Day Up >

Index

[A] [B] [C] [D] [E] [F] [G] [H] [1] [9] [L] [M] [N] [C©] [P] [R] [S] [T] [V] [V] [W]

have command
help 2nd
jobs
merged files
out-of-sync workspaces
scripts
submit command
versions
views
hidden dependencies
hiding retired codelines
hierarchies, depots 2nd
histories
directories, listing
filelog command
files
viewing
viewing branching
Folder History 2nd
integration
decoding
undoing
viewing
synchronization
hyperlinks
files
objects

< Day Day Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [L] [M] [N] [O] [P] [R] [S] [T] [V] [V] [W]

identifying points of completion
ignoring donor file changes
importing
distributions
third-party software
incrementally integrating changes
info command
installation, xv
Perforce on Linux/Unix systems
Perforce on Mac OS X
Perforce on Windows
integ command
integed command
integrate command 2nd
branching files
syntax
integrated command
integration 2nd
changelists
cherry-picking
codeline changes in the mainline
continuous, automating
development codeline changes 2nd
files, editing
histories
decoding
undoing
viewing
neglected files
overview of
parent codelines
changes
development codelines
records
redoing
repeating
rollback, forcing after a
subdirectories
task branch changes
interactively resolving files
interchangers

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

interchanges command

interfaces
Back-in-Time Browsing
bookmarks, monitoring changes

& FrEv] < Day Day Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

< Day Day Up >

Index

[A] [B] [C] [D] [E] [F] [G] [H] [17 [3] [L] [M] [N] [CO] [P] [R] [S] [T] [V] [V] [W]

job command
jobs -i command
jobs, x
applying
changelists, marking as
configurations, saving
creating
deleting
linking
locking
overview of
pre-selecting
release codelines, generating note information
restoring
searching
changelists number by
fixes
jobspec command

L@ Prcy < Day Day Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [17 [[L] [M] [N] [©] [P] [R] [S] [T] [V] [V] [W]

label command 2nd
labels
annotations
applying
branch points
comparing
configuration, saving
deleting
files, applying to
GoodBuild
need for
nightly builds (codelines)
release codelines
rolling
archiving
searching
views
views for branch points
web sites, rolling back published
labels command
labelsync command
languages, scripting extensions
lazy copying
level of file access, configuring
linage of codelines
lines, merging moved
linking
files and objects
jobs
Linux, installing Perforce on
listing
branch views
directories 2nd
files
in workspaces 2nd
local changes, merging new distributions
unresolved files
unsynchronized files
workspaces
local files, applying
local syntax

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

location of codelines
locking
files 2nd
jobs
labels
logical changelists, submitting
lowercase, naming depots

L& Prcy < Day Day Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [11 [[L] [M] [N] [C] [P] [R] [S] [T] [V] [V] [W]

Mac OS X, installing Perforce on
MAIN
merging
workspaces, integrating changes
mainline model
applying
changes to
codeline changes, integrating into
flow of change
maintenance
codelines
major web development projects
management
codelines
bug fixes
maintenance
nightly builds
organizing depots
mappings
directories
mark command
marking
changelists, jobs as
configurations
marshalled output
master workspaces 2nd
creating
matching wildcards
menus, File
merged bug fixes, detecting
merging
alternate merge tools, configuring
customizing
distributions
donor files
files
binary
non-text
resolving (theirs into yours)
text
troubleshooting

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

undoing
forced
MAIN
moved lines
PAMERGE, configuring
preventing
text
mirroring depots
missing workspace files, detecting
mixed case, naming depots
models (mainline)
applying
flow of change
modifiers, types
modifying
backing out changes
branch views, development codelines
depots, reconciling changes
files
reconciling type changes
types
monitoring
notification
offline changes, reconciling
recent changes, backing out
modules
active
built 2nd
codelines, selecting
containerizing
db
doc
gui
private
release codelines, branching
reshaping
static
branching
sub-modules
test
top-level
unneeded
utils
virtual
WebKeeper
monitoring changes
moved lines, merging
moving files
detecting
from changelists
multiple pending changelists

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

L& Prcy < Day Day Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

< Day Day Up >

Index

[A] [B] [C] [D] [E] [F] [G] [H] [17 [[L] [M] [N] [O] [P] [R] [S] [T] [V] [V] [W]

naming
codelines
depots
path naming conventions 2nd
files, renaming
release codelines
workspaces 2nd
navigating file trees
neglected files, integrating
nightly builds (codelines)
non-text files, merging
noncritical bugs
normalizing branch views
notification of changes
numbers
changelists, marking
pending changelists, submitting

L@ Prcy < Day Day Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

< Day Day Up >

Index

[A] [B] [C] [D] [E] [F1 [G] [H] [17 [91 [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

Object Database Connectivity (ODBC)
objects, hyperlinks
obliterating files
ODBC (Object Database Connectivity)
offline changes, reconciling
one-way codelines
open command
opened command 2nd
opening
exclusive locking files
files
editing
for branching
locking
submitting
generated files
order, integrating changes out of
organizing depots
out-of-sync workspaces
output
marshalled
tagged
ownership
depots, organizing
development codelines
release codelines

< Day Day Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[A] [B] [C] [D] [E] [F] [GT [H] [17 [1 [L] [M] [N] [O] [PT [R1 [S] [T] [V [V] [W]

P4
changes, monitoring
commands
configuring

PAFTP, applying as sync daemon

PAMERGE, configuring 2nd

P4Web
URL syntax, customizing
version control

packaging streams

parent codelines
changes, integrating
development codelines, integrating into
flow of change between task branches and
freezing
thawing

patch branches
creating

paths
depot reviewer, subscribing as

pending changelists 2nd
numbered, submitting

Perforce Proxy

plug-ins, xiii

point of completion, identifying

point releases, creating

points in time, branching from

posting branches

pre-selecting jobs

preparing change descriptions

preventing
added files from propagating
changes
merging
target files from being deleted
unchanged files from being submitted
warnings

previewing
branching, release codelines
files, branching

private branches 2nd

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

redeploying
reparenting
private codelines
private modules
programs
triggers
proliferation, codeline
propagation
added files, preventing from
changes
protect command
protections
codeline clutter, reducing
depots
retired codelines, hiding
Protections field, tokens
protocols (FTP), distribution streams
publishing web sites
rolling back
updates

& FREv | < Day Day Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [17 [1 [L] [M] [N] [O] [P] [R1 [S] [T] [V [V] [W]

recent changes, backing out
reconciling
combined files
file type changes
offline changes
split files
structural changes 2nd
record integration
redeploying private branches
redoing
files
branching
resolved
integration
reducing codeline clutter
references (labels), need for
relationships, codelines
release codelines
annotations
branch views
branching 2nd 3rd
previewing
bug fixes, backporting
building
changes, integrating into the mainline
creating 2nd
distributing
flow of change
labels
late-breaking developments, pulling into
modules, branching
naming
ownership
patch branches, creating
retiring
task branches, creating
working in
wrong builds, releasing
release cycles (web sites)
remote depots 2nd
renaming

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

directories
files
detecting
editing
reorganizing depots
reparenting private branches
repeating integrations
replacing
content
files
reshaping modules
resolve command 2nd
resolved command
resolving
auto-resolve
changelists
changes
files 2nd
automating
branching
copying
ignoring
interactively
merging
merging binary
redoing/undoing
synchronizing
variants
viewing
viewing unresolved files
parallel changes
restoring
configurations
files
jobs
specs
retiring
codelines
development codelines
release codelines
reusing labels
reversing branch views
revert command
reverting files 2nd
branching
review command
reviewing
change review daemons
code
depot paths, subscribing to
task branch changes
reviews command

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Revision Graph
revisions
changelists
client specs
files 2nd
branching
integrating
moving
opening fro editing
resolving parallel changes
overview of
rolling back published web sites
rolling labels
archiving

& FREv | < Day Day Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [17 [91 [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

s (skip) command
saving
configuration
files
specs
scales, tofu
scheduling files, resolving
scope of depots
scripting
searching
branch views
files
jobs
changelist numbers by
fixes
labels 2nd
unintegrated changes
security
depots
selecting modules in codelines
servers, Xi
addresses, configuring
connecting
scripts, troubleshooting
test environments, setting up
shelving works in progress
skip (s) command
skipping workspace copying
snapshots
comparing
release codelines
soft codelines
software
development
mainline model 2nd
overview of
distributed
version control
sort program
spaces, comparing
sparse branches

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

spec forms
scripting
special characters
specs 2nd
restoring
saving
scripting
triggers
split files, reconciling
stabilization
staging
streams (bug fixes and)
web content
static modules
branching
storing generated files
streams
active development
distribution
release codelines
FTP
packaging
staging
bug fixes and
WEBLIVE
rolling back
WEBMAIN 2nd
WEBQA
bug fixes
structural changes, reconciling
structures, reconciling depot changes
sub-branches, development codelines
sub-modules
subdirectories, integrating
submit command 2nd 3rd
troubleshooting
submitting
changelists 2nd
files
branching
generated files
pending changelists
numbered
subscribing as depot path reviewers
swapping file content
switching
between workspaces
domains
sync command
sync daemons, applying P4FTP as
synchronization
changelists

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

files, resolving

histories

nightly builds

revisions

workspaces 2nd 3rd
synchronize command
syntax

filespecs

integrate command

local

P4Web URL, customizing

scripting

& FrEv] < Day Day Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[A] [B] [C] [D] [E] [F] [GT [H] [17 [1 [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

tabs, comparing
tag command
tagged output
targets
donor files
copying
merging
files, preventing deletion of
task branches
creating
templates, customizing jobs
terminology
test environments, setting up
testing web site updates
tests module
text
files
merging
thawing parent codelines
integrating
unresolved files
third-party codelines
third-party software
development codelines, applying to
importing
three-way merges
tidy views
Time-lapse View
timelines
drawing
task branches
times
filespecs
scripting
timing web site updates
tofu scale
tokens, Protection field
top-level modules
tracking
bugs
codelines

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

trees
branching
creating
integrating changes 2nd
files, navigating
triggers command
types
codelines
files, xv
designating
modifying
reconciling changes
modifiers

LS

downloaded from: lib.ommolkefab.ir

< Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

< Day Day Up >

Index

[A] [B] [C] [D] [E] [F] [G] [H] [17 [1 [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

unchanged files, preventing from being submitted
undoing
files
branching
merging
resolving
integration histories
unintegrated changes, searching
unique labels, archiving rolling labels with
Unix, installing Perforce on
unneeded modules
unresolved files
listing
viewing
unsynchronized files, listing
updating
branch views
development codelines
workspaces
task branches
web sites
publishing
release cycles
testing
timing
workspaces
upgrading release codelines, branching from
uppercase, naming depots
user command
utils module

< Day Day Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

< Day Day Up >

Index

[A] [B] [C] [D] [E] [F1 [G] [H] [17 [91 [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

variants, unresolved files
versions
control
files
release codelines, branching from
sync command
troubleshooting
viewing
changelists 2nd
changes
depot files
files
branching
content
histories 2nd
resolving
integration histories
labels
previous file changes
unresolved files
views, x 2nd
branch 2nd 3rd
annotations
development codelines
modifying development codelines
normalizing
release codelines
reversing
searching
updating
updating development codelines
labels 2nd
tidy
Time-lapse View
troubleshooting
workspaces, customizing
virtual modules
visual content development

< Day Day Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[A] [B] [C] [D] [E] [F] [GT [H] [17 [1 [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

warnings, preventing
web content
auditing
executable
major web development projects
staging
visual content development
web sites
release cycles
rolling back
updating
publishing
testing
timing
WEBENG codeline
WebKeeper module
WEBLIVE stream
rolling back
WEBMAIN stream 2nd
WEBQA stream
bug fixes
WebReview
WEBVIS codeline 2nd
whitespace, comparing
wildcards
expansion
Windows
applications, version control
Perforce, installing on
working in
codelines
development codelines
release codelines
works in progress, shelving
WorkspaceCheck
workspaces, x
configuring 2nd
labeling
copying, skipping
developer's
development codelines, updating

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

DIST-update
files
deleting
detecting missing
filters
listing
replacing
reverting
filespec syntax
formatting
listing
local files, applying
MAIN, integrating changes
master 2nd
creating
naming
nightly build
out-of-sync
reshaping modules
switching between
synchronizing 2nd 3rd
views
customizing
reshaping modules
writing changelist descriptions

& FREv | < Day Day Up >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	Practical Perforce
	Table of Contents
	Preface
	What Is Perforce?
	The Perforce System in a Nutshell
	Why Perforce?
	About This Book
	What's Not In This Book
	Additional Reading
	Conventions Used in This Book
	Using Code Examples
	Safari Enabled
	How to Contact Us
	Acknowledgements

	Chapter 1. Files in the Depot
	1.1. The Perforce Filespec Syntax
	1.2. Browsing Depot Files
	1.3. File Types at a Glance

	Chapter 2. Working with Files
	2.1. An Overview
	2.2. Creating A Workspace
	2.3. Synchronizing a Workspace
	2.4. Local Syntax, Wildcard Expansion, and Special Characters
	2.5. Working with Local Files
	2.6. Working with Pending Changelists and Submitting Files
	2.7. Removing and Restoring Files
	2.8. Useful Recipes

	Chapter 3. Resolving and Merging Files
	3.1. Resolving: When, What, and How
	3.2. How Perforce Merges Text Files
	3.3. Reconciling Structural Changes
	3.4. Tips for Smoother Collaboration
	3.5. The Arcana of Merging

	Chapter 4. Branching and Integration
	4.1. The Classic Case for A Branch
	4.2. Creating Branches
	4.3. Integrating Changes from Branch to Branch
	4.4. Reconciling Structural Changes
	4.5. The Arcana of Integration

	Chapter 5. Labels and Jobs
	5.1. Saving Important Configurations
	5.2. Using Labels
	5.3. Using Jobs
	5.4. Jobs as Changelist Markers

	Chapter 6. Controlling and Automating Activity
	6.1. Depot and File Access
	6.2. Accessing Files in Other Domains
	6.3. Saving and Restoring Specs
	6.4. Change Notification and Change Monitoring
	6.5. Scripting Tips
	6.6. Behind-the-Scenes Version Control

	Chapter 7. How Software Evolves
	7.1. The Story of Ace Engineering
	7.2. The Mainline Model
	7.3. Ace Engineering Revisited
	7.4. Containerizing

	Chapter 8. Basic Codeline Management
	8.1. Organizing Your Depot
	8.2. General Care and Feeding of Codelines
	8.3. Nightly Builds
	8.4. Is Bug X Fixed in Codeline Y?

	Chapter 9. Release Codelines
	9.1. Creating a Release Codeline
	9.2. Working in a Release Codeline
	9.3. Integrating Changes into the Mainline
	9.4. Making a Release
	9.5. Distributing Releases
	9.6. Breaking the Rules
	9.7. Retiring a Release Codeline
	9.8. Task Branches and Patch Branches

	Chapter 10. Development Codelines
	10.1. Creating A Development Codeline
	10.2. Working in a Development Codeline
	10.3. Keeping a Development Codeline Up to Date
	10.4. Working with Third-Party Software
	10.5. Delivering Completed Development Work
	10.6. The Soft Codelines

	Chapter 11. Staging Streams and Web Content
	11.1. Staging Web Content
	11.2. Visual Content Development
	11.3. Bug Fixes and Staging Streams
	11.4. Major Web Development

	Appendix A. Setting Up a Perforce Test Environment
	A.1. Setup
	A.2. Connecting to Other Servers
	A.3. Getting Help

	Appendix B. Perforce Terminology and P4 Commands
	Bibliography
	Glossary
	About the Author
	Colophon
	Index
	index_A
	index_B
	index_C
	index_D
	index_E
	index_F
	index_G
	index_H
	index_I
	index_J
	index_L
	index_M
	index_N
	index_O
	index_P
	index_R
	index_S
	index_T
	index_U
	index_V
	index_W

